
Integrated Hub Location and
Schedule Design of Multi-Hub
Airline Networks
A Case Study on India’s International Connectivity

Wouter Sougé





Integrated Hub Location
and Schedule Design of
Multi-Hub Airline Networks

A Case Study on India’s International Connectivity

Thesis report

by

Wouter Sougé

to obtain the degree of Master of Science

at the Delft University of Technology

to be defended publicly on June 20, 2025 at 10:00

Thesis committee:

Chair: Dr. Alessandro Bombelli TU Delft

Supervisors: Dr. Marta Ribeiro TU Delft

Marco van Vliet IndiGo

External examiner: Dr. Junzi Sun TU Delft

Place: Faculty of Aerospace Engineering, Delft

Project Duration: September, 2024 - June, 2025

Student number: 4957830

An electronic version of this thesis is available at https://repository.tudelft.nl.

Faculty of Aerospace Engineering · Delft University of Technology

https://repository.tudelft.nl


Copyright © Wouter Sougé, 2025

All rights reserved.



Preface

With the conclusion of my thesis project, my academic journey at TU Delft comes to an end. The last years have

been a truly enriching experience, both academically and personally.

I would like to express my sincere gratitude to my supervisors Dr. Marta Ribeiro and Marco van Vliet. Their

support, critical insights, and encouragement have been instrumental throughout this journey. I am especially

thankful for the opportunity to align the project with my interests and explore a topic at the intersection of theory

and real-world application.

Moreover, I would like to express my appreciation to the friends who have accompanied me during these years

and brought joy and perspective into my life. Your support and companionship have played a vital role in shaping

both this thesis and the person I am today.

Finally, I am incredibly grateful to my family for their unwavering support, belief, and love. Thank you for standing

by me throughout this journey, your encouragement has meant more than I can express.

Wouter Sougé

Delft, June 2025

ii



Contents

I Scientific Article 1

1 Introduction 2

2 Problem Statement 2

3 Related Work 3

3.1 Airline Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.2 Hub Location Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.3 Research Gap & Research Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Methodology 5

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.2 Hub Location Problem Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.3 Schedule Design Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.4 Support Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Hypotheses 12

6 IndiGo Case Study 13

7 Results 15

7.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

7.2 Hub Location Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

7.3 Schedule Design Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

8 Sensitivity Analysis & Validation 18

8.1 Hub Location Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

8.2 Integrated Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

9 Discussion & Future Work 22

9.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

9.2 Future Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

10 Conclusion 25

References 28

A Appendix 29

II Literature Review & Research Definition 32

iii



Part I
Scientific Article

1



Abstract

The Europe-Asia-Oceania air route is experiencing rapid growth, traditionally served by direct legacy flights

but increasingly dominated by hub-based carriers. These airlines leverage large, single-hub models to capture

transfer traffic. However, limited research exists on how to efficiently design and operate multi-hub networks for

international connectivity. Existing models either oversimplify hub capacities or focus solely on fleet planning and

re-timing, lacking an integrated, schedule-based approach. This research develops an integrated decision support

model that combines a capacitated multi-allocation p-hub location problem with airline schedule design under

operational constraints and competitive dynamics. A multi-step iterative method connects hub assignment and

scheduling using a genetic algorithm to ensure feasibility, connectivity, and profitability. The findings reveal that

adding hubs initially boosts network efficiency and profitability, though marginal benefits diminish after a certain

number of hubs. The integrated model significantly narrows the gap between theoretical and actualized profitability,

showing a 7.6% increase in daily profit for the scheduling model over iterations. This research offers a crucial

decision-support tool for long-term airline network planning, particularly in rapidly expanding aviation markets. Its

ability to jointly optimize hub locations and flight schedules under operational constraints provides substantial

utility for diverse airline network planning scenarios, leading to more viable and profitable network configurations.

1 Introduction

The route from Europe to Asia, and even further to

Oceania, is on the rise (EUROCONTROL, 2025). This

has long been served by legacy airlines with, mostly,

direct flights. However, this trend has started to shift in

recent years. Major airlines strategically placed them-

selves to serve this route, mainly the Gulf carriers (Emi-

rates, Qatar and Etihad) and Turkish Airlines at the

expense of European airlines with direct flights (Geor-

giadis, 2024). These airlines position themselves with

large hubs and dedicated connection banks to connect

as many passenger as possible. For example, around

two-thirds of Turkish Airlines’ passengers use Istanbul

as a transfer hub, highlighting its role in connecting

traffic (OAG Aviation Worldwide, 2025).

These airlines all operate from a single hub airport and

there is limited research on how to utilize multi-hub net-

work efficiently to serve international to international

traffic flow. (Yang, Delahaye, et al., 2024) is the only

paper to focus on increasing the efficiency of multi-hub

network from an airline planning perspective. Looking

at it from a hub location problem (”HLP”) perspective,

(Mohri et al., 2022) and (Nasrollahi & Kordani, 2023)

are the only papers on integrating the HLP with airline

planning, but limited to the integration of fleet planning.

Existing literature on multi-hub airline network design

primarily focuses on re-timing individual flight legs,

lacking a comprehensive approach to constructing full

flight schedules for multi-hub systems from a zero

starting point. Furthermore, competitive hub location

models often rely on simplified assumptions such as

uncapacitated hubs and fixed connection times, which

limit their applicability to real-world operations. There

remains a clear gap in integrated models that jointly

optimize hub locations and flight schedules while ac-

counting for competitive dynamics and operational con-

straints across multiple hubs.

This research paper aims to develop an integrated

framework for multi-hub allocation and schedule de-

sign (”SD”), incorporating geographical and demand

information as well as airline capacity constraints. To

achieve this, two existing models, a HLP model and

a SD model, are combined into a multi-step iterative

approach. The HLP model determines which spokes

are allocated to specific hubs, while the SD model

checks the viability of the allocated flow and creates a

timetable from the ground up.

The paper starts with the problem statement in Sec-

tion 2. Section 3 presents a literature review on hub

networks and airline planning models. In Section 4,

the methodology outlines the approach and models

used. Section 5 introduces the hypotheses guiding

this research. The application of this framework to

IndiGo’s possible expansion strategy is detailed in

Section 6, followed by the results in Section 7. Section

8 validates the findings through sensitivity analysis, as-

sessing the robustness of the proposed model. Finally,

Section 9 discusses the implications of these results

and potential future research directions, leading to the

conclusions in Section 10.

2 Problem Statement

In network planning, there are two distinct network

configurations, namely a point-to-point network and a

hub-and-spoke network. The point-to-point network

is mostly favored by low-cost carriers operating be-

tween secondary airports. This is due to only direct

flights, which enable reduced operational complexity,

costs, and total travel time (Cook & Goodwin, 2008;

Martí et al., 2015; Zgodavová et al., 2018). This model

also enhances airline flexibility, especially in dynamic

markets, and offers environmental benefits through

0AI tools were used to assist with coding and academic writing throughout the research process.
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reduced emissions (Morrell & Lu, 2007). A point-to-

point network has generally its limitations in lower load

factors, connectivity, and reduced frequency, making it

less suitable for routes with limited demand (Alderighi

et al., 2005; Martí et al., 2015). In contrast, the hub-

and-spoke model enables higher connectivity and fre-

quency by routing passengers through a hub, enabling

economies of scale and increased flexibility in uncer-

tain and limiting markets (Barla & Constantatos, 2000;

Brueckner & Spiller, 1994; Wheeler, 1989). This model

also has its vulnerabilities such as reliance on a sin-

gle airport which results in hub congestion and nega-

tively impacts travel time and sustainability (Pels, 2021;

Wheeler, 1989). A Multi-hub network could overcome

these drawbacks by extending market reach, reducing

delays and less travel time (Chou, 1990; Goedeking,

2010; Karaman, 2018). While the added complexity

may reduce density economies (Düdden, 2006), fre-

quency gains and regional adaptability often outweigh

the downsides in thinner markets (Burghouwt, 2014).

Currently, multi-hub systems are present in the avia-

tion industry. Good examples are Delta, Lufthansa and

China Southern Airlines. (Burghouwt, 2014) shows a

distinction in types of multi-hub systems: the comple-

mentary system, the overflow system, and the regional

systems. Firstly, the complementary multi-hub system

can be seen in two or more evenly distributed hubs that

serve both long-haul flights. This results in a high-yield

local market at both hubs at the same time. The hubs

are complementary on smaller (international) desti-

nations. Secondly, the overflow system contains a

primary hub and smaller hubs, which do not have any

natural advantages. The smaller intercontinental des-

tinations are served from the primary hub. Lastly, the

regional system, when the local geographical market

cannot be covered by the primary hubs. In most cases,

multi-hub networks were created through mergers &

acquisition. The acquired hubs are by default down-

graded to less of importance hubs without empirical

evidence. None have gone from mostly domestic flight

to long-haul flight overnight. So for these instances,

how many hubs do you need to serve the demand?

How do you decide which hub will have which role?

What should be the location of these hubs? And what

influences these decisions?

Although multi-hub systems are becoming increasingly

common, there is a notable lack of decision-support

models that provide guidance on where hubs should

be located and how their roles should be defined.

This gap is especially critical in rapidly growing avi-

ation markets such as India, where carriers like IndiGo

are expanding their international presence amid grow-

ing capacity constraints at major airports like Delhi

and Mumbai. Most existing literature on multi-hub

network design focuses narrowly on re-timing individ-

ual flight legs, rather than developing comprehensive

flight schedules from the ground up. Moreover, many

competitive hub location models rely on assumptions,

such as unlimited hub capacity and fixed connection

times, that undermine their practical relevance. As

a result, there is a clear need for integrated models

that can jointly optimize hub location, role assignment,

and schedule design, while incorporating operational

constraints and competitive dynamics across multiple

hubs.

This research addresses that gap by developing an

integrated optimization model for multi-hub airline net-

work planning. The model assigns airports to hubs

and designs corresponding flight schedules under op-

erational constraints, such as hub capacity, aircraft

availability, and minimum connection times. The ob-

jective is to maximize overall network profitability by

optimizing both direct and transfer passenger flows,

while simultaneously minimizing transfer times to en-

hance connectivity and passenger experience. The

model serves as a strategic decision-support tool. It

does not attempt to model detailed demand forecast-

ing or short-term operational disruptions, but instead

focuses on long-term, high-level network design.

3 Related Work

This section outlines the related work relevant to multi-

hub airline planning. Section 3.1 focuses on the work

within airline planning, such as Schedule Design, Fleet

Assignment and Aircraft Routing. Section 3.2 goes

more in-depth into the HLP. At last, the research gaps

and main research objective are described in Section

3.3.

3.1. Airline Planning
Airline planning is a complex and multi-layered pro-

cess, and it involves decisions at strategic, tactical,

and operational levels. At a strategic level, fleet plan-

ning decides on the types and numbers of aircraft to

be operated, while network development addresses

the choice of destinations and the overall network de-

sign. This study specifically focuses on frequency and

schedule planning, which involves evaluating destina-

tion demand, setting flight frequencies, and creating

preliminary schedules. At a tactical- and operational

level, resource allocation assigns specific aircraft and

crew to each flight, a topic that is outside the scope of

this study. Similarly, while maintenance planning and

financial optimization are critical aspects of airline plan-

ning, they also lie beyond the scope of this research.

Although the planning components are categorized,

they are intricately connected in practice, adding to

the complexity of the planning process.

To start with the fleet assignment model (”FAM”), the

FAM focuses on allocating different types of aircraft to

scheduled flights. In most cases with the aim to maxi-

mize profits (Abara, 1989; Hane et al., 1995). The two

main structures within the FAM are the connection net-

work (Abara, 1989) and the time-space network (Hane

et al., 1995). The connection network captures aircraft

transitions between flights with explicit connection arcs

3



3.1. Airline Planning 4

and turn-time constraints, and the time-space network,

which simplifies variable counts by modeling flight legs

through time and space but lacks aircraft-specific de-

tail (H. D. Sherali et al., 2006). (Barnhart et al., 2002)

introduced the itinerary-based fleet assignment model,

which integrated a Passenger Mix Model into the FAM

to better reflect passenger dynamics such as spill and

recapture. The integration of schedule design and fleet

assignment was further advanced by (Lohatepanont &

Barnhart, 2004), who proposed the Integrated Sched-

ule Design and Fleet Assignment Model (ISD-FAM)

building upon the IFAM framework to optimize both

flight leg selection and aircraft assignment while in-

corporating demand correction terms for a dynamic

market.

To improve flexibility in an integrated airline scheduling

and fleet assignment model, (H. Sherali et al., 2013)

introduced optional flight legs, itinerary-based demand

with multiple fare classes, and balance constraints to

ensure an even distribution of flights across the day.

This model already presents a well-rounded solution

approach with various real-world considerations. How-

ever, it requires a predefined set of mandatory flight

legs. A further extension to airline planning with airport

congestion was proposed by (Pita et al., 2013), who

integrated delay costs and congestion effects within a

multi-hub setting. It shows improvements in profitabil-

ity and operational efficiency.

Within airline planning, most of the time the objec-

tive is to maximize profit. One of the key drivers for

profitability is whether passengers opt to fly with the

airline. (Abdelghany et al., 2017) included passengers’

choice into an optimization framework that integrates

scheduling decisions within competitive markets, sur-

passing previous models by adopting a more dynamic

and comprehensive approach and solving it using a

genetic algorithm. In a similar way, (Wei & Jacquillat,

2019) underscored the importance of incorporating

passenger preferences into the scheduling process as

opposed to modifying pre-existing timetables. (Ciftci

& Özkır, 2020) focused on minimizing passenger con-

nection times at hubs by employing meta-heuristic

approaches, enhancing convenience for passengers

and alleviating congestion.

At a strategic level, (Birolini, Jacquillat, et al., 2021)

introduced a model that captures long-term supply

and demand interactions, resolved through an innova-

tive gradient-based algorithm. (Birolini, Pais Antunes,

et al., 2021) addressed this issue by introducing a

new advanced optimization model that simultaneously

plans the flight schedule and aircraft use while also

estimating and distributing passenger demand. (Yang,

Buire, et al., 2024) developed a multi-objective model

intended to optimize hub connectivity by employing

a Quality of Connectivity Index metric, effectively bal-

ancing detour distances and connection times.

To the best knowledge of the author, (Yang, Delahaye,

et al., 2024) are the first and only authors focusing

on improving efficiency specifically focused on a multi-

hub network. Previous research has included multiple

hubs within their network for a case study, but never

the focus on utilizing the hubs as efficiently as possible.

(Yang, Delahaye, et al., 2024) proposed a model to

re-time flight legs in order to increase the total con-

nectivity of the network measured by a modified Hub

Connectivity Index. It showed significant results, but

the scope was limited to re-timing and therefore not

applicable to building a network from the ground up.

An overview of the important research done in this field

is presented in Table 3.1.

Table 3.1: Literature Overview Airline Planning

Paper Network Type Problem Focus Algorithm

P2P H&S multi-hub SDP FAP ARP Demand Connectivity Competition
Passenger

Choice
Fares

Airport

Congestion

(Abara, 1989) x x x ILP

(Hane et al., 1995) x x x x x B&B

(Barnhart et al., 2002) x x x CRG

(Lohatepanont & Barn-

hart, 2004)

x x x CRG, B&B

(H. D. Sherali et al., 2006) x x x x x x x N/A

(Yan et al., 2008) x x x x x HA

(H. Sherali et al., 2013) x x x x x BD

(Pita et al., 2013) x x x x x x XS

(Abdelghany et al., 2017) x x x x x GA

(Wei & Jacquillat, 2019) x x x x x x RBH

(Ciftci & Özkır, 2020) x x x TS & SA

(Birolini, Pais Antunes, et

al., 2021)

x x x x x PLT

(Birolini, Jacquillat, et al.,

2021)

x x x x x x CPA

(Yang, Delahaye, et al.,

2024)

x x x SSA

(Yang, Buire, et al., 2024) x x x x SA

Algorithm Abbreviations:

ILP = Integer Linear Programming, B&B = Branch and Bound, CRG = Column-and-row generation, HA = Heuristic Algorithms, BD = Bender Decomposition,

XS = Xpress (Commercial Solver), GA: Genetic Algorithm, RBH: Rule-Based Heuristics, TS: Tabu Search, SA: Simulated Annealing, CPA: Cutting-Plane Algorithm



3.2. Hub Location Problem
There is limited research on optimizing airline planning

using multiple hubs, so it is useful to examine the more

general HLP. The HLP focuses on strategically placing

hubs to maximize overall network efficiency, which can

be measured in various ways (Farahani et al., 2013).

(O’Kelly, 1987) was the first to explore the HLP and pre-

sented the first optimization-based formulation. Since

then, the number of variants has increased. These

variants can be classified based on the hub node ca-

pacity, the assignment of non-hub nodes to hubs, the

objective, and the number of hubs. Table 3.3 provides

a concise summary of these classifications.

Table 3.3: Classification of HLP Models (Farahani

et al., 2013)

Capacity of hub node Assignment of

non-hub node to hub

nodes

Capacitated (C) Single allocation (SA)

Uncapacitated (U) Multiple allocation (MA)

Type of the HLP Number of hub nodes

Median (M, min cost) Single (1)

Center (T, min distance) More than one (P)

Covering (V, # nodes)

In the context of the airline industry, the HLP typically

takes the form of a C-MA-…-P problem. Although,

the objective is more complex as it may involve dy-

namic demand or competitive factors. Several studies

have extended the traditional HLP to capture com-

petitive settings and operational nuances. (Eiselt &

Marianov, 2009) developed a competitive hub location

framework that incorporates an attractiveness function

based on travel time and fares. This is later extended

by (Tiwari et al., 2021a) and (Tiwari et al., 2021b) to

handle large-scale instances using approaches like

Kelley’s cutting plane method within Lagrangian relax-

ation. (Soylu & Katip, 2019) proposed a bi-objective

uncapacitated multiple allocation p-hub median prob-

lem to enhance customer satisfaction by increasing

direct and one-stop routes.(Yin & Zhao, 2021) intro-

duced a data-driven robust mean-CVaR hub interdic-

tion model accounting for uncertainty in travel times. In

the recent years, research on integrating fleet planning

with hub location has emerged, with (Mohri et al., 2022)

pioneering an integrated approach and (Nasrollahi &

Kordani, 2023) further incorporating passenger pref-

erences and time valuation. (Hatipoğlu et al., 2024)

focused on selecting secondary hubs under connectiv-

ity and green airport criteria. An overview of the HLP

can be seen in Table 3.2.

3.3. Research Gap & Research Objective
Substantial progress has been made in various facets

of airline planning and the hub location problem. How-

ever, the literature review reveals existing opportuni-

ties for further development, particularly concerning

their integration. Focusing on airline planning, it can

be observed that a lot of research has been conducted

on schedule design and fleet assignment, primarily

focusing on demand, connectivity, and re-timing flight

legs. Only one study focused on the optimization of a

multi-hub network while that was also only on re-timing

flight legs rather then building a timetable (Yang, De-

lahaye, et al., 2024). Furthermore, airport congestion

has been scarce in research, with (Pita et al., 2013)

being the only study that incorporates congestion and

competition. However, their model did not fully ac-

count for time costs like in-flight and connecting time.

