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Adaptive stabilization of impulsive switched linear time-delay
systems: a piecewise dynamic gain approach

Shuai Yuan ®*, Lixian Zhang *, Simone Baldi "

aSchool of Astronautics, Harbin Institute of Technology, Harbin, 150080, China

P Delft Center for Systems and Control, Delft University of Technology, Delft, The Netherlands

Abstract

In the presence of discontinuous time-varying delays, neither Krasovskii nor Razumikhin techniques can be successfully applied
to adaptive stabilization of uncertain switched time-delay systems. This paper develops a new adaptive control scheme for
switched time-delay systems that can handle impulsive behavior in both states and time-varying delays. At the core of the
proposed scheme is a Lyapunov function with a dynamically time-varying coefficient, which allows the Lyapunov function to
be non-increasing at the switching instants. The control scheme, guaranteeing global uniformly ultimate boundedness of the
closed-loop system, substantially enlarges the class of uncertain switched systems for which the adaptive stabilization problem
can be solved. A two-tank system is used to illustrate the effectiveness of the method.
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1 Introduction

Thanks to their capability of modeling a wide range of
systems with interacting continuous/discrete dynamics
[1, 2], hybrid systems with impulsive and switching dy-
namics, usually called impulsive switched systems, have
been attracting fruitful lines of research, encompassing
stability, stabilization [3, 4, 5], robust control [6, 7], and
others. Dealing effectively with large parametric uncer-
tainty is becoming increasingly crucial when controlling
hybrid systems: in several applications it has been recog-
nized that robust controllers may give rise to rather con-
servative performance in the presence of a large and non-
polytopic uncertainty set [8, 9, 10]. Therefore, the design
of adaptive control methods to cope with large and non-
polytopic parametric uncertainties in hybrid systems is
often relevant. To date, adaptive control of a class of hy-
brid systems, switched systems, has been drawing some
attention [11, 12, 13, 14, 15]: the most recent result in
this field involves a novel Lyapunov function which is
non-increasing at the switching instants [15].

Switched time-delay systems are natural generalization-
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s of switched systems, as time delay is another common
problem in hybrid systems. Time delay is typically time-
varying, and makes the state of a system evolve based on
some delayed information [16, 17, 18, 19]. Stability and
stabilization of switched time-delay systems has been in-
tensively studied [16, 20, 4]. However, the two main ap-
proaches adopted to deal with time-varying delay, name-
ly the Krasovskii technique and the Razumikhin tech-
nique, show some limitations when applied to adap-
tive control of switched time-delay systems. Since the
Krasovskii technique involves the bounded derivatives of
the time-varying delays, continuity of time-varying de-
lay at the switching instants should be assumed [16, 21].
If this assumption might be reasonable for non-switched
systems, it turns out to be quite restrictive when con-
sidering that switching behavior may lead to impulsive
delays. On the other hand, even if the Razumikhin tech-
nique can handle discontinuous time-varying delays, its
application in an adaptive stabilization setting is prob-
lematic: as pointed out in [22, 23], the selection of the
Razumikhin coefficient is limited in an unknown inter-
val inside which the existence of an adaptive controller
is guaranteed. Therefore, addressing discontinuous time-
varying delays in adaptive control of uncertain switched
systems is not only practically relevant but it also tack-
les the need to extend the current stabilization tools,
which motivates this study.
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In this paper, we develop a new adaptive design for un-
certain switched linear systems that can handle impulses
in both states and time-varying delays. A stability con-
dition is developed to deal with the impulsive effect of
multiple time-varying delays. Based on the stability con-
dition, a new adaptive controller is proposed by solving
a family of Riccati equations and LMIs. The adaptive
law involves a piecewise dynamic gain which is proper-
ly designed to guarantee non-increasing property of the
Lyapunov function at the switching instants. With the
designed adaptive controller and switching law, global
uniform ultimate boundedness of the closed-loop system
can be guaranteed while adaptive asymptotic stabiliza-
tion is still an open problem. The main contribution of
this paper is that discontinuities of both the states and
the time-varying delays at the switching instants are ad-
dressed for the first time in the adaptive stabilization
setting. As a matter of fact, the proposed adaptive mech-
anism substantially enlarges the class of switched lin-
ear systems with parametric uncertainties for which the
adaptive stabilization can be solved.

