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Abstract

The advancement in the steering capabilities of fibre placement machines has improved
the tailoring potential and therefore the design possibilities for composite structures. How-
ever, the larger design freedom leads to complex and non-convex design spaces. Finding
the optimum solution thus becomes costly and challenging, specifically considering the
non-linear coupling of thickness with the steering of the filaments or tows. Additionally, an
accurate representation of the variable stiffness adds complexity to the modeling strategies,
requiring additional refinement relative to constant-stiffness counterpart designs. Surro-
gate modeling and more exploratory optimization techniques make it possible to circum-
vent the higher execution time by using a limited set of high-fidelity model evaluations.
This enables efficient and accurate exploration of the design space. Bayesian optimization
techniques applies the surrogate model to offer strategic and probabilistic exploration of
the design space and have demonstrated success in various fields. However, the applica-
tion of Bayesian optimization schemes in structural optimization is in its nascent stage.
The present thesis is a successful attempt that further pushes the application of Bayesian
optimization for the lightweight design of variable stiffness cylinders.

A novel finite element SC-BFSC is proposed for modeling and the computational ef-
ficiency for linear buckling analysis is investigated. The results showcase an enhanced
computational efficiency with retained accuracy. Prior to optimization, a comprehensive
Design of Experiment study is conducted, wherein different parameters and kernels were
investigated for optimum performance. An optimization framework for the problem is pro-
posed, utilizing the Gaussian process with Matern32 Kernel for regression model and a set
of acquisition functions.

The proposed optimization framework is implemented successfully and verified against
a Genetic Algorithm(GA) based solution, which is an optimization method of proven suc-
cess and robustness. The result obtained showcase the Bayesian optimization strategy’s
ability to identify comparable solutions at a fraction of the computation time required for
the GA optimization in most cases. This study successfully demonstrates the Bayesian op-
timization’s ability for designing lightweight variable stiffness cylinders, while providing a
framework that is generally applicable in lightweight design of composite structures.
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1
Introduction

A wise man proportions his beliefs to
the evidence

David Hume,1748

Modern composite manufacturing has come a long way since its inception and its ap-
plication is spread throughout various industry and cutting edge fields. However, the true
potential of composites have always been limited by technological and manufacturing
constraints. As new technologies emerged, superior designs followed and costs reduced.
Early research in variable stiffness(VS) composite has shown that by locally varying steer-
ing angles in lamina, the laminate properties such as the buckling loads can be significantly
enhanced[13]. Along with advancements in robotics and automated manufacturing tech-
niques such as automated fibre placement(AFP) and continuous tow shearing(CTS) there
has been renewed interest in variable stiffness composite. Continuously varying angle of
the tow allows for tailored load redistribution, which is a potential untapped with straight
fibre panels. However, with the ability of varying fibre angles, the number of variables in-
creases and hence, design space become exponentially larger[4], therefore increasing the
computational complexity.

The weight reduction and knockdown factors are the evergreen subjects of interest in
aerospace industry and can be considered polar opposites of each other as increase of
one reduces the other. An everpresent motivation exists to realise lightweight structures
through the reduction of the knockdown factors and therefore enhancing confidence in
the structural integrity. This thesis focuses on one such problem, optimizing cylinders to
minimize weight for given design buckling load. Of the wide expanse of optimization algo-
rithms available, designers typically choose the tested and proven methods such as gradi-
ent based methods and genetic algorithm strategies. Stochastic based methods are a type
which have not gained much traction in the structural optimization field even though they
have a proven track record in other fields. Bayesian optimization is in the lead of such
stochastic methods due to its straightforward formulation and easy implementation. With
past studies, VS composites highlighted its ability to steer the loads away from the critical
junctions on the structure thus allowing the structure to carry more load. This indicates
that there is a lot of potential with VS composites and improvements of varying range can
be obtained depending on the structures and loading conditions[51, 81, 111].
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2 1. Introduction

The large design space and potential of VS makes it an ideal playing field to study the
Bayesian optimization(BO). BO is stochastic based optimization strategy which utilizes the
predictions from the surrogate model to find the optimum solution. This falls under the
family of surrogate based optimization. With other surrogate based optimizations like neu-
ral network and other heuristic methods[10, 14, 105] being used in structural optimization,
the aplicability of BO and its potency is yet to be revealed. With this interest, the thesis
focuses on the efficient implementation and modelling of VS composite cylinder and un-
derstanding the capability of this optimization for the lightweight design for given buckling
load. Additionally, a novel SC-BFSC, element is investigated and benchmarked for its ap-
plicability for eigen value estimations.

The thesis structure is as follows. The thesis begins with the literature study which cov-
ers the basic principles and reviews of the recent research of composites and buckling for-
mulation(Chapter 2) which gives an understanding for the modeling of the VS cylinder.
This is followed by Chapter 3 which reviews the optimization process and its literature.
Literature review helped create a roadmap for the objectives and methodology. Chapter 4
gives the research goals and objective that are aimed in this thesis. Methodology begins
with Chapter 5 where the novel SC-BFSC element definition and buckling formulation is
explained. Chapter 6 implements the VS cylindrical model and is verified against 2 refer-
ence cases. The optimization problem and its objective, constraint and design space are
discussed and finalized in Chapter 7. The optimization process and its design of experi-
ments are reported in Chapter 8. Chapter 9 shows the results and observations from the
VS model verification and optimization results. The conclusions from the drawn from the
results in Chapter 10 and based on the conclusions, recommendations for future are pre-
sented.



I
Literature Study
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2
Variable Stiffness Composites

Literature Study

From wood to metal to composites, the aerospace sector has been at the forefront of mate-
rial development for improving strength to weight ratio. The composite structure develop-
ment began gearing up in the 1960s with more integrated composites main structures[77].
Until recent advancements in the automated manufacturing of composites, layup of the
composite was mostly constant. By changing the tow slits in the newer techniques like au-
tomated fibre placement(AFP) and continuous tow shearing(CTS), the angle of the tow can
be varied. The research into variable stiffness(VS) composites began in the late 1980s to
further improve strength and buckling performance [49, 50].

AFP deposits strips of composite material called tows through a gantry system. It has
the ability to curve, cut and restart. Typically, multiple tows are present at the machine head
to produce a course[108]. Heat and pressure are applied to merge with the previous layers
and produce the structure. There are some defects that may occur from varying the angle.
Overlaps and gaps are created when two adjacent course have different paths. This might
induce stress concentrations due to the uneven distribution of fibres and resin. Waviness is
another defect that gets introduced from gaps and overlaps. Other manufacturing defects
are wrinkles, tow twists and spliced tows.

CTS is a process developed by Kim et al. to improve over AFP. The tows are steered
through in-plane shear deformation instead of bending(AFP). This allows the tow to align
well with the reference curve which will reduce the number of overlaps and gaps formed.
CTS also allows for tighter curvature which increases the design bounds. One thing to note
is that steering by shear deformation causes the width of tow to be effectively reduced.
This induces local thickness variations which must be accounted for. The differences in
the manufacturing techniques can be seen in Figure 2.1.

2.1. Variable Stiffness Design
It is observed that the optimum design distributes the load away from the critical points like
cutouts. Variable-stiffness design is a pivotal step as this would define how the problem is
defined and solved. VS designing can be categorized mainly into two: using interpolation

5



6 2. Variable Stiffness Composites: Literature Study

Figure 2.1: AFP(a) and CTS(b) thickness variation depiction[57, 68, 112]

function as the basis to define the fibre orientation of each lamina or; using Lamination
parameters as design variables which defines the mechanical properties of the laminate as
a whole and then converting it into stacking sequence and fibre orientation.

2.1.1. Interpolation Function
The varying fibre orientation can be defined in many manners with the simplest being lin-
ear variation where the angle changes linearly along an axis as proposed by Gürdal et al..
The formulation in Equation 2.1 where a is the length along the x-axis with its origin lying
at a/2. T0 is the angle at the centre and T1 is the angle at either end.

θ(x) = 2(T1 −T0)

a
|x|+T0 (2.1)

The points where angles are defined(Ti ) are known as the control points. Linear varia-
tion reduces the flexibility and potential of the VS composites. Fibre Orientation based on
Lagrange polynomial was introduced in the study by Wu et.al[111]. This introduces non-
linearity into the function which allows for bigger variations. Equation 6.4 represents the
Lagrange function where Tmn are the angles at control points in the X and Y-plane with M
and N being the total number of control points at corresponding axes. Figure 2.2 shows the
path definition using Lagrange polynomial[40]. Choosing the control points will define the
freedom of fibre orientation the user will have and increase the complexity of the problem.
Right choices will help reach optima faster and avoid getting trapped in local optima[111].

θ(x, y) =
M−1∑
m=0

N−1∑
n=0

Tmn · ∏
m 6=i

(
x −xi

xm −xi

)
· ∏

n 6= j

(
y − y j

yn − y j

)
(2.2)
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Figure 2.2: Lagrange Interpolation for fibre orientation[40]

2.1.2. Lamination Parameter
Gürdal et.al used lamination parameters as the basis to design the variable stiffness[43, 91].
Lamination parameters are non-dimensional functions based on the ABD matrix and are
trigonometric bound . It can be calculated using integration along the thickness of trigono-
metric combinations of laminates’ orientation angle as shown in Equation 2.3. They re-
duce the design space to convex space due to the presence of trigonometric functions.
The ABD matrix are calculated with Equation 2.4 where Γ are the material invariants
matrices[44, 100]. The formula along with its derivation is shown in the work of Van
Campen. Since the variables do not depend on the number of laminates, they are the su-
perior alternative when the number of layers is high. However, in optimization, lamination
parameters provides the stiffness properties which may not give a unique solution for ori-
entation. This requires the use of two-stage optimization. For example, J.Van Campen et.al
uses lamination parameters to optimize the stacking sequence of VS composite laminate
for structural performance[101, 102]. The lamination parameters are solved with gradient-
descent optimization and the orientation angles are in-turn solved with genetic algorithm.

(
V A

1 ,V A
2 ,V A

3 ,V A
4

)= ∫ 1
2

− 1
2

(cos2θ, sin2θ,cos4θ, sin4θ)d z̄

(
V B

1 ,V B
2 ,V B

3 ,V B
4

)=4
∫ 1

2

− 1
2

z̄(cos2θ, sin2θ,cos4θ, sin4θ)d z̄

(
V D

1 ,V D
2 ,V D

3 ,V D
4

)=12
∫ 1

2

− 1
2

z̄2(cos2θ, sin2θ,cos4θ, sin4θ)d z̄

(2.3)

A = h
(
Γ0 +Γ1V A

1 +Γ2V A
2 +Γ3V A

3 +Γ4V A
4

)
B = h2

4

(
Γ1V B

1 +Γ2V B
2 +Γ3V B

3 +Γ4V B
4

)
D = h3

12

(
Γ0 +Γ1V D

1 +Γ2V D
2 +Γ3V D

3 +Γ4V D
4

) (2.4)
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Fibre steering will induce change in the effective width and thickness of lamina due to
shearing and bending. This change must be accounted for in mass calculations and geo-
metric imperfections of the surface. Adriana W. Blom and Gürdal provides an approxima-
tion function for the effective width of the steered tow. The change in thickness must be cal-
culated locally. The manufacturing of laminate is carried out normally from the inside layer
to the outermost. Therefore, the thickness variations will accumulate to the outer surface
whereas the inner surface is smooth. Castro et al. in the study of edge-based smoothened
Point Interpolation(ES-PIM) for VS laminate buckling used the effective width relation from
Blom to calculate local thickness. This relation is used (Equation 2.5) in their study which
compares ES-PIM model with discrete thickness FEM model which is believed to be a good
approximation with the discrete thickness FEM work. ∆θ is the change in angle along the
path.

hx = h

cos(∆θ)
(2.5)

This is applicable for filament winding and AFP processes. This means that thickness varies
with the orientation and cannot be assumed to be constant. Figure 2.3 represents the cor-
rect ply thickness distribution as shown in paper by Wang et al.. In Figure 2.3(b), the blue
line shows the mid-plane shift due to thickness variation.

Figure 2.3: Ply thickness representation[107]

Last few decades, research on VS composites have exploded as technology started
catching up to the creativity of composite researchers. In the work of Olmedo and Gurdal,
buckling analysis of VS composite plate is studied. The fibre orientation is varied with re-
spect to one axis and compared. Results show that critical loads can be increased upto 80%
than straight fibres with similar weights. Nagendra et al. gave a design methodology for tow
steering to improve performance using Non-Uniform Rational B-Splines(NURBS) to define
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path independent of FE meshes. The work demonstrated by testing this method on plate
with a hole and an engine fan blade. Various loading cases were observed and the results
showed considerable improvement over the conventional laminates.

Gürdal et al. studied the effect of VS on the in-plane and buckling response of compos-
ite panels. Using linear interpolation of angles for fibre path, a comparison study between
the straight/ constant stiffness and VS composites are done on in-plane loading and buck-
ling response. Results showed improvements from Constant stiffness and note that trend
between in-plane stiffness and buckling load vary inversely. Ijsselmuiden used lamination
parameters to optimize the VS composite plates to maximize buckling load. Although us-
ing lamination parameters make the design space convex, it requires 2nd solver to find the
stacking sequence. The studies presented showed that buckling load improved up to 189%
with respect to quasi-isotropic laminates.

Research on variable stiffness cylindrical shells are small when compared to the small-
scaled VS laminates and plates. Thin shelled cylinders mainly fail due to local buckling.
The main characteristics related to this are the radial displacement caused by the sud-
den initialization of global buckling and the difficult prediction of failure loads[109]. Adri-
ana W. Blom and Gürdal designed a cylinder with circumferential varying fibre orientation
and results showed about 17% improvement in critical bending moment relative to quasi-
isotropic. Güldü and Kayran numerically modelled VS cylindrical shells and optimized the
shells for different load conditions where particle swarm optimization was used with an-
gle parameters per laminate. Both axial and circumferential path definitions were studied.
For an eight-ply symmetric-balanced shell, results show that for compressive loading, axial
and circumferential path variation showed improvement over constant stiffness with axial
being superior(37% to 7%). Similarly, for pure torsional load, 15% and bending load 17%
improvement can be seen. From the above studies, it is evident that VS composite can
bring in good improvement. It is also seen that the difference is more noticeable when we
focus on improving one aspect of structure. In Section 2.2, the buckling of cylindrical shells
and its finite element formulation are reviewed.

2.1.3. Classical Laminate Theory
With Composite shells, Classical laminate theory(CLT) has been used often for calculating
the stress and strain elements which is a extension of the classical plate theory for lami-
nated plates. CLT is based on plane stress conditions and Kirchoff’s hypothesis which gives
the following assumptions: straight lines normal to the reference remains straight after de-
formation; there is no thickness variation from the load; normal stress is negligible when
compared to in-plane stresses and; shells are thin i.e. thickness is small compared to other
dimensions. With this, the in-plane displacements are assumed to vary linearly along the
thickness and the transverse displacement is constant, i.e. the transverse normal strain
is zero[79]. CLT’s formulation is simple and easy to implement. However, the laminate
is prone to thickness failure due to its relatively small transverse shear moduli(G13,G23).
Therefore, it is avoided for designs that are likely to fail from transverse shear or delami-
nation. The strain is calculated from the strain-displacement calculations where the dis-
placements are found from above assumptions. The force and moment resultants are cal-
culated from the strain and ABD matrix which can be given in Equation 2.6 where ε0,ε1

are the membrane strains and curvature respectively, A is the membrane stiffness matrix,
B bending-extensional coupling matrix and D bending stiffness matrix. The ABD stiffness
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matrix is calculated from material stiffness Qi j of each layer(1 to N ) as shown in Equa-
tion 2.7 which is the stiffness in accordance to the fibre orientation.

{
N
M

}
=

[
A B
B D

]{
ε0

ε1

}
(2.6)

(
Aij,Bij,Dij

)= N∑
k=1

∫ zk+1

zk

Qk
i j

(
1, z.z2) (2.7)

CLT equates different layers into statistically equal stiffness layers which is termed as
equivalent layer theory. Since CLT does not take into account shear deformations it is
applicable for thin shell cases. To combat this, First-order shear deformation theory(FSDT)
takes transverse shear stress into account which results in more accurate results than CLT
and Higher-Order Shear Deformation theory(HSDT) goes further to add higher-oreder
variations of the in-plane deformations which will remove the need for shear correction
factor. Although this makes it more accurate, it adds additional degree of freedoms into
the shell formulae which can make it costlier to compute.

