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Abstract: In this work we study adaptive synchronization in networks with Kuramoto units whose parameters are unknown and
where measurements are quantized over the communication network (therefore information is limited). We show that, for an undi-
rected connected graph, synchronization is enabled via appropriate adaptive protocols that counteract the effect of heterogeneity,
uncertainty, and quantized information. In particular, to address heterogeneity and uncertainty, appropriate adaptive laws are
designed to drive the network to frequency synchronization; to address quantized information, a dynamic quantizer is introduced
and embedded into the adaptive mechanism via a zooming-based approach (therefore with hybrid dynamics). The resulting pro-
tocol ends up being an adaptive hybrid synchronization strategy that can be distributed throughout the network: the quantizer
is co-designed with the controller, as typical for zooming-based quantization. The proposed integrated adaptation+quantization
protocol guarantees asymptotic synchronization to a desired frequency, which is shown via an appropriately designed distributed

Lyapunov function. Numerical simulations are also used to demonstrate the effectiveness of the proposed protocol.
Keywords: Adaptive synchronization, Kuramoto dynamics, uncertain systems, quantization, adaptive hybrid control.

1 Introduction

Synchronization is a collective phenomenon occurring in systems
of interacting units [1-4]. Synchronization can be leaderless [5] or
leader-follower [6, 7]: in the second case the network is steered in
some desired and a priori known solution defined by a leader unit. In
the 80’s Kuramoto proposed an exactly solvable model of collective
synchronization, which became known as the Kuramoto model [8]:
this model has been adopted in many fields like swarms [9], smart
grids [10, 11], among others [12].

Most synchronization models for non-evolving (or non-adaptive)
Kuramoto or Kuramoto-like networks (e.g. networks of phase oscil-
lators) have shown that synchronization is favored if the coupling
strength among the units is large enough and the spectrum of vari-
ety of the oscillators is narrow: this last point amounts to assuming
homogeneous or almost homogeneous oscillators [13]. However,
real-world networks have uncertain and heterogeneous parameters
which might even change with time. Therefore, in place of static
couplings, researchers have later been focusing on Kuramoto or
Kuramoto-like networks characterized by evolving, adapting cou-
plings which vary in time according to different environmental
conditions, leading to the study of evolving (or adaptive) networks
[14-16]. In [17] a simple model of adaptive Kuramoto network is
given via mechanisms of homophily (reinforcing interactions with
correlated units) and homeostasis (preserving the overall connection
strength). In [18] a set of adaptive strategies for synchronization and
consensus of complex networks of dynamical systems is presented.
The authors in [19] devise an adaptive scheme to achieve phase syn-
chronization by suppressing the negative effect of the heterogeneity
in the network, while in [20] protocols are designed to adaptively
interact with system dynamics and preserve the sum of all incom-
ing pairwise coupling strengths. In [21] a co-evolutionary rewiring
strategy that depends only on the phase differences of neighboring
oscillators is studied for Kuramoto units. However, adaptive syn-
chronization of heterogeneous Kuramoto networks is usually shown
numerically but not analytically proven.
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Within the scope of synchronization, this work will be focus-
ing on how to achieve adaptive synchronization in uncertain and
heterogeneous Kuramoto networks in the presence of networked-
induced quantization. Established approaches to quantization rely on
dynamic quantization mechanisms such as logarithmic quantization
[22], or zooming-based hybrid control [23]. The latter mechanism
takes its name from the analogy with the zooming in digital cam-
eras: when the state is outside its range region, the quantizer ‘zooms
out’ so that the state can be captured within the region. On the
other hand, once the state comes close to the origin, we can ‘zoom
in’ by reducing the size of the range so that the quantization reso-
lution becomes finer while the region becomes smaller. Repeating
this zooming in, we can obtain asymptotic stabilization. Recently,
adaptive approaches to quantization have been proposed for stand-
alone systems via different techniques, namely passification-based
adaptive control [24, 25], direct adaptive control [26-28], adap-
tive backstepping [29, 30], or sliding mode [31]. However, such
approaches have not been studied for networks of uncertain and
heterogeneous units. In fact, for network systems, while several
approaches to synchronization with quantized measurements can be
found in literature [32-34], to the best of the authors’ knowledge,
none of them is dealing with parametric uncertainty, which motivates
this work.

