
Xiaozhou Li

8650077894619

ISBN 9789461865007

Smoothness-Increasing Accuracy-Conserving Filters for
Discontinuous Galerkin Methods: Challenging the

Assumptions of Symmetry and Uniformity

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op
donderdag 9 juli 2015 om 10:00 uur

door

XIAOZHOU LI

Bachelor of Science, Mathematics and Applied Mathematics,
University of Science and Technology of China, China

geboren te Chongqing, China

This dissertation has been approved by the

Promotor: Prof.dr.ir. C. Vuik
Copromotor: Dr. J.K. Ryan

Composition of the doctoral committee:

Rector Magnificus, voorzitter
Prof.dr.ir. C. Vuik, Technische Universiteit Delft, promotor
Dr. J.K. Ryan, University of East Anglia,

United Kingdom, copromotor

Independent members:

Prof.dr.ir. A.W. Heemink, Technische Universiteit Delft
Dr.ir. M.I. Gerritsma, Technische Universiteit Delft
Prof.dr.ir. J.E. Frank, Universiteit Utrecht
Prof.dr.ir. J.J.W. van der Vegt, Universiteit Twente
Prof.dr. R.M. Kirby, University of Utah, United States

Smoothness-Increasing Accuracy-Conserving Filters for Discontinuous Galerkin Meth-
ods: Challenging the Assumptions of Symmetry and Uniformity.

Dissertation at Delft University of Technology.

This research was carried out at Delft Institute of Applied Mathematics, Delft Uni-
versity of Technology, and sponsored by the Air Force Office of Scientific Research
(AFOSR), Air Force Material Command, USAF, under grant number FA8655-09-1-3017.

Copyright c© 2015 by Xiaozhou Li.

All rights reserved. No part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopy, recording,
or any information storage and retrieval system, without permission in writing from
the author.

ISBN 978-94-6186-500-7

Published by TU Delft Library.

Printed in the Netherlands by Ridderprint.

Summary

SIAC Filters: Challenging the Assumptions of Symmetry
and Uniformity

In this dissertation, we focus on exploiting superconvergence for discontinuous Galerkin
methods and constructing a superconvergence extraction technique, in particular,
Smoothness-Increasing Accuracy-Conserving (SIAC) filtering. The SIAC filtering tech-
nique is based on the superconvergence property of discontinuous Galerkin methods
and aims to achieve a solution with higher accuracy order, reduced errors and improved
smoothness.

The main contributions described in this dissertation are: 1) an efficient one-sided
SIAC filter for both uniform and nonuniform meshes; 2) one-sided derivative SIAC
filters for nonuniform meshes; 3) the theoretical and computational foundation for
using SIAC filters for nonuniform meshes; and 4) the application of SIAC filters for
streamline integration.

One-sided SIAC filtering is a technique that enhances the accuracy and smoothness
of the DG solution near boundary regions. Previously introduced one-sided filters are
not directly useful for most applications since they are limited to uniform meshes,
linear equations, and the use of multi-precision packages in the computation. Also, the
theoretical proofs relied on a periodic boundary assumption. We aim to overcome these
deficiencies and develop a new fast one-sided filter for both uniform and nonuniform
meshes. By studying B-splines and the negative order norm analysis, we generalized the
structure of SIAC filters from a combination of central B-splines to using more general
B-splines. Then, a “boundary shape” B-spline (using multiple knots at the boundary)
was used to construct a new one-sided filter. We also presented the first theoretical
proof of convergence for SIAC filtering over nonuniform meshes (smoothly-varying
meshes).

One purpose of SIAC filtering is to improve the smoothness of DG solutions. Be-
cause of the increased smoothness, we can obtain a better approximation for the deriva-
tives of DG solutions. Derivative filtering over the interior region of uniform meshes

iii

iv

was previously studied. However, nonuniform meshes and boundary regions remain
a significant challenge. We extended the one-sided filter to a one-sided derivative fil-
ter. To deal with nonuniform meshes, we investigated the negative order norm over
arbitrary meshes and proposed to scale the one-sided derivative filter with scaling hµ.
For arbitrary nonuniform rectangular meshes, we proved that the one-sided derivative
filter can enhance the order of convergence for the αth derivative of the DG solution
from k + 1− α to µ(2k + 2), where µ ≈ 2

3 .
The most challenging part of this project is recovering the superconvergence of the

DG solution over nonuniform meshes through SIAC filtering. Typically, most theo-
retical proofs for SIAC filters are limited to uniform meshes (or translation invariant
meshes). The only theoretical investigations for nonuniform meshes were included in
our one-sided and derivative filtering studies. Although our earlier research for nonuni-
form meshes provides good engineering accuracy, we want to do better mathematically.
This is not an easy task since unstructured meshes give DG solutions irregular per-
formance under the negative order norm. In our work, we introduced a parameter to
measure the unstructuredness of a given nonuniform mesh. Then, by adjusting the
scaling of the SIAC filter based on this unstructuredness parameter, we can obtain the
optimal filtered approximation (best accuracy) over a given nonuniform mesh.

SIAC filtering for streamline integration is an attempt to use SIAC filters in a
realistic engineering application. By using the one-sided filter and one-sided deriva-
tive filter, we designed an efficient algorithm: filtering the velocity field along the
streamline and then use a backward differentiation formula for integration. Compared
to the traditional method of filtering the entire field (multi-dimensional algorithm),
the computational cost drops dramatically since its complexity corresponds to a one-
dimensional algorithm.

We finally note that most of the work presented originates from published and
submitted papers for the past four years of this PhD research.

Samenvatting

SIAC Filters: Symmetrie- en Uniformiteitsaannamen op
de proef gesteld

In dit proefschrift focussen we op het ontwikkelen van de theorie achter superconvergen-
tie voor discontinue Galerkinmethoden en het construeren van een superconvergentie-
extractietechniek: de Smoothness-Increasing Accuracy-Conserving (SIAC) filter. De
SIAC filtertechniek is gebaseerd op de superconvergentie-eigenschap van discontinue
Galerkinmethoden en beoogt een oplossing te verkrijgen met een hogere orde van
nauwkeurigheid, kleinere fouten en verbeterde gladheid.

De belangrijkste bijdragen die in dit proefschrift beschreven worden zijn: 1) een
efficiënte eenzijdige SIAC filter voor zowel uniforme als niet-uniforme roosters; 2)
eenzijdige afgeleiden SIAC filters voor niet-uniforme roosters; 3) de theoretische en
rekenkundige basis voor het gebruik van SIAC filters voor niet-uniforme roosters; en
4) de toepassing van SIAC filters voor stroomlijnintegratie.

Eenzijdige SIAC filtering is een techniek die de nauwkeurigheid en gladheid van
de DG oplossing in de buurt van grensregio’s verbetert. Eerder gëıntroduceerde eenz-
ijdige filters zijn niet onmiddellijk toepasbaar voor de meeste toepassingen, aangezien
zij beperkt zijn tot uniforme roosters, lineaire vergelijkingen en het gebruik van meer-
voudige precisie in de rekenpakketten. Daarbij steunen de theoretische bewijzen op pe-
riodieke randvoorwaarden. Onze bedoeling was om deze gebreken te overwinnen en om
een nieuwe snelle eenzijdige filter voor zowel uniforme als niet-uniforme roosters te on-
twikkelen. Door het bestuderen van B-splines en de negatieve-ordenormanalyse hebben
we de structuur van SIAC filters gegeneraliseerd van een combinatie van centrale B-
splines naar het gebruik van meer algemene B-splines. Vervolgens is een ’grensvorm’
B-spline (gebruikmakend van meerdere knopen aan de rand) gebruikt om een nieuwe
eenzijdige filter te construeren. Ook presenteren we het eerste theoretische bewijs van
convergentie voor SIAC filtering over niet-uniforme roosters (gelijkmatig variërende
roosters).

Een doel van SIAC filtering is het verbeteren van de gladheid van DG benaderingen.

v

vi

Vanwege de verbeterde gladheid kunnen we een betere benadering voor de afgeleiden
van DG oplossingen verkrijgen. Afgeleidefiltering over het inwendige gebied van uni-
forme roosters is al eerder bestudeerd. Echter, niet-uniforme roosters en grensregio’s
blijven een grote uitdaging. Wij hebben de eenzijdige filter uitgebreid naar een een-
zijdige afgeleidefilter. Om niet-uniforme roosters te kunnen behandelen onderzochten
we de negatieve-ordenorm voor willekeurige roosters, en stelden voor om de eenzi-
jdige afgeleidefilter te schalen met schaalfactor hµ. Voor willekeurige niet-uniforme
rechthoekige roosters hebben we bewezen dat de eenzijdige afgeleidefilter de conver-
gentieorde voor de afgeleide van orde α van de DG oplossing kan verhogen van k+1−α
naar µ(2k + 2), waarbij µ ≈ 2/3.

Het meest uitdagende deel van dit project is het terugvinden van de supercon-
vergentie van de DG oplossing over niet-uniforme roosters met behulp van SIAC fil-
tering. Over het algemeen zijn theoretische bewijzen voor SIAC filters begrensd tot
uniforme roosters (of translatie-invariante roosters). De enige theoretische onderzoeken
voor niet-uniforme roosters zijn inbegrepen in onze studies naar eenzijdige filters en
afgeleidefilters. Hoewel ons eerder onderzoek naar niet-uniforme roosters ons voorziet
van een goede nauwkeurigheid voor ingenieurs willen we wiskundig gezien een hogere
nauwkeurigheid bewijzen. Dit is geen eenvoudige opgave, aangezien DG oplossingen
afwijkend presteren in de negatieve-ordenorm indien ongestructureerde roosters ge-
bruikt worden. In ons werk hebben we een parameter gëıntroduceerd die de mate van
ongestructureerdheid van een gegeven niet-uniform rooster bepaalt. Door het aan-
passen van de schaalfactor gebaseerd op deze ongestructureerdheidsparameter kunnen
we de optimale gefilterde benadering (hoogste nauwkeurigheid) over een gegeven niet-
uniform rooster bepalen.

SIAC filtering voor stroomlijnintegratie is een poging om SIAC filters in een real-
istische technische toepassing te gebruiken. Door gebruik te maken van de eenzijdige
filter en de eenzijdige afgeleidefilter hebben we een efficiënt algoritme ontworpen: hi-
erbij wordt het snelheidsveld langs de stroomlijn gëıntegreerd en daarna wordt een
achterwaartse differentieformule voor integratie gebruikt. Vergeleken met de tradi-
tionele methode waarbij het volledige veld gefilterd wordt (multidimensionaal algo-
ritme) neemt de rekentijd enorm af omdat de complexiteit overeenkomt met een eendi-
mensionaal algoritme.

Tenslotte merken we op dat het grootste deel van dit gepresenteerde werk voortkomt
uit gepubliceerde en ingestuurde artikelen over de afgelopen vier jaar van dit pro-
motieonderzoek.

Contents

Summary iii

Samenvatting v

Contents vii

0 Introduction 1

0.1 A Brief Historical Perspective . 2

0.1.1 Discontinuous Galerkin Methods 2

0.1.2 Superconvergence . 2

0.1.3 SIAC Filters . 3

0.2 Contributions . 3

1 Background 7

1.1 Notations of Function Spaces . 7

1.2 Discontinuous Galerkin Methods . 8

1.2.1 Superconvergence of DG Methods 9

1.3 Smoothness-Increasing Accuracy-Conserving Filters 10

1.3.1 Symmetric SIAC Filter . 10

1.3.2 Symmetric Derivative Filter . 14

1.3.3 One-Sided SIAC Filters . 15

1.3.4 Implementation of SIAC Filter 17

2 Position-Dependent SIAC Filters 21

2.1 Introduction . 21

2.1.1 The Deficiencies of the RS and SRV Filters 21

2.2 Modification of Position-Dependent Filter 24

2.2.1 A Review of B-splines . 24

2.2.2 New Position-Dependent SIAC Filter 25

2.3 Theoretical Results . 29

vii

viii

2.3.1 Local Error Estimate in the Negative Order Norm 29

2.3.2 Theoretical Results in the Uniform Case 32

2.3.3 Theoretical Results in the Nonuniform Case 35

2.4 Numerical Results . 36

2.4.1 Uniform Meshes . 37

2.4.2 Smoothly-Varying and Nonuniform Meshes 43

2.5 Conclusion . 50

3 Derivative SIAC Filters 53

3.1 Introduction . 53

3.2 Symmetric and One-Sided Derivative Filters 54

3.2.1 Derivative Filters over Nonuniform Meshes 54

3.2.2 Position-Dependent Derivative Filters 57

3.2.3 Computational Considerations 61

3.3 Numerical Results . 62

3.3.1 Uniform Mesh . 63

3.3.2 Nonuniform Mesh . 64

3.4 Two-Dimensional Example . 71

3.5 Conclusion . 72

4 SIAC Filters over Nonuniform Meshes 77

4.1 Divided Differences: Uniform Meshes . 77

4.1.1 Scaling h: ∂huh . 78

4.1.2 Constant Scaling H: ∂Huh . 80

4.2 Divided Differences: Nonuniform Meshes 83

4.2.1 Variable Scaling H(x) . 84

4.3 Optimal Accuracy of Filtered Solutions 87

4.3.1 Preliminary Results over Nonuniform Meshes 87

4.3.2 The Optimal Accuracy . 89

4.4 The Unstructuredness of Nonuniform Meshes 92

4.4.1 The Measure of Unstructuredness 93

4.4.2 SIAC Filtering Based on the Unstructuredness Parameter 95

4.4.3 A Note on Computation . 99

4.5 Numerical Results . 100

4.5.1 Linear Equation . 100

4.5.2 Variable Coefficient Equation . 101

4.5.3 Two-Dimensional Example . 102

4.6 Conclusion . 103

5 Applications of SIAC Filters in the Visualization 107

5.1 Introduction . 107

5.1.1 Streamline Integration . 107

5.2 Filtering the Entire Domain . 108

5.2.1 Numerical Results . 109

5.3 Filtering Along the Streamline . 111

5.3.1 Backward-Differentiation Methods 111

ix

5.3.2 Algorithm . 113
5.3.3 Preliminary Results . 116
5.3.4 Which One-Sided Filter? . 118

5.4 Conclusion . 120

6 Further Inverstigation of SIAC Filter 123
6.1 Structure of SIAC Filter . 123
6.2 The Order of B-splines . 126

6.2.1 The Lowest Order of B-splines 126
6.2.2 Inexact Gaussian Quadrature Approach 128

6.3 SIAC Filtering for Wave Functions . 132
6.3.1 Sufficient Elements of the DG Approximation 132
6.3.2 SIAC Filtering for Wave Functions 134

6.4 Compressed SIAC Filter . 135
6.5 Conclusion . 138

7 Conclusion and Future Work 139

Bibliography 143

Curriculum vitae 151

List of publications 153

Acknowledgements 155

0
Introduction

In the last decades, discontinuous Galerkin (DG) methods have been under rapid de-
velopment and attracted considerable attention from diverse areas. Since DG methods
allow discontinuities in the approximate solutions of general finite element methods,
the DG method also can be considered as a generalization of finite volume methods.
As a consequence, DG methods incorporate the features of finite element methods and
finite volume methods in a very natural way. The main advantages of the DG method
are:

• High order accuracy. DG schemes of arbitrary high order of accuracy can be
obtained by suitably choosing the degree of the approximation polynomials.

• DG methods are suited to handling complicated geometries and boundary con-
ditions.

• DG methods are highly parallelizable and can easily handle adaptive strategies.

Of course, the increased accuracy of DG methods requires additional degrees of freedom
compared to finite element methods. Later, as DG methods have matured, researchers
concentrate on more interesting aspects of the method. In recent research, the addi-
tional degrees of freedom of DG methods, which was considered as a disadvantage,
allows for recovery of hidden accuracy (superconvergence) of DG methods. As a con-
sequence, a robust, accurate, and efficient method for theoretically and numerically
extracting this hidden accuracy is of considerable importance and, as expected, has
attracted the interest of many researchers. In this dissertation, research that con-
centrates on exploiting superconvergence for discontinuous Galerkin methods and a
superconvergence extraction technique, Smoothness-Increasing Accuracy-Conserving
(SIAC) filtering, is discussed. The new contributions of our work are: an efficient
one-sided filter for both uniform and nonuniform meshes; derivative filters for nonuni-
form meshes and near boundaries; the theoretical and computational foundation for
using SIAC filters for nonuniform meshes; and the applications of SIAC filters in the
visualization areas.