2.2. Buckling Formulation
Along with the strength, buckling analysis of thin shells are very important. It forms many
structures in the aerospace sector including fuselage panels and space launch vehicle
structures. The compressive strength of a cylindrical shell can be calculated with maxi-
mum load it is able to carry when axially loaded before failure. Therefore, it is limited by
the material property and the geometric cross-section. Usually, the cylinder buckles before
it fails as reaching the critical stress is not the bottleneck. Buckling can be said to be the
critical point of juncture when the structure shifts from stable to unstable. Thin shells can
carry a great deal of load in the form of membrane compression[22]. If the compression
energy transforms into bending, it can lead to catastrophic failure.

Figure 2.4 shows the load-deformation curve on an axially compressed thick cylinder
presented by Sobel and Newman[22, 96]. From origin(O) to point A, the cylinder com-
presses axisymmetrically. At A denotes the load at which the cylinder buckles(perfect
condition). B is the bifurcation point where it can continue deforming axisymmetrically
(OABC) or deform more towards one side(OABD). The curve can vary depending on the
cylinder dimensions and boundary conditions. But usually, we can spot the critical buck-
ling load, the bifurcation point and sometimes failure load. More general load-deflection
curve is shown in Figure 2.5. Eigenvalue analysis calculates the bifurcation load(Point A).
This solves for a perfect cylinder with no imperfections on its surface, boundary conditions
or loads. Realistically, the buckling load is much lower that is caused from the non-linearity
of material properties and the aforementioned imperfections. Therefore, for a more accu-
rate load and design calculation, non-linear analysis should be considered. Nevertheless,
eigenvalue analysis is relatively inexpensive(faster) to solve, its buckling shape is quite sim-
ilar to the non-linear results and the shape information can be used on geometric imper-
fection for the non-linear analysis. Post-buckling requires non-linear solvers which solve
the post-buckling deformation iteratively.
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Figure 2.4: Cylinder Buckling Example[22, 96]

Figure 2.5: Typical Buckling Load-displacement Diagram[22]
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The buckling of plates and shells can be solved using the principle of minimum poten-
tial energy and the neutral equilibrium method[54]. Π is the total potential energy which
can be split into strain energy U and external work V . Equation 2.8 shows the second varia-
tion of the total potential energy and Equation 2.9 shows the eigenvalue equation for linear
buckling where λ is the eigenvalue and Φ is the eigen function. λ gives the buckling loads
and correspondingΦ gives its buckling shape function.

δ2Π= δ2 (U +V ) = 0 (2.8)

(K0 −λKG0) {Φ} = 0 (2.9)

Buckling of variable stiffness composites can be solved through finite element analy-
sis(FEA) or semi-analytically. And the stress and strain elements calculation for composite
elements are calculated generally calculated from classical laminate theory(CLT) or first-
order shear deformation theory(FSDT)[73, 88, 89, 110]. Methods used to solve vary de-
pending on the problem definition and authors choice. For example, Castro et al. used CLT
and FSDT to solve the linear buckling conical cylindrical shells semi-analytically. Results
show a good correlation and the importance of shear correction factor for thicker shells is
observed. Wu et al. studied buckling and optimization of VS composite plate using CLT and
FEA, where buckling is solved using rayleigh-ritz method. Gürdal et al. studied the stiffness
variation effects on Variable stiffness(VS) plates using CLT and custom solver ELLPACK.
Oliveri and Milazzo formulated a raleigh-ritz approach for the post-buckling of VS stiffness
stiffened panels using FSDT and FEA. Meshless based methods are also an emerging field in
FEA. Castro et al. studied the use of Edge-based Smoothed Point Interpolation Method (ES-
PIM) on buckling of variable stiffness composite. It shows that the smoothing can improve
the convergence rate for linear buckling. Vertonghen and Castro compares the discrete
thickness model and smoothed with continuous thickness distribution. They are modelled
semi-analytically using Ritz-method and the smoothened results showed good correlation
whereas the discrete thickness model experienced convergence issues. Labans and Bisagni
compared the experimental cylindrical buckling results and an FEA model using ABAQUS
and were able to correlate the load and mode shapes.

2.2.1. BFS Element
Using Finite Element Analysis(FEA), the properties are assigned to each mesh element, al-
lowing the problem to be discretized into small meshed elements where the properties are
defined individually. The use of finite elements is advantageous when complex designs and
boundary conditions are present. The element formulation can be approached in different
ways. Yang et al. reviews the different approaches and reviews diffrent modelling tech-
niques for composite elements. Hyer and Lee studied buckling performance of VS com-
posite using FEA. For linear buckling, FEA solves the eigenvalue problem of the structure
with prescribed boundary conditions. Bucalem and Bathe states that the development of
shell elements should be guided by the following requirements:

1. Element should be reliable: no spurious zero-energy mode, no shear/membrane lock
and insensitive to geometric distortions.

2. Computationally Effective.

3. Element formulation should be generic: non-linear application, thick/thin shells.
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4. Element formulation must be clear and simple to be used in engineering analysis.

Bögner-Fox-Schmit(BFS) element is formulated by taking the tensor product of cu-
bic Hermite interpolation functions with continuous derivative and bilinear lagrange
polynomials which are used to interpolate the membrane and bending degree of
freedoms(DOFs)[16, 82]. According to Zhang’s study on rectangular elements, BFS element
is widely used for rectangular elements due to its simple and effective formulation. There
are 6 DOFs per node which are u, v, w,θx ,θy and Γ where u, v, w are the displacements

along X, Y and Z directions, θx = δw
δx , θy = δw

δy , and Γ= δw
δyδy . This amounts to 24 DOFs

per element as represented in Figure 2.6.
Standard BFS element is limited by the fact that it can only solve out-of-plane deflec-

tion and cannot solve in-plane stress, even a linear interpolation is not possible. Castro
and Jansen modified the BFS element to enable the 3r d order interpolation of in-plane
displacement, termed BFSC element. This is accomplished by adding in-plane displace-
ment first derivatives which allow for calculating large displacement gradients. This is
particularly useful in cylindrical shell application due to the ’elephant-foot’ effect and
possible complex mode shapes[24]. They perform a multi-model post-buckling analysis
of a plate using the BFSC element and it is observed that the 3r d order interpolation of
out-of-plane displacement helps for faster eigenvalue analysis and additional in-plane
displacement derivatives improve the convergence rate for the second-order fields used in
the initial post-buckling analysis.

Figure 2.6: BFS element representation

The buckling behaviour of plates and shells have been studied extensively in this sec-
tion. Even though VS composites are relatively younger, there is plenty of work on how
buckling responds with the design changes in variable stiffness[1, 42, 61, 81, 109, 111]. It is
learnt that even though eigenvalue analysis may be limited by the fact that material non-
linearity and geometric imperfections are not considered, it can still act as initial design
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parameters as they provide a good comparison for mode shape and are much faster than
non-linear buckling analysis. In VS composites, optimization is an essential step as it is
hard to comprehend all of the design space. Chapter 3 looks into the optimization of VS
composites and gives an overview of the processes planned to be used in this thesis.



3
Optimization

Literature Study

Optimization can be classified into deterministic and non-deterministic methods[15]. De-
terministic based algorithms use gradient and/or hessian information in addition to the
objective function to predict the global solution. Continuous design variables are desirable
for these algorithms. If the model is highly complex and non-linear, it may take longer to
converge and may not even find the global optimum. On the other hand, non-deterministic
algorithms work with only the function information. As it only uses function values, they
take longer to solve. However, if the model has many local optima, with enough time the
global optimum can be found which is not always the case with deterministic based meth-
ods. Evolutionary strategies, particle swarm optimization, stochastic based optimization,
simulated annealing etc. fall under this category. The selection process of optimization
is dependent on the problem and the parameters available. In this section, previous re-
search on the optimization of variable stiffness composite is briefly touched upon. Genetic
Algorithm and Bayesian Optimization is delved deep as the thesis compares the two.

Ghiasi et.al. has studied the optimization algorithms and their efficiency with respect to
CS composites[34] and VS composites[35]. For CS, it is found that gradient methods are the
faster methods. But being forced to use continuous design variables, the need for first and
second derivatives and their tendency to get stuck in the local optima are its drawbacks.
The direct search methods are found to be a good match as well. Genetic algorithm is the
popular choice followed by simulated annealing. Stochastic methods are also discussed.
The disadvantages noticed from them are the slow convergence rate and their heuristic na-
ture makes it difficult to compare. The paper concludes that hybrid methods which use a
combination of optimization algorithms has seen favourable results but they are usually
problem-specific. With respect to VS composites, different parameterizations for the spa-
tial variations of properties are reviewed. The author describes gradient-based methods
to have the same advantages as had in constant stiffness but the increased design space
combined with computer intensive first and/or second-order derivatives make it hard to
advocate. In Direct methods, Nelder-Mead, Box’s complex method and Genetic Algorithms
are discussed. Nelder-Mead and Box’s complex methods are relatively fast to solve but they
may not find global optimum and cannot take a large number of design variables. Genetic

15
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Algorithms take longer to solve and have a slower convergence rate but are more robust
and have a higher success rate to get to the global optimum. The authors conclude the
paper with their ranking. The optimality criterion methods(Strain energy, Fiber steering
relative to principal stress, Fully stressed design etc.) and topology optimization should be
used when applicable, as these break the problem into simple formulations which can eas-
ily be updated. Multi-level optimization should be looked into next as it decomposes the
problem into sub-problems which generally work well in composite optimizations. Ge-
netic Algorithm or gradient-based optimization or a combination should be used when the
problem cannot be broken down into sub-problems.

The thesis of Ijsselmuiden describes that the composite optimization philosophy can
be approached from 2 directions: bottom-up and top-down. Bottom-up, where the def-
inition starts from the tow path and number of laminates which will later determine the
stiffness and in turn failure loads. Top-down, starts from the global stiffness which meets
the loading requirements which is used to calculate the tow path and number of laminates
needed. Depending on the design strategy and other factors like cost and manufacturing
constraints, either of the philosophy is chosen. The bottom-up approach is favoured in the
variable stiffness calculation because of its ability to include the manufacturing constraint.
Also, variations induced from the tow path makes it difficult to reverse-engineer from the
global design.

3.1. Genetic Algorithm

Genetic Algorithm(GA)]GAGenettic Algorithm is a type of evolutionary optimization in-
spired by the Darwinian principle of evolution. The earliest research into evolutionary
strategies was proposed in 1964 by Rechenberg[87] which did not include populations. This
was later established by Schewefel[86]. GA was first proposed by Holland and De Jong in
1975 and was popularized by Goldberg[36] who explained the mathematical, theoretical
and conceptual basics for implementation and provided research results and applications.
The algorithm exchanges information between the populations of a generation. The ex-
change is based on the selection and recombination conditions. The information is en-
coded into the chromosomes and genetic operators are applied to obtain the population
for the next generation. The main components are chromosome encoding, fitness func-
tion, selection, recombination and evolution scheme. GA can work with discrete and/or
continuous variables. Fitness function is the value produced from the input candidate
which shows how "fit" or good the solution is. In most optimization cases, this is the ob-
jective function. Basic guidelines for the fitness function is the requirement of clear defi-
nition that is quantifiable (i.e. maximum and minimum is easily identifiable) and can be
implemented efficiently[69]. In Figure 3.1, basic steps in the GA optimization are shown as
a flowchart. Each loop is a generation run that evaluates a set of population(P (i )). Here
the fitness of the parent population are evaluated and the best ones are paired for the next
generation(P (i +1)) through the selection process and mutation. The process is repeated
till the upper limit of the number of generations is reached or if the solution has converged
and the solver is confident of not getting a better one. Even though GA is expected to give
the global optimum, there are cases of GA prematurely converging.
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Figure 3.1: GA framework

3.1.1. Encoding
The first operation in GA is encoding. The variables are represented as bit-string. These
can be binary, Octal, Hexadecimal, Permutation, Value or Tree[55]. In Binary encoding,
each chromosome is represented by a binary string. Similarly, octal and hexadecimal use
octals and hexadecimal numbers respectively to represent the chromosome. Generally,
binary encoding is implemented in the algorithm as it is easy and faster to execute. In Per-
mutation encoding, the chromosome is represented by a string of numbers that represents
the position in a sequence. The travelling salesman problem can be represented through
permutation encoding as the sequence can represent the order of cities. Value encoding
uses the real value as it is. They can be real numbers, integers or characters. Value encod-
ing is used when there are complicated values where binary encoding fails. It is also helpful
for finding weights in a neural network. Tree encoding is used for evolving problems or
expressions in genetic programming. The chromosome is represented by a tree of object-
s/functions. It can be considered as 2D encoding where former ones are 1D. In the review
of GA by Katoch et al., a comparison table( Table 3.1) for the operators is provided which
show the pros and cons.

3.1.2. Selection
The selection process determines which parent chromosomes are chosen to create the next
generation. The convergence rate depends on the selection technique. The selection of the
point for generating children are based on the fitness function, i.e. fitter individuals have a
higher probability of selection.

Roulette Wheel Selection
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Roulette wheel takes all the individuals and puts them on a wheel. The area allocated for
each is dependent on the fitness value. For a population of n with their corresponding

fitness values being f1, f2, ..., fn , probability of selection of individual i is[33]: pi = fi∑n
j=1 f j

Since it takes only the fitness value into account, this might result in poor exploration and
inability to separate when the good and bad individuals have a small difference in their
fitness function.

Rank-Based Selection
The Rank-based selection ranks the population to their fitness values and then computes
the selection probabilities based on their rank. This reduces the probability of premature
convergence to a local optimum since each individual creates an expected amount of off-
springs based on their ranking and not their magnitude. This results in a less biased se-
lection process. There are different rank schemes. For example, Baker defines the selec-
tion process in a linear fashion, Yao establishes a stronger non-linear based selection and
Michalewicz has an exponential based function .

Tournament Selection
Tournament selection divides the population into subgroups of two or more individuals
and the best from each subgroup is chosen to the next generation tournament-style[17].
Here, the selection probability is over the subgroup and not over the whole population,
which can be useful for parallel processing.

In addition to the above selection methods, there are many others. Stochastic univer-
sal sampling is an extension of the roulette wheel[8] and Boltzmann selection is based
on the entropy of the individuals and importance sampling methods in Monte-Carlo
simulation[63]. Elitism selection is a supplement to selection methods where the best indi-
vidual from each generation is brought forward to the next generation. This was introduced
to improve the performance of the Roulette wheel.

3.1.3. Crossover Operators

In GA, the crossover operator can be considered the most crucial operator. Chromosome
decides how the parent chromosomes are combined to create children. Below methods are
utilized for the real-valued populations using interpolation or blending function. Figure 3.2
shows a visual representation of the crossover operators[59].

Single-point Crossover
The point is randomly chosen over the length of the chromosome and genes beyond the
point are exchanged between the parents. The crossover point is chosen at random but is
uniformly distributed over the length.

Two or k-point Crossover
Here two or more crossover points are selected and the chromosome is divided into seg-
ments that are swapped between the parents for off-springs.

Uniform Crossover
The Uniform crossover takes each bit separately and are swapped. In Offspring’s genes,
each bit has a 50% chance of coming from either of the parents.
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Figure 3.2: GA Crossover Operators[59]

3.1.4. Mutation Operators
Mutation Operators maintain diversity in the population and allows GA to go to the unex-
plored search space. It also helps bring out new characteristics. For real valued individuals,
probability-based distributions are used such as uniform, gaussian or Cauchy. For inte-
ger populations, bit-flipping(preferred) or Random bit may be used. Bit-flipping flips the
bit between 0 and 1 with a certain probability called mutation rate or mutation probability
whereas random bit mutation replaces the bit between 0 and 1 with equal probability; 50%.
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3.2. Surrogate Modelling
In complex problems, there is always a battle of efficiency v/s accuracy. The use of high
fidelity models gives better results but cost high computational power and time. Surrogate
models try to resolve this by creating a "synthetic" mathematical model which is based on
the results of a certain number of initial inputs which provide fast results with a feasible
accuracy. The approximate results can be used for the prediction in a global optimization
problem. The example of Ford motors is provided in the paper by Crombecq et al.. Here the
crash simulation of a high fidelity model of a full passenger car takes about 36-160 hours.
To run a global optimization on a black-box function like the above problem is not feasible
as it takes several hundreds or thousands of iterations to come to a global optimum. There-
fore, the use of a surrogate model for such cases are very effective. Sobieszczanski-Sobieski
et al. studied different optimization strategies for Multdissciplinary optimizations(MDO)
for Aerospace design. The paper describes that the use of Response surface(surrogate
model) to remove the obstacles of computation time is a helpful tool in realizing the solu-
tion. Surrogate models can be differentiated into global and local models. Global surrogate
models are defined on the entire design space whereas local is used in sub-spaces of design
space which contains discontinuities/jumps or highly nonlinear behaviour which cannot
be realized with a global model. For example, when there is snap-through/bifurcation on a
two bar-truss problem. Niutta et al. developed an optimization framework using surrogate
modelling which works with such discontinuities for the crashworthiness analysis.

