
Delft University of Technology
Faculty Eletrical Engineering, Mathematics and Computer Science

Delft Institute of Applied Mathematics

Multivariate generalisations of classical hypergeometric
polynomials from Lie theory

A thesis submitted to the
Delft Institute of Applied Mathematics
in partial fulfillment of the requirements

for the degree

MASTER OF SCIENCE
in

APPLIED MATHEMATICS

by

Joop Vermeulen

Delft, The Netherlands
August 2022

Copyright © 2022 by Joop Vermeulen. All rights reserved.





MSc THESIS APPLIED MATHEMATICS

“Multivariate generalisations of classical hypergeometric polynomials from Lie theory”

JOOP VERMEULEN

Delft University of Technology

Daily Supervisor

Dr.ir. W.G.M. Groenevelt

Responsible Professor

Prof.dr. J.M.A.M. van Neerven

Other Thesis Committee Members

Dr. C. Kraaikamp

August, 2022 Delft
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Abstract

In this thesis, we will be studying Lie groups and their connection to certain orthogonal polynomials.
We will look into the classical Krawtchouk, Meixner and Laguerre polynomials, and the multivariate
Krawtchouk and Meixner polynomials as defined by Iliev [5, 6]. Using representations of the Lie groups
SU(2) and SU(1, 1), it will be shown that the three classical polynomials can be described as matrix
coefficients of the representations. Using this connection of the polynomials to Lie groups, we derive
various properties of the polynomials from the unitarity of the representation and the associated Lie
algebra representation.

Next, the representations are generalised to higher dimensional spaces. Doing so, a new connection
is shown between the Lie group SU(d + 1) and the multivariate Krawtchouk polynomials, extending
the known theory for the univariate polynomials. Another new result that will be established is the
connection between the multivariate Meixner polynomials and Lie theory. This will be done by defining
a representation of SU(1, d) in the Bergman space of the d-dimensional unit ball. Similar as for the
univariate polynomials, we will derive the orthogonality, recurrence relations and difference equations
from the associated Lie theory.

Keywords. Lie groups, Lie algebras, representation theory, orthogonal polynomials, Krawtchouk polynomials,
Meixner polynomials, Laguerre polynomials.
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Introduction

In this thesis, we will be studying Lie groups and their connection to certain orthogonal polynomials.
We start by looking into the well studied connections between the Lie group SU(2) with Krawtchouk
polynomials and the Lie group SU(1, 1) and Meixner polynomials. We will also look into the connection
of the Laguerre polynomials with the Lie group SU(1, 1). Thereafter, we will establish connections
between the Lie group SU(d + 1) with d-variate Krawtchouk polynomials and between SU(1, d) and
d-variate Meixner polynomials, where d is some positive integer. Although Iliev used a character algebra
to establish a connection between Lie theory and the multivariate Krawtchouk polynomials, we will
be associating the Krawtchouk polynomials with a Lie group directly. For the multivariate Meixner
polynomials, the relation with Lie theory which we will show is a new result.

In Section 1, the basic theory and language of representation theory and special functions will be
described. To help develop a basic understanding, examples will be given to illustrate the definitions,
theorems and other important tools. While we aim to develop a good understanding of this theory,
the use of Lie theory and its connections to orthogonal polynomials ultimately come to live when
given a proper examination. In order to achieve this, in Section 2 we work out the simple theory
for Krawtchouk polynomials using the Lie group SU(2). A representation of SU(2) will be given on
the space of homogeneous polynomials in two variables of fixed degree. Using this representation,
the Krawtchouk polynomials will be recovered in terms of the matrix elements of the representation.
Next, proving unitarity of the representation, the orthogonality of the Krawtchouk polynomials will be
found from the orthogonality of the matrix elements. Lastly, the three-term recurrence relation will be
established through the action of the Lie algebra su(2). Having gone through the theory for the univariate
Krawtchouk polynomials, we will move on to Meixner polynomials in Section 3. Whilst the Meixner
polynomials are very similar to the Krawtchouk polynomials, the theory necessary to relate SU(1, 1) to
the Meixner polynomials will prove to be more involved. Namely, we will have to work with an infinite
dimensional representation for which we have to be more careful with the boundedness and smoothness
of the representation. We will define a representation of SU(1, 1) on a Hilbert space of holomorphic
functions defined on the unit ball, the Bergman space. We will give an extensive motivation on why this
space is suitable as representation space. Having build the representation space, we proceed as for the
Krawtchouk polynomials by relating the Meixner polynomials to matrix elements of the representation,
and using properties of the representation to derive orthogonality and recurrence relations.

With the theory for the univariate polynomials explained, we extend the theory to the multivariate
case. First, in Section 4, we create a representation of SU(d+ 1) on homogeneous polynomials in d+ 1
variables of fixed degree. Then, proceeding as in the univariate case, we will relate the resulting matrix
elements to the multivariate Krawtchouk polynomials. The orthogonality then follows by the unitarity
of the representation. Lastly, we recover recurrence relations from the action of the Lie algebra su(d+1).
We will also highlight similarities and differences with Iliev’s work. Next, in Section 5, we will look
into the Lie group SU(1, d) to define a representation on the Bergman space of holomorphic functions
of the d-dimensional unit ball. We first use properties of the Lie group to show well definedness of the
representation of choice. Thereafter, using Iliev’s work as a stepping stone, we proceed as is custom.
Lastly, we will briefly look into the (univariate) Laguerre polynomials in Section 6. Here we will broadly
follow the work of Vilenkin and Klimyk [7] in order to establish a generating function and look into
possibilities for multivariate extensions of the polynomials.

Notation. In this thesis the non-negative integers will be denoted by N0 or N. All matrices that will be
considered are square and the transpose and complex conjugate of a matrix A are denoted by At and A†,
respectively. The standard basis vectors for the vector space Cn will be denoted by vk, for k = 1, . . . , n,
where vk = [0, . . . , 0, 1, 0, . . . , 0]t with a one on the k-th position. The matrix units in Cn×n will be
denoted by ei,j for i, j = 1, . . . , n where ei,j is the matrix with (i, j)’th component 1 and all others equal
to 0. Vectors will be written in bold, while their elements are written normally, e.g. z ∈ Cn will be

written as z =
[
z1, . . . , zn

]t
.

By a representation, we will mean a smooth representation of a Lie group or a Lie algebra, which of
the two is meant should be clear from the context. Lie groups are denoted in capital letters, such as G,H
and SU(2). Lie algebras are denoted by small letters using the mathfrak typeset in LATEX, such as g, h
and su(2).
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In Sections 4 and 5, we will use multi-index notation. This mainly concerns operations with vectors
consisting of integers. Let n = (n1, . . . nk) ∈ Nk

0 be a vector of length k, consisting of non-negative
integers. We will write |n| = n1+ · · ·+nk for the sum of the integers and n! = n1! · · ·nk! for the product
of the factorials. Furthermore, if x = (x1, . . . , xk) ∈ Ck, we write xn = xn1

1 · · ·xnk

k . Lastly, δm,n will
denote the Kronecker delta, defined by

δm,n =

{
1, if m = n,
0, otherwise.

Here m and n will be taken as integers, as well as multi-indices.
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1. Basics of representation theory

In this section some basics of representation theory and Lie theory will be given. This will serve as
an elementary introduction if the reader is not yet familiar with the subjects. We will start by defining
Lie groups and representations of these, focusing on matrix Lie groups. We strive to give many examples
to help the reader grasp the basics of the theory. Next, we define Lie algebras and their representations.
We will clarify the connection between matrix Lie algebras and matrix Lie groups, concluding our theory
on these. Lastly we will go over some special functions that will be used in the thesis, and the theory of
orthogonal polynomials.

1.1. Lie groups and representation theory. Although we will mostly encounter so-called matrix Lie
groups, we will start by giving the general definition.

Definition 1.1. A Lie group is a smooth manifold equipped with a group structure such that multiplication
and inversion are smooth.

In the example below, we give the most important Lie groups that will surface in this thesis.

Example. (1) For any positive integer n, we denote by GL(n, F ) the set of invertible n×n matrices
over the field F = R,C. This forms a group under the usual matrix multiplication and inversion.
If we give GL(n, F ) the topology induced by the Hilbert-Schmidt norm, we can see it as a Lie
group.

(2) If V is a vector space, the set of all bijective linear transformations of V forms a group under
functional composition. This group is called the general linear group and will be denoted by
GL(V ).

A very useful result to construct new Lie groups from old ones is given by the theorem below.

Theorem 1.2. Let H be a subgroup of a Lie group G. If H is closed in the sense of topology (so that
limits can be taken), then H itself is a Lie group.

Now some other important examples of (matrix) Lie groups will be given.

Example.

(1) The special linear group, SL(n, F ), of matrices of determinant 1; this follows as the determinant
is a smooth function.

(2) The group of unitary matrices, U(n) := {g ∈ GL(n,C) | g†g = I} where g† is the conjugate
transpose of the matrix g and I is the identity. This forms a closed subgroup of GL(n,C) as the
map g 7→ g† is continuous and matrix multiplication is smooth.

(3) The group of special unitary matrices, SU(n) = SL(n,C) ∩ U(n).

(4) Let Jp,q =

(
Ip 0
0 −Iq

)
, where Ip and Iq are the diagonal matrices with diagonal 1 of lengths p

and q respectively. The group SU(p, q) is the group of matrices g of determinant one preserving
the (standard) hermitian inner product of signature (p, q) given by the matrix Jp,q, that is it holds
that g†Jp,qg = Jp,q . Analogous as for SU(n), SU(p, q) forms a closed subgroup of SL(p+ q,C)
as the map g 7→ g†Jp,qg is continuous.

(5) The orthogonal group O(n) := {g ∈ GL(n,R) | gtg = I} where gt is the transpose of the matrix
g. This group is clearly closed as the transpose and matrix multiplication are smooth.

Recall that a homomorphism between two groups G,H is a map ϕ : G → H satisfying

ϕ(g1g2) = ϕ(g1)ϕ(g2).

Thus a homomorphism is a map preserving the group structure. For Lie groups, we want to retain the
smoothness of maps as well.

Definition 1.3. Let G,H be Lie groups. A Lie group homomorphism is a smooth group homomorphism
ϕ : G → H. This means that π(gh) = π(g)π(h) for any g, h ∈ G and the map g 7→ ϕ(g) is smooth. If ϕ
is also bijective with smooth inverse, it is called a Lie group isomorphism. Lastly, two Lie groups G,H
are called isomorphic if there exists a Lie group isomorphism between them.

For finite dimensional H, the smoothness of ϕ can be relaxed to ϕ being continuous, as continuity of
the homomorphism then implies smoothness (see f.e. [4, 10]).

We are mostly interested in (closed) subgroups of GL(n, F ). These subgroups will be called matrix
Lie groups. The main purpose for Lie groups for us is by means of so called representations.
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Definition 1.4. LetG be a (finite dimensional) Lie group and V a complex vector space. A representation
of a Lie group G on a complex vector space V is a smooth map π : G −→ GL(V ) satisfying the following:

• For every g ∈ G, the map π(g) : V −→ V , v 7→ π(g)v is in GL(V ), i.e. it is linear and invertible.
• The map g 7→ π(g) is a Lie group homomorphism between G and GL(V ).

If there is a representation π of G on V , we will also say that G acts on V via π.

We can also define representations on infinite dimensional complex vector spaces. This however brings
more difficulties regarding boundedness, so that also smoothness need not be attained everywhere. As
definition of a representation on an infinite dimensional vector space, we retain the definition above,
except that we require the map g 7→ π(g) to only be smooth on a dense subspace of V .

Let G be a Lie group and V a vector space. Possibly the most simple example of a representation is
the trivial representation given by π(g)v = v for all g ∈ G and v ∈ V . Another elementary example is
a representation of a matrix Lie group by standard matrix-vector multiplication. That is G ⊆ GL(n, F )
acts on V = Fn by π(g)v = gv. This map is called the standard representation of G. A representation π
of a matrix Lie group G on V induces a representation π̃ of G on V ∗ = {f |f : V −→ F, f linear} given
by the action

[π̃(g)f ](z) = f(π(gt)z),

where g ∈ G, f ∈ V ∗ and z ∈ V . Lastly, we will look at the adjoint representation. As this representation
is particularly important, we put it inside a definition.

Definition 1.5. Let G be a Lie group. The adjoint representation Ad : G −→ GL(G) is defined by

Adg (h) = ghg−1, g, h ∈ G.

For finite dimensional V , a representation is just a way of expressing the group G as a group of
matrices acting on V . Let π be a representation of the Lie group G on an N -dimensional vector space V .
Evidently, if we fix an ordered basis {e1, . . . , eN} of V and let g ∈ G be arbitrary, the matrix elements of
π(g) with respect to this basis are determined by

π(g)en =

N∑
m=1

πm,nem. (1.1)

This definition will also be used in more general settings, mainly for countably infinite bases. To make
this precise, let N be some countable index set and {en}n∈N be a basis of a vector space V . Then the
matrix elements of π(g) with respect to this basis are determined by

π(g)en =
∑
m∈N

πm,nem.

If moreover V is a Hilbert space and {en}n∈N is an orthonormal basis, it follows that the matrix elements
are given by

πm,n(g) = ⟨π(g)en, em⟩.

Definition 1.6. Let π be a representation of a Lie group G on a Hilbert space V . We say that π is an
unitary representation if π(g) is a unitary operator on V for each g ∈ G.

According to this definition a representation is unitary if and only if

πm,n(g) = ⟨π(g)en, em⟩ = ⟨en, π(g−1)em⟩ = πn,m(g−1), for all g ∈ G, and n,m ∈ N .

As way of example, we compute the matrix elements of the trivial and the standard representations.

Example. (1) Let G be some Lie group, V an Hilbert space with orthonormal basis {en}n∈N for
some countable index set N . Suppose π is the trivial representation, i.e. π(g)v = v for all g ∈ G
and v ∈ V . Clearly for any m,n ∈ N it holds

⟨π(g)en, em⟩ = ⟨en, em⟩ = δm,n.

This means π(g)m,n = δm,n, hence the matrix of π(g) is the identity matrix for all g ∈ G. Clearly
π defines a unitary representation.

(2) Let N be some natural number and suppose G ⊆ GL(N ;F ), F = R,C. Furthermore let
V = FN with standard basis vectors en = (0, . . . , 1, . . . 0)t with a 1 on the n’th position. This
basis is orthonormal with respect to the standard vector dot product. We take the standard
representation of G on F d by matrix-vector multiplication, that is π(g)v = gv. Evidently,
the matrix elements of π(g) are precisely those of g itself; πm,n(g) = ⟨gen, em⟩ = gm,n. This
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representation is unitary if and only if G consists solely of unitary matrices, meaning G ⊆ U(N)
if F = C or G ⊆ O(N) if F = R.

Instead of how we defined the ‘standard representation’ of GL(N,F ) on FN by multiplying a column
vector from the left by g, we can also define a similar representation of GL(N,F ) by multiplying a row
vector from the right by gt. If we take the standard row-vectors en as basis, we even get that the two
matrices of the representations are identical. We introduce an equivalence notion for representations.

Definition 1.7. Let πa : G −→ Va and πb : G −→ Vb be two representations of G. A continuous linear
map A : Va −→ Vb is called an intertwining map if

Aπa(g) = πb(g)A, for all g ∈ G.

If A is invertible with continuous inverse, the representations πa, πb are said to be equivalent and we
write πa ∼= πb.

Note that in case the representations are finite dimensional one does not have to require the map A
to be continuous as this holds for any linear map V a −→ V b.

For the example above we find that the map A acting on FN by transposition, Av = vt is an
intertwining map. If V a, V b are Hilbert spaces, we can sometimes retain the matrix coefficients.

Lemma 1.8. Let πa, πb be representations of a Lie group G on Hilbert spaces V a, V b. Suppose there is
a unitary continuously invertible map A : V a −→ V b intertwining the representations πa and πb. Then
there exist bases of V a and V b such that the matrix elements of πa(g) and πb(g) are identical.

Proof. Let A be as given and denote the inner products of V x by ⟨ · , · ⟩x, x = a, b. Fix some ordered
orthonormal basis {en}n∈N of V a. As A is assumed to be unitary, an orthonormal basis of V b is given
by {Aen}n∈N . By equivalence of πa and πb we then find

⟨π1(g)en, em⟩1 = ⟨Aπ1(g)en, Aem⟩2 = ⟨π2(g)Aen, Aem⟩2,
from which the lemma follows. □

1.2. Lie algebras and representation theory.

Definition 1.9. A Lie algebra is a vector space g with a bilinear map [·, ·] : g× g −→ g such that for all
X,Y, Z ∈ g we have

• [X,Y ] = −[Y,X] (anti-symetry),
• [X[Y, Z]] + [Y, [Z,X]] + [Z[X,Y ]] = 0 (Jacobi-identity)

The map [·, ·] is called the Lie bracket or commutator.

Example. (1) For any positive integer n, the Lie algebra gl(n;F ) is the vector space of n×nmatrices
with Lie bracket given by

[X,Y ] = XY − Y X.

This map is clearly anti-symmetric. Furthermore it holds that

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] =X(Y Z − ZY )− (Y Z − ZY )X

+ Y (ZX −XZ)− (ZX −XZ)Y

+ Z(XY −XY )− (XY −XY )Z

=0,

so that the Jacobi identity holds.
(2) If V is a vector space, we denote by gl(V ) the space of linear maps V −→ V . This becomes a Lie

algebra if we take the Lie bracket defined by [X,Y ] = XY − Y X (here, XY is the composition
of X with Y ).

We will mainly be focusing on matrix Lie algebras; subalgebras of gl(n;F ). For this, we first define
what a subalgebra is.