In this work we study adaptive synchronization in undirected
connected networks with Kuramoto units whose parameters are
unknown and where information is quantized over the communi-
cation network. Synchronization is enabled via appropriate adaptive
hybrid protocols in the presence of both heterogeneous and uncertain
dynamics. To address quantized information a dynamic quantizer
is introduced and embedded into the adaptive mechanism via a
zooming-based approach. the quantizer is co-designed with the con-
troller, i.e. the quantizer parameters are part of the design process.
This is the typical approach used both in logarithmic and zooming-
based quantization [22, 23]. The main contributions of this work are
the following: (a) proving asymptotic synchronization of Kuramoto
units in an adaptive way and with quantized information; (b) adopt-
ing a Lyapunov function that allows to distribute the dynamic



quantization strategy using only local information. The main ben-
efit of the proposed integrated adaptation+quantization protocol is
to guarantee asymptotic synchronization, whereas in the absence
of any dynamic quantization mechanism, one would obtain at most
bounded synchronization error.

The rest of the paper is organized as follows. Sect. 2 provides
the problem formulation. Synchronization protocols are given in
Sects. 3 and 4 without and with quantization, respectively. Numerical
examples are in Sect. 5, and Sect. 6 concludes the work.

Notation: The notation in this paper is standard. The transpose of
a matrix or of a vector is indicated with X7 and x” respectively.
A vector signal x € R" is said to belong to % class (x € %),
if rtn>a(;4 Hx(t)H < oo, Vt > 0. A time-invariant undirected commu-

nication graph of order N is completely defined by the pair ¥ =
(¥,&), where ¥ ={1,...,N} is a finite nonempty set of nodes, and
& C ¥ x ¥ is a set of corresponding non-ordered pair of nodes,
called edges. The adjacency matrix of a weighted undirected graph
= [kij] is defined as k;; = 0 and k;; = k;; > 0 if (i, j) € &, where
i # j. The adjacency matrix o/ = [a;;] of an unweighted undirected
graph is defined as a; = 0 and a;; = aj; = 1 if (i, ) € &, where
i # j. The Laplacian matrix of the unweighted graph is defined as
£ = [l;j], where l;; = ¥ ;a;; and l;; = —a;j, if i # j. An undirected
graph ¢ is said to be connected if, taken any arbitrary pair of nodes
(i,j) where i, j € ¥, there is a path that leads from i to j.

2  Problem formulation

The following network of heterogeneous coupled oscillators with
unknown dynamics is considered in this work

N
miéi+di9i =T — Z k,‘j sin(G[ — Gj),
j=1 )

where the time index # may be omitted whenever obvious. The mean-
ing of the parameters in (1) can be examined via the mechanical
analogy of mass points in Figure 1. After neglecting any collision,

Fig. 1: Mechanical analogy of a network of three coupled oscilla-
tors.

each point, or unit, will move on the circle describing an angle (or
phase, by analogy) 6; and an angular velocity (or frequency, by anal-
ogy) 6;, under the effect of an external driving torque 7;, an elastic
restoring torque k;; sin(6; — 6;) (with k;; = kj;), and a viscous damp-
ing torque d;6; that is opposite to the direction of motion. All inertial
coefficients m;, damping coefficients d; and stiffness coefficients k;;
have positive but unknown value. The external driving torque has
two components

T = W; + u;, ey 2)

where u; is the actual control torque and @ is a term proportional to
the natural angular velocity (or natural frequency) of the unit i, that
is the angular velocity it would have if there were no couplings. Let
us define for convenience the state x; = 6;. Then, (1) can be rewritten

as
. di 1 J
Xi=—xi+— | uy+w,—
m; m, =

- kij sin(é)i—ej) (3)
1 1 171

The following connectivity assumption is made.

Assumption 1. The graph ¢ of the network of Kuramoto oscilla-
tors (1) is undirected and connected. In addition, let us assume that
the network through which the oscillators can exchange informa-
tion coincides with the network through which the oscillators are
physically coupled.

The following assumption on the uncertainty set is made.

Assumption 2. Upper bounds for the positive constants m;, d; and
kij, call them m;, d; and k;; are known. Let us call the resulting
uncertainty set ®; for compactness.

Remark 1. Assumption 1 is a standard connectivity assumption
required for convergence of consensus dynamics. Assumption 2 is
required to obtain a bound to the increasing rate of the tracking error
during the zooming in phase, as it will be explained in Section 4.

Quantized information is now introduced. Let z € R” be the vari-
able being quantized. The uniform static quantizer is described by
a function g : R" — Q, where Q C R". The finite set of values is
defined as {z € R" : ¢(z) = i}, i € Q. With these considerations in
mind, we define the following dynamic quantizer:

qu(e) = uq(ﬁ) @)

where u > 0. Note that the dynamic quantizer (4) satisfies the
following condition:

< um 5
o)) < ®

where M represents the quantization range and M > 0 is the quan-
tization range of the static quantizer g(z). The quantization range M
and quantization error A will be adjusted by using a hybrid control
policy defined in Section 4.

We are now ready to formulate the synchronization problem.