Surrogate models can be formulated using different techniques; for example, polyno-
mial regression, Gaussian regression, Ordinary Kriging model etc. Jin et al. investigates
different techniques over various sample sizes and between high and low-order of non-
linearity. It is concluded in the research that the Radial Basis function is generally the best.
The performance between different models can be compared using the Tikhonov regular-
ization problem given in Equation 3.1[99]:

min
f̂ ∈H

Z( f̂ ) = 1

Ns

Ns∑
i=1

L
(

fi − f̂
(
x(i )

))
+λ

∫ ∥∥Dm f̂
∥∥

H dx (3.1)

where H is family of surrogate models, L(x) is the loss function, λ is regularization param-
eter and Dm f̂ is the penalty function. The former term tells the closeness to the data and
the latter smoothness of the solution. The loss function can be quadratic, also known as
the L2 norm. L2 norm is commonly used as it allows estimation of parameters. Other loss
functions include linear or Laplace where the magnitude of the error is taken, Huber Loss
function where the loss is taken as quadratic when its magnitude is small or else linear and
ε loss function where its zero if the error is within the margin specified or else linear[84].

3.2.1. Design of Experiment
An effective surrogate model will depend on the number of data points and approximation
function used. The data points must be selected in such a way that it provides a good rep-
resentation of the search space. The study of data points and the parameters associated
with optimization experiment in search space are called Design of Experiment(DoE). This
is of great importance as the right selection will result in an accurate model and is capable
of predicting extreme cases. Liu compared several DOE with different approximation func-
tions, sample size and sample strategies. He concluded that sample size has more impact
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than model design on the accuracy of the model. The surrogate model has a trade-off be-
tween bias(difference from the true value) and variance(sensitivity of the model to the data
set). Both can be improved if the number of sample points is increased. But due to the com-
putation constraint, the maximum number of sample points must be limited. Provost et al.
in their study of the progression of sample size concluded that the geometric progression
of the sample size is found to be more effective than arithmetic progression.

It is noted that different DoE methods will influence the accuracy of the model. For
low bias error, it is prescribed to select the sample points that are distributed uniformly
along the design space[84]. Modern Sampling techniques are classified into two: one-shot
or static sampling and adaptive sampling. One-shot methods generate all the points at
once aiming to fill the design space uniformly. These are easy to implement. The disad-
vantage is that if the sample points do not meet the design requirements the process will
be repeated which takes computational power. Adaptive sampling tries to solve this. It se-
lects a small set of sample points first and sequentially fills up to the desired number by
evaluating the earlier sets. Examples of static methods are random, orthogonal and Latin
Hypercube Sampling(LHS). Random sampling technique choose points in random within
the design space. The random method may cause poor coverage of the space from clus-
tering of points due to the randomness nature. LHS is commonly used and is well-known
for selection technique. For a sample size N , each dimension is divided into K bins/grids
which create K N hypercubes. LHS samples the points from each hypercube with the prob-
ability of each of the hypercube being selected are the same. This help prevent clustering.
However, the selection of bins is still random. Therefore its effectiveness may vary as the
visual depiction shows in Figure 3.3. To improve this, optimization algorithms are present
to ensure uniformity from sample points[52]. Adaptive Sampling can be divided into 3 cat-
egories: single surrogate use, multiple surrogate model combinations and multi-fidelity
models. Examples for the single adaptive single model are entropy search, mean square
error approach.

Figure 3.3: Comparison of LHS and random selection criteria

3.2.2. Classical Surrogate models
Polynomial regression model
Polynomial regression model uses a linear polynomial function to determine responses.
The coefficients are solved through experimental design. General formulation is repre-
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sented by Equation 3.2:

f (x) =β0 +
m∑

j=1
βi xj +

m∑
i=1

m∑
j≥1

βi j xixj +·· ·+ε (3.2)

where ε is the statistical error, xi is the i -th component of m-dimensional predictor and β

are column parameters with respect to x to fit the model. Usually, low-order(commonly
2nd order) are used due to their flexibility and ease of use[52].
Radial Basis Function(RBF)
RBF uses linear combinations of radially symmetric functions which are based on the eu-
clidean distance between the sample points. RBF model can be expressed as Equation 3.3.

f (x) =
n∑

i=1
βi ·φ

(
r i

)
=βTφ (3.3)

where β are weight coefficients, φ(r ) is the radial function and r represents the euclidean
distance between the points x and xi. RBF models have good flexibility, are efficient and
have a simple structure.
Gaussian Process(GP)
Gaussian process model is a constrained regression model. The GP model creates a joint
multivariate Gaussian distribution on the sample points. GP model has some distinct
features[52]:

• GP model provides good adaptability; useful when there is a black-box function.

• It can deal with noisy data

• GP passes through all sample points which is crucial for deterministic simulations.

• Suitable for integrating data from different stages.

• GP can generate prediction error at non-test sample points.

GP formulation will be discussed in detail in the next section.
There are many other widely-used models. Support Vector Regression(SVR) and Arti-

ficial Neural Network(ANN) are particularly well known. ANN is considered a universal
mathematical approximator. It is capable of representing any continuous function[46, 64].
This along with the low computation cost makes it a good option for surrogate models. The
limitations of ANN are the high processing power and the likely possibility of over fitting the
data. .

3.2.3. Surrogate Model Optimization
Once the Surrogate model is selected and validated, the model can be deemed fit for opti-
mization. The main steps required in this are described below[84]:

• Construct Surrogate model from given data points.

• Estimate function minimizer using Surrogate function.

• Evaluate the true objective for the estimated minima.

• Check convergence. If yes, stop.

• Update Surrogate model with the new data points.
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• Repeat till convergence or maximum iterations.

The use of evolutionary-based optimizations and surrogate-based(or "data-driven")
optimization has become popular as the world is moving towards quantitative-based
choices rather than intuitive [10]. As stated in the book by Elishakoff, in most cases, gath-
ering data from experiments for the sole purpose of collecting data is not feasible as the
resource and time taken are far too high to be used for probabilistic analytical models.
Therefore, computer simulation is the way to go for exploring the design space. Bisagni
and Lanzi has shown that the use of neural networks for post-buckling optimization of
composite stiffened panels gave a considerable reduction in computing when compared
to Genetic Algorithm. This shows that although the neural network requires large data
set for modelling, in this case, the use of data to model and optimize is faster. Likewise,
the work of Wagner et al. who optimized composite cylinder stacking for maximum buck-
ling and minimum imperfection sensitivity using decision tree-based machine learning
proves the ability of such data-centric methods to turn out high performing results . Simi-
lar results can be found where the selected ones are in relation to composite and buckling
design[11, 39, 70, 74, 106].

3.3. Bayesian Optimization
Bayesian Optimization(BO) is one such surrogate-based optimization. It relies on the sta-
tistical representation of the DoE. BO was first studied in 1964 by Kushner, later popular-
ized by D.R.Jones. BO uses explicit, descriptive statistical models of the objective function.
This is an ace in its sleeve as BO performance can be improved by a good objective function
description. Bayesian optimization name is formed from the "Bayes Theorem" used in the
probability theory. Bayes theorem is given in Equation 3.4 where the posterior probability
of the model is calculated where M and E are the events, P () is the probability of a function
and P (A|B) is the probability of event A given event B has taken place. .

P (M |E) = P (E |M)P (M)

P (A)
P (M |E) ∝ P (E |M)P (M)

(3.4)

The algorithm finds the maximum likelihood for a solution to occur. From the knowledge
perceived from the surrogate model, BO has a sense of which regions in the design space
can have an optimum. From the initial samples, BO learns the lows and highs of the ob-
jective within the design space and with this, BO will focus on gaining more information
on regions it predicts where the optimum is present and further refines the search. The
process is repeated till optimum is believed to be found or the upper limit on the number
of iterations is reached.

BO has been used in multi-objective, multi-fidelity models[32] and is widely used in
hyper-parameter optimization and training deep neural networks[95] but its application
is not in plenty in structural optimization. Recent work by Yamaguchi et al. shows BO
of ply drop design of laminates for stiffness and failure loads where the results show im-
proved designs in most cases. Bessa and Pellegrino proposes a computational framework
for designing non-linear structures, focusing on the design of ultra-thin deployable com-
posite structures. Another work by this author shows the application of BO in metamate-
rial design resulting in designs that transformed rigid polymers to lightweight and super
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compressible metamaterials[12]. Yamawaki et al. uses BO to optimize graphene nanorib-
bon structures for thermoelectric performances. The BO is based on the linear regression
model and shows promising results with the solution. The literature shows that the struc-
tural optimization with BO is few and is not studied comprehensively.

BO initiates with collection of an initial data samples which is used to train the surrogate
model. The model is tuned from training data and is the essence of predicting the output
from new data. The model provides the mean value and variance for the output for a given
input which are used by the Acquisition functions in BO to score the inputs. This scores
are the interpretation of the acquisition functions of the possibility of the optimum within
the inputs. The best score is selected and its true objective is calculated. This is then added
to the initial training set and the process is repeated. This allows the algorithm to look
through many data sets without having to run each of them individually. This framework is
explained as a flowchart in Figure 3.4.

Generally, BO can be divided into two main aspects: Probability model that fits the data;
and acquisition function which provides information on which point to be chosen next.
Usually, GP regression model is used. GP model defines the objective function f () using
normal distribution. With the model created, new sample points are selected. The acquisi-
tion function uses the mean and variance predicted from the GP to compare the new points
and the likelihood of getting optimum. BO will have to trade-off between exploration and
exploitation. Exploitation is the ability of the algorithm to search within the confines of the
samples present whereas exploration explores beyond initial samples with the help of the
variance information present. There are different acquisition functions each using a com-
bination of mean and variance for its function. The convergence and Acquisition function’s
prediction over a test case 1-D problem is shown in Figure 3.5[18].

3.3.1. Gaussian Process Regression Model
As described in Section 3.2, Gaussian process creates a multivariate Gaussian(normal) dis-
tribution between the sample points. GP is specified by its mean function(µ()) and covari-
ance function(k()). For given a given set of inputs x = [

x0, x1....x j
]

which is already analysed
and the output is found and z which is a set of unknown inputs which are to predicted, then
the predicted function value is given as:

f (z) ≈ GP(µ0(z),k(z,x))

The mean function µ0 reflects the expected function value from prior belief, covariance
function k gives a correlation between their input values(z and x) and their function
values( f (z) and f (x)). The covariance is more commonly called as kernel functions.

Lizotte in his doctoral thesis, defines Gaussian process regression(GPR) as: "general-
ization of least squares linear regression that allows for more complex regression functions
and provides information about the uncertainty of the regression model at different domain
points". GPR infers the original expected value f () from the observed value F () which is
calculated using the posterior mean and kernel k and has a Gaussian noise inherent in it.
When computing the posterior distribution at a new point z ∈χwhereχ is the design space,
the mean and variance at z is given as Equation 3.5:

µ (Fz | Fx = f) =µ0(z)+k(z,x)
(
k(x,x)+σ2

nI
)−1 (

f−µ0(x)
)

σ2 (Fz | Fx = f) = k(z,z)−k(z)
(
k(x,x)+σ2

nI
)−1

k(x,z)
(3.5)
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Figure 3.4: Bayesian Optimization Flowchart
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Figure 3.5: Example of Bayesian Optimization on a 1D design problem([18])

where µ0 is the prior mean, k is the kernel function and σ2
n is the noise variance of the GP

model.

Kernel Functions
It can be seen that 2nd part of the Equation 3.5 is independent of the new point. This means
that second part of the equation can seen as a weighted sum of the kernel function to the
mean(for µ (Fz | Fx = f)) or kernel(for σ2 (Fz | Fx = f)). This explains that the shape of the GP
model is mainly described by the kernel function. Therefore the selection of kernel is of
great importance.

Squared Exponential or Radial Basis Function
Squared Exponential(SE) or Radial Basis Function(RBF) is defined in Equation 3.6

kSE (r ) =σ2exp

(
− r 2

2l 2

)
(3.6)

where r = |x−x ′| and l is characteristic length-scale. Length-scale expresses the movement
of the function, it describes length around the point which affects its output. This kernel is
infinitely differentiable and hence kSE is very smooth. SE is used universally in GPs if not
much information is present on the data.

Periodic
When the model has a repeating behaviour within the same intervals, a periodic kernel can
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be used.

kper (r ) =σ2exp

(
−2sin

(
πr /p

)
l 2

)
(3.7)

Here in Equation 3.7, the addition term p is present which determines the distance be-
tween its periodicity.
Linear
The linear kernel is non-stationary, i.e. it is dependent on absolute location. Equation 3.8
represents the linear kernel formulation. Offset c determines the point through which all
lines in posterior passes(zero variance). The constant varianceσb determines how far from
0 the height of function will be at zero, it is adding an uncertain offset to the model.

kLin
(
x, x ′)=σ2

b +σ2
v (x − c)

(
x ′− c

)
(3.8)

Matern Class
Matern function is defined in Equation 3.9[98]. ν and ` are positive parameters and Kν is a
modified Bessel function[2]. ν is usually varied between 3

2 , 5
2 or ∞. Note that when ν→∞,

the function transforms into SE. The parameter ν can change smoothness of the function.

kMatern (r ) =σ2 21−ν

Γ(ν)

(p
2νr

`

)ν
Kν

(p
2νr

`

)
(3.9)

Since Kernel selection and its parameters are problem dependent, it is common to use
maximum likelihood for comparison. It uses an empirical Gaussian likelihood function
which is given by Equation 3.10.

log p (Fx = f) =−1

2
f>k(x,x)−1f− 1

2
log |k(x,x)|− n

2
log2π (3.10)

The parameters are selected such that it gives the best likelihood value. The 1st part mea-
sures how well the current kernel parameters fit the data, 2nd part is the complexity penal-
ization term and final part is a normalization constant. Therefore Log Marginal likelihood
value gives a good representation of the computation power and accuracy of the model.

3.3.2. Acquisition Functions
Once the model is created, there is a general idea of the distribution objective about the
design space. Acquisition functions are used to sample new points. Among the sample,
a new point is selected on two basis: the point that is most likely to be the optima from
prior information and; point selected in order to gain the maximum information about the
location. Most acquisition functions use a combination of the two to acquire data.

Maximum probability of improvement(MPI), Expected Improvement(EI) and Lower
confidence bound(LCB) are classical acquisition functions . They use only mean, varia-
tions data to predict the optimum point. This is proven to work well for most cases. But
in some cases, this may cause it to miss the optimum point or prematurely focus on local
optima. And as the interest in BO increases, new acquisition functions are proposed to im-
prove the performance or is better for certain cases like parallel processing or optimizing
hyperparameters. A few of them are discussed here.
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Thomson Sampling(TS) is a sequential optimization process(similar to BO) whose prin-
ciple can be used as an acquisition function. TS is less explorative than LCB but an addition
of an explorative parameter could better the exploration[90].

Entropy-based Acquisition functions are information-based acquisition functions de-
veloped by Hennig and Schuler. Two variants are present, Entropy Search(ES) and Predic-
tive Entropy search(PES). Both functions work on the principle of maximizing the informa-
tion about the global optimizer. The information is calculated using differential entropy of
the probability of best input/output. ES works on input and PES on output. These algo-
rithms are weighed down by their complexities and computational power.

Knowledge Gradient(KG) is used when the objective function is not a clear black box
and other useful information can be returned. KG assumes the derivative information is
present and it uses the additional data further.

Most of the time, the use of single Acquisition function does not provide the best result.
It is been observed that iteratively, a set of acquisition functions provides the best points
according to Brochu et al. and a meta-criterion is used finally select the next query point.
Empirical results show that there is an improvement over EI and LCB but it is also to be
noted that this does take more computation. Figure 3.6 shows the comparison shown of
BO performance of Acquisition functions over several iterations on a 1-D test problem by
Brochu et al..