1

2 Chapter 0. Introduction

0.1 A Brief Historical Perspective

0.1.1 Discontinuous Galerkin Methods

The original discontinuous Galerkin method was introduced by Reed and Hill [54] in
1973 for the neutron transport equation

σu+∇ · (au) = f ,

where σ is a real number and a is a constant vector. This method was referred to as
the discontinuous Galerkin method by Lesaint and Raviart [45] in 1974. In the same
publication [45], Lesaint and Raviart presented the first mathematical analysis of the
DG method and proved a convergence rate of k in the L2 norm for general triangu-
lations and k + 1 for rectangular grids. In the later part of the 1990s, Cockburn and
Shu successfully extend the DG methods to hyperbolic problems in a series of papers
[26, 20, 27, 28, 21] and proposed using Runge-Kutta methods for time discretization.
This so-called Runge-Kutta discontinuous Galerkin (RKDG) method incorporated the
ideas of numerical flux and slope limiter into the finite element framework to produce
high-order accurate, nonlinearly stable schemes. Beginning with Cockburn and Shu’s
efforts, in the recent decades, the DG method finally steps into a rapid evolution. For
applying DG methods for high order equations, Cockburn and Shu [27, 29] proposed
the local discontinuous Galerkin methods (LDG) for the convection-diffusion problem.
A series of studies of diverse high order equations were then been made, to name a
few [70, 71, 73, 47]. The DG method has found its use very quickly transitioned in the
applied sciences and engineering as diverse as aeroacoustics, turbulent flows, modeling
of shallow water, image processing, among many others. A more detailed overview of
the evolution of the discontinuous Galerkin method can be found in [24, 36].

0.1.2 Superconvergence

Along with the development of finite element methods, the superconvergence of the
finite element methods also becomes a dynamically developing area of research. The
superconvergence of the finite element methods is a phenomenon where the order of
convergence, under certain measures, is higher than the accuracy order under the stan-
dard L2 norm. In general, these measures include the negative order norm, point-wise,
average over on element, special projections, etc. In the literature, the term supercon-
vergence was first used by Douglas and Dupont in [33]. Superconvergence has been
extensively studied, up to now there are more than thousands of research paper con-
centrating on this subject, to name a few [13, 34, 59, 62, 63, 67]. A bibliography (before
1998) includes 600 references given in [44].

Superconvergence in DG methods is gaining an increasing amount of attention in
recent years [15, 37, 69, 77, 76]. Superconvergence of DG methods is mainly divided
into the following three types: 1) superconvergence of DG errors in the negative order
norm, which in the ideal situation gives a superconvergence rate of 2k + 1, see [13,
25, 62, 51, 40, 41, 39]; 2) superconvergence of DG errors at particular points (Radau
points) or the average over an element, contributed (to name a few) by Adjerid et al.
[4, 2, 6, 3, 5, 16], Bacouch et al. [11, 10, 8, 9] and Zhang et al. [15, 69, 77]; 3) the

0.2. Contributions 3

superconvergence between the DG solution and a special projection, see [17, 18, 74].
The focus of this thesis, SIAC filtering, is developed mainly on the studies of the
superconvergence on the negative order norm, and also involving the superconvergence
at Radau points.

0.1.3 SIAC Filters

As a superconvergence extracting technique, SIAC filtering developed from a post-
processing technique for enhancing the accuracy of solutions of finite element methods
introduced by Bramble and Schatz [13] in 1977. The work of Bramble and Schatz [13]
demonstrated that the superconvergence in the negative order norm can be extracted
and recovery of higher-order approximations in the L2 norm can be obtained. A fun-
damental relation between the negative order norm and the L2 norm was established.
In the same year, Thomée extended this technique to approximate the derivatives in
the finite element method and presented further investigation of the relation between
these two norms. Then 1978, Mock and Lax [51] deduced the post-processing technique
from another point of view by studying the discontinuous solutions of linear hyperbolic
equations.

The first extension of this post-processing technique to discontinuous Galerkin
methods was given by Cockburn et al. [25]. In [25], they applied DG methods to linear
hyperbolic equations with periodic boundary conditions [25]. The superconvergence
rate of 2k + 1 is proven in the negative order norm and after post-processing in the
L2 norm. Later, Ryan and Shu [57] proposed the idea of a one-sided post-processing
technique, which can be applied to boundary regions, discontinuities of solutions and
interfaces of elements. This one-sided idea was modified in [65] and renamed as a
position-dependent filter. The respect error estimates were presented in [39]. In 2008,
the first numerical exploration of the post-processing over nonuniform meshes was given
in [30] and numerically obtained the superconvergence rate of 2k+1 for some particular
nonuniform meshes. There are a wide variety of studies using this post-processing
technique, such as applied to an aeroacoustic problem [58], derivatives in the DG
approximation [56], convection-diffusion equations [40] and streamline visualization
[61, 68]. The name Smoothness-Increasing Accuracy-Conserving filtering was first
used in [61], and nowadays refers to the generalized post-processing technique based
on the negative order norm.

0.2 Contributions

The main purpose of SIAC filtering is twofold: extracting useful information within the
DG solution to improve the accuracy of the solution; removing the oscillations within
the DG error and improve the smoothness of the solution. The particular contributions
of this thesis are the following:

• One-Sided SIAC Filtering Over Uniform and Nonuniform Meshes.

Typically, most of the studies of SIAC filtering are confined to the interior of the
underlying domain. For boundary regions, a one-sided filter is needed. The existing
one-sided filters are not directly useful for most applications since they were limited to

4 Chapter 0. Introduction

uniform meshes, linear equations, using multi-precision packages in the computation.
Also, the theoretical proof relied on the periodic boundary assumption. We aimed to
overcome these deficiencies and develop a new fast one-sided filter for both uniform
and nonuniform meshes. By studying B-splines and the negative order norm analysis,
we generalized the structure of SIAC filters from a combination of central B-splines to
using more general B-splines. Then, a “boundary shape” B-spline (using multiplicity
knots at the boundary) was used to construct a new one-sided filter. We also presented
the first theoretical proof of convergence for SIAC filtering over nonuniform meshes
(smoothly-varying meshes). Details are given in Chapter 2.

• Derivative Filtering Over Nonuniform Meshes and Near Boundaries

One advantage of SIAC filtering is that it improves the smoothness of DG solutions.
Because of the increased smoothness, we can obtain a better approximation of the
derivatives of DG solutions. The derivative filtering over the interior region of uniform
meshes was previously studied. However, nonuniform meshes and boundary regions
still remain a big challenge. We extended the one-sided filter to a one-sided derivative
filter. Nonuniform meshes are a difficult area, by investigating negative order norm over
arbitrary meshes, we proposed to scale the one-sided derivative filter with scaling hµ.
For arbitrary nonuniform rectangle meshes, we proved that the one-sided derivative
filter can enhance the order of convergence for αth derivative of DG solution from
k + 1− α to µ(2k + 2), where µ ≈ 2

3 . Details are in Chapter 3.

• Superconvergence Extraction Over Nonuniform Meshes

The most challenging part of this project is recovering the superconvergence of a
DG solution over nonuniform meshes through SIAC filtering. Typically, most theoret-
ical proofs for the SIAC filter are limited to uniform meshes (or translation invariant
meshes). The few theoretical investigations for nonuniform meshes were given in the
one-sided and derivative filtering studies. Although our early research for nonuniform
meshes was able to provide good engineering accuracy, we want to do better mathemat-
ically. This is not an easy task since unstructured meshes give DG solutions irregular
performance under the negative order norm. In our work, we introduced a parameter
to measure the “unstructuredness” of a given nonuniform mesh. Then by adjusting
the scaling of SIAC filter based on this “unstructuredness” parameter, we are able
to obtain the optimal filtered approximation (best accuracy) over a given nonuniform
mesh. Details are in Chapter 4.

• Application to Streamline Integration

After introducing the new one-sided filter, we aimed to verify its usage in realistic
engineering applications. The topic we choose was streamline integration. By taking
advantage of the one-sided property of the new filter, we designed an efficient algorithm
which filters the velocity field along the streamline, then uses a backward differentiation
formula (BDF) for integration. Compared to the traditional method that filters the
entire field (multi-dimensions algorithm), the computational cost drops dramatically
since it is only a one-dimensional algorithm. Details can be found in Chapter 5.

• Further Topics of SIAC Filters

After studying SIAC filters for a broad range of applications, we retured to further
investigations of SIAC filters themselves. Further topics such the uniqueness of the
structure SIAC filters, the effects of the order of B-splines to SIAC filters and the

0.2. Contributions 5

compressed SIAC filters are included in Chapter 6. These topics give us in-depth
insight into SIAC filters and reveal some future directions for the development of
SIAC filters.

1
Background

This chapter briefly introduces Discontinuous Galerkin (DG) methods and Smoothness-
Increasing Accuracy-Conserving (SIAC) filters.

1.1 Notations of Function Spaces

Let us recall the norms of function spaces that will be used in the following. Consider
a domain Ω ⊂ Rd, the standard L2-norm over Ω is defined as

‖u‖0,Ω =

{∫
Ω
u2dx

} 1
2

.

For any nonnegative integer `, the norm and seminorm of the Sobolev space H`(Ω)
are given by

‖u‖`,Ω =

∑
|α|≤`

‖Dαu‖20,Ω

1
2

, |u|`,Ω =

∑
|α|=`

‖Dαu‖20,Ω

1
2

.

Then, we can define the negative order norm on the domain Ω as

‖u‖−`,Ω = sup
φ∈C∞

0 (Ω)

(u, φ)Ω
‖φ‖`,Ω

,

where (·, ·) represents an inner product. The negative order norm is the norm of the
dual space of H`(Ω). It was claimed in [25] that the negative order norm can be used
to detect the oscillations of a function round zero.

Lastly, we introduce the notation for the divided differences. In the one-dimension
case,

∂hu(x) =
1

h
(u (x+ h/2)− u (x+ h/2)) , ∂αhu = ∂h

(
∂α−1
h u

)
, α > 1,

and the multi-dimensional notation is defined analogously by using a tensor product.

7

8 Chapter 1. Background

1.2 Discontinuous Galerkin Methods

Although Reed and Hill [54] introduced the original DG method 40 years ago, it was
only the last decade that DG methods have rapidly evolved for various applications.
DG methods can be viewed as a combination of finite element methods and finite vol-
ume methods. It allows for discontinuities in the approximation space and introduces
numerical fluxes.

More specially, consider a multi-dimensional linear hyperbolic equation for a do-
main Ω = [a1, b1]× · · · × [ad, bd] ⊂ Rd,

ut +

d∑
i=1

aiuxi + a0u = 0, (x, t) ∈ Ω× [0,T],

u(x,0) = u0(x),

(1.1)

where u0 is sufficiently smooth. To create the DG approximation, we first introduce a
mesh tessellation. A rectangular mesh Th of Ω is a finite collection of disjoint rectangles

K, K =
d∏

i=1
[x

(i)

j− 1
2

, x
(i)

j+ 1
2

]. Each K ∈ Th is called a mesh element, and the mesh size is

defined as
h = max

K∈Th
hK ,

where hK denotes the diameter of the element K. The DG method seeks an approxi-
mation in the space of piecewise polynomials of degree ≤ k,

V k
h =

{
ϕ ∈ L2(Ω) : ϕ|K ∈ Pk, ∀K ∈ Th

}
.

To find the DG approximation for solving Equation (1.1), we look for a function uh ∈ Vk
such that, for each element K and all test function vh ∈ V k

h , we have∫
K
(uh)tvhdK −

d∑
i=1

∫
K
aiuh(vh)xidK

+

d∑
i=1

∫
∂K

aiûhvhnids+

∫
K
a0uhvhdK = 0,

or

((uh)t, vh)K −
d∑

i=1

(aiuh, (vh)xi)K

+
d∑

i=1

∫
∂K

aiûhvhnids+ (a0uh, vh) = 0,

(1.2)

where ûh is the numerical flux. The numerical fluxes are chosen according to the
partial differential equations and Finite Volum principals [46]. For the linear hyperbolic
equation (1.1), we usually choose the standard upwind flux.

In this simple linear example, we can see the main components of the DG method,
namely,

1.2. Discontinuous Galerkin Methods 9

• the use of a discontinuous piecewise polynomial basis,

• the enforcement of the PDE by means of a Galerkin weak formulation,

• the introduction of the so-called numerical flux ûh.

The choice of the numerical flux is the most import aspect of the DG methods since
it affects the consistency, stability and accuracy. For questions of how to choose the
numerical fluxes and a detailed analysis of DG methods is referred to [20, 27, 28, 21,
23, 29, 22] for details.

1.2.1 Superconvergence of DG Methods

Another crucial aspect of the DG methods are the error estimates of the DG solutions
in different norms and the so-call superconvergence property. The superconvergence
of the DG methods is a phenomenon where the order of convergence, under certain
norms (or measures), is higher than the accuracy order under the L2 norm. The rel-
evant studies of superconvergence for DG methods include: Adjerid and Baccouch
et al. [4, 3, 5, 11, 10] proved that the DG approximations have superconvergence
order of k + 2 at Radau points (roots of right Radau polynomials in the interior);
the study of Celiker and Cockburn [16] showed that the numerical flux approximates
the exact flux with convergence of order 2k + 1 at the element interfaces, etc. The
techniques that extraction the superconvergence from the DG approximations are usu-
ally referred as superconvergence extract or post-processing techniques, one of these
techniques that has obtain increased interests is the so-called smoothness-increasing
accuracy-conserving (SIAC) filtering. The focus of this thesis, the SIAC filter, is devel-
oped mainly on the studies of the superconvergence of the DG approximation and its
divided differences on the negative order norm. For uniform meshes, the main theorem
is given below.

Theorem 1.2.1 (Cockburn et al. [25]). Let u be the exact solution of equation (1.1)
with periodic boundary conditions, and uh the DG approximation derived by scheme
(1.2). For a uniform mesh, the approximation and its divided differences in the L2

norm, we have the following error estimate:

‖∂αh (u− uh)‖0,Ω ≤ Chk+1, (1.3)

and in the negative order norm:

‖∂αh (u− uh)‖−(k+1),Ω ≤ Ch2k+1, (1.4)

where α = (α1, . . . , αd) is an arbitrary multi-index.

The relation between the L2 norm and the negative order norm was given by

Lemma 1.2.2 (Bramble and Schatz [13]). Let Ω0 ⊂⊂ Ω1 and s be an arbitrary but
fixed nonnegative integer. Then for u ∈ Hs(Ω1), there exist a constant C such that

‖u‖0,Ω0 ≤ C
∑
|α|≤s

‖Dαu‖−s,Ω1 .

10 Chapter 1. Background

Theorem 1.2.1 and Lemma 1.2.2 construct the theoretical foundation of applying
the SIAC filter to DG solutions. Before we discuss the details, we first introduce SIAC
filters.

1.3 Smoothness-Increasing Accuracy-Conserving Filters

The original SIAC filter we will be using was sourced from the accuracy enhance tech-
nique designed by Bramble and Schatz [13], Thomée [62] and Mock and Lax [51]. It
was extended to DG methods by Cockburn et al. in [25]. The name “Smoothness-
Increasing Accuracy-Conserving” was first used in [61].

1.3.1 Symmetric SIAC Filter

The symmetric SIAC filter used in [13, 25] is the archetype of SIAC filters. It is
described below.

Assume the DG approximation is given over a uniform mesh, the SIAC filter is
applied only at the final time T of the DG approximation, and the filtered solution u?h,
in the one-dimension case, is formed through convolution with the SIAC filter:

u?h(x, T) =
(
K

(2k+1,k+1)
h ? uh(·, T)

)
=

∫ ∞

−∞
K

(2k+1,k+1)
h (x− ξ)uh(ξ, T)dξ.