At the HLP, competitive models have used uncapaci-

tated hubs most of the time with fixed connecting time

(Eiselt & Marianov, 2009; Tiwari et al., 2021b). Some

studies have integrated hub location with fleet planning

(Mohri et al., 2022; Nasrollahi & Kordani, 2023), how-

ever they fail to capture the complexities introduced

by capacitated hubs and schedule design.

Given the research gaps provided, this research fo-

cuses on developing an integrated model that com-

bines the capacitated multi-allocation p-hub location

problemwith airline schedule design under competitive

and operational conditions. The proposed approach

aims to optimize for profitability and connectivity. This

results in the research objective:

To develop a robust integrated hub location and

schedule design model that accounts for

operational constraints and competition, with the

goal of creating an airline network optimized for

maximum profitability.

This highlights the opportunity to enhance existing

models by incorporating the complexity of multi-hub

airline network planning under competitive pressures

and operational limitations.

Table 3.2: Literature Overview Hub Location Problem

Title Capacity Allocation Number of hubs Algorithm Relation to airline industry

Uncapacitated Capacitated Single Multiple 1 p

(Eiselt & Marianov, 2009) x x x Heuristic concentration procedure Competition / attractiveness of hubs

(Soylu & Katip, 2019) x x x Variable Neighborhood Search Minimize transportation cost & 2-stop

journey

(Tiwari et al., 2021a) x x x LR-CPA Competition / attractiveness of hubs

(Tiwari et al., 2021b) x x x x LR-CPA Competition

(Yin & Zhao, 2021) x x x Sample Average Approximation Minimize transportation cost

(Mohri et al., 2022) x x x Commercial solver (exact, GAMS) Minimize cost

(Nasrollahi & Kordani, 2023) x x x Passengers choice

5



4.1. Overview 6

4 Methodology

There are several benefits of an integrated model. The

first benefit is that an integrated approach improves

consistency between hub allocation and scheduling

by ensuring that the hubs used can actually support a

feasible and profitable schedule, avoiding mismatches

between strategic and operational decisions. The sec-

ond benefit; it reduces the risk of suboptimal outcomes

that often arise when models operate in isolation, as

joint optimization prevents locally optimal solutions

that fail when combined. The last benefit is by coor-

dinating decisions across the models, the approach

minimizes passenger transfer times, ensuring that the

final schedule not only meets operational constraints

but also delivers an optimized passenger experience.

The following chapter outlines the methodology used.

In Section 4.1, a high-level overview is given of the

methodology and how the different models interact.

Section 4.2 focuses on the first model, namely the

HLP model. Section 4.3 consists of the SD models.

Section 4.4 provides basic functions needed to pro-

cess the data.

4.1. Overview
Figure 4.1 provides a high-level overview of the re-

search methodology workflow. The diagram is divided

in a top-level row with the input data. Below this top

level row, the three different models and feedback

loop are positioned in four columns. Each model is

displayed with a different color. The first model is the

HLP model (red color) and is used for two reasons.

The first is to evaluate how many and which hubs are

necessary to get a theoretically optimal multi-hub net-

work. The second reason is to get input data for the

subsequent model. The objective of this model is to

maximize the daily profitability. The second model

(”SD1”) is the schedule design model using a genetic

algorithm, which is displayed in yellow. This intermedi-

ate step is taken to check if the theoretical passenger

flow can be assigned given (mainly) time constraints.

The objective is in essence to maximize profitability

and maximize the assigned flow. This will be further

explained in Section 4.3.1. The third column, in pur-

ple, of the figure shows the feedback loop. As it is

not likely that the flow determined by the HLP model

can all be scheduled. However, unscheduled capacity

leaves room for opportunity. The passenger flow that

cannot be scheduled will be removed from the model

and the HLP model and SD1 model will run again until

there is no difference between passenger flow and

assigned passenger flow, the maximum value in the

SD1 model exceeds the new value of the HLP model,

or the maximum number of loops is met. The third and

last model (green color) is again, a schedule design

model (”SD2”), however there is one major difference

with the previous model. The passenger flow inserted

into this model can be assigned within certain time

constraints and therefore the objective is minimizing

transfer time as maximum profitability is guaranteed.

In the following sections, an in-depth analysis is given

of each model.

4.2. Hub Location Problem Model
For this research, a capacitated, multi-assignment,

profit-maximizing p-hub model (C-MA-Profit-P) is used.

This variant includes upper bounds on hub capacity

(capacitated), allows each spoke to connect to multi-

ple hubs (multi-assignment), aims to maximize total

Figure 4.1: High-level overview of the research methodology workflow.
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Profitability
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HLP: Section 4.2 SD1: Subsection 4.3.1 Feedback Loop:
Subsection 4.3.2 SD2: Subsection 4.3.3



4.2. Hub Location Problem Model 7

network profitability, and there are P number of hubs.

This framework will allow for evaluating hub-spoke

structures under realistic constraints such as aircraft

utilization and airport capacities (Farahani et al., 2013).

The model is inspired by (Nasrollahi & Kordani, 2023)

and (Sharma et al., 2021). In Table 4.1 and Table 4.2,

the decision variables and parameters of the model

can be found.

Table 4.1: Decision variables (HLP Model)

Variable Meaning

dij Direct flow from i→ j

tijh Transfer flow i→ j via h

fij Flights from i→ j

uij 1 if long-haul aircraft used from i→ j

Table 4.2: Model parameters (HLP Model

Parameter Meaning

Ch Capacity of hub h

ACLong Seats per long-haul a/c

ACShort Seats per short-haul a/c

Rl, Rs Distance thresholds

Distij Distance i–j

α Min. load factor

Dij Demand i–j

TCijh Transfer cost i–j via h

TFijh Transfer fare i–j via h

DCij Direct cost i–j

DFij Direct fare i–j

Tij Flight time i–j

TaT Turnaround time

Tday Daily flight time

Along Long-haul a/c available

AShort Short-haul a/c available

RF Reverse-flow factor

N All nodes

H Hub nodes

S Spoke nodes (N \H)

The objective function and constraints of the HLP are

defined as follows:

max
∑

i,j,h∈N
h∈H

(TFijh − TCijh) · tijh (4.1)

+
∑
i,j∈N

i∈H∨j∈H

(DFij −DCij) · dij (4.2)

Subject to

∑
i∈N

fih +
∑
i∈N

fhi ≤ Ch ∀h ∈ H (4.3)

∑
i,j∈N

fij · (tij + TaT ) · uij ≤ Along · Tday (4.4)

∑
i,j∈N

fij · (tij + TaT ) · (1− uij) ≤ Ashort · Tday (4.5)

∑
j∈N

tijh +
∑
j∈N

tjhi + dih

≤ fih · (uihACLong + (1− uih)ACShort)

∀i ∈ N, h ∈ H (4.6)∑
i∈N

tijh +
∑
i∈N

thij + dhj

≤ fhj · (uhjACLong + (1− uhj)ACShort)

∀j ∈ N, h ∈ H (4.7)

∑
j∈N

tijh +
∑
j∈N
i∈H

tjhi + dih

≥ α · fih · (uihACLong + (1− uih)ACShort)

∀i ∈ N, h ∈ H (4.8)∑
i∈N

tijh +
∑
i∈N
j∈H

thij + dhj

≥ α · fhj · (uhjACLong + (1− uhj)ACShort)

∀j ∈ N, h ∈ H (4.9)

uij = 0 ∀i, j ∈ N : Distij < Rs (4.10)

uij = 1 ∀i, j ∈ N : Distij > Rl (4.11)

∑
i∈N

fij · uij =
∑
k∈N

fjk · ujk ∀j ∈ N (4.12)∑
i∈N

fij · (1− uij) =
∑
k∈N

fjk · (1− ujk)

∀j ∈ N (4.13)

∑
h∈H

tijh + dij ≤ Dij ∀i, j ∈ N (4.14)

dij = 0 ∀i, j ∈ S (4.15)

∑
h∈H

tjih + dji ≥ RF ·

(∑
h∈H

tijh + dij

)
∀i, j ∈ N (4.16)

The first constraint (4.3) ensures that the total number

of incoming and outgoing flights at each hub does not
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exceed its capacity. Constraints (4.4) and (4.5) limit

the total aircraft time used by long-haul and short-haul

aircraft, respectively, ensuring that the total time (in-

cluding turnaround time) does not exceed the available

fleet hours per day. Constraints (4.6) and (4.7) ensure

that the total passenger flow (direct and transfer) on

each node pair does not exceed the available seat

capacity, which depends on the aircraft type (short-

or long-haul). Constraints (4.8) and (4.9) enforce a

minimum load factor for each operated flight. Con-

straints (4.10) and (4.11) enforce aircraft type based

on distance. Constraints (4.12) and (4.13) ensure that

the number of aircraft entering and exiting each air-

port is balanced, for both long-haul and short-haul

aircraft separately. Constraint (4.14) caps total pas-

senger flows between origin-destination pairs by the

respective demand. Direct flights between spokes

are disallowed by constraint (4.15). Finally, constraint

(4.16) enforces a minimum level of reverse passenger

flow to ensure realistic two-way connectivity between

city pairs.

4.3. Schedule Design Model
The second model (Figure 4.1: yellow) and third model

(Figure 4.1: green) are, as mentioned, the schedule

design model. The SD1 model has as objective to

assign as much passenger as possible or as much

profit as possible using a genetic algorithm. This is

explained in Subsection 4.3.1. The feedback loop (Fig-

ure 4.1: purple) is discussed in Subsection 4.3.2. The

SD2 model is the schedule model with the focus on

minimizing transfer time, which is described in Sub-

section 4.3.3.

4.3.1. Maximize profitability: Genetic Algorithm

Genetic Algorithm Design

After the optimal number of hubs and assigned spokes

are determined by the HLP Model in Section 4.2, the

SD model is the next step in the workflow seen in Fig-

ure 4.1. In short, the SD model assigns flights to a

specific time in the day in order to capture the most

profit and/or passenger flow. In this research, this also

happens, but with a slightly different purpose.

The objective of scheduling flights is to maximize the

passenger flow and/or profitability while having mini-

mal transfer time in order to stay competitive. In theory,

the first part is taken care of in the first model, so the

only objective should beminimizing transfer time. How-

ever, it might not be possible to schedule a flight within

a certain time-frame resulting in a large transfer time

which is competitively not advantageous. To mitigate

this problem, the SD1 model is introduced to assign

flights and passenger flows within certain time con-

straints. This allows for the passengers that cannot be

assigned, to be removed. The passengers that can be

assigned will be moved to the third model to optimize

for transfer time.

The SD1 model is optimized using a genetic algorithm

instead of exact methods due to the limitations of time

and computing power in the time available for this re-

search. Heuristic algorithms aim to find good and fea-

sible solutions within a desirable timeframe, but not the

optimal solution. These methods focus on efficiency

and practical usage. There is a difference between

heuristics and metaheuristics. Heuristics has no lo-

cal optimum escape mechanism while metaheuristics

does. Partially, this results in heuristics finding a fea-

sible solution quickly while metaheuristics are better

in finding a near-optimal solution. Genetic algorithm

is an example of a metaheuristic algorithm. Genetic

algorithms were chosen over Simulated Annealing

and Tabu Search because their population-based ap-

proach allows for broader exploration of the solution

space. Compared to Tabu Search, which focuses on

improving a single solution through local search, Ge-

netic algorithms are better suited to exploring diverse

regions of the solution space simultaneously, making

them more effective for handling the complexity and

multiple constraints of the SD problem.

The genetic algorithm starts with an initial population of

the size of x times the total number of time steps. This

ensures that every flight is assigned to every viable

time step at least once, and up to x times. This results

in a solution space where every possibility is available.

The chromosomes are formatted in (Flight, Departure

Time), and the departure time is variable. After the first

iteration of the integrated model, the initial population

contains partially the schedule of the best solution of

the previous best iteration, which is a warm start. This

is done as flights in iteration one have a high chance

of being in the subsequent iteration.

The chromosomes of the initial population are eval-

uated using a fitness function with an alternating ob-

jective. Before the fitness function, two checks are

performed. The first check is which routes are possi-

ble to fly by the aircraft. This means that an aircraft

arriving at a spoke needs to depart within a specific

time frame. This can be to the original hub, but it is

also possible to return to another hub, which is one

of the benefits of a multi-hub network. The second

check is to compute all the transfer connections possi-

ble. So if a flight arrives at the hub, which outbound

flight can passengers take within a maximum transfer

time window. It should be also noted that transfer flow

can occur from hub A to spoke B via hub C.

The passenger assignment and fitness evaluation in-

volves three steps. The first step is an assignment

of the passengers based on their unit profitability, e.g.

profitability per passenger. The problem is that some

flights may be filled with direct passengers with a high

profitability while there is also the need to get transfer

passengers on that flight so they can connect to their

next flight on time. This is solved in the second step,

which is a spill and recapture model. The model looks

if some of the initially assigned passengers can be

spilled and recaptured on other flights. This again hap-
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pens based on the unit profitability. The last step is to

compile the objective of the fitness function, which can

be maximizing profit or maximizing passenger flow. It

starts to optimize for maximizing profitability, but when

the solution converges, it switches to optimizing for

maximizing flow. This allows for the genetic algorithm

to escape local optima. In essence, maximizing flow

also increases profitability; however, sometimes pas-

sengers are taken at a loss to satisfy the load factor

constraint. The fitness function is a percentage of the

profit or passenger flow determined in the HLP Model.

Elitism is integrated into the model as the flights within

the chromosomes are highly dependent on each other

in terms of connections and routes possibilities. So

it is beneficial to keep the top performing schedules.

Parents are selected with a probability based on their

fitness function, so it is not automatically the highest

rated chromosomes. Crossover and mutation are ap-

plied to the parents and a new population is formed.

If the genetic algorithm is above a threshold or has

not improved by toggling the objective function, the

genetic algorithm will be terminated.

This genetic algorithm is inspired by (Abdelghany et

al., 2017). The outline of the genetic algorithm can be

found in algorithm 1.

Genetic Algorithm Tuning and Objective Evalua-

tion

To determine a suitable configuration for the genetic

algorithm, hyperparameter tuning was conducted us-

ing the One-Factor-At-a-Time principle. This method

involves varying one parameter at a time while keeping

all others fixed, allowing the isolated impact of each

parameter on the performance score to be measured.

The objective was to identify which parameter settings

yield the highest solution quality for both small and

large instances of the problem. To account for the

stochastic nature of the algorithm, each configuration

was evaluated by running the genetic algorithm three

times, and the average score of those runs was used

to determine the best-performing value for each pa-

rameter.

Table A.1, in the appendix, presents the results of pa-

rameter tuning for the genetic algorithm across both

small and large datasets. The large dataset consists

of 146 flights, generating a total of 10,626 transfer pas-

sengers and 10,264 direct passengers. These transfer

passengers are spread out over 236 itineraries. The

small dataset includes 76 flights, with 6,052 direct

passengers and 5,095 transfer passengers over 75

itineraries.

The data structure determines the ordering of flights

within each chromosome, which directly influences

how crossover is performed. Since the child inherits

flight sequences from both parents, this structure

Algorithm 1: Genetic Algorithm for Assigning

Passenger Flow

if Iteration > 1 then

Warm-start population;

population← InitializePopulation;

for generation in generations do
if fitness improvement < convergence gap

then

Toggle objective;

// Evaluate population fitness
fitnesses← [ ];

foreach individual in population do

fitness← Evaluate Fitness;

Append fitness to fitnesses;

// Check stopping conditions
if max(fitnesses) ≥ cutoff optimal or no

improvement for x generations then

break;

// Select new population based on
fitness

Elite← top individuals by fitness;

Selected← Selection();

// Preserve elite, then refill with
offspring

New population← top (elite) ;

while size of new population < population

size do
for each pair (parent1, parent2) in

selected do

(child1, child2)← Crossover;

Mutate;

Add child1 and child2 to new

population;

Best Individual← individual with highest

fitness;

return Best Individual and associated outputs;

shapes how information is combined and passed on.

Three structures were tested: hub-focused, spoke-

focused, and random. In the hub-focused structure,

outbound - and inbound flights are placed after each

other. This enables the crossover cut to more ef-

fectively explore new hub-based connection patterns.

The spoke-focused structure groups flights by spoke,

maintaining routing consistency. The random structure

shuffles all flights, maximizing diversity. Each struc-

ture affects how effectively genetic operations explore

and exploit the solution space.

For the small dataset, the algorithm performed best

with a relatively high mutation rate of 0.01 and a large

selection size of 0.75, indicating a need for greater

diversity during the search process. A hub-focused

data structure and a higher elitism rate of 0.2 further

improved performance. In contrast, the large dataset

favored a lower mutation rate of 0.005 and a more

balanced selection size of 0.5, suggesting a stronger

emphasis on convergence stability. Interestingly, a

random data structure (slightly) outperformed the other
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options, and a standard elitism rate of 0.1 provided the

best results. As expected, increasing the population

size and number of generations consistently enhanced

solution quality. These findings highlight the sensitiv-

ity of the algorithm to hyperparameter settings and

were used to guide the final configuration in the main

experiments.

In addition to tuning parameters, different optimiza-

tion objectives were tested. These included maximiz-

ing total passenger flow, maximizing profit, or using a

combined objective that balances both. Table A.2, in

the appendix, presents an overview of the tested ob-

jectives and their corresponding performance scores.

The table shows that while optimizing solely for flow

or profit yields good results, combining both objec-

tives performs best. Especially the dynamic combined

objective, which switches between flow and profit,

achieves the highest average profit (91.9%) and flow

(87.3%), indicating that a balanced approach leads to

superior overall network performance.

Figure A.1, in the appendix, visualizes the evolution

of the objective function throughout the generations of

the genetic algorithm. Notably, it captures the moment

the objective switches from profit maximization to flow

maximization and how this has a positive effect.

4.3.2. Feedback loop

After each iteration of the genetic algorithm, certain

flows cannot be scheduled due to various reasons,

such as operational constraints. This could be that

there is no connecting flight or the aircraft exceed the

maximum ground time at a spoke. These flows are

stored in a list (FNP) and excluded from the optimiza-

tion in the subsequent iterations of the HLP model. To

account for this, an additional constraint is added to

the HLP, as shown below:

∑
i,j,h∈FNP

tijh = 0 (4.17)

It should be clarified that if spoke i via hub h1 to spoke

j is not possible, it is still possible to transfer through
a different hub (h2,3,..).

4.3.3. Minimize Transfer Time: Exact Method

The third and last step in the process is the SD2 model

focused on minimizing the transfer time. In the SD1

model, it is already proven that it can take the passen-

ger within a certain transfer time. This is the maximum

allowable transfer time. In the SD2 model, it is going

to optimize the schedule to make the most competitive

schedule possible. The following model is inspired by

(Wei & Jacquillat, 2019). The decision variables and

input parameters used in the SD model are summa-

rized in Tables 4.3 and 4.4, respectively. The decision

variables define the scheduling and flow decisions,

while the input parameters specify the sets, time def-

initions, demand limits, and aircraft availability used

throughout the formulation.