It is concluded that Bayesian optimization is widely applied in the field of hyperpa-
rameter optimization, robotics, environmental monitoring etc.[58, 66, 71]. However, it is
observed that the application in structural optimization is few in comparison. The noted
ones are the work by Bessa et.al. [10, 12] and Yamawaki et.al[114] which is on the thermo-
electrical efficiency of nano-graphene structures. A very recent work by Yamaguchi et al.
shows BO in ply drop design of laminates which shows the interest in BO has been ignited.
This tells that full potential of BO for structural design is yet to be uncovered. It also has to
noted that with the many acquisition functions, sampling techniques and surrogate mod-
els it has to develop the framework, it can be tailored for the problem at hand.
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4
Research Objective

The Literature study reviews the major research in designing and optimizing VS compos-
ites and it is evident that a good design of VS composites can outperform conventional
composites. The advantages and constraints of the current front runners in manufactur-
ing techniques- Automated Fiber Placement and Continuous Tow Shearing are discussed
to provide an idea to the author about manufacturing constraint involved in the numer-
ical simulation and potential experimental validation. The Current scope of the thesis is
formulation of the novel BFSC element for the VS cylinder from rectangular plate[27] and
optimization of the weight for a given buckling load. BFSC element is selected due to its
fundamental advantage from BFS plate element which is easy to implement with the ben-
efit of improved efficiency and convergence rate(Section 2.2) due to the added presence
of in-plane deformations derivative. This allow for the interpolation of in-plane defor-
mations to be 3rd-order that results in more accurate prediction. Buckling calculation is
chosen to be performed linearly(eigen value analysis) as linear buckling provides a good
comparison for design studies and its lesser computation time than non-linear analysis.
Moreover, priority is given to the SC-BFSC model formulation and optimization. Design
methodologies of VS composites produced in recent past are discussed in Section 2.1. The
important functions for definition of steering of VS composites are Lagrange interpolation
function and Lamination Parameters. Although lamination parameters have its advantage
being a convex design space and a constant design variables, the thickness being an inher-
ent variable in the lamination parameter formulation makes it hard to choose. Therefore,
Lagrange polynomial function is chosen as the beginning point of study. The number of
control points and refinement of fiber orientation angle is chosen after a design study.

Optimization of VS composites show lot of work involving gradient based optimizer
and genetic algorithm(GA). The studies show that when a black-box function is present,
non-deterministic methods are preferred since they require only function value and no
gradient information. GA is prioritized due to their robust nature, good success rate seen
in previous research. Surrogate model optimization is another non-deterministic method
where interest have been booming. Examples of Surrogate model optimization include
Bayesian optimization and Artificial neural networks. It is interesting to see that although
bayesian optimization has widely used in data-centric optimization and hyperparameter
optimization with good results, work on structural optimization are few[10–12, 58, 66, 71,
113]. This is noted in the final remarks in Chapter 3. With the difference being in black-box
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objective function and its more constrained design space, the likelihood of getting similar
improvements in results is a reasonable conclusion. Therefore, it is decided to conduct
an optimization study of bayesian optimization against genetic algorithm. The choice of
genetic algorithm to compare is due to its robust nature and its proven results in VS design
optimization[35].

From the above observations, the thesis was planned into 2 phase: Variable stiffness
model and its verfication and; optimization. And the aim or objective of the research is :

"Develop a framework for lightweight design using Bayesian optimization and
apply it to the problem of variable stiffness cylinders, finding the minimum
weight for a given geometry and design load levels."

For the purpose of clarity on outcome of the thesis, the objective can be dissolved into
the following research questions and sub-questions:

1. How to realize an accurate and yet efficient finite element model for variable stiffness
cylindrical shells?

(a) How to extend existing BFSC element to account for variable stiffness, and to
apply the cylindrical shell kinematics?

(b) How are terms for variable angle function chosen and defined?

(c) What is the net gain in performance compared to a commercial finite element
solution?

2. How to tackle the objective design obstacle?

(a) How are the control points defined?

(b) What is the degree of refinement required for orientation angle?

(c) What are the influence of different design variables?

(d) How are the constraints defined?

3. What are the performance outcomes from Bayesian Optimization?

(a) What is the methodology used in selecting the sample size for surrogate model?

(b) How are the optimization methods compared?

(c) How does the performance differ with changing number of variables?

(d) What effect does sample size, population size, number of iterations, kernel and
kernel parameters have on the end results?
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5
Single-curvature BFSC Element Definition

and Buckling Formulation

5.1. Finite Element formulation
According to Ochoa and Reddy, Finite Element Analysis(FEA) is the most powerful numeri-
cal method for solving non-standard solid and structural problems[79]. By splitting the do-
main into various sub-domains and by applying continuity on the solution at interfaces of
elements, FEA is able to assemble the elements and produce an easy approximation func-
tion. FEA is based upon the weak form of the engineering problem[9]. Hamilton’s principle
is applied for the formation of mechanical systems’ weak formulation which states that the
energy function tends to be stationary for arbitrary possible variations of the system, given
the initial and final system configurations are known[62, 85], as shown in Equation 5.1.∫ t2

t1

(δU −δT −δWNC )d t = 0 (5.1)

where δU is the virtual strain energy, δT is the virtual kinetic energy, δWNC is the virtual
work done by non-conservative forces and t1 and t2 are time at initial and final configura-
tion.

The classical BFS element proposed by Bogner, Fox and Schmit[16] is a popular rect-
angular plate element and widely utilized for its simplistic implementation. The classical
BFS element has 6 Degree of Freedom(DOF) on each node which are the in-plane displace-
ments u and v , out-of-plane displacement w , its first derivatives (δw

δx orwx , δw
δy or wy ) and

its cross derivative ( δw
δyδy or wx y ). However as reviewed in Section 2.2.1, the BFS element

does not have the ability to solve out-of-plane deflections and in-plane stresses. To rem-
edy this, the classical C1 element was modified to include higher interpolation terms for
the in-plane displacements which is calculated from the cubic hermite functions. The re-
sultant element is termed as BFSC(Bögner-Fox-Schmit-Castro), first proposed by Castro
and Jansen [27], introduces in-plane displacement(u, v) and its first derivatives as shown in
Equation 5.2. This creates 10 DOFs per node. The element approximates the in-plane and
out-of-plane displacements with 3rd order polynomials enabling an accurate representa-
tion of 2nd order displacement fields. The displacement(in-plane and out-of-plane) are
approximated using Hermite’s Shape functions shown in Equation 5.3 where Su,v,w

i are the

35
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Hermite shape function matrices which are defined in Equation 5.4 and Equation 5.5[79].
The elements have been proven to work with isotropic plates and composite plates and
shows fast convergence on linear buckling analysis[27].

ue
i =

{
ui ,ui

x ,ui
y , v i , v i

x , v i
y , w i , w i

x , w i
y , w i

x y

}T
(i = 1,2,3,4) (5.2)

u, v, w =
4∑

i=1
Su,v,w

i ue
i (5.3)

5.1.1. Modification to BFSC element
The BFSC element was defined with plates in picture and hence, there was no curvature
implemented into the formulation. When applying for the cylindrical shells, the X direc-
tion is considered to be axial and Y describes the circumferential surface of the cylinder
and Z is the out-of-plane radial displacement. With the cylindrical shells, the curvature
characteristic must be added for the circumferential strain calculation. This modification
to the BFSC element is termed as ’Single-Curvature BFSC element(SC-BFSC)’[107] . The
application of this element for linear buckling analysis is derived in the next section.
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5.2. Buckling formulation for cylinder
The cylinder was modelled with X axis taken as axial direction(0 → L), Y circumferential(
0 → 2Πr ) and the radial out-of-plane displacement as Z . An additional boundary condition
is applied to the two axial edges as in reality they are one and the same. Therefore, the edges
are linked together.

For discretization, the cylindrical plate is divided into n sections along its axis and m
along the circumference. The mesh generated are in parallel to the axes which create m×n
rectangular plate elements. Care is taken here such that sides of the elements are of equal
ratio for an accurate representation of the deformation characteristics. For the deflection
and deformation calculations, the elements must be transformed from a global coordinate
system to a local one. The natural coordinates ξ and η which are defined by Equation 5.6

ξ= 2(x −xc )

lx
(−1 ≤ xi ≤ 1)

η= 2(y − yc )

ly
(−1 ≤ xi ≤ 1)

(5.6)
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where lx and ly are the element lengths. This will transform the cartesian co-ordinates into
natural co-ordinates with their nodes represented at (−1,−1), (1,−1), (1,1) and(−1,1).

With this, the elements can be assembled. The numerical integration used are
gaussian-quadrature. The integration points can vary from 2 with their respective weights
accompanying them. Higher integration points result in better displacement but, it also
increases the computation. Hence, a number is chosen with good convergence. Applying
equivalent single-layer theory which assumes the heterogeneous laminate to be statisti-
cally equivalent to a single layer, the total potential energy for a finite element can be de-

fined as Equation 5.7. N = {
Nxx , Ny y , Nx y

}T represents the resultant membrane force and

M = {
Mxx , My y , Mx y

}T are its distributed moments.

Φ= 1

2

∫ y4

y=y1

∫ x2

x=x1

(Nε+Mκ)d xd y (5.7)

The limits of integrals pertain to the element nodes which are: for X between x1 and x2 and;
for Y between y1 and y4. The Von-Karman kinematics for thin plates is assumed for strain
calculations. This results in Equation 5.8. Here (w,x) represents partial differentiation of
w with respect to x. For the cylinder model, the curvature is considered in Y direction and
hence, the resultant strain in Y direction will include the curvature factored to w .
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At the load bifurcation point, there exists an equilibrium for the domain of the structure
or assembly of finite elements shown in Equation 5.9. The strain can be calculated from
taking partial differentiation of the displacements and their shape functions as shown in
Equation 5.10. The curvature of the cylinder is factored in the circumferential strain from
out-of-plane displacements.
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The partial differentiation of shape function is realized with the help of Jacobian transfor-
mation:

∂
∂x = `x

2
∂
∂ξ

∂
∂y = `y

2
∂
∂η

The neutral equilibrium criterion also requires that δ2Φ = 0 which is shown in Equa-
tion 5.11. The first part of the equation will form the constitutive stiffness matrix and the
second part represents the geometric stiffness. In constitutive stiffness matrix, for linear
analysis, the non-linear terms when expanded into displacement terms containing wx , wy

and wx y are ignored. This leads to a matrix of size 40×40. The final expression is shown in
Equation 5.12.
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The second integral is the geometric stiffness matrix and provides information on the
non-linear effects of pre-buckling membrane stress N0. δ2κ term is ignored as this becomes
very small. This simplifies KG0 into Equation 5.13.
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x y
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SwT
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d xd y (5.13)

The global constitutive stiffness matrix and global geometric stiffness matrix are calculated
by combining them element-wise over the structural domain. The pre-buckled stress field
of an element is calculated with their nodal displacement u0e. For a balanced laminate, it
can be written as in Equation 5.14. u0e is calculated from the global displacement vector
solved using static analysis given by Equation 5.15.
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u0 = K−1f0 (5.15)

In Equation 5.15, f0 is the general pre-buckling load. It is assumed that in bifurcation point,
there is a value of internal membrane stresses that satisfies N = λN0 such that the condi-
tion of neutral equilibrium is achieved. This shifts our focus to finding λ which is given by
Equation 5.16. For the equation to be zero, the determinant of the stiffness part should be
zero as shown in Equation 5.17. This represents the eigen function for a linear buckling
problem. The λ are the eigen values and will have the same number of values as solution
as total number of DOFs.

δuT (K+λKG0) = 0 (5.16)

det(K+λKG0) = 0 (5.17)

Equation 5.17 solves the buckling load and its buckling shape. The bifurcation load is
the minimum of the eigenvalue. This can be solved with any general eigen-solvers present.

This gives the formulation of linear buckling analysis for a typical cylinder. For a varible
stiffness cylinder, the stiffness varies according to the fibre steering. Hence, the ABD ma-
trix and in-turn stiffness matrix have to be defined locally over each element. This will be
discussed in Chapter 6.





6
Variable Stiffness Cylinder

6.1. Designing VS cylinder
With fibre steering, the orientation angle of the laminate can vary according to the de-
signer’s choice. Applying classical laminate theory, ABD matrix is given by Equation 6.1
where k is the laminate from total lamina N , zk is the thickness of laminate k and Qk

i j is the
material stiffness which is defined by orientation angle θ. This is shown in Equation 6.2[79].(

Ai j ,Bi j ,Di j
)= N∑

k=1

∫ zk+1

zk

Qk
i j (1, z, z2)d z (6.1)
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Q16 =
(
Q̄11 −Q̄12 −2Q̄66

)
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)
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)
(6.2)

The geometric stiffness matrix is finally calculated with the calculated material stiffness
and element dimensions. The material stiffness is calculated at the integration points of
each element.This makes sure that the angle and stiffness variation is continuous over the
global domain using the interpolation function. The integration point as mentioned in
Chapter 5, can be chosen in accordance with the designer. As the angle varies, the thick-
ness also locally varies due to bending/ shearing of the tow. The thickness distribution is
calculated using the equation which is shown in Equation 6.3. This will account for the
change in the volume of the laminate from fibre steering.

hk (x) = htow

cos∆θ(x)
(6.3)

With the above parameters and design choices made, it is possible to perform the linear
buckling analysis of a variable stiffness composite cylinder under axial loading. First, the
model is created using the SC-BFSC elements, which is implemented in the ’BFSCCylinder’
Python module. The resultant elements are recorded and from the interpolation function
and input orientation angles(θ), the stiffness matrix of each element is then calculated ac-
cording to their axial co-ordinate.

41



42 6. Variable Stiffness Cylinder

6.2. Model Implementation and Verification
The model is produced entirely on python. With the cylinder model produced and meshed,
the stiffness matrix is calculated with the ABD matrix function and geometric stiffness func-
tion present in the python library ’composites’[23], which is followed by buckling eigen
analysis that is computed using Locally Optimal Block Preconditioned Conjugate Gradient
Method (LOBPCG) solver from the ’Scipy’ library[104]. With stiffness now defined at the
integration point of the element, to give a good distribution of the change in angle θ be-
tween its edges, the overall distribution of angle is calculated from interpolation functions
and control points defined on the cylindrical domain. It is noted that there may be changes
in the choice of integration points, control points and mesh refinement depending on the
problem at hand. The verification is performed with a convergence study on cylinders with
different diameter to length aspect ratios. For the thesis optimization problem, the diame-
ter is 0.3m and height 0.3m resulting in a (L/D) ratio of 1 . Excluding this, 2 other cases of
different aspect ratios whose results were previously tested are used.

(a) SC-BFSC element with its co-ordinates

(b) SC-BFSC meshed model

Figure 6.1: SC-BFSC element cylindrical model[107]

6.2.1. Interpolation function and control points
For a variable stiffness laminate, the steering angle is not constant. Therefore, we need to
define the ABD matrix and in-turn stiffness matrix to each element. This is accomplished
with the interpolation function which defines the steering path of the fibre with the help
of control points(CP). An interpolation function is defined to vary the angle between these
points to measure the rest of the laminates. This can be either linear or non-linear de-
pending on the level of complexity and freedom required by the designer. For this case,
interpolation through Lagrange function is considered as given in Equation 6.4. This equa-
tion is a general one with control points on both axial and circumferential axis. If only two
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control points are taken on each axis, then the equation becomes bi-linear. As mentioned
in Chapter 2, the work of Güldü and Kayran proves that for axially compressive loading, the
axial variation of tow has a bigger improvement on buckling than circumferential. There-
fore, in this study, only axial loading of the cylinder is considered.

θ(x, y) =Φi +
M−1∑
m=0

N−1∑
n=0

Tmn
∏

m 6=i

x −xi

xm −xi

∏
n 6= j

y − y j

yn − y j
(6.4)

Here three cases are considered: 3 CPs, 5 CPs and 7CPs. The CPs are defined with symme-
try over the mid-plane(along the height). For example, for a cylinder of length L, 5CPs are
defined with 3 variables which define the steering orientation at (0,L),(L/4,3L/4) and L/2.
Here, the brackets are denoting assignment of same variable. This increases the degree of
variation without increasing the computational load. The different CPs and their influence
in fibre steering is illustrated in Figure 6.2. It is to be noted that increasing the CPs results
in exponential increase in total design space that the optimization has to cover. From the
study, it is inferred 5 CPs provides a good degree of flexibility without much penalty in com-
putational time for optimization. Seeing the difference achievable, 5 CPs are taken for final
optimization. The equation for the interpolation is given in Equation 6.5.