This paper is organized as follows: the problem formu-
lation and some useful lemmas are given in Section 2.
In Section 3, the adaptive controller is designed. A two-
tank system is used to illustrate the proposed method
in Section 4. The paper is concluded in Section 5.

Notation: The notations used in this paper are standard:
R and R* represent the sets of real numbers and posi-
tive real numbers, respectively. The sets of natural num-
bers and positive integers are denoted by N and N*, re-
spectively. The superscript T" denotes the transpose of a
vector or of a matrix, || - || refers to either the Euclidean
vector norm or the induced matrix 2—norm, and the i-
dentity matrix of compatible dimensions is denoted by
I. The notation M = {1,2,..., M} represents the set of
subsystem indices and M is the number of subsystems,
while £ = {1,2,..., L} represents the set of delay in-
dices and L is the number of delays. We use * as an el-
lipsis for the terms that are induced by symmetry. For a
left-continuous signal ¢(-), the notation ¢(t~) represents
the left limit of ¢(t), i.e., p(t7) = lim,_;- &(7).

2 Problem formulation and preliminaries

Consider the switched linear impulsive system with mul-
tiple time-varying delays

#(t) = (Agq) + AAgn) (1) x(t) + Boyu(t) + w(t)
L

+ ) (Brow + AEr o (1) ot — dgo (1))
=1

x4, (9) = P(09),
x(ti) = Hyyx(t; ),

9 € [to — dm, to]
ieNT

(1)

where z € R" is the state vector, u € R™ is the system
input, w € R™ is a bounded disturbance with unknown
bound w, i.e., ||lw| < @. The matrices A, € R™*™,
E, ¢ R™*", B, € R™™, and H, € R"™" are known
constant matrices with (A,, By), p € M, being control-
lable; AA, € R™" and AEy, € R**" are unknown
possibly time-varying matrices. The terms d;,(-) € R,
e L,pe M, represent unknown multiple time-varying
delays, and 1 (¥) is a continuous initial function for ¢ €
[to—dm, to] with dp, defined in Assumption 1. The switch-
ing signal o(-) is a piecewise left-continuous function,
taking values from the set M.

Let us represent the sequence of switch-out instants of

subsystem p as {/9| I € N*}. Then, the length of the

I'" active interval of subsystem p is #%4 — ™ for all
I € N*. The following definitions are given for the class
of switching signals and for the type of the stability con-

sidered in this work.

Definition 1 [Mode-dependent dwell time| [24]
Switching signals are said to belong to the mode-
dependent dwell-time admissible set D(7qp) if for any
p € M there exists a number 74, > 0 such that
tfj’r“f — 7™ > 74, holds for all I € N*. Any positive num-
ber 7q,, for which these constraints hold for all [ € N,
is called mode-dependent dwell time.

Definition 2 [Global uniform ultimate bounded-
ness| [25] The uncertain switched impulsive system (1)
under switching signal o(-) is globally uniformly ulti-
mately bounded (GUUB) if there exists a finite positive
number br such that for every initial function a,, there
exists a finite positive number I" independent of ¢y such
that ||z(t)|| < br for all t > to + I'. Any positive num-
ber br for which this condition holds is called ultimate
bound.

The following assumptions are made.

Assumption 1 There exists a positive constant dy, =
SUDye pear,i>t, de,p(t), which is not necessarily known.

Assumption 2 The uncertain matrices AA,(-) and
AE,(-) satisfy the following matching conditions
AAp(t) = BpEp(t), AEgp(t) = Bplly,(t)  (2)

with [[E,()]? < & and [Iep()]? < Cop where &, and
Cep, D € M, L € L, are unknown positive constants.