(1.5)

The symmetric SIAC filter, K(2k+1,k+1), is a linear combination of 2k + 1 central
B-splines of order k + 1,

K(2k+1,k+1)(x) =

2k∑
γ=0

c(2k+1,k+1)
γ ψ(k+1) (x+ k − γ) , (1.6)

and the scaled filter

K
(2k+1,k+1)
h (x) =

1

h
K(2k+1,k+1)

(x
h

)
,

uses the scaling h, which is the diameter of uniform mesh. The k + 1 order central
B-spline, ψ(k+1)(x), can be constructed recursively by

ψ(1)(x) = χ[−1/2,1/2](x),

ψ(`+1)(x) =
1

`

((
`+ 1

2
+ x

)
ψ(`)

(
x+

1

2

))
+

1

`

((
`+ 1

2
− x
)
ψ(`)

(
x− 1

2

))
, ` ≥ 1.

(1.7)

1.3. Smoothness-Increasing Accuracy-Conserving Filters 11

For example:

ψ(2)(x) =

1 + x, x ∈ [−1, 0),
1− x, x ∈ [0, 1),
0 else;

ψ(3)(x) =

1
2x

2 + 3
2x+ 9

8 , x ∈ [−3
2 ,−

1
2),

−x2 + 3
4 , x ∈ [−1

2 ,
1
2),

1
2x

2 − 3
2x+ 9

8 , x ∈ [12 ,−
3
2)

0 else.

k = 1 k = 2 k = 3

−1 0 1
0.0

0.2

0.4

0.6

0.8

1.0

−1.5 −0.5 0.5 1.5
0.0

0.2

0.4

0.6

0.8

1.0

−2 −1 0 1 2
0.0

0.2

0.4

0.6

0.8

1.0

Figure 1.1: Central B-spline ψ(k+1) with k = 1, 2, 3.

B-splines have special properties that aid in the proofs of higher order accuracy in
the negative order norm. One of these properties is differentiation:

Property 1.3.1 (Differentiation of Central B-spline). The αth derivative of a central
B-spline is given by

Dαψ
(`)
h = ∂αhψ

(`−α)
h ,

where ψ
(`)
h is the central B-spline with scaling h.

This shows that the derivatives of a central B-spline can be express simply by its
divided differences.

The coefficients of the SIAC filter, c
(2k+1,k+1)
γ , are decided by implementing the

property that the filter reproduces polynomials by convolution up to degree 2k,

K(2k+1,k+1) ? p = p, p = 0, x, ..., x2k. (1.8)

For example, the symmetric SIAC filter (1.6) with k = 2 is given by

K(3,2)(x) = − 1

12
ψ(2)(x+ 1) +

7

6
ψ(2)(x)− 1

12
ψ(2)(x− 1).

In the multi-dimensional case, the filter is a tensor product of the one-dimensional
filters (1.6)

K
(2k+1,k+1)
h (x) =

d∏
i=1

K
(2k+1,k+1)
h (xi), x = (x1, . . . , xd) ∈ Rd,

with the scaled filter K
(2k+1,k+1)
h (x) = 1

hdK
(2k+1,k+1)

(
x
h

)
.

12 Chapter 1. Background

k = 1 k = 2 k = 3

−2 −1 0 1 2
−0.2

0.0

0.4

0.8

1.2

−4 −3 −2 −1 0 1 2 3 4
−0.2

0.0

0.4

0.8

1.2

−5−4−3−2−1 0 1 2 3 4 5
−0.2

0.0

0.4

0.8

1.2

Figure 1.2: Solid black lines represent the symmetric filter K(2k+1,k+1)(x) with k =
1, 2, 3, dashed red lines represent the respective central B-splines. The filtered point is
x = 0.

The Properties of SIAC Filter

In the above examples, we can see that the main features of the symmetric SIAC filter
K(2k+1,k+1) are:

• Compact support, the support size is 3k + 1;

• Symmetry with respect to the filtered point (x = 0);

• The filter satisfies ∫ ∞

−∞
K(2k+1,k+1)(x)dx = 1;

• The filter is a Ck−1 function and therefore so is the filtered solution u?h.

Property 1.3.2. The symmetric SIAC filter K(2k+1,k+1) (1.6), which satisfies (1.8)
reproduces polynomial by convolution until degree of 2k + 1,

K(2k+1,k+1) ? p = p, p = 1, x, . . . , x2k+1. (1.9)

Proof. c.f. [64]

Property 1.3.3 (Differential). As a consequence of the filter constructed using central
B-splines (Property 1.3.1), one can express derivatives of the convolution with the filter
in terms of simple difference quotients. It is trivial to verify that

Dα(K
(2k+1,k+1)
h ? uh) = K̃

(2k+1,k+1−α,α)
h ? ∂αhuh,

where α = (α1, . . . , αd) is an arbitrary multi-index (αi < k + 1) and

K̃
(2k+1,k+1−α,α)
h =

2k∑
γ=0

c(2k+1,k+1)
γ ψ(k+1−α)(x+ k − γ).

1.3. Smoothness-Increasing Accuracy-Conserving Filters 13

Properties 1.3.2 and 1.3.3 are the key to extract superconvergence from DG solu-
tions, together with Theorem 1.2.1 and Lemma 1.2.2 we obtain the error estimates for
the filtered solution u?h.

Theorem 1.3.4 (Cockburn et al. [25]). Under the same conditions in Theorem 1.2.1,

denote Ω0 + 2supp(K
(2k+1,k+1)
h) ⊂⊂ Ω1 ⊂ Ω, then

‖u−K(2k+1,k+1)
h ? uh‖0,Ω0 ≤ Ch2k+1.

Remark 1.3.1. The error estimates for the filtered solution in the L∞ norm were
proven in [39] under the same conditions of Theorem 1.3.4.

Example 1.3.5. As a simple example of the DG method and filtered solution, consider
a linear hyperbolic equation

ut + ux = 0, (x, t) ∈ [0, 1]× (0, T]

u(x, 0) = sin(2πx)

with final time T = 1 over uniform meshes. The L2 and L∞ norm errors and respective
accuracy order are given in Table 1.1, and Figure 1.3 shows the point-wise errors in
log scale.

Table 1.1: L2− and L∞−errors for the DG approximation uh and the filtered solution
u?h for a linear advection equation.

DG error After filtering
Mesh L2 error order L∞ error order L2 error order L∞ error order

P1

20 4.60E-03 – 1.13E-02 – 1.97E-03 – 2.80E-03 –
40 1.09E-03 2.08 3.21E-03 1.82 2.44E-04 3.02 3.46E-04 3.02
80 2.67E-04 2.02 8.49E-04 1.92 3.02E-05 3.01 4.28E-05 3.01
160 6.65E-05 2.01 2.18E-04 1.96 3.76E-06 3.01 5.33E-06 3.01

P2

20 1.07E-04 – 3.67E-04 – 4.11E-06 – 5.82E-06 –
40 1.34E-05 3.00 4.62E-05 2.99 9.49E-08 5.44 1.34E-07 5.44
80 1.67E-06 3.00 5.78E-06 3.00 2.49E-09 5.25 3.52E-09 5.26
160 2.09E-07 3.00 7.23E-07 3.00 7.75E-11 5.00 1.10E-10 5.00

P3

20 2.06E-06 – 6.04E-06 – 6.97E-08 – 9.86E-08 –
40 1.29E-07 4.00 3.80E-07 3.99 2.83E-10 7.95 4.00E-10 7.95
80 8.07E-09 4.00 2.38E-08 4.00 1.23E-12 7.85 1.73E-12 7.85
160 5.04E-10 4.00 1.49E-09 4.00 1.59E-14 6.27 2.25E-14 6.27

Table 1.1 shows that the DG approximation has accuracy order of k + 1, and it
has been improved to 2k + 1 by applying SIAC filter. More importantly, we can see
the accuracy of the DG solution has been significantly improved after filtering, which
achieves the goal of extracting the “hidden accuracy”.

14 Chapter 1. Background

DG error After filtering

0 0.2 0.4 0.6 0.8 1.0

x

10−16

10−12

10−8

10−4

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

0 0.2 0.4 0.6 0.8 1.0

x

10−16

10−12

10−8

10−4

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

Figure 1.3: Comparison of the point-wise errors in log scale of the DG approximation
together the filtered solution with polynomial P3 for a linear advection equation.

Figure 1.3 reveals another important feature of the SIAC filter as its name suggests,
smoothness-increasing. The DG solution has weak continuity at the element interfaces,
and the piecewise approximation represents as oscillations in the point-wise error plot
in Figure 1.3. After filtering, due to the continuity of the symmetric filter K(2k+1,k+1),
the filtered solution u?h is also a Ck−1 function. It follows that the filtered solution
is smoother compared to the original DG solution, and oscillations in the point-wise
error plot have been eliminated.

Although Example 1.3.5 is quite simple, it has fully demonstrates the main purposes
of SIAC filtering:

• Extract useful information from the DG solution and improve the accuracy of
the solution;

• Remove the oscillations within the DG error and improve the smoothness of the
solution.

1.3.2 Symmetric Derivative Filter

As mentioned before, one important feature of the filtered solution is the higher con-
tinuity compared to the original DG solution. This leads to a natural extension, the
symmetric derivative filter, which aims to improve the accuracy of derivatives of DG
solutions. The first derivative post-processing technique was introduced by Thomée
[62], which generalized the results in [13] to derivatives in the finite element method.
The symmetric derivative filter for DG methods was introduced by Ryan and Cockburn
[56]. In the previous work, the authors identified two ways to calculate derivatives.
The first method is a direct calculation of derivatives of filtered solution (1.5). By
applying this method, the convergence rate of derivatives of filtered solutions is higher
than derivatives of DG approximation itself, but the accuracy order decreases and
oscillations in the error increase with each successive derivative. The second method

1.3. Smoothness-Increasing Accuracy-Conserving Filters 15

is employed to maintain the same 2k + 1 accuracy order as Theorem 1.3.4 regardless
of the derivative order. In order to calculate the αth derivative of the DG solution
without losing any accuracy order, we have to use higher order central B-splines to
construct the symmetric derivative filter,

K(2k+1,k+1+α)(x) =

2k∑
γ=0

c(2k+1,k+1+α)
γ ψ(k+1+α)(x+ k − γ). (1.10)

α = 0 α = 1 α = 2

−4.5−3.0−1.5 0.0 1.5 3.0 4.5
−0.2

0.0
0.2
0.4
0.6
0.8
1.0

−4.5−3.0−1.5 0.0 1.5 3.0 4.5
−0.2

0.0
0.2
0.4
0.6
0.8
1.0

−4.5−3.0−1.5 0.0 1.5 3.0 4.5
−0.2

0.0
0.2
0.4
0.6
0.8
1.0

Figure 1.4: The symmetric derivative filter K(2k+1,k+1+α)(x) given in (1.10) with
k = 2 and α = 0, 1, 2. The filtered point is x = 0.

We note that the order of the B-splines is now k + 1 + α instead of k + 1 in (1.6),
and then the filtered solution becomes a Ck−1+α function. Property 1.3.3 implies that

one can write the αth derivative of the symmetric filter as dα

dxαK
(2k+1,k+1+α)
h (x) =

∂αh K̃
(2k+1,k+1,α)
h , where

K̃
(2k+1,k+1,α)
h =

2k∑
γ=0

c(2k+1,k+1+α)
γ ψ

(k+1)
h (x+ k − γ).

By the property of convolution,

∂αxu
?
h = ∂αx

(
K

(2k+1,k+1+α)
h ? uh

)
=

(
dα

dxα
K

(2k+1,k+1+α)
h

)
? uh

=
(
∂αh K̃

(2k+1,k+1,α)
h

)
? uh = K̃

(2k+1,k+1,α)
h ? ∂αhuh.

(1.11)

For uniform meshes, [56] showed filtered solution (1.11) has 2k + 1 superconvergence
rate regardless of the derivative order α.

1.3.3 One-Sided SIAC Filters

The symmetric SIAC filter (1.6) takes a symmetric amount of information around the
point being filtered. It means that the symmetric filter can not be applied near the
domain boundaries. More precisely, within a distance of 3k+1

2 h of the boundaries. In
order to use the SIAC filter near the boundaries, Ryan and Shu [57] extended the idea

16 Chapter 1. Background

of the symmetric filter and developed a concept of the one-sided SIAC filter. This
one-sided filter can be applied near boundaries or discontinuities in the exact solution,
referred to the RS filter. The formula for the RS filter is given by

K(2k+1,k+1)(x) =
2k∑
γ=0

c(2k+1,k+1)
γ ψ(k+1) (x− xγ(x̄)) , (1.12)

where xγ depends on the location of the evaluation point x̄ and is given by

xγ(x̄) = −k + γ + [λ](x̄),

with discrete shift

[λ](x̄) =

{
min{0,−3k+1

2 + b x̄−xL
h c}, x̄ ∈ [xL,

xL+xR
2),

max{0, 3k+1
2 + d x̄−xR

h e}, x̄ ∈ [xL+xR
2 , xR].

(1.13)

Here xL and xR are the left and right boundaries, respectively. An example of the RS
filter (for the left boundary) with k = 2 is given in Figure 1.5.

Symmetric filter RS filter SRV filter

−4 −3 −2 −1 0 1 2 3 4
−0.2

0.0
0.2
0.4
0.6
0.8
1.0
1.2

−12 −8 −4 0
−15
−10
−5

0
5

10
15

−12 −8 −4 0
−150
−100
−50

0
50

100
150

Figure 1.5: Comparison of symmetric filter (1.6), RS filter (1.12), and SRV filter
(1.14) with k = 2. The filtered point is x = 0.

However, the performance of the RS filter was not very satisfactory as the er-
rors had a stair-stepping-type structure, and the errors themselves were not reduced
when the RS filter was applied to some DG solutions over coarse meshes, see Example
1.3.6. Later, van Slingerland, Ryan and Vuik [65] recast this formulation as a position-
dependent SIAC filter, referred as SRV filter, by introducing a smooth shift function
λ(x̄) that aided in redefining the filter nodes and helped to ease the errors from the
stair-stepping-type structure. In an attempt to reduce the errors, the authors doubled
to 4k+1 the number of central B-splines used in the filter when near a boundary. The
SRV filter for filtering near the boundaries can then be written as

K(4k+1,k+1)(x) =

4k∑
γ=0

c(4k+1,k+1)
γ ψ(k+1) (x− xγ(x̄)) , (1.14)

where xγ depends on the location of the evaluation point x̄ and is given by

xγ(x̄) = −2k + γ + λ(x̄),

1.3. Smoothness-Increasing Accuracy-Conserving Filters 17

with smooth shift

λ(x̄) =

{
min{0,−5k+1

2 + x̄−xL
h }, x̄ ∈ [xL,

xL+xR
2),

max{0, 5k+1
2 + x̄−xR

h }, x̄ ∈ [xL+xR
2 , xR].

(1.15)

Here xL and xR are the left and right boundaries, respectively. In the interior, the sym-
metric filter uses 2k+1 central B-splines is implemented. In order to provide a smooth
transition between the SRV filter and the symmetric filter, a convex combination was
used:

u?h(x) =θ(x)
(
K

(2k+1,k+1)
h ? uh

)
(x)

+ (1− θ(x))
(
K

(4k+1,k+1)
h ? uh

)
(x),

(1.16)

where θ(x) ∈ Ck−1 such that θ = 1 in the interior and θ = 0 in the boundary regions.
An example of the SRV filter (for the left boundary) with k = 2 is given in Figure 1.5.

Comparing the structures of the RS filter (1.12) and the SRV filter (1.14), there
are two differences:

• the SRV filter uses many more B-splines (4k + 1) than the RS filter (2k + 1);

• by introducing a smoothly-varying shift (1.15) and convex combination (1.16)
the SRV filter is smoother than the RS filter.

The error estimates of applying one-sided SIAC filters are similar to the symmetric
filter, using a periodic boundary assumption, the filters solutions have an accuracy
order of 2k + 1 [39].

The performances of these two one-sided filters is done in the following example.

Example 1.3.6. Consider the same problem in Example 1.3.5, we apply RS filter
(1.12) and SRV filter (1.14) to the DG approximation uh. Table 1.2 presents the L2

and L∞ errors, and the point-wise error plots are given in Figure 1.6. The results of
original DG approximation and applying symmetric filter can be found in Table 1.1
and Figure 1.3.