Figure 6.2: Location of control points for different interpolation orders and its fibre steering: (a)-3CP,
(b)-5CP, (c)-7CP
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(6.5)

where:

N1 = (x −x2) (x −x3)

(x1 −x2) (x1 −x3)
; N2 = (x −x1) (x −x3)

(x2 −x1) (x2 −x3)

N L
3 = (x −x1) (x −x2)

(x3 −x1) (x3 −x2)
; N R

3 = (x −x4) (x −x5)

(x3 −x4) (x3 −x5)

N4 = (x −x3) (x −x5)

(x4 −x3) (x4 −x5)
; N5 = (x −x3) (x −x4)

(x5 −x3) (x5 −x4)

The effect of number of integration points checked with a convergence analysis are
shown in Figure 6.3a and Figure 6.3b. From both cases, it is clear that 4 integration points
provide good convergence without a penalty in computation time.
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(a) Case 1 (b) Case 2

Figure 6.3: Integration point convergence plot

Table 6.1: Case 1 Properties[61]

Cylinder Dimensions
L 0.79 m
D 0.6 m
Material Properties
E11 141 GPa
E22 10.3GPa
ν12 0.3
G12 =G13 4.5 GPa
G23 4.5 GPa
htow 0.181×10−3m

Table 6.2: Case 2 Properties[106]

Cylinder Dimensions
L 0.3 m
D 0.136 m
Material Properties
E11 90 GPa
E22 7 GPa
ν12 0.32
G12 =G13 4.4 GPa
G23 1.8 GPa
htow 0.4×10−3m

6.2.2. Mesh Convergence
The mesh convergence is performed with 4 integration point. The convergence rate is cal-
culated as the percentage change in buckling load between 2 consecutive mesh sizes and
the said convergence rate v/s number of number of nodes in circumference ny is plotted.
The number along the circumference is chosen as the mesh refinement as the elements are
set an aspect ratio of 1. Hence, if ny is set, then the number of nodes along axial direction
is

nx

ny
' L

πD

nx ' ny
L

πD

The value of nx is taken as the closest integer to this ratio. nx is always set to be odd as for
the design of variable stiffness, having a node set at the mid-point makes it easier for the
control point assignment. For mesh convergence, three classes of fibre steering is looked
into as it is observed that the mesh convergence may differ for the same dimensions but
with different fibre steering. First being constant stiffness with all the elements having the
same fibre orientation, second being variable stiffness with maximum variation between
adjacent control points less than 45◦ and finally variable stiffness with extreme angle varia-
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tions which is at the limit of the manufacturing constraint(around 85◦). These 3 angles are
tested on the 2 cases shown in Figure 6.4a and Figure 6.4b. The convergence rates data are
presented in Table 6.3 and Table 6.4 .

(a) Case 1 (b) Case 2

Figure 6.4: Mesh Convergence plot with respect to Circumference elements

Table 6.3: Mesh Convergence Case 1

Constant Stiffness Variable Stiffness Variable Stiffness Extreme orientation
ny Convergence ny Convergence ny Convergence
25 3.91 25 7.76 25 5.38
30 3.14 30 7.98 30 10.01
35 4.87 35 7.91 35 7.11
40 6.57 40 1.52 40 4.82
45 2.25 45 0.60 45 2.16
50 1.53 50 0.38 50 0.99
55 0.48 55 0.14 55 0.91

Table 6.4: Mesh Convergence Case 2

Constant Stiffness Variable Stiffness Variable Stiffness Extreme orientation
ny Convergence ny Convergence ny Convergence
25 1.76 25 6.945 25 6.934
30 4.86 30 4.025 30 7.106
35 2.27 35 1.468 35 1.661
40 0.417 40 0.661 40 1.230
45 0.106 45 0.353 45 0.400

50 0.261
55 0.431
60 0.107
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6.2.3. Verification
Commercial FEA Software ABAQUS is used to verify the results from BFSC results[93]. S4R
elements are used for the construction as from literature study show simulation with this
element gives good correlation with the experimental loads. For this, two case studies are
presented in previous works of Labans and Bisagni and Wang et al. which are showcased
as Case 1 and Case 2 respectively. In Case 1, the variable stiffness is defined with 2 variables
and 3 CP and in case 2, it is defined with 3 variables and 5 CP are used. Material properties
and Geometric properties are given in Table 6.1 and Table 6.2. Figure 6.5a to Figure 6.8b
shows the ABAQUS and SC-BFSC representation of the buckling shape and bifurcation load
is seen to match. The S4R results and SC-BFSC results are shown in Table 9.1. Convergence
is based on the two consecutive results difference.

(a) ABAQUS S4R Elements

(b) BFSC Elements

Figure 6.5: Verification Case 1- Constant Stiffness

The results show the verification of the cases for the buckling load, thus proving the SC-
BFSC element linear buckling analysis. Based on the successful verification of the SC-BFSC
model, the optimization of test case can begin. This thesis focused on the applicability
of Bayesian Optimization on structural problems. And just as this study of control points,
integral points and mesh refinement gave the best solution possible, the same must be
done for the optimization parameters. In Chapter 7, the optimization problem, its design
space and their limiting constraints are discussed and understood to give a better picture
for final optimization.

(a) ABAQUS S4R Elements

(b) BFSC Elements

Figure 6.6: Verification Case 1 Variable Stiffness
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(a) ABAQUS S4R Elements (b) BFSC Elements

Figure 6.7: Verification Case 2 Variable Stiffness

(a) ABAQUS S4R Elements

(b) BFSC Elements

Figure 6.8: Verification Case 2 Variable Stiffness with Constant thickness

Table 6.5: Load verification error on Case 1 and 2

Published results S4R S4R Error BFSC BFSC Error
Case 1
CS-[±45,0,90]s 420kN 387.439 -7.75% 394.648kN -6.036%
VS [[±45],±[60,15]]s 260kN 236.470 -9.05% 240.801kN -7.384%
Case 2
VS VT[45.4,86.5,85.8]b 49.576 47.013 -5.17% 51.1069 3.08%
VS CT[64.1,58.4,57.8]b 40.304 40.1 0.5% 42.51 5.47%





7
Optimization Problem

7.1. Objective
Defining the problem objective and its constraints is a crucial aspect of an optimization
process. For a lightweight design, the objective inevitably turns to minimization of weight.
With the thickness variation of the laminate with respect to fibre steering, the density of the
lamina is considered constant. The disadvantage of taking volume as the objective function
is that the volume will depend on the geometric dimensions of the cylinder. Therefore,
any constraint penalties added to the objective, the effect will vary with volume. Instead,
relative volume is employed which is calculated as the ratio of the volume of the laminate
to the volume of a constant single-layer laminate.

7.1.1. Constraints
Buckling Load
As previously stated, with weight minimization as the main objective, the design load for
buckling must be introduced as limiting constraint. Instead of introducing a constraint
function for the objective, a penalty function is used. This reduce the complexity of the
objective definition and allow easy implementation between different optimization algo-
rithms without much changes in the objective. The penalty functions are based on the
Design Load(DL) and Actual Load calculated(Pcr ). Initially, a quadratic based penalty func-
tion was chosen of the form

PF1 =
1 if Pcr ≥ DL(

1+
(

DL
Pcr

))2
if Pcr <DL

However, it is observed that at the boundary between feasible and infeasible regions for
PF1, there’s a sharp drop in the value to 1. As a consequence, the optimizer ignores any
value that barely misses the buckling constraint. Penalty functions whose values are con-
tinuous about the whole range of the constraint are required since heuristic optimization
examines the objective values only. The second penalty function chosen is based on the
square-law which is continuous over the feasible region border. This helps keep the in-
formation of boundary cases within the optimization loop[38]. Penalty function based on
square based law is given below:

PF2 = max(1,1/λ2)

49
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Figure 7.1: Penalty function distribution over the range of buckling load

where

λ= 0.95×Pcr

DL

Figure 7.1 shows the trend of the two penalty functions with 200 kN taken as the design
load which shows the sharp jump from PF1. A modification is made to PF2 from the
literature which is the inclusion of an additional safety factor of 0.95. This offsets the
penalty function increase from slightly before the design load such that the percentage of
infeasible designs getting through is reduced. The value of 0.95 is chosen from trial and
error.

Maximum Curvature
Manufacturing techniques limit the steering of the tow as excessive steering may cause de-
fects in manufacturing such as wrinkling at the inner edge of the tow(called puckering),
twisting or limitation from the machine head for tailoring. The degree of steering is con-
trolled through the constraints posed on the curvature. Curvature is the reciprocal of the
radius of curvature of the tow and the maximum curvature depends on the material and
tow width being used.

The general form of the equation for radius of curvature between two points is given in
Equation 7.1 where the subscript with comma denotes the differentiation with respect to
the axis provided .

r =
[

1+ (
y,x

)2
]3/2

|y,xx |
(7.1)

From the co-ordinate system defined, we can transform y,x = tanθ and the equation trans-
forms to

y,xx = 1

cos2(θ)

δθ

δx

Using Lagrange interpolation function(Equation 6.4) and differentiating with respect to x
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considering only axial variation gives Equation 7.2.

δθ

δx
=

M∑
m=1

θM

(
1

xm −xi

M∏
i2=1

x −xi2

xm −xi2

)
(7.2)

In this problem the local steering is being calculated at element level for determining the
thickness variation. Therefore, applying curvature globally is not wise as this requires fur-
ther memory allocation and recalculations of control points for maximum curvature for
the same result. Hence, local constraint was introduced which made sure that steering
angle of the elements do not go beyond the maximum limit. With local orientation angle
θ, the steering angle is the difference between current and previous orientation angle. As
a conservative choice, this previous angle is always kept as the minimum of the control
points. Therefore, for the design study with 3 CPs and applying the relation y,x = tanθ, we
get Equation 7.3.

θsteer = |θ−mi n(θ1,θ2,θ3)|

tan(θmax) = R

wtow
(7.3)

The calculation of the maximum steering angle is determined at all integration points in-
dividually on each element.

In this optimization VS cylinder, an assumption is made that the width of carbon fibre
tow used for this design is 1/4th inch, for which the minimum radius of curvature achiev-
able is 1500 mm[94]. The maximum angular difference can be given by Equation 7.3 which
is about 87.5◦ . For the sake of conservation, the maximum change in angle is taken as 80◦.
When the constraint is violated, the objective returns a non-feasible value like -100 or 1e6.
This allows for disqualification of such candidates.

7.1.2. Design Space
The design space is explored to understand the problem better and to make the optimiza-
tion problem as efficient as possible. The problem is defined in such a way that it has the
ability to decide the number of layers desired, with only a maximum number of layers given
to keep the number of design variables in check. A conscious choice of 4 layers which al-
lows for comparisons of results from the work of Wang et.al[107]. It also allows to check the
integrity of the problem without overloading the CPU resources.

Each of the 4 layers will each have 5 control points which are defined by 3 design vari-
ables from symmetry i.e. θ1 = θ5,θ2 = θ4 and θ3. In addition to this, a boolean variable S
is added to each layer so as to activate and deactivate each layer individually: S=1 means
the layer and its variables are used and; S=0 means the layer is discarded. Therefore, the
problem will have 16 design variables wherein twelve define the steering path and the rest
four are boolean variables that switch the layers on or off.

Another major change in definition which is crucial for the surrogate model is the
loss of points from bad input sets. When creating the data points in the algorithm, as the
sampling criterion tries to create points over the whole design space, some part of the vari-
ables are taken by inputs with four boolean switch variables off. This result in a null set for
the analysis which requires the use of arbitrary high value for objective. This is a major dis-
advantage because these ’infeasible sets’ that get included in the sample space and reduce
the density in the ’feasible sets’ region of the design space. The biggest drawback from this
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Figure 7.2: Design Space Distribution wrt buckling load and mass

is the degree of increase in points required for the model to start perform sufficiently well.
Therefore, the 1st layer in the inputs is always kept active(1) and hence can be omitted from
the number of variable reducing the total variables to 15.

For the tow orientation angles, the current fibre layup technology can use full steering
angles between [−90◦,90◦]. For the solver to reach the optimal solution, a balance must be
achieved in descretization: it must have fine enough to prevent the global optimum from
being overlooked but also limit the number of design points to avoid high computational
expense. For instance, with 4 layers, total variables are 16, where the orientation angles
variables can be defined between [−90◦,90◦]. If orientation angles increment is kept 5◦ and
assuming the switch parameters are kept constant at 1(i.e. all 4 layers are on) the total de-
sign space size is 6.58×1018. Instead, if given the condition that the laminates are balanced,
then the orientation angle limits change to [0◦,90◦] and the same discretization of 5◦ obtain
a design space of 2.21×1015. This reduces the design space candidates by a factor of about
3000. Therefore balanced laminates are chosen as the default condition to constrain the
design space.

For visualization, buckling load versus mass are compared as shown in Figure 7.2. Each
layer points are colour categorized and provide a good representation of the limits of the
buckling load each layer can achieve with each additional layer. It is an interesting obser-
vation that there is a gap between 1 and 2 layer lamina. This was checked with other aspect
ratios as well and the same can be seen for it as well. Possible reason for the gap in the
buckling range is possibly because when more than 1 layer is present, the strength can get
amplified from multiple layers complementing each other that increase the range of design
load. However, this is just a hypothesis and has not been proven to be the case.
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Table 7.1: Problem dimensions(Case 3)

Geometric Dimensions
L 0.3 m
D 0.3 m
Material Properties
E11 90 GPa
E22 7 GPa
ν12 0.32
G12 =G13 4.4 GPa
G23 1.8 GPa
htow 0.4×10−3m

Mathematically, the problem can be written as:

mi ni mi ze Vol([θ,S]L).PF(λ)

where
[θ,S]L = [θ1L ,θ2L ,θ3L ,SL] L = 1,2,3,4

PF = max

(
1,λ= 0.95×Pcr

DL

)
s.t. constraint

κ(θsteer ) ≤ κmax

where the input variables are number of layers in the laminate NL , and the orientation an-
gle at the control points θ. The chosen design path is with 5 control points with symmetry,
angle inputs are 3: θ = [θ1,θ2,θ3]. PF(λ) is the penalty function for the buckling load and
the curvature constraint κ which is a function θsteer .

The above study provide necessary outlook into the problem to be optimized. The Ob-
jective of lightweight design is defined by minimizing the relative volume. Two constraints
are considered which are buckling load which is included into the objective as penalty func-
tion and the maximum curvature constraint which is applied locally at an element level.
The next step is applying the objective, design space and constraints into the optimization
framework to solve. Bayesian optimization(BO) and genetic algorithm(GA) are formulated
for the problem. Table 7.1 gives the cylinders properties that is to be optimized. This is
taken as the test case as this provides a good comparison between the BO results and GA
results which was used in the verification of the Particle Swarm Optimization in the work
of Wang.et.al[107](refer Appendix- B). Chapter 8 explains the bayesian optimization pro-
cess in detail and the an extensive design of experiments provides good understanding for
selection of parameters required for optimization.





8
Bayesian Optimization

Bayesian optimization(BO) utilizes the Gaussian process model as the surrogate model to
predict the output of points and employ this to locate the minima among the selected ran-
dom samples. As explained in Chapter 3, Bayesian optimization is based on the Bayes the-
orem of probability where the maximum likelihood of global optimum is calculated for
each point with the prior knowledge of design space from the surrogate model. The main
advantage of surrogate-based optimization is when each iteration of the analysis is com-
putationally expensive. With a limited number of the initial study of the design space, the
data is fit with acceptable deviations for prediction. This produces a notable reduction in
the time to solve as with each iteration, the feasibility of many points can be predicted and
only the point deemed to be best is evaluated. Another advantage is when data from ear-
lier research is present, the model can be fit from it instead of generating its own data for
solving.

BO uses acquisition functions for evaluating the likelihood of the points. The acqui-
sition function uses the mean and variance values provided by the gaussian process re-
gression model and calculate scores based on its Acquisition type. If [X ] are the points
evaluated and fit to Gaussian model and [X ∗] are the new points to be evaluated, then the
acquisition function’s scores can be given as:

Scores = Acq.func
(
GP

(
X∗,X

))
where G .P is the Gaussian Process model which outputs the mean and variance for the
prediction of output of new points X ∗ with respect to X.

8.1. Design of Experiments
Design of experiments is the term used for the process of optimizing parameters for the
experiment to work best. This is required as an initial study as the problem became more
complicated and the parameters present progressively increased. For bayesian optimiza-
tion to perform well, the design variables definition need modifications to suit the general
surrogate model optimization. For example, normalizing is always a good practice to re-
duce the variations in predictions. The effectiveness of the model can be verified with its
performance with various metrics which help provide evidence.