Problem 1. [Adaptive frequency synchronization] Consider a net-
work of unknown oscillators (1) satisfying Assumptions 1 and 2.
Find a distributed adaptive strategy (i.e. exploiting only measure-
ments from neighbors) for the control input #; such that the network
frequency synchronizes to an a priori defined frequency xp, i.e. x; —
xo — 0, Vi. In addition, assuming that information is quantized over
the communication network according to (4), find a distributed adap-
tive strategy for the control input u; and for the dynamic parameter
u; such that x; —xg — 0, Vi.

A result is now given which is instrumental to solving the problem
above.

Proposition 1. [Homogeneization] There exists a family of scalars
ki € R and [ > 0 such that

d; 1
i i
6
1 (6)
= =1
m;

Furthermore, there exists an ideal controller

N N
M? = kﬁ‘e,- 7]? Z aij(e,- — Gj) +C2k —+ Z g?‘jaijsin(ei - Gj) 7)
j=1 j=1
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with ¢] = —w;, g]; = kij which leads to the following dynamics

Z alj xj ®)

Proof: The proof directly follows from applying the control input
(7) to unit (3), and using (6).

Remark 2. Conditions (6) basically correspond to matching the
uncertain dynamics to first-order consensus dynamics (8) for which
leaderless synchronization (x; —xj — 0, Vi, j) has been well studied
in literature [35]. It is not difficult to show that the controller

N
uf =ki0;—1; Y. a;j(6;—6;) — I} (6; — 6p)
j=1
N )
o+ Y gijaijsin(6;— 6))
j=1

where Oy is constant and a priori given, leads to leader-follower
synchronization dynamics

Za,j —xj) (10)

where ajy = 1 Yi by definition, which guarantees convergence of all
6 to Oy [35]. The connectivity assumption (Assumption 1) is instru-
mental in guaranteeing convergence of the dynamics (10), which
turn out to be leader-follower consensus dynamics [36, 37].

Remark 3. It is worth mentioning that, since m;, d;, kij are
unknown, the ideal control (7) cannot be implemented to solve Prob-
lem 1. Therefore, some adaptation mechanisms must be devised to
estimate the unknown ideal gains in Proposition 1 by exploiting only
measurements from neighbors. This is shown in the next section.

3 Distributed adaptive synchronization

The following synchronizing protocol is proposed

ui(t) =k Zau —6;(1)) —Li(t)(6: — 6o)
(11)
+eait) + Z 8ij(t)aijsin(6;(r) — (1))
j=1
where k;, [;, ¢;, gij, are the (time-dependent) estimates of k', [, c],
gl » respectively. The following synchronization result holds.
Theorem 1. Define the errors
e = Za,»j(e,-fej), e=[€|,ez,...,€1\/] . (12)
j=0

Under Assumption 1, the heterogeneous Kuramoto network (3),
controlled using the synchronizing protocol (11) and the following
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adaptive laws
ki = Pe,

N
-7 Z a,-j(e,-—ej) 6,‘
=0

N
li=Pe, |7 Zaij(ei—ej) e

j=0
- z (13)
N
¢i=Pe, | ~1| XL aijlei—e))
Jj=0
N
g','jzygi 4 Za,-j(e,-fej) Sin(@,‘fej)
j=0

where Pg, represent parameter projection in the uncertainty set ©,
and y > 0 is the adaptive gain, reaches frequency synchronization
(6; — 6y — 0, Vi).

Proof: The closed-loop network formed by (3) and (11) is

di 1
X = (**Jr—k

i

1
fl—Za,J —X; *l;l(i*xo)
(14)

1
+—(ci+w)+
m;

Zau 8ij —

kij)sin(6; — 6;)

which can be rewritten as a function of the estimation errors,
(15)

where k;(1) = k; (1) -k, L) =1i(r) — I, &(t) = ci(r) —
gij(t) — g;‘j. By defining for compactness

cf, gij(t) =

By(t) = diag(milfq (t),.l.,m—lNl}N(t))

T my (16)

the closed-loop for the overall network can be written as
x=By(t)x+ (—Iy +By(t))e+ B.(t) + B, (1) a7

where x = [x1,x2,..., xN} . Recalling that the synchronization error
is e = Iy(x — %) + Lx, where %y = [x0,%0,...,X0]7, the error



dynamics are

—(n+ZL)e+

Uy 4 L) Bt Bit)e+ Bel)) + Be(0)).

The adaptive laws (13) arise from considering the Lyapunov function
candidate

NEOy! X Poy!