Definition 1.10. Let g be a Lie algebra. A (Lie) subalgebra h of g is a subspace of the vector space g
such that [X,Y ] ∈ h for all X,Y ∈ h.

Clearly a subalgebra of a Lie algebra is a Lie algebra itself. The special linear algebra, sl(n;F ), is the
subalgebra of gl(n;F ) of matrices with trace 0. That it is closed with respect to the bracket follows as
for X,Y ∈ sl(n;F )

Tr([X,Y ]) = Tr(XY )− Tr(Y X) = 0,
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where the last equality follows by the cyclic property of the trace.
Next, we define homomorphisms for Lie algebras.

Definition 1.11. Let g, h be Lie algebras with Lie brackets [·, ·]g, and [·, ·]h respectively. A linear map
ϕ : g −→ h is called a Lie algebra homomorphism if it preserves the bracket:

ϕ([X,Y ]g) = [ϕ(X), ϕ(Y )]h,

for all X,Y ∈ g. If ϕ is bijective, then ϕ is called a Lie algebra isomorphism.

As for Lie groups, we will mainly use Lie algebras by means of representations.

Definition 1.12. Let g be a Lie algebra and V a vector space. A representation of g on V is a Lie
algebra homomorphism ϕ : g −→ gl(V ).

One very basic example of a Lie algebra representation is that of the algebra gl(n;F ) on the vectors
V = Fn by the map ϕ(g)v = gv, where gv is the standard matrix-vector multiplication.

An important property for (matrix) Lie algebras is their correspondence with Lie groups. We roughly
sketch this correspondence for matrix Lie groups and give the main results. Let G be a matrix Lie group.
We call g : R −→ G a one-parameter subgroup if it is continuous, g(0) = I and g(s + t) = g(s)g(t) for
all s, t ∈ R. Using the smoothness of the Lie group G, it can be shown that every such one-parameter
subgroup is differentiable and satisfies the initial value problem

g′(t) = Xg(t), g(0) = I,

for some n× n matrix X. That is, g is of the form

g(t) = exp (tX),

where exp (tX) is the matrix exponential defined by the series

exp (Y ) =

∞∑
k=0

Y k

k!
= I + Y +

Y

2
+ . . . . (1.2)

The collection of such X is then the associated Lie algebra.

Theorem 1.13. Let G be a matrix Lie group. Its Lie algebra g is given by

g = {X | exp (tX) ∈ G, for all t ∈ R} = {g′(0) | g(t) is a one-parameter subgroup of G}.

Using the above theorem, it becomes clear that gl(n;F ) is the Lie algebra of GL(n;F ). We give some
further examples of basic matrix Lie algebras.

Example. (1) The special linear algebra sl(n;F ) is the subalgebra of gl(n;F ) of matrices with trace
0; this follows as for X,Y ∈ sl(n;F )

Tr([X,Y ]) = Tr(XY )− Tr(Y X) = 0,

where the last equality follows by the cyclic property of the trace. From the identity det eX =
eTrX it can be shown that it is the Lie algebra of SL(n;F ).

(2) The unitary algebra u(n) is the Lie algebra of U(n). It follows that u(n) is the set of anti-
hermitian matrices, U† = −U . This follows by considering a one-parameter subgroup U(t) of
U(n) and considering the equation (U(t))†U(t) = I. Differentiating both sides with respect to t
and setting t equal to zero then gives the above equality.

(3) The special unitary algebra su(n) is the subalgebra of u(n) of trace zero. Evidently, it is also the
Lie algebra of SU(n).

(4) The Lie group SU(p, q) induces the Lie algebra su(p, q) of matrices of trace zero satisfying

X†J = −JX.

This follows just as for u(n) using the defining equation g†Jp,qg = Jp,q of SU(p, q), where Jp,q is
the (p+ q)× (p+ q) diagonal matrix with first p entries 1 and last q entries −1.

(5) Like for u(n), the Lie algebra of O(n) is the set of anti-symmetric matrices,

Xt = −X.

This algebra is denoted by o(n).
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Recall the adjoint representation Ad for a Lie group G on itself. We can also define an adjoint
representation from G onto g:

Adg (X) = gXg−1, for g ∈ G,X ∈ g. (1.3)

It is clear that Ad acts linearly on g and as a homomorphism on G. To see that Ad maps g to g, we use
Theorem 1.13. That is, it suffices to show that exp (tAdg (X)) ∈ G for all t ∈ R. But this follows directly
as exp (tgXg−1) = g exp (tX)g−1 = Adg (exp (tX)) ∈ G, where the last Ad is the adjoint representation
acting on G instead.

The correspondence between a Lie group and its Lie algebra also induces that a Lie group homomorphism
gives rise to a Lie algebra homomorphism.

Theorem 1.14. Let G be a Lie group with corresponding Lie algebra g. Suppose G acts on a finite-
dimensional vector space V by the representation π. Then there is a corresponding Lie algebra representation
dπ of g on V such that for X ∈ g

π(exp (X)) = exp (dπ(X)), (1.4a)

and

dπ(X) =
d

dt

∣∣∣
t=0

π(exp(tX)). (1.4b)

As way of example, we calculate the Lie algebra representations corresponding to some of the Lie
group representations we have given.

Example. Let G ⊆ GL(n;F ) be a matrix Lie group with Lie algebra g and V a vector space.
(1) Consider the trivial Lie group representation π(g)v = v for all g ∈ G, v ∈ V . Using Equation

(1.4b), we can define a Lie algebra representation for g. Let X ∈ g, v ∈ V arbitrary, then

dπ(X)v =
d

dt

∣∣∣
t=0

π(exp (tX)v) =
d

dt

∣∣∣
t=0

v = 0.

Thus the corresponding Lie algebra representation is given by multiplication by 0.
(2) Suppose V = Fn and let π be the standard representation, i.e., π(g)v = gv. Then the corresponding

Lie algebra representation is also given by

dπ(X)v = Xv, X ∈ g, v ∈ V.

Indeed, let X ∈ g and v ∈ V be arbitrary, then dπ(X)v = d
dt

∣∣∣
t=0

etXv = Xv.

(3) Consider the adjoint representation Ad : G −→ g as defined in Equation (1.3). Take some
X,Y ∈ g and consider the differential

d

dt

∣∣∣
t=0

Adexp (tY ) (X) =
d

dt

∣∣∣
t=0

exp (tY )X exp (−tY ) = Y X −XY = [Y,X],

where [·, ·] is the Lie bracket. Define this map by adY , that is

adY X = [Y,X],

by the above it then holds that ad = dAd .

Lastly, we will look unto the complexification of a Lie algebra.

Definition 1.15. Let g be a real Lie algebra; this means it is closed under scalar multiplication of the
real field. Then the complexification of g is the Lie algebra gC defined by extending the field to the
complex numbers as follows.

(1) gC = g⊕ ig as sum of vector spaces where scalar multiplication is defined as usual:

(a+ ib)(X + iY ) = (aX − bY ) + i(bX + aY ), a, b ∈ R, X, Y ∈ g.

(2) The Lie bracket of gC is defined by

[X1 + iY1, X2 + iY2] := [X1, X2]− [Y1, Y2] + i([X1, Y2] + [Y1, X2]), X1, X2, Y1, Y2 ∈ g.

If ϕ is a representation of the real Lie algebra g on a complex vector space, then it can be extended

naturally to a representation ϕ̂ on the complexification gC; for X,Y ∈ g, we define ϕ̂(X + iY ) :=

ϕ(X) + iϕ(Y ). This allows us to use a bigger Lie algebra. The extended representation ϕ̂ will usually be
again denoted by ϕ.
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1.3. Special functions. We start by defining the gamma and beta functions and the pochhammer
symbol.

Definition 1.16. For Re(x) > 0, the gamma function is defined as

Γ(x) =

∫ ∞

0

tx−1e−t dt.

Using integration by parts, one can find the following :

Theorem 1.17. For Re(x) > 0, Γ(x+ 1) = xΓ(x).

Using that Γ(1) = 1, we also see that Γ(1+n) = n! for natural numbers n. By the above theorem one
finds another interesting result. Namely, for any natural number n and complex number x with positive
real part it holds Γ(x+ n) = (x+ n− 1)(x+ n− 2) · · ·xΓ(x). This resulting product will be denoted by
(x)n, and is called the shifted factorial, or Pochhammer symbol. For general x ∈ C, n ∈ N0 we define

(x)0 = 1, (x)n = x(x+ 1) · · · (x+ n− 1).

Note that for x = 1, we get back the standard factorial, (1)n = n!. By definition it also holds that

(x)n = Γ(x+n)
Γ(x) . We give a limit concerning the gamma function that we will use later.

Lemma 1.18. Let a, b ∈ C with positive real part. The following limit holds:

lim
k→∞

Γ(a+ k)

Γ(b+ k)
kb−a = 1. (1.5)

Next, we consider the beta function, which we will see is closely related to the gamma function.

Definition 1.19. For Re(x),Re(y) > 0, the beta function is defined by

B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt.

The beta function can be written in terms of the gamma function as follows:

Theorem 1.20. For Re(x),Re(y) > 0,

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
.

Definition 1.21. For non-negative integers p, q, the hypergeometric series is the series given by

pFq

(
a1, . . . ,ap
b1, . . . , bq

;x

)
=

∞∑
k=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

xn

n!
,

where all parameters are taken from the complex field.

In general, we omit the negative integers as values of the bi. If for some i, we have that ai is a negative
integer, then this series terminates. More precise, suppose ai = −n, then

(ai)k = (−n)(−n+ 1) · · · (−n+ k − 1)

{
̸= 0, for k ≤ n,
= 0, for k > n.

In particular, the hypergeometric series terminates after the term k = n and so the series converges. All
the hypergeometric functions we will consider are of this type. However, for the sake of completeness, we
look at the convergence of a general hypergeometric series.

Lemma 1.22. The hypergeometric series pFq

(
a1, ..., ap

b1, ..., bq
;x
)

converges absolutely for all x if p < q + 1

and for |x| < 1 if p = q + 1. It diverges for all x if p > q + 1 ( if no ai is a negative integer).

Proof. This follows directly by using the ratio test. □

As for p ≤ q + 1 the series converges absolutely, it defines an analytic function on the open disk with
center 0 and radius r (r = ∞ if p < q + 1 and r = 1 if p = q + 1). This will be called the hypergeometric
function. As an elementary example of an hypergeometric function, we have the exponential function,

ex =

∞∑
k=0

xn

n!
= 0F0

(
−
−
;x

)
.



MULTIVARIATE GENERALISATIONS OF CLASSICAL HYPERGEOMETRIC POLYNOMIALS FROM LIE THEORY 9

We can also generalize the binomial series,

(1− x)−a =

∞∑
k=0

(a)k
k!

xk = 1F0

(
a

−
;x

)
, |x| < 1, (1.6)

where a ∈ C.
Lastly, we will develop some theory of orthogonal polynomials. Let µ be positive measure on R and

assume all moments of µ are finite, i.e.∫
R
xn dµ(x) < ∞, for all n ∈ N.

The Hilbert space L2(µ) is the space of functions f : C → C of finite 2-norm, with 2-norm induced by
the inner product

⟨f, g⟩µ =

∫
R
f(x)g(x) dµ(x).

A sequence (pn)n∈N of polynomials is called a sequence of orthogonal polynomials in L2(µ) if

(1) deg (pn) = n, and
(2) ⟨pm, pn⟩µ = Cmδm,n, for some Cm > 0.

One can show that orthogonal polynomials are unique up to a multiplicative constant. That is, for
two sequences (pn)n∈N, (qn)n∈N of orthogonal polynomials with respect to ⟨·, ·⟩µ, there exists a sequence

(Cn)n∈N of nonzero numbers such that pn = Cnqn.
It can be shown that orthogonal polynomials satisfy a three-term recurrence relation.

Lemma 1.23. Let (pn)n∈N be a sequence of orthogonal polynomials. Then, they satisfy a three-term
recurrence relation

xpn(x) = an+1pn+1(x) + b(n)pn(x) + anpn−1(x), n ≥ 0,

where p−1 ≡ 0 by convention and the constants an, bn are given by

an = ⟨xpn, pn−1⟩µ , bn = ⟨xpn, pn⟩µ .
By construction, it also holds that an ̸= 0.

Evidently, if the constants an, bn are known, as well as the initial value p0, the sequence of polynomials
can be reconstructed. Another way of encoding polynomials is by means of a generating function. Let
(pn)n∈N be a sequence of polynomials. A generating function for (pn)n∈N is a formal power series in a
‘variable’ t written as

G(x, t) =

∞∑
m=0

C(m,n)pm(x)tm,

where the C(m,n) are some constants depending on m and n. As an example, we can use the binomial
series from Equation (1.6).

Example. Let x be some nonzero complex number and consider the generating function

G(x, t) := (1− t)−x =

∞∑
m=0

pm(x)tm.

Then pn is a polynomial in x given by pn(x) =
(x)n
n! .

In this thesis, we will look at a couple of classes of orthogonal polynomials. This will be done by
establishing a connection between Lie theory and orthogonal polynomials.
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2. Krawtchouk polynomials in one variable

This section serves as an introduction to some of the known properties for the classical Krawtchouk
polynomials. In particular, we will start by taking a finite dimensional representation of the special
unitary group, SU(2), and showing that the Krawtchouk polynomials can be seen as overlap coefficients
between two orthonormal bases. We also show that the representation is unitary, so that the orthogonality
relations of the Krawtchouk polynomials can be derived from the orthogonality of the matrix elements
of the representation. Lastly, we also derive the recurrence relations from the action of the Lie algebra
su(2).

In section 4, we will use the methods developed here to derive analogous statements of the orthogonality
and recurrence relations for multivariate Krawtchouk polynomials.

2.1. The Lie group SU(2) and Krawtchouk polynomials. We proceed analogous to the lecture

notes in [4]. Let N ∈ N. Write z =

[
z0
z1

]
and consider the space CN [z] of homogeneous polynomials in

the variables z0 and z1 of degree N . A basis of CN [z] can be given by the homogeneous polynomials

eNn (z) =

(
N

n

)1/2

zN−n
0 zn1 , for n = 0, 1, . . . , N.

Throughout this section, we will consider the representation of GL(2;C) on CN [z] given by[
πN (g)p

]
(z) = p(gtz). (2.1)

Recall from Equation (1.1) that the matrix elements are determined by the equation

πN (g)eNn (z) =

N∑
m=0

πN
m,n(g)e

N
m(z).

The main goal of this subsection is to express the matrix elements in terms of the classical Krawtchouk
polynomials. From this, the orthogonality relations follow, see Theorem 2.8. We state the main result
here:

Theorem 2.1. For g =

(
a b
c d

)
∈ GL(2;C) with b, c ̸= 0,

πN
m,n

(
a b
c d

)
=

(
N

n

)1/2(
N

m

)1/2

aN−m−nbncmKm

(
n; 1− ad

bc
,N

)
. (2.2)

Here, the classical Krawtchouk polynomials are given by the hypergeometric function

Km(n; p,N) = 2F1

(
−m, − n

−N
;
1

p

)
=

∞∑
k=0

(−m)k(−n)k
(−N)k

p−k

k!
, (2.3)

where N ∈ N, 0 < p < 1 are the parameters and m,n ∈ N, 0 ≤ m,n ≤ N are respectively the degree and
the variable index. From the definition, it is clear that the Krawtchouk polynomials are self-dual, that is
we have that

Km(n; p,N) = Kn(m; p,N). (2.4)

This theorem will be proved further down in this subsection. We start by writing out the basic properties
of the representation with respect to the above basis of CN [z].

Proposition 2.2. Let g =

(
a b
c d

)
∈ GL(2;C). The matrix elements of πN are determined by

(
N

n

)1/2

(az0 + cz1)
N−n(bz0 + dz1)

n =

N∑
m=0

(
N

m

)1/2

πN
m,n(g)z

N−m
0 zm1 . (2.5)

Furthermore, πN
m,n(g) is a homogeneous polynomial of degree N in a, b, c, d with real coefficients and the

following symmetry relations hold:

πN
m,n(g) = πN

n,m(gt) and πN
m,n

(
a b
c d

)
= πN

N−m,N−n

(
d c
b a

)
. (2.6)

In order to prove Theorem 2.1, we first derive an explicit formula for the matrix elements.



MULTIVARIATE GENERALISATIONS OF CLASSICAL HYPERGEOMETRIC POLYNOMIALS FROM LIE THEORY 11

Lemma 2.3. The matrix elements are given by

πN
m,n

(
a b
c d

)
=

(
N

n

)1/2(
N

m

)−1/2 min{m,n}∑
i=max{0,m+n−N}

(
N − n

m− i

)(
n

i

)
aN−m−n+ibn−icm−idi (2.7)

Proof. By the binomial formula we have

(az0 + cz1)
N−n =

N−n∑
j=0

(
N − n

j

)
(az0)

N−n−j(cz1)
j ,

(bz0 + dz1)
n =

n∑
i=0

(
n

i

)
(bz0)

n−i(dz1)
i.

Using this in the left-hand side of Equation (2.5) yields(
N

n

)1/2

(az0 + cz1)
N−n(bz0 + dz1)

n =

(
N

n

)1/2 n∑
i=0

N−n∑
j=0

(
n

i

)(
N − n

j

)
aN−n−jbn−icjdiz

N−(i+j)
0 zi+j

1

=

(
N

n

)1/2 ∑
i,m∈I

(
N − n

m− i

)(
n

i

)
aN−n−m+ibn−icm−idizN−m

0 zm1 ,

where we have set m = i+ j and the set I is given by

I := {(i,m) | 0 ≤ i ≤ n, i ≤ m ≤ i+ (N − n)}.