55
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8.1.1. Surrogate Model Verification
Prior to employment, the surrogate model is to be verified against a suitable alternative to
assess its performance. This is achieved by predicting for test points when trained on a set
of separate "training datasets" wherein deviation between prediction and actual value are
used to compare. Use of performance metrics is an effective method to compare the differ-
ent states of the model and evaluate the best. In this instance, the performance of different
parameters is compared using R2 variance score and Mean Squared Error(MSE). R2 vari-
ance or coefficient of determination is commonly used for validation of regression-based
model performance evaluation. It is defined as the ratio between the variance explained by
the model to the total variance. Mathematical expression is given by Equation 8.1[52].

R2 = 1−
∑Ntest

i=1

(
yi − ŷi

)2∑Ntest
i=1

(
yi − ȳi

)2 (8.1)

Here, yi is the true response, ŷi is the model prediction for the point, Ntest is the total num-
ber of test samples and ȳi is the mean of true test values. The value of R2 may vary between
1 and can go to negative infinity. A good model can be characterized through an R2 greater
than 0.8, between 0.5 and 0.8 score informs the presence of observable error in the model
and any score less than 0.5 implies weak model prediction and presence of significant er-
ror. Values that go to negative signifies the prediction is worse than the average model and
should not be used.

MSE is used to understand the error present in the model. MSE is the mean of overall
squared prediction error which is shown in Equation 8.2.

MSE = 1

Ntest

Ntest∑
i=1

(
yi − ŷi

)2 (8.2)

A perfect model will have an MSE of 0 and any good model should have close to zero.

Testing Methods
There are many methods given in the literature on the procedure to test the model[52].
Some of them are Jackknife error, bootstrap error and K-fold cross-validation error. K-fold
cross-validation error splits the sample points collected into testing and training data. The
sample points are split into k subsets of equal size which is defined by the user. The model
is trained with all subsets except one used as test set. The process is repeated till each sub-
sets become the test set. If the samples are able to render a good representation of the
design space, then the k-fold test will provide a good average R2 score with minimum vari-
ance. In the current body of work, the verification is performed to a 5-fold cross validation.
Figure 8.1 gives the pictoral representation of the test.

8.1.2. Sample size
The selection of sample points must provide an acceptable coverage of the vast design
space. This ensures that every region in the design space are accounted for. With a lim-
ited number of sample space used in the initial population development and optimization
as mentioned in Section 3.2.1, a geometrical incrementation strategy is employed to iden-
tify the suitable sample size. Since this is very processor intensive work, the points tested
are taken from a pool of data points in advance and can be reused. Therefore, 2 data pools
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Figure 8.1: K-fold Cross-validation process[92]

of sizes 1000 points and 5000 points are used as reference where the former represents an
acceptable low sized reference sample set and latter a large reference set.

The sample size is defined in terms of the number of input variables(IP). An initial sam-
ple size of 5 times the IP is taken and iteratively doubled. Since the points are sampled
randomly from the data pools provided, to avoid unrepresentative selection of subset for
DOE, the 5-fold cross validation is repeated 3 times. This is tested for 2 Design loads: 200kN
which is a safe load condition for 2 layers and 500kN which is an extreme case for 3 layers
and a lower limit for 4 layers. The total chosen number of sample points are taken such that
the training size in the k-fold verification with test train split of 1:4, the training size is equal
to the desired number(i.e. n times IP). The test is repeated and the average and variance
for R2, MSE are recorded. And any outputs which violate the manufacturing constraints are
reset to a high value(2.5 times the maximum objective value). This ensures that objective
values in the design space do not have high discontinuity that are different in the orders of
magnitude which is not advisable for fitting. This gives a better representation of the model
but is insufficient for prediction.

Table 8.1 shows the different input and output types taken for fitting of model and their
performance. It can be observed that, without maximum curvature constraint taken for
fitting, the model performs well on 1000 points where as with the constraint, a drastic re-
duction in performance is observed. It can be concluded that gaussian process model can-
not handle buckling penalty function and the maximum curvature constraint behaviour
simultaneously as the invalidation of curvature constraint produces a discontinuities in
the design space. Hence, the model is fit without the maximum curvature constraint. This
is achieved by filtering curvature violating data-points prior to fitting and optimization. It
can also be observed that when the absolute X and Y values are used, the model prediction
diminishes and does not significantly improve with an increase in training size as tabulated
in Table 8.2. However, when normalized stark difference is observed. This is in line with
the previous observations as elaborated in Section 3.3. Therefore, the choice is made to
normalize the design variables. The input control points angle are converted from [0,90]
to [0,1] proportionally. The output objectives values are normalized by dividing it with the
maximum value from the training set.

Running the k-fold cross-validation for 1000 data points shows that 40× IP provides
accurate results whose average R2 score is 0.89 with a variation of 0.003. It is also seen that
20 × IP also gives adequate results. The same is observed with 5000 data points. However,
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Table 8.1: R2 score, R2 variance and MSE values for Different Input and Output Variables Types on 1000 Data
points pool

R2 R2 var MSE
Normalized, without manf_cons 0.995 2.5e-6 1.90e-4
Normalized, with manf_cons 0.589 2.5e-2 2.49e-2
Non-Normalized, without manf_cons 0.972 2.3e-5 1.76e+3
Non-Normalized, with manf_cons 0.525 5.6e-3 5.35e+4

Table 8.2: R2 score and MSE values: 5000 points, 550kN Absolute values

IP times No R2 avg R2var MSE avg
5 80 0. 098 0.0176 15e3
10 160 0.068 0.11 1.13e3
20 320 0.300 0.011 1.08e4
40 640 0.426 0.0019 9.0e3
80 1280 0.591 1.75e-3 6.0e3
160 2560 0.777 1.73e-3 3.6e3
260(max) 4160 0.868 4.80e-4 2.03e3

as the sample size have increased to 80×IP, a prediction rate of 0.98 is achieved. A minor
reduction in the score for a smaller number of training data for 5000 points compared to
1000 points can be attributed to the possible clustering of points over the design space. The
initial choice of data points are chosen with Latin Hypercube Sampling(LHS). This ensures
that there is a good representation of the whole design space. When the training sample
size is taken as a subset of this, there is a chance of overlooking some regions. This idea
is shown to be true when we create sample points of training size 20 times Input. The R2

score can be seen to increase a reasonable level as now chances of missing a wide region
has been reduced. The results are tabulated in Table 8.3,Table 8.7, Table 8.5 and Table 8.6.

Table 8.3: R2 score and MSE values: 1000 points, 550kN Normalized values

IP times No R2 avg R2var MSE avg MSE var
5 80 0.287 0.0176 1.8e-7 3.8e-15
10 160 0.568 0.003 1.06e-7 1.36e-1
20 320 0.78 0.003 5.46e-8 1.18e-1
40 640 0.893 0.003 3.22e-8 9.58e-17
50(max) 800 0.921 1.13e-4 2.36e-8 1.24e-17

Table 8.4: R2 score and MSE values: 1000 points, 200kN Normalized values

IP times No R2 avg R2var MSE avg MSE var
5 80 -0.89 5.69 1.6e-5 2.98e-11
10 160 0.57 6.9e-3 3.08e-6 7.98e-13
20 320 0.78 2.89e-3 3.08e-6 7.8e-13
40 640 0.893 7.4e-4 1.83e-6 2.52e-13
50(max) 800 0.91 3.9e-4 1.41e-6 2.95e-14
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Table 8.5: R2 score and MSE values: 5000 points, 550kN Normalized values

IP times No R2 avg R2var MSE avg MSE var
5 80 -3.03 24.83 1.11e-7 5.65e-15
10 160 0.680 1.10e-2 5.37e-8 9.20e-17
20 320 0.762 3.58e-3 3.61e-8 9.20e-17
40 640 0.861 7.80e-4 2.09e-8 1.74e–1
80 1280 0.949 7.24e-4 8.49e-9 1.40e-18
160 2560 0.979 5.94e-4 3.48e-9 1.02e-19
250(max) 4000 0.985 1.30e-4 2.31e-9 2.20e-20

Table 8.6: R2 score and MSE values: 5000 points, 200kN Normalized values

IP times No R2 avg R2var MSE avg MSE var
5 80 1.085 21.08 6.16e-6 1.18e-11
10 160 0.603 1.70e-2 3.24e-6 2.57e-12
20 320 0.780 2.15e-3 1.87e-6 6.39e-14
40 640 0.864 2.80e-4 1.17e-6 5.47e-14
80 1280 0.944 8.70e-4 5.15e-7 9.84e-15
160 2560 0.979 4.40e-4 1.32e-6 8.66e-17
250(max) 4000 0.985 2.24e-6 1.35e-7 8.86e-17

Table 8.7: R2 score and MSE values 20 times Input and 200kN

IP times No R2 avg R2var MSE avg MSE var
5 80 0.374 5.69 1.612e-5 4.05e-11
10 160 0.539 0.59 9.433e-6 7.24e-12
20 320 0.861 4e-4 5.200e-6 1.29e-12
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8.1.3. Kernel Selection
The choice of the kernel was restricted to RBF, Matern or a combination of constant ker-
nel, RBF, Matern, white and linear. The main choice in kernel selection is the length scale.
Length scale defines the neighbouring distance from the point the model will take to pre-
dict. The choice of length scale as other parameters depend on the problem. Different
combinations were investigated through k-fold cross-validation. The primary metric used
to assess performance of the model is the log marginal likelihood(LML) value as shown in
equation Equation 3.10. As mentioned before, LML depicts how well the model predicts
taking into account the computational complexity. LML value should be maximized for
the set of hyperparameters. The hyperparameters are chosen by analyzing the LML value
of the model and confirmed using R2 variance metrics. It is to be noted that, bayesian opti-
mization itself is a good candidate for hyper-parameter tuning[95] however, since the set of
parameters utilized are small and simple, the inherent gradient descent optimizer(Limited
Broyden–Fletcher–Goldfarb–Shanno(L-BFGS) algorithm) present in the Gaussian Process
model is employed.

With the choice of variables to be normalized, the length-scale bounds are changed
between 1e−4 and 1e1. Other than length-scale, there are other parameters that are specific
to kernels. For example, in matern kernel, another important parameter is ν. If recalled
from Chapter 3 Equation 3.9, ν is used for dictating the smoothness of the function and the

typical values are ∞, 5
2 , 3

2 , 1
2 and 0. This can be visualized as a generalization of the Gaussian

RBF kernel as with the choice of ν we can decide between RBF, 1st order exponential and
2nd order. White Kernel is used to learn the distribution of noise that may be present in the
outputs and its parameter is the noise level. Table 8.8 shows the different kernels used with
their best possible parameters and their corresponding metrics.

From the Table 8.8 it can be gathered that the best kernel for this problem is Matern
Kernel with (ν= 3/2) and a dot product of Matern Kernel with (ν= 3/2) and constant kernel.
Since Bayesian optimization does not require the exact prediction but only a good estimate,
time taken for computing is also to be considered. Taking this into account, the kernel
Matern with ν = 1.5 and length scale 1.88 is chosen. It is to be noted that the length scale
varies slightly with the different samples as the sample points change. Therefore, an initial
optimization is recommended to match the sample points at hand.

8.2. Model Inputs and Outputs
For the surrogate modelling, 2 cases were considered. 1st case is the use of input variables
as orientation angles at control points and output as the objective. This is fairly straight-
forward as the inputs and outputs are already tested and tried. In the 2nd case, the inputs
remain the same but the output used for modelling is changed to buckling load from ob-
jective function. The reason behind this is that this will give a direct correlation between
the design variables and the buckling and the complexity of using penalty functions and
manufacturing constraints are removed. The predicted buckling load is used to calculate
the penalty function which is multiplied with relative volume to obtain the predicted ob-
jective.

With the help of K-fold cross-validation with R2 and MSE scores, it is observed that
in 1st case, even though a more complex objective is used, it is very efficient and the GP
model is able to predict with good accuracy. It is important to note that the prediction is
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Table 8.8: Kernel parameters and its performance metrics

Kernel with its
optimized parameters

Log Marginal
Likelihood(LML)

R2 score R2 variance Time(seconds)

RBF(l = 1.06) -2362.97 0.949 4.04 10−05 15.90
Constant(l = 0.85) .
RBF(l = 1)

-1772.16 0.95 2.96 10−05 18.30

Matern(l = 1.88,ν =
1.5)

116.54 0.96 1.62 10−05 19.225

Constant(l = 1.4) .
Matern(l = 2.51,ν =
1.5)

153 0.96 1.86 10−05 22.05

Matern(l = 1.49,ν =
2.5)

38.15 0.960 4.5 10−05 29.46

Matern(l = 5.02,ν =
0.5)

-394.28 0.95 3.9 10−05 21.34

Matern(l =
1.33,ν = 2.5)+
White(noise=0.0195)

-0.05 0.957 2.36 10−05 29.77

quite the same between reduced switch variable and normal(15 vs 16, refer Section 7.1.2)
even though there is a reduction in input variables. We can surmise that the GP model
is able to interpret the boolean switch variables effectively. Interestingly, 2nd case is the
slowest in the optimization process and the GP model predicting is lower than Case 1. This
is attributed to post-processing of the predicted buckling loads leading to larger errors and
the slower nature can be attributed to the secondary calculation of relative volume and
objective function which even though minor, added up when the data points increase.

8.3. Acquisition functions
The acquisition function utilizes the information from the GP model about the input
variables and translates them into scores. The highest score points are chosen for running
the actual test as this has the highest chance to be the optimal point or a point from an
unexplored region. 3 acquisition functions are focused on here: Probability of improve-
ment(PI), Expected Improvement(EI) and Lower Confidence bound(LCB). The focus is on
static state of acquisition function in this thesis.

Probability of Improvement
Probability of Improvement(PI) was first introduced by Kushner[60]. The function mea-
sures the maximum probability of a point to improve over its current best-known value.
The function is purely exploitative in nature which is a drawback since, this may cause it
to ignore points that have good value but high uncertainty. To reduce this effect, a trade-
off parameter ξ is introduced in the function. It is formulated as Equation 8.3. Φ() is the
normal cumulative distribution function. In simple terms, cumulative distributive func-
tion(CDF) provides the probability of a function to yield a lower or equal result than that
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provided.
PI(x,ξ) = P

[
Fx ≥µmax +ξ

]
= 1−Φ

(
µ(x)− (

µmax +ξ
)

σ(x)

)
≡

(
µ(x)− (

µmax +ξ
)

σ(x)

) (8.3)

Expected Improvement
Although PI introduced the parameter ξ, it still is poor in selecting points with a high chance
for improvement. Expected Improvement(EI) was proposed to mitigate this[30, 75]. Equa-
tion 8.4 measure the expectation of improvement over the model.

EI(x) =
{ (

µ(x)−µmax −ξ
)
Φ(Z )+σ(x)φ(Z ) if σ(x) > 0

0 if σ(x) = 0
(8.4)

where

Z =
{

µ(x)−µmax−ξ
σ(x) if σ(x) > 0

0 if σ(x) = 0

The first term is the exploitation term and 2nd is the exploration term. Φ and φ are
cumulative distribution function(CDF) and probability density function(PDF) respectively.
Probability density gives the likelihood of function to be near the specific value. ξ is
introduced as an exploration weight parameter. The recommended value is about 0.01.
Value can be increased to explore further but beyond a certain limit, it transforms to
random selection.

Lower/Upper Confidence Bound:
Lower/ Upper confidence bound(LCB or UCB) are used for minimization/maximization
problems. It tries to manage exploration-exploitation by being optimistic when faced with
uncertainty. Equation 8.5 gives the formulation for LCB which is quite simple in nature.
LCBs tend to require fewer iterations to get to the global optima[5, 6].

LCB(x) =µx −ξσ(x) (8.5)

8.4. Optimization framework
Bayesian optimization begins with an initial population size which is selected with the LHS
sampling criterion. The maximin criterion is chosen in LHS selection criterion where this
maximizes the minimum euclidean distance between points. This ensures that the initial
population which is used for training possesses a good picture of the design space as the
points are spread in the design space. These initial data points and their corresponding
calculated objectives are used to fit in the Gaussian regression model. From the design of
experiments, the parameters found for the Matern32 kernel(Matern Kernel with ν = 3/2)
is used as a starting point. The Gaussian regression fit model is capable of predicting the
objective values for the new points with good accuracy and thus the optimization process
can be utilized. A specified size of the population is generated using either random or LHS.
The acquisition functions take the points and with the help of the GP model, it assess the
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points from predicted mean and variance provides scores to each point. The best scored
point is evaluated and its actual objective value is then added to the training population
of inputs and outputs to be fit. The buckling constraint is present in the objective value
as penalty function and the maximum curvature constraint is applied externally and if it
is not met, then the point is not considered for the Acquisition function scores. This way,
the algorithm does not spend time on infeasible sets. This process is repeated until a max-
imum number of generations or when the predicted solution has converged over a certain
number of generations. The framework is illustrated as a flowchart in Figure 8.2.