Remark 1 Assumption 1 only requires the existence
of an upper bound to the multiple time-varying delays.
Note that the time-varying delays are allowed be discon-
tinuous at the switching instants due to switching behav-
ior (in other words, the delays are piecewise continuous
at the switching instants). Discontinuity excludes the



application of the Krasovskii technique, while the Razu-
mikhin technique is intrinsically subject to limitations
in the adaptive control setting, as highlighted in [22, 23].
Therefore, a new stability condition needs to be devel-
oped for adaptive control of system (1). Assumption 2 is
rather standard and widely used in adaptive control or
robust control [23, 25] to dominate the parametric un-
certainties. Note that Assumption 2 will be relaxed in
(24), so as to handle bounded unmatched uncertainties.

The following lemmas are useful for deriving the main
results.

Lemma 1 [26] Let y € R?, z € R?, and M, N be appro-
priately dimensioned constant matrices. Then, for any
positive constant e, it holds that

2 TMNz < ey’ MMTy+ ¢ 12TNTNz.

Lemma 2 [20] For given positive scalars ;1 > 1, a, and
b, which satisfy 0 < b < ap/(u + 1), define

(p—1)c
(u+1)—2b

4

1
v = — arctanh
c

3)

where ¢ = y/a? /4 — b?/u. Let p(t) be the solution of the

following initial value problem

v 2
b0 =7 (FO-ap+ ), 2 .
b
Qp(ts) - ;

with T' > 0. Then, p(t) exists on [ts,00) and satisfies

$Hc+ (5 —c)w(t)
1+ w(t) ’

o(t) =

t>1s (5)

where w(t) = %6_%@_“), o(ts +T) = b, and
p(t) > 0.

3 Main results

In this section, a new control scheme is proposed based
on the solution of a family of LMIs and Riccati equations
to guarantee global uniform ultimate boundedness of
the closed-loop system. The following lemma extends
the results of [22] to switched systems with impulsive
behavior, which is crucial to derive the stability results.

Lemma 3 Let g(-) be a left-continuous function with
g(+) > 0 for all t > to and let ¢(-) > 0 be continuous for
t € [to — dm,to]. If there exist positive constants a1, ag,

ag with a; > as such that

g(t) < —Oélg(t) + o sup g(S) +as, te [tuti—i-l)

t—dm<s<t
9(ti) = g(tita)
91, (9) = ¢(9),

then, we have

Y e [to — dm,t()]

(6)

g(t) < By + fae Pt > ¢,

where 81 = a3 /(a1 — ), Ba = Supy, g4, <5<, P(5) =B,
and p is the unique solution to p = oy — el

PROOF. To facilitate the proof, consider the differen-
tial equation

f@%:—aﬁ@%wmhfg<j®%+%,tzm
fo®) = sup  g(9), 0 € [to— dum o).

to—dm <¥<to
(7)
Considering that the initial condition fy, (1) is positive,
we search for a unique positive solution! to (7) in the

form

F(O) = Br+ Bae P70t > 1 (8)
with 51 > 0, B2, p > 0 to be determined, which implies
that sup;, 4 <.<; f(s) = f(t—dw). Note that uniqueness
of (8) arises from the fact that f(¢) is locally Lipschitz
guaranteed by continuity of the right-hand side of the
differential equation (7). Substituting (8) into (7) leads
to

—Pﬂze_p(t_t(’) = —a1f1 +axf +as

_ alﬁge_p(t_to) + a252e—p(t—to—dm>

which gives the solutions to 31, 82 and the characteristic
equation of p

ag

Bi=—"—, Bo= fir, — B1, p= 1 — agelm
a1 — Q2

where a solution to p always exists and is unique due to
ay > ag, and Be = sup, g4 <s<i, P(s) — P1. Next, we
use a proof by contradiction to show that g(t) < f(¢) for
t € [ti,tiy1). To facilitate the proof, we define a contin-
uous function h(t) > g(t) such that h(t) < —ayh(t) +
Q2SUP;_g <5<y h(s) + ag for t > to and hy, (9) = ¢(9)