Rewriting this set for fixed bounds for m yields

I = {(i,m) | 0 ≤ m ≤ N, max{0,m+ n−N} ≤ i ≤ min{m,n}}

Lastly, writing out the last summation with respect to this parameterization of I and comparing it to
the right-hand side of Equation (2.5) the claim follows □

As can be seen from the summation, there are four cases to be considered:

(1) m+ n−N ≤ 0 and m ≤ n,
(2) m+ n−N ≤ 0 and m ≥ n,
(3) m+ n−N ≥ 0 and m ≤ n,
(4) m+ n−N ≥ 0 and m ≥ n.

However, from the symmetry relations in Proposition 2.2, it follows that if we compute one case the
others will follow easily. Before we prove the main theorem, we state some transformation formulas for

2F1 hypergeometric functions.

Lemma 2.4. We have the following transformation formulas [8]

2F1

(
a, b

c
; z

)
= (1− z)−a

2F1

(
a, c− b

c
;

z

z − 1

)
(Pfaff),

2F1

(
a, b

c
; z

)
= (1− z)c−a−b

2F1

(
c− a, c− b

c
; z

)
(Euler),

2F1

(
−n, b

c
; z

)
=

(b)n
(c)n

(−z)n2F1

(
−n, − c− n+ 1

−b− n+ 1
;
1

z

)
.

In the last equation it is assumed that, if b = −m or c = −N is a negative integer, that then m,N ≥ n.

A proof of the first two formulas can be found in, e.g., [1, 4]. The third equation is found by reversing
the summation, using that (a)k = (a)k−i(−1)i(−a − k + 1)i. From these transformation rules, one can
find the following transformation:

Corollary 2.5.

2F1

(
−n, b

c
; z

)
=

(c− b)n
(c)n

2F1

(
−n, b

−c+ b− n+ 1
; 1− z

)
, (2.8)

where it is assumed that if b = −m or c = −N is a negative integer, we have that N −m ≥ n and N ≥ n.

Proof. By first reversing the summation, then applying Pfaff’s transformation and then again reversing
the summation, we find the wanted formula. □
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We are now in a position to prove the main theorem, Theorem 2.1. Below we will restate the theorem
for the less general case g ∈ SU(2), to show that we obtain the classical Krawtchouk polynomials with
p ∈ [0, 1]. However, the proof of the general case follows in the same way.

Theorem 2.6. For g ∈ SU(2),

πN
m,n

(
a b
c d

)
=

(
N

n

)1/2(
N

m

)1/2

aN−m−nbncmKm(n;−bc,N). (2.9)

Moreover, we also have −bc ∈ [0, 1]

Proof. We restrict the proof to case 2) from above. By Lemma 2.3, we then have

πN
m,n

(
a b
c d

)
=

(
N

n

)1/2(
N

m

)−1/2 n∑
i=0

(
N − n

m− i

)(
n

i

)
aN−m−n+ibn−icm−idi

=

(
N

n

)1/2(
N

m

)1/2

aN−m−nbncm
n∑

i=0

(
N

m

)−1(
N − n

m− i

)(
n

i

)(
ad

bc

)i

.

Thus we have to prove that the remaining sum is precisely the given Krawtchouk polynomial. Writing
out the binomial coefficients, and using the identities

(k − i)! =
(−1)ik!

(−k)i
, (k + i)! = k!(k + 1)i,

on the terms containing an i, we find
n∑

i=0

(
N

m

)−1(
N − n

m− i

)(
n

i

)(
ad

bc

)i

=

n∑
i=0

(N −m)!(N − n)!

N !(N − (m+ n))!

(−n)i(−m)i
(N − (m+ n) + 1)ii!

(
ad

bc

)i

=
(N −m)!(N − n)!

N !(N − (m+ n))!
2F1

(
−n, −m

N −m− n+ 1
;
ad

bc

)
.

Rewriting the remaining fraction as (−N+m)n
(−N)n

and applying Corollary 2.5 (here we use that we are in case

2)), we find

πN
m,n

(
a b
c d

)
=

(
N

n

)1/2(
N

m

)1/2

aN−m−nbncm2F1

(
−n, −m

−N
; 1− ad

bc

)
. (2.10)

As g ∈ SU(2), ad − bc = 1 and the claims follow for m,n in case 2). Case 1) now follows from the first
symmetry relation of Proposition 2.2 and the self-duality of the Krawtchouk polynomials. The remaining
cases follow from cases 1) and 2) by using the second transformation formula in Proposition 2.2 and
Euler’s transformation formula from Lemma 2.4. □

Next we will prove the orthogonality relations for the Krawtchouk polynomials. To this end, define an
inner product, ⟨·, ·⟩, on CN [z] by requiring ⟨eNn , eNm⟩ = δn,m for n,m = 0, . . . , N .

Theorem 2.7. Let L be a subgroup of GL(2;C). The representation πN
∣∣
L
of L on CN [z] is unitary if

and only if L ⊆ U(2). That is, U(2) is the largest subgroup of GL(2;C) on which πN is unitary.

Proof. We need to verify that πN
m,n(g) = πN

n,m(g−1) for all m,n = 0, . . . , N if g ∈ L. To this end, note that

by Proposition 2.2, we know that πN
m,n(g) = πN

n,m(gt) = πN
n,m(g†). Thus, we have πN

m,n(g) = πN
n,m(g−1)

if and only if πN
n,m(g†) = πN

n,m(g−1) for all n,m = 0, . . . , N . This is nothing more than needing g†g ∈
Ker(πN ). Some calculation shows that Ker(πN ) = {aI | a ∈ C, aN = 1}, so that we require g†g = aI.
Writing out g†g it surely holds that (g†g)0,0 ∈ R≥0. Therefore it becomes clear that a = 1 is the only
possibility, but this means g†g = I. This can only be if g ∈ U(2). □

As we proved that the representation is unitary, we can derive the orthogonality of the Krawtchouk
polynomials from the orthogonality of the matrix elements.

Theorem 2.8. For p ∈ (0, 1), we have

N∑
k=0

(
N

k

)
(1− p)N−kpkKm(k; p,N)Kn(k; p,N) =

(
N

m

)−1(
1− p

p

)m

δm,n, (2.11a)

N∑
k=0

(
N

k

)
(1− p)N−kpkKk(m; p,N)Kk(n; p,N) =

(
N

m

)−1(
1− p

p

)m

δm,n. (2.11b)
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Proof. As πN (g) is unitary we have that for 0 ≤ m,n ≤ N

⟨πN (g)eNn , πN (g)eNm⟩ = δm,n.

On the other hand, by writing out the left-hand side using Proposition 2.2, we get

⟨πN (g)eNn , πN (g)eNm⟩ =
N∑

k=0

πN
k,n(g)⟨eNk , πN (g)eNm⟩

=

N∑
k=0

πN
k,n(g)π

N
k,m(g).

Combining the two equations and expressing the matrix elements in terms of Krawtchouk polynomials,
we find(

N

n

)1/2(
N

m

)1/2(
b

a

)n(
b

a

)m N∑
k=0

(
N

k

)
(|a|2)N−k(|b|2)kKk(n;−bc,N)Kk(m;−bc,N) = δm,n,

where we have used that the Krawtchouk polynomials are real polynomials for g ∈ SU(2). Moving all
constants to the right-hand side, writing p = −bc = |b|2 and using the self-duality of the Krawtchouk
polynomials both assertions follow. □

2.2. The Lie algebra su(2) and Krawtchouk polynomials. The complexification of the Lie algebra
su(2), suC(2) = su(2) + isu(2) is (isomorphic to) sl(2;C). A basis of sl(2;C) is given by

H =
1

2

(
1 0
0 −1

)
,

together with the matrix units e0,1 and e1,0. We can compute the representation of sl(2;C) corresponding
to the representation given in Equation (2.1) on this basis, yielding the following:

Lemma 2.9. The representation of sl(2;C) on CN [z] is defined by

dπN (H) =
1

2
(z0∂z0 − z1∂z1) ,

dπN (e0,1) = z0∂z1 ,

dπN (e1,0) = z1∂z0 ,

where ∂zi =
∂
∂zi

is the partial derivative with respect to the variable zi. For the basis {en}Nn=0 of CN [z],
we get the explicit actions

dπN (H)en =

(
N

2
− n

)
en,

dπN (e0,1)en =
√
n(N − n+ 1)en−1,

dπN (e1,0)en =
√
(n+ 1)(N − n)en+1.

(2.12)

Here we have set ei = 0 for i = −1, N + 1.

Proof. We have

exp (tH) =

(
e

t
2 0

0 e−
t
2

)
, exp (te0,1) =

(
1 t
0 1

)
, exp (te1,0) =

(
1 0
t 1

)
.

So that for p ∈ CN [z], we get

dπN (H)p(z) =
d

dt

∣∣∣
t=0

πN (exp tH)p(z) =
d

dt

∣∣∣
t=0

p

([
et/2z0
e−t/2z1

])
=

1

2
z0

∂p

∂z0
− 1

2
z1

∂p

∂z1
.

Likewise, for e0,1, we find

dπN (e0,1)p(z) =
d

dt

∣∣∣
t=0

p

([
z0

tz0 + z1

])
= z0

∂p

∂z1
,

and for e1,0, we get

dπN (e1,0)p(z) =
d

dt

∣∣∣
t=0

p

([
z0 + tz1

z1

])
= z1

∂p

∂z0
,

which yield the first claim. To prove Equation (2.12), apply the above equations to the basis vector

eNn (z) =
(
N
n

)1/2
zN−n
0 zn1 and use that, for n ̸= 0,

(
N

n−1

)
= n

N−n+1

(
N
n

)
and, for n ̸= N ,

(
N

n+1

)
= N−n

n+1

(
N
n

)
. □
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Since the representation πN is unitary on CN [z], for each g ∈ SU(2), π(g) sends the orthonormal basis
{en}Nn=0 to another orthonormal basis. In what follows, we fix g and define the new basis by

ẽn := πN (g)en.

We will now construct a new basis of sl(2;C) which acts tridiagonally on the basis {ẽn}Nn=0. Consider
the automorphism Adg on sl(2;C) defined by Adg (X) = gXg−1 (the adjoint representation). Using that
(gXg−1)k = gXkg−1 in the summation expansion of exp (tAdg (X)), it is easy to check that

dπN ◦Adg = Adπ(g) ◦dπN . (2.13)

Here Adπ(g) is the automorphism of gl(CN [z]) defined by Adπ(g) ϕ = π(g)ϕ(π(g))−1, for ϕ ∈ gl(CN [z]).

Hence, denoting by H̃ and ẽi,j the images of H and ei,j respectively under Adg, we get the following
action on the basis {ẽn}Nn=0:

dπN (H̃)ẽn =

(
N

2
− n

)
ẽn,

dπN (ẽ0,1)ẽn =
√
n(N − n+ 1)ẽn−1,

dπN (ẽ1,0)ẽn =
√

(n+ 1)(N − n)ẽn+1.

(2.14)

Here it should again be understood that ẽN−1 = ẽNN+1 = 0.
As the actions of the ei,j , ẽi,j , i ̸= j act as raising and lowering operators on their corresponding bases,

we can use them to determine a recurrence relation for the Krawtchouk polynomials. Before we determine
this, we first derive the following lemma.

Lemma 2.10. Let ρ be a unitary representation of a Lie group G on a complex Hilbert space V and dρ
be the corresponding Lie algebra representation of g. Then for any X ∈ g, it holds

⟨dρ(X)u, v⟩ = −⟨u,dρ(X)v⟩,

for any u, v ∈ V .

Proof. Let u, v ∈ V and X ∈ g be arbitrary. As the representation ρ is unitary, for h ∈ G it holds

⟨ρ(h)u, v⟩ = ⟨u, ρ(h−1)v⟩.

Using the definition of the Lie algebra representation, we have

⟨dρ(X)u, v⟩ = ⟨ d
dt

∣∣∣
t=0

ρ(exp (tX))u, v⟩ = d

dt

∣∣∣
t=0

⟨u, ρ(exp (−tX)v⟩ = ⟨u,dρ(−X)v⟩,

where in the second equality the derivative can be taken out of the inner product by smoothness of the
maps ρ and t 7→ exp (tX). The lemma now follows by linearity of dρ. □

Using the linearity of the representation dπN on suC(2) ∼= sl(2;C) and that X† = −X for X ∈ su(2),
we obtain the following relation for dπN.

Corollary 2.11. For X ∈ sl(2;C),

⟨dπN (X)u, v⟩ = ⟨u,dπN (X†)v⟩, u, v ∈ CN [z].

We are now in the position to derive the recurrence relation and difference equation for the Krawtchouk
polynomials.

Theorem 2.12. Let g =

(
a b

−b a

)
∈ SU(2) and write p = |b|2, we have

−nKm(n; p,N) =p(N −m)Km+1(n; p,N)

− [p(N −m) + (1− p)m]Km(n; p,N)

+ (1− p)mKm−1(n; p,N)

(2.15a)

and
−mKm(n; p,N) =p(N − n)Km(n+ 1; p,N)

− [p(N − n) + (1− p)n]Km(n; p,N)

+ (1− p)nKm(n− 1; p,N).

(2.15b)
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Proof. Let g be as given and write H̃ = Adg (H), ẽn = πN (g)en. From Corollary 2.11 and as H̃† = H̃,
we have the equality

⟨dπN (H̃)ẽn, em⟩ = ⟨ẽn,dπN (H̃)em⟩. (*)

Now recall the matrix elements from Equation (2.9); πN
m,n(g) = ⟨πN (g)en, em⟩ = B(m,n)Km(n), where

B(m,n) =

(
N

n

)1/2(
N

m

)1/2

aN−m−nbncm.

From Equation (2.14), the left-hand side becomes (N2 − n)B(m,n)Km(n).

By a direct computation, we can express H̃ = Adg (H) in terms of the basis {H, e0,1, e1,0} of sl(2;C)
as follows:

H̃ = (|a|2 − |b|2)H − abe0,1 − abe1,0.

Using this in addition to Lemma 2.9 (and the conjugate linearity of the inner product), we can evaluate
the right-hand side of Equation (*) as

⟨ẽn,dπN (H̃)em⟩ =(|a|2 − |b|2)
(
N

2
−m

)
B(m,n)Km,n

− ab
√

m(N −m+ 1)B(m− 1, n)Km−1(n)

− ab
√

(m+ 1)(N −m)B(m+ 1, n)Km+1(n).

With some calculation, one finds

B(m− 1, n) = −a

b

√
m

N −m+ 1
B(m,n)

B(m+ 1, n) = − b

a

√
N −m

m+ 1
B(m,n).

Equating the found expressions for the left- and right-hand side of Equation (*) and dividing by B(m,n)
using the above relations, we arrive at(

N

2
− n

)
Km(n) =(|a|2 − |b|2)

(
N

2
−m

)
Km,n

+ |a|2mKm−1(n)

+ |b|2(N −m)Km+1(n).

So that if we move terms around, set p := |b|2 (and thus 1 − p = |a|2), we get the recurrence relation
(2.15a). The proof of the difference equation, Equation (2.15b), can be found similarly expressing H in

terms of H̃, ẽ0,1, ẽ1,0, or simply by using the self-duality of the Krawtchouk polynomials (2.4). □
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3. Meixner polynomials in one variable

In this section, we will look into the connection between the Lie group SU(1, 1) and Meixner polynomials.
The classical Meixner polynomials (see e.g. [1, 8]) of degree m are defined on N by the generating

function

(1− t)−β−n

(
1− t

c

)n

=
∑
m∈N0

(β)m
m!

Mm(n; c, β)tn, (3.1)

where β, c ∈ R, c nonzero, are the parameters. As hypergeometric function, they are given as

Mm(n; c, β) = 2F1

(
−m, − n

β
; 1− 1

c

)
=

∞∑
k=0

(−m)k(−n)k
(β)k

(1− 1/c)k

k!
. (3.2)

Comparing this to hypergeometric definition of the Krawtchouk polynomials, Equation (2.3), it is clear
that the Meixner polynomials are closely related to the Krawtchouk polynomials via

Km(n; p,N) = Mm

(
n;

p

p− 1
,−N

)
.

However, as opposed to the Krawtchouk polynomials, for the Meixner polynomials the parameter β is
often taken as a positive real number (as opposed to a negative integer for the Krawtchouk) causing the
Meixner polynomials to be defined on the whole of N. This will in particular have implications for the
choice of representation, as we have to work with an infinite dimensional representation instead.

First, we will determine a suitable (infinite dimensional) Hilbert space and define a unitary representation
of SU(1, 1) here. Next, we calculate the matrix elements of this representation and show that they can
be written in terms of the Meixner polynomials. Using the unitarity of the representation, we derive the
orthogonality of the Meixner polynomials. Lastly, using the Lie algebra of SU(1, 1), we derive recurrence
and difference equations, similar as for the Krawtchouk polynomials.

In section 5, we will use the methods developed here to acquire similar results for the Lie group
SU(1, d) and multivariate Meixner polynomials as defined by Iliev in [5].

3.1. SU(1, 1) and the Bergman space on the unit ball. Recall that the Lie group SU(1, 1) is
defined as the group of matrices of unit determinant preserving the hermitian form given by the matrix

J =

(
1 0
0 −1

)
, i.e.

⟨gz, gw⟩J = ⟨z,w⟩J , g ∈ GL(2;C),
where ⟨z,w⟩J = z0w0 − z1w1.

We will consider a representation of SU(1, 1) on the the space H(B) of holomorphic functions on the
unit ball, where B := {z ∈ C | |z|2 < 1}. This representation will be given by the map[

πβ

(
a b
c d

)
p

]
(z) = (a+ cz)−βp

(
a+ cz

b+ dz

)
. (3.3)

In order to construct a representation from this mapping, we have to make a choice for β. The motivation
on why we take this map and its well-definedness is topic of 3.1.1. Next, in 3.1.2, we define a measure on
H(B) so that we can work on a Hilbert space. We will also make a choice of β and prove the unitarity of
πβ . We note that although the map is a homomorphism on the whole of H(B), it does not need to act
smoothly everywhere. Lastly, in 3.1.3, we will compute the matrix elements and find an orthogonality
relation for the Meixner polynomials.