Through Example 1.3.6, it seems that the performance of the SRV filter is better
than the RS filter. However, the true story is more complicated than this example
shows. In Chapter 2, we will reveal more details of one-sided filters.

1.3.4 Implementation of SIAC Filter

As an additional remark, in this section, we briefly describe the implementation issues
and strategies of applying the SIAC filter for DG solutions. For more details of efficient
implementation of the SIAC filter, one can refer to the work of Mirzaee, Ryan and Kirby
[50].

18 Chapter 1. Background

Table 1.2: L2− and L∞−errors for the filtered solutions with RS filter (1.12) and SRV
filter (1.14) for the linear advection equation.

After RS filtering After SRV filtering
Mesh L2 error order L∞ error order L2 error order L∞ error order

P1

20 6.75E-03 – 2.24E-02 – 1.98E-03 – 2.80E-03 –
40 7.29E-04 3.21 3.13E-03 2.84 2.44E-04 3.02 3.46E-04 3.02
80 7.02E-05 3.38 4.01E-04 2.96 3.02E-05 3.01 4.28E-05 3.01
160 6.80E-06 3.37 5.05E-05 2.99 3.76E-06 3.01 5.33E-06 3.01

P2

20 8.41E-04 – 3.35E-03 – 3.73E-06 – 5.82E-06 –
40 3.53E-05 4.57 1.65E-04 4.35 9.42E-08 5.31 1.34E-07 5.44
80 8.87E-07 5.32 5.66E-06 4.86 2.48E-09 5.24 3.52E-09 5.26
160 2.02E-08 5.46 1.81E-07 4.97 7.75E-11 5.00 1.10E-10 5.00

P3

20 4.23E-05 – 2.32E-04 – 1.53E-07 – 1.02E-06 –
40 1.88E-06 4.49 8.98E-06 4.69 2.70E-10 9.15 4.00E-10 11.32
80 1.36E-08 7.11 8.72E-08 6.69 1.22E-12 7.79 1.73E-12 7.85
160 7.99E-11 7.41 7.16E-10 6.93 1.59E-14 6.26 2.25E-14 6.27

After filtering (RS) After filtering (SRV)

0 0.2 0.4 0.6 0.8 1.0

x

10−16

10−12

10−8

10−4

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

0 0.2 0.4 0.6 0.8 1.0

x

10−16

10−12

10−8

10−4

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

Figure 1.6: Comparison of the point-wise errors in log scale of the filtered solutions
with RS filter (1.12) and SRV filter (1.14). The approximation polynomial is P3.

Construction of SIAC Filter

We remind the reader that the SIAC filter is formulated as

K(r+1,`)(x) =

r∑
γ=0

c(r+1,`)
γ ψ(`)(x− xγ(x̄)),

1.3. Smoothness-Increasing Accuracy-Conserving Filters 19

where xγ(x̄) = − r
2 + γ + λ(x̄) represent the positions of the filter nodes. Here, λ(x̄)

is defined as a shift function that depends upon the evaluation point x̄. However, for
convenience we focus on the symmetric filter, Kr,` with λ(x̄) = 0. The implementation
of one-sides filters is similar.

The components of the filter, central B-splines, which can be constructed using
the recursion relation (1.7). In Chapter 2, we will introduce the generalized definition
of B-splines, and then we can use the efficient algorithm given by de Boor [31] to
construct the filter. Since the B-splines are always the same, one can also calculate
the polynomial coefficients, store them and then use polynomial evaluation scheme to
evaluate the B-spline at arbitrary points.

The filter coefficients, cγ , remain to be defined. The coefficients are decided by
the property that the filter reproduces polynomials up to degree r, where r + 1 is the
number of B-splines. Using the monomials as in (1.8) we can obtain the following
linear system for the filter coefficients:

r∑
γ=0

c(r+1,`)
γ

∫ ∞

−∞
ψ(`)(ξ − xγ)(x− ξ)mdξ = xm, m = 0, 1, . . . , r. (1.17)

In order to calculate the integration exactly, we use Gaussian quadrature with d l+m+1
2 e

quadrature points. As an example for k = 1 (r = 2k, ` = k + 1), we have 1 1 1
x− 1 x x+ 1

x2 + 2x+ 7
6 x2 + 1

6 x2 − 2x+ 7
6

 c0
c1
c2

 =

 1
x
x2

 . (1.18)

Since linear system (1.18) holds for all x, we can simply set x = 0 and obtain the
coefficients [c0, c1, c2]

T = [− 1
12 ,

7
6 ,−

1
12]

T . The linear system (1.17) for the coefficients
is a non-singular system, so the coefficients are exist and unique, see [13, 25].

Remark 1.3.2. For one-sided filters, such as the SRV filter, the linear system (1.17)
will have a large condition number, which causes computational issues. We will discuss
these issues in the following chapter.

After implementation of the filter, we continue by demonstrating how to implement
the convolution operator in SIAC filtering.

Evaluation of the Convolution Operator

The basic operation used in SIAC filtering is convolution of the DG solution against a
B-spline based filter. Here, we explicitly point out the steps to efficient evaluation of
the convolution operator.

In the one-dimensional case, denote {Ij}Nj=1 be the mesh. To evaluate the filtered
solution at a point x ∈ Ij , we have

u?(x) =
1

h

∫ ∞

−∞
K(2k+1,k+1)

(
x− ξ
h

)
uh(ξ)dξ

=
1

h

∫ x+ 3k+1
2

h

x− 3k+1
2

h
K(2k+1,k+1)

(
x− ξ
h

)
uh(ξ)dξ

(1.19)

20 Chapter 1. Background

The integration in (1.19) is calculated by Gauss quadrature with k + 1 quadrature
points. However, both the DG solution and the filter are piecewise polynomials. There-
fore, we have to divide the support, supp(K(x)) =

[
x− 3k+1

2 h, x+ 3k+1
2 h

]
into many

subintervals, such that both the DG solution and the filter are polynomials on each
subinterval. First, consider the discontinuities of the DG solution. We can write (1.19)
as

u?(x) =
1

h

∑
Ii+j∩supp(K(x))6=∅

∫
Ii+j

K(2k+1,k+1)

(
x− ξ
h

)
uh(ξ)dξ. (1.20)

Then we divide the elements Ii+j into several subintervals that Ii+j =
ni+j⋃
α=1

Iαi+j ac-

cording to the breaks of the filter such that on each subinterval Iαi+j the filter is a
polynomial, ∫

Ii+j

K(2k+1,k+1)

(
x− ξ
h

)
uh(ξ)dξ

=

ni+j∑
α=1

∫
Iαi+j

K(2k+1,k+1)

(
x− ξ
h

)
uh(ξ)dξ.

(1.21)

Finally, we can apply the Gauss quadrature to calculate the integration on subintervals
Iαi+j . Usually, for uniform meshes we divide each element Ii+j into two subintervals,
but for nonuniform meshes the number of subintervals is dependent on the mesh. To
speed up the filtering process, sometimes it is possible to use inexact integration, see
[50]. However, step (1.20) is necessary. The step, which divides the integration region
into subintervals according to the filter breaks, is also needed for calculating the linear
system (1.17).

In multi-dimensions, the filter is a tensor product of the one-dimensional filters.
The implementation of the multi-dimensional SIAC filter over rectangular meshes is
the same. For triangular meshes, the principles are the same and one can find the
details in [48].

2
Position-Dependent SIAC Filters

2.1 Introduction

When judging the value of numerical methods, the practical usage and computational
considerations are always a criteria. As introduced in Chapter 1, due to its symmetric
property, the symmetric SIAC filter (1.6) can not be applied near domain boundaries
or discontinuities of the exact solution, which is impractical in practice. To overcome
this disadvantage, two one-sided filters, the RS filter (1.12) and the SRV filter (1.14),
were introduced. However, these still have some deficiencies which are discussed in the
following.

2.1.1 The Deficiencies of the RS and SRV Filters

• Theoretical Considerations

As mentioned in Chapter 1, the main difference between the RS filter (1.12) and
the SRV filter (1.14) is the number of B-splines. In order to reduce the errors of the RS
filtered solution, the SRV filter increases the number of B-splines from 2k+1 to 4k+1.
The strategy of using 4k + 1 B-splines seems work well as in [65] and Example 1.3.6,
however, the actual story is more complicated. One can easily find a counterexample
that demonstrates using 4k+1 B-splines makes filtered solutions worse than using only
2k + 1 B-splines for some examples. A simple one of these is the L2 projection of the
wave functions sin(2λπx) over a uniform mesh with N elements. For large λ using the
SRV filter leads to a worse result compared to using the RS filter, see Figure 2.1. The
details of dealing wave functions are presented in Chapter 6.

To explain this occurrence, one has to check the error estimate of the filtered
solutions. First, we write the generalized formula of SIAC filters as

K(r+1,`)(x) =
r∑

γ=0

c(r+1,`)
γ ψ(`)(x− xγ(x̄)), (2.1)

where xγ depends on the location of the evaluation point x̄. Formula (2.1) can be used
to represent the symmetric filter (1.6), the RS filter (1.12) and the SRV filter (1.14).

21

22 Chapter 2. Position-Dependent SIAC Filters

5 6 7 8 9 10
λ

10−2

10−1

100

101

102

103

|er
ro

r|

P3, N = 40

RS filter
SRV filter

Figure 2.1: Comparison of the RS filtered errors (black) and the SRV filtered errors
(red) for the L2 projection of sin(2πλx) over a uniform mesh.

Similar to the proof of Theorem 1.3.4, for uniform meshes, we have

‖u− u?h‖0,Ω0 ≤ ‖u−K
(r+1,`)
h ? u‖0,Ω0 + ‖K

(r+1,`)
h ? (u− uh)‖0,Ω0

≤ Θ1 +Θ2,

where

Θ1 = ‖u−K(r+1,`)
h ? u‖0,Ω0 ≤

hr+1

(r + 1)!
C1|u|r+1, (Equation (1.8))

and

Θ2 = C0

∑
|α|≤`

‖DαK
(r+1,`)
h ? (u− uh)‖−`,Ω1/2

, (Lemma 1.2.2)

≤ C0C1

∑
|α|≤`

‖∂αh (u− uh)‖−`,Ω1

≤ C1C2h
2k+1, (Theorem 1.2.1)

here Ω0 + supp(K
(r+1,`)
H) ⊂ Ω1/2 and Ω1/2 + supp(K

(r+1,`)
H) ⊂ Ω1.

Now, we have

‖u− u?h‖0,Ω0 ≤
hr+1

(r + 1)!
C1|u|r+1 + C1C2h

2k+1, (2.2)

where C2 is a constant related to the DG approximation and

C1 = sup
x̄∈Ω

κ(x̄), where κ(x̄) =

r∑
γ=0

|c(r+1,k+1)
γ | (2.3)

2.1. Introduction 23

is determined by the filter coefficients. In addition, we note that the filter coefficients
are dependent on the location of the evaluation point x̄.

One can see that increasing the number of B-splines can increase the order of the
first term in (2.2), but it has no effect on the second term. Another important factor
is the constant C1 (or κ), which depends on the filter coefficients. Figure 2.2 shows
the values of κ with respect to the location of the evaluation point.

P3 P4

0 0.2 0.4 0.6 0.8 1.0

x

101

102

103

104

105

106

107

κ(
x)

RS Filter
SRV Filter

0 0.2 0.4 0.6 0.8 1.0

x

101

102

103

104

105

106

107

κ(
x)

RS Filter
SRV Filter

Figure 2.2: κ(x) in (2.3) for: the RS filter (1.12) and the SRV filter (1.14) in error
estimate (2.2) with respect the location of the evaluation point. Left: P3 polynomials.
Right: P4 polynomials.

The two components of the above error estimate are the error constant and the
accuracy order. Comparing to the RS filter, the SRV filter maintains the same accu-
racy order and the error constant is significantly increased, which are the theoretical
deficiencies of the SRV filter compared to the RS filter. However, if filtering an exact
solution that is sufficiently smooth, using the SRV filter leads to a better accuracy
than using the RS filter, see [39].
• Computational Considerations
In addition to the theoretical estimates, computational considerations are impor-

tant to consider when applying a technique to real world problems.
First, the SRV filter is constructed with 4k + 1 central B-splines, which increased

both the width of the stencil generated and the computational cost (in terms of func-
tions evaluations) a disproportionate amount compared to the symmetric filter. Also,
when calculating the filter coefficients using the linear system (1.17), one has to use
Gaussian quadrature with d5k2 + 1e quadrature points.

Second, the SRV filter requires the use of multiple precision (at least quadruple) for
P3 and higher degree polynomials to obtain consistent and meaningful results, which
makes it highly unsuitable for practical CPU-based computations and certainly GPU
computing. Figure 2.3 shows the significant round-off error near the boundaries when
using double precision for filtering the L2 projection of a sine function. The round-off

error is due to the huge filter coefficients c
(4k+1,k+1)
γ , and the enormous condition

number of the linear system (1.17).

24 Chapter 2. Position-Dependent SIAC Filters

Third, the numerical performances of the former filters are not satisfactory for
nonlinear equations and nonuniform meshes, see numerical examples in Section 2.4.

Lastly, in practical applications, such as streamline integration [68], suggest that
the RS filter does not place enough weight at the boundary point. This can lead to
dissatisfied results. Since the SRV filter is developed based on the RS filter, it also has
the same problem (even worse, see Figures 5.6 and 5.7 in Chapter 5).

DG error Filtered error

Figure 2.3: The point-wise errors in log scale of the original L2 projection solution
and the SRV filtered solution with polynomial P4, mesh 80× 80. Double precision was
used in these computations.

2.2 Modification of Position-Dependent Filter

In order to overcome the principle deficiencies of the former one-sided filters, we have to
consider a new position-dependent filter for filtering near boundaries. If we consider
the error estimate (2.2), we can see that its components are the error constant C1

in (2.3) and the accuracy order. Since the accuracy order of the former filters is
already optimal, in this chapter, we focus on reducing the value of C1 to design the
new filter. Also, preliminary results suggest that changing the number and position
of the B-splines is not enough to overcome the deficiencies. Therefore, to complete
the task, we have to add a general B-spline into the central B-spline filter. In this
section, we first review the generalized definition of B-splines. Then, we propose a new
position-dependent filter that ameliorates the deficiencies of the former filters.

2.2.1 A Review of B-splines

First, we recall the definition of B-splines given by de Boor [31].

Definition 2.2.1 (B-spline).

Let t := (tj) be a nondecreasing sequence of real numbers that create a so-called
knot sequence. The jth B-spline of order ` for the knot sequence t is denoted by Bj,`,t

2.2. Modification of Position-Dependent Filter 25

and is defined, for ` = 1, by the rule

Bj,1,t(x) =

{
1, tj ≤ x < tj+1;
0, otherwise.

In particular, tj = tj+1 leads to Bj,1,t = 0. For ` > 1,

Bj,`,t(x) = ωj,k,tBj,`−1,t + (1− ωj+1,`,t)Bj+1,`−1,t,

with

ωj,`,t(x) =
x− tj

tj+`−1 − tj
.

This notation will be used to create a new filter near the boundaries.
A central B-spline of order ` has a knot sequence that is uniformly spaced and

symmetrically distributed

t = − `
2
,−`− 2

2
, · · · , `− 2

2
,
`

2
.

For convenience, we denote ψ
(`)
t (x) to be the 0th B-spline of order ` for the knot

sequence t,

ψ
(`)
t (x) = B0,`,t(x).

Remark 2.2.1. The knot sequence t also represents the so-called breaks of the B-
spline. The B-spline in the region [ti, ti+1), i = 0, . . . , ` − 1 is a polynomial of degree
`−1, but in the entire support [t0, t`], the B-spline is a piecewise polynomial. When the
knots (tj) are sampled in a symmetric and equidistant fashion, the B-spline is called
a central B-spline. Notice that a central B-spline (1.7) is a subset of this definition
where the knots are equally-spaced. This new notation provides more flexibility than
the previous central B-spline notation.

2.2.2 New Position-Dependent SIAC Filter

We begin by restating the definition of the SIAC filter through the definition of the
knots defining the B-splines used in the filter. We recall that the generalized definition
of the filter relied on r + 1 central B-splines of order `. B-splines were then defined
automatically through a knot sequence t := (tj). Before we deduce the new boundary
filter, we introduce a new definition: knot matrix.