V:ZelZ(t)+Z 1()3’ +Zl()*y

i=1 i=1 |li ‘ i=1 |li | 19)

N2yt XX g0y

i=1 i i=1j=1 i

Then we have
2eTe =—2¢" (Iy+ 2)e+
Uy ) (20)

+2¢" (Iy +-2) (Byx+ Bje + Be + Bg)

Za,j (:"
21

where o (-) is a real number representing the smallest eigenvalue of
a square symmetric matrix. Using (13) we have

N
Z (In+2L)e (22)

which is negative semi-definite. Using standard Lyapunov arguments
we can prove boundedness of all closed-loop signals and conver-
gence of e t0 0. In fact since V > 0andV <0, it follows that V' (¢) has
alimit, i.e. lim; o V t) Q = Vo < oo, where we have collected
all parametrlc errors in Q. The ﬁmte limit 1mplles V,e,Q € L.
addition, since V is uniformly continuous in time (this is satlsﬁed
because V is finite), the Barbalat’s lemma implies V — 0 as t — oo
and hence e — 0, from which we derive x; — xg, Vi. This concludes
the proof.

Remark 4. Theorem 1 provides a leader-follower synchroniza-
tion protocol driving the synchronization error to zero. In standard
leader-follower synchronization protocols, the desired reference is
available to a single node (or to a few nodes) in the team acting as
leader(s). However, traditionally, the literature on Kuramoto oscil-
lators has considered the reference to be available to all nodes: see
for example the relevant works [38, 39]. Here, the pacemaker pro-
vides a reference frequency to all nodes: such a setting is justified in
view of the fact that Kuramoto models are often used in smart grid
applications [40, 41]. In this scenario, Oy represents the globally-
known 50 or 60 Hz to be followed by all systems. In line with such

literature, also in the proposed protocol the knowledge of € is avail-
able to all systems in the network: nevertheless, using a distributed
observer, it is not difficult to extend the proposed approach to the
setting where the desired reference is available to a single or to a
few nodes. This issue was studied by some of the authors in [16].
With a similar smart grid application in mind, we have been focus-
ing on frequency synchronization, rather than on full-state (phase
and frequency) synchronization. The proposed protocol requires the
measurements of both 8; and 6;. This might sound demanding, but
many management algorithms in smart grids (frequency regulation,
optimal power flow, etc.) require both 6; and 6;. In addition, because
of the widespread use of phasor measurement units (PMUs), it is
nowadays quite straightforward to measure 6; and 0; in smart grids.
A PMU is a device which measures the electrical waves on an
electricity grid.

Remark 5. Note that the parameter projection P[] in (13) is not
necessary for stability. As a matter of fact, stability can be achieved
evn without any projection Pg, -] (see for example the full-state syn-
chronization strategy in [16]). However, since parameter projection
is fundamental for stability in the presence of quantized information
as explained in the next section, then parameter projection has been
introduced in Theorem 1 as well.

Remark 6. In order to implement (13), and in particular the term
Z?’:] a;j(e; — ej), it is required to communicate among neighbors
the extra variable e;. In fact, the variable e; can also be thought
to be local information for the following rationale. Communication
of extra local variables is often at the core of many synchroniza-
tion protocols: for example, synchronization based on distributed
observer [42, 43] requires communication of extra local variables
representing the observer states. Therefore, communication of e; is
homologous to communication of any other auxiliary variable. It has
to be noted that, in our setting, communication of the local vari-
able e; is equivalent to communicating x; to the neighbors of the
neighbors (2-hop communication). This apparently more complex
communication architecture actually brings a crucial useful feature:
the Lyapunov function V in (19) ends up being block-diagonal (no
synchronization error cross terms among units are present, and sim-
ilarly no parameter estimation error cross terms among units are
present). This reminds of the typical block-diagonal design in con-
sensus problems, V = e’ (I®P)e [35, 44], and it is thus consistent
with such literature: in the next section we will see that such a fea-
ture is also crucial to implement a dynamic quantization strategy
that does not require the complete knowledge of £ .

4 Distributed adaptive synchronization with
quantized information

Being the systems connected through a network, information (fre-
quency and phase) should be exchanged among neighbors, and
therefore quantized. Therefore, system i will received some quan-
tized information from its neighbors j. In line with the work by
Liberzon and Ishii [22, 23] and most literature stemming from there,
a dynamic quantizer will be codesigned together with the controller,
i.e. the quantizer parameters will also be part of the design. We
consider the following quantization setting:

e Instead of quantizing the frequency 6 ; itself, we assume that each
system j quantizes the difference with respect to 6y, i.e. qu (6 i — 6)
which, upon synchronization, tends to zero;

o Instead of quantizing the phase 0; itself, we assume that each sys-
tem j sends a correction factor with respect to the phase increment,
according to the relation

+ (60 +aj(0))t (23)
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where ¢, (bj(t)) and gy (a;(t)) are the packages to be sent (y-
intercept and incremental slope correction of the line) which, upon
synchronization, tend to a constant and to zero, respectively.