For finding the best parameters, the use of pseudo-random sets is considered. With
it, the numbers although generated randomly is repeatable with a seed value given to the
random function. This helps replicate results that are used to compare the performance
when parameters are changed. This is mainly useful for comparision of the acquisition
functions. The performance of the acquisition functions is measured by monitoring its
convergence to the minimum and the ability to find the best optima among the selected.

With the focus of study on the acquisition functions, the design space for the initial
population is kept very coarse and the initial population size is kept at 10 times the inputs
which is found to be the minimum requirement for the model to make an adequate pre-
diction. Along with this, as mentioned above, the use of pseudo-random points with the
use of random seed value help make generation to generation comparison. Each Acquisi-
tion function with varying weights is tested with 50kN and 1000kN design loads. The rate
of convergence and the final global optimum are studied. The use of Maximum probability
of Improvement(MPI) as the equation suggests, leans only on the mean value to provide.
This limits the function to only exploit among the points gathered and does not factor in
exploration whereas Expected improvement(EI) and Lower confidence bound have explo-
ration weight factor which can be altered as needed. Figure 8.3 shows the case for EI with
50kN design load. Along with the final objective value and the convergence plot, the rela-
tive distance between 2 consecutive input values selected are also shown. When the value
gets close to 0, this means the selected value is very close to the previous point. This lets
the user know if the solver has found a region in the design space it believes the optimum
is present. In this case, since the design space is large, the probability of adjacent iterations
lying close to each other is less. The rest of the plots are in Appendix- A and data found
from them are tabulated in Table 8.9. The convergence column provides the iteration in
which the final objective value is reached. This shows that there is no one best performing
Acquisition function with specific weight but it is more dependent on the design load. For
example, for a design load of 50kN which is a safe load for 1 laminate solution, the EI and
LCB prefer exploitation with EI 0.025 weight and LCB 0.3. Whereas for 1000 kN, which is
on the upper limit of the 3 layer lamina, the acquisition functions prefer exploration more
with EI weight= 0.1 and LCB =0.4. Therefore, the weights should be considered with the
design load in mind.

Since each acquisition function prioritizes different points, the idea proposed by
Brochu et.al. is considered which uses all 3 sets of Acquisition function and select the best
point from this set[19]. The disadvantage is that this increases the actual calculation by a
factor of 3(if all 3 MPI, EI and LCB are considered) which will increase the total time taken
considerably. Instead, the use of the acquisition function on a rotation based is attempted.
This uses a combination of LCB, EI and PI which is changed with each iteration. Interest-
ingly, this results in a much lower optimum for the 50 kN case but not for the 1000kN case.



64 8. Bayesian Optimization

Figure 8.2: Bayesian Optimization Framework
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Table 8.9: Acquisition function performance with different weight factors

Acquisition function Weight
50 kN 1000 kN
Objective Convergence Objective Convergence

MPI - 0.16622 240 0.00397 150
LCB 0.1 0.15602 360 0.00372 155

0.2 0.15880 325 0.00397 148
0.3 0.15581 320 0.00389 350
0.4 0.16325 310 0.00384 290
0.6 0.16112 310 0.00389 240
0.8 0.16720 340 0.00389 240

EI 0.01 0.16290 355 0.00406 295
0.025 0.15601 360 0.00410 310
0.05 0.16278 380 0.00383 105
0.1 0.16286 365 0.00372 155

Combo(LCB, PI, EI) - 0.15410 245 0.00395 380

Table 8.10: Bayesian Optimization Parameters

Parameter Value
Initial Sample Size 10 times the Input variables
Angle Increment 0.5
Total iterations 400
Tolarance 1e-3
Population size 50
Acquisition function Combination of EI, LCB and PI
Exploration Weight EI=0.025,LCB=0.3, PI=NA

This increase and decrease of the objective are attributed to the change in points learnt by
the model which affects the prediction. However, as checked over the entire design loads,
there is a slight improvement in the final solution overall and hence is selected for the fi-
nal optimization. Therefore, after all consideration the rotation strategy with acquisition
functions with EI(weight = 0.025), LCB(weight = 0.3) and PI is chosen. The resulting opti-
mization results are tabulated in Table 9.2 and further discussed in Chapter 9.

8.4.1. Bayesian Optimization Setup
The current framework is created in python BO framework and the acquisition functions
are defined in the standalone python script. Other than the standard libraries, "Scikit-
Learn(sklearn)" module is used for the GP model fit[21] and "Scikit-Optimize(skopt)" is
employed for LHS sampling technique[45].

8.5. Verification with Genetic Algorithm
The genetic algorithm(GA) is a robust optimization tool that has a proven track record of
identifying the optimum. As mentioned in Chapter 3, GA’s robust nature and ability to
find the optimum has proven to work well in the variable stiffness design and therefore, is
regarded for comparison of results from the BO results. A simple Genetic Algorithm is used
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Figure 8.3: Expected improvement performance with different exploration weights
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Figure 8.4: GA Convergence to the optimum solution

Table 8.11: Genetic Algorithm Parameters used

Parameters Value
Maximum generation 80
bits size 7
Mutation rate Pm 0.02
Crossover ratePc 0.1
Elitism True

here which is implemented in the python module OpenMDAO [37]. As described in the
literature study, the decision on the parameter values should be defined according to the
current problem.
Discretization: In GA, discretization of the design space of each variable is performed
by defining the bits. In this algorithm, design space is divided in the order of binary
numbers(2n). Here, the bit size is taken as 7 for all the steering angle variables. Therefore,
the design space is divided into 128(27) parts with increments of 0.71deg.
Population Size: Recommended value for population size is 4 times the bit size. After trial
and error with different sizes, 4 times the bit size is found to perform the best.
Mutation rate: The default value for mutation is 0.01. This is increased to 0.02 which re-
sulted in better results. The possible reason for the improvement is the higher number of
mutated children which are available which results in better exploration.
Maximum Generations: The convergence is tested with two loading cases: 50kN which is
a very safe value for layer 1 and 500kN which is in on the upper limit of 2 layers and lower
limit of 3 layers. This means that the minimum weight option is the 2 layer case which is a
tricky case for the optimizer. This will help show the versatility of the solver in finding both
a straightforward design load and a tricky one. Figure 8.4 shows the convergence to the
optimum solution which tells that the convergence occurs about 70 Generations in which
is found to be similar for the rest of the load cases. Therefore, a maximum generation of 80
can be taken as the limit.

The whole set of parameters used are given in Table 8.11.
The results of Bayesian with final chosen acquisition function combo and genetic algo-

rithm and their comparisons are provided in the Chapter 9.
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Results

9.1. SC-BFSC Element Verification
For verification, two cases from the literature were studied and the buckling loads calcu-
lated were benchmarked against them. The two case study models were created in SC-
BFSC element in python and the model is replicated with the S4R element in ABAQUS. The
buckling load was verified with the results in the literature and both S4R and SC-BFSC mod-
els were compared in terms of the buckling performance, minimum refinement required,
and the computation times. All the models created were meshed with an equal aspect ratio
between the 2 directions which also helped compare the results with the number of ele-
ments along one side. In this work, ny , the number of elements along circumference, was
taken as the reference as explained in Section 6.2.2. Table 9.1 shows the loads calculated
from the S4R and SC-BFSC models and the corresponding error percentages with respect
to the literature results.

Case 1: Results from SC-BFSC elements showed an error of about -6.036% for CS layup
and -7.32% for VS layup. This was even larger in the case of ABAQUS results which was
-7.75% for CS layup and -9.05% for the VS layup. The convergence of S4R elements oc-
curred with 102550 elements(ny =350) and the buckling load was verified with total ele-
ments ranging up to 209500(ny = 500) whereas the SC-BFSC element converged with 1100
elements(ny = 50) and was tested up to 1755(ny = 65). It was also observed that the results
from S4R elements and SC-BFSC elements were comparable. The slightly higher values in
the literature could be attributed to insufficient mesh refinements and the influence of the
aspect ratio. Specifically, for S4R elements linear buckling analysis, it was seen that con-
vergence occurs at about 102550 elements which comes to a mesh size of 5.4 mm whereas,

Table 9.1: Load verification error on Case 1 and 2

Published results S4R S4R Error BFSC BFSC Error
Case 1
CS-[±45,0,90]s 420kN 387.44kN -7.75% 394.648kN -6.036 %
VS [[±45],±[60,15]]s 260 kN 236.47kN -9.05 % 240.97kN -7.32%
Case 2
VS VT[45.4,86.5,85.8]b 49.576kN 47.013kN -5.17% 51.1069kN 3.08%
VS CT[64.1,58.4,57.8]b 40.304kN 40.1kN 0.5% 42.51kN 5.47%
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in the literature, it was stated as 10mm. A higher difference in the variable stiffness for
the ABAQUS elements could be attributed to defining the orientation angle of the lamina
which was split into constant stiffness regions instead of an element-wise distribution. It
must be noted that these results were closer to the non-linear analysis and the experimen-
tal results(303kN for CS and 208kN for VS) confirmed that the model implementation was
compatible.

Case 2: A similar trend of lower element requirements for SC-BFSC was observed here as
well. The convergence for S4R element occurred at 85750(ny = 350) and was tested up to
212850(ny = 550). SC-BFSC took 2925 elements(ny =65) to converge and was tested up to
3975(ny =75) elements. Case 2 showed closer values to the results from the research with
a maximum error of 5.17% in ABAQUS with variable thickness(VS-VT) case and 5.47% in
BFSC elements for constant thickness(VS-CT).

Computation time: The total time for an eigen value analysis with BFSC element took
an average of 12.1 seconds(for case 1 ny = 55 and case 2 ny =65) whereas, with ABAQUS
S4R elements it took approximately 900 seconds(case 1 ny = 350 and case 2 ny =500). This
difference is amplified in the case of large-scale analysis. In reality, with multi-processing
available in the ABAQUS software, the computation of S4R can be reduced to about 120
seconds, which is still slower than SC-BFSC models by a factor of 10. However, since the
python code used a single core, the comparison is made in the same manner. This showed
the distinct advantage of SC-BFSC elements over S4R elements. For SC-BFSC models, the
integration points were also studied. As seen in Chapter 6, 4 integration points provided
sufficient information from the element and any additional number of integration points
increased the computation without enhancing results.

9.2. Optimization
9.2.1. Genetic Algorithm
The optimization problem was run for 5 design load cases which were 50kN, 100kN, 200kN,
500kN, and 1000kN. These loads were considered so as to allow for validation against the
results obtained by Wang et al.. The results are tabulated in Table 9.3 and the mode shapes
predicted by both BFSC and ABAQUS analysis are illustrated in Figure 9.2. The results
showed that 100 and 200 kN loads provided a similar weight. This could be attributed
to the gap present in design space as explained in the investigation of design space in
Section 7.1.2.

9.2.2. Bayesian Optimization
The Bayesian optimization problem was first studied and a Design of Experiments was
conducted in Chapter 8 where different kernels, hyperparameters, and the acquisition
functions were examined. For the current problem, the optimum settings comprised of
Matern32 with a length scale of 1.88 as the kernel chosen for the Gaussian process regres-
sion model. The initial population size was 10 times the input variables and a total of 400
iterations were chosen. From the various acquisition functions and their combinations,
it was decided that the combination acquisition function which iteratively changes from
PI, EI, LCB would give the best blend between convergence rate and computational power.
The exploration weights for EI and LCB were 0.025 and 0.3 respectively. The resulting opti-
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Table 9.2: Bayesian Optimization results

Design Load Lamina Design Parameters Weight(kg) Buckling Load(kN)
50 kN [37.58 65.27 57.36] 0.3968 48.147

100 kN
[7.91 1.98 1.98]
[5.93 7.91 11.87]

0.7296 162.313

200 kN
[15.82 23.73 27.69]
[31.64 35.6 39.56]

0.7336 262.254

500 kN
[23.73 0. 15.82]
[47.47 31.64 35.6]
[55.38 43.51 43.51]

1.1009 560.725

1000 kN
[35.6 19.78 47.47]
[ 63.29 83.07 47.47]
[0. 59.33 47.47]

1.3943 1113.12

Table 9.3: GA results

Design Load Lamina Design Parameters Weight(kg) Buckling Load(kN)
50 kN [41.8,68.0,49.9] 0.3888 49.99

100 kN
[22.9,22.9,21.4]
[40.0,40.0,40.0]

0.7238 288.15

200 kN
[28.3,28.3,27.6]
[40.0,40.0,40.0]

0.7238 242.83

500 kN
[49.6,48.9,48.2]
[59.8,65.7,63.7]
[39.0,39.0,45.4]

1.0861 659.80

1000 kN
[21.7,40.6,36.4]
[44.1,83.4,84.1]
[24.5,50.5,54.0]

1.2313 1045.76

mum solutions are tabulated in Table 9.2. The buckling mode shapes of the BO results are
shown in Figure 9.1.

9.2.3. Results Comparison
The results show that the BO final optimum solutions were very similar to the results pro-
duced by GA. The results and their percentage difference is tabulated in Table 9.4. Most of
the results show that GA provided a better result with every result varying only within 2%
except for 1000kN which was about 13% which showed the inherent advantage of GA. How-
ever, upon closer inspection, it was seen that with different penalty function factors in the
objective function and exploration-exploitation weight in acquisition functions, the results
could be much closer. In this case, with rotational acquisition functions and higher popu-
lation size, close to 80% of total iterations resulted in a solution for 1000kN with a weight of
1.357 kg which is 10.21% greater than that of GA. This shows that further improvement can
be found but as it’s a heuristic process, the optimum cannot be guaranteed in this case. In
the case of GA’s, the mutation from the best results allowed the algorithm to proceed in the
direction of the global optimum. On the other hand, the sampling criterion chosen here
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(a) 50kN
(b) 100kN

(c) 200kN
(d) 500kN

(e) 1000kN

Figure 9.1: BO results mode shapes

(a) GA result mode shape: 50kN
(b) GA result mode shape: 100kN

(c) GA result mode shape: 200kN (d) GA result mode shape: 500kN

(e) GA result mode shape: 1000kN

Figure 9.2: GA Results mode shape
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was static in nature which did not adapt to the previously chosen points and best known
points. This is the limitation of the BO in its current state.

On the other hand, the computational time paints a different picture. The GA process
required on average 8 hours of computation. A comparable solution to BO is achieved at
around 40 generations which took about 4 hours to compute whereas BO took an average
of 1.8 hours. In terms of number of runs, GA took 2268 to reach the optimum whereas BO
only required 560 which was a reduction by a factor of 4. This is a major advantage in the
processing power and time required for the calculation and underlines the capability of BO
over GA.

Table 9.4: BO and GA results

Design Load
(kN)

Weight(kg) Percentage Difference
(%)BO

Total Evaluations=560
GA

Total Evaluations=2268
50 0.3968 0.3888 2.06

100 0.7296 0.7238 0.80
200 0.7336 0.7238 1.35
500 1.1009 1.0861 1.36

1000 1.3943 1.2313 13.23





10
Conclusion

Essentially, all models are wrong, some
are useful

George Box,1976

This thesis provided an opportunity to journey through the field of design of variable
stiffness cylinders and realize a methodology to solve the weight minimization problem
with the application of Bayesian optimization. This was initiated with a literature survey
on variable stiffness plates and cylinders followed by the creation of the finite element for-
mulation of the single-curvature BFSC element for cylindrical shells with variable stiffness
and culminated in the framework for Bayesian optimization of variable stiffness (VS) cylin-
ders. The thesis was split into 2 phases: i) Model formulation and implementation of the
single-curvature-BFSC model for variable stiffness cylinders; ii) the Bayesian optimization
framework. And as the quote from George Box, the results tells that even though the mod-
els are approximations of the real world solution, it has been very useful and efficient for
optimization of the VS cylinder designs.