Table 4.3: Decision variables (SD Model)

Variable Meaning

tdepf,t 1 if flight f departs at time t

tarrf,t 1 if flight f arrives at time t

zdepi,t Itinerary i departs at hub at t

zarri,t Itinerary i arrives at hub at t

qdepr,t Route r departs at time t

qarrr,t Route r arrives at time t

FIAf,t 1 if flight f is airborne at t

TFi Transfer flow on itinerary i

DFf Direct flow on flight f

Rr 1 if route r is used

ITi 1 if itinerary i is used

Table 4.4: Input parameters (SD Model)

Parameter Meaning

F Set of flights (o, d)

TS Discrete time steps

N Network nodes

S Max dep./arr. per node/time

FTij Flight time i→ j

PI, PR Possible itineraries/routes

HB Hour buckets

FSs Flights to spoke s

BT , ET Start/end of schedule horizon

SH Time steps per hour

MaxTFi Max demand for itinerary i

MaxDFd Max demand for OD pair d

TP , DP Transfer and direct pairs

FCf Flight seat capacity

MinTF Minimum transfer time

MaxTF Maximum transfer time

TaT Turnaround time

MaxGT Max ground time at spokes

Ashort Available short-haul aircraft

Along Available long-haul aircraft

Based on these parameters, the following constraints

ensure feasible scheduling, capacity adherence, and

operational consistency. The objective function is de-

fined at the flight level rather than the passenger level,

as individual passenger itineraries are not yet deter-

mined. Modeling at the passenger level would require
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a quadratic objective function, which is computationally

impractical for this application.

min
∑
i∈PI

∑
t∈TS

(
zdepi,t − zarri,t

)
(4.18)

Subject to

∑
t∈TS

tdepf,t = 1 ∀f ∈ F (4.19)∑
t∈TS

tarrf,t = 1 ∀f ∈ F (4.20)

∑
f∈F
of=i

tdepf,t ≤ S ∀i ∈ N, t ∈ TS (4.21)

∑
f∈F
df=i

tarrf,t ≤ S ∀i ∈ N, t ∈ TS (4.22)

∑
f∈F

(of ,df )=p

∑
t∈h

tdepf,t ≤ 1 ∀p ∈ F, h ∈ HB (4.23)

tarrf, (t+FTf )
= tdepf,t

∀f,∀t: (t+FTf )∈TS (4.24)

tarrf, (t+FTf−24·SH) = tdepf,t
∀f,∀t: (t+FTf )≥ET (4.25)

tdepf,t = 0 ∀f,∀t:
(t+FTf−24·SH)<BT (4.26)

∑
i∈PI
i3=t

TFi = MaxTFtp ∀tp ∈ TP (4.27)

∑
f∈F

(of ,df )=d

DFf = MaxDFd ∀d ∈ DP (4.28)

∑
i∈PI
oi=f

TFi +DFf ≤ FCf ∀f ∈ F (4.29)

ITi = 1 ∀i ∈ PI : TFi > 0 (4.30)

zdepi,t = tdepi2,t
· t ∀i ∈ PI, t ∈ TS; ITi = 1 (4.31)

zarri,t = tarri1,t · t ∀i ∈ PI, t ∈ TS; ITi = 1 (4.32)

∑
t∈TS

zdepi,t ≥
∑
t∈TS

zarri,t +MinTF ∀i ∈ PI (4.33)∑
t∈TS

zdepi,t ≤
∑
t∈TS

zarri,t +MaxTF ∀i ∈ PI (4.34)

∑
r∈PR
f∈r

Rr = 1 ∀f ∈ F (4.35)

qdepr,t = tdepr2,t · t ∀r ∈ PR, t ∈ TS;Rr = 1 (4.36)

qarrr,t = tarrr1,t · t ∀r ∈ PR, t ∈ TS;Rr = 1 (4.37)

∑
t∈TS

qdepr,t −
∑
t∈TS

qarrr,t ≤ MaxGT

∀r ∈ PR (4.38)∑
t∈TS

qdepr,t −
(∑
t∈TS

qarrr,t + TaT
)
≥ 0

∀r ∈ PR (4.39)

FIAf,t = FIAf,t−1 + tdepf,t − tarrf,t−1

∀f∈F,∀t: t>BT (4.40)

∑
f∈F

FIAf,t ≤ Ashort ∀t ∈ TS (4.41)

∑
f∈F

FIAf,t ≤ Along ∀t ∈ TS (4.42)

The first constraints (4.19) and (4.20) ensure that each

flight has at most one departure and one arrival slot.

Constraints (4.21) and (4.22) allow a maximum num-

ber of movements at a airport during one time step.

(4.23) ensures no more than one departure per ori-

gin–destination pair in each hour. The timing con-

straints (4.24) to (4.26) link departures and arrivals

by flight duration, including wrap-around at the day

boundary, and forbid infeasible assignments outside

the daily window (i.e. no departures or arrivals dur-

ing the night). Flow conservation constraints (4.27)

and (4.28) match transfer and direct passenger vol-

umes to their demands. Constraint (4.29) caps the

sum of those flows on each flight by its seat capac-

ity. (4.30) indicates if an itinerary is used. Constraints

(4.31) and (4.32) transform the arrival and departure

times of the two flights in the itinerary from binary to

integers. Which constraints (4.33) and (4.34) use to

enforce minimum and maximum transfer times. Con-

straint (4.35) ensures that each flight is assigned to

exactly one route. Constraint (4.36) and (4.37) com-

pute the linearized departure and arrival times of each

route in order to monitor maximum ground time lim-

its. Groundtime constraints (4.38) and (4.39) similarly

bound the connection interval between legs of each

route of the aircraft. Finally, the flight-in-air balance

(4.40) and fleet-size constraints (4.41) and (4.42) track

in-flight aircraft over time and ensure that the total num-

ber of short- and long-haul aircraft never exceeds the

available fleet.



4.4. Support Functions
In order for the HLP Model to work properly, multiple

functions need to be explained. The functions outlined

in this section will cover fare prices, cost functions and

detour factor including the incorporation of competi-

tion.

The ticket prices will be modeled as follows; the direct

fare between every Origin-Destination (”OD”) pair will

be determined using equation (4.43). If the itinerary

has a connection through a hub airport, a detour fac-

tor is implied. However, if the itinerary goes directly

over a hub, a minimum reduction of the transfer fare

is implemented as can be seen in equation (4.44).

DF i,j = r · 45 · d0.7i,j · c (4.43)

where:

r ∈ [0.95, 1.05] (randomness factor)

di,j distance in km

c = 0.011 (INR to EUR conversion)

TF i,j,h = min

(
DF i,j ·

(
1

Di,j,h

)α

, DF i,j · (1− δ)

)
(4.44)

where:

Di,j,h Detour factor

α detour penalty based on competition (e.g. 1.0)

δ minimum discount factor (e.g. 0.1)

The detour factor is calculated by dividing the distance

flown via a specific hub by the direct distance of each

OD pair. Figure 4.2 shows the effect of different alphas

on the transfer fare. A higher alpha implies more com-

petition which would result in passengers less likely to

accept a higher price. The alpha is determined using

the population and GDP of each city. This data was ob-

tained from the United Nations and World Data Bank,

respectively (United Nations, Department of Economic

and Social Affairs, Population Division, 2024) (World

Bank, 2024).

The cost functions are stated in equation (4.45) and

equation (4.46). The cost functions are both on a pas-

senger level. To compensate for ignoring fixed costs,

a minimum load factor will be implied into the HLP

model. This has been showed in constraints (4.8) and

(4.9). This ensures that flights are not operated be-

low a certain threshold, and therefore mitigating the

effects of ignoring the fixed costs. The transfer costs

are almost the same the direct costs; however, a small

discount factor is inserted to account for costs that only

occur once, like overhead and administrative cost.

DCi,j = r · 50 · d0.675i,j · c (4.45)

where:

r ∈ [0.95, 1.05] (randomness factor)

di,j distance from i to j in km

c = 0.011 (INR to EUR conversion)

TCi,j,h = (1− δ) · r · 50 · d0.675i,j,h · c (4.46)

where:

di,j,h total distance via hub h

δ transfer discount (e.g. 0.1)

other variables as in Eq. (4.45)

The last input data that need to be processed is the

demand data. This is not within the scope of this paper

and will be elaborated on in chapter 6.

Figure 4.2: Transfer Fare Factor for different α

5 Hypotheses

This section outlines the hypotheses formulated to

address the research objectives and guide the devel-

opment of our modeling approach. Each hypothesis is

further illustrated with a practical example, grounded

in the context of the airline network design problem.

• H1: The incremental value of each new hub

decreases with the number of existing hubs.

Example: After a certain number of hubs, the

addition of an extra hub would only increase the

network profitability by y%. This suggests that

not every additional hub contributes meaningfully

to profit, supporting H1.
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• H2: An integrated Hub Location Problem and

Schedule Design model has advantages over

separated models.

Example: A two-step approach (first solving HLP,

then SD) is compared to a fully integrated model.

The integrated approach yields x% higher total

profitability of the schedule design model. This

demonstrates that considering hub selection and

scheduling jointly can lead to better network effi-

ciency.

• H3: The network progressively shifts its fo-

cus from direct service to optimizing transfer

connectivity.

Example: With the addition of hubs, the propor-

tion of transfer passengers grows significantly,

while the share of direct passengers stabilizes or

decreases. This would suggests that the primary

role of additional hubs is to enhance transfer con-

nectivity rather than direct routes, supporting the

hypothesis that multi-hub networks shift towards

prioritizing transfer flow.

• H4:Competition and capacity constraints in-

fluence the profitability of the network.

Example: A comparison between unconstrained

and different competition-constrained models

shows that the profitability of the network de-

creases when competition increases. This il-

lustrates how market competition can alter hub

viability and supports H4.

6 IndiGo Case Study

This research is applied to a case study of IndiGo. In-

diGo has ordered 30 Airbus A350-900 in April 2024

(IndiGo, 2024). Subsequently, in June 2025, the airline

announced an additional order for 30 more A350-900

aircraft (The Economic Times, 2025). Besides these

wide-body aircraft, IndiGo has also ordered 40 Airbus

A321 XLR (extra long-range). These are narrow-body

aircraft that will also be able to fly to Central/Eastern

Europe The case study results presented here are

based on a subset of these aircraft. These aircraft

have the range to connect Europe with India and there-

fore Europe with East Asia and Oceania. In addition to

this future route, IndiGo already serves international

areas at closer distances, like the Middle East and

Central Asia. IndiGo operates six major hubs across

India, as shown in Figure 6.1. These hubs vary in

size based on their total flight slots, which includes

both arrivals and departures. The largest hub is Delhi,

with a total capacity of 438 flight movements per day,

followed by Bangalore with 350, and Mumbai with 330.

Hyderabad handles 304 movements daily, while Chen-

nai and Kolkata have capacities of 234 and 228 flight

movements, respectively.

Due to India’s promising geographic location between

Europe and East Asia, it is an excellent candidate to

serve this route. The competition on this route is how-

ever fierce. Firstly, the legacy carriers that fly direct,

like Air France - KLM and Singapore Airlines. Sec-

ondly, the connecting carriers between Europe and

Asia, like Turkish Airlines and the Gulf (Emirates, Qatar

and Etihad). The latter will most likely be the biggest

competition. The question, therefore, is whether In-

diGo can effectively utilize its six hubs to design an

attractive and efficient network offering. Within this

question, it will become clear what the optimal number

of hubs is for international - international traffic flow.

Figure 6.1: Location and number of daily departures

per hub

Given the scope of this research, complex demand

modeling is simplified, with assumptions being used

instead of real-world data. A demand factor matrix

has been designed in which a base factor is multiplied

by such a factors. The matrix includes the six hubs

and the spokes are divided into five categories (S1,

... , S5). The factor of the six hubs is based on their

current size, so Delhi has the highest factor and Chen-

nai and Kolkata have the lowest factor. An S1 spoke

has the highest factor (i.e. high demand spoke) and

an S5 spoke has the lowest factor (i.e. low demand

spoke). The classification of spokes is done by evalu-

ating their respective city population and GDP per city.

The combined factor of each OD-pair is multiplied by

a base demand and a random factor (r ∈ [0.95, 1.05]).
The demand between Delhi and an S1 Spoke (e.g.

London) is FD · F1 ·BaseDemand · r.

Table 6.1: Demand factor matrix

S1 S2 · · ·
Factor F1 F2 · · ·

Delhi FD FD ·F1 FD ·F2 · · ·
Mumbai FM FM ·F1 FM ·F2 · · ·
S1 F1 F1 · F1 F1 · F2 · · ·
...

...
...

...
. . .
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An example of the transfer fare (equation (4.44)) is

showcased in Figure 6.2 of the transfer fare from Dubai

to Kathmandu. As expected, the detour factor via Delhi

is the lowest and via Chennai the highest. The graph

should be interpreted that passengers would accept

a ticket price of ∼ 80 EUR when flying through Delhi.

The max fare is equal to the direct fare using equation

(4.43).

Figure 6.2: Example Transfer Fare Dubai to

Kathmandu

Table 6.2 shows the number of destinations selected

by spoke category (S1 through S5). The distribution

across spoke categories reflects a deliberate effort to

ensure a representative mix of market types, ranging

from high-demand routes to thinner, more peripheral

destinations. This classification impacts model out-

comes by shaping demand patterns. A more balanced

category distribution supports generalizable insights,

while the heavier concentration in categories S1 and

S5 highlights areas of potential strategic interest, such

as growing connectivity (S1) and serving underserved

regions (S5).

Table 6.2: Number of selected destinations by spoke

category

S1 S2 S3 S4 S5

Current 4 5 4 5 16

New 11 8 9 2 0

Total 15 13 13 7 16

The parameters in Table 6.3 define the operational

parameters and market conditions for the HLP Model.

The parameters include Ch for hub capacity, ACShort

and ACLong for short and long-haul aircraft capaci-

ties, Ashort and Along for aircraft availability, α for min-

imum load factor, Tday for daily flying hours, TaT for

turnaround time, Rs and Rl for aircraft range cutoffs,

RV for reverse flow constraint, base demand, and

competition factor α. There are also fare and cost

decreases for transfer flow.

Table 6.3: Key Parameters for the HLP Model

Symbol Value

Int. Allocation 0.33

Ch Delhi: 438, Bangalore: 350,

Mumbai: 330, Hyderabad: 304,

Chennai: 234, Kolkata: 228

ACShort 200 seats

ACLong 400 seats

Ashort 170

Along 30

α (Load Factor) 80%

Tday 14 hours

TaT 1 hour

Rs 6000 km

Rl 7000 km

RF 80%

Base Demand 100

α (competition) {0.5, 1, 2, 4, 8}

δ (fare) 5%

δ (cost) 10%

The parameters in Table 6.4 govern the SD model’s

structure and constraints. These include TS for dis-

crete time steps, OH for operational hours per day,

and S for the number of simultaneous departures or

arrivals allowed per hub. MinTF and MaxTF define

the allowable transfer time window, whileMaxGT lim-

its ground time between flights, and TaT represents

the turnaround time per flight. Genetic algorithm set-

tings include population size, number of generations,

mutation rate, selection size, and elitism percentage.

Table 6.4: Key Parameters for the SD Model

Symbol Value

TS 10 minutes

OH 19 hours

S 2 (Dep. or Arr.)

MinTF 30 minutes

MaxTF 3 hours

MaxGT 5 hours

TaT 1 hour

GA Specific

Pop. Size 456 (4 · #TS)
Generations 1500

Mutation Rate 0.005

Selection Size 50%

Elitism 10%

Data Structure hub-focused

Convergence Gap 0.1%

Objective Switch 75 generations
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7 Results

The results of this research are shown in this sec-

tion, using the methodology provided. Section 7.1

described the experimental setup. Section 7.2 shows

the results of the Hub Location Problem, and Section

7.3 presents the results of the schedule design model

and also the integrated model. A detailed interpreta-

tion of the outcomes will be provided in Chapter 9.

7.1. Experimental Setup
The test instances are based on the network of In-

diGo. IndiGo currently operates six hubs and serves

30 international destinations. In the results section,

we evaluate a scenario that includes IndiGo’s current

network, extended with thirty additional spokes. These

spokes are selected based on their classification, as

described in Section 6.

The HLP experiments were all run on a local device:

a MacBook Pro M1 Pro with 16GB of RAM and 8 CPU

cores, using Gurobi Optimizer version 11.0.3. The

HLP results were generated with a 1% optimality gap.

The Integrated Model experiments were run on an ex-

ternal server with a 64-core processor, supporting 256

logical processors, using up to 32 threads.

7.2. Hub Location Problem
Figure 7.1 depicts the mean profitability in relation to

the number of hubs. For each configuration, every

possible combination of hubs within the network of six

hubs is assessed, and the outcomes are averaged.

The growth percentages are shown in the bars of the

chart, it can be noted that the growth decreases over

time. This is not strange as the effect of a single hub

addition becomes less when the number of existing

hubs increases. Summary statistics for each configu-

ration are shown in Table A.3, in the appendix. From

this table, it can be noted that in some configuration,

lesser (well chosen) hubs could bemore profitable than

more hubs. In theory, the maximum objective should

increase as the number of hubs increase, because at

least the same hubs are available.

Figure 7.1: Evolution of Profit by Number of Hubs

The numbers in Figure 7.1 are all averages, however

in the optimal configuration for each number of hubs

is shown in Table 7.1. The network structure for each

hub configuration is shown in Figure A.2, illustrating

how spokes are assigned to hubs. In the six-hub con-

figuration, northern European spokes are primarily con-

nected via Delhi and Kolkata, while southern European

cities are mainly routed through Mumbai and Banga-

lore, as expected.

Table 7.1: Optimal hub combinations and objective

value growth

# Hubs Optimal Hub

Combination

Profit Growth

Rate (%)

1 Bangalore –

2 Bangalore, Delhi +71.3

3 Bangalore, Delhi, Mumbai +30.0

4 Bangalore, Delhi, Mumbai, +8.4

Hyderabad

5 Bangalore, Delhi, Mumbai, +0.9

Hyderabad, Kolkata

6 Bangalore, Delhi, Mumbai, +0.0

Hyderabad, Kolkata, Chennai

The trend in average profit per passenger is shown

in Figure 7.2, with detailed statistics presented in Ta-

ble A.4. Overall, the profit per passenger decreases

as the number of hubs increases from one to four,

dropping from €47.60 with one hub to €40.24 with

four hubs. This downward trend is largely driven by

demand cannibalization between hubs and the dilu-

tion of high-yield routes. The sharpest decline occurs

between one and three hubs, with average profit per

passenger falling by approximately 13.5% during that

interval. Interestingly, the decline slows between three

and four hubs and reverses beyond that. At five hubs,

profit per passenger slightly increases with 2.1%, and

at six hubs, it further rises with 3.6%, nearly recovering

the earlier losses. This late-stage rebound suggests

that once a sufficiently large network is established,

the airline can capture additional efficiencies, possibly

by leveraging better connectivity. It should be noted

that this decline is not a major concern, as overall profit

still increases. Adding more hubs enables the network

to capture less profitable routes, which can enhance

market share and strengthen global presence.