! 'We can use an argument by contradiction to prove posi-
tivity. Assume that at time ¢; we have f(¢;) = 0 and then
f(t;) > 0. According to (7) and continuity of the deriva-
tive of f(t), it follows that there exists an instant ¢, <
such that f(t.) = 0, f(t.) > 0 and f(t) > 0 for t € [t,, ],
which suggests that f(¢;) > 0. This is a contradiction with
f(t:) = 0. Therefore, the solution to (7) is always positive.



for ¢ € [tg — dm,to]. Assume that there exists a time
instant ¢, such that h(t,) = f(t,) and h(t) > f(t) for
t > t,. It is evident that h(t) < f(t) for ¢ < t,, which
results in sup, g co<; h(s) < sup, g o<y f(8). Ac-
cording to (7), it follows that h(t,) < f(tp) and hence
h(t) < f(t) for t > t,. This leads to a contradiction with
the condition that h(t) > f(t) for t > t,. Therefore, we
have h(t) < f(t) and hence g(t) < f(t) for t € [t;,tit1).
Considering g(t;};) > g(ti+1) at the switching instant
tiy1, we arrive at g(t;+1) < f(ti+1). This implies, to-
gether with (8)

a3
] —Q2 )

where 3 = sup, g <5<, () — This completes

the proof. W

Remark 2 In [27, Theorem 1], a function V is used,
which is continuous for all ¢ > t5. In our case, we use
the function g(t), which is not continuous because of the
switching behavior between different subsystems. In this
sense, Lemma 3 can be used to study a larger class of
systems as compared to [27, Theorem 1].

Now we are ready to present the stability result using
Lemmas 1-3.

Theorem 1 Suppose that there exist a family of sym-
metric positive definite matrices Pp, Qp, G, € R™™ ™, pos-
itive scalars a, b, v, X Tp, 1t > 1, €0p, €0,p, 01,p, 02,p;
le L, pe M, such that b < ap/(u+ 1), v satisfies (3),
and

Uy PoEry - PpEL,p_
-1
* —egy 0o 0
b <0 (9a)
* * e —EE;I_
—2p -G
<o (9b)
* _TTp p_
L
XPy =t (sip+ ) 1> 0 (9¢)
=1
H] P;H, < pP, (9d)

with V), = —Qp + %aPp + xPp + 2G,, where P, and
Qp, 01,p, 02,p, P € M, and k satisfy the following Riccati
equation

Ay Py + PyAy + (01, + 03,) 1

10
— 2P, B,B} P, = —Q). 10)

Then, under Assumptions 1 and 2, the controller

u(t) = — (n + ;é(t)) B Pyy(t) (11)

and the adaptive law

0(t) = vom()2" (t) Po(ty Bo() BE1y Po(y(t) — 700(t)
(12)
with v > 0 being a given adaptive gain, 6 > x /v, and

o(t), tetit;+ Tg(t))

em(t) = ¢ b, t € [ti + To(t)stiv1) (13)
b t =1t
w’ i+1

and ¢(-) as in (5) with T = 7,y and ty = t; guarantees
that the switched impulsive system (1) is GUUB for any
switching signal o(-) € D(7,). Moreover, an ultimate
bound is given by

buin2 N+ 992
b = MW= MaXpear 02,pA + 35 (14)

bAx — bpmaxpcar 25:1 (EZ; + EZ;)

where A £ mingear Amin (Pp), 2 £ maxXpear Amax (Fp),
and

L
= gnea;‘z[{ {51)91710 + Z Cg,pegm} . (15)

=1

PROOF. In this proof, the time index is sometimes not
indicated for compactness, and a delayed signal will be
marked with the subscript d, e.g. g = z(t — dpp(t)).
Consider the following Lyapunov function

V() = om(D)2T (1) Poyr(t) + %é?(t) (16)

with 6 = 0 — 6. It is straightforward that V(-) is con-
tinuous during the switching intervals [t;,t;+1), 1 € NT,
and discontinuous at the switching instants #;, i € NT.
Without loss of generality, we assume that subsystem p
is active for ¢ € [t;,t;+1) and subsystem ¢ is active for
t € [tiy1,tit2). Moreover, to facilitate the analysis of the
Lyapunov function, we partition the interval [¢;,t;11) in-
to two parts: [t;,t; + 7,) and [t; + Tp,ti41), upon which,
according to (13), (16) can be recast into