3.1.1. Detour: The space of holomorphic functions on the unit ball. As discussed above, we want to have
an infinite dimensional space on which we will act. As the Meixner polynomials are very much alike
to the Krawtchouk polynomials, a natural choice is to also act on polynomials. We will restrict to one
variable polynomials instead of two variables to circumvent problems around zero. The choice will be
to work with the space of holomorphic functions on the unit ball B, which will be denoted by H(B). In
particular, f : B −→ C is holomorphic if and only if f(z) =

∑∞
k=0 akz

k, where convergence is pointwise.

Let g =

(
a b
c d

)
∈ GL(2;C). As for a representation, we like to have that

π(g)zn = (a+ cz)−β−n(b+ dz)n = (a+ cz)−β

(
b+ dz

a+ cz

)n

,

as to imitate the representation πN (see Equation (2.1)). The following lemma asserts that this map is
well defined for g ∈ SU(1, 1).
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Lemma 3.1. Let g =

(
a b
c d

)
∈ SU(1, 1), then the map z 7→ b+dz

a+cz maps B onto itself.

Proof. We look at the set B̃ := {(z0, z1) ∈ C2 | |z0|2− |z1|2 > 0}. Note that the condition 0 < |z0|2− |z1|2
enforces z0 to be nonzero, hence dividing by |z0|2 we get 0 < 1 − | z1z0 |

2. The above tells us that we can

map B̃ surjectively onto B by the map

(z0, z1) 7→
z1
z0

. (*)

On the space B̃ we can define the indefinite hermitian form

⟨(z0, z1), (w0, w1)⟩ = z0w0 − z1w1,

then B̃ = {z = (z0, z1) | ⟨z, z⟩ > 0}.

Let g =

(
a b
c d

)
∈ U(1, 1) and (z0, z1) ∈ B̃. As U(1, 1) is the group preserving the above hermitian

form, using Equation (*) on gt(z0, z1) we find the map (z0, z1) 7→ bz0+dz1
az0+cz1

. Writing z = z1
z0

and using that

the map (*) is surjective, we conclude that the map z 7→ b+dz
a+cz is well defined and maps B onto itself. □

As by the above a+ cz ̸= 0, for p ∈ H(B) the function z 7→ (a+ cz)−βp
(

b+dz
a+cz

)
is also holomorphic as

composition and product of holomorphic functions. This motivates us to define the map πβ : SU(1, 1) −→
GL(H(B)) by

[πβ(g)p](z) = (a+ cz)−βp

(
b+ dz

a+ cz

)
. (3.3)

That the above map is also a homomorphism can be seen by the correspondence between B and B̃ as in
the proof of Lemma 3.1, or by a direct calculation of πβ(gh). For smoothness, we first need to define an
inner product on H(B). This will be done in the next subsection.

3.1.2. The Bergman space on the unit ball. For α > −1, define the (probability) measure dvα on B by

dvα(z) = cα(1− |z|2)α dv(z), (3.4)

where

cα =
1

B(1, α+ 1)
= α+ 1, (3.5)

and dv is the standard volume measure on B. The weighted Bergman space Aα is the collection of
holomorphic functions f in L2(B,dvα). In terms of sets we have Aα = L2(B,dvα) ∩ H(B). As Aα is
closed in L2(B,dvα) (see Corollary 2.5 in [11]), it becomes a Hilbert space if we take the inner product

(f, g)α =

∫
B
f(z)g(z) dvα. (3.6)

The condition α > −1 is enforced in order to make the norm of the constant function 1 finite. Using

polar coordinates, it is easy to show that ||zn||α = 2cα
∫ 1

0
r2n+1(1 − r2)α dr. Changing variables using

u = r2, it follows that ||zn||α = cαB(n + 1, α + 1) = n!Γ(α+2)
Γ(α+2+n) = n!

(α+2)n
. Note furthermore that the

measure is unitarily invariant (see [11]), so that for f ∈ L1(B,dvα) and U ∈ U(1),∫
B
f(Uz) dvα(z) =

∫
B
f(z) dvα(z).

In particular, as the integral is invariant under the rotation Uz = zeiϕ the monomials {zn}n∈N0 form an
orthogonal system. As the monomials are also dense in Aα (see Proposition 2.6 in [11]), we may conclude
that the functions

eαn(z) :=

√
(α+ 2)n

n!
zn, n ∈ N0 (3.7)

form an orthonormal basis of Aα.
Now that we have treated all technicalities in forming a representation, we only need to verify whether

the restriction of the homomorphism πβ indeed defines a representation on Aα for certain β, α. To do
so, we must check two things:

(1) πβ maps Aα into Aα,
(2) πβ acts smooth on Aα.
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For the first, we will prove in the next section that the representation is unitary for β = α + 2. For the
second we refer to Lemma 2.10 in [2] for the proof that πβ acts smoothly on (finite) polynomials. Note
that this does not imply that πβ acts smooth everywhere on Aα. Denote by A∞

α the subspace of Aα

on which πβ acts smoothly. An element of A∞
α will be called a smooth vector. As the polynomials are

dense in Aα and πβ acts smooth on the polynomials, A∞
α is dense in Aα. Lastly we note that the space

A∞
α is invariant under SU(1, 1) (see section 2.1.5 of [7]), which will allow us to consider the Lie algebra

representation in section 3.2.

3.1.3. Meixner polynomials in one variable. In the remainder of this section α is assumed to be a non-
negative integer and we set β = α+ 2. We have argued that we can represent SU(1, 1) on the Bergman
space Aα via the map (3.3), short for that it maps Aα back into Aα. In this subsection, we will first
compute the image of the orthonormal basis {eαn(z)}n∈N0

under πβ as elements in H(B). Next we use this
to show that πβ(g) is unitary for all g ∈ SU(1, 1), so that it indeed defines a representation as wanted.
Lastly we use the unitarity of the representation to derive the orthogonality relation of the Meixner
polynomials.

Fix some g =

(
a b
c d

)
∈ SU(1, 1) with b, c ̸= 0. By definition of SU(1, 1) it holds that ad = |a|2,

bc = |b|2 and |a|2 − |b|2 = 1. In particular, it follows that a, d ̸= 0 and 0 < bc
ad < 1. Let n ∈ N0 be

arbitrary. Per definition, we have that πβ(g)zn = (a+ cz)−β−n(b+ dz)n. Using that β is an integer and
that a, b ̸= 0, we can take these out of the brackets resulting in:

(a+ cz)−β−n(b+ dz)n = a−β−nbn(1 +
c

a
z)−β−n(1 +

d

b
z)n.

Writing t = − c
az, ĉ =

bc
ad , we find the equality

πβ(g)zn = a−β−nbn(1− t)−β−n

(
1− t

c

)n

= a−β−nbn
∑
m∈N0

(β)m
m!

Mm(n; ĉ, β)tm,

where the second equality follows by the definition of the Meixner polynomials (3.1). Undoing the
substitutions just made, we get the following theorem.

Theorem 3.2. For n ∈ N0 and g =

(
a b
c d

)
∈ SU(1, 1), with b, c ̸= 0, it holds

πβ(g)zn =
∑

m∈N0

(β)m
m!

a−β−m−nbn(−c)mMm

(
n;

bc

ad
, β

)
zm.

Hence, the matrix elements of the map πβ with respect to the basis {eαn(z)}n∈N0
are given by

πβ
m,n(g) =

√
(β)m
m!

√
(β)n
n!

a−β−m−nbn(−c)mMm

(
n;

bc

ad
, β

)
. (3.8)

Moreover, we also have 0 < bc
ad < 1.

Remark. Note that in all of the above, we only used the unit determinant property of SU(1, 1) to verify
that the representation is smooth and that 0 < bc

ad < 1 in the above theorem. In particular, one can

define the homomorphism πβ on U(1, 1) for which the matrix elements will still be given as in the above
theorem, provided that b, c ̸= 0.

Next, we want to prove that πβ maps SU(1, 1) to unitary maps on Aα. Let g ∈ GL(2;C) be written
as usual and J = diag(1,−1) (as in the definition of SU(1, 1)). Suppose furthermore that πβ(g) is well
defined on H(B), so that in particular the matrix elements are given by Equation (3.8). As Jg†J =(

a −c

−b d

)
, from Equation (3.8) and the hypergeometric representation of the Meixner polynomial (3.2),

it is easy to see that πβ
m,n(g) = πβ

n,m(Jg†J).

Suppose now that πβ(g) acts unitarily on Aα, we must have that πβ
m,n(g) = πβ

n,m(g−1). Suppose this

equality holds, then by the above we can deduce that it must hold that πβ(Jg†Jg) = I, or equivalently,
Jg†Jg ∈ Ker(πβ). Looking at the action of πβ on e0 and e1, it becomes clear that Ker(πβ) = {γI | γβ = 1}.
As the diagonal of Jg†Jg is certainly real, the only remaining possibilities are γβ = 1 and γβ = −1 (the
latter only in case of even numbers β). By explicitly looking at the case Jg†Jg = −I, one finds that this
is impossible for g ∈ GL(2;C), hence it must hold that Jg†Jg = I. By definition, it follows g ∈ U(1, 1).
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By the above, it can be concluded that U(1, 1) is the maximal subgroup of GL(2;C) on which πβ can
be unitary. Now restrict to matrices of unit determinant. As the span of {eαn(z)}n∈N0 is dense in Aα and
πβ(g) is smooth on this basis, by taking limits one can show the following theorem.

Theorem 3.3. For β = α+ 2, πβ(g) is unitary on Aα for each g ∈ SU(1, 1).

As discussed in section 3.1.2, πβ acts smoothly on the subspace A∞
α . As a corollary to the above

discussion, using that πβ
m,n(g) = πβ

m,n(g), we also find πβ
m,n(g) = πβ

n,m(JgtJ). This corresponds to the
self-duality of the Meixner polynomials in the sense that

Mm(n; c, β) = Mn(m; c, β). (3.9)

Using the unitarity of the representation, we can also derive that the Meixner polynomials are orthogonal
with respect to the negative binomial distribution.

Theorem 3.4. For an integer β ≥ 2 and any 0 < c < 1, we have
∞∑
k=0

(β)k
k!

ckMm(k; c, β)Mn(k; c, β) = δm,n
m!c−m

(β)m(1− c)β
, (3.10a)

∞∑
k=0

(β)k
k!

ckMk(m; c, β)Mk(n; c, β) = δm,n
m!c−m

(β)m(1− c)β
. (3.10b)

Proof. This proof follows just as for the Krawtchouk polynomials. Firstly, as πβ(g) is unitary, for any
m,n ∈ N0, it holds that

δm,n = ⟨πβ(g)eβm, πβ(g)eβn⟩

=

∞∑
k=0

πβ
k,m(g)⟨eβk , π

β(g)en⟩

=

∞∑
k=0

πβ
k,m(g)πβ

k,n(g).

Expressing the matrix elements in terms of Meixner polynomials using Theorem 3.2 and moving terms
independent of k to the other side, we find

∞∑
k=0

(β)k
k!

∣∣∣ c
a

∣∣∣2k Mk(m; ĉ, β)Mk(n; ĉ, β) =
(β)m
m!

∣∣∣a
b

∣∣∣2m |a|2βδm,n,

where ĉ = bc
ad . Now use that ĉ =

∣∣ b
a

∣∣2 =
∣∣ c
a

∣∣2 and 1 − ĉ = |a|−2 for g ∈ SU(1, 1) to evaluate the above
equation, which gives us Equation (3.10b). The other orthogonality relation, Equation (3.10a), easily
follows by using the self-duality of the Meixner polynomials ( see (3.9)).

Lastly, note that the map SU(1, 1) ∋
(
a b
c d

)
7→ bc

ad exhausts the interval (0, 1), f.e. by taking

the matrices

( √
x

√
x− 1√

x− 1
√
x

)
where x ∈ (1,∞). Thus the orthogonality can be stated for any

0 < c < 1. □

Classically, the Meixner polynomials satisfy the orthogonality relations (3.10) for all β > 0. To
construct a mapping on the Bergman spaces, we needed to have β = α + 2 > 1. Furthermore, to prove
this map was a homomorphism, we restricted to integer values of β, thus yielding the smaller range for
our parameter β.

In the next subsection, we will derive the Lie algebra representation and derive recurrence relations
and difference equations for the Meixner polynomials.

3.2. The Lie algebra su(1, 1) and Meixner polynomials. The Lie algebra of SU(1, 1) is given by
matrices g with trace zero such that g†J = −Jg, where J = diag(1,−1). Working out this definition

shows that su(1, 1) =

{(
ia b

b −ia

) ∣∣∣ a ∈ R, b ∈ C
}
. It follows that the complexification of su(1, 1) is

isomorphic to sl(2;C). In what follows, we will denote the representation of the complexification again
by πβ .

We can, as in the case of su(2), consider the representation of the complexification suC(1, 1) ∼= sl(2;C)
instead (wherever the original Lie algebra representation is defined). As already mentioned above, the
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Lie group SU(1, 1) acts smoothly on polynomials, so that the Lie algebra representation can certainly be
defined here. The set of elements of Aα on which πβ acts smoothly will be denoted by A∞

α , which is a
dense SU(1, 1)-invariant subspace of Aα as discussed in 3.1.2.

As before, for a basis of sl(2;C), we take

H =
1

2

(
1 0
0 −1

)
,

together with e0,1 and e1,0. Next, we calculate the action of sl(2;C) on A∞
α .

Lemma 3.5. The representation of sl(2;C) on A∞
α is defined by

dπβ(H) = −1

2
β − z

d

dz
,

dπβ(e0,1) =
d

dz
,

dπβ(e1,0) = −βz − z2
d

dz
.

So that for the basis {eαn}n∈N0
of A∞

α we get

dπβ(H)eαn = (−1

2
β − n)eαn,

dπβ(e0,1)e
α
n =

√
n(β + n− 1)eαn−1,

dπβ(e1,0)e
α
n = −

√
(n+ 1)(β + n)eαn+1.

(3.11)

Proof. We will naively calculate the action of sl(2;C) directly, noting that this is not a ‘proper’ proof
(see the remark below). Recall that we have that

exp (tH) =

(
e

t
2 0

0 e−
t
2

)
, exp (te0,1) =

(
1 t
0 1

)
, exp (te1,0) =

(
1 0
t 1

)
. (*)

Let p ∈ A∞
α be arbitrary. Calculating the action of H on p, we see

dπβ(H)p(z) =
d

dt

∣∣∣
t=0

πβ(exp (tH))p(z) =
d

dt

∣∣∣
t=0

e−
1
2 tβp

(
e−tz

)
= −1

2
βp− z

dp

dz

Likewise for e0,1 and e1,0, we find

dπβ(e0,1)p(z) =
d

dt

∣∣∣
t=0

p(t+ z) =
dp

dz
,

dπβ(e1,0)p(z) =
d

dt

∣∣∣
t=0

(1 + tz)−βp

(
z

1 + tz

)
= −βzp− z2

dp

dz
.

The first claim is clear from the above equalities. The second claim follows trivially by applying the

above to the basis vectors eαn(z) :=
√

(β)n
n! zn. □

Remark. In the above proof, we have used elements of the complexification of su(1, 1) directly in the
computation of the Lie algebra representation, even though we have not shown the map πβ to be smooth
here. By definition of the complexification of the Lie algebra representation, one should expressH, e0,1 and

e1,0 in the form X + iY , with X,Y ∈ su(1, 1) and compute the action by computing dπβ(X) + i dπβ(Y ).
The action resulting by properly using the definition through complexification to calculate the action as
depicted here, must coincide with the action ‘calculated’ as in the proof above. Hence, the action as
presented in the above lemma still holds.

For what follows, let g ∈ SU(1, 1) be fixed. As for each g ∈ SU(1, 1) the representation πβ(g) is
unitary on A∞

α , and as SU(1, 1) leaves A∞
α invariant, the vectors ẽβn := πβ(g)eβn form a new orthonormal

basis of A∞
α . If we adjoin the basis of sl(2;C) by g, we get a new basis of sl(2;C) which acts traditionally

on the basis vectors ẽαn. Denote this new basis as in section 2, i.e., write ϕ̃ = gϕg−1 for ϕ in the basis.
Using the identity 2.13, we have the following action on the new basis:

dπβ(H̃)ẽαn =

(
−1

2
β − n

)
ẽαn,

dπβ(ẽ0,1)ẽ
α
n =

√
n(β + n− 1)ẽαn−1,

dπβ(ẽ1,0)ẽ
α
n = −

√
(n+ 1)(β + n)ẽαn+1,

(3.12)
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where we have set ẽα−1 = 0. Lastly, using Lemma 2.10 and as −X = JX†J for X ∈ su(1, 1), the following
corollary can be shown.

Corollary 3.6. For X ∈ sl(2;C),

⟨dπβ(X)u, v⟩ = ⟨u,dπβ(JX†J)v⟩, u, v ∈ A∞
α .

Proof. Let X = Y + iZ ∈ suC(1, 1). By conjugate linearity of the inner product and Lemma 2.10, it
follows that

⟨dπβ(Y + iZ)u, v⟩ = ⟨u,dπβ(−Y + iZ)v⟩.
The claim now follows by using that −ϕ = Jϕ†J for ϕ ∈ su(1, 1). □

With this, we can show the recurrence relation and difference equation of the Meixner polynomials.

Theorem 3.7. Let β ≥ 2 be an integer and 0 < c < 1. The Meixner polynomials satisfy the following
recurrence relation

(c− 1)nMm(n; c, β) =c(β +m)Mm+1(n; c, β)

− [m+ c(β +m)]Mm(n; c, β)

+mMm−1(n; c, β).