Figure 7.2: Average profit per passenger per number

of hubs
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Figure 7.3 presents average hub capacity and aircraft

utilization across network configurations with one to six

hubs. For one to three hubs, average hub utilization

remains consistently high at 99.3%, indicating uniform

usage levels in these smaller networks. For four hubs,

the average value drops slightly to 99.1%, and for five

and six hubs, the values drop to 90.1% and 74.6%,

respectively. This reflects a more dispersed allocation

of capacity across a greater number of hubs.

Short-haul aircraft utilization shows a progressive in-

crease as the number of hubs rises. It starts at 16.8%

in the one-hub scenario, climbs to 47.5% with two

hubs, and reaches 76.3% with three hubs. With four

or more hubs, short-haul utilization exceeds 97.5%.

For five and six hubs, it reaches 99.3% and 99.5%,

respectively. Long-haul aircraft utilization, by contrast,

remains relatively stable and high across all configu-

rations. It starts at 98.2% with one hub and gradually

varies between 99.2% and 99.5% for the other scenar-

ios, showing minimal variation over the different cases.

Long-haul aircraft show high utilization from the start

because they serve the most profitable international

routes.

Figure 7.3: Capacity Utilization across different hub

configurations

A critical metric is the network’s evolution in terms of

flow type and the number of destinations as additional

hubs are integrated. Table 7.1 outlines the optimal

scenarios used to examine how flow types evolve with

each hub addition. Figure 7.4 shows the progression

of direct and transfer flows with the incorporation of

each additional hub. The data show that transfer pas-

sengers increasingly dominate the network as more

hubs are added. While their share initially drops from

75% to 61% with three hubs, it rises sharply thereafter,

reaching 89% with six hubs. Table A.5 summarizes

the total number and proportion of transfer and direct

passengers across different hub configurations. While

direct traffic is still being accommodated, the model

increasingly favors transfer flows as hubs are added.

This suggests that each additional hub enhances con-

nectivity by unlocking more efficient transfer opportu-

nities.

Figure 7.4: Flow development after addition of hubs

As the number of hubs increases, the network expands

significantly in reach (Table 7.2). Unique destinations

grow from 34 to 58, and the share of destinations

served by multiple hubs increases from 0 to 43, indi-

cating greater connectivity. At the same time, the aver-

age flight distance drops from 6,257 km with one hub

to 4,396 km with six hubs, suggesting a shift toward

more regional connections. The load factors remain

consistently high, reflecting efficient use of capacity

despite the network’s expansion. These numbers are

for only one scenario in this specific case of IndiGo, but

they illustrate dynamics that are likely to apply more

broadly. The four-hub network shows only an 8.4%

increase in profitability despite a 23.9% increase in

the number of flights (Table 7.1). This limited gain,

especially in the absence of fixed cost considerations,

might be problematic.

Table 7.3 shows that the additional hubs particu-

larly benefit medium and smaller cities (S2–S5), with

Table 7.2: Destination statistics

# Hubs
Unique

Dest.

Dest. with

multiple hubs

Avg

Flights/Dest.

Total

Flights

Avg

Load Factor

Avg.

Distance (km)

1 34 0 3.4 116 99.98 6,257

2 45 27 5.8 260 99.59 5,668

3 51 36 7.2 368 99.93 5,468

4 59 45 7.7 456 99.55 4,460

5 60 44 7.7 462 99.71 4,358

6 58 43 7.9 461 99.81 4,396
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rising frequencies and declining average distances.

This implies that multi-hub structures allow for bet-

ter short- and medium-haul connectivity, especially to

non-primary markets.

This shift toward shorter average flight distances can

also be attributed to capacity saturation in the three-

hub configuration. As shown in Figure 7.3, with three

hubs, both the average hub utilization and aircraft uti-

lization are already near maximum levels. The intro-

duction of a fourth hub (Hyderabad) adds a significant

amount of new capacity to the network, roughly 100

additional flights. To effectively absorb and utilize this

added capacity, the model compensates by increasing

the total number of flights. However, given operational

constraints such as daily aircraft flying hours, these

additional flights must cover shorter distances to re-

main feasible within a day. Consequently, the network

begins to emphasize more regional or medium-haul

routes, which better match the utilization needs of the

expanded hub infrastructure.

Table 7.3: Average distance and daily frequency to

city categories across hub configurations

# Hubs Metric S1 S2 S3 S4 S5

1
Freq. 27 15 14 1 1

Dist (km) 6364 5720 5537 4672 4801

2
Freq. 51 43 29 4 3

Dist (km) 6024 4863 5826 5250 4201

3
Freq. 72 61 42 5 4

Dist (km) 5976 4676 5340 4867 4005

4
Freq. 71 84 49 16 7

Dist (km) 5756 4404 4461 3392 2310

5
Freq. 73 81 46 17 7

Dist (km) 5786 4426 4368 3499 2844

6
Freq. 77 84 49 14 4

Dist (km) 5604 4258 4376 3179 3168

7.3. Schedule Design Model
In this section of the results of the SD model and inte-

grated model are shown. Subsection 7.3.1 shows the

results of the SD1 model with the focus on maximiz-

ing profitability using a genetic algorithm. Subsection

7.3.2 shows the SD2 model, which has as objective to

minimize the transfer time of connecting passengers.

7.3.1. Maximize Profitability: Genetic Algorithm

In this section, The results of the integrated SD model

are presented, which aims to maximize profitability

using a genetic algorithm. This model combines the

HLP and the SD component in an iterative process.

Figure 7.5 illustrates the interaction between the HLP

model and the SD1 model over the course of 20 itera-

tion of the genetic algorithm. The left subplots show

the raw output of the optimization process, while the

right subplots account for the practical constraint of a

minimum load factor threshold of 80%. Flights falling

below this threshold are excluded from both profit and

flow calculations. Due to time and computational con-

straints, the integrated model is applied to a subset

of the ideal solution by lowering the international allo-

cation factor to 0.15. Also by focusing only on three

hubs (Bangalore, Delhi, and Mumbai). However, as

seen in the results section of the HLP, more hubs

won’t increase the profitability significantly while drasti-

cally increase complexity. This results in a total of 162

scheduled flights. The number of iterations was limited

to 20 due to time constraints, with each iteration taking

approximately 40 minutes.

The top left plot in Figure 7.5 illustrates convergence

between the HLP and SD1 model, although with some

fluctuations. Notable dips in SD1 profit after certain

iterations may stem from challenging schedule con-

figurations or instability within the genetic algorithm.

The gradual decline in the HLP benchmark reflects

capacity limitations as no additional passengers can

be allocated in the optimal scenario, as explained in

Subsection 4.3.2. Ultimately, the SD1 model reaches

97.4% of the HLP profit, representing a profit increase

of 7.5% compared to the initial iteration. The top right

plot, which includes only flights with load factors above

80%, shows a more pronounced initial gap, but the

schedule improves considerably across iterations. In

this case, the SD1 model improves by 26.9% from its

starting point, reaching over 93% of the HLP profit.

These improvements highlight the model’s ability to

generate increasingly efficient and profitable sched-

ules. Even relatively modest percentage gains can

translate into substantial operational and financial im-

pact for airlines over the course of a year.

Figure 7.5: Profit and Flow Evolution Across

Iterations



The bottom left plot in Figure 7.5 shows a steady in-

crease in total passenger flow across iterations for both

the HLP and SD1 models, while the profit decreases.

This shows that over the iterations, passengers are

captured with a lesser unit profitability. After excluding

underperforming flights with load factors below 80%,

the bottom-right plot shows the SD1 model’s conver-

gence. Initially, the adjusted SD1 flow accounts for

only 65.7% of HLP flow. However, it reaches an ad-

justed flow of 95.1% of the HLP levels by the final

iteration.

Overall, these plots demonstrate the iterative conver-

gence of the SD1 model toward the HLP benchmark.

Early iterations are marked by inefficient scheduling,

resulting in many low load factor flights and underper-

forming routes. As the optimization progresses, the

model learns to favor better-utilized connections, ulti-

mately approaching the performance of the ideal HLP

scenario in both total profit and flow.

The final configuration includes 33 unique destinations,

excluding the hubs. Of these, 13 are located in Eu-

rope, 12 in Asia, 4 in the Middle East, 2 in Africa, and

2 in Oceania. Compared to earlier iterations, the pas-

senger flow has shifted from a relatively balanced mix

of direct and transfer passengers to a composition of

80% direct and only 20% transfer passengers. This

shift highlights the increasing difficulty of efficiently

scheduling transfer connections within the network.

7.3.2. Minimize Transfer Time: Exact

To evaluate the performance in minimizing passenger

transfer times of the different scheduling models, we

compare the outcomes of the Genetic algorithm and

the Exact Method. Table 7.4 presents the average

transfer time achieved by each approach. The Exact

Method is the third and last model (SD2) in the inte-

grated model. The exact method obtains a average

transfer time of 34 minutes, which is 4 minutes higher

that the minimal transfer time of 30 minutes. The SD2

model ran for two hours and cutoff at a optimality gap of

10.8%. The incorporation of the exact method shows

a great improvement compared to the genetic algo-

rithm, which is not strange as the genetic algortihm

had a different objective, namely maximizing profit and

passenger flow within a certain transfer time.

Table 7.4: Comparison of Minimum Transfer Time:

Genetic Algorithm vs. Exact Method

Method Avg. Transfer Time (min.)

Genetic Algorithm 107

Exact Method 34

To illustrate the output of the optimized schedule, a

snippet is included of the flight schedule generated.

It displays arrivals and departures at Delhi. It can be

observed that flights originating from the northwest

of India arrive between 16:00 and 17:00 with transfer

passengers who are later connected to Australia.

Table 7.5: Flight Schedule with Passenger

Composition

From To
Dep.

Time

Arr.

Time

% Direct

Passengers

% Transfer

Passengers

St. Petersburg Delhi 10:30 16:10 15.5% 84.5%

Vienna Delhi 10:20 16:40 58.5% 41.5%

Copenhagen Delhi 10:10 16:50 51.8% 48.2%

Delhi Melbourne 17:20 05:00 7.7% 92.3%

Delhi Sydney 17:20 05:20 45.7% 54.3%

8 Sensitivity Analysis & Validation

This chapter presents a sensitivity analysis of the HLP

model and integrated model. The goal is to assess

how variations in key input parameters affect model

outcomes and to validate the model’s robustness un-

der different scenarios.

8.1. Hub Location Problem
The results in the sensitivity analysis of the HLP model

are computed using the parameters of table 6.3, unless

stated otherwise. The sensitivity analysis results were

obtained using a 3% optimality gap and may there-

fore differ slightly from those presented in Chapter 7.

The three hub configuration consists of the Bangalore,

Delhi and Mumbai, which is the same as the results in

Figure 7.4, Table 7.2, Table 7.3, and Table A.5.

Table 8.1 shows the performance of the HLP under

varying levels of base demand. As base demand in-

creases, both total profit and profit per flight improve.

Especially in the three hub configuration where profit

per flight rises from €4,627 to €5,824. This is likely

due to a stronger focus on high-profit spokes, as the

number of unique destinations decreases while the

average number of flights per destination increases.

Despite a fairly constant number of total flights at 366,

the network becomes more efficient in terms of prof-

itability and density. In the six hub configuration, more

destinations are served, ranging from 54 to 58, with a

moderate increase in total flights and a slightly lower

profit per flight compared to the three hub setup. Al-

though total profit increases with higher demand, the

other metrics show no consistent trend. This makes

it harder to interpret the effect of base demand on

network structure and efficiency.

In Figure 6.1 in Section 6 the total number of airport

slots are shown, covering both domestic and interna-

tional routes. The allocation percentages, such as

those referenced in Table 8.2, represent the portion

of these flights dedicated to international flights. For

example, an allocation percentage of 33% means that

approximately one-third of the total capacity is used for

18
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international flights, while the remaining flights serve

domestic routes.

Table 8.2 evaluates how different allocations of avail-

able hub capacity affect network performance. A

higher allocation of 50% yields the highest profits for

both the three- and six-hub configurations (€2,158,386

and €2,171,423, respectively). However, the increase

in profit over the 33% allocation is relatively modest,

while average hub utilization drops substantially, espe-

cially in the six-hub setup, where it falls to just 45.7%.

This suggests that although higher capacity enables

more flights, it may lead to underutilized hubs and

diminishing efficiency. It should also be noted that

the extra capacity allocated to international flights, re-

moves profit from the domestic operations. This is a

consideration to be made. Aircraft utilization remains

consistently high across all scenarios, particularly for

long-haul aircraft. This might also be the limiting factor

why allocating more capacity does not improve the

objective function significantly. The last interesting

metric of the table is the percentages of transfer and

direct flow, which favors transfer flow drastically when

increasing the allocation factor. This is mainly due

to the reason that connection to unique destination is

around 30 for a 10% allocation and increased to 54 for

the three hub configuration and 58 for the six hub net-

work at 50% allocation. This creates the opportunity

to serve more transfer passengers.

Table 8.3 investigates how varying aircraft availabil-

ity influences profit and aircraft utilization. As fleet

availability changes (from 90% to 110% of the base

fleet), profit also rises consistently, indicating that addi-

tional aircraft capacity enables greater revenue gener-

ation. However, this comes with a noticeable decline

in short-range aircraft utilization in the three-hub con-

figuration: from 100% at 90% availability to 86.4% at

110%. This suggests that as more aircraft become

available, scheduling inefficiencies emerge for short-

haul operations and extra aircraft become redundant.

In contrast, long-range aircraft utilization remains very

high across all scenarios, with only a minor drop in

the three hub case. For the six hub setup, both short-

and long-haul aircraft show consistently high utiliza-

tion, even at increased availability levels. This implies

that a larger network better absorbs additional fleet

capacity.

The parameter α represents the penalization of trans-

fer flows. A higher α effectively means more competi-

tion within themarket. Whenα is set to 0, transfer flows
are treated as if there is no competition. Table 8.4 ana-

lyzes how varying α values affect profitability and flow

distribution across different hub configurations. As α
increases from 0 to 3, profitability drops by 8.1% for the

three-hub case and 3.8% for the six-hub case. This de-

cline is partly offset by a rise in direct flows: 21.3% for

three hubs and 238.9% for six hubs. However, profit

per passenger still falls by 12.4% and 15.0% respec-

tively. The low detour factor (1.002 to 1.013) observed

across all settings is largely due to India’s geographical

location, minimizing the impact of penalizing transfer

flows.

The parameter α represents the penalization of trans-

fer flows. A higher α effectively means more competi-

tion within themarket. Whenα is set to 0, transfer flows
are treated as if there is no competition. Table 8.4 ana-

lyzes how varying α values affect profitability and flow

distribution across different hub configurations. As α
increases from 0 to 3, profitability drops by 7.9% for the

three-hub case and 3.5% for the six-hub case. This

decline is partly offset by a rise in direct flows: 107.2%

for three hubs and 8.4% for six hubs. However, profit

per passenger still falls by 18.7% and 11.0% respec-

tively. The low detour factor (1.002 to 1.012) observed

across all settings is largely due to India’s geographical

location, minimizing the impact of penalizing transfer

flows. The transfer fare formula, which depends on

the detour factor, further explains the limited effect on

profitability. The transfer fare is calculated as shown in

Equation (4.44). Since the detour factor remains low,

the penalization of transfer fares has a limited impact

on the overall flow and profitability, despite the shift

towards more direct connections.

Table 8.1: HLP performance for different base demand

Number of

Hubs

Base

Demand
Profit (€)

Unique

Destinations

Avg

Flights/Dest
Total Flights

Profit per

Flight (€)

50 1,693,543 51 7.2 366 4,627

3 100 2,003,786 48 7.7 368 5,445

200 2,131,531 46 8.0 366 5,824

50 2,000,467 54 8.7 468 4,275

6 100 2,159,823 58 8.0 464 4,655

200 2,233,800 54 8.8 474 4,713
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Table 8.2: HLP performance under varying hub capacity constraints.

Number of

Hubs
Allocation (%) Profit (€) Hub Util. (%) Flights Hubs Unique Destinations

Short AC

Util. (%)

Long AC

Util. (%)

Transfer

Flow (%)

Direct

Flow (%)

10 892,566 98.0 110 28 23.9 98.6 52.5 47.5

3 33 2,003,786 99.5 368 48 95.8 98.5 60.2 39.8

50 2,158,376 81.5 459 54 99.7 99.4 90.0 10.0

10 1,249,809 97.6 184 38 46.6 97.3 51.6 48.4

6 33 2,159,823 72.9 464 58 99.7 98.0 90.5 9.5

50 2,171,423 45.7 464 58 99.7 96.9 93.3 6.7

Table 8.3: HLP performance under varying aircraft availability.

# Hubs # Short Range # Long Range Profit (€)
Short Range

Utilization (%)

Long Range

Utilization (%)

153 27 1,926,686 100.0 98.9

3 170 30 2,003,786 95.8 98.5

187 33 2,040,293 86.4 98.4

153 27 1,956,127 100.0 100.0

6 170 30 2,159,823 99.7 98.0

187 33 2,379,169 99.2 99.3

Table 8.4: HLP performance under varying alpha factor.

#

Hubs

Alpha

Factor

Profit

(€)

Transfer

Flow

Direct

Flow

Total

Flow

Detour

Factor

Profit /

Pax (€)

0 2,048,940 34,692 10,337 45,029 1.012 45.50

3 1 2,003,786 30,416 19,087 49,503 1.005 40.48

3 1,888,258 29,701 21,417 51,118 1.002 36.94

0 2,190,614 43,256 11,994 55,250 1.009 39.65

6 1 2,159,823 45,854 7,367 53,221 1.005 40.58

3 2,114,247 48,864 11,002 59,866 1.002 35.32
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Table 8.5 examines the impact of varying spoke net-

work sizes on both profitability and the percentage of

transfer flow in different hub configurations. For ref-

erence, in a six hub and thirty spoke network, there

are 5,220 connections between the spokes, while a

sixty spoke network has 21,240 spoke-to-spoke con-

nections. This has been calculated by S × (S - 1) ×
H. The results indicate a clear trend: as the number

of spokes increases, both the profit and the proportion

of transfer flow rise significantly. For instance, when

the number of spokes increases from 30 to 60 in the

three-hub configuration, profit increases by 264.6%

and the transfer flow percentage rises from 37.5% to

61.4%. Similarly, in the six-hub configuration, profit

increases by 168.3% and the transfer flow percentage

escalating from 51.4% to 86.2%. This data suggests

that increasing the number of spokes significantly en-

hances network performance, both in terms of profit

and transfer flow efficiency. This is most likely due to

the increased access to high value spokes.

Table 8.5: Impact of spoke network size on profit and

transfer flow.

# Hubs # Spokes Profit (€)
Transfer

Flow (%)

30 549,509 37.5%

3 40 1,600,105 54.3%

60 2,003,786 61.4%

30 804,615 51.4%

6 40 1,972,409 54.5%

60 2,159,823 86.2%

An important final observation concerns the difference

in profitability between configurations with three and

six hubs. As shown in Figure 7.1, the marginal profit

gain diminishes beyond three or four hubs. However,

this conclusion is highly dependent on the underly-

ing parameters. Again, for the sensitivity analysis,

the three hub network consisted of the biggest hubs,

namely Delhi, Bangalore and Mumbai. In the base

scenario, the profit increases from €2,003,786 with

three hubs to €2,159,823 with six hubs which is an in-

crease of 7.8%. Yet, when adjusting parameters, this

difference can become much more pronounced. For

instance, when only 10% of hub capacity is allocated

to international flights, the profit increase from three to

six hubs rises to 40.0%. Similarly, in a network with

only 30 spokes, the increase in profit from three to

six hubs is as high as 46.4%. These cases clearly

demonstrate that the optimal number of hubs is highly

sensitive to assumptions about hub capacity utilization

and network size.