V() = p(t)aT (t)Pyw(t) + 55 02(1), t € [tisti +7p)
T\ b ()P (t) + 50%(1),  tE [ti+Tpotin)-

The essence of the proof is to show that the Lyapunov
function satisfies the conditions in Lemma 3. The proof
is organized in three steps:



(a) for t € [t;,t; + 7p), the Lyapunov function is shown
to satisfy the conditions in Lemma 3 using the LMIs
(92)—(9c), the Riccati equation (10), and the adap-
tive controller (11)—(13);

(b) fort € [t;+7p,ti+1), the Lyapunov function is shown
to satisfy the conditions in Lemma 3 using the LMIs
(9a) and (9¢), the Riccati equation (10), and the
adaptive controller (11)—(13);

(c) at the switching instant ¢;41, the Lyapunov func-
tion is shown to be non-increasing due to (9d) and
the reset of ¢ (ti11)-

(a) For t € [t;,t; + 7p), it can be shown that the time
derivative of V'(-) is

L
V < 2T (AZ{P,, + P,A, + Z gg,pPpE&pEZT)pPp> T
=1

L
+ gomT <Z GgprpAEgypAEZpPp> T+ gi;goxTx
=1
T T T
+ 01 ppr’ PLAAAA, Pyx + 2px" PyByu

L
+> (‘EZ; + EZ;) priTa + 02 ppw” PPy
=1

v b? 12
+ QQ_;;QDITIE - — <g02 —ap+ ) xTpr — —00
Tp M v
(17)
where the inequality holds according to Lemma 1 and
Lemma 2. Using Assumption 1 and the fact that ¢ > 0,
(17) is written as

L
V< 2T (AZ{PP + P,A, + Z eMPpEg,pEZpPp) T
=1

L
+ (fpgl,p +y° Ce,pez,p> px" P,B, B} Pyx
{=1

+ 202" P,Byu+ (01, + 05,) pa’ x
b? 1.2
. <<p2 —ap+ ) 2T Px — —00
Tp K Y
L
£ (ean i) wrkmat oppu Py Py,
=1
(18)
Then, substituting the Riccati equation (10) into (18)

yields
V< -t Qur + 2mprPpoB§pr

L
+ @aT (Z geypppEl,pEZpPp> x
=1

L
+ <fp91,p + Z Ce,pee,p> gaxTPpoBgpr
{=1

+ 2<mePpou + ngpcprPpPpw
v b? 12
- — (cpz —ap + ) 2’ Pyx — ~60
Tp K Y
L
(=

+ Z (EZ; + 62;) go:vga:d.
1

With help of the controller (11), the adaptive law (12),
and the definition of § in (15), one has

L
V< - m:Tpr + oz’ (Z 5é,pPpE€,pEZpPP> z
=1

L
+ Z (52; + e[’;) prlzq + 600
=1

<

b2
( 2ag0+)xTpr
I

Tp

+ Qg’pgowTPpPpw.

Furthermore, (9b) directly shows
’ v P G
x - - x
® Tp p ) p % < 0
z * —b—”Pp T
HTp

which, combined with (9a) by Schur complement, sug-
gests

V< - X‘PxTpr + Q2,p90wTPpPpw

L
+ Z (EZ; + EZ;I;) pxlzq + 600.
=1

Recalling that § = 0 — 6§ and using 600 — 66> < —156 +
%592 results in

1% < — Xgaa:TPp;v — %52 + Qz,pgowTPpPpw
1 )

L
-1 -1 X s
+ ; (El_’p + egvp) @xgscd + 2(; - 5)32 + 592



where x/v — 0 < 0. In addition, the following holds

T T
prgry < wary Ppxa

_r
o )‘min(Pp)
<tV (19)
Amin(F);o)

sup  V(s).

dm <s<t

H
<
- /\min(Pp) t—

Hence, the derivative of V for t € [t;,t; + 7,) satisfies

: 4]
V< —xV+ 592 + 02 ppw’ P, Pyw

L _ _
N 3 (55,; + Ee,;)
)‘min(Pp>

(20)

sup
t—dm<s<t

V(s).