(3.13a)

Furthermore, they also satisfy the difference equation

(c− 1)mMm(n; c, β) =c(β + n)Mm(n+ 1; c, β)

− [n+ c(β + n)]Mm(n; c, β)

+ nMm(n− 1; c, β)

(3.13b)

Proof. Let g ∈ SU(1, 1) be arbitrary with the usual conditions. It can be shown that g has the form

g =

(
a b

b a

)
where a, b ∈ C and |a|2 − |b|2 = 1 (with b ̸= 0 by our conditions). Let H̃ = Adg (H) and

ẽn = πβ(g)en be as above. By Corollary 3.6 above, and as JH̃J = H̃, it follows that

⟨dπβ(H̃)ẽm, en⟩ = ⟨ẽm,dπβ(H̃)en⟩. (*)

Write ĉ = |b|2
|a|2 and abbreviate Mm(n; ĉ, β) by Mm(n). Lastly, write πβ

m,n = ⟨ẽn, em⟩ = B(m,n)Mm(n),

where

B(m,n) =

√
(β)m
m!

√
(β)n
n!

a−β−m−nbn(−c)m

as in Theorem 3.2. The left-hand side of (*) can be easily computed using Equation (3.12) to be(
− 1

2β − n
)
B(m,n)Mm(n).

Calculating H̃ and expressing it in terms of H, e0,1 and e1,0, one finds

H̃ =
1

2
(|a|2 + |b|2)H − abe0,1 + abe1,0.

By simple calculations, we find

B(m− 1, n) = −a

b

√
m

β +m− 1
B(m,n),

B(m+ 1, n) = − b

a

√
β + n

n+ 1
B(m,n).

Using these rules, the expansion of H̃ as above and the action of the basis {H, e0,1, e1,0} from Equation
(3.11), we can express the right-hand side of (*) as

⟨ẽm,dπβ(H̃)en⟩ =− (|a|2 + |b|2)
(
1

2
β +m

)
B(m,n)Mm(n)

+m|a|2B(m,n)Mm−1(n)

+ (β +m)|b|2B(m,n)Mm+1(n).

Combining the expressions for the left- and right-hand side of (*) and dividing by B(m,n), we gather

−
(
1

2
β + n

)
Mm(n) =−

(
|a|2 + |b|2

)(1

2
β +m

)
Mm(n)

+ |a|2mMm−1(n)

+ |b|2(β +m)Mm+1(n).
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Moving the terms with β to the right-hand side and doing some reordering, we get

−nMm(n) =|b|2(β +m)Mm+1(n)

−
[
|a|2m+ |b|2(β +m)

]
Mm(n)

+ |a|2mMm−1(n).

Using ĉ = |b|2
|a|2 and |a|2 − |b|2 = 1, we can write |a|2 = 1

1−ĉ and |b|2 = ĉ
1−ĉ . Equation (3.13a) now follows

by substituting this into the above equation and multiplying both sides by 1− ĉ.
The difference equation, Equation (3.13b), can be proven similarly by acting with H instead of H̃ and

expressing H in terms of the basis {H̃, ẽ0,1, ẽ1,0}, or more simply by using the self-duality of the Meixner
polynomials (3.9). □
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4. Krawtchouk polynomials in multiple variables

In Section 2, we have seen how to construct the classical (univariate) Krawtchouk polynomials,
orthogonal with respect to the binomial distribution. We have also determined a connection of these
polynomials to the Lie group SU(2) and used this connection to extract the orthogonality, recurrence
and difference relations from properties of SU(2) and its Lie algebra.

Griffiths [3] used a generating function to define multivariate polynomials orthogonal to the multivariate
distribution. In [6], Iliev used the Lie algebra sl(d + 1;C), d > 1 an integer, together with the space
CN [z] of homogeneous polynomials in d + 1 variables of total degree N , to describe the the d-variate

orthogonal polynomials. His methodology consisted of defining two subalgebras H, H̃ of sl(d+ 1;C) and
two orthogonal bases of CN [z], each diagonalizing one of the aforementioned subalgebras, and using the
transition matrix between the two bases of CN [z] to describe the Krawtchouk polynomials.

In this present thesis, we will determine similar results using the Lie group SU(d+ 1). The methods
used to derive the properties here are highly similar to those used for the univariate case in Section 2.

4.1. The Lie group SU(d + 1) and multivariate Krawtchouk polynomials. Let N ∈ N. We will
consider the space CN [z] of homogeneous polynomials in the variables z0, . . . , zd of degree N . Throughout
the remainder of this thesis, we use multi-index notation. To make this precise, we write the conventions
down below.

Notation. Let n = (n1, . . . , nk) ∈ Nk
0 . Write |n| = n1 + · · · + nk and n! = n1! · · ·nk!. Furthermore, if

x = (x1, . . . , xk) ∈ Ck, we write xn = xn1
1 · · ·xnk

k and x′ = (x2, . . . , xk).

For this section only, we will also define some more notation. Let IN = {n ∈ Nd
0 | |n| ≤ N}. For

n ∈ IN , we define the multinomial coefficient by(
N

n

)
=

N !

n!(N − |n|)!
.

With the above notation, CN [z] is the vector space spanned by the monomials zn, where z =

(z0, . . . , zd)
t ∈ Cd+1 and n = (n0, . . . , nd) ∈ Nd+1

0 , |n| = N . Evidently, a basis of CN [z] is given by
the elements

eNn (z) :=

(
N

n

)1/2

z
N−|n|
0 z′n, n ∈ IN .

If we define an inner product on CN [z] by ⟨eNm, eNn ⟩ = δm,n, CN [z] becomes a Hilbert space.
Let now g ∈ GL(d+ 1;C) be arbitrary. We define the representation of GL(d+ 1;C) on CN [z] again

by
[πN (g)p](z) = p(gtz).

We will write g ∈ GL(d+1;C) in the form g =

(
a bt

c D

)
where a ∈ C, b, c ∈ Cd and D is a d×d complex

matrix. The matrix elements of the representation with respect to the above basis are then determined
by the equations(

N

n

)1/2

(az0 + c · z′)N−|n|
d∏

i=1

biz0 +

d∑
j=1

Dj,izj

ni

=
∑

m∈IN

(
N

n

)1/2

πN
m,n(g)z

N−|m|
0 z′m. (4.1)

Suppose now that the elements in the first row and column of g are all nonzero (that is a ̸= 0 as well
as b and c having all entries nonzero). Define the matrix U(g) by

Ui,j =
aDj,i

bicj
, i, j ∈ {1, . . . , d},

and U has exclusively 1’s in its first row and column (indexed by i = 0 and/or j = 0). Now pull out the
first term in each bracket in the left-hand side of Equation (4.1) and set x = (x1, . . . , xd) with xj =

cjzj
az0

,
we get (

N

n

)1/2

aN−|n|bnzN0

1 +

d∑
j=1

xj

N−|n|
d∏

i=1

1 +

d∑
j=1

Ui,jxj

ni

.

Using the generating function for multivariate Krawtchouk polynomials from Griffits and Iliev [3, 6],1 +

d∑
j=1

xj

N−|n|
d∏

i=1

1 +

d∑
j=1

Ui,jxj

ni

=
∑
n∈IN

(
N

n

)
Km(n;U,N)xm (4.2)
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and expanding xm, we arrive at

πN (g)eNn (z) =
∑

m∈IN

(
N

n

)1/2(
N

m

)1/2

aN−|n|−|m|bncmKm(n;U,N)eNm.

Comparing this with Equation (4.1), we see that we have shown the following theorem holds.

Theorem 4.1. For g ∈ SU(d+ 1) with the elements of the first row and column nonzero, we have

πN
m,n(g) =

(
N

m

)1/2(
N

n

)1/2

aN−|n|−|m|bncmKm(n;U,N). (4.3)

Mizukawa and Tanaka [9] have given the following formula for multivariate Krawtchouk polynomials
in terms of the Gelfand hypergeometric series,

Km(n;U,N) =
∑

A=(ai,j)∈Md,N

∏d
j=1(−mj)∑d

i=1 ai,j

∏d
i=1(−ni)∑d

j=1 ai,j

(−N)∑d
i,j=1 ai,j

d∏
i,j=1

(1− Ui,j)
ai,j

ai,j!
, (4.4)

where m1, . . . ,md are the degree indices, n1, . . . , nd are the variables and Md,N is the set of all d × d

matrices with non-negative integer entries such that
∑d

i,j=1 ai,j ≤ N . In particular, there is a clear
symmetry in the Krawtchouk polynomials between the variables and the degree indices by

Km(n;U,N) = Kn(m;U t, N).

This corresponds to sending g to gt.

Remark. hg

From the formula of the Krawtchouk polynomials in Equation (4.4) and the use of Theorem 4.1 above,
we immediately see

Theorem 4.2. For g ∈ GL(d+1;C), πN
m,n(g) = πN

n,m(g†). In particular, U(d+1) is the largest subgroup
of GL(d+ 1,C) on which the representation is unitary.

Proof. The first claim follows by noting that from the above discussion and Theorem (4.1), it holds that

πN
m,n(g) = πN

n,m(gt) and πN
m,n(g) = πN

m,n(g). The last claim follows similarly to the proof of Theorem
2.7. □

As the representation restricted to SU(d+1) is unitary, we can again use the orthogonality of matrix
elements to compute the orthogonality relations for the Krawtchouk polynomials. By unitarity of the
representation, we have

δm,n =
∑
k∈IN

πN
m,k(g)π

N
k,n(g

†)

=
∑
k∈IN

πN
m,k(g)π

N
n,k(g).

Using the explicit expression for the matrix elements, Equation (4.3), moving the terms dependent on m
and n to the left-hand side and by some additional rewriting. we find the following expression:∑

k∈IN

(
N

k

)
|a|2(N−|k|)

(
d∏

i=1

|bi|2ki

)
Km(k;U,N)Kn(k;U,N) =

(
N

n

)−1
δn,m

|a|−2|n|
(∏d

i=1 |ci|2ni

) . (4.5)

Set p =
[
p1, . . . , pd

]
, p̃ =

[
p̃1, . . . , p̃d

]
, where pi = |bi|2, p̃i = |ci|2. Then as g is unitary, we have∑d

i=1 pi =
∑d

i=1 p̃i = 1− |a|2. Using this notation and the above remark, we can rewrite Equation (4.5)
more compactly. Using the duality property of the Krawtchouk polynomials (that is sending g to gt), or
writing out the other orthogonality formula for the representation, we also get an orthogonality relation
in the degree indices. The above is summarised in the following theorem.

Theorem 4.3. For g ∈ SU(d+ 1) and p, p̃ as above, we have∑
k∈IN

(
N

k

)
pk(1− |p|)N−|k|Km(k;U,N)Kn(k;U,N) =

(
N

n

)−1 d∏
i=1

(
1− |p̃|
p̃ni
i

)ni

δm,n, (4.6a)

∑
k∈IN

(
N

k

)
p̃k(1− |p̃|)N−|k|Kk(m;U,N)Kk(n;U,N) =

(
N

n

)−1 d∏
i=1

(
1− |p|
pni
i

)ni

δm,n. (4.6b)
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Remark. In [6], Iliev used a matrix U such that the first row and column has all elements equal to 1, in

combination with two diagonal matrices P, P̃ such that p0 = p̃0 and the following holds:

1

p0
PUP̃U t = Id+1.

For our setup, the matrices U,P and P̃ obtained as above from a matrix g ∈ GL(d + 1) have the same
form. However, for g ∈ SU(d+ 1), we have the different although similar equation

1

p0
PUP̃U† = Id+1.

As the generating function (4.2) from Iliev is well defined for all U , we can still use it for our case.
This does have impact on the orthogonality relations, as Iliev found orthogonality relations without a

complex conjugate as opposed to ours above. This can be explained by the fact that Iliev used a real-inner
product space to derive the orthogonality relations.

The multivariate Krawtchouk polynomials we found use an integer N and a matrix g to create a
parameter space (p(g), p̃(g), U(g), N). The so called duality property of the Krawtchouk polynomials,
Km(n;U,N) = Kn(m;U t, N) correspond to the involution

(p(g), p̃(g), U(g), N) 7−→ (p(gt), p̃(gt), U(gt), N) = (p̃(g),p(g), U t(g), N). (4.7)

4.2. The Lie algebra su(d+1) and Krawtchouk polynomials. For simplicity, we again consider the
Lie algebra sl(d+1;C) instead (this is isomorphic to the complexification of su(d+1)). We denote by H
the (standard Cartan) subalgebra of sl(d+ 1;C) consisting of the diagonal matrices. As basis for H, we
take the matrices

Hi = ei,i −
1

d+ 1
Id+1 i = 1, . . . , d.

For the remainder of this section, fix some g ∈ SU(d + 1) (with elements in the first row and column
nonzero). We create another (Cartan) subalgebra by conjugating by g, that is we have the subalgebra

H̃ = span{H̃1, . . . , H̃d} where

H̃i = Adg (Hi) .

These two subalgebras complement each other as is stated in the lemma below.

Lemma 4.4. The subalgebras H and H̃ together generate sl(d+ 1;C).

Proof. Let i, j ∈ {0, . . . , d}, i ̸= j be arbitrary. We want to construct ei,j . Define

H0 := e0,0 −
1

d+ 1
Id+1.

Note that H0 = −
∑d

j=1 Hj , so that H0 is an element of H. Let X ∈ Md+1(C) be arbitrary. We

have that [Hk, X] = [ek,k, X] for any k ∈ {0, . . . , d}. Secondly, by basic calculations, [ei,i, [ej,j , X]] =
−Xi,jei,j −Xj,iej,i. Using that [ej,j , ej,i] = ej,i and [ej,j , ei,j ] = −ei,j , we find

[ej,j , [ei,i, [ej,j , X]]]− [ei,i, [ej,j , X]] = Xi,jei,j −Xj,iej,i − (−Xi,jei,j −Xj,iej,i)

= 2Xi,jei,j .

Let g =

(
a bt

c D

)
∈ SU(d+1) be given as usual and set H̃0 = Adg (H0). As Adg (H0) = ge0,0g

−1− 1
d+1I,

its off-diagonal matrix elements are easily computed to be (H̃0)k,l = ckcl. As it is assumed that the ci
are nonzero, we know that all off-diagonal elements are nonzero. Hence, we can take X = H̃0 from which
we get

ei,j =
[ej,j , [ei,i, [ej,j , X]]]− [ei,i, [ej,j , X]]

2cicj
.

□

Next, we calculate the Lie algebra representation dπN of sl(d+ 1;C) on CN [z]:

dπN (X) =
d

dt

∣∣∣
t=0

πN (exp (tX)). (4.8)

By doing some basic calculations, we can rewrite this representation in terms of derivations.
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Lemma 4.5. The Lie algebra representation dπN : sl(d+ 1;C) → gl(CN [z]) is given by

dπN (ei,j) = zi∂zj ,

dπN (Hk) = zk∂zk − 1

d+ 1

d∑
j=0

zj∂zj ,
(4.9)

for any 0 ≤ i ̸= j ≤ d and 1 ≤ k ≤ d.

Proof. Let i ̸= j and z = (z0, . . . , zd) ∈ Cd+1. Then we have

[dπN (ei,j)p](z) =
d

dt

∣∣∣
t=0

πN (exp (tei,j))p(z) =
d

dt

∣∣∣
t=0

p((I + tei,j)
t
z) =

d

dt

∣∣∣
t=0

p (z+ t · zivj) .

Now, using the chain rule in accordance with y(t) = z+ t · zivj , we find

[dπN (ei,j)p](z) =

[
∂p

∂yj
(y(t)) · zi

]
t=0

= [zi∂zjp](x).

Likewise, setting z(t) = z+ (et − 1)zivi + (e−t − 1)zjvj , we see

[dπN (ei,i − ej,j)p](z) =
d

dt

∣∣∣
t=0

πN (exp (t(ei,i − ej,j))p(z)

=
d

dt

∣∣∣
t=0

p(z(t))

=

[
∂p

∂zi
(z(t)) · etzi −

∂p

∂zj
(z(t)) · e−tzj

]
t=0

.

Now setting t = 0, we can conclude

[dπN (ei,i − ej,j)p](z) = [(zi∂zi − zj∂zj )p](z).

Applying dπN to Hi =
1

d+1

∑d
j=0
j ̸=i

ei,i − ej,j and using linearity gives the statement. □

From the lemma above, it is clear that dπN preserves the total degree of a polynomial. In particular,
dπN sends CN [z] onto itself. Let vi be the standard basis vector of CN with a 1 as i’th component and
all others 0. Using the form of dπN given in the above lemma, we can compute the action on the basis
{eNn }n∈IN .

Corollary 4.6. Let n ∈ IN be arbitrary, we have

dπN (Hk)e
N
n =

(
nk − N

d+ 1

)
eNn ,

dπN (ei,j)e
N
n =

√
(ni + 1)nje

N
n+vi−vj , i ̸= j

dπN (e0,j)e
N
n =

√
(N − |n|+ 1)nje

N
n−vj

,

dπN (ei,0)e
N
n =

√
(ni + 1)(N − |n|)eNn+vi

,

where k = 1, . . . , d and i, j = 1, . . . , d. Here we have set eNn = 0 if some ni equals −1 or N + 1.

Proof. Follows directly by applying Lemma 4.5 and using that
(

N
n+vi−vj

)
=
(
N
n

) nj

ni+1 ,
(

N
n−vj

)
=
(
N
n

) nj

N−|n|+1

and
(

N
n+vi

)
=
(
N
n

)N−|n|
ni+1 . □

Using the definition of our Lie algebra representation, we can easily construct a basis on which H̃ acts
diagonally. Namely, similarly to what we did in Chapter 2, we take

ẽNn = πN (gt)eNn .