Definition 2.2.2 (Knot matrix).
A knot matrix, T, is an n×m matrix such that the γ−th row, T(γ), of the matrix

T is a knot sequence with `+ 1 elements (i.e., m = `+ 1) that are used to create the

B-spline ψ
(`)
T(γ)(x). The number of rows n is specified based on the number of B-splines

used to construct the filter.

For example, the knot matrix for the symmetric filter (1.6) has components given
by

T (i, j) = − `
2
+ j + i− r

2
, i = 0, . . . , r; and j = 0, . . . , `.

26 Chapter 2. Position-Dependent SIAC Filters

More specifically, consider the filter for DG solutions of degree k = 1. For the sym-
metric filter (` = 2 and r = 2), the elements of the knot matrix Tsym are given by

Tsym =

 −2 −1 0
−1 0 1
0 1 2

 .

For the RS filter (1.12), which uses only 2k+ 1 central B-splines at the left boundary,
the knot matrix TRS is given by

TRS =

 −4 −3 −2
−3 −2 −1
−2 −1 0

 .

For the SRV filter (1.14), which uses 4k + 1 central B-spline at the left boundary, the
knot matrix TSRV is given by

TSRV =

−6 −5 −4
−5 −4 −3
−4 −3 −2
−3 −2 −1
−2 −1 0

 .

Therefore, we can use Definition 2.2.2 to rewrite the symmetric filter (1.6) in terms
of a knot matrix as follows

K
(2k+1,k+1)
Tsym

(x) =

2k∑
γ=0

c(2k+1,k+1)
γ ψ

(k+1)
Tsym(γ)(x).

Now we can define the new filter by generating a knot matrix.
Definition 2.2.2 alone is not enough to create the boundary filter we wish to propose.

We must impose further restrictions on the knot matrix. First, for convenience we
require

T (γ, 0) ≤ T (γ, 1) ≤ · · · ≤ T (γ, `), for γ = 0, . . . , r,

and
T (γ + 1, 0) ≤ T (γ, `), for γ = 0, . . . , r − 1.

Second, the knot matrix, T, should satisfy

T (0, 0) ≥ x̄− xR
h

and T (r, `) ≤ x̄− xL
h

,

where h is the element size for a uniform mesh. This requirement is derived from the
support of the B-spline as well as the support of the filter needing to remain inside

the domain. Recall that the support of the B-spline ψ
(`)
T(γ) is [T (γ, 0), T (γ, `)], and the

support of the filter is [T (0, 0), T (r, `)]. For any x̄ ∈ [xL, xR], the filtered solution at
point x̄ can then be written as

u?(x̄) = K
(r+1,`)
hT ? uh(x̄) =

∫ ∞

−∞
K

(r+1,`)
hT (x̄− ξ)uh(ξ)dξ

=

∫ x̄−hT (0,0)

x̄−hT (r,`)
K

(r+1,`)
hT (x̄− ξ)uh(ξ)dξ,

2.2. Modification of Position-Dependent Filter 27

where hT represents the scaled knot matrix. For the boundary regions, we force the
interval [x̄ − hT (r, `), x̄ − hT (0, 0)] to remain inside the domain Ω = [xL, xR]. This
implies that

xL ≤ x̄− hT (r, `), x̄− hT (0, 0) ≤ xR,

and hence the requirement of T (0, 0) ≥ x̄−xR
h and T (r, `) ≤ x̄−xL

h . Finally, we require
that the filter remain as symmetric as possible. This means the knots should be chosen
as

Left : T ← T −
(
T (r, `)− x̄− xL

h

)
, for

x̄− xL
h

<
3k + 1

2
,

Right : T ← T −
(
T (0, 0)− x̄− xR

h

)
, for

xR − x̄
h

<
3k + 1

2
.

This shifting will increase the error and it is therefore still necessary to increase the
number of B-splines used in the filter.

Because the symmetric filter yields superconvergence results, we wish to retain the
original form of the filter as much as possible. Near the boundary, where the symmetric
filter cannot be applied, we keep the 2k+1 shifted central B-splines and add only one
general B-spline. We keep the notation r + 1 = 2k + 1 associated with the number of
central B-splines. To avoid increasing the spatial support of the filter, we will choose
the knots of this general B-spline dependent upon the knots of the 2k + 1 central
B-splines in the following way: near the left boundary, we let the first 2k+1 B-splines
be central B-splines whereas the last B-spline will be a general spline. The elements
of knot matrix are then given by

T (i, j) =

−`− r + j + i+ x̄−xL

h , 0 ≤ i ≤ 2k, 0 ≤ j ≤ `;
x̄−xL

h − 1, i = 2k + 1, j = 0;
x̄−xL

h , i = 2k + 1, j = 1, . . . , `.

The filter coefficients are decided by the linear system (1.17), which reproducing poly-
nomials up to degree r + 1. For the left one-sided filter with scaling h, we have

K
(r+1,`)
hT (x) =

r+1∑
γ=0

c(r+1,`)
γ ψ

(`)
hT(γ)(x),

where r + 1 = 2k + 1 is the number of central B-splines and T(γ) represents the γ-th
row of the knot matrix T. For the central B-splines, γ = 0, . . . , 2k and

ψ
(`)
hT(γ)(x) =

1

h
ψ
(`)
T(γ)

(x
h

)
.

The added B-spline is a monomial defined as

ψ
(`)
hT(r+1)(x) =

1

h
x`−1
T(r+1)

(x
h

)
,

where

x`−1
T(r+1) =

{
(x− T (r + 1, 0))`−1 , T (r + 1, 0) ≤ x ≤ T (2k + 1, `);
0, otherwise.

28 Chapter 2. Position-Dependent SIAC Filters

Therefore near the left boundary, the filter can be rewritten as

K
(r+1,`)
hT (x) =

r∑
γ=0

c(r+1,`)
γ ψ

(`)
hT(γ)(x)︸ ︷︷ ︸

r + 1 = 2k + 1 central B-splines

+ c
(r+1,`)
r+1 ψ

(`)
hT(r+1)(x)︸ ︷︷ ︸

General B-spline

. (2.4)

Similarly, we can design the new filter near the right boundary, where the general
B-spline is given by

ψ
(`)
T(0)(x) = x`−1

T(0) =

{
(T (0, `)− x)`−1 , T (0, 0) ≤ x ≤ T (r + 1, `);

0, otherwise.

The elements of the knot matrix for the right boundary filter are defined as

T (i, j) =

x̄−xR

h , i = 0, j = 0, . . . , `− 1;
x̄−xR

h + 1, i = 0, j = `;
j + i− 1 + x̄−xR

h , 1 ≤ i ≤ r + 1, 0 ≤ j ≤ `,

and the form of the filter is then

K
(r+1,`)
hT (x) = c

(r+1,`)
0 ψ

(`)
hT(0)(x) +

r+1∑
γ=1

c(r+1,`)
γ ψ

(`)
hT(γ)(x).

We note that this “extra” B-spline is used only when x̄−xL
h < 3k+1

2 or xR−x̄
h < 3k+1

2 ,
otherwise the coefficient of the “extra” B-spline becomes zero when solving the linear
system (1.17), and then the filter becomes the symmetric central B-spline filter.

Example 2.2.1. We present a concrete example for the P1 case with ` = 2. In this
case, the knot matrices for our newly proposed filter at the left and right boundaries
are

TLeft =

−4 −3 −2
−3 −2 −1
−2 −1 0
−1 0 0

 , TRight =

0 0 1
0 1 2
1 2 3
2 3 4

 .

The following plot illustrates how to use the knot matrix to construct the filter. The
knots and respective B-spline are in same color, the filter is in red.

TLeft =

−4 −3 −2
−3 −2 −1
−2 −1 0
−1 0 0

 ,

In the left figure, the three equally dis-
tributed blue (green, cyan) points repre-
sent the central B-spline in color blue
(green, cyan), and the three black points
represent the general B-spline (two multi-
ple points at 0).

−4 −3 −2 −1 0

−2

−1

0

1

2

3

4

5

2.3. Theoretical Results 29

These new knot matrices are 4× 3 matrices where, in the case of the filter for the
left boundary, the first three rows express the knots of the three central B-splines and
the last row expresses the knots of the general B-spline. For the filter applied to the
right boundary, the first row expresses the knots of the general B-spline and the last
three rows express the knots of the central B-splines.

Comparing the new knot matrix with the one used to obtain the SRV filter, we
can see that they have the same number of columns, which indicates that they use the
same order of B-splines. There are fewer rows in the new matrix (2k + 2) than the
number of rows from the SRV filter (4k + 1). This indicates that the new filter uses
fewer B-splines than the SRV filter.

To compare all existing one-sided filters, we plot these filters used at the left bound-
ary for k = 2. Figure 2.4 illustrates that the new position-dependent SIAC filter places
more weight on the evaluation point than the former filters, and the SRV filter has
a significantly larger magnitude and support which we observed to cause problems,
especially for higher-order polynomials (such as P3 or P4). For this example, using
the filter for quadratic approximations, the scaling of the SRV filter has a range from
−150 to 150 versus −5 to 5 for the newly proposed filter.

RS filter SRV filter New filter

−12 −8 −4 0
−15
−10
−5

0
5

10
15

−12 −8 −4 0
−150
−100
−50

0
50

100
150

−12 −8 −4 0
−5

0

5

Figure 2.4: (Left) RS filter (1.12), (Center) SRV filter (1.14) and (Right) the newly
proposed filter with k = 2. The filtered point is at boundary x = 0.

2.3 Theoretical Results

The previous section introduced a new filter to reduce the errors of dG approximations
while attempting to ameliorate the issues concerning the former filters. In this section,
we discuss the theoretical results of the newly defined boundary filter.

2.3.1 Local Error Estimate in the Negative Order Norm

First of all, we point out there is a minor flaw in the theoretical foundation of one-
sided filters. The error estimate in the negative order norm, given in Theorem 1.2.1,
assumes periodic boundary conditions. It follows that the error estimate of the SRV
filter given in [39] is under the same periodic boundary assumption. The periodic
boundary assumption is unnatural for one-sided filters since with the periodic bound-
ary assumption we can use the symmetric filter directly. To ameliorate this minor

30 Chapter 2. Position-Dependent SIAC Filters

flaw, we present an alternative error estimate of the DG solution in the negative order
norm.

Lemma 2.3.1. Let u be the exact solution of a linear hyperbolic equation (1.1), and
let uh be the DG approximation. Then the negative order norm estimate of u − uh
satisfies

‖(u− uh)(T)‖−(k+1),Ω ≤ Ch2k+1. (2.5)

Note: comparing to Theorem 1.2.1, the periodic boundary condition was removed.

Proof. First we give a dual problem of equation (1.1) by

ϕt +
d∑

i=1

aiϕxi − a0ϕ = 0, ϕ(x, T) = Φ(x).

The DG approximation satisfies scheme (1.2)

((uh)t, vh)K −
d∑

i=1

(aiuh, (vh)xi)K

+
d∑

i=1

∫
∂K

aiûhvhnids+ (a0uh, vh) = 0,

By applying the dual problem, we obtain

d

dt
(u, ϕ)K = −

d∑
i=1

∫
∂K

aiuϕnids.

and

(u, ϕ)K(T) = (u, ϕ)K(0)−
∫ T

0

(
d∑

i=1

∫
∂K

aiuϕnids

)
dt.

Note: the original proof in [25] assumed periodic boundary conditions. Then the term∫ T

0

(
d∑

i=1

∫
∂K

aiuϕnids

)
dt is counteracted by summing up for all K ∈ Th in [25].

Without assuming the periodic boundary conditions the term remains in the analysis.

Then we have

((u− uh)(T),Φ)K = (u− uh, ϕ)(T)

=(u− uh, ϕ)K(0)−
∫ T

0

(
d∑

i=1

∫
∂K

aiuϕnids

)
dt−

∫ T

0

d

dt
(uh, ϕ)Kdt.

2.3. Theoretical Results 31

Considering d
dt(uh, ϕ)K in the third term,

d

dt
(uh, ϕ)K = ((uh)t, ϕ)K + (uh, ϕt)K ,

= ((uh)t, ϕ− vh)K + ((uh)t, vh)K + (uh, ϕt)K (vh ∈ V k
h)

= ((uh)t, ϕ− vh)K + (uh,

d∑
i=1

ai(vh)xi)K

−
d∑

i=1

∫
∂K

aiûhvhnids− (a0uh, vh)K + (uh, ϕt)K

= ((uh)t + a0uh, ϕ− vh)K

−

(
uh,

d∑
i=1

ai(ϕ− vh)xi

)
K

−
d∑

i=1

∫
∂K

aiûhvhnids,

=

(
(uh)t +

d∑
i=1

ai(uh)xi + a0uh, ϕ− vh

)
K

−
d∑

i=1

∫
∂K

aiuh(ϕ− vh)nids−
d∑

i=1

∫
∂K

aiûhvhnids,

= −
d∑

i=1

∫
∂K

aiuh(ϕ− vh)nids−
d∑

i=1

∫
∂K

aiûhvhnids,

substituting above formula back, we have

((u− uh)(T),Φ)K

= (u− uh, ϕ)K(0)−
∫ T

0

(
d∑

i=1

∫
∂K

aiuϕnids

)
dt

+

∫ T

0

(
d∑

i=1

∫
∂K

ai (uh(ϕ− vh)ni + ûhvhni) ds

)
dt

= (u− uh, ϕ)K(0)−
∫ T

0

(
d∑

i=1

∫
∂K

ai(u− ûh)ϕnids

)
dt

+

∫ T

0

(
d∑

i=1

∫
∂K

ai(uh − ûh)(ϕ− vh)nids

)
dt

Since the first and the third term are identical to the proof in [25], we need only
consider the second term. According to [4, 15], the DG solution has superconvergence
property for its numerical flux

|
d∑

i=1

∫
∂K

(u− ûh)| ≤ Ch2k+1,

32 Chapter 2. Position-Dependent SIAC Filters

which does not rely on the periodic boundary condition. Then, for the second term,
we have ∫ T

0

(
d∑

i=1

∫
∂K

ai(u− ûh)ϕnids

)
dt ≤

∫ T

0
Ch2k+1‖ϕ‖k+1,Ωdt.

Summing up over all K ∈ Th, we obtain (2.5).

Remark 2.3.1. Compared to the original theorem, Lemma 2.3.1 theoretically confirms
that the periodic boundary conditions are not necessary. It reveals the fact that the filter
has compact support and needs only local information of the DG approximation. The
error estimates for divided differences of the DG approximation ∂αhuh are similar, and
we will address the details in Chapter 4.

2.3.2 Theoretical Results in the Uniform Case

First, we discuss the theoretical results of the new one-sided filter for uniform meshes.
Specifically, for k = 1 it is globally superconvergent of order three. For higher degree
polynomials, it is possible to obtain superconvergence only in the interior of the domain.

Recall that the new scaled filter has the form

K
(r+1,`)
hT (x) =

r+1∑
γ=0

c(r+1,`)
γ ψ

(`)
hT(γ)(x).

In the interior of the domain the symmetric filter is used. It consists of 2k + 1 central
B-splines,

K
(2k+1,`)
hT (x) =

2k∑
γ=0

c(2k+1,`)
γ ψ

(`)
hT(γ)(x),

and, near the left boundary the new one-sided filter can be written as

K
(2k+1,`)
hT (x) =

 2k∑
γ=0

c(2k+1,`)
γ ψ

(`)
hT(γ)(x)

+ c
(2k+1,`)
2k+1 ψ

(`)
hT(2k+1)(x),

where 2k+1 central B-splines are used together with one general B-spline. The scaled

filter K
(r+1,`)
hT has the property that the convolution K

(r+1,`)
hT ?uh only uses information

inside the domain Ω.

Theorem 2.3.2. Under the same conditions in Theorem 1.3.4, let u?h(x̄) = (K
(r+1,`)
hT ?

uh)(x̄) be the solution obtained by applying the newly proposed filter which uses r+1 =
2k+1 central B-splines of order ` = k+1 and one general B-spline in boundary regions.
Then the filtered solution has the following properties:

(i) ‖(u − u?h)(x̄)‖0,Ω ≤ Ch3 for k = 1. That is, u?h(x̄) is globally superconvergent of
order three for linear approximations.