8.2. Integrated Model
The integrated model, and more specifically the ge-

netic algorithm, is quite sensitive to the input size. Fig-

ure 8.1 illustrates the iterative profit evolution for two

datasets: (a) displays results for a smaller instance

with 50 flights, while (b) presents a medium-sized in-

stance with 76 flights.

Figure 8.1: Profit Evolution Across Iterations for Two

Dataset Sizes

(a) Profit Evolution - Small Dataset

(b) Profit Evolution - Medium Dataset

For the small dataset, the difference between the HLP

model and SD model is in the first iteration just over

€70,000 (-13.4%). Over 10 iteration, when the model

convergence, the profit drops slightly to €505,797 (-

3.4% of initial HLP). Which is a €52,290 (+11.5%)

increase for the SD results of the first iteration. The

composition of type of passengers does not change

significantly, the passenger mix of the first iteration

consisted of 38% transfer passenger. This only drops

to 36% in the last iteration.

The medium dataset shows similar results, but slightly

different. As expected, the initial daily profit of the

HLP is higher at €704,396 and this drops with a rate

of 16.3% for the SD model to €589,813. The inte-

grated model converges at the 16th iteration with a

profit of €670,044 this is only a €34,351 (-4.9%) drop

in comparison to the first iteration and an increase of



€80,231 (+13.6%) compared to the first SD results.

However, the passenger mix is quite effected as the

transfer passenger account for 49% of the flow in the

first iteration and this drops significant to 32% in the

last iteration. The decrease in performance at itera-

tions 10 and 11 is probably caused by a change in

the network configuration, limiting the effectiveness

of the genetic algorithm’s warm start and reducing its

optimization capability temporarily.

Comparing this to the results of Figure 7.5, which were

162 flights, the smaller dateset converge within 20

iterations. The difference between the first and last

iteration of the SD model is just over €62,000, which

is less of an improvement than the medium dataset.

The respective increase of the larger data set is 7.5%,

while this is 13.6% for the medium dataset. Looking at

the HLP, for the larger set, the difference between the

first iteration of the HLP and the last has a decrease of

13.1%, while at the small - and medium dataset those

are 3.4% and 4.9%, respectively.

The smaller datasets show overall better performance

with lower HLP drop off over the iteration and a higher

increase in the SD model resulting in a quicker and

more optimal convergence of the integrated model.

This is driven by the decrease in the solution space

which resulted in an increased performance of the

genetic algorithm.

9 Discussion & Future Work

This chapter presents a critical reflection on the

model’s performance and outcomes. The discussion

begins in Section 9.1 with an evaluation of the method-

ology, followed by a review of the hypotheses. Finally,

in Section 9.2, key assumptions and limitations are ad-

dressed, and suggestions for potential improvements

are outlined to guide future work.

9.1. Discussion
The discussion section is divided into two subsections,

with the first subsection focusing on the overall per-

formance of the method and in the hypotheses are

discussed in the second subsection.

9.1.1. Method Evaluation

The methodology developed in this research presents

a robust and comprehensive approach to network de-

sign and scheduling, effectively bridging the traditional

gap between strategic planning and operational exe-

cution.

A key strength of this integrated method lies in its

holistic optimization. It allows the strategic decisions

regarding hub placement and network structure (from

the HLP) to be continuously validated and refined by

the operational realities of scheduling (captured by the

SD model). This iterative feedback loop is crucial; it

ensures that insights from the operational layer, such

as unassignable demand due to schedule constraints,

directly adjust the strategic network design. This dy-

namic interaction drives the system towards a more

realistic and globally optimal solution that considers

both financial objectives and operational viability.

A notable aspect of the SD component is the combi-

nation of a genetic algorithm in SD1 model with an

Exact Method for final refinement in the SD2 model.

The genetic algorithm effectively tackles the inherent

computational complexity of large-scale scheduling

problems, providing near-optimal solutions efficiently.

Its ability to handle dynamic objective functions (profit

or flow) and adapt iteratively enhances its robustness.

Subsequently, using an exact method to minimize pas-

senger transfer times allows for a precise optimization

of customer experience, demonstrating the model’s

flexibility to address specific service quality objectives

once a profitable and feasible schedule is established.

Ultimately, this integrated framework offers significant

advantages for complex network-based operations

across various industries. While this case study fo-

cuses on IndiGo, the underlying principles are broadly

applicable to other airlines and regions worldwide, as

well as any system where strategic location decisions

interact with tactical resource allocation and schedul-

ing. This could include logistics and supply chain man-

agement, where warehouse locations affect delivery

schedules or public transportation, where hub design

influences bus or train timetables.

9.1.2. Hypotheses Validation

Hypothesis 1

The results presented in Figure 7.1 and Table A.3 pro-

vide strong support for Hypothesis 1: the marginal

benefit of adding hubs decreases beyond a certain

point. The transition from one to two hubs yields a

substantial profit increase of 64.7%, as the network

begins to capture more demand and improve connec-

tivity. However, this gain drops to 34.7% with the third

hub, 21.5% with the fourth hub and declines further

to just 4.4% and 1.1% for the fifth and sixth hubs, re-

spectively. This clear trend of diminishing returns in

total profit, despite the growing size and complexity

of the network, confirms the plateauing value of fur-

ther hub expansion. For the scenario in Table 7.1, the

profitability of the four hub network only increases by

8.4% given 88 extra flights, which is a 23.9% increase

(Table 7.2). As fixed costs are ignored, this might be

problematic.

This is further illustrated by average profit per passen-

ger, as shown in Figure 7.2 and Table A.4. While the

network earns €47.60 per passenger with a single hub,

this steadily declines to €42.57 with six hubs.

Underlying these profitability dynamics is the network’s

ability to manage capacity constraints and utilization.

As shown in Figure 7.3, the hubs are nearly fully sat-

urated when one to four hubs are active Once addi-

tional hubs are introduced, demand is more evenly

22
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distributed, reducing the average hub utilization load

to 90.1% for five hubs and eventually to 74.6% for six

hubs.

Due to the increase of hub capacity after each intro-

duction, more flights are added to the network—most

of which are short-haul flights, as can be seen in Table

7.2. These flights are generally less profitable, and

this helps explain the trend in profitability per passen-

ger in Figure 7.2. This redistribution to more frequent

shorter flights is also reflected in Figure 7.3: short-

haul flight utilization rises from 16.8% (1 hub) to over

97.5% (4+ hubs), while long-haul utilization remains

consistently high (above 98%) across all scenarios.

This shows that long-haul demand is saturated early,

while short-haul operations benefit from added hub

capacity.

Additionally, the expansion from three to six hubs leads

to a noticeable shift in network structure. As shown in

Table 7.3, average flight distances to lower-demand

cities (S4–S5) drop significantly, from 4801 km at one

hub to as low as 2221 km at five hubs. Flight frequen-

cies to these low demand cities also increase steadily,

even though they likely contribute less to overall prof-

itability. This supports the observation that later stage

hub additions enable connectivity to thinner markets,

but yield diminishing returns due to the lower revenue

potential and shorter trip distances.

Additionally, the expansion from three to six hubs leads

to a noticeable shift in network structure. As shown in

Table 7.3, average flight distances to lower-demand

cities (S4–S5) drop significantly, from 4672-4801 km

at one hub to as low as 3179-3168 km at five hubs.

Flight frequencies to these low-demand cities also in-

crease steadily, even though they likely contribute less

to overall profitability. This supports the observation

that later stage hub additions enable connectivity to

thinner markets, but yield diminishing returns due to

the lower revenue potential and shorter trip distances.

Lastly, the profitability dynamics are influenced by pa-

rameter variations. When considering a three-hub

configuration of Delhi, Bangalore and Mumbai, the fol-

lowing data can be observed. In the base scenario,

moving from three to six hubs yields a 7.8% profit in-

crease. However, under more constrained conditions,

such as limiting international flight capacity to 10%

or reducing the network to just 30 spokes, the profit

increase rises to 40% (Table 8.2) and 46.4% (Table

8.5), respectively. These findings underscore that the

optimal number of hubs is not fixed but sensitive to as-

sumptions about hub capacity allocation and network

size.

In summary, while initial hub additions significantly im-

prove network efficiency and profitability, the marginal

benefits decline rapidly beyond three to four hubs. Ad-

ditional hubs help resolve capacity bottlenecks and

improve aircraft utilization, especially for short-haul

services, but also introduce complexity, reduce per-

passenger profitability, and lead to reliance on lower-

margin traffic. These dynamics collectively confirm

Hypothesis 1.

Hypothesis 2

The results presented in Figure 7.5 strongly support

Hypothesis 2: An integrated Hub Location Problem

and Schedule Design model has advantages over sep-

arated models. In the initial iteration, which effectively

represents a separated, sequential approach, the HLP

suggests a theoretical profit benchmark. However, the

SD model, when exposed to practical scheduling con-

straints, achieved only about 78.7% of that theoretical

HLP profit. This significant initial gap highlights the

inherent challenge of translating strategic plans into

feasible operations without tight integration.

Throughout the 20 iterations, the integration of HLP

and SD via a genetic algorithm facilitated a strong con-

vergence between these ideal and realistic solutions.

From its first to its final iteration, the SD model’s daily

profit increased by approximately 7.6%.

When applying a minimum load factor threshold of

80%, the initial SD profit saw a sharp reduction. How-

ever, the model quickly adapted. This ”corrected” SD

profit then rose by nearly 26.9% by the final iteration,

demonstrating a substantial recovery and efficiency

gain through the integrated process. This robust im-

provement ultimately reduced the gap with the HLP

benchmark to less than 7%, proving the model’s ability

to approach theoretical profitability while maintaining

practical feasibility.

A sensitivity analysis further reveals that the perfor-

mance of the integrated model depends significantly

on input size. For smaller datasets (50 and 76 flights),

the model converges faster and shows higher rela-

tive improvements in SD profit, 13.6% for the medium

dataset compared to 7.5% for the original larger one.

Additionally, the HLP drop-off is less severe in smaller

cases (-3.4% and -4.9%) than in the large case (-

13.1%), suggesting that the genetic algorithm is more

stable and effective with fewer variables. Furthermore,

the share of transfer passengers remains more con-

sistent in smaller cases, while larger datasets show a

marked decline in transfer traffic, indicating increased

scheduling complexity. These findings imply that al-

though the integrated model scales to larger problems,

its efficiency and convergence quality diminish with

size.

Overall, these results confirm that iteratively integrating

hub selection and schedule design leads to a more fea-

sible and profitable network. The process reduces the

gap between theoretical and actualized performance

by continuously adapting to operational constraints. In

doing so, the model validates Hypothesis 2.

Hypothesis 3

The results in Figure 7.4 and Table A.5 provide clear
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empirical support for Hypothesis 3: the inclusion of

multiple hubs significantly shifts the network’s focus

toward transfer flow. The table shows the distribution

of direct and transfer passengers across different hub

configurations, revealing that as hubs are added, the

share of transfer passengers increases, reflecting the

growing importance of transfer connectivity in multi-

hub networks.

When there is only one hub in the network, transfer

passengers account for 75% of total traffic. As ad-

ditional hubs are introduced, this share steadily in-

creases, reaching 89% by the time six hubs are in

place. Also, the focus goes from only highly profitable

spokes (mostly S1) to a more regional network of more

secondary spokes. This shift in flow type indicates that

the network’s primary objective evolves from serving

direct connections to optimizing the flow of passengers

between hubs, as more opportunities for connecting

flights are created.

However, it is important to note that this trend is sensi-

tive to the allocation factor and number of spokes in the

network. Table 8.2 shows that the share of transfer

flow increases significantly with higher hub capacity

allocations, driven by the greater number of unique

destination pairs that can be served, rising from around

30 at 10% allocation to over 50 in higher capacity sce-

narios. As shown in Table 8.5, the number of spokes

strongly influence the share of transfer traffic. A larger

spoke network increases spoke-to-spoke connection

opportunities, boosting transfer flows. Thus, although

multi-hub networks tend to favor transfer based traffic,

this effect depends heavily on the network structure.

In conclusion, the data supports H3 by showing that

the inclusion of multiple hubs increasingly emphasizes

transfer flow, although the effect is influenced by the

base demand and the number of spokes in the net-

work.

Hypothesis 4

The results in Table 8.4 provide support for Hypothe-

sis 4: competition constraints significantly impact hub

profitability. The competition parameter α penalizes

transfer flows to simulate competitive market condi-

tions. As α increases from 0 to 3, profitability declines

in both hub configurations: by over €160,000 in the

three hub case and around €76,000 in the six hub

case. This is partially offset by a rise in direct flows

from 10,337 to 21,417 for three hubs. The efficiency

loss is further illustrated by the decline in profit per

passenger from €45.50 to €36.94 (three hubs) and

from €39.65 to €35.32 (six hubs). Interestingly, the

detour factor is and remains low (1.002 - 1.012) across

all scenarios due to India’s central location. However,

it declines slightly when α increases, meaning that the

network starts to favor low detour routes to offer the

most compelling product.

In conclusion, the data support H4 by showing a de-

cline in profit as competition increases as expected.

However, competition is oversimplified in this research

so the real effects are still unknown.

9.2. Future Work
This section outlines the main assumptions and lim-

itations of the current model (Subsection 9.2.1) and

presents potential enhancements to improve its practi-

cal applicability (Subsection 9.2.2).

9.2.1. Model Assumptions and Limitations

The current model operates under a number of simpli-

fying assumptions to ensure computational tractability

and clarity of results. First, it assumes that demand

is static and entirely fabricated for the purposes of

model development and testing. The demand data

used does not reflect observed passenger volumes or

patterns from real-world airline operations. While this

assumption allows for controlled experimentation, it

significantly limits the model’s external validity and its

ability to provide actionable insights.

Second, the model applies a single average fare per

OD pair. This assumption simplifies the revenue calcu-

lation but neglects the complexities of airline revenue

management, including the existence of multiple fare

classes, ODmarket specific prices and passenger seg-

mentation. As a result, the model may misestimate

route profitability and fail to capture the full impact of

pricing strategies on network design.

Third, competitive effects are modeled only indirectly,

via a penalization factor on transfer flows. This sim-

plification overlooks the strategic role of competitor

schedules. Without this information, the model cannot

simulate demand diversion.

Lastly, fixed and capital costs are not explicitly included

in the objective function of the hub location problem.

This exclusion could lead to an overestimation of the

benefits of opening new hubs or operating new flights,

as the cost of establishing and maintaining additional

infrastructure is not factored into the decision making

process.

While these assumptions were necessary to integrate

the HLP model with the SD model, they also limit the

model’s realism and direct applicability. Understand-

ing these limitations is essential for interpreting the

model’s outcomes and setting directions for future im-

provements.

9.2.2. Potential Enhancements

Several promising directions can be pursued to en-

hance the model’s accuracy and practical relevance.

A key improvement would be to replace fabricated

demand with real-world data derived from historical

passenger volumes. This would provide a more re-

alistic basis for network design. To account for vari-

ability, stochastic optimization techniques could then

be applied to capture fluctuations due to seasonality,

economic shifts, or competitor actions.



Another extension involves modeling fare segmenta-

tion and revenue management practices more explic-

itly. Rather than relying on a single average fare, the

model could integrate multiple fare classes. This would

lead to more accurate profitability estimates and more

targeted route development. A further enhancement

lies in the explicit modeling of competition. Incorporat-

ing actual schedules, capacities, and prices of compet-

ing airlines would allow for more realistic assessments

of market share and route viability.

Additionally, the genetic algorithm could be improved

by focusing primarily on transfer passengers, assum-

ing direct passengers serve to fill remaining seat ca-

pacity. This simplification may improve scalability and

performance in larger solution spaces.

Finally, the model could be extended by the aircraft

routing problem to ensure feasible aircraft transitions

between scheduled flights.

Together, these enhancements would transform the

model from a high-level strategic tool into a comprehen-

sive framework capable of addressing the multifaceted

challenges of modern airline network planning.

10 Conclusion

As demand keeps exceeding supply in the aviation

sector, and airports are increasingly getting more con-

gested. New players and new solutions need to be

found. One of those solutions is the introduction of a

multi-hub network focusing on international - interna-

tional traffic flow. This study set out to explore how

an airline network can be efficiently scheduled by uti-

lizing multiple hubs, accounting for competition and

operational constraints.

This research contributes theoretically by introducing

an integrated model that aligns hub location and sched-

ule design through a feedback loop, bridging the gap

between strategic planning and operational feasibil-

ity in airline networks. It extends existing theory by

quantifying diminishing returns from hub expansion,

modeling competitive effects on transfer traffic, and

showing how capacity constraints shape network struc-

ture. Practically, the model provides airline planners

with a realistic, data-driven tool for designing multi-hub

networks.

This research shows that an integrated approach to

hub location and schedule design significantly en-

hances network efficiency by effectively leveraging

multiple hubs within operational constraints. The study

confirms that while initial hub additions lead to substan-

tial improvements in connectivity, aircraft utilization,

and profitability, the marginal benefits decline beyond

a certain number of hubs due to saturation effects

and lower per passenger profitability. The integration

of hub selection and scheduling through an iterative

model proves more effective than a sequential ap-

proach, reducing the gap between theoretical and fea-

sible outcomes. Additionally, the inclusion of multiple

hubs shifts the network toward transfer dominant flows

and emphasizes the importance of short haul connec-

tivity. These findings underscore the importance of

integrated, constraint-aware optimization in designing

robust and realistic multi-hub airline networks.

Future research could enhance this integrated multi-

hub network model by incorporating real-world de-

mand data, modeling demand uncertainty, and in-

cluding fare class segmentation and explicit competi-

tor schedules. These improvements would allow the

model to better reflect market dynamics, passenger

behavior, and strategic responses in a competitive

airline environment.
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A Appendix

Table A.1: Parameter tuning Genetic Algorithm

Small Dataset Large Dataset

Parameter Values Tested Best Value Best Score Best Value Best Score

Population Size 114, 228, 342, 456 456 89.2 456 89.3

Generations 500, 1000, 2000, 3000 3000 88.7 3000 89.4

Mutation Rate 0.001, 0.005, 0.01, 0.015 0.01 90.1 0.005 88.0

Selection Size 0.1, 0.25, 0.49, 0.75 0.75 89.7 0.49 88.3

Data Structure hub_focused, spoke_focused, random hub_focused 87.1 random 89.4

Elitism Rate 0.05, 0.1, 0.15, 0.2 0.2 90.0 0.1 88.0

Objective Switch 25, 50, 75, 100 100 86.9 75 89.0

Table A.2: Performance of different optimization objectives in the genetic algorithm.