Within this synchronization setting it is possible to reconstruct with
arbitrary precision all signals, provided that the quantization range
of (4) can be made arbitrarily small. When information is quantized
according to (4), the closed-loop system (14) modifies into

d;
Xi —(—* + —k

mj

1
—l— Zal] Xi—X; —l;l( Xi —X0)

1 1 .
+—(ci+w)+— Zaij(g,-j—k,-j)sm(ei—e )— ,Ll,ll Ay,
mj mi j=1 mj

(24)
where A; is defined as the quantization error, and in case of no sat-
uration™ it holds HAZi || < A. Note that u; represents the quantization
range for system i.

In view of (24), the evolution of the synchronization error can be
written as:

—(In+ZL)et

Uy + L) B0+ BiO)e+ Belt) + Bo(t) + Bra (1)) )

where we have used the same variables defined in (26), and in
addition

B 1) = ding((~1 = ) B (1= Ty ()

(26)

In order to analyze the stability of the closed-loop system (25), it
is natural to consider the same Lyapunov function defined in (19). In
addition, let us consider the same adaptation laws as in (13). After
repeating similar steps as in the proof of Theorem 1, we arrive at the
expression

=

Iy + Z)ei(e;

VS—ZZQ(

~ 1
() —4,). @)
—1 mi

Because all control gains are bounded due to the projection strategy
in (13), we can define p; € R > 0 such that:

{7 N AGEIHORRAGED W lgu()}

= 28
pi = max H (28)
and
N
p=Y i 29)
i=1
In addition, because of (19) we have
ele<v< eTe+p. 30)

The most interesting observation is that, because of the separable
structure of V = Y;L; V; (V; represent the terms in (30) related only
to system i), it is possible to find ‘decentralized’ versions of the

*Saturation occurs when the signal z exceeds the maximum quantized level.

In case of no saturation (||z|| < uM), it holds ||qu (z) — z|| = 1t||A || < pA.
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inequality (30), i.e.
E<Vi<e+p, VieV. €2y

The time derivative of V in (27) in case of no saturation can be
expressed as

2

. =1
V<=2 (IN+Z)€,'(6‘,'+(1+I,')%M[A)
=~ i

1

2

o

o(ly+-2) I;
<- iloly+2)( lei] - =) |
<21 lelol + >(|e| .
R
. N
— V< =2Y e o(ly+-ZL)(leil — wRA) (32)

i=1
where R is bounded, in view of Assumption 2. The last inequality
basically reveals that the time derivative of V can also be separated
into N inequalities, i.e. V = Y | V; (V; represent the terms in (32)
related only to system i). According to (5), the condition for no
saturation is satisfied if the following holds:

lei| < uiM. (33)

We define, for each system i, the following regions:

PBri(wi) : { \eiléuiM}
Hi() - { e?ﬁu?Mz} .
Fi(i) = {ei il < pira}

Si(Wi) = {e, eiz < ,uiszAz}.

Note that, when
M > RA

then %> (ki) C (i) C H1 (i) C B (i)

4.1  Main Result

Using the previously explained design, we can obtain an inte-
grated mechanism where appropriate adaptive laws interact with
a zooming-based quantizer. The following stability result can be
derived.

Theorem 2. Under Assumptions 1 and 2, consider the heteroge-
neous Kuramoto network (3), controlled using the synchronizing
protocol*

N
ui(t) =k;i(t)6; — li(t) Z aij(6i(1) —qu(6;(r)))
=0 (35)

N
+Ci(l) + Z’lgij(t)aij sin(B,-(t) - qﬂ(ej(t)))
j=

*In the next and the following equation we use, with some abuse of nota-
tion, the symbols gy (6;), qu(8;) and gy (e;) to indicate variable quantized

as indicated at the beginning of the section.



and the following adaptive laws

N
ki=Pe, | =1 | Y aijlqulei—e;)) | 6:
=0

N
li=2, |v| X aijlaulei—e;))) | qule:)
j=0

- (36)

=

=P, | -7 aij(qu(ei—ej))

0

J

N
gij= Pe, |~V Zbai./(q/i(ei_ej)) sin(6; — qu (6;))
=

where P, represent parameter projection in the uncertainty set ©;,
and 'y > 0 is the adaptive gain. If the following holds

M >RA 37)

then there exists an error-based hybrid quantized feedback control
policy that reaches frequency synchronization (6; — 6y — 0, Vi).