(ii) ‖(u − u?h)(x̄)‖0,Ω\supp{Ks} ≤ Chr+1 when r + 1 ≤ 2k + 1 central B-splines are
used in the filter. Here supp{Ks} represents the support of the symmetric filter.
Thus, u?h(x̄) is superconvergent in the interior of the domain.

2.3. Theoretical Results 33

(iii) ‖(u− u?h)(x̄)‖0,Ω ≤ Chk+1 globally.

Proof. We neglect the proof of properties (i) and (ii) as they are similar to the proofs
in [25] and [39]. Also, we note that the periodic boundary conditions in the origin of
proofs can be removed due to Lemma 2.3.1.

Consider the one-dimensional case (d = 1). Then the error can be written as

‖u−K(r+1,`)
hT ? uh‖0,Ω ≤ Θh,1 +Θh,2,

where

Θh,1 = ‖u−K
(r+1,`)
hT ? u‖0,Ω and Θh,2 = ‖K

(r+1,`)
hT ? (u− uh)‖0,Ω.

The proof of higher order convergence for the first term, ΘH,1, is the same as in
[25] as the requirement on KhT does not change (reproduction polynomials of degree
r + 1). This means that

Θh,1 ≤
hr+1

(r + 1)!
C1|u|r+1,Ω.

Now consider the second term, Θh,2. Without loss of generality, we consider the filter
for the left boundary in order to estimate Θh,2. The proofs for the filter in the interior
and right boundary are similar. We use the form of the filter given in (2.4), which
decomposes the new filter into two parts: 2k + 1 central B-splines and one general
B-spline. That is, we write

K
(r+1,`)
hT (x) =

 r∑
γ=0

c(r+1,`)
γ ψ

(`)
hT(γ)(x)

︸ ︷︷ ︸

central B-splines

+ c
(r+1,`)
r+1 ψ

(`)
hT(r+1)(x)︸ ︷︷ ︸

general B-spline

.

Setting e(x) = u(x)− uh(x), then

Θh,2 = ‖K
(r+1,`)
hT ? e‖0,Ω1 ≤ ‖K

(r+1,`)
hT ‖L1‖e‖0 ≤ sup

x∈Ω
(κ(x)) ‖e‖0.

where κ(x) =
r∑

γ=0
|c(r+1,`)
γ |+ |c(r+1,`)

2k+1

` |. Hence

Θh,2 ≤ C sup
x∈Ω

(κ(x))hk+1.

Remark 2.3.2. Note that in this analysis we steered away from the negative order
norm argument. Technically, the terms involving the central B-splines have a conver-
gence rate of r + 1 ≤ 2k + 1 as given in [25, 39]. It is the new addition, the term
involving the general B-spline that presents the limitation and reduces the convergence
rate to that of the dG approximation itself.

To extend this to the multidimensional case (d > 1), given an arbitrary x =
(x1, . . . , xd) ∈ Rd, we set

ψ
(`)
T(γ)(x) =

d∏
i=1

ψ
(`)
T(γ)(xi).

34 Chapter 2. Position-Dependent SIAC Filters

The filter for the multidimensional space considered is of the form

K
(r+1,`)
hT (x) =

r+1∑
γ=0

c(r+1,`)
γ ψ

(`)
hT(γ)(x),

where the coefficients c
(`)
γ are tensor products of the one-dimensional coefficients. To

emphasize the general B-spline used near the boundary, we assume, without loss of
generality, that in the xk1 , . . . , xkd0 directions we need the general B-spline, where
0 ≤ d0 ≤ d. Then

ψ
(`)
hT(2k+1) =

d0∏
i=1

ψ
(`)
hT(2k+1)(xki).

By applying the same idea we used for the one-dimensional case, the theorem is also
true for multi-dimensional case.

We note that the constant in the final estimate is a product of two other constants,

one of them is decided by the filter,
r∑

γ=0
|c(r+1,`)
γ |+ |c(r+1,`)

r+1 |
` , and the other one is decided

by the DG approximation. To further illustrate the necessity of examining the constant
in the error term which contributed to the filter, we provide Figure 2.5. This figure

demonstrates the difference between
r∑

γ=0
|c(r+1,`)
γ | for the previously introduced filters

and our new filter in which the constant is modified to
r∑

γ=0
|c(r+1,`)
γ | + |c(r+1,`)

r+1 |
` . In

Figure 2.5, one can clearly see that by adding a general spline to the r + 1 central
B-splines we are able to reduce the constant in the error term significantly.

P3 P4

0 0.2 0.4 0.6 0.8 1.0

x

101

102

103

104

105

106

107

κ(
x)

RS Filter
SRV Filter
New Filter

0 0.2 0.4 0.6 0.8 1.0

x

101

102

103

104

105

106

107

κ(
x)

RS Filter
SRV Filter
New Filter

Figure 2.5: Plots demonstrating the effect of the coefficients on the error estimate for
P3 and P4 polynomials. Shown is κ(x) for: the RS filter, the SRV fitler and the new
filter.

2.3. Theoretical Results 35

2.3.3 Theoretical Results in the Nonuniform Case

In this section, we give a theoretical interpretation to the computational results pre-
sented in [30]. This is done by using the newly proposed filter for nonuniform meshes
and showing that the new position-dependent filter maintains the superconvergence
property in the interior of the domain for smoothly-varying meshes and is accuracy
order conserving near the boundaries for nonuniform meshes. We begin by defining
what we mean by a smoothly-varying mesh.

Definition 2.3.1 (Smoothly-Varying Mesh).

Let ξ be a function defined over a uniform mesh on domain Ω ⊂ R, then a smoothly-
varying mesh defined over Ω is a nonuniform mesh whose variable x satisfies

x = ξ + f(ξ), (2.6)

where f is a sufficiently smooth function and satisfies

f ′(ξ) > −1, ξ ∈ ∂Ω⇐⇒ ξ + f(ξ) ∈ ∂Ω.

For example, we can choose f(ξ) = 0.5 sin(ξ) over [0, 2π]. The multi-dimensional
definition can be defined in the same way.

Lemma 2.3.3. Under the same conditions in Theorem 1.2.1, denote ξ to be the vari-
able for the uniform mesh defined on Ω with size h, and x be the variable of a smoothly-
varying mesh defined in (2.6). Let uh(ξ) be the numerical solution to linear hyperbolic
equation (1.1) over uniform mesh ξ, and uh(x) be the approximation over smoothly-
varying mesh x, both of them obtained by using the discontinuous Galerkin scheme
(1.2). Then the filtered solution obtained by applying SIAC filter Kh(ξ) for uh(ξ) and
KH(x) for uh(x) with a proper scaling H, are related by

‖u(x)−KH ? uh(x)‖0,Ω ≤ C‖u(ξ)−Kh ? uh(ξ)‖0,Ω.

Here, the filter K can be any filter we mentioned in the previous section (symmetric
filter, RS filter, SRV filter, and newly proposed position-dependent filter).

This lemma will be important for demonstrating superconvergence for smoothly-
varying meshes.

Proof. The proof is straightforward. If the scaling H is properly chosen, a simple map-
ping can be done from the smoothly-varying mesh to the corresponding uniform mesh.
The result holds if the Jacobian is bounded (from the definition of smoothly-varying
mesh).

‖u(x)−KH ? uh(x)‖20,Ω =

∫
Ω
(u(x)−KH ? uh(x))

2 dx

x→ξ
=

∫
Ω̃
(u(ξ)− u?h(ξ))

2 (1 + f ′(ξ))dξ

≤ ‖u(ξ)−Kh ? uh(ξ)‖20,Ω̃ ·max |1 + f ′(ξ)|.

36 Chapter 2. Position-Dependent SIAC Filters

According to the definition of smoothly-varying mesh, Ω = Ω̃, we have

‖u(x)−KH ? uh(x)‖0,Ω ≤ C‖u(ξ)−Kh ? uh(ξ)‖0,Ω,

where C =

(
max
Ω
|1 + f ′|

) 1
2

.

Remark 2.3.3. The proof seems obvious, but it is important to choose a proper scal-
ing for H in the computations. Due to the smoothness and computational cost re-
quirements, we need to keep H constant when treating points within the same element.
Under this condition, the best choice is H = ∆xj when post-processing the element Ij.
It is now easy to see that there exists a c in the element Ij, such that

H = ∆xj = h(1 + f ′(c)).

Theorem 2.3.4. Under the same conditions in Theorem 2.3.2. Let u?h(x̄) = (K
(r+1,`)
hT ?

uh)(x̄) be the solution obtained by applying our newly proposed filter which uses r+1 =
2k+1 central B-splines of order ` = k+1 and one general B-spline in boundary regions.
Then the filtered solution has the following properties:
For smoothly-varying meshes (Definition 2.3.1),

(i) ‖(u − u?h)(x̄)‖0,Ω ≤ Ch3 for k = 1. That is, u?h(x̄) is globally superconvergent of
order three for linear approximations.

(ii) ‖(u − u?h)(x̄)‖0,Ω\supp{Ks} ≤ Chr+1 when r + 1 ≤ 2k + 1 central B-splines are
used in the filter. Here supp{Ks} represents the support of the symmetric filter.
Thus, u?h(x̄) is superconvergent in the interior of the domain.

For nonuniform meshes,

(iii) ‖(u− u?h)(x̄)‖0,Ω ≤ C hk+1 globally.

Proof. Lemma 2.3.3 allows us to use the result over uniform meshes for smoothly-
varying meshes as well, then we know the properties (i) and (ii) are true by Theorem
2.3.2. For property (iii), we can use the same proof in Theorem 2.3.2 since the proof
does not depend on the mesh type.

Remark 2.3.4. For nonuniform meshes, all one-sided filters have the same accuracy
order in boundary regions.

We have now shown that superconvergence can be achieved for interior solutions
over smoothly-varying meshes. In the following section, we present numerical results
that confirm these findings on uniform and nonuniform (smoothly-varying) meshes.

2.4 Numerical Results

The previous section introduced a new position-dependent filter by adding a general
B-spline to a modified central B-spline filter. The addition of a general B-spline helps to
maintain a consistent support size for the filter throughout the domain and eliminates

2.4. Numerical Results 37

the need for a multi-precision package. Also, due to Property 1.3.2 of the symmetric
filter, we know that when the evaluation point moves gradually from the boundary
to the interior region, the new one-sided filter smoothly transforms to the symmetric
filter. This section illustrates the performance of the new position-dependent SIAC
filter on uniform and nonuniform (smoothly-varying and random) meshes.

We compare the results to the SRV filter [65]. In order to provide a fair comparison
between the SRV and new filters, we mainly show the results using quadruple precision
for mostly one-dimensional cases. We also provide one result using double precision to
show that quadruple precision is necessary(unnecessary) to use the SRV(new) filter.
Furthermore, in order to reduce the computational cost of the filter that uses 4k + 1
central B-splines, we neglect to implement the convex combination described in (1.16).
This convex combination is not necessary for the new filter, and it has no effect on the
accuracy.

Remark 2.4.1. The SRV filter requires using quadruple precision in the computa-
tions to eliminate round-off error, which is more computationally expensive than using
double precision. The new filter only requires double precision. In order to give a
fair comparison between the SRV filter and the new filter, for the one-dimensional
examples we have used quadruple precision to maintain a consistent computational
environment. However, for the two-dimensional examples we have used double preci-
sion since quadruple precision is too expensive (approximately ten times slower) for
multi-dimensions.

2.4.1 Uniform Meshes

Linear hyperbolic equation

The first example we consider is a linear hyperbolic equation,

ut + ux = 0, (x, t) ∈ [0, 1]× (0, T]

u(x, 0) = sin(2πx), x ∈ [0, 1].
(2.7)

with T = 1 over uniform meshes. The exact solution is a translation of the sine
function, u(x, t) = sin(2π(x− t)).

The DG solution error and the position-dependent SIAC filtered (SRV and new
filter) error are shown in Table 2.1 for both quadruple precision and double precision.
Using quadruple precision, both filters reduce the errors in filtered solution, although
the new filter has only a minor reduction in the quality of the error. However, us-
ing double precision only the new filter can maintain this error reduction for P3 and
P4polynomials. We note that we concentrate on the results for P3 and P4 polynomials
as there is no noticeable difference between double and quadruple precision for P1 and
P2 polynomials in the one-dimension.

The point-wise error plots are given in Figures 2.6. When using quadruple precision,
the SRV filter can reduce the error of the DG solution better than the new filter
for sufficiently fine meshes. However, it uses 2k − 1 more B-splines than the newly
generated filter. This difference is noticeable when using double precision, which is
almost ten times faster than using quadruple precision for P3 and P4. For such examples

38 Chapter 2. Position-Dependent SIAC Filters

the new filter performs better both computationally and numerically (in terms of
error). Table 2.1 shows that the former filter can only reduce the error for fine meshes
when using P4 piecewise polynomials. The new filter performs as good as when using
quadruple precision and reduces the error magnitude at a reduced computational cost.

Additionally, we point out that the accuracy of the SRV filter depends on (1) having
higher regularity of C4k+1, (2) a well-resolved DG solution, and (3) a wide enough
support (at least 5k+1 elements). The same phenomenon will also be observed in the
following tests such as for a nonlinear equation. For the new filter, the support size
remains the same throughout the domain – 3k + 1 elements – and a higher degree of
regularity is not necessary.

Note: In the following examples, all one-dimensional examples are using quadruple
precision due to the SRV filter, and all two-dimensional examples are using double
precision due to the computational cost.

DG SRV Filter New filter

Quadruple precision:

Double precision:

Figure 2.6: Comparison of the point-wise errors of the DG solution, the SRV filter and
the new filter for linear hyperbolic equation (2.7) over uniform meshes with polynomials
P4.

2.4. Numerical Results 39

Table 2.1: L2− and L∞−errors for the DG approximation together with the SRV and
new filters for linear hyperbolic equation (2.7) over uniform meshes.

DG SRV Filter New Filter
Mesh L2 error order L∞ error order L2 error order L∞ error order L2 error order L∞ error order

Quadruple precision
P1

20 4.02E-03 – 1.45E-02 – 1.98E-03 – 2.80E-03 – 1.98E-03 – 2.80E-03 –
40 1.02E-03 1.97 3.82E-03 1.92 2.44E-04 3.02 3.46E-04 3.02 2.44E-04 3.02 3.46E-04 3.02
80 2.58E-04 1.99 9.79E-04 1.96 3.02E-05 3.01 4.28E-05 3.01 3.03E-05 3.01 4.28E-05 3.01

P2

20 1.07E-04 – 3.67E-04 – 3.73E-06 – 5.82E-06 – 1.21E-05 – 8.27E-05 –
40 1.34E-05 3.00 4.62E-05 2.99 9.42E-08 5.31 1.34E-07 5.44 5.52E-07 4.45 5.31E-06 3.96
80 1.67E-06 3.00 5.78E-06 3.00 2.48E-09 5.24 3.52E-09 5.26 4.79E-08 3.53 6.19E-07 3.10

P3

20 2.06E-06 – 6.04E-06 – 1.53E-07 – 1.02E-06 – 2.30E-06 – 8.71E-06 –
40 1.29E-07 4.00 3.80E-07 3.99 2.70E-10 9.15 4.00E-10 11.32 4.14E-09 9.12 2.27E-08 8.58
80 8.07E-09 4.00 2.38E-08 4.00 1.22E-12 7.79 1.73E-12 7.85 8.18E-12 8.98 1.20E-10 7.56

P4

20 3.19E-08 – 7.02E-08 – 7.53E-03 – 7.33E-02 – 5.31E-07 – 1.99E-06 –
40 1.00E-09 4.99 2.25E-09 4.97 1.99E-12 31.82 3.12E-12 34.45 2.97E-10 10.80 1.58E-09 10.30
80 3.14E-11 5.00 7.14E-11 4.98 2.23E-15 9.80 3.19E-15 9.93 1.37E-13 11.08 1.55E-12 9.99

Double precision
P3

20 2.06E-06 – 6.04E-06 – 1.53E-07 – 1.02E-06 – 2.30E-06 – 8.71E-06 –
40 1.29E-07 4.00 3.80E-07 3.99 2.70E-10 9.15 4.00E-10 11.32 4.14E-09 9.12 2.27E-08 8.58
80 8.07E-09 4.00 2.38E-08 4.00 1.25E-12 7.75 3.85E-12 6.70 8.18E-12 8.98 1.20E-10 7.56

P4

20 3.19E-08 – 7.02E-08 – 7.53E-03 – 7.33E-02 – 5.31E-07 – 1.99E-06 –
40 1.00E-09 4.99 2.25E-09 4.97 3.97E-11 27.50 6.14E-10 26.83 2.97E-10 10.80 1.58E-09 10.30
80 3.14E-11 5.00 7.14E-11 4.98 1.48E-11 1.42 3.28E-10 0.90 1.37E-13 11.08 1.55E-12 9.99

For the two-dimensional version linear hyperbolic equation,

ut + ux + uy = 0, (x, y) ∈ [0, 2π]× [0, 2π],

u(x, y, 0) = sin(x+ y),
(2.8)

at T = 2π, due to the computational cost issue to obtain the filtered solution, we only
calculate the 2D results using double precision. Table 2.2 shows that the accuracy is
affected by the round-off error, especially for the SRV filter. Such significant round-off
error appears to destroy the accuracy. Although the error magnitude near the bound-
aries is larger than the regions where the symmetric filter is used, the new filter reduces
the error and improves smoothness of the DG solution, see Figure 2.7.