Objective Description Avg Profit (%) Avg Flow (%)

Flow Maximize total passenger flow 83.7 81.9

Profit Maximize net profit 90.1 85.0

Combined Weighted balance of flow and profit 91.7 85.8

Combined Switch between flow and profit 91.9 87.3

Figure A.1: Evolution of Genetic Algorithm Objective Function
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Table A.3: Profit statistics by number of hubs

# Hubs
Unique

Combinations

Mean

Profit (€)
Std. Dev. Min Obj. Max Obj.

Growth

Rate (%)

1 6 775,177 135,610 534,023 904,399 –

2 15 1,276,790 148,190 1,017,313 1,547,772 64.7

3 20 1,719,683 155,289 1,448,181 2,014,352 34.7

4 15 2,088,826 97,823 1,891,402 2,183,265 21.5

5 6 2,179,919 24,880 2,130,888 2,201,706 4.4

6 1 2,204,464 – 2,204,464 2,204,464 1.1

Table A.4: Profit per passenger statistics by number of hubs

# Hubs
Unique

Comb.

Avg.

Profit (€)

Std.

Dev.

Min

Profit (€)

Max

Profit (€)

Growth

Rate (%)

1 6 47.60 6.22 38.50 54.59 –

2 15 44.53 2.88 36.65 48.61 -6.4

3 20 41.16 1.15 39.24 43.71 -7.6

4 15 40.24 1.43 37.11 42.73 -2.2

5 6 41.10 1.05 39.06 41.94 2.1

6 1 42.57 – 42.57 42.57 3.6

Table A.5: Daily passengers based on type

# Hubs Direct Transfer

1 4,334
(25%)

13,230
(75%)

2 12,360
(34%)

23,563
(66%)

3 19,573
(39%)

30,598
(61%)

4 7,471
(14%)

45,503
(86%)

5 4,972
(9%)

47,413
(91%)

6 5,636
(11%)

47,002
(89%)
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Figure A.2: Hub-and-spoke networks for 1 to 6 hubs

(a) 1 hub (b) 2 hubs

(c) 3 hubs (d) 4 hubs

(e) 5 hubs (f) 6 hubs
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1
INTRODUCTION

The aviation sector is growing every year, and forecasts do not expect this growth to slow down
anytime soon. During the COVID-19 shock, the Revenue Passenger Kilometers (RPK) dropped by
93%. In the spring of 2023, domestic travel bounced back to the pre-COVID level, and a year later
the international demand bounced back IATA (2024). The same report shows incredible growth
projections in terms of total passengers number for the upcoming year, with an expected global
growth in 2024 of 10.4%. This number will decrease due to the end of the recovery period to
4.7% Y-o-Y growth in 2028. In a press release of August 2024, IATA showed a RPK YoY% growth
of 20.1% on the Europe - Asia route. Major airlines strategically positioned themselves to serve
this route, mostly the Gulf carriers 1 and Turkish Airlines at the expense of European airlines with
direct flights Georgiadis, P. (2024).

The demand continues to exceed supply, both at the airport and for the airlines. Istanbul opened
in 2019 a new airport and Dubai is also planning to build a new airport, which would be the largest
in the world Ros, M. (2024). This excess demand results in opportunities for other carriers to com-
pete for passengers from Europe to (Southeast) Asia. Geographically India could be an exciting
opportunity to serve as a hub for this connection. The two leading airlines in India are IndiGo and
Air India, with a combined domestic market share of over 80%. In addition to this route, India also
presents it as an ideal hub for other east-west and north-south flows. IndiGo already has flights to
the Middle East, Central Asia, and South East Asia.

Currently, IndiGo serves European cities under the auspices of a codeshare partnership with Turk-
ish Airlines and Air India serves limited European countries directly. Both airlines are expanding
their operations to get ready to gain more market share in this route. Air India just recently added
its third hub in Bangalore to attract more international destinations. IndiGo announced at the be-
ginning of 2024 the purchase of 30 Airbus A350-900 aircraft to offer non-stop flights to Europe, the
UK, the US, and Australia from India. Both these Airlines operate using a multi-hub network, with
Air India operating from three hubs and IndiGo from six hubs. Air India’s main hub is in Delhi,
with additional hubs in Mumbai and Bangalore. In addition to these three, IndiGo has hubs in
Hyderabad, Chennai, and Kolkata. The location of these hubs can be seen in figure 1.1.

1Emirates, Qatar and Etihad

1



2 1. INTRODUCTION

Figure 1.1: Map of India including hub locations

One of the challenges that will arise is efficiently scheduling these flights over multiple hubs. The
Gulf carriers and Turkish Airlines, among other carriers, only connect flights through one hub.
When used efficiently, multiple hubs can have advantages over single hubs. Firstly, increased flex-
ibility for passengers by offering more connecting possibilities between origin-destination pairs.
Secondly, shorter flight times as the connection can take place at the optimal airport with the least
detour between the origin and destination. However, it makes scheduling efficiently also more dif-
ficult. First of all, a decision needs to be made which hubs need to be considered for this connec-
tion and secondly, if multiple hubs are attractive between origin-destination pairs, the passengers
could transfer at all these hubs both ways. To clarify this even more when all six hubs are con-
sidered, it can be that a passenger can transfer at each of these hubs on both ways. A passenger
can fly to its destination with a connection in Delhi, but back to their original location transferring
through Mumbai.

Therefore, this research aims to investigate how to schedule international-to-international traffic
flow using six hubs given a multi-objective criteria of efficiency, maximize revenue, and connec-
tivity.

This literature review will provide an overview of the state-of-the-art existing research on airline
network planning. This includes, but not limited to, network development, frequency planning,
and schedule planning. The objective of this review is to identify research gaps in multi-hub sys-
tems and to propose specific research questions for future the subsequent master thesis.

Chapter 2 provides background information on airline planning, including recent research and
key considerations for effective planning. Chapter 3 provides an overview of the state-of-the-art
research done in airline planning and the hub location problem. Subsequently, relevant and fre-
quently used algorithms are explained in chapter 4. In chapter 5, the case study on IndiGo is
introduced. Chapter 6 shows the research gap including opportunity. In the last chapter, chapter
7, the approach is presented.



2
BACKGROUND

In this chapter, a brief introduction is given to the aspects that contribute to the scheduling prob-
lem. At the beginning of this chapter, an overview is given of all the decisions that are involved in
airline planning, ranging from short to long-term and from operational to strategic. In section 2.1,
a deep dive is done into different network models to give a better understanding of the advantages
and limitations of a multi-hub network. Section 2.2 discusses destination and frequency model-
ing. In section 2.3, connectivity and connection banks are reviewed. A timetable example is given
in section 2.4.

Airline planning is a complex process and it involves lots of stakeholders. In Figure 2.1 an overview
is given of the framework from the long-term decision at the top to the short-term decision at the
bottom. This can be connected with strategic, tactical, and operational decisions.

Figure 2.1: Overview of the Planning Framework, derived from Santos, B. (2023)
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4 2. BACKGROUND

The top layer shows the most strategic decisions. Fleet planning determines the quantity of certain
types of aircraft to acquire and operate. Network development evolves around which destinations
should be served and what kind of network model needs to be adopted. To summarize, this top
layer answers the question; Which pool of different aircraft can be used to serve which destination?

The last block within the strategic domain is frequency planning and consequentially schedule
planning. This research will mostly focus on this part of the airline planning as highlighted in figure
2.1. Within frequency planning, the demand of the destinations is determined, and, of course, the
frequency of flights to these destinations. Schedule design decides which aircraft could potentially
serve a destination at what time. The following block of this column is resource allocation in which
crew and one specific aircraft are assigned to a flight leg.

The other two pillars, focused on maintenance and optimizing financial gain are both important
within airline planning, but these are out of the scope of this research. These will be not discussed
in depth during the literature review. Although this figure shows three pillars, in the real world
everything is connected. This makes airline planning a very complex process and therefore it will
be simplified in the subsequent research.

2.1. NETWORK MODELS
An airline needs to strategically determine its network structure, which outlines how city pairs are
served and how flights are scheduled to offer attractive itineraries. Two main models are used;
a Point-to-Point model and a Hub-and-Spoke model. In the most basic definition the former
connects the origin directly with the destination and the latter allows transfers through the cen-
trally located hub Abdelghany, A. F., and Abdelghany, K. (2018). These systems are widely used
over decades, and over the years combinations and variations have emerged to try to mitigate the
downside of each model.

POINT-TO-POINT
The Point-to-Point model was initially used due to low demand for more complex networks like
a hub-and-spoke model Martí, L., (2015). Thereafter it was opted by low-cost carriers who serve
mainly secondary airports within a smaller region. As explained in the introduction the main idea
of the point-to-point model is that the flight goes directly from city A to city B without a connec-
tion. An example framework can be seen in figure 2.2 with each node representing an airport and
the arrows indicating flight legs and direction.

The Point-to-Point model is generally cheaper to operate for airlines Zgodavová, Z., (2018). Martí,
L., (2015) finds that low-cost and private flight operators, which typically use the Point-to-Point
system, manage their resources more efficiently than those using hubs. The efficiency score is
calculated based on the relationship between the weighted sum of outputs (operating income) and
the weighted sum of inputs (tangible and intangible assets, supplies, and labor costs). One of the
reasons is the reduction in operational complexity and time. Cook, G., and Goodwin, J. (2008) also
highlights that low-cost carriers, often associated with Point-to-Point systems, have been more
successful and have grown more compared to network carriers using the Hub-and-Spoke system.
Another advantage stated by Cook, G., and Goodwin, J. (2008) is the duration of flying: Point-to-
point flights reduce the total travel time which is valued by passengers. In addition, an advantage
of point-to-point is limiting congestion at one single airport. Airlines adopting the point-to-point
model often increase the agility and flexibility of adding or adjusting the routes based on demand,
this was especially seen during COVID-19. Morrell, P., and Lu, C. (2007) shows also the sustainable
benefits of direct routes. It generates significant savings in noise and engine emissions costs. The
environmental (social) cost difference ranged from 25% to 71%, depending on population density
and extra mileage involved in hub routing.



2.1. NETWORK MODELS 5

Figure 2.2: Illustration of Point-to-Point Network

Martí, L., (2015) and Alderighi, M., (2005) state that scheduling a direct flight between two cities
is only feasible if the demand is high enough between the cities. This is one of the biggest draw-
backs of a point-to-point network as it limits origin-destination pairs. The load factor is generally
lower due to point-to-point operations being sensitive to demand fluctuations. Point-to-point
offers limited connectivity, as no connection is possible. Flight frequency is found important by
customers and in general, flight frequency is low in point-to-point.

HUB-AND-SPOKE
The hub-and-spoke model has increased in popularity over the recent decades. It offers passen-
gers a substantial increase in origin-destination pairs by connecting cities through a hub. A hub is
a central airport where all flights either depart to or arrive from various spoke airports. A spoke is
a non-hub airport in the airline network. See figure 2.3 for an illustration.

Figure 2.3: Illustrations of Hub-and-Spoke Network

HUB

Wheeler, C. F. (1989) notes that a hub-and-spoke network provides high-frequency flight routes
between low-density city pairs. A hub-and-spoke network model offers, when designed efficiently,
a wide variety of origin-destination pairs via a connection through the hub. Having not only di-
rect passengers but also connecting passengers allows the airlines to use bigger planes which are
cheaper per seat Brueckner, J. K., and Spiller, P. T. (1994). Using a hub-and-spoke model allows
airlines to increase the flight frequency between the hub and a spoke, which ultimately gives the
passenger more flexibility on the time of departure. Due to the large number of routing possi-
bilities and always returning to the hub, a hub-and-spoke can utilize its resources better, which
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increases operational efficiency Wheeler, C. F. (1989). Barla, P., and Constantatos, C. (2000) shows
that hubbing provides airlines with increased flexibility in demand-uncertain markets, by reallo-
cating its capacity.

The hub-and-spoke model increases traffic at the hub, especially during peak demand. This results
in congestion at the hub airport, which most likely leads to more delays. On top of this, a drawback
of this model is the dependency on one single airport. If the airport is nonoperational due to
weather or strikes, the whole network collapses. This would result in lots of claims from passengers
and operational problems Wheeler, C. F. (1989). In the previous subsection, it is already mentioned
that point-to-point is better for the environment. This is confirmed by Pels, E. (2021), who gave an
overview of several studies assessing the sustainability of a hub-and-spoke network.

MULTI-HUB MODEL
Quickly after the introduction of hub-and-spoke networks, networks with multiple hubs emerged.
This is strengthened by mergers and partnerships between airlines, like Air France-KLM. Natu-
rally, a single hub network reaches a maximum in growth in the form of airport capacity or origin-
destination routes to be logically flown through the hub. A Dutch airline with a hub in Amsterdam,
would not be able to capture passengers flying from Barcelona to Rome without excessive detours
Goedeking, P. (2010). It could be advantageous for this airline to add a second hub to gain access
to new regions while being competitive. Even when overlapping some O-D routes, airlines found
it to be highly beneficial and yield enormous benefits.

Figure 2.4: Illustrations of Multi-Hub Network

HUB HUB

Chou, Y.-H. (1990) mentions that major airlines upgrade to hub-and-spoke networks with multiple
hubs to remain competitive. If the duration of the route gets too long, customers will move to other
airlines. One of the downsides of a hub-and-spoke network is congestion at a hub airport, which
can lead to delays. When transforming from a single hub to multi-hub, delays can be decreased
and passenger satisfaction increased as shown by Karaman, A. (2018).

The strategic advantages of utilizing multiple hubs within a network, as opposed to a single hub,
are still uncertain, since the primary benefit — density economies — declines with the addition of
each new hub Düdden, J.-C. (2006). However, in this stage, the frequency development outweighs
the loss in density economies in most of the thin markets Burghouwt, G. (2014).

Burghouwt, G. (2014) shows a distinction in types of multihubs: the complementary, overflow,
and regional systems. The complementary multihub system can be seen in two or more evenly
distributed hubs that serve both long-haul flights. This results in a high-yield local market at both
hubs at the same time. The hubs are complementary on smaller (international) destinations. A
great example is the Air France-KLM dual hub system. The overflow system contains a primary
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hub and smaller hubs, which don’t have any natural advantages. The smaller intercontinental des-
tinations are served from the primary hub. Lastly, the regional system, when the local geographi-
cal market cannot be covered by the primary hubs. Lyon is a regional hub in the Air France-KLM
multi-hub system.

2.2. DESTINATION AND FREQUENCY MODELING
When airlines choose new destinations to operate, several factors are at stake. These factors could
be, among other things, market demand, network strategy, competitive dynamics, operational re-
strictions, and regulatory considerations Wong, C. W., (2023). Airlines also prioritize destinations
that complement their current network, considering both direct demand, as well as connecting
demand.

Demand forecasting is a major topic within airline planning. As the objective for any airline is to
maximize profits in the long run, the best match needs to be found between demand and supply.
Demand is however uncertain. Basic models used to predict demand are based on historical data,
economic trends, and passenger booking patterns. More advanced models often incorporate sea-
sonality, demographic factors, and competitive pricing. Sherali, H., and Zhu, X. (2008), Kenan, N.,
(2017), Birolini, S., Jacquillat, A., (2021), and Birolini, S., Pais Antunes, A., (2021) are all focused on
the integration of (stochastic or uncertain) demand in airline planning.

To model demand with respect to airline planning, two approaches can be taken. A static or dy-
namic demand model can be implemented Enki, Y., (2024). Static demand refers to a product or
service that remains constant over a period of time. In the context of the airline industry, static
demand assumes that passenger demand for flights is predictable and does not change signifi-
cantly due to external factors. Dynamic demand adapts to these external factors, such as competi-
tors, economic conditions, and unexpected events (e.g. pandemic). Therefore dynamic demand
models often incorporate real-time data to better capture these variations. This allows for more
responsive planning.

Market share, which can be variously measured in terms of passengers, seats, or flights between
origin-destination markets, is always a function of the frequency of flights Vogel, H. L. (2021). Fre-
quent flights lead to increased market share as the flexibility of the airline increases and therefore
the service to passengers. The theoretical relationship between flight frequency and market share
can be seen in figure 2.5 as an elongated forward slanted "S"-curve. This is only theoretical as
operationally more factors are at play such as departure times and airline reputation.

Figure 2.5: Flight Frequency in relation to Market Share Belobaba, P., (2015).
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2.3. CONNECTIVITY AND CONNECTION BANK
Hub connectivity refers to the number and efficiency of connecting flights available to passengers
through an airline hub Bootsma, P. (1997).

The choice for an airline includes numerous factors: fares, airline reputation, in-flight services,
and frequent flyer programs among other things. Another factor is scheduling convenience, this
would include the total duration of the flight and the number of destinations. IATA (2015) showed
the three most influential metrics for ticket purchases. For most passengers, the ticket price (41%)
is the most important factor, followed by schedule and convenient flight time (21%) and frequent
flyer program (13%). The second factor is especially present for business passengers as they are
more time-sensitive and less price-sensitive Nenem, S., (2020). This is also proved by Milioti, C.,
(2015), who used multivariate probit models to analyze airline choice by passengers. The model
showed business travelers are less price-sensitive and consider the flight schedule to be important,
they have also a higher tendency to direct non-stop flights. Burghouwt, G., and De Wit, J. (2005),
Huang, J., and Wang, J. (2017) and Jiang, Y., (2020) model the duration of the connection with
respect to the total duration of the route in choosing flights. These models show the behavior of
passengers who seek the quickest and most convenient routes. In addition, passengers tend to
accept a one-stop route, but this acceptance decreases drastically when it is a multi-stop route.
Multistop routes attract only about 2–3% of the total passenger demand Seredyński, A., (2014).

Another factor considered in deciding if a connection is valid is the degree of geographical detour,
which is also known as circuitry or detour factor. It is calculated by the sum of the distances of all
legs divided by the origin-destination distance. Research has shown acceptable maximum detour
factors are between 1.25 and 1.7, however in most cases not more than 1.5 Seredyński, A., (2014).
So if the detour factor is 2, the total distance flown by the route with a connection is twice as much
a direct flight.

Logothetis, M., and Miyoshi, C. (2018) developed a new model (The Hub Connectivity Perfor-
mance Analyser (HCPA)) to evaluate the connectivity of indirect flights, in which schedule- and
comfort-related attributes are both assessed. The paper conducts a case study on Emirates and
Turkish Airlines. It shows that for Emirates almost 85% of the connecting flight is perceived by
passengers as the same value as direct flights between the O-D market. For Turkish Airlines, this
drops to an efficiency of only 70.7%. It needs to be noted that the presence of a large local market
for Turkish Airlines influences the strategy to not only focus on optimal connecting flights or that
it is simply not possible.

A connection bank is a core feature of a hub-and-spoke. A connection bank is a cluster of closely
timed arrivals and departures at a hub airport, designed to maximize feasible connections for pas-
sengers transferring between flights. Feasible solutions entail as many origin-destination pairs
within a specific time frame. In figure 2.6 a connection bank can be seen from a passenger’s point
of view Seredyński, A., (2014). It also shows the minimum connecting time (MinCT) and maxi-
mum connecting time (MaxCT). The MinCT in this case is the time needed for passengers and
their baggage to change flights. This number is set by the airport and usually depends on the type
of connection. The value of this number is derived from several hundreds of rules and therefore
simplified within research. By applying MaxCT limits, strongly unattractive connections are re-
moved by restricting the maximum time transfer passengers have to wait between flights at a hub
airport. This can be distinguished between continental and intercontinental flights and proposed
180 min for continental, 300 min for continental-to-intercontinental, and 720 min for interconti-
nental connections Burghouwt, G., and De Wit, J. (2005).
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Figure 2.6: Connection Bank including minimum and maximum connecting time.