Then the following is evident.
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Corollary 4.7. Let n ∈ IN be arbitrary, we have

dπN (H̃k)ẽ
N
n =

(
nk − N

d+ 1

)
ẽNn ,

dπN (ẽi,j)ẽ
N
n =

√
(ni + 1)nj ẽ

N
n+vi−vj

,

dπN (ẽ0,j)ẽ
N
n =

√
(N − |n|+ 1)nj ẽ

N
n−vj

,

dπN (ẽi,0)ẽ
N
n =

√
(ni + 1)(N − |n|)ẽNn+vi

,

where k = 1, . . . , d and i, j = 1, . . . , d.

Proof. By Equation (2.13), we have dπN (gXg−1) = πN (g) ◦ dπN (X) ◦ πN (g−1) for any X ∈ sld+1(C).
By the definition of ẽNn , the results follow from Corollary 4.6. □

We can use these actions to derive recurrence and difference equations for the multivariate Krawtchouk
polynomials. To do so, note again that by Lemma 2.10, we have that

⟨dπN (X)u, v⟩ = ⟨u,dπN (X†)v⟩, u, v ∈ CN [z], (4.10)

for any X ∈ sl(d+ 1;C)

Theorem 4.8. Let g =

(
a bt

c D

)
∈ SU(d+1), where a ̸= 0 as well as b and c having all entries nonzero.

Write pi = |bi|2, p̃i = |ci|2 and Ui,j =
Dj,ia
bicj

for i, j ∈ {1, . . . , d}. Lastly, set p0 = |a|2 = 1−
∑d

i=1 pi and

write Km(n) := Km(n;U,N). For each k = 1, . . . , d, we have the following recurrence relation:

−nkKm(n) =
pk
p0

d∑
i=1

p̃iUk,i(N − |m|)Km+vi
(n)

−
[
pk(N − |m|) + pk

p0

d∑
l=1

p̃l|Uk,l|2ml

]
Km(n)

+ pk

d∑
j=1

Uk,jmjKm−vj (n)

+
pk
p0

d∑
i,j=0
i ̸=j

p̃iUk,iUk,jmlKm−vi+vj
(n).

(4.11a)

Also for k = 1, . . . , d, we have the difference equations

−mkKm(n) =
p̃k
p0

d∑
i=1

piUi,k(N − |n|)Km(n+ vi)

−
[
p̃k(N − |n|) + p̃k

p0

d∑
l=1

pl|Ul,k|2nl

]
Km(n)

+ p̃k

d∑
j=1

Uj,knjKm(n− vj)

+
p̃k
p0

d∑
i,j=0
i ̸=j

piUi,kUj,knlKm−vi+vj
(n).

(4.11b)

Proof. Let k ∈ {1, . . . , d} be arbitrary. By Equation (4.10) above applied to Hk ∈ sl(d+ 1,C), we have

⟨dπN (H̃k)ẽ
N
n , eNm⟩ = ⟨ẽNn ,dπN (H̃k)e

N
m⟩. (*)

Set

B(m,n) =

(
N

m

)1/2(
N

n

)1/2

aN−|n|−|m|bncm,

so that by Theorem 4.1 we have that ⟨ẽNn , eNm⟩ = B(m,n)Km(n). Using the action of H̃k on ẽNn as by

Corollary 4.7 the left-hand side becomes
(
nk − N

d+1

)
B(m,n)Km(n).
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For the right-hand side, we first express H̃ in terms of the basis matrices of sl(d+ 1;C);
{Hk, ei,j | k ∈ {1, . . . d}, i, j ∈ {0, . . . , d}, i ̸= j}. To do this, we first write out H̃k as follows:

H̃k =


bk

D1,k

...
Dd,k

⊗


bk

D1,k

...
Dd,k

− 1

d+ 1
Id+1 =


|bk|2 bkD1,k . . . bkDd,k

bkD1,k |D1,k|2 . . . D1,kDd,k

...
...

. . .
...

bkDd,k Dd,kD1,k . . . |Dd,k|2

− 1

d+ 1
Id+1,

where ⊗ is the outer product so that (u⊗w)i,j = uiwj for two vectors u,w ∈ Cd. We want to express the

diagonal of the above matrix in terms of Hl. Suppose the diagonal is equal to the sum
∑d

l=1 xlHl, xl ∈ C.
We solve the system

− 1

d+ 1

d∑
l=1

xl = |bk|2 −
1

d+ 1
,

x1 −
1

d+ 1

d∑
l=1

xl = |D1,i|2 −
1

d+ 1
,

...

xd −
1

d+ 1

d∑
l=1

xl = |Dd,i|2 −
1

d+ 1
.

Subtracting the first equation from the rest, we see that the solution must be given by xl = |Dk,l|2−|bk|2

if the system is consistent. As for g ∈ SU(d+ 1) we have g†g = I, we know that
∑d

l=1 |Dk,l|2 + |bk|2 = 1
so that the first equation holds for the choice of the xl and the system is consistent. We conclude that
we can write H̃k as follows:

H̃k =

d∑
l=1

(|Dl,k|2 − |bk|2)Hl +

d∑
i,j=1
i ̸=j

Di,kDj,kei,j

+ bk

d∑
j=1

Dj,ke0,j + bk

d∑
i=0

Di,kei,0.

Now the right-hand side of (*) can be easily expanded using Corollary 4.6:

d∑
l=1

(|Dl,k|2 − |bk|2)
(
mk − N

d+ 1

)
B(m,n)Km(n)

+

d∑
i,j=0
i̸=j

Di,kDj,k

√
(ni + 1)njB(m+ vi − vj ,n)Km+vi−vj

(n)

+bk

d∑
j=1

Dj,k

√
(N − |n|+ 1)njB(m− vj ,n)Km−vj

(n)

+bk

d∑
i=0

Di,k

√
(ni + 1)(N − |n|)B(m+ vi,n)Km+vi

(n).

With a bit of calculation, one can express the constants B as follows:

B(m− vj ,n) =
a

cj

√
mj

N − |m|+ 1
B(m,n),

B(m+ vi,n) =
ci
a

√
N − |m|
mi + 1

B(m,n),

B(m+ vi − vj ,n) =
ci
cj

√
mj

mi + 1
.
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Combining all of the above and dividing by B(m,n), (*) becomes(
nk − N

d+ 1

)
Km(n) =

d∑
l=1

(|Dl,k|2 − |bk|2)
(
ml −

N

d+ 1

)
Km(n)

+

d∑
i,j=0
i ̸=j

ciDi,kDj,k

cj
mjKm+vi−vj

(n)

+ bk

d∑
j=1

aDj,k

cj
mjKm−vj (n)

+ bk

d∑
i=0

ciDi,k

a
(N − |m|)Km+vi

(n).

Now, first add N
d+1Km(n) to both sides and then multiply by −1. Using that for any unitary matrix

each column is an orthonormal vector of Cd+1, we must have that |bk|2 +
∑d

l=1 |Dl,k|2 = 1. Using this to
rewrite the equation, we find

−nkKm(n) =−
[
|bk|2(N − |m|) +

d∑
l=1

|Dl,k|2ml

]
Km(n)

+

d∑
i,j=0
i ̸=j

ciDi,kDj,k

cj
mjKm+vi−vj (n)

+ bk

d∑
j=1

aDj,k

cj
mjKm−vj

(n)

+ bk

d∑
i=0

ciDi,k

a
(N − |m|)Km+vi(n).

Equation (4.11a) now follows by the definitions of the pi, p̃i and Ui,j . The difference equations (4.11b) can

be shown similarly by expressing Hk in terms of the basis
{
H̃k, ẽi,j | k ∈ {1, . . . d}, i, j ∈ {0, . . . , d}, i ̸= j

}
of sl(d+1;C), or by simply using the duality of the multivariate Krawtchouk polynomials (4.7) (sending
g to gt). □
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5. Meixner polynomials in multiple variables

In Section 3, we have seen the construction of the univariate Meixner polynomial form the Lie group
SU(1, 1) and established the orthogonality, recurrence and difference relation. In [5], Iliev used a space
of matrices as parameters to construct multivariate Meixner polynomials through the use of a generating
function. However, establishing the orthogonality, recurrence relations and difference equations for the
Meixner polynomials was done directly, without establishing a connection to Lie theory. The aim of this
section is to acquire such a connection to the Lie group SU(1, d), d > 1.

First, we will look at properties of the matrix group SU(1, d) and define an action on the Bergman space
on the d-dimensional unit ball. Next, we use this connection to define multivariate Meixner polynomials
through the resulting matrix coefficients of the representation. Proving that the representation is unitary,
we will moreover show that the multivariate Meixner polynomials are orthogonal with respect to a
multivariate negative binomial distribution. Lastly, we look into the Lie algebra representation and use
it to find recurrence and difference equations. The methods used will be similar to those of Section 3,
although the generalisation of these methods is more demanding.

5.1. The Lie group SU(1, d) and Bergman spaces. SU(1, d) is the group of matrices of determinant
one preserving the hermitian form associated with the matrix J = diag(1,−1,−1, . . . ,−1). That is,
g ∈ SU(1, d) if and only if the following equation holds:

g†Jg = J. (5.1)

Throughout this section, we will write g ∈ SU(1, d) in the form g =

(
a bt

c D

)
where a ∈ C, b, c ∈ Cd

and D is a d× d complex matrix. From the defining equation, Equation (5.1), the inverse of an SU(1, d)
matrix can be written as follows:

g−1 = Jg†J =

(
a −c†

−b D†

)
(5.2)

where g is written as above.
Just as for the univariate Meixner polynomials, we will act on holomorphic functions on the unit ball

Bd := {z ∈ Cd | |z| < 1}. More precisely, we will act on the Bergman spaces Aα α > −1. The space Aα

consists of the holomorphic functions in L2(Bd,dvα), where the weighted Lebesgue measure is given by

dvα = cα(1− |z|2)α dv, (5.3)

where dv is the standard volume measure on Bd and calpha is so that vα(Bd) = 1. A direct calculation
shows that

cα =
1

B(α+ 1, d)
=

(α+ 1)d
d!

. (5.4)

Defining an inner product on Aα by

(f, g)α =

∫
Bd

f(z)g(z) dvα, f, g ∈ Aα, (5.5)

we can turn Aα into a Hilbert space (called the Bergman space).
Recall that a holomorphic function f is (locally) equal to its Taylor series. We will show that the

monomials zn form an orthogonal basis of Aα. First, notice that the measure is invariant under unitary
transformations (see also [11]), so that in particular for the rotations Uz =

[
z1e

iϕ1 , . . . , zde
iϕd
]
we find

that

(zn, zm)α = ((Uz)n, (Uz)m)α =

(
d∏

i=1

eiϕi(ni−mi)

)
(zn, zm)α.

Thus, surely if m ̸= n the inner product will be zero. When m = n, a simple calculation using polar
coordinates shows that

||zm||2α =
m!

(α+ d+ 1)|m|
.

From the fact that the polynomials are dense in Aα (see Proposition 2.6 from [11]), we conclude that an
orthonormal basis of Aα is given by:

eαm(z) =

√
(α+ n+ 1)|m|

m!
zm. (5.6)

In what follows, we write β = α+ d+ 2.
Next, we want to construct a representation of SU(1, d) on Aα. For this, we first show an analog of

Lemma 3.1.
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Lemma 5.1. Let g =

(
a bt

c D

)
∈ SU(1, d), then the fractional linear transformation z 7→ b+Dtz

a+c·z maps

Bd onto itself.

Proof. Define on Cd+1 the indefinite hermitian form

⟨(z0, z), (w0,w)⟩ = z0w0 − z1w1 − · · · − zdwd,

where z= (z1, . . . , zd),w = (w1, . . . , wd) ∈ Cd. We look at the set B̃d :=
{
(z0, z) ∈ Cd+1 | ⟨(z0, z), (z0, z)⟩ > 0

}
.

By definition of U(1, d), it preserves the above hermitian form and hence also the space B̃d.
As the condition |z0|2 − |z|2 > 0 implies z0 is nonzero, we can divide by |z0|2 which tells us | z

z0
|2 < 1.

But this means we can map B̃d surjectively onto Bd by the map

(z0, z) 7→
z

z0
. (*)

Now let g ∈ SU(1, d) be as given. Using (*) on gt(z0, z1), we find the map (z0, z1) 7→ bz0+Dtz
az0+c·z to be

surjective as well. Writing ẑ = z
z0

and using that the map (*) is surjective, we conclude that the map

z 7→ b+Dtz
a+c·z is well defined and maps Bd onto itself. □

In particular, it follows that the function z 7→ 1
a+c·z is holomorphic everywhere on Bd. As compositions

and products of holomorphic functions are holomorphic, we can define the map πβ : SU(1, d) −→
GL(H(Bd)) by [2],

πβ

(
a bt

c D

)
f(z) = (a+ c · z)−β

f

(
b+Dtz

a+ c · z

)
, (5.7)

where H(Bd) is the space of holomorphic functions on Bd. As in Section 3, the values for β have to be
restricted in order to produce a representation. It will follow that if β is integral and β = α + d + 1, it
indeed defines a representation.

Denote by A∞
α the space of functions in Aα on which πβ(g) is smooth for all g ∈ SU(1, d). In [2],

Lemma 2.10, it is shown that the (finite) polynomials are contained in A∞
α . Furthermore, A∞

α is invariant
under SU(1, d) (see section 2.1.5 of [7]). Next, we will show that this map defines a representation of
SU(1, d) on A∞

α for integral α (hence, β is integral).

Lemma 5.2. Let α ∈ N and write β = α + d + 1. The map πβ can be restricted to Aα. Moreover, it
defines a representation of SU(1, d) on A∞

α .

Proof. Write β = α+ d+ 1 as above. By the preceding arguments, we know that πβ(g) maps the space
of holomorphic functions on Bd into itself. As πβ(g) is clearly linear, the well definedness of πβ on Aα

then follows from the fact that πβ(g) defines a unitary transformation (see Theorem 5.4).

Next, we will prove that πβ is a homomorphism of SU(1, d). Let g, h ∈ SU(1, d), g =

(
a bt

c D

)
, h =(

u vt

w X

)
. Writing out both [πα(gh)f ](z) and

[
πα(g)[πα(h)f ]

]
(z) for arbitrary f ∈ Aα and comparing

terms, one finds that we need to have ã−β ũ−β = (ãũ)−β , where ã = a+c ·
(

v+Xtz
ũ

)
and ũ = u+w ·z. As

α (hence β) is assumed to be integral, this equality trivially holds. Hence, the map πβ is a homomorphism
of SU(1, d) sending Aα into Aα. As πβ(g) acts smooth on A∞

α for each g and it maps A∞
α into itself, it

follows that it defines a representation here. □

In all that follows, α will be assumed to be a non-negative integer. In the next section, we will use
this representation to define multivariate Meixner polynomials.

5.2. Multivariate Meixner polynomials. In the preceding subsection, we found a representation of
SU(1, d) in the space A∞

α . In particular for the basis vectors, πβ(g)em(z) is holomorphic and hence must
equal its Taylor series. As the Taylor series is uniquely determined wherever it converges, we can use it
to define the matrix elements of the representation:

πβ(g)en(z) =

∞∑
|m|=0

πβ
m,n(g)em(z). (5.8)
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Now if g =

(
a bt

c D

)
, with bi, ci nonzero i = 1, . . . , d, we can write out the left-hand side of the above

equation as follows:

πβ(g)zn =

a+

d∑
j=0

cjzj

−β
d∏

i=1

(
bi +

∑d
j=0 Dj,izj

a+
∑d

j=0 cjzj

)ni

= a−β−|n|bn

(
1−

d∑
i=1

−ci
a

zi

)−β−|n| d∏
j=1

(
1−

d∑
i=0

aDi,j

bjci

(
−ci
a

zi

))nj

.

Now if we set xi =
−ci
a zi and define the matrix U by Ui,j =

aDj,i

bicj
for i, j > 0 and U0,j = Ui,0 = 1, we can

express it in terms of the generating function for Meixner polynomials found in [5];

πβ(g)zn = a−β−|n|bn

1−
d∑

j=1

xj

−β−|n|
d∏

i=1

1−
d∑

j=1

Ui,jxj

ni

.

Using the definition of the Meixner polynomials of Iliev (see [5]), and undoing the substitution for z, one
finds the expression

πβ(g)zn =

∞∑
|m|=0

(β)|m|

m!
a−β−|m|−|n|bn(−c)mMm(n;U, β)zn,

where Mn(m;U, β) is the Meixner polynomial with parameter matrix U determined by g. Iliev [5] gave
the following formula in terms of the Gelfand hypergeometric series,

Mm(n;U, β) =
∑

A=(ai,j)∈Md

∏d
j=1(−mj)∑d

i=1 ai,j

∏d
i=1(−ni)∑d

j=1 ai,j

(β)∑d
i,j=1 ai,j

d∏
i,j=1

(1− Ui,j)
ai,j

ai,j!
, (5.9)

where m1, . . . ,md are the degree indices, n1, . . . , nd are the variables and Md is the set of all d×d matrices

with non-negative integer entries. Note that the sum is finite as for
∑d

i=1 ai,j > ni, (−ni)∑d
j=1 ai,j

= 0.

With the above discussion, we have shown the following theorem:

Theorem 5.3. Let g =

(
a bt

c D

)
∈ SU(1, d) with bi, ci nonzero, it holds

πβ(g)eαn(z) =
∑
k∈Nd

0

√
(β)|m|

m!