(b) Fort € [t;+Tp,ti+1), the Lyapunov function becomes
1 -
V(1) = ba” (1) Poya(t) + - 0%(2).
Y

It follows immediately from (9a) that

Op PoE1, -+ PoErL,

* —€1p r. 0

) ) <0
* * C =€y Lr

with ©, = —Q, + xP,, which, combined with (9¢) and
following the similar steps from (17) to (20) yields

- 0 12 T

VS —xV+ 50+ opbu’ By Py

L — _
0y <Ee,; + fz,;>
)‘min(Pp)

sup
t—dm <s<t

V(s).
According to (20) and (21), it holds for t € [¢;,ti4+1)
- 0 4o T
V< —xV+ 59 + 02, ppmw” Py Pyw

L — _
i <Ee,; + ez,;>
)‘min(Pp)

sup
t—dm <s<t

V(s).

(¢) At the switching instant ¢;41, using (9d) and the fact

that ¢(t;, ;) = band p(ti11) = b , one has

Vtiv1) = V(tiiq)
= @(tit1)a" (tig1) Pyx(tivr) — bt )z
= a0 H Py ()~

(z+1)P l‘(tz_ﬂ
ba” (z+1)P x(t 1,+1)

HTP H,
=ba” (1+1) (quqq_P> (tz_+1)

<0
(23)
which implies that (22) holds for all ¢ > ¢y. In light of
this, using (9¢) and Lemma 3, it readily follows
Vi) < bw? max,ear QQL’p)\IQ,nialx(Pipl) + %92
X — H 22:1(62@—’_6@‘71)

ming,ear Amin (Pp)

+/8 tt()

where (s is a finite constant dependent on the initial
value of the Lyapunov function. This indicates, together
with (16), the ultimate bound br shown in (14). This
completes the proof. W

Remark 3 Some comments are needed to clarify that
the family of Riccati equations (10) can be introduced
without loss of generality. Since (A4,, Bp) is controllable
for all p € M, one can always find a solution for P, and
@, satisfying (10). As a matter of fact, the Riccati equa-
tions guarantee a sufficient large stability margin with
the only requirement of controllability. In [23], a LMI
condition is proposed to design the adaptive controller
for time-varying delay without considering switching be-
havior of the system: however, the absence of a Riccati
equation fundamentally requires the system matrix A,
to be Hurwitz, which to a large extent limits the scope
of applications of the method in [23].

Remark 4 In contrast with the Razumikhin technique,
where an adaptive controller is guaranteed to exist on-
ly in an unknown interval, the existence of the adap-
tive controller (11)—(13) is well defined by the appropri-
ate selection of the constants in Theorem 1. Here are
some guidelines for the selection of such constants: after
a sufficiently large stability margin has been achieved
by the solution of the Riccati equations (10), one can
find a feasible g in (9d); at this point, with a simple
grid search over the couple (a,b) (which automatical-
ly defines v from (3)), we have that (9a)—(9c) are lin-
ear in the decision variables G, Tp_l, 6[,11), €rp- One
can either solve a feasibility problem, or preferably, op-
timize the solution to the LMlIs for large 7'*1 (to ad-

dress a large family of switching laws), or large €rp L and

bAx — bpmaxpear Zlel (5[7; + EZ;) (to minimize the
ultimate bound br in (14)).