On frequently served routes, multiple flight-legs can be done in one day. Seredyński, A., (2014)
analyzed that 85% of the passengers book the fastest connection, 13% the second fastest, and the
rest book slower connections.

From an aircraft point of view, there is also a minimum time during a connection, this is called the
minimum Turnaround Time. This is the time needed between arriving and departure to reload the
aircraft and switch crew.

2.4. TIMETABLE DESIGN
Combining all above would result in a timetable as seen in table 2.1. In this case, passengers from
using F5 can be connected at Airport A to F6. This creates an attractive origin-destination pair
between airports B and C.

Table 2.1: Airline Timetable derived from Xu, Y., (2023)

Flight Dep. Airport Arr Air. Dep. time Arr. time

F1 Airport A Airport B 08:00 09:30

F2 Airport B Airport A 10:10 11:40

F2 Airport C Airport A 10:20 12:20

F4 Airport A Airport B 07:30 09:00

F5 Airport B Airport A 10:15 11:45

F6 Airport A Airport C 13:00 16:00

F7 Airport C Airport A 16:45 19:45

F8 Airport A Airport C 20:30 22:30
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LITERATURE REVIEW

As already discussed in chapter 2, airline planning involves many different stakeholders and one
bucket cannot be solved independently without influencing other areas. For example, it is possible
to develop an extremely efficient schedule, but if maintenance checks are not accounted for, the
schedule is basically useless. Said this, to solve the whole picture is impossible for this research.
In section 3.1, a closer look is taken into efficient scheduling with a focus on the airline scheduling
problem and the fleet assignment problem. Section 3.2 provides an overview of the state-of-the-
art research of the hub location problem with a focus on the airline industry.

3.1. AIRLINE PLANNING PROBLEM
The fleet assignment model (FAM) involves allocating aircraft types to scheduled flights to max-
imize profit, while scheduling determines flight timetables. The fleet assignment problem and
airline schedule planning problem have been researched over decades. Abara, J. (1989) was one
of the first to solve the fleet assignment problem, but with a fixed daily schedule. In addition to
Abara, J. (1989), Hane, C. A., (1995) also discussed the fleet network problem at an early stage, both
with a daily fixed schedule. Abara, J. (1989) point out that the objective is free to choose based on
the preference of the user, but generally it is to maximize the benefit contribution of the flights
less the cost. Since then, research has shown fleet assignment and scheduling as an integrated
problem to find the optimal solution for both.

In the airline industry, two mathematical types of networks are mostly used to solve problems
within airline planning. The first is a connection network, an illustration of this network van be
seen in figure 3.1. This network was first introduced by Abara, J. (1989). The second is a time space
network which can been seen in figure 3.2. Hane, C. A., (1995) was among the first to discuss this
type of network.

In a connection network, the nodes represent a point in time when flight arrive or depart. The arcs
in the network represent flight connection arcs who link arrival nodes to departure nodes. It also
includes master source and master sink nodes to model the beginning and end of the day. This
structure ensures that the model adheres to constraints such as minimum turn-times between
flights and allows for the assignment of fleet types to these connections. The decision variable
xi j f in this network is a binary variable that takes 1 if there is a connection between flight leg i and
flight leg j by fleet type f, and otherwise 0 Sherali, H. D., (2006).

10
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Figure 3.1: Connection Network Figure 3.2: Time Space Network

In contrast, a time-space network focuses on representing flight legs directly. This allows the
model to determine feasible connections based on time and space. The nodes represent the de-
parture and arrival of a flight leg. The arcs represent ground arcs, flight arcs, or wrap-around arcs.
This representation provides greater flexibility in establishing connections and reduces the num-
ber of decision variables since it does not require specifying all possible connections in advance.
However, it does not distinguish among specific aircraft on the ground, which can limit its appli-
cation in the subsequent routing problem. The decision variable x f i in this network is a binary
variable that takes 1 if fleet type f covers flight leg i, and otherwise 0. Additionally, it includes flow
variables x f st t ′ that represent the flow over the ground arcs by fleet type f at station s between a
specific time Sherali, H. D., (2006).

Desaulniers, G., (1997) build upon the work of Hane, C. A., (1995) by incorporating time windows
into the arrival and departure of flight legs. This concept allows for greater flexibility by allow-
ing airlines to shift between departure times within the time window to better match passenger
demand, optimize resource usage, and mitigate delays. The increase in flexibility comes with its
limitation as the bigger the time windows, the bigger the problem. Also, aircraft utilization de-
creased, and subsequently the airline’s profit. The needed time window should be observed case
by case.

In addition to the fleet assignment model, Barnhart, C., (2002) introduced the itinerary-based
fleet assignment model (IFAM). They combine the FAM with the Passenger Mix Model (PMM).
The PMM is a framework designed to optimize the allocation of passengers across different flight
legs in an airline’s schedule, with the goal of maximizing revenue or minimizing costs associated
with carrying passengers. It improves the FAM model by more effectively capturing network ef-
fects and handling spill and recapture dynamics. While FAM treats each flight leg independently,
IFAM integrated the flight legs for increased efficiency. IFAM explicitly models spill and recapture,
optimizing capacity across the network. Barnhart, C., (2002) used the model of Hane, C. A., (1995)
as the basis of the IFAM.

Previous research was focused solely on daily schedules. Bélanger, N., (2006) was the first to re-
search to develop a weekly schedule with homogeneity, meaning using the same aircraft for each
flight. The used an edited version of the model proposed by Hane, C. A., (1995), which includes
additional variables and constraints. The advantages of a weekly schedule are differentiating be-
tween weekdays and weekend days.

Till this time the fleet assignment model and scheduling problem were solved independently. To
the best of the author’s knowledge Lohatepanont, M., and Barnhart, C. (2004) was the first to in-
troduce an Integrated Schedule Design and Fleet Assignment Model (ISD-FAM). Lohatepanont,
M., and Barnhart, C. (2004) used the IFAM framework developed by Barnhart, C., (2002) as the
core of the integrated model. The ISD-FAM can optimize both the selection of flight legs and the
assignment of the different types of aircraft. ISD-FAM incorporated demand correction terms to
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account for a dynamic market. However, at that time, this model is not suitable to find solutions to
large problem sizes within a desired timeframe. Therefore the Approximate Schedule Design and
Fleet Assignment Model (ASD-FAM) was proposed. The ASD-FAM removes the demand correc-
tion terms and applies modified recapture rates for interaction between demand and supply. The
ASD-FAM demonstrated improved performance by quick and feasible solutions.

Sherali, H., and Zhu, X. (2008) present a two-stage stochastic mixed-integer approach to address
the FAM. The primary focus is assigning aircraft to flight legs while demand is uncertain. In the
first stage, the model makes a high-level family assignment decision based on different scenar-
ios. The second stage involves a detailed assignment of the different fleet types within the chosen
families, taking into account the uncertain demand. This allows for greater flexibility during the
decision-making process. Yan, S., (2008) also addresses the complexity of demand uncertainty
during the scheduling process. The authors highlight that the traditional approach at that time of-
ten relied on average demand. The paper introduced a two-stage stochastic framework that incor-
porates stochastic demand and variable market shares. The results of the stochastic-demand flight
scheduling model show improvements over the deterministic-demand flight scheduling model.

To add flexibility to an integrated airline schedule design and fleet assignment problem optional
flight legs can be included in the model Sherali, H., (2013). The model also includes utilization of
itinerary-based demand and multiple fare classes. In addition, it incorporates balance constraints
to ensure even distribution of flights over the day to 1) accommodate passengers and 2) less con-
gestion at major hubs. This is in addition to more features already mentioned in the research
above. The model of Sherali, H., (2013) shows a well-rounded solution for the problem. One of
the limitations of this model is that it uses mandatory flight legs as input, so it does not build a
network schedule from scratch. This could however be due to the limited computer power at the
time, as the proposed model had already out-of-memory difficulties.

The first model focused on integrated airline scheduling and fleet assignment in combination with
airport congestion was proposed by Pita, J., (2013). The model significantly improves airline mod-
eling by incorporating delay cost and airport congestion using an origin-destination based frame-
work. The case study of TAP Portugal, a multi-hub network with the main hub in Lisbon and a
secondary hub in Porto, showed great results. The model showed an increase in profits, a reduc-
tion of total flights and a decrease in delay cost. However, the average connecting time increased
slightly.

Zhang, D., (2016) propose a two-mixed integer programming model, with the first stage solving
the integrated airline schedule and fleet assignment based on a discrete choice model. The sec-
ond model includes price elasticity on an itinerary base level. The focus on price elasticity and
passenger preferences, provides a more nuanced understanding of how these factors influence
flight scheduling and fleet assignment decisions in a competitive airline market. The authors use
a heuristic algorithm to solve the second model efficiently and they demonstrate that the pro-
posed models can significantly improve airline profits by optimizing flight schedules and fleet
assignments, particularly in competitive markets where passenger preferences and market share
dynamics are crucial.

Previous research showed integrated flight scheduling and fleet assignment under stochastic de-
mand Yan, S., (2008) and Sherali, H., and Zhu, X. (2008). In addition, Kenan, N., (2017) proposed
an integrated model in combination with stochastic demand and stochastic fares. The authors
developed a similar two-stage stochastic programming model as Sherali, H., and Zhu, X. (2008),
but including stochastic fares in the second stage. A Sample Average Approximation algorithm
was used, which was the first time within the airline industry, resulting in a near-optimal solution.
Although the paper focused on stochastic demand, the model does not account for demand spill
and recapture.
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Abdelghany, A., (2017) presents a comprehensive model to optimize airline scheduling in a com-
petitive environment. The focus of the paper is developing an operational flight timetable that
maximizes revenue while ensuring enough possibilities to utilize its resources like aircraft and
crew. The framework explicitly focuses on demand shift due to competition among airlines by
integrating a network competition analysis model. This model captures the interaction between
the scheduling decisions of the target airline and the responses of passengers to these decisions,
particularly in terms of their itinerary choices. It uses a bi-level optimization model, with the up-
per level focusing on the initial schedule and the lower level focusing on passenger choice on the
attractiveness of the itinerary. Genetic Algorithm is used to solve the problem in combination with
a passenger assignment-simulation model, and a resource-tracking model. Previous research al-
ready incorporates competition into their model Yan, S., (2008), Sherali, H., (2013) and Pita, J.,
(2013). However, Abdelghany, A., (2017) advances by providing a more holistic and dynamic ap-
proach that incorporates competition.

Wei, K., and Jacquillat, A. (2019) focused on integrating passenger choice into timetable develop-
ment and the fleet assignment model. The authors argue passengers booking decisions depend
on airline planning decisions. This model captures the attractiveness of each itinerary based on
various factors, including the departure and arrival times of flights, connection opportunities, and
ticket prices. Specifically, the model allows for the calculation of the probability that a passenger
will choose a particular itinerary based on its attractiveness relative to other available options, in-
cluding itineraries offered by competing airlines and the no-fly alternative. The model includes a
comprehensive approach to timetabling that starts from scratch rather than making incremental
adjustments to existing schedules. Due to the size of the model, commercial solvers and state-of-
the-art integer programming approaches were not possible. They proposed a multiphase solution
framework including a rule-based heuristic strategy.

Ciftci, M. E., and Özkır, V. (2020) presented a model to minimize connection time for passengers
at hub airports. The study examines the bank structure at hub airports. Bank structures try to
minimize the connection time between flight legs by passengers. The model showed enhanced
passenger convenience and operational efficiency by reducing the connection time and airport
congestion. Given the nature of the NP-hard problem, they employ two meta-heuristic algorithms,
Simulated Annealing and Tabu Search, to derive near-optimal solutions efficiently.

Over recent years, the supply-demand interaction has gained a lot of attention. Birolini, S., Pais
Antunes, A., (2021) proposed a mixed integer nonlinear flight scheduling and fleet assignment
optimization model. The paper overcomes the limitation of Zhang, D., (2016), where the model
suffers from unrealistic substitution patterns due to the assumption that the odds ratios between
pairs of alternatives are unaffected by other choices. This limitation was already addressed by
Cadarso, L., (2017). The model proposed by Pita, J., (2013) lacks advanced market demand repre-
sentation where service attributes such as flight frequency and travel time are ignored. To over-
come these limitations, the paper integrates a hierarchical demand model based on nested logit
formulation, which results in nonlinearity. The benefit of this model is the continuous integra-
tion of demand and allocation of individual itineraries. To solve this model a tailored piecewise
linearization scheme is introduced followed by tightening constraints. The case study of Alitalia
showed an improvement in profits of 6.9% in comparison to the baseline scenario.

In the same year, another paper was published by partially the same authors. Birolini, S., Jacquil-
lat, A., (2021) similarly proposed a model to capture the interactions between demand and supply.
This paper indeed recognizes also the interdependencies between supply and demand (i.e. de-
mand changes on the service/products provided). However the major difference in this paper fo-
cuses on strategic planning, so long-term planning decisions. Birolini, S., Pais Antunes, A., (2021)
focuses more on tactical planning, medium-term planning decisions. Birolini, S., Jacquillat, A.,
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(2021) present a mixed-integer non-convex optimization model known as Airline Network Plan-
ning with Supply and Demand Interactions (ANPSD). To solve this model they introduce 2αECP:
An exact gradient-based cutting plane algorithm. This algorithm develops a linear outer approx-
imation of the nonlinear, nonconvex function. In the case study, a multihub network system is
present. The hubs are randomly chosen among the ten largest hubs in Europe. This could limit
the efficiency.

Yang, H., Buire, C., (2024) focused on optimizing connectivity through bank structure via a multi-
objective framework. The authors use a hub connectivity index to quantify the attractiveness of
a connection. First, it evaluates all feasible connections and secondly it ranks these connections
using the Quality of Connectivity Index. The Quality of Connectivity consists of two components,
with the first focusing on detours in terms of distance and the second focusing on the extra time
by connecting instead of a direct flight. To solve this a Selective Simulated Annealing is adopted
which resulted in time-efficient results.

Enki, Y., (2024) proposed a two-phase methodology aimed at capacity optimization and the fleet
assignment problem. The first phase is focused on demand projection with three different scenar-
ios (low, base, and high) as output. These outputs consist of flight frequency to which destination
and an acceptable range for the fleet size of the FAP model. This methodology allows for Network
Contribution at a strategic level, which results in increased coverage and subsequently increase
in revenue. Network Contribution refers to the revenue generated by specific routes or flight legs
within the overall flight network.

To the best knowledge of the author, Yang, H., Delahaye, D., (2024) are the first and only authors
focusing on improving efficiency specifically focused on a multi-hub network. Previous research
has included multiple hubs within their network for a case study, but never the focus on utilizing
the hubs as efficiently as possible. Yang, H., Delahaye, D., (2024) proposed a model to re-time
flight legs in order to increase the total connectivity of the network measured by a modified Hub
Connectivity Index. It showed great results, but the scope was limited to re-timing and therefore
not applicable to building a network from scratch.
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3.2. HUB LOCATION PROBLEM
As there is limited research on optimizing airline planning utilizing multiple hubs, a closer look is
taken into a more general problem. This problem is the Hub Location Problem (HLP). The hub
location problem is a specific area in the location theory focused on the strategic placement of
the hubs to maximize the efficiency of the total network Farahani, R. Z., (2013). The efficiency
can be measured in several ways, and this will be discussed later in this section. The first HLP to
be addressed using optimization models was proposed by O’Kelly, M. (1987). The hub location
problem has several variants and can be summarized in table 3.2.

Table 3.2: Classification of Hub Location Problem (HLP) Models Farahani, R. Z., (2013)

Capacity of hub
node

Assignment of
non-hub node to
hub nodes

Type of the HLP Number of hub
nodes

Capacitated (C) Single allocation
(SA)

Median (M) Single (1)

Uncapacitated (U) Multiple allocation
(MA)

Center (T) More than one (P)

Covering (V)

Set covering (SV)

Maximum covering
(MV)

Firstly, A hub node can be capacitated (C) or uncapacitated (U), identifying whether a hub has
capacity constraints like maximum traffic flow. Secondly, a spoke can be allocated to a single hub
(SA) or allocated to multiple hubs (MA). Thirdly, what is the type of HLP, this can also be observed
as the objective of the HLP. This can be seen in table 3.3. Lastly, the decision on how many hubs
are being used.

Table 3.3: Hub Location Problem Types Farahani, R. Z., (2013)

Type of the HLP Objective

Median (M) Minimize total transportation cost

Center (T) Minimize maximum distance

Covering (V) Cover all nodes within a threshold

Set Covering (SV) Ensure all nodes within range

Maximum Covering (MV) Maximize coverage of nodes

In the case of the airline industry and the focus of this research; it should be a C-MA-...-P HLP. The
airline industry is in terms of the objective somewhat more complicated as the objective is not as
straightforward as in table 3.3. The objective could involve dynamic demand or competition.

Eiselt, H. A., and Marianov, V. (2009) addresses the competitive hub location problem. The au-
thors incorporate an attractiveness function based on flying time (including connection time) and



18 3. LITERATURE REVIEW

fares. This model is proposed to capture the preferences of the passengers. The authors relax the
"winner-takes-all" assumption, resulting in a more realistic model. The model uses three factors
to decide the attractiveness of each route; The basic attractiveness of an airline, travel time, and
fare. The model incorporates non-elastic demand to calculate the market share. The case study
used only one competitor and was based on Australian Post data. Tiwari, R., (2021a) extends the
work of Eiselt, H. A., and Marianov, V. (2009) by introducing four alternative approaches to solve
large-scale instances. The findings indicate that Kelley’s cutting plane method within Lagrangian
relaxation (LR-CPA) is the most effective approach, successfully solving all tested instances with
up to 50 nodes within a 1% optimality gap in less than 10 minutes of CPU time. Tiwari, R., (2021b)
extends the work of Eiselt, H. A., and Marianov, V. (2009) by proposing a single allocation and mul-
tiple allocation model in which only one path is allowed between any origin and destination pair
through the hubs. It claims that this preserves the economy of scale benefit of a hub and spoke net-
work. Due to this added constraint, the market share is lower than the model of Eiselt, H. A., and
Marianov, V. (2009), but the authors mentioned that the network is also more likely to be costlier
to operate. The difference between market share between single allocation and multiple alloca-
tions is negligible, however, CPU time is drastically different (120 minutes for SA and 10 minutes
for MA).

Soylu, B., and Katip, H. (2019) proposed a bi-objective uncapacitated multiple allocation p-hub
median problem to minimize the transportation cost and 2-stop journey. The argument is that
this will increase the direct and 1-stop routes. This results in higher customer satisfaction. The
authors propose both exact and heuristic (Variable Neighborhood Search) algorithms to find the
Pareto frontier, which represents the set of optimal solutions balancing the two objectives.