Proof: We distinguish two phases, namely the zooming-out and
zooming-in phases. In the zooming-out phase p; is chosen so
that e; € %);(1;) and thus boundedness can be guaranteed. Dur-
ing zooming-in phase the objective is to shrink the smaller region
Si(1;) by reducing the dynamic quantizer parameter g; so that
state-tracking properties can be concluded. The two phases are
explained in the following.

Zooming-out phase: Let 11;(0) = 1. If |e;(0)| > M we have sat-
uration. In this case we make g;(¢) increase in a piecewise fashion
to dominate the growth factor of ¢;, which can be seen by (24) that

ditk;
m

MaX,, 4,c0 ditk;

m;

i

equals |e

, where max,,, 4.ce ‘— ‘ is bounded in

view of Assumption 2. There will be a time instant #yp > 0 and a
bounded p;(tg) at which e;(tg) € 71;(i(to)) N B (Hi(tp)). Because
e,-(to).e %1,‘([.1,'([())) and -_@2,'(/.1,') C ,@1,‘(”,’) from (37), we get from
(32) V; < 0. Note that this does not imply that e; will decrease, since
V; comprises also the parametric estimation errors. Therefore, for
t > top we might have two cases: either eiz is decreasing, in which
case there is no saturation and we go to zooming-in phase; or ei2 is
increasing, in which case we keep increasing ;(¢) at the same rate.
For this second case, because (;(¢) is updated continuously at much
higher rate compared to the growth of ¢;() to avoid saturation, we
can assume that Vt > 1o, ¢;(t) € By;(li(t)).

Zooming-in phase: Let t' be a time instant such that ¢ > ¢’ > ¢,
and e;(t) € B1;(1;(t')). Then it is true that V; < 0 as long as ¢; ¢
PBoi(1:(t")). One can see from (34) that %5;(1;) C #;i(1;). Thus, at
time 7 with 7 > ¢/, when ¢;(t) € #;(u;(¢')), p(7) is updated

i) = — wi(). (38)

Obviously Q < 1 due to (37). Thus, zooming-in event occurs, and
one can see that #;(; (7)) = (i (1)), where p;(¢') is the value
of u; that prevents saturation. After the zooming-in event one might
have two cases: either the tracking error increases tending to violate
e; € %1;(1i(f)), in which case a new zooming-out phase is activated;
or the tracking error keeps decreasing in which case a new zooming-
in will eventually be triggered.

Combined behavior: Let us now look at the combined behavior of
zooming-in and zooming-out phases for the function V and the sets

21(0) = {e: el < N

A () = {e:eTe gszzMz} 39

P () = {e: le| < N/ZLRA}
S(@) = {ezele <N p2R2A

where [1 is taken as the maximum p; among all systems i in the
network, i.e. fl = max;l;. Now, provided that the same design
parameters M, A and R are chosen for all units, including the same
initial condition w;(0) = 1, it is possible to extend the stability argu-
ment to the whole Lyapunov function V. In fact, for t > 1 (taken as
the maximum among all systems), at both zooming-in and zooming-
outphases itholds V <0 = V(t) <V(ty), thus V is upper-bounded
by V(ty) and lower-bounded by 0. Because V is bounded and V is
lower bounded by V (), because it holds V <0Vt > 1y, we can
conclude using the Barbalat’s lemma that lli_>113° V(t)=0.

The following relation from (32) holds:

lim V(1) < =2 lim ||e(r) || o Iy +2) (He(z)” fﬂ(t)NRA> N

t—ro0 t—ro0

0< ~2im|le(t)]| o (ly +2)(|le(®)]| - £()NRA).

o (40)
The above relation is true when
lim|[le(r)|| =0 or lim [[e(r)|| — A(:)NRA < 0. (41)

The second relation implies that e € %,(ft). However when
e € J(i1), and because S (1) D By(fi), fi is decreasing as in
(38) because zooming-in occurs, and consequently e ¢ %, (f1). As
a consequence lli_>1n [i(r) =0 and by (41) we conclude lli)m He(t) H =
0. O

A state flow diagram of the adaptive hybrid control strategy, with
rules for zooming in/out, is shown in Fig. 2.

=1
ec 531 (#)7
No Yes No
jvincreases much faster Yes
than ||e
an e e o)
"Zooming-out”
Yes
p=Qp
<1

"Zooming-in”
Fig. 2: Error dependent adaptive hybrid control strategy, with rules
for zooming in/out.

Some remarks follow.

Remark 7. The peculiar feature and contribution of the zooming
procedure of Theorem 2 is to adopt a Lyapunov function (19) that
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allows distributing the quantization strategy throughout the network.
In other words, thanks to the diagonal structure of V in (19) and to
the diagonal structure of V in (32) each system can implement its
own zooming strategy only by using measurements from neighbors.