√
(β)|n|

n!
a−β−|m|−|n|bn(−c)mMm(n;U, β)eαm(z), (5.10)

where Ui,j =
aDj,i

bicj
and U0,j = Ui,0 = 1 and the Meixner polynomials are given by Equation (5.9). Hence,

the matrix elements of the representation πβ(g) with respect to the basis {eαn}n∈Nd
0
are given by

πβ
m,n(g) =

√
(β)|m|

m!

√
(β)|n|

n!
a−β−|m|−|n|bn(−c)mMm(n;U, β). (5.11)

Next, we prove the unitarity of the representation. In the process we also want to show that if the
map πβ , as defined in Equation (5.7), can be defined as a unitary representation on a larger Lie group,
then this group must at least be contained in U(1, d).

Let g ∈ GL(d + 1;C) be written as usual and suppose πβ(g) is well defined on H(Bd), so that in
particular the matrix elements given in Theorem 5.3 hold. Write J = diag(1,−1, . . . ,−1) as in the

definition of SU(1, d), then Jg†J =

(
a −c†

−b D†.

)
. Comparing the matrix elements of Jg†J to those

of g using the hypergeometric representation of the Meixner polynomials (5.9), it becomes clear that

πβ
m,n(g) = πβ

n,m(Jg†J).

Now suppose furthermore that πβ(g) acts unitarily onAα. then it must hold that πβ
m,n(g) = πβ

n,m(g−1).

By the above, we find that it must hold that πβ(Jg†Jg) is the identity on Aα, or equivalently Jg†Jg ∈
Kerπβ . Looking at the action of πβ on e0 and en for |n| = 1, it easily follows that Ker(πβ) = {γI | γβ = 1}.
As the diagonal of Jg†Jg is certainly real, by verifying that Jg†Jg = −I can never be true, it follows
that Jg†Jg = I. This is noting else than having g ∈ U(1, d).
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By the above, it can be concluded that U(1, d) is the maximal subgroup of GL(2;C) on which πβ can
be unitary. Now restrict to matrices of unit determinant. As the span of {eαn(z)}n∈N0 is dense in A∞

α

and πβ(g) is smooth on this basis, by taking limits one can show the following theorem.

Theorem 5.4. For an integer β ≥ d+ 1, the representation πβ is unitary on SU(1, d).

By the above discussion and as πβ
m,n(g) = πβ

m,n(g), we also find πβ
m,n(g) = πβ

n,m(JgtJ). This
corresponds to the a duality between the variables and the degree indices of the Meixner polynomials in
the sense that

Mm(n;U, β) = Mn(m;U t, β). (5.12)

This will be further refined as the involution in Equation (5.14).
As a first application of the unitarity, we prove orthogonality relations for the multivariate Meixner

polynomials. For this, define the vectors C =
[
C1, . . . , Cd

]
, C̃ =

[
C̃1, . . . , C̃d

]
by Ci = |bi|2

|a|2 and C̃i =
|ci|2
|a|2 . Remark that by this definition and by the equality’s |a|2 − |b|2 = |a|2 − |c|2 = 1 (which hold as

g ∈ SU(1, d)), it holds that

0 <

d∑
i=1

Ci =

d∑
i=1

C̃i < 1.

Lastly, we will set C0 = 1 −
∑d

i=1 Ci. Using this notation, we can show the following orthogonality
relations.

Theorem 5.5. For an integer β ≥ d+ 1 and C, C̃ ∈ Cd as above, we have∑
k∈Nd

0

(β)|k|

k!
CkMm(k;U, β)Mn(k;U, β) = δm,n

m!C̃−m

(β)|m|C
β
0

, (5.13a)

∑
k∈Nd

0

(β)|k|

k!
C̃kMk(m;U, β)Mk(n;U, β) = δm,n

m!C−m

(β)|m|C
β
0

. (5.13b)

Proof. Let g ∈ SU(1, d) be arbitrary and written as usual. Also let U,C, C̃ be defined as usual. Using
the unitarity of the representation, we have

δm,n = ⟨πβ(g)eβm, πβ(g)eβn⟩

=
∑
k∈Nd

0

πN
k,m(g)πN

k,n(g).

Use Theorem 5.3 to write the matrix elements in terms of multivariate Meixner polynomials. Moving all
terms independent of k to the other side, we find∑

k∈Nd
0

(β)|k|

k!

(
d∏

i=1

∣∣∣ci
a

∣∣∣2ki

)
Mk(m;U, β)Mk(n;U, β) =

m!

(β)|m|

(
d∏

i=1

∣∣∣∣ abi
∣∣∣∣2mi

)
|a|2βδm,n.

Using the definitions of C and C̃ and using that |a|2 = 1
C0

, the orthogonality of the Meixner polynomials

in the variables, Equation (5.13b) follows. To prove the other orthogonality relation, one can use the
other orthogonality formula of the representation or apply the duality of the Meixner polynomials, that
is sending g to JgtJ (see also the discussion below). □

Remark. In [5], Iliev used a matrix U such that the first row and column has all elements equal to 1, in

combination with two diagonal matrices C, C̃ such that C0,0 = C̃0,0 = 1 and the following holds:

U tCUC̃ = (1−
d∑

i=1

Ci)Id+1.

For our approach, the matrix U together with the matrices C := diag(1,−C) and C̃ := diag(1,−C̃)
obtained from a matrix g ∈ SU(1, d) as above have the same shapes. Although, for our matrices one can
show the slightly differing equality

U†CUC̃ = (1−
d∑

i=1

Ci)Id+1.

As the generating function from Iliev is well defined for all U , we can still use it under our conditions.
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The multivariate polynomials as we defined above use an integer β and a matrix g ∈ SU(1, d)

to construct parameters (C(g), C̃(g), U(g), β). We already saw a duality for the Meixner polynomials
between the degree and variable indices in Equation (5.12) by sending g to JgtJ . This duality induces
an involution in the parameter space by

(C(g), C̃(g), U(g), β) 7−→ (C(JgtJ), C̃(JgtJ), U(JgtJ), β) = (C̃(g), C(g), U t(g), β). (5.14)

5.3. Multivariate Meixner polynomials and the Lie algebra su(1, d). The Lie algebra of SU(1, d)
is the algebra of matrices g with zero trace such that g†J = −Jg, where J = diag(1,−1, . . . ,−1).

Further working out the definition shows that su(1, d) =

{(
−Tr(D) bt

b D

) ∣∣∣ b ∈ Cd, D ∈ u(d)

}
. Note

that D ∈ u(d) means D† = −D, and so the diagonal of D and a are purely imaginary. It can be shown
that the complexification of su(1, d) is isomorphic to sl(d+ 1;C). For all purposes, the representation of
the complexification is again denoted by πβ . As usual, we take as a basis of sl(d + 1;C) the standard
matrix elements ei,j , i ̸= j together with the matrices Hk, k = 1, . . . , d, where

Hk = ek,k − 1

d+ 1
Id+1 k = 1, . . . , d.

As the representation πβ is smooth on A∞
α , we can define a Lie algebra representation on this space.

Define the Lie algebra representation by

dπβ(X) =
d

dt

∣∣∣
t=0

πβ(exp (tX)),

for X ∈ su(1, d) and extend it to sl(d+ 1;C) via the complexification. Proceeding as usual, we find the
action is defined as in the following lemma.

Lemma 5.6. The representation of sl(d+ 1;C) on A∞
α is given by

dπβ(Hk) =
1

d+ 1
β + zk∂zk ,

dπβ(e0,j) = ∂zj ,

dπβ(ei,0) = zi

(
− β −

d∑
k=1

zk∂zk

)
,

dπβ(ei,j) = zi∂zj .

So for the basis {eαn}n∈Nd
0
of A∞

α , we find

dπβ(Hk)e
α
n =

( 1

d+ 1
β + nk

)
eαn,

dπβ(e0,j)e
α
n =

√
(β + |n| − 1)nje

α
n−vj

,

dπβ(ei,0)e
α
n = −

√
(ni + 1)(β + |n|)eαn+vi

,

dπβ(ei,j)e
α
n =

√
(ni + 1)nje

α
n+vi−vj

, i ̸= j

(5.15)

for any 1 ≤ i, j ≤ d and 1 ≤ k ≤ d. Here eαn is set as 0 when ni = −1 for some 1 ≤ i ≤ d.

Proof. We proceed analogous to the univariate case in Lemma 3.5, noting that calculating the action
directly is not ‘proper’ but it yields the correct formulas nonetheless. For a formal proof, one should
compute the action of su(1, d) and compute the action of sl(d+ 1;C) via linear combinations.

Let p ∈ A∞
α be arbitrary and 1 ≤ i, j ≤ d. As exp (tei,j) = I + tei,j , we find

[dπβ(ei,j)p](z) =
d

dt

∣∣∣
t=0

πβ(I + tei,j)p](z) =
d

dt

∣∣∣
t=0

p(z+ tzivj) = [zi∂zjp](z).

Likewise, for i or j zero, we can calculate the action as

[dπβ(ei,0)p](z) =
d

dt

∣∣∣
t=0

(1 + tzi)
−βp

(
z

1 + tzi

)
= −βzip− zi

d∑
k=1

zk
∂p

∂zk
,

[dπβ(e0,j)p](z) =
d

dt

∣∣∣
t=0

p(tvj + z) =
∂p

∂zj
.

The actions as listed in the lemma for the ei,j become clear from this.
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For the elements Hk, k = 1, . . . , d, note that exp (tHk) is the diagonal matrix with k-th diagonal entry

et
d

d+1 and others equal to e−t 1
d+1 . Therefore, the action of Hk can be computed as follows

[dπβ(Hk)p](z) =
d

dt

∣∣∣
t=0

e
t

d+1βp(
[
z1, . . . , e

tzk, . . . , zd
]
) =

1

d+ 1
β + zk

∂p

∂zk
.

This gives us the stated formula for the action of Hk.

Lastly, write Q(n) :=
(β)|n|

n! , so that en(z) =
√
Q(n)zn. Using the identities

Q(n− vj) = Q(n)
nj

β + |n| − 1
,

Q(n+ vi) = Q(n)
β + |n|
ni + 1

,

Q(n− vj + vi) = Q(n)
nj

ni + 1
,

(5.16)

the action of sl(d+ 1;C) on the basis vectors {eαn}n∈Nd
0
as in Equation (5.15) becomes clear. □

Fix some g ∈ SU(1, d) and set the basis elements ẽαn = πβ(g)eαn, n ∈ Nd
0, of A∞

α . As usual, we define a

basis of sl(d+ 1;C) by adjoining the old one by g, that is ϕ̃ = gϕg−1 for ϕ in the old basis. It should be
clear that the action of the tilde basis of sl(d+ 1;C) on the tilde basis of A∞

α is given akin to Equation
(5.15) in the lemma above. Using Lemma 2.10, using again that −X = JX†J , we have the following:

Corollary 5.7. For X ∈ sl(d+ 1;C), it holds that

⟨dπβ(X)u, v⟩ = ⟨u,dπβ(JX†J)v⟩, u, v ∈ A∞
α .

Proof. Let X = Y + iZ ∈ suC(1, d). By conjugate linearity of the inner product and Lemma 2.10, it
follows

⟨dπβ(Y + iZ)u, v⟩ = ⟨u,dπβ(−Y + iZ)v⟩.

Using that −ϕ = Jϕ†J for ϕ ∈ su(1, d), the claim follows. □

We are now in the position to show the recurrence relations and difference equations for the Meixner
polynomials.

Theorem 5.8. Let β ≥ d + 1 be an integer and let g =

(
a bt

c D

)
∈ SU(1, d), where b and c have all

entries nonzero. Write Ci =
|bi|2
|a|2 , C̃i =

|ci|2
|a|2 , C0 = 1 −

∑d
i=1 Ci and Ui,j =

Dj,ia
bicj

for i, j ∈ {1, . . . , d}.
Lastly, write Mm(n) := Mm(n;U, β). For each k = 1, . . . , d we have the following recurrence relation:

C0nkMm(n) =Ck

d∑
i=1

C̃iUk,i(β + |m|)Mm+vi
(n)

−
[
Ck(β + |m|) +

d∑
l=1

CkC̃l|Uk,l|2ml

]
Mm(n)

+ Ck

d∑
j=1

Uk,jmjMm−vj (n)

− Ck

d∑
i,j=1
i̸=j

C̃iUk,iUk,jmjMm−vj+vi
(n).

(5.17a)
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Also for k = 1, . . . , d, we have the difference equations

C0mkMm(n) =C̃k

d∑
i=1

CiUi,k(β + |n|)Mm(n+ vi)

−
[
C̃k(β + |n|) +

d∑
l=1

C̃kCl|Ul,k|2nl

]
Mm(n)

+ C̃k

d∑
j=1

Uj,knjMm(n− vj)

− C̃k

d∑
i,j=1
i ̸=j

CiUi,kUj,knjMm(n− vj + vi).

(5.17b)

Proof. We proceed as usual. Let k ∈ {1, . . . , d} be arbitrary. We will look at the action of H̃k. We first

claim that J(H̃k)
†J = H̃k. Using the definition of H̃k and that I = J2, we get

J(H̃k)
†J = (Jg−1J)†(JHkJ)(Jg

†J).

As for g ∈ SU(1, d), g−1 = Jg†J and as diagonal matrices commute, the claim follows. By Corollary 5.7,
we then have the equality

⟨dπβ(H̃k)ẽn, em⟩ = ⟨ẽn,dπβ(H̃k)em⟩. (*)

We will expand both sides in terms of Meixner polynomials to derive the recurrence relations (5.17a).
Write ⟨ẽm, en⟩ = B(m,n)Mm(n) where

B(m,n) =

√
(β)|m|

m!

√
(β)|n|

n!
a−β−|m|−|n|bn(−c)m,

in accordance to Theorem 5.3. Using the action of H̃k on ẽαm in accordance to Equation (5.15), we can
write out the left-hand side of (*) as

⟨dπβ(H̃k)ẽn, em⟩ =
(

1

d+ 1
β + nk

)
B(m,n)Mm(n).

For the right-hand side, we first expand H̃k in terms of the basis elements of sl(d + 1;C) given by

{Hl, ei,j | l ∈ {1, . . . d}, i, j ∈ {0, . . . , d}, i ̸= j}. By definitions of H̃k and Hk, we find

H̃k = gek,kg
−1 − 1

d+ 1
Id+1.

If we write g =

(
a bt

c D

)
, then its inverse is given as g−1 = Jg†J =

(
a −c†

−b D†

)
. Using this, one can

show that H̃k can be written as

H̃k =


bk

D1,k

...
Dd,k

⊗


−bk
D1,k

...
Dd,k

− 1

d+ 1
Id+1 =


−|bk|2 bkD1,k . . . bkDd,k

−bkD1,k |D1,k|2 . . . D1,kDd,k

...
...

. . .
...

−bkDd,k Dd,kD1,k . . . |Dd,k|2

− 1

d+ 1
Id+1,

where ⊗ is the outer product so that (u⊗w)i,j = uiwj for two vectors u,w ∈ Cd. To express the diagonal

of the above matrix in terms of the sum
∑d

l=1 xlHl, xl ∈ C, we solve the system

− 1

d+ 1

d∑
l=1

xl = −|bk|2 −
1

d+ 1
,

x1 −
1

d+ 1

d∑
l=1

xl = |D1,i|2 −
1

d+ 1

...

xd −
1

d+ 1

d∑
l=1

xl = |Dd,i|2 −
1

d+ 1
.
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Subtracting the first equation from the rest, we get xl = |bk|2 + |Dk,l|2. From the defining equation of

SU(1, d), we know that |bk|2 −
∑d

l=1 |Dk,l|2 = −1 so that the first equation also holds and the system is

consistent. We conclude that we can write H̃k as follows:

H̃k =

d∑
l=1

(|Dl,k|2 + |bk|2)Hl +

d∑
i,j=1
i̸=j

Di,kDj,kei,j

+ bk

d∑
j=1

Dj,ke0,j − bk

d∑
i=0

Di,kei,0.

Using this and the action of the Lie algebra on the basis of A∞
α as given in Equation (5.15), we can

expand the right-hand side of (*) as

d∑
l=1

(|Dl,k|2 + |bk|2)
( 1

d+ 1
β +mk

)
B(m,n)Mm(n)

+

d∑
i,j=1
i̸=j

Di,kDj,k

√
(mi + 1)mjB(m− vj + vi,n)Mm−vj+vi(n)

+bk

d∑
j=1

Dj,k

√
(β + |m| − 1)mjB(m− vj ,n)Mm−vj

(n)

+bk

d∑
i=0

Di,k

√
(mi + 1)(β + |m|)B(m+ vi,n)Mm+vi(n).

Note that we have taken the complex conjugate of the constants in accordance with the conjugate-linearity
of the inner product.

Next, using Equation (5.16) we can relate the constants B using

B(m− vj + vi,n) = B(m,n)

√
mj

mi + 1

ci
cj
,

B(m− vj ,n) = −B(m,n)

√
mj

β + |m| − 1

a

cj
,

B(m+ vi,n) = −B(m,n)

√
β + |m|
mi + 1

ci
a
.

Combining the formulas for the right- and left-hand side of (*) and dividing by B(m,n), we get

(
1

d+ 1
β + nk

)
Mm(n) =

d∑
l=1

(|Dl,k|2 + |bk|2)
( 1

d+ 1
β +ml

)
Mm(n)

+

d∑
i,j=1
i ̸=j

ciDi,kDj,k

cj
mjMm−vj+vi

(n)

−
d∑

j=1

abkDj,k

cj
mjMm−vj (n)

−
d∑

i=0

bkciDi,k

a
(β + |m|)Mm+vi

(n).
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Now, subtract 1
d+1βMm(n) from both sides and multiply by −1. Using again that |bk|2 −

∑d
l=1 |Dk,l|2 =

−1 for g ∈ SU(1, d), we gather

−nkMm(n) =−

[
|bk|2(β + |m|) +

d∑
l=1

|Dl,k|2ml

]
Mm(n)

−
d∑

i,j=1
i̸=j

ciDi,kDj,k

cj
mjMm−vj+vi(n)

+

d∑
j=1

abkDj,k

cj
mjMm−vj

(n)

+

d∑
i=0

bkciDi,k

a
(β + |m|)Mm+vi(n).