Remark 5 Different with classic adaptive laws with a

)



constant gain, the proposed design incorporates a piece-
wise dynamic gain ¢,,, entering both the adaptive law
(12) and the Lyapunov function (16). Note that (23) sug-
gests that the Lyapunov function (16) is non-increasing
at switching instants thanks to the dynamic gain ¢y,
n (13). While adaptive asymptotic stabilization of sys-
tem (1) with time-varying delays is still an open prob-
lem, it can be verified that in the absence of distur-
bances and time-varying delays, asymptotic stability of
the adaptive closed-loop system can be derived, which
is the first result of its kind since the delays are allowed
to be discontinuous at switching instants and constant
in between. To verify this claim, use the controller (11)
and the adaptive law (12) with § = 0: then (22) reduces

toV < fxgpmscTpr, and the using of Barbalat’s Lem-
ma leads to asymptotic stability. This implies, in the
spirit of [15], that the Lyapunov function (16) can lead
to less conservative result than standard multiple Lya-
punov functions [11], i.e., with ¢, = 1.

Remark 6 Connecting to the previous remark, a ques-
tion may arise: why cannot the time-interpolation
method in [15] (which is also based on a Lyapunov
function non-increasing at the switching instants) be
adopted to achieve the control objective of this work?
Some clarifications are provided as follows: instead of
using a constant P, for each subsystem, [15] relies on
a time-varying P,, t € [t;,t;1+1), obtained by linear in-
terpolation of a set of positive definite matrices (c.f.
Lemma 1 in [15]). However, the need for the Riccati
equations in (10), which are quadratic in P,, makes
linear interpolation not applicable here.

In many practical cases, the uncertainties may not sat-
isfy the matching conditions shown in (2). For the un-
matched case, Assumption 2 can be relaxed into As-
sumption 3.

Assumption 3 The uncertain matrices AA,(-) and
AEy () satisfy

A4, (1) = B, (1) + A5, (1) o)
AE;,(t) = Bpllp p(t) + Al ,(t)

with [|Z,(1)[1? < &, [|AZ,(¢)]1? < A&y, and [Ty, (1)1 <
Cops and [|AIL,,(8)|1* < Ay, p € M, L € L, where &,
and (p, are unknown positive constants, and A¢, and
A(p,, are known positive constants.

Remark 7 Tt is known in adaptive stabilization that
unmatched uncertainties as in (24) cannot be addressed
by the controller in an adaptive fashion, and the knowl-
edge of the bounds of the unmatched uncertainties is re-
quired to guarantee stability of the switched system. In
fact, to the best of the authors’ knowledge, how to cope
with unknown unmatched uncertainties without know-
ing their bounds is still an open problem both in adap-
tive control and robust control [25].

Considering the unmatched terms as in (24), we provide
the following stability result.

Corollary 1 Suppose that there exist a family of pos-
itive definite symmetric matrices P,, Qp, G, € R"*",
positive scalars a, b, v, X T, t > 1, €0.p, €0,ps Loy 01,ps
02.p, L € L, p € M such that b < ap/(p + 1), v satisfies
(3), and

Uy, PpEry - PoELy ACLpPp ACL,pPp
« —ep 00 0 0
-1
* * ..._€L7pI 0 0 <0
* * * —Lill,f 0
-1
| * * * * —LLJ)I |
_v -G
<o
¥ Tt
L
XPp = by (sZ; +ep,+ L;;) I1>0
=1

HquHq S /J/Pp
with ¥, = —Q, + %aPp + xP, + 2G), where P, and
Qp, 01,p, 02,p, P € M, and & satisfy the Riccati equation

T
(Ap +VAGT ) Py + Py (Ap +VAE, 1)
+ (01} + 051) I — 26P,B,BT P, = —Q,.

Then, under Assumptions 1 and 3, the controller

u(t) = — </<c + ;é(t)) BTy, Pogey(t)

and the adaptive law

0(t) = vom()2" (t) Po(ty Bo() BEy Po(y(t) — 700(t)

with v > 0 being a given adaptive gain, § > x/v, and
©m as defined in (13) guarantees that the switched im-
pulsive system (1) is GUUB for any switching signal
o(-) € D(7p). Moreover, an ultimate bound is given by

bpn? maxye ar 02,5\ + 562

br =
L _ _ _
bAx — bpmaxpear Y,y (Ef’; + ez’; + LZ’;)

where A £ mingear Amin (Pp), A £ maxpear Amax(Pp),



and

L
S r}}lea;{c {Spm,p + Z Cé,pef,p} .