Remark 8. Even though the adaptive hybrid synchronization pro-
tocol in Theorem 2 is distributed, it requires some global knowledge
in order to obtain the parameter R in (32). In particular, some
global knowledge of the uncertainty set ©; for all units is required
in order to obtain max,, ce icy ‘ 1+ rfT', : this global knowledge can
be obtained after assuming that all units have the same uncertainty
set. In addition, the knowledge of ¢(Iy +.£) and of o(Iy + L) is
required in order to obtain R: it is important to remark that appro-
priate upper and lower bound for 6 (Iy + £ ) and for o (Iy + £ can
be obtained by simply knowing the number of units in the network, or
the maximum number of neighbors for each unit. In fact, conserva-
tive bounds in this direction can be found in [45—47]. In other words,
it is not necessary to know the exact topology of the network in order
to estimate 6 (Iy +.£) and o (Iy + &), and therefore to estimate R.

Remark 9. Differently from the non-adaptive zooming procedure
[23, 48], where a unique zooming-in occurs, in the adaptive case
we might have multiple zooming-in and zooming-out phases. This
is because the Lyapunov function (19) is quadratic in both the syn-
chronization and the parameter estimation error. Therefore, V<0
might be due not only to a decreasing synchronization error (eventu-
ally leading to zooming-in), but also to decreasing parameter error
combined with increasing synchronization error (eventually lead-
ing to a new zooming-out). Therefore, convergence of L may be not
monotonic. This is illustrated by the numerical example in the next
section.

Remark 10. From the dynamics in (24) we can see that the quanti-
zation of the phase 0; does not contribute to stability or instability of
the adaptive loop: in fact, being the phase always bounded in [0,27],
the quantization of 0; simply acts as a bounded disturbance that can
be handled by parameter projection. It is the quantization of ; that
must be carefully handled in order not to lead to instability. As a
matter of fact, if one is interested only in bounded synchronization (in
place of asymptotic synchronization), one can have a static quantizer
for 6; and a dynamic quantizer for 6;: using similar steps as in the
proof of Theorem 2, one would be able to conclude global uniformly
ultimately boundedness of the synchronization error, where the ulti-
mate bound would depend on the precision of the static quantizer for
0;.

5 Numerical example

Simulations using the adaptive synchronization protocol of Theorem
1 and the adaptive hybrid synchronization protocol of Theorem 2 are
carried out in the following, considering the weighted graph shown
in Figure 3. The parameters and initial conditions for each heteroge-
neous Kuramoto unit (3) are reported in Table 1. Please recall that
the unit parameters are unknown to the designer, i.e. the values of
Table 1 are used for simulations but not for control design.

Fig. 3: The Kuramoto undirected weighted graph. The weights k;;
are indicated on the links.
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Table 1 Parameters and initial conditions for the Kuramoto units.
| mi | di || 6:0) | 6:(0) |

unit #1 | 1.1 | 0.1 5 0 0.6

unit#2 | 1.3 | 0.15 | 10 T 0.5

unit#3 | 1.2 | 0.2 | 15 /2 0.4

unit#4 | 1.8 | 0.21 | 20 | (5/4)m | 0.3

unit #5 | 1.5 | 0.25 | 25 /4 0.2

unit #6 | 1 03 |30 (3/2)n | 0.1

The reference model is chosen as an integrator with initial con-
dition x,,(0) = 1 (representing the frequency to be followed). The
adaptive gain is taken as y = 1. The projection bounds are chosen
as: k; €[0.05, 4], [; € [0.8, 2], ¢; € [-32, —2], and g;; € [0, 6]. The
estimated control gains are initialized as k;(0) = 0.2, /;(0) = 1.5,
¢;(0) = —10, g;;(0) = 0. The parameters for the quantizer are M = 10
and A = 0.01: in addition, the parameter R has been calculated as
79.2 (resulting in Q = 0.0792), and the dynamic ranges are ini-
tialized as ;(0) = 1. Clearly, condition (37) is satisfied, therefore
Theorem 2 is applicable.

time

Fig. 4: Adaptive synchronization: synchronization of the frequen-
cies of each unit i to the reference frequency, and control inputs
u;.

0.4 | ‘ ;

0.3 ( ‘ ‘ |
<
: 0-2} | 1
&

i sa'

0 ‘ ‘ ‘ ‘

0 5 10 15 20 25

time

Fig. 5: Adaptive synchronization: adaptive gains k; and /;.