Yin, F., and Zhao, Y. (2021) introduce a mean-CVaR (Conditional Value-at-Risk) hub interdiction
median model that considers travel time as a random variable with finite sample observations. It
develops a data-driven robust model with integration of statistical hypothesis testing. The model
accounts for uncertainty in travel time based on finite sample data, which has not been previously
applied to hub interdiction problems.

The first step in airline planning is fleet planning. So for a new airline, deciding which hubs to op-
erate is closely related to fleet planning. Mohri, S. S., (2022) is the first with an integrated approach
to the hub location problem and fleet planning. Nasrollahi, M., and Kordani, A. A. (2023) extends
this work by incorporating passengers’ preferences and the value of time. It uses a bi-objective
uncapacitated single allocation HLP.

ExtHatipoğlu, S., (2024) focuses on the selection of a secondary hub using the HLP. The objective is
to maximize connectivity and green airport solutions. The model incorporates social, economic,
and environmental factors affecting airport connectivity.
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Table 3.4: Literature Overview Hub Location Problem
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4
SOLUTION ALGORITHMS

The problems described in chapter 3 are very complex and need to be solved in a clever way. These
problems are all (mixed) integer programming problems. Commercial solvers, like Gurobi, are
very advanced. However, in most of the literature unique algorithms were used to obtain a faster
reasonable result. In this section, four algorithms are highlighted that were often found in recent
research. These four are not exhaustive. In section 4.1 an overview will be given of exact meth-
ods. In section 4.2 a deep dive will be done into metaheuristic methods. Section 4.3 provides an
overview of the models.

4.1. EXACT SOLUTION MODELS
It is possible to solve these problems by just trying every option. Due to the complexity of the
problem, this is not reasonable as runtime would be enormous. Different algorithms have been
developed and used to mitigate this problem. These algorithms create several smaller subprob-
lems or relax a constraint (i.e. ignore a constraint).

BENDERS DECOMPOSITION
Sherali, H., (2013) used a bender decomposition algorithm to solve the integrated schedule design
and fleet assignment problem. Bender composition split the problem into several smaller, more
manageable problems. This method works particularly well if the decision variable consists of
integer and continuous variables.

This algorithm was first introduced by BENDERS, J. (1962/63). The problem is first divided into
two parts. The first one is the master problem. The master problem is the main problem that
includes the decision variables that are difficult to handle directly. This would be integer or binary
decision variables. The second part is the subproblem. the subproblem evaluates the feasibility
and optimality of the master problem. It usually involves continuous variables and can be solved
more easily than the master problem.

It is an iterative process. After the initial solution by the master problem and the evaluation of
the subproblem, Bender’s cuts (additional constraints) based on the sub problem’s solution or
dual values are introduced to the master problem. This is done to narrow the search space in the
master problem. These steps are repeated until the master and subproblem solutions converge.

Potential drawbacks of Bender Decomposition are slow convergence if the cuts are poor and the

20
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setup requirements to use this algorithm.

Algorithm 1 Benders Decomposition

Inputs:
P : Original problem formulation
ϵ: Tolerance for optimality
Outputs:
x∗: Optimal solution of the master problem
y∗: Optimal solution of the subproblem

1: Initialize x(0) Start with an initial feasible solution
2: Set LB =−∞ Initialize lower bound
3: Set U B =+∞ Initialize upper bound
4: while U B −LB > ϵ do Continue until within tolerance
5: Solve the master problem with current x(k) Find feasible solution
6: if optimal master problem solution is found then
7: x(k+1) = x∗ Update solution
8: Solve the subproblem with x(k+1) Check feasibility of the master solution
9: if subproblem is feasible then

10: LB = f (x(k+1)) Update lower bound
11: else
12: Generate Benders cuts Create cuts for infeasibility
13: Add cuts to the master problem Update master problem with cuts
14: end if
15: end if
16: Update upper bound U B Modify if necessary
17: end while
18: return x∗, y∗ Return optimal solutions

BRANCH AND BOUND
Although Branch and Bound is a fairly old algorithm, it is still being used today. Abara, J. (1989)
used this method when first introducing the fleet assignment problem more than three decades
ago.

The algorithm starts by relaxing a constraint, most likely an integer or binary constraint. Solving
this relaxed version gives an upper bound for a maximization problem and a lower bound for a
minimization problem for the original integer problem. The objective is to find a minimum opti-
mality gap.

After an initial solution is found for the relaxed version. A branch is created at the non-integer
variable in the solution. If decision variable x1 = 3.7 in the relaxed solution, two branches are
created: 1) x1 ≤ 3 or 2) x1 ≥ 4. Each subproblem is solved as a relaxed version.

If a solution yields only integers, it is a candidate for the best solution. If the solution is worse
than the best feasible solution, the solution gets discarded as it can not improve anymore. If the
solution is non-integer and better than the current best solution, continue branching and creating
further subproblems.

The limitation of branch and bound is that it is computationally intensive as the number of branches
grows exponentially. This is especially true if the branches are not effective.

A pseudo-code derived from Martins, J. R. R. A., and Ning, A. (2021) can be found in algorithm 2.
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Algorithm 2 Branch-and-Bound Algorithm

Inputs:
S: Set of binary constrained design variables
fbest: Best known solution, if any; otherwise fbest =∞
Outputs:
x∗: Optimal point
f (x∗): Optimal function value

1: while branches remain do
2: Solve relaxed problem for x̂, f̂
3: if relaxed problem is infeasible then
4: Prune this branch, back up tree
5: else
6: if x̂i ∈ {0,1} for all i ∈ S then A solution is found
7: fbest = min( fbest, f̂ ), back up tree
8: else
9: if f̂ > fbest then

10: Prune this branch, back up tree
11: else A better solution might exist
12: Branch further
13: end if
14: end if
15: end if
16: end while

4.2. METAHEURISTIC MODELS
Heuristic algorithms aim to find good and feasible solutions within a desirable timeframe, but not
the optimal solution. These methods focus on efficiency and practical usage. There is a difference
between heuristics and metaheuristics. Heuristics has no local optimum escape mechanism while
metaheuristics does. Partially, this results in heuristics finding a feasible solution quickly while
metaheuristics are better in finding a near-optimal solution. As time is not relevant in this case
and a better result is more desirable. The focus is on metaheuristics.

GENETIC ALGORITHM
A Genetic Algorithm (GA) is an optimization technique inspired by the principle of natural selec-
tion and genetics. It is particularly useful in large search spaces or highly nonlinear structures.
Abdelghany, A., (2017) used GA to solve the airline planning problem under competition.

First, the algorithm creates an initial population (i.e. an initial set of solutions). Each solution will
be evaluated by the fitness function, which scores how well it solves the optimization problem.
The last step of this part is selecting a set of parents from the initial population. Higher-fitness
solutions are more likely to be chosen, but low-rated fitness scores can also be chosen allowing for
genetic diversity.

After the parents are selected multiple actions can happen but it is all probabilistic. The first is
a crossover. For each of the selected parents, a crossover is done to create offspring. So a part
of the solution space of one parent merges with the other half of the solution space of another
parent. The second is the mutation. Mutation entails randomly altering genes based on a small
probability. For example, flipping a binary bit. This helps to maintain diversity and not get stuck
in a local optimum.
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These steps are repeated for several generations until the algorithm is terminated. The algorithm
is terminated when certain conditions are met, which could be a number of generations or mini-
mum fitness level.

The limitations of the Genetic Algorithm are there is no guarantee of finding a global optimum.
Also, the Genetic Algorithm is sensitive to parameters like mutation rate, crossover rate, and pop-
ulation size, often requiring fine-tuning.

A pseudo-code derived from Martins, J. R. R. A., and Ning, A. (2021) can be found in algorithm 3.

Algorithm 3 Genetic Algorithm

Inputs:
x, x̄: Lower and upper bounds
Outputs:
x∗: Best point
f ∗: Corresponding function value

1: k = 0
2: Pk = {x(1), x(2), . . . , x(np )} Generate initial population
3: while k < kmax do
4: Compute f (x) for all x ∈ Pk Evaluate objective function
5: Select np /2 parent pairs from Pk for crossover Selection
6: Generate a new population of np offspring (Pk+1) Crossover
7: Randomly mutate some points in the population Mutation
8: k = k +1
9: end while

SIMULATED ANNEALING
Simulated Annealing (SA) is a probabilistic optimization technique. It finds a good approximation
of the global optimum by allowing the algorithm to accept a worse solution. This allows the pos-
sibility to escape a local optimum. Yang, H., Delahaye, D., (2024) used SA to address the re-timing
of flight for an optimal bank structure.

The algorithm starts with an initial solution and sets an initial temperature. The temperature pa-
rameter is used to determine the probability of accepting a worse solution. A high temperature
allows for greater exploration of the solution space due to the increase in the probability of ac-
cepting a worse solution. The temperature decreases over time by a factor of α, making it more
likely for worse solutions to be rejected in the later stages of the algorithm.

After the initial solution, a neighboring solution is generated by making small random changes to
the solution space. The energy (i.e. objective function) is calculated for each solution. A better
solution is always accepted. A worse solution could be accepted or rejected.

The algorithm terminates by setting up a stopping criterion. This could be the number of iterations
or a threshold for the temperature. The final solution is the best solution found so far, it does not
have to be the last solution found.

The limitations of Simulated Annealing are there is no guarantee of finding a global optimum.
Also, Simulated Annealing is sensitive to parameters like the initial temperature, cooling schedule,
and stopping criteria.

A pseudo-code derived from Martins, J. R. R. A., and Ning, A. (2021) can be found in algorithm 4.
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Algorithm 4 Simulated Annealing

Inputs:
x0: Starting point
T0: Initial temperature
Outputs:
x∗: Optimal point

1: for k = 0 to kmax do Simple iteration; convergence metrics can be used instead
2: xnew = neighbor(x(k)) Randomly generate from neighbors
3: if f (xnew) ≤ f (x(k)) then Energy decreased; jump to new state
4: x(k+1) = xnew
5: else
6: r ∈U [0,1] Randomly draw from uniform distribution

7: P = exp

(
− f (xnew)− f (x(k))

T

)
Probability high enough to jump

8: if P ≥ r then
9: x(k+1) = xnew

10: else
11: x(k+1) = x(k) Otherwise remain at current state
12: end if
13: end if
14: T =αT Reduce temperature
15: end for

4.3. OVERVIEW
Several algorithms have been discussed above. It comes down to a trade-off between accuracy
and speed between the exact methods and metaheuristics. In the case of this problem, accuracy
is more important than speed as this model tackles long-term problems. However, there are limi-
tations on the duration of the algorithm for practicality.

As a lot is still unknown at this point of the research, not a single algorithm can be chosen that
guarantees the best result. This should be a process. Most likely to start with a metaheuristics
approach to find quickly a feasible and near-optimal solution. If the model shows quick conver-
gences using these algorithms, it could be that exact algorithms will be possible to implement.
Based on the weighted score table 4.1, the Genetic Algorithm stands out as a strong initial candi-
date for implementation due to its high score in speed, scalability, and ease of implementation. It
lacks however in robustness and interoperability, so this needs to be looked into.
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Table 4.1: Weighted score table of the algorithms

Weight
Benders

Decomposition

Brand and

Bound

Genetic

Algorithm

Simulated

Annealing

Accuracy 3 5 5 3 3

Speed 2 2 2 5 4

Implementation 2 2 2 4 4

Scalability 3 3 2 5 4

Robustness 2 5 4 3 3

Interpretability 1 4 3 2 2

Total Score 46 40 50 45
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CASE STUDY: INDIGO

This research is done in collaboration with IndiGo. In the end, a case study will be performed
using IndiGo’s network. As mentioned in the introduction, IndiGo recently purchased a new set
of Airbus A300-900. This aircraft has the range to connect Europe with India and therefore Europe
with East Asia. In addition to this future route, IndiGo already serves international areas at closer
distances, like the Middle East and Central Asia. IndiGo is operating from six hubs in India. See
table 5.1 below which six hubs are used including the current daily departures indicating the size
of each hub.

Table 5.1: Hubs of IndiGo in India, including daily departures

City Daily Departures

Delhi 219

Bengaluru 175

Mumbai 165

Hyderabad 152

Chennai 117

Kolkata 114

Due to India’s promising geographic location between Europe and East Asia, it is an excellent can-
didate to serve this route. The competition on this route is however fierce. Firstly, the legacy carri-
ers that fly direct, like Air France - KLM and Lufthansa. Secondly, the connecting carriers between
Europe and Asia, like Turkish Airlines and the Gulf carriers1. The latter will most likely be the
biggest competition. The question therefore is whether IndiGo can utilize its six hubs to gain an
edge over the single hub networks of the competitors. Within this question, it will become clear
if all the current six hubs, presented in table 5.1, are being used for international - international
traffic flow.

1Emirates, Qatar and Etihad

26



6
RESEARCH GAP

This short chapter states the research gap in section 6.1, which identifies gaps in the reviewed lit-
erature. Section 6.2 identifies the opportunity presented by these gaps and which the focus would
be for further research. Section 6.3 shows how this research will be divided into sub-problems by
introducing the main research question and sub-questions.

6.1. RESEARCH GAP
In this literature study, an overview has been given of airline planning and the hub location prob-
lem. As it can be understood by the previous chapters, a great work of research has already been
done on the problems individually and the integration of the different problems. Within airline
planning, the main focus was on the schedule design problem and the fleet assignment problem
with the most focus on demand and connectivity. However, within this literature, only one paper
was dedicated to optimizing a multi-hub network Yang, H., Delahaye, D., (2024). This research
only focused on re-timing the flight legs, and not designing a flight schedule from scratch. An-
other area where research has been lacking is mitigating airport congestion. Pita, J., (2013) is the
only research focused on airport congestion. Their model also includes competition, however, one
major area is missing in this research and that is time costs. Time costs include in-flight time and
connecting time costs. Therefore the demand captured is simplified and therefore unpractical in
the real world.

The hub location problem is a far broader problem than only in the airline industry. Previous Re-
search focused on the competitive hub location problem showing its limitation as the hubs are un-
capacitated Eiselt, H. A., and Marianov, V. (2009) and Tiwari, R., (2021b). The competition analysis
is relatively basic as limited factors are used and/or simplified. The most notable simplified factor
is the flight time, including connection time. This means that connection times are assumed to be
fixed, however, this is not practical as connection time depends on the schedule design problem.
Mohri, S. S., (2022) and Nasrollahi, M., and Kordani, A. A. (2023) focused on incorporating airline
planning into the hub location problem, but only limited to fleet planning. In addition, all the
reviewed literature on the hub location problem used uncapacitated hubs.

To combine the two research areas with their respective limitations, the following research gaps
can be identified:

• The design of a complete flight schedule for multi-hub networks from scratch, as current

27
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studies focus only on re-timing flight legs rather than a full integrated schedule design that
considers multiple hubs.

• There is a lack of research addressing airport congestion combined with the detailed mod-
eling of time costs (in-flight and connecting times), which would provide more realistic and
practical insights into passenger behavior and network efficiency.

• Existing studies on competitive hub location models are limited by the assumption of un-
capacitated hubs and fixed connection times.

Addressing all of these research gaps is not feasible within the scope of this study. Therefore, the
focus will be on the integration of the capacitated multi-allocation p-hub location problem and
airline planning (especially the schedule design problem) under competition that could optimize
for revenue, connectivity, and market share among focus areas. Such integration would enable
airlines to make strategic decisions on which hubs to operate for a (sub)network or evaluate the
current hub efficiency. This could lead to the closing or opening of hubs.

6.2. RESEARCH OPPORTUNITY
Given the research gaps identified, the thesis project focuses on the following research objective:

To develop a robust integrated hub location and schedule design model that accounts for
operational hub constraints, with the goal of creating an airline network optimized for maximum

revenue.

Revenue has been chosen as a metric to distinguish different point-to-point pairs and the rea-
son for choosing one pair above another. Otherwise, there would be no incentive to connect in
one particular hub. The fares will most likely be simplified as the average between point-to-point
pairs. This adds robustness to the model, as in the real world, this could be linked to the revenue
management system, but this is out of the scope of this research. It is also acknowledged that costs
are ignored in the research objective, and therefore it is not to maximize profit. This has also been
done out of simplicity and assumed that the cost of all hubs is roughly the same.

In a later stage, and if time allows, the fleet assignment model and/or aircraft routing problem
could also be integrated. Due to time and complexity constraints, this is not the initial focus.

6.3. RESEARCH QUESTIONS
The research objective described in section 6.2 is still a big problem to grasp at once. This has been
divided into multiple areas. Starting with the main research questions.

Main Research Question

How can an integrated model for hub location and schedule design enhance network efficiency
by leveraging multiple hubs, while accounting for hub constraints?

Sub-questions

1. How can hub location and airline schedule design be effectively integrated into a single
optimization model?

2. How can we determine the optimal number and location of hubs in a multi-hub airline
network?

3. What is the effect of hub and fleet constraints and competition on the profitability of the
hub location problem?



7
APPROACH

In this chapter, an overview is given of the approach of the subsequent research. The approach is
divided into five buckets, namely literature review, research phase 1, research phase 2, results and
discussion, and finalization. The detailed Gannt chart can be found in figure 7.1.

• Literature Review: This section is almost finished. The objective of this part is to identify
the research gap that is going to be researched in the next two phases.

• Research Phase 1: Validating the two separate models/problems (hub location problem
and airline scheduling). Also, a basic integration of the two models should be in place.

• Research Phase 2: Firstly, to finalize or add to models and secondly, validation of the model.
Complete data analyses and interpret the results. Major steps into writing the body of the
thesis should be done in this phase.

• Research Dissemination Finalize writing thesis and prepare for submission.

29
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Figure 7.1: Gantt chart
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CONCLUSION

In conclusion, this literature study explored the different aspects of network planning, starting
with the background on the topic. This included network structures, passenger preferences, bank
structure, and market capture. It delved deeper in into the advantages and complexities of multi-
hub airline network planning. A multi-hub network can potentially provide advantages, such as
increased connectivity, enhanced passenger flexibility, and greater operational efficiency. By dis-
tributing traffic flow across the different hubs, airlines can expand their product offerings and
increase flight frequency. However these advantages come at a price, and this price is increased
complexity. Within the literature, multi-hub models remain underexplored compared to single-
hub and point-to-point networks.

The literature study reveals several key research gaps: 1) the need for complete flight schedule
design for multi-hub networks from scratch, as current studies only focus on re-timing flight legs
rather than developing a fully integrated schedule; 2) limited research on airport congestion that
models time costs, including in-flight and connection times, which would yield more practical in-
sights into passenger behavior; and 3) a lack of competitive hub location models that incorporate
capacitated hubs and variable connection times, which would better reflect real-world constraints.

To address these gaps, the subsequent study aims to:

To develop a robust integrated hub location and schedule design model that accounts for
operational hub constraints, with the goal of creating an airline network optimized for

maximum revenue.

This objective focuses on creating a model capable of efficiently managing multi-hub operations
while maximizing revenue.

A case study of IndiGo, India’s leading airline, will provide valuable insights into the practical appli-
cation of a multi-hub network. IndiGo’s six hubs allow it to optimize connectivity, with this study
focused on international routes. This will highlight the importance of an integrated model to fully
realize the benefits of multi-hub operations in a competitive airline industry.
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