Table 2.2: L2− and L∞−errors for the DG approximation together with the SRV and
new filters for 2D linear hyperbolic equation (2.8) using polynomials of degree k = 3, 4.
Double precision was used in the computations.

DG SRV Filter New Filter
Mesh L2 error order L∞ error order L2 error order L∞ error order L2 error order L∞ error order

P3

20× 20 3.30E-06 – 1.21E-05 – 2.60E-07 – 1.12E-04 – 2.39E-06 – 1.80E-05 –
40× 40 2.06E-07 4.00 7.60E-06 3.99 4.69E-10 9.11 3.11E-09 5.17 7.01E-09 8.41 5.11E-08 8.46
80× 80 1.29E-08 4.00 4.76E-08 4.00 1.74E-11 4.75 5.50E-09 -0.82 7.97E-11 6.46 1.02E-09 5.65

P4

20× 20 4.71E-08 – 1.41E-07 – 2.77E-08 – 1.35E-06 – 5.25E-07 – 3.77E-06 –
40× 40 1.46E-09 5.01 4.50E-09 4.97 2.55E-08 0.12 2.84E-06 -1.07 3.83E-10 10.42 3.40E-09 10.11
80× 80 4.44E-11 5.04 1.43E-10 4.98 2.73E-08 -0.10 7.86E-06 -1.47 3.00E-13 10.31 3.12E-12 10.09

40 Chapter 2. Position-Dependent SIAC Filters

DG SRV Filter New filter

Figure 2.7: Comparison of the point-wise errors of the DG solution, the SRV filter and
the new filter for linear hyperbolic equation (2.8) over uniform meshes with polynomials
P4.

Nonlinear Hyperbolic Equation

In the previous linear examples, we can see that both the SRV and new filter are able
to reduce the errors of the original DG solutions. Also, we notice that the SRV filter
has better performance than the new filter if we do not consider computational issues.
However, we point out that the SRV filter is not suitable for dealing with nonlinear
equations because its theoretical foundation heavily replies on the linearity. It is also
one motivation in developing the new filter. To illustrate the statement, we consider
a nonlinear conservation law

ut + (eu)x = 0, x ∈ [0, 2π],

u(x, 0) = sin(x),
(2.9)

with T = 0.2. Note that due to the flux eu, the exact solution of this nonlinear problem
does not contain any shocks, and the theoretical analysis holds for the solution. In this
example, the SRV filter no longer performs well, even under quadruple-precision, see
Figure 2.8 and Table 2.3. We can see that the performance of the new filter near the
boundaries is better than the SRV filter. However, we point out that for this problem
the maximum error does not happen in the boundary regions, see Figure 2.8. This is
an issue we will address in future.

Table 2.3: L2− and L∞−errors for the DG approximation together with the SRV
and new filters for a conservation law with an exponential flux, equation (2.9) using
polynomials of degree k = 3, 4.

DG SRV Filter New Filter
Mesh L2 error order L∞ error order L2 error order L∞ error order L2 error order L∞ error order

P3

20 1.27E-05 – 1.27E-04 – 9.99E-01 – 9.64E+00 – 2.14E-04 – 6.68E-04 –
40 7.35E-07 4.11 7.86E-06 4.01 6.46E-06 17.24 7.91E-05 16.90 3.15E-06 6.09 1.51E-05 5.47
80 4.58E-08 4.00 5.51E-07 3.83 2.38E-08 8.09 1.27E-07 9.28 2.38E-08 7.05 1.27E-07 6.89

P4

20 7.77E-07 – 5.12E-06 – 2.02E+01 – 1.44E+02 – 4.63E-03 – 2.43E-02 –
40 3.71E-08 4.39 3.04E-07 4.07 3.67E-03 12.42 5.08E-02 11.47 1.94E-06 11.22 9.30E-06 11.35
80 1.30E-09 4.84 1.35E-08 4.50 6.63E-09 19.08 3.65E-08 20.41 6.63E-09 8.19 3.65E-08 7.99

2.4. Numerical Results 41

DG SRV Filter New filter

Figure 2.8: Comparison of the point-wise errors of the DG solution, the SRV filter
and the new filter for a conservation law with an exponential flux over uniform meshes
with polynomials P4.

SIAC Filtering for Shocks

Although the theorem for the SIAC filter has been established for smooth solutions,
it is interesting to investigate the application of SIAC filter to solutions which contain
shocks. To demonstrate the possibilites of the filtered results for such problems, we
present the following three examples: First, a discontinuous coefficient equation; sec-
ond, a one-dimensional Burgers equation after the shock has developed; and lastly, the
double Mach reflection problem of the two-dimensional Euler equations.
• Variable coefficient equation with stationary shocks
In this example, we consider a variable coefficient equation,

ut + (au)x = f, (x, t) ∈ [0, 1]× (0, T] (2.10)

with T = 2π. Here, to create discontinuities we consider a discontinuous variable
coefficient

a(x) :=

{
1
2 , x ∈ [−1

2 ,
1
2],

1, otherwise,

and f(x, t) = 0. The following initial condition was also chosen:

u(x, 0) :=

{
−2 cos(4πx), x ∈ [−1

2 ,
1
2],

cos(2πx), otherwise,

with T = 1. The exact solution is given by

u(x, t) :=

{
−2 cos(4π(x− 1

2 t)), x ∈ [−1
2 ,

1
2],

cos(2π(x− t)), otherwise,

which has two stationary shocks.
To use the SIAC filter, we have to consider both the discontinuities and the bound-

aries. Similar to the boundary problem, the one-sided filters can also be applied near
the discontinuities using the same implementation strategy as used near a boundary.

42 Chapter 2. Position-Dependent SIAC Filters

Therefore, we divide the domain into three parts [−1,−1
2], [−

1
2 ,

1
2] and [12 , 1], then

apply the filter. If the support of the filter is larger than the distance between two
boundaries/discontinuities, we need to change the filter scaling, H, as in [65]. Such
reduction of scaling can have negative consequences on the final results as noted in
[43]. Since the two stationary shocks are located at the element interfaces of the DG
solution, the DG solution maintains to keep its k + 1 accuracy order and the errors
are in Table 2.4. Figure 2.9 shows the point-wise error plots. Note that the results are
not as good as in the previous tests due the support size of the filters (even the new
filter) is still quite large for those three subintervals. However, after refining the mesh
the accuracy does improve. This is similar to the observations in [43]. Comparing the
results between the SRV and new filter, the new filter has a better performance when
the distance between two boundaries/discontinuities is small.

DG SRV Filter New filter

Figure 2.9: Comparison of the point-wise errors of the DG solution, the SRV filter
and the new filter for discontinuous coefficient equation (2.10) over uniform meshes
with polynomials P4.

Table 2.4: L2− and L∞−errors for the DG approximation together with the SRV and
new filters for the discontinuous coefficient equation (2.10) using polynomials of degree
k = 3, 4.

DG SRV Filter New Filter
Mesh L2 error order L∞ error order L2 error order L∞ error order L2 error order L∞ error order

P3

20 7.39E-04 – 3.12E-03 – 1.97E-01 – 7.75E-01 – 7.34E-02 – 2.70E-01 –
40 4.66E-05 3.99 1.92E-04 4.02 1.95E-03 6.66 1.59E-02 5.61 6.50E-04 6.82 3.47E-03 6.28
80 2.92E-06 4.00 1.24E-05 3.95 5.09E-05 5.26 7.21E-04 4.46 6.44E-07 9.98 5.95E-06 9.19

P4

20 4.59E-05 – 1.44E-04 – 3.18E+00 – 1.39E+01 – 3.74E-02 – 1.35E-01 –
40 1.45E-06 4.99 4.66E-06 4.95 5.83E-03 9.09 2.46E-02 9.14 6.16E-04 5.92 3.26E-03 5.38
80 4.54E-08 5.00 1.45E-07 5.01 1.70E-04 5.10 2.11E-03 3.54 9.35E-08 12.69 6.89E-07 12.21

Since the previous examples have already demonstrated superiority of the new
filter, we use only the new filter for the following shock problems.

• 1D Burgers equation with a shock

2.4. Numerical Results 43

In this example, we consider the Burgers equation

ut + uux = 0, (x, t) ∈ [0, 2π]× (0, T),

u(x, 0) = sin(x),
(2.11)

with T = 1. Note that the solution contains a shock at x = π. We have implemented
the symmetric filter in smooth regions and the boundary filter in the elements next to
the boundaries and shocks. No filter is implemented in the element that contains the
shock. The results for the point-wise errors are presented in Figure 2.10.

DG After filtering

Figure 2.10: Comparison of the point-wise errors in log scale of the DG solutions and
the filtered solutions (with the new filter) for Burgers equation (2.11), with approxi-
mation polynomial is P2.

• Mach reflection problem of the 2D Euler equations
In this example we apply the new filter to the two dimensional Euler equations for

the double Mach reflection problem. We use the multiwavelet troubled cell indicator of
Vuik [66] and plot the results for a zoomed in region of the solution in Figure 2.11. Note
that from the results given for previous examples we expect that the difference when
we examine the two solutions will be small. However, we do observe some reduced
oscillations with the filtered solution.

2.4.2 Smoothly-Varying and Nonuniform Meshes

We emphasize that this is the first time that the position-dependent filters have been
tested on nonuniform meshes. Due to Theorem 2.3.4, we using the SRV and new filter
with scaling of H = ∆xj .

Remark 2.4.2. According to [30] we also tested scalings of H = max∆xj, but the
scaling H = ∆xj provides better accuracy in boundary regions. Since the motivation
of this chapter is to focus on boundaries, we only present results with scaling H =
∆xj. However, we point out that the errors produced using a scaling of H = max∆xj
are quite similar and often produce smoother errors in the interior of the domain for
smoothly-varying meshes.

44 Chapter 2. Position-Dependent SIAC Filters

DG After filtering

Figure 2.11: Results for the DG approximation and the filtered solution (with the
new filter) for the double Mach reflection problem.

We begin by defining three nonuniform meshes that are used in the following ex-
amples:

Mesh 2.4.1. Smoothly-Varying Mesh with Periodicity. The first mesh is a simple
smoothly-varying mesh. It is defined by x = ξ + b sin(ξ), where ξ is a uniform mesh
variable and b = 0.5 as in [30]. We note that the tests were also performed for different
values of b; similar results were attained in all cases. This mesh has the nice feature
that it is a periodic mesh and that the elements near the boundaries have a larger
element size.

Mesh 2.4.2. Smooth Polynomial Mesh. The second mesh is also a smoothly-varying
mesh but does not have a periodic structure. It is defined by x = ξ − 0.05(ξ − 2π)ξ.
For this mesh, the size of elements gradually decreases from left to right.

Mesh 2.4.3. Randomly-Varying Mesh. The third mesh is a mesh with randomly dis-
tributed elements. The element size varies between [0.8h, 1.2h], where h is the uniform
mesh size.

We will now present numerical results demonstrating the usefulness of the SRV
filter and the new one-sided filter for the aforementioned meshes. First, we consider
the same linear problems (2.7) and (2.8) used before. Now the DG solutions are
calculated over the three different nonuniform meshes: Mesh 2.4.1, Mesh 2.4.2 and
Mesh 2.4.3. The SRV and new filters are applied at the final time.

The point-wise error plots for the periodically smoothly varying mesh are given
in Figure 2.12 with the corresponding errors presented in Table 2.5. In the boundary
regions, the SRV filter behaves slightly better for coarse meshes than the new filter.
However, we recall that this filter essentially doubles the support in the boundary

2.4. Numerical Results 45

DG SRV Filter New filter

Figure 2.12: Comparison of the point-wise errors of the DG solution, the SRV filter
and the new filter for linear hyperbolic equations (1D and 2D) over Mesh 2.4.1 with
polynomials P4. The 2D mesh has 80× 80 elements.

regions. Additionally, we see that the new filter has a higher convergence rate than
k + 1 which is better than the theoretically predicted convergence rate.

For the smooth polynomial mesh, Mesh 2.4.2 (without a periodic property), the
results of using the scaling of H = ∆xj are presented in Figure 2.13 and Table 2.5.
Unlike the previous example, without the periodic property, the SRV filter leads to
significantly worse performance. The SRV filter no longer enhances the accuracy order
and has larger errors near the boundaries. On the other hand, the new filter still
improves accuracy when the mesh is sufficiently refined (N = 40). Numerically the
new filter obtains higher accuracy order than k+ 1. For higher order polynomials, P3

and P4, we see that it achieves accuracy order of 2k + 1, but this is not theoretically
guaranteed.

Lastly, the filters were applied to DG solutions over a randomly distributed mesh,
Mesh 2.4.3. For this randomly-varying mesh, the new filter again reduces the errors
except for a very coarse mesh, see Table 2.5. The accuracy order is decreasing com-
pared to smoothly-varying mesh examples, but it is still higher than k + 1. Unlike
smoothly-varying meshes, there are more oscillations in the errors if we compare Fig-
ure 2.14 with Figure 2.12. However, the oscillations are still reduced compared to
the DG solutions. Note that the SRV filter does not improve the errors from the DG
solution at all, and the errors even become worse than the original. This suggests that
the SRV filter may be only suitable for uniform meshes.

For the 2D case, the nonuniform meshes we consider are rectangular grids, which
the tessellations on x− and y− directions are generated by the same way as the Mesh

46 Chapter 2. Position-Dependent SIAC Filters

DG SRV Filter New filter

Figure 2.13: Comparison of the point-wise errors of the DG solution, the SRV filter
and the new filter for linear hyperbolic equations (1D and 2D) over Mesh 2.4.2 with
polynomials P4. The 2D mesh has 80× 80 elements.

2.4.1, Mesh 2.4.2 and Mesh 2.4.3. Unlike the one-dimensional example, the results
of the SRV filter are significantly affected by the round-off error, especially near the
four corners of the grids. This round-off error completely destroys the accuracy and
smoothness near the boundaries. Compared to the SRV filter, the new filter performs
much better. In the following examples, we can clearly see the improvement of the
accuracy and smoothness compared to the original DG approximations. From all the
tests we performed, it is easy to see that the new filter is more suitable than the SRV
filter over nonuniform meshes, and the practical performance of the new filter is better
than the theoretical prediction.

For Mesh 2.4.1, because of the periodicity, the SRV filter seems slightly better in
the L2 norm than the new filter with polynomial P3, but worse with polynomial P4.
However, if we look at the L∞ norm, we can see the new filter still behaves better than
the SRV filter, see Table 2.6. We notice that for the P4 case, even the ideal periodic
property can not hide the fact that the SRV filter is not suitable for nonuniform meshes
– the SRV filter is worse than the new filter and even the original dG solution. In Figure
2.12, the round-off error of the SRV filter is noticeably demonstrated. The new filter
has better accuracy compared to the DG solution when the mesh is sufficiently refined.