The adaptive synchronization resulting from Theorem 1 is shown
in Figure 4. Synchronization is achieved and it can be noted that



P20 ¢ b
&
-30 b
40 , , , ,
0 5 10 15 20 25
time
/
10 15 20 25
time

Fig. 6: Adaptive synchronization: adaptive gains ¢; and g;;.

each unit has different control inputs u; that reach different steady-
state values: this is due to heterogeneity, since each unit might need
to converge to different steady-state values in order to track the ref-
erence frequency. The adaptive gains are reported in Figure 5 and
Figure 6, which can be shown to be projected inside their bounds.
It can be noted that the weights g;; are not necessarily symmetric
gij 7 gji: this is because, in order to compensate for heterogeneity,
the adaptive laws might converge to different values. The adaptive
synchronization resulting from Theorem 2 is shown in Figure 7. Syn-
chronization is achieved and, to some extent, convergence is similar
to the previous results. The initial transient is slightly different, as it
can be noted from the different control inputs u;. The adaptive gains
are reported in Figure 8 and Figure 9. It is important to note that
the gains do not necessarily converge to the same values as in the
previous simulation: this is a well-know result in adaptive control
approaches, since, in the absence of a persistency of excitation con-
dition, convergence of the tracking error to zero might be achieved
without the need to converge to the actual parameters (cf. [24-30]
and references therein). In other words, adaptive synchronization
does not require k;, I;, ¢; and g;; to converge to k}, I7, ¢} and g?‘j.
Finally, Figure 10 reports how the dynamic range p; for each unit
evolves with time: after starting from 1, the different u;’s converge,
with different trends, quite fast to small values, which in turn guar-
antees high quantization precision and asymptotic tracking. Overall,
the proposed protocols show the capability to synchronize, in a dis-
tributed way, uncertain and heterogeneous units, even in the presence
of limited (quantized) information.

By selecting the parameters for the quantizer to be M = 10 and
A = 0.1, we now have Q = 0.792. This means that the zooming-
in is smaller than in the previous case (with A = 0.01 we obtained
Q =0.0792). Figure 11 and Figure 12 show the new synchroniza-
tion and dynamic range (adaptive gains are not reported for lack
of space): it can be seen that asymptotic synchronization is still
reached, but the dynamic range takes a bit more time to decrease
towards zero. Finally, in order to clarify the benefits of the pro-
posed method, we provide the synchronization with a static quantizer
(with no zooming-based strategy). The tracking error can be seen
in Figure 13, where it is clear from the zoomed part that the static
quantization error will lead to bounded synchronization, in place of
asymptotic synchronization.

6 Conclusions

In this work we have studied adaptive synchronization in net-
works with Kuramoto units whose parameters are unknown and
where information is quantized over the communication network.
In the presence of both heterogeneous and uncertain dynamics,
synchronization has been enabled via appropriate adaptive proto-
cols that counteract the effect of heterogeneity and uncertainty. In

oL . . . .
5 10 15 20 25
©
=) 1
F i
40 . . . .
0 5 10 15 20 25
time

Fig. 7: Adaptive hybrid synchronization: synchronization of the fre-
quencies of each unit i to the reference frequency, and control inputs
u;.

141 T

time

Fig. 8: Adaptive hybrid synchronization: adaptive gains k; and ;.
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Fig. 9: Adaptive hybrid synchronization: adaptive gains ¢; and g;;.

particular, to address quantized information, a dynamic quantizer
was introduced and embedded into the adaptive mechanism via a
zooming-based approach. The resulting protocol ended up being
an adaptive hybrid control strategy, for which synchronization to a
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Fig. 10: Adaptive hybrid synchronization: dynamic range u; for
each unit i.
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Fig. 11: Adaptive hybrid synchronization with A = 0.1: synchro-
nization of the frequencies of each unit i to the reference frequency,
and control inputs u;.
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Fig. 12: Adaptive hybrid synchronization with A = 0.1: dynamic
range (; for each unit i.

desired frequency was shown via Lyapunov analysis. Finally, numer-
ical examples have demonstrated the effectiveness of the proposed
protocol.
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Fig. 13: Static quantizer synchronization: synchronization of the
frequencies of each unit i to the reference frequency, and control
inputs u;.

Future work might include the following aspects: in smart grids,
which are a typical application field of Kuramoto networks, it is
often of practical interest to optimize the power flow: this implies
satisfying some constraints on the phase differences between unit
[49, 50]. This aspect has not been addressed in this work and would
be of interest for future work. Also, some practical input constraints
like input saturation or discrete inputs are of interest in view of:
the limits of generation or load shedding, or some possibly discrete
generation or load shedding actions [51]. An adaptive approach in
this direction has been recently investigated in [52], even though the
extension to network systems is open. Other networked-induced con-
straints like sampled information have been studied in [53], although
adaptivity to parametric uncertainty has not been covered. All these
aspects are of extreme interest for future work.
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