Next, divide both sides by |a|2 and use the definitions of Ci =
|bi|2
|a|2 , C̃i =

|ci|2
|a|2 and Ui,j =

Dj,ia
bicj

to rewrite

the equation. Lastly, use that 1
|a|2 = (1−

∑d
i=1 Ci) to conclude the recurrence relations (5.17a).

To prove the difference equations (5.17b), one can proceed similar as above by acting with Hk instead

and expressing it in terms of the basis
{
H̃l, ẽi,j | l ∈ {1, . . . d}, i, j ∈ {0, . . . , d}, i ̸= j

}
of sl(d + 1;C).

Another, even simpler, method is by using the duality of the multivariate Meixner polynomials (5.14) to

interchange C and C̃ and transpose the matrix U . □

We conclude this section by relating the above found difference equations (5.17b) to the difference
operators from Iliev [5]. Iliev defined shift operators Eni

acting on functions of n = (n1, . . . , nd) as
follows

Eni
f(n) = f(n+ vi).

As commented in the remark on page 33, Iliev used a matrix U , such that the first row and column has
all elements equal to 1, and two diagonal matrices C, C̃, such that C0,0 = C̃0,0 = 1, so that the equality
is valid:

U tCUC̃ = (1−
d∑

i=1

Ci)Id+1,

(Whereas for our matrices U,C, C̃ from a matrix g ∈ SU(1, d) the transpose is replace by a dagger).

Write C = (C1,1, . . . , Cd,d) and C̃ = (C̃1,1, . . . , C̃d,d) as the diagonal entries of C respectively C̃. For

these U,C, C̃ Iliev defined the difference operators

Ln
k =− C̃k

1− |C̃|

d∑
i=1

CiUi,k(β + |n|)(Eni
− Id )

− C̃k

1− |C̃|

d∑
j=1

Uj,knj(E
−1
nj

− Id )

+
C̃k

1− |C̃|

d∑
i,j=1
i ̸=j

CiUi,kUj,knj(Eni
E−1

nj
− Id ),

where Id denotes the identity operator. Iliev also showed that the Meixner polynomials, as defined using
his matrix U , diagonalize the operators Ln

k in the sense that

Ln
kMm(n) = miMm(n).
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In comparison, in our approach by defining a matrix U and two vectors C, C̃ from a matrix g ∈ SU(1, d)
as usual, we get difference operators

Ln
k =− C̃k

1−
∑d

i=1 C̃i

d∑
i=1

CiUi,k(β + |n|)(Eni
− Id )

− C̃k

1−
∑d

i=1 C̃i

d∑
j=1

Uj,knj(E
−1
nj

− Id )

+
C̃k

1−
∑d

i=1 C̃i

d∑
i,j=1
i ̸=j

CiUi,kUj,knj(Eni
E−1

nj
− Id ).

The operators Ln
k are diagonalized by our Meixner polynomials in the sense that

Ln
kMm(n) = miMm(n).

Indeed, this follows directly by rewriting the difference equations (5.17b), using that
∑d

j=1 CjUj,k = 1

(this is clear from the first column of gJg† = J).
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6. Laguerre polynomials

In this section, we will look into the Laguerre polynomials. These polynomials are known to be related
to the Lie group SU(1, 1) just as the Meixner polynomials. The Laguerre polynomials are also known
to be given as a limit of the Meixner polynomials. Looking into this limit using the representation πβ

for the Meixner polynomials, it becomes clear that this limit does not translate into the representation
theory as is. Lastly, we briefly look into a new representation of SL(2;C) ∼= SU(1, 1) following Vilenkin
and Klimyk [7], to give insight into the connection between SU(1, 1) and Laguerre polynomials.

6.1. Laguerre polynomials. The Laguerre polynomials (see e.g. [1]) are defined on the positive real
line, R+, together with a parameter β > 0, by the generating function

(1− t)−β exp

(
xt

t− 1

)
=

∞∑
n=0

Lβ
n(x)t

n. (6.1)

As a hypergeometric function, the Laguerre polynomials are defined by

Lβ
n(x) =

(β)n
n!

1F1

(
−n

β
;x

)
=

∞∑
k=0

(−n)k
(β)k

xk

k!
, (6.2)

where the constant (β)n
n! ensures that the leading coefficient is ±1. The Laguerre polynomials are known

to be orthogonal with respect to the gamma distribution (with shape parameter β and rate or scale
parameter 1): ∫ ∞

0

xβ−1e−xLβ
m(x)Lβ

n(x) dx =
Γ(β +m)

m!
δm,n. (6.3)

There is a known limit relation transforming the Meixner polynomials into the Laguerre polynomials.
This is done by letting the parameter c for the Meixner polynomial go to 1, whilst dividing the variable
n by 1− c. This limit is given as follows:

lim
c→1

Mm

(
x

1− c
; c, β

)
=

m!

(β)
Lβ−1
m (x), x ∈ R+. (6.4)

The term x
1−c can be seen as to smoothen N to look like R+; suppose

x
1−c ∈ N, then surely x ∈ (1−c)N =

{(1 − c)n |n ∈ N}, taking the limit c → 1 then makes this set dense in R+. Let us look into this limit
more closely. Writing out the Meixner polynomial in the limit, we get

Mm

(
x

1− c
; c, β

)
=

∞∑
k=0

(−m)k

(
− x

1−c

)
k

(β)k

(1− 1/c)k

k!
.

As the sum is finite (there are at most m + 1 terms as (−m)m+1 = 0), the terms of interest for the

limit are
(

x
c−1

)
k
(1 − 1/c)k. Writing

(
x

c−1

)
k
= x

c−1

(
x

c−1 + 1
)
· · ·
(

x
c−1 + k − 1

)
, and 1 − 1/c = c−1

c , the

product can be rewritten to(
x

c− 1

)
k

(1− 1/c)k = c−kx(x+ c− 1)(x+ 2(c− 1)) · · · (x+ (k − 1)(c− 1)).

Taking the limit of c to 1, this term becomes xk, which gives the Laguerre polynomial as

lim
c→1

Mm

(
x

1− c
; c, β

)
=

∞∑
k=0

(−m)k
(β)k

xk

k!
= 1F1

(
−m

β
;x

)
.

The Limit (6.4) also transforms the generating function of the Meixner polynomials into the one for the
Laguerre polynomials. Recall the generating function of the Meixner polynomials:

(1− t)−β−n

(
1− t

c

)n

=
∑
m∈N0

(β)m
m!

Mm(n; c, β)tn. (3.1)

Looking at the left-hand side, we can rewrite it to (1−t)−β
(
1− ct

t−1 (1− c)
)n

. Substituting n by x
1−c and

taking the limit c to 1, the left-hand side becomes exactly the left-hand side of the generating function
of the Laguerre polynomials (6.1).
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One can also use the orthogonality of the Meixner polynomials to derive those for the Laguerre
polynomials. Recall the orthogonality relation for the Meixner polynomial

∞∑
k=0

(β)k
k!

ck(1− c)β−1

(
(β)m
m!

Mm(k; c, β)

)(
(β)n
n!

Mn(k; c, β)

)
(1− c) = δm,n

(β)mc−m

m!
, (3.10a)

where we have already rearranged some terms for our benefit (note the 1− c at the end of the left-hand

side). If we write (β)m = Γ(β+m)
Γ(β) , it becomes clear that the right-hand side of the above equation will

become 1
Γ(β) times the right-hand side of Equation (6.3). In particular, the limit of the sum on the

left-hand side should also converge. Next, we want to show that the negative binomial measure converges

to the measure of the gamma distribution xβ−1e−x

Γ(β) dx. We start with ck. Substitute k = x
1−c and write

this as an exponential, that is c
x

1−c = e
x ln c
1−c . Now using L’Hôpital’s rule, the limit of the exponent is

equal to −x, giving us the term e−x. For the term (β)k
k! (1− c)β−1, we first rewrite the fraction as

(β)k
k!

=
Γ(β + k)

Γ(β)Γ(1 + k)
.

Now setting k = x
1−c , we can write the whole as

(β)k
k!

(1− c)β−1 7−→ Γ(β + k)

Γ(1 + k)

(
x

1− c

)1−β
xβ−1

Γ(β)
.

Using Equation (1.5), and as the limit c → 1 translates to the limit k → ∞, we see that in the limit the

above becomes xβ−1

Γ(β) . Regarding the sum as a Riemann sum due to the left term (1-c), one can argue

that the sum converges to 1
Γ(β) times the integral in 6.3.

As we have seen above, the limit relation between the Meixner and Laguerre polynomials also translates
many of their properties. When seeing this, one has to wonder if this can also be seen from the lie group
representation, by taking limits in the Lie group instead. Sadly this does not seem the case. Take for

example the matrix elements of the representation πβ of Aα. If we let n ∈ N0 and g =

(
a b
c d

)
∈ SU(1, 1),

with b, c ̸= 0 the matrix elements are given by:

πβ
m,n(g) =

√
(β)m
m!

√
(β)n
n!

a−β−m−nbn(−c)mMm

(
n;

bc

ad
, β

)
. (3.8)

Letting bc
ac go to 1 here would mean to either let the determinant ad− bc go to zero, or else let elements

go to ∞. Either way, using this approach the limiting matrix will not be an element of GL(2;C). In
order to create a relation between Lie theory and Laguerre polynomials, we first find a new family of
representations in the next subsection.

6.2. A representation on the upper half plane. We want to act on a different space via the same
representation, namely the space of holomorphic functions on the complex upper half plane C+ := {w ∈
C | Im(w) > 0}. It is known (see for instance [7]) that the upper half plane can be send to the unit disk
by the fractional linear transformation

w 7→ w − i

w + i
.

As the unit ball is closed under rotations, we may multiply this map by i to obtain a bijection ϕ : C+ −→ B
defined by

ϕ(w) =
w − i

1− iw
, w ∈ C+. (6.5)

In Subsection 3.1.1, we encountered fractional linear transformations via a matrix g =

(
a b
c d

)
∈ GL(2;C)

by the action (
a b
c d

)
.z =

b+ dz

a+ cz
.

The matrix which represents the map ϕ as above is then connected to the matrix T = 1√
2

(
1 −i
−i 1

)
∈

SU(2) (the constant 1√
2
does not change the associated map). The inverse of ϕ, is then given by

ϕ−1(z) =
z + i

1 + iz
, z ∈ B.
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Let α ≥ 0 be an integer, β = α + 2 and πβ be the map of GL(2;C) on GL(H(B)) as for the univariate
Meixner polynomials in Section 3. Let the mapping ρ : H(C+) −→ H(B) be defined as follows

[ρF ](z) =2
β
2 (1 + iz)−βF (ϕ−1(z))

=2
β
2 (1 + iz)−βF

(
z + i

1 + iz

)
.

Observe that ρ looks like πβ(T−1). Clearly ρ is linear and invertible with its inverse given by

[ρ−1f ](w) =2
β
2 (1− iw)−βf(ϕ(w))

=2
β
2 (1− iw)−βf

(
w − i

1− iw

)
.

Using the above maps, we can construct a representation πβ
+ of SU(1, 1) on H(C+) as follows:

πβ
+(g) = ρ−1 πβ(g)ρ, for all g ∈ SU(1, 1). (6.6)

We define an inner product ⟨·, ·⟩+ on the space H(C+) from the inner product on Aα via ρ, that is we
have

⟨F,G⟩+ := ⟨ρF, ρG⟩α .

Denote the Hilbert space of functions with finite norm in H(C+) by B+
α . Writing out the fraction z+i

1+iz ,
we get

z + i

1 + iz
=

2Re(z) + i(1− |z|2)
1 + |z|2 − 2 Im(z)

.

Using this identity, one can show the inner product on B+
α has the following form:

⟨F,G⟩+ = 2α+2cα

∫
C+

F (w)G(w) Im(w)α dv(w), (6.7)

where cα = α+ 1.
By construction, the representation πβ

+ is equivalent to the representation πβ . Furthermore, the map

ρ : B+
α −→ Aα is a unitary map which intertwines the two. This implies that the new representation πβ

+

is also unitary. We reuse the basis vectors eαn(z) :=
√

(α+2)n
n! zn, n ∈ N0 of Aα to define a basis of B+

α :

eα,+n (w) := [ρ−1eαn](w) =

√
(β)n
n!

2
β
2 (1− iw)−β−n(w − i)n.

In particular with respect to this basis, the matrix elements of πβ
+ and πβ will be identical (see also

Lemma 1.8). As a last remark, we can write, by slight abuse of notation, that the representation πβ
+ is

equal to

πβ
+(g) = πβ(TgT−1),

where TgT−1 is not a matrix of SU(1, 1) anymore, but rather a matrix in the special linear group of real

matrices; SL(2;R) =
{
g =

(
a b
c d

) ∣∣∣ det g = 1, a, b, c, d ∈ R
}
. This follows by the identity

T

(
a b

b a

)
T−1 =

(
Re(a)− Im(b) Re(b) + Im(a)
Re(b)− Im(a) Re(a) + Im(b)

)
. (6.8)

Thus the representation πβ
+ can also be seen as a representation of SL(2;R) instead. The action of

Sl(2;R) on B+
α will again be denoted by πβ and acts as ‘usual’:

πβ

(
a b
c d

)
F (w) = (a+ cz)−βF

(
b+ dz

a+ cz

)
,

(
a b
c d

)
∈ SL2;C. (6.9)

6.3. Laguerre polynomials from SL(2;C). In this subsection we will broadly follow Vilenkin and
Klimyk [7] to find the Laguerre polynomials from the representation πβ of SL(2;C) on B+

α as in equation
(6.9). From Vilenkin and Klimyk [7] we know that the functions in B+

α can be written as Fourier
transforms of functions defined on the semi-axis λ > 0:

F (w) =

∫ ∞

0

F(λ)eiλw dλ, (6.10)



MULTIVARIATE GENERALISATIONS OF CLASSICAL HYPERGEOMETRIC POLYNOMIALS FROM LIE THEORY 43

where the transform is taken over a strip (−∞+ ia,∞+ ia), with a some positive real number.

F(λ) =
1

2π

∫ ∞−ia

−∞+ia

F (w)e−iλw dw, w = x+ ia. (6.11)

Now following [7] the fourier transform as above can be shown bijective, so that the functions

ϕ+
λ (w) :=

√
(4λ)−β−1

πΓ(β)
eiλw, λ > 0, (6.12)

form a continuous basis of B+
α in the sense that〈

ϕ+
λ , ϕ

+
µ

〉
+
= δ(λ− µ), (6.13)

with δ(λ− µ) the Dirac delta distribution. As these vectors form a basis of B+
α , if we act with πβ on the

basis vectors eα,+n we can write them as

πβ(g)eα,+n =

∫ ∞

0

K(λ, n; g)eiλw dλ, (6.14)

where K(λ, n; g) can be computed using the Fourier transform 6.11 on the function πβ(g)eα,+n . We
remark that solving for K(λ, n; g) is not trivial, and will not be included in this report. An derivation
of K(λ, n; g) for certain one-parameter subgroup of SL(2;C) is worked out in [7]. This turns out to be
related to Laguerre polynomials.
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Summary and concluding remarks

In this thesis, we studied Lie groups and their connection to certain orthogonal polynomials. We
looked into the, in literature well-established, connection between SU(2) and Krawtchouk polynomials,
and the connections between SU(1, 1) and the Meixner and Laguerre polynomials. Furthermore, we
showed a new connections between the d-variate Krawtchouk polynomials and SU(d+1) and established
a connection of the d-variate Meixner polynomials with the Lie group SU(1, 1). For all the polynomials,
we have shown that they can be written in terms of matrix elements of a unitary representation. The
unitarity then allowed us to show orthogonality relations. Passing to the Lie algebra representation, we
also showed the recurrence relations for the polynomials.

To conclude this thesis, we will bring up some remaining questions and possibilities for further
research. Throughout the thesis, we have restricted to certain subgroups of Gl(n;C) in order to derive the
polynomials and their properties. Here we have extensively used their property to of leaving an hermitian
form invariant to prove the unitarity of the representation. This raises the question if the results can
be extended to larger, or different groups, maybe leaving other hermitian or bilinear forms invariant.
As Iliev discovered slightly different polynomials using a real inner product, we suspect that Lie groups
leaving a real bilinear form invariant can be used to create a direct link to Iliev’s work. As a second
remark, we have seen that through our representation on the Bergman space Aα we restricted to a far
smaller field of possible values of the parameter β for the Meixner polynomials. Naturally, we wonder if
this can be extended using other representations, and/or other Hilbert spaces.

We have briefly looked into the classical Laguerre polynomials, their relation to the Meixner polynomials
via a limit, and their connection to the Lie group SU(1, 1). We have also seen that via the Lie group
representation we cannot (yet) explain the limit from the Meixner to the Laguerre polynomials. Further
research can be done as to how this relation can be seen through representation theory. Also, we have
already established that the representation on Bergman space Aα can be extended to higher dimensions
using the Lie group SU(1, d). A natural follow-up question is if we can use this to define multivariate
Laguerre polynomials, and if a similar limit relation can be established with the multivariate Meixner
polynomials. Another group of orthogonal polynomials, the Meixner-Pollaczek polynomials, are also
highly similar to the Meixner polynomials and known to be connected to the Lie group SU(1, 1) as well
(see for instance [7] Section 7.7.7). Therefore, another question that arises is if we can define multivariate
extensions via the same methods as for the (regular) multivariate Meixner polynomials.
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