The foundation of this thesis is formulated by the initially posed research objective that
is repeated here for the sake of convenience:

"Develop a framework for a lightweight design using Bayesian optimization
and apply it to the problem of variable stiffness cylinders, finding the minimum
weight for a given geometry and design load levels."

To achieve this objective, a set of research questions were formulated and were sequen-
tially explored to satisfaction.

10.0.1. How to realize an accurate and yet efficient finite element model
for variable stiffness cylindrical shells?

To improve the computational efficiency, a finite element based on ’Bögner-Fox-Schmit-
Castro(BFSC)’ [27] was developed. The finite element is modified to introduce variable
stiffness and the kinematics due to the cylindrical shell curvature and is referred to as
Single Curvature-BFSC(SC-BFSC) element. The implementation is made available as a
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Python module called "BFSCCylinder". The variable stiffness is applied with control points
defined along the cylinder surface. The variation of stiffness is limited to the axial direction
mainly due to manufacturing constraints, and it is clear from previous research that the
most improvement of the load distribution is achieved through axial variation. The linear
buckling constraint that is used in the optimization is then successfully calculated using
eigen value analysis of the assembled model.

The SC-BFSC model was verified against 2 case studies where the convergence and the
accuracy were tested against models based on Abaqus general-purpose shell elements S4R,
with linear displacement interpolation and reduced integration. Case 1 is the buckling and
vibration analysis of VS composite cylinder by Bisagni and Labans[61], who modeled and
experimentally validated the linear and nonlinear buckling behavior. Although there is a
noticeable difference in the linear buckling analysis, the likely cause for this is the differ-
ent mesh convergence strategies employed. While the convergence study within this the-
sis yielded for an equal aspect ratio element of size 5.4 mm, the literature presented the
mesh convergence at 10 mm. However, the element ratio and laminate theory used in the
research were unclear. Additionally, the results showed conformity with the nonlinear be-
havior and experimental results. A higher difference in the case of VS laminate can be seen
which can be attributed to the region-wise assignment of orientation rather than individual
definition at each integration point and interpolating over the element.

Case 2 is the research by Z.Wang et.al.[106] which used reliability-based design opti-
mization (RBDO) for variable stiffness. The results between the S4R and SC-BFSC models
against the literature showed a difference in results being about 5% for the mesh refinement
adopted in the RBDO scheme.

The computation time taken for the result is also observed. It is found that the SC-
BFSC finite element model performs faster than ABAQUS by a factor of 50, using a single
processor for both the SC-BFSC model and ABAQUS. Enabling ABAQUS-multi-processing
reduced the efficiency gain of the SC-BFSC to a factor of 10. These studies showed the su-
periority of the SC-BFSC element to accurately represent the variable stiffness and shell
kinematics of the investigated cylindrical shells and also showcases the potential for im-
provement available if multi-processing is applied to the SC-BFSC formulation. Therefore,
the two cases verify the SC-BFSC model formulation and therefore justify its utilization
within the Bayesian optimization framework.

10.0.2. How to tackle the objective design obstacle?
After examining different fibre steering paths with control points distributed along the
cylinder axis, it was decided to employ 5 control points with symmetry about axial mid
cross-section. This number of control points provides a good balance between high tailor-
ing potential and limited number of design variables, specifically 3 steering variables per
layer in this case.

From the study, balanced laminate designs were assumed. The fibre orientation at the
control points was limited between 0◦ and 90◦ degrees and allowed to change in steps of
0.5◦ degrees. The thickness variation and maximum curvature constraints are two factors
that must be considered when designing VS laminates. The thickness variation is calcu-
lated based on the local steering angle. The maximum curvature, or minimum steering
angle constraint, is applied element-wise locally, by transforming the curvature constraint
into a maximum steering angle that is treated as a local constraint to the model.
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The optimizations provided data for a greater understanding of the design space by
mapping how the mass changes for different buckling loads. A gap in the design space was
observed between 1 and 2 layers, even with cylinders of different aspect ratios. A possible
reason for the gap can be due to 2 laminates complementing each other resulting in the
higher upper limit of the design .

With the design objective being the weight minimization for given design buckling
loads, the buckling load limit constraint is introduced by means of penalty functions in
addition to the objective. The penalty function is based on the square-law which provides
a continuous function over the design load boundary. An additional factor is added to en-
hance the sensitivity towards infeasible loads.

10.0.3. What are the performance outcomes from Bayesian optimization?
For an efficient general problem, it is desired that the optimizer should have the ability to
choose the number of required layers for a given design load, meaning that the optimizer
should simultaneously decide on the number of layers as well as the variable stiffness ori-
entation of each layer, controlled by 3 fibre orientation angle variables located at the control
points. To achieve this in the Bayesian optimization framework, Boolean design variables
were introduced alongside the fibre orientation angle variables, allowing the optimizer to
switch each layer on (1) or off (0) as it pleases.

The Bayesian optimization (BO) framework is created and implemented in Python.
Three different inputs and outputs for the problem definitions were considered. After test-
ing them, it was found that the use of 15 input variables ([θ11,θ12,θ13], [θ21,θ22,θ23,S2],
[θ31,θ32,θ33,S3], [θ41,θ42,θ33,S4]) and the objective function as the output was the choice
that showed the best results. An interesting observation was a reduction in the perfor-
mance when the buckling load was used as the output for the Gaussian process (GP) model
and the predicted load was used to calculate the objective. This was the consequence of
additional calculations required to reach the predicted objective value from the buckling
load prediction, which caused higher computation time with each iteration. An exhaustive
Design of Experiments study on the GP model and hyper-parameters of the Bayesian opti-
mization were conducted, including the investigation of different kernels for the GP model
and their respective parameters, initial sample space and population size. Two test data of
sizes 1000 and 5000 were used for this. The selection of kernels was based on the maximum
Log-likelihood value and the total computational time. Upon investigation, the Matern32
kernel was found to be best suited for the problem at hand. The selection of the initial
sample size was based on the accuracy required by the GP model. The accuracy and er-
ror calculation was looked into with the help of R2 variance score and Mean Squared Error
(MSE). These two metrics provide a good representation of how the model performs. The
sample size was defined as a factor of input variables that would help with a more generic
representation of the parameters for future use. With both the test data, it was seen that 10
times the input provides a good prediction accuracy.

With the GP model and initial sample size decided, 3 acquisition functions were stud-
ied: Probability of improvement; Expected Improvement and; Lower Confidence Bound.
Each function’s characteristics and exploration-exploitation weights were studied. Individ-
ually, LCB was found to be the most efficient. However, an overall improvement is found
when the acquisition functions are used on a rotational basis with each iteration. The con-
vergence is not consistent with BO as with GA. This is due to the fact that although the
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sample points selection has a good distribution over the design space, it is random in na-
ture. But with 400 generations, it is seen to reach an optimum value or a value close to the
optimum. This is with an initial sample size of 10 times the input variables which amounts
to 160. Therefore, the total number of linear buckling calculations performed is 560.

The genetic algorithm (GA) optimization was achieved with the Python module "Open-
MDAO", which employs the simple GA algorithm. The parameters for the GA solver were
selected through trial and error and a convergence analysis showed that the solution con-
verged to an optimum within 80 generations, amounting to a total number of 2800 individ-
ual evaluations.

When comparing both the results, the BO provided a solution heavier than the GA
solution with a larger maximum deflection of 2% for all the cases except 1000kN. For
the 1000kN case, the result showed that BO provides an optimum which is 13% heavier
than the GA solution. With a population size increase, this can be reduced to 10%. This
showcased the narrow difference in the final solution obtained by the two optimization
strategies. It shows that GA’s mutation of the best samples allowed it to explore further
in the case of 1000 kN, which has proved to be advantageous. The results showed that
BO can compete with GA and can provide proximate results apart from few extreme
cases,where the parameters have to be tuned to match the specific case. The superiority of
the weight can be attributed to the exploitation ability of GA with the mutation. However,
the computation time required to converge to the optimum solution is significantly larger.
Since the GA required the calculation of a larger number of linear buckling analysis, the
average time was about 9 hours. Whereas BO required an average of 2 hours to complete
the same optimization. It was noted that a portion of time was taken up by the GP model
fit function and as the data points increase, fit and prediction time increases by a small
amount.

With the above results, it can be concluded that BO is a very simple yet capable opti-
mization tool that can be used in the field of lightweight structural design and optimiza-
tion. As the world is moving towards data-centric analyses, the use of previous data to
obtain faster results proves to be an exceedingly efficient method to solve complex prob-
lems. BO with the help of the surrogate model achieves this with its stochastic approach to
the problem and therefore can be highly effective. Thus, the second phase of the thesis has
yielded a promising scope for further exploration.

10.1. Recommendations
The two goals of the thesis: creating the framework for Bayesian optimization and using
SC-BFSC element for VS cylinder model have been successfully completed. However, the
examination of the results illuminate the limitations of the same methods. These limita-
tions can be explored through future works in line with a set of recommendations based on
the observations during the course of this thesis.

The Bayesian optimization is seen to perform very well with the current linear buck-
ling analysis and weight minimization. However, as with all optimizations, its performance
changes from problem to problem. Therefore the feasibility must be looked into when non-
linear analysis is implemented.

The use of adaptive sampling: a modern sampling criterion which selects points based
on the partly selected set of points may bring significant improvement on the effectiveness
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of BO depending on the problem. Additionally, some points found in the training data are
repeated into the test population. This may lead the optimizer to select the same point due
to zero variance, which is obviously inefficient. A filtering process can be introduced to
avoid such points.

Currently, the SC-BFSC model is utilized only for linear buckling constraints. Although
linear buckling can provide the fundamental solution, nonlinear analysis and introduction
of geometric imperfections to the cylinder would be the next step in this regard of assessing
stability, aiming to obtain designs that also tailor the post-buckling response. The success-
ful formulation herein demonstrated can be extended to develop the SC-BFSC element fur-
ther, for example to include initial post-buckling analysis using a displacement-based Koi-
ter’s method [27], which could then be compared with a Newton-Raphson-based nonlinear
post buckling analysis. The expected outcome from introduction of geometric imperfec-
tions are to find out whether the geometric sensitivity of the cylinder can be reduced with
variable angle tow and by what measure. Moreover, strength-related failure modes, such as
those calculated using Hashin’s failure criteria should be included, especially when enter-
ing the post-buckling regime. Such expanded scope would further promote and support
the manufacturing and testing of compelling variable stiffness designs.

With successful verification, the linear buckling model can be extended to bending
and/or circumferential loading. This will require the fibre variation in circumferential di-
rection as well. This naturally increases the design variables and hence, the effectiveness of
the model should be investigated further.
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Tabulation and plot for the different Acquisition functions and their final optimum 

Acquisition 
function 

Weight  Final objective Plot 

EI 0.1 50kN =  
Objective=0.1
6286 
Weight: 
0.4160814329
336927 Pcr: 
51.141578713
79644 kN,  
rel_vol =  
1.1417564393
574462 
  
  
  
  
  
 
  
1000kN=  
Objective=0.0
0372 
Weight: 
1.3710785317
457113 Pcr: 
1066.9510545
47348 kN,  
rel_vol =  
3.7623350108
36421 
  

 
  
  
  
  
 
 
 
 
 
  

 
  
  
  
  
  

EI 0.05 50kN =  
Objective=0.1
6278 
Weight: 
0.4158697014
91646 Pcr: 
50.579330995
00759 kN,  
rel_vol =  
1.1411754335
296522 
  
  
1000kN= 
Objective=0.0
0383 
Weight: 
1.4105333381
108918 Pcr: 
1140.8833752
491637 kN,  
rel_vol =  
3.8706017482
23438 
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EI 0.025 50kN =  
Objective=0.1
5601 
Weight: 
0.3972888637
7938827 Pcr: 
46.518741660
21327 kN,  
rel_vol =  
1.0901883203
6518 
  
  
  
  
1000kN=  
Objective=0.0
0410 
Weight: 
1.5086523397
484366 Pcr: 
1072.7317753
61509 kN,  
rel_vol =  
4.1398471244
30465 
  

 
  
  
  
  
  

 
  
  
  
  
  

EI 0.01 50kN= 
Objective=0.1
6290 
Weight: 
0.3987027049
0691045 Pcr: 
47.287619993
096556 kN,  
rel_vol =  
1.0940679989
179938 
  
 
1000kN= 
Objective=0.0
0406 
Weight: 
1.4961207233
379934 Pcr: 
1309.0791276
291795 kN,  
rel_vol =  
4.1054594959
52793 
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LCB 0.05 50kN= 
 
Objective=0.1
6019 
Weight: 
0.4092 
  
  
  
 
 
 
  
   
1000kN= 
Objective=0.0
0397 
Weight: 
1.3675 
  
  

 
  
  
  
 
 
 

 
  
  
  

LCB 0.1 50kN= 
Objective=0.1
5602 
Weight: 
0.3973 
  
  
  
  
  
  
  
   
 
 
1000kN= 
Objective=0.0
0372 
Weight: 1.371 
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  0.2 50kN= 
Objective=0.1
5880 
Weight: 
0.4008 
  
  
  
  
  
  
  
   
  
1000kN= 
Objective=0.0
0397 
Weight: 
1.3675 
  

  

 
  
  
  

 
  
  
  

  0.3 50kN= 
Objective=0.1
5881 
Weight: 
0.4008 
  
  
  
  
  
  
  
  
  
1000kN= 
Objective=0.0
0389 
Weight: 
1.4293  
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  0.4 50kN= 
 
Objective=0.1
6325 
Weight: 
0.4171 
  
  
  
  
   
 
 
 
 
 
 
  
1000kN= 
Objective=0.0
0384 
Weight: 
1.4145 
  
  

 
  
  
 
 
 
 
 
  

 
  
  
  

  0.8 50kN= 
Objective=0.1
6720 
Weight: 
0.4271 
  
  
  
  
  
  
 
 
 
 
  
1000kN= 
Objective=0.0
0389 
Weight: 
1.4201 
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  0.6 50kN= 
 
Objective=0.1
6112 
Weight: 
0.4116 
  
  
  
  
  
  
  
  
  
1000kN= 
Objective=0.0
0389 
Weight: 
1.4201  

  

 
  
  
 
 
  

 
  
  

MPI   50kN= 
Objective=0.1
6622 
Weight: 
0.4246  
  
  
  
  
  
  
  
  
  
  
  
1000kN= 
Objective=0.0
0397 
Weight: 
1.3675 
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Combo- 
(LCB, EI, 
MPI,EI,LCB) 
n times 

  50kN= 
Objective=0.1
6286 
Weight: 
0.4161 
  
  
  
  
  
  
 
  
  
1000kN= 
Objective=0.0
0397 
Weight: 
1.3675  

 
  
  
  
 
 
 

 
  
  
  

Combo 
(LCB, MPI, 
EI) n times 

  50kN= 
Objective=0.0
0397 
Weight: 
1.3675 
  
  
  
  
  
  
  
  
  
  
  
  
  
1000kN= 
Objective=0.1
6112 
Weight: 
0.4116 
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ders are herein optimized for minimum mass under man-
ufacturing constraints, and for various design loads. A
design parameterization based on a second-order poly-
nomial variation of the tow winding angle along the

axial direction of the cylinders is utilized to explore
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the nonlinear steering-thickness dependency in VAFW

structures, whereby the thickness becomes a function of
the filament steering angle. Particle swarm optimization
coupled with three Kriging-based metamodels is used to

find the optimum designs. A single-curvature Bogner-
Fox-Schmit-Castro finite element is formulated to ac-
curately and efficiently represent the variable-stiffness
properties of the shells, and verifications are performed

using a general-purpose plate element. Alongside the
main optimization studies, a vast analysis of the design
space is performed using the metamodels, showing a

gap in the design space for the buckling strength that
is confirmed by genetic algorithm optimizations. Ex-
treme lightweight whilst buckling-resistant designs are

reached, along with non-conventional optimum layouts
thanks to the high degree of thickness build-up tailor-
ing.

Keywords Design · lightweight · Mass minimization ·
Metamodeling · Variable stiffness · variable-angle ·
filament winding · buckling

1 Introduction

The development of new concepts for lightweight struc-
tures has been overwhelmingly exploited in several fields,

mainly in aeronautical and aerospace structures, to com-
ply with Green Aviation for enhancing fuel efficiency
and decrease aviation emissions towards reaching carbon-
neutral air transportation. A practical and direct man-

ner to improve the energy efficiency and reduce the fuel
consumption of an aircraft is by reducing the mass of
its components [1], achieving carbon footprint reduc-

tion and better flight performance. Both aeronautical
and space industries have been continuously develop-
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