(=1

PROOF. The proof follows similar steps as the proof
of Theorem 1, and thus it is omitted. W

4 Example

Consider the two-tank system taken from [28, 29], and
illustrated in Fig. 1. The states of the system are the
deviations of reservoir levels with respect to their nom-
inal values, denoted by the dashed lines in Fig.1. The
flow between the two reservoirs is proportional to the
difference of their levels. We assume that both flow con-

Sensor 1 Sensor 2

Actuator 2

Actuator 1

Fig. 1. The two-tank system.

trol and level measurement can switch between the first
tank (actuator 1-sensor 1) and the second tank (actua-
tor 2-sensor 2). In addition, the pipeline connecting the
two tanks gives rise to time delays. The uncertainties in
system matrices represent the delayed water flow in the
pipeline, which influences the dynamics of the two-tank
system. Thus, the two tank system can be modeled as
an impulsive switched system

:Z?(t) = Ax(t) + (Eo'(t) + AEa(t)) x(t — da(t) (t))
+ Boyu(t) +w(t)
z(ti) = Hymyx(t;)

where the following matrices have been taken in line with

128, 29)]
-1 1 0.1 —0.2 0.2 -0.3
7E1 = 7E2 =
1 -1 0.2 04 —-0.2 04
0.1 0.2 0 0 1
AE, — AR, =
0 O 0.2 0.1 0
0 095 0 1.05 0
JHy = ,Hy =
-1 0 1.05 0 0.95

and dy (t) = 0.1(1 — cos(t)), d2(t) = 0.1(1 + sin(t)), and
w(t) = 0.1cos(5t). Let 011 = 012 = 021 = 022 = 0.1,

A:

731:

By =

€1 = €5 = 1000, kK = 10, a = 10, b = 2, and x = 0.25,
v=1,6=0.3, and

8 1.9 2.5 0.9
Q1= ;o Q= :
1.9 10 0.9 3
Solving the Riccati equations (10) and the LMIs (9a)—
(9d) results in

0.6171 3.7130

_ [o.8661 0.6171
’ 0.3496 0.5164

l0.9884 0.3496]

~(0.0414 0.0066 G — 0.0184 0.0062
0.0066 0.0227| 0.0062 0.0099

the mode-dependent dwell time 7 = 1.25, 79 = 3, and
u = 11.76. For simulations, the following initial condi-
tions are selected: zo = [1 1.5]7, 8(0) = 1. To illustrate
the effect of the dynamic gain ¢y, on the Lyapunov func-
tion V', we use the function V, = @mxTpr. Based on
the switching signal in Fig. 2, the evolution of V}, is given
in Fig. 2, which shows that V;, and thus V is decreasing
at the switching instant 2. In addition, the system tra-
jectory in Fig. 3 and the state response Fig. 4 are shown
to admit an ultimate bound, as expected from the GU-
UB result of Theorem 1.

5 T T T T T
4 g?
U
=l 1
>3 0 2 4 6 8 10
Time
2 H
Decreasing at the
1r i switching instants
L | | |
0 1.25 2 4 6 8 10

Time

Fig. 2. The evolution of Vi,.

5 Conclusions

This paper has investigated adaptive stabilization of
switched impulsive systems with time-varying and possi-
ble discontinuous delays. By solving a family of Riccati e-
quations and LMIs, a novel adaptive controller and a less
conservative switching law based on mode-dependent d-
well time have been designed. A piecewise dynamic gain
has been designed for the adaptive law, which allows the
Lyapunov function to be non-increasing at the switching

2 Since the signal § is unknown and continuous for all ¢ > to,
the absence of the quadratic term 6 in V4, does not impact
the non-increasing effect of pm.
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Fig. 3. The state trajectory and the attractive region.

2

States

Time

Fig. 4. The state response.

instants. Based on the proposed control scheme, glob-
al uniform ultimate boundedness of the closed-loop sys-
tems has been guaranteed. A two-tank system is used to
illustrate the effectiveness of the control scheme.
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