Unlike mesh 2.4.1, Mesh 2.4.2 and Mesh 2.4.3 do not have the nice periodic property
which is exactly where a one-sided filter is needed. The deficiencies of the SRV filter
become significant. The results near the boundaries are worse than the original dG
solution, see Figures 2.13 and 2.14. However, the new filter is still able to reduce errors.
When the meshes are sufficiently fine, the filtered results with the new filter improve

2.4. Numerical Results 47

DG SRV Filter New filter

Figure 2.14: Comparison of the point-wise errors of the DG solution, the SRV filter
and the new filter for linear hyperbolic equations (1D and 2D) over Mesh 2.4.3 with
polynomials P4. The 2D mesh has 80× 80 elements.

the magnitude and smoothness of the DG error. In the high degree case, such as P4,
the results numerically show at least 2k + 1 accuracy order, see Table 2.6. According
to this, we can see that the extra B-spline may damage the superconvergence property
theoretically, but in a higher degree case the damage is negligible if we compare it to
the benefits.

Variable coefficient equation

In this example, we consider a variable coefficient equation

ut + (au)x = f, x ∈ [0, 2π]× (0, T]

a(x, t) = 2 + sin(x+ t),

u(x, 0) = sin(x),

(2.12)

at T = 2π. Similar to the previous constant coefficient equation (2.7), we also test
this variable coefficient equation (2.12) over three different nonuniform meshes (Mesh
2.4.1, Mesh 2.4.2 and Mesh 2.4.3). Since the results are similar to the previous linear
equation examples, here we do not re-describe the detail of the results. We only
note that the results of variable coefficient equation (2.12) have more wiggles than
the constant coefficient equation. This may be an important issue in extending these
ideas to nonlinear equations. Figure 2.15 shows the point-wise error plots for the DG
and post-processed approximations over a smoothly-varying mesh. The corresponding

48 Chapter 2. Position-Dependent SIAC Filters

Table 2.5: L2− and L∞−errors for the DG approximation together with the SRV and
the new filters for linear equation (2.7) over three meshes 2.4.1,2.4.2,2.4.3. A scaling
of H = ∆xj along with quadruple precision was used in the computations.

dG Former Filter New Filter
Mesh L2 error order L∞ error order L2 error order L∞ error order L2 error order L∞ error order

Mesh 2.4.1 P3

20 5.45E-06 – 1.87E-05 – 6.43E-06 – 5.51E-05 – 6.36E-05 – 2.02E-04 –
40 3.39E-07 4.01 1.20E-06 3.96 3.11E-07 4.37 3.25E-06 4.09 1.72E-07 8.53 7.62E-07 8.05
80 2.12E-08 4.00 7.48E-08 4.01 1.45E-10 11.06 1.81E-09 10.81 2.81E-10 9.26 2.16E-09 8.46

P4

20 1.56E-07 – 5.20E-07 – 5.15E-07 – 4.11E-06 – 1.72E-05 – 5.41E-05 –
40 4.83E-09 5.01 1.66E-08 4.97 6.43E-09 6.32 6.56E-08 5.97 2.56E-08 9.39 1.12E-07 8.91
80 1.51E-10 5.00 5.22E-10 4.99 1.25E-11 9.01 1.80E-10 8.51 1.15E-11 11.13 7.77E-11 10.50

Mesh 2.4.2 P3

20 3.15E-06 – 1.25E-05 – 1.52E-05 – 1.75E-04 – 1.53E-05 – 7.35E-05 –
40 1.96E-07 4.01 8.05E-07 3.96 9.80E-08 7.27 1.50E-06 6.86 3.50E-08 8.77 2.34E-07 8.29
80 1.22E-08 4.00 4.97E-08 4.02 2.31E-09 5.40 3.77E-08 5.32 5.63E-11 9.28 8.26E-10 8.15

P4

20 6.25E-08 – 2.67E-07 – 6.79E-07 – 5.38E-06 – 4.45E-06 – 2.13E-05 –
40 1.96E-09 5.00 8.77E-09 4.93 2.13E-09 8.32 2.34E-08 7.85 4.12E-09 10.08 2.76E-08 9.59
80 6.14E-11 5.00 2.79E-10 4.97 3.03E-11 6.13 5.01E-10 5.54 1.74E-12 11.21 1.59E-11 10.76

Mesh 2.4.3 P3

20 2.49E-06 – 1.06E-05 – 3.35E-05 – 3.61E-04 – 5.64E-06 – 2.90E-05 –
40 1.55E-07 4.00 7.46E-07 3.83 7.42E-07 5.50 9.11E-06 5.31 6.23E-09 9.82 3.80E-08 9.58
80 1.02E-08 3.93 4.67E-08 4.00 2.46E-08 4.91 4.57E-07 4.32 1.54E-10 5.34 8.71E-10 5.45

P4

20 4.03E-08 – 1.49E-07 – 1.40E-06 – 1.47E-05 – 1.52E-06 – 7.85E-06 –
40 1.37E-09 4.88 5.25E-09 4.83 1.42E-08 6.63 1.78E-07 6.36 3.20E-10 12.21 1.98E-09 11.95
80 4.40E-11 4.96 1.70E-10 4.95 4.03E-10 5.13 7.93E-09 4.49 3.68E-13 9.77 3.95E-12 8.97

errors are given in Table 2.7. The results are similar to the linear examples, the two
filters perform similarly, with the new filter being more computationally efficient.

DG SRV Filter New filter

Figure 2.15: Comparison of the point-wise errors of the DG solution, the SRV fil-
ter and the new filter for variable coefficient equation (2.12) over Mesh 2.4.1 with
polynomials P4.

For the smooth polynomial mesh 2.4.2, we show the point-wise error plots in Figure
2.16. The corresponding errors are given in Table 2.7. In this example we see that the
new filter behaves better at the boundaries than the SRV filter. This may be due to

2.4. Numerical Results 49

Table 2.6: L2− and L∞−errors for the DG approximation together with the SRV and
new filters for 2D linear equation (2.8) using polynomials of degree k = 3, 4 over three
meshes: Mesh 2.4.1, Mesh 2.4.2 and Mesh 2.4.3.

DG SRV Filter New Filter
Mesh L2 error order L∞ error order L2 error order L∞ error order L2 error order L∞ error order

Mesh 2.4.1 P3

20× 20 8.74E-06 – 5.39E-05 – 6.94E-06 – 1.10E-04 – 6.71E-05 – 4.04E-04 –
40× 40 5.45E-07 4.00 3.39E-06 4.00 3.68E-07 4.24 6.49E-06 4.08 2.09E-07 8.33 1.66E-06 7.93
80× 80 3.40E-08 4.00 2.06E-07 4.03 1.50E-10 11.76 9.01E-09 9.49 7.33E-10 8.16 7.76E-09 8.92

P4

20× 20 1.93E-07 – 1.05E-06 – 9.25E-07 – 8.56E-06 – 3.26E-05 – 1.12E-04 –
40× 40 6.00E-09 5.01 3.32E-08 4.98 3.38E-08 4.77 4.17E-06 1.04 2.67E-08 10.25 2.31E-07 8.92
80× 80 1.88E-10 5.00 1.04E-09 5.00 2.07E-08 0.71 9.13E-06 -1.13 1.90E-11 10.46 1.61E-10 10.49

Mesh 2.4.2 P3

20× 20 4.56E-06 – 3.03E-05 – 1.55E-05 – 3.49E-04 – 1.59E-05 – 1.38E-04 –
40× 40 2.85E-07 4.00 1.92E-06 3.98 1.23E-07 6.98 3.04E-06 6.84 4.67E-08 8.41 5.14E-07 8.67
80× 80 1.78E-08 4.00 1.20E-07 4.00 3.35E-09 5.20 8.01E-08 5.25 2.43E-10 7.59 4.61E-09 6.80

P4

20× 20 8.48E-08 – 3.27E-07 – 1.38E-06 – 1.48E-05 – 5.92E-06 – 3.27E-05 –
40× 40 2.65E-09 5.00 1.74E-08 4.92 3.21E-08 5.43 4.99E-06 1.57 4.65E-09 10.30 5.79E-08 9.14
80× 80 8.31E-11 5.00 5.58E-10 4.96 2.51E-08 0.35 6.88E-06 -0.46 3.29E-12 10.46 3.49E-11 10.27

Mesh 2.4.3 P3

20× 20 3.47E-06 – 2.16E-05 – 3.46E-05 – 6.43E-04 – 3.90E-06 – 3.83E-05 –
40× 40 2.23E-07 3.96 1.52E-06 3.83 1.90E-06 4.19 3.59E-05 4.16 1.28E-08 8.25 1.25E-07 8.26
80× 80 1.41E-08 3.98 9.65E-08 3.98 9.94E-08 4.26 2.71E-06 3.73 2.97E-10 5.43 3.88E-09 5.01

P4

20× 20 5.83E-08 – 2.84E-07 – 3.06E-06 – 5.19E-05 – 1.06E-06 – 8.87E-05 –
40× 40 1.90E-09 4.94 1.04E-08 4.77 2.64E-08 6.86 2.64E-06 4.30 7.80E-10 10.41 1.01E-08 9.78
80× 80 6.06E-11 4.97 3.48E-10 4.90 1.46E-08 0.85 7.09E-06 -1.43 6.60E-13 10.20 7.85E-12 10.33

the more compact filter support size.

DG SRV Filter New filter

Figure 2.16: Comparison of the point-wise errors of the DG solution, the SRV fil-
ter and the new filter for variable coefficient equation (2.12) over Mesh 2.4.2 with
polynomials P4.

Finally, we test the variable coefficient equation (2.12) over a randomly-varying
mesh 2.4.3. Similar to the linear examples, the point-wise errors plots, Figure 2.17,
show more oscillations than smoothly-varying mesh examples. We again see the new
filter has better errors at the boundaries than the SRV filter.

50 Chapter 2. Position-Dependent SIAC Filters

DG SRV Filter New filter

Figure 2.17: Comparison of the point-wise errors of the DG solution, the SRV fil-
ter and the new filter for variable coefficient equation (2.12) over Mesh 2.4.3 with
polynomials P4.

2.5 Conclusion

In this chapter, we have proposed a new position-dependent SIAC filter, which can be
applied to discontinuous Galerkin approximations for uniform and nonuniform meshes.
The new filter was devised as a consequence of analyzing the constant in the previ-
ous error estimates and the practical requirement, such as streamline integration in
Chapter 5. This filter was created by introducing an extra general B-spline to a filter
consisting of 2k + 1 central B-splines. This strategy allows us to overcome shortcom-
ings of the former one-sided filters: we can now reliably use double-precision to both
produce and use our filter, and our new filter has a smaller geometric footprint and
hence costs less (in terms of operations) to evaluate.

We have, for the first time, proved the accuracy order conserving nature of the
SIAC filter globally and shown that this boundary filter does not affect the interior
superconvergence properties. Additionally, we can extend our proofs to the accuracy
properties of our new SIAC filter used over smoothly-varying meshes. We demon-
strated the applicability of the new position-dependent filter for nonuniform meshes
by choosing a proper scaling, H, which is obtained by analyzing smoothly-varying
meshes.

In conclusion the new contributions of this chapter are:

• A new position-dependent SIAC filter that allows filtering up to boundaries and
that ameliorates the principle deficiencies identified in the previous RS and SRV
filter;

• Examination and documentation of the reasoning concerning the constant term
in the error analysis that led to the proposed work;

• Introduction of the generalized B-splines into the SIAC filter structure. This
provides more flexibility and possibilities for SIAC filter;

2.5. Conclusion 51

Table 2.7: L2− and L∞−errors for the DG approximation together with the SRV and
the new filters for variable coefficient equation (2.12) over the three meshes.

DG SRV Filter New Filter
Mesh L2 error order L∞ error order L2 error order L∞ error order L2 error order L∞ error order

Mesh 2.4.1 P3

20 5.54E-06 – 1.93E-05 – 4.40E-06 – 3.66E-05 – 6.36E-05 – 2.02E-04 –
40 3.41E-07 4.02 1.21E-06 4.00 3.14E-07 3.81 3.25E-06 3.49 1.72E-07 8.53 7.61E-07 8.05
80 2.12E-08 4.01 7.50E-08 4.01 1.45E-10 11.08 1.81E-09 10.81 2.78E-10 9.27 2.05E-09 8.53

P4

20 1.62E-07 – 5.69E-07 – 1.89E-05 – 1.44E-04 – 1.72E-05 – 5.41E-05 –
40 4.95E-09 5.03 1.77E-08 5.00 5.74E-09 11.68 5.82E-08 11.28 2.56E-08 9.39 1.12E-07 8.91
80 1.53E-10 5.01 5.48E-10 5.02 1.26E-11 8.83 1.76E-10 8.37 1.16E-11 11.11 7.26E-11 10.59

Mesh 2.4.2 P3

20 3.15E-06 – 1.27E-05 – 2.70E-05 – 3.05E-04 – 1.53E-05 – 7.36E-05 –
40 1.96E-07 4.01 8.06E-07 3.98 1.31E-07 7.69 1.54E-06 7.62 3.55E-08 8.75 2.38E-07 8.28
80 1.22E-08 4.00 4.98E-08 4.02 7.51E-09 4.13 1.27E-07 3.60 6.25E-11 9.15 7.84E-10 8.24

P4

20 6.40E-08 – 2.82E-07 – 2.95E-06 – 2.42E-05 – 4.45E-06 – 2.13E-05 –
40 1.98E-09 5.01 8.94E-09 4.98 6.84E-07 2.11 1.12E-05 1.10 4.12E-09 10.08 2.76E-08 9.60
80 6.18E-11 5.00 2.80E-10 5.00 1.51E-09 8.83 3.50E-08 8.33 1.59E-12 11.34 1.55E-11 10.80

Mesh 2.4.3 P3

20 2.49E-06 – 9.61E-06 – 1.11E-04 – 8.98E-04 – 5.63E-06 – 2.90E-05 –
40 1.56E-07 4.00 7.18E-07 3.74 2.12E-06 5.71 2.55E-05 5.14 7.96E-09 9.47 4.31E-08 9.39
80 1.02E-08 3.93 4.72E-08 3.93 5.91E-08 5.17 1.06E-06 4.59 3.15E-10 4.66 1.91E-09 4.50

P4

20 4.07E-08 – 1.56E-07 – 2.45E-05 – 1.96E-04 – 1.52E-06 – 7.85E-06 –
40 1.37E-09 4.89 5.31E-09 4.87 4.48E-07 5.77 6.18E-06 4.99 2.98E-10 12.31 1.79E-09 12.09
80 4.41E-11 4.96 1.73E-10 4.94 1.26E-09 8.48 1.91E-08 8.33 2.64E-12 6.82 2.19E-11 6.35

• Demonstration that the filtered approximation is always superconvergent in the
uniform mesh linear polynomial case;

• Theoretical proof of the equivalence of smoothly-varying meshes and uniform
meshes, in the view of accuracy order;

• Application of the scaled new filter to both smoothly-varying and nonuniform
(random) meshes, for which cases we still see significant improvement in the
smoothness and an error reduction of the original DG solution, although full
superconvergence is not always achieved.

3
Derivative SIAC Filters

3.1 Introduction

In many cases, one can argue persuasively that the changes in values of a function
are often more import than the values themselves, such as exhibited by streamline
integration of fields. Therefore, an accurate derivative approximation is often required
in many areas such as biomechanics, optimization, chemistry and visualization appli-
cations. However, computing derivatives of discontinuous Galerkin approximations is
challenging because the DG solution only has weak continuity at element boundaries.
This means that the strong form of derivatives for a DG solution technically do not
hold at element boundaries, and computing the derivative directly does not always
produce accurate results. For example, naive and careless use of the derivatives of
the discontinuous Galerkin solution directly to streamline integration can produce in-
consistent results with the exact solution [61]. Once derivatives are needed near the
boundaries, the difficulty increases since the solution often has less regularity in those
regions.

In order to obtain accurate approximations for the derivatives of DG solutions,
one can use the symmetric derivative SIAC filter we introduced in Chapter 1. As
its name implies, the SIAC filter can increase the smoothness of DG solutions, and
this smoothness-increasing property helps to enhance the accuracy of derivatives of
DG solutions. With the symmetric derivative filter, the accuracy order of the filtered
DG solution can be improved from k + 1 to 2k + 1 regardless of the derivative order.
However, previous investigations of derivative filtering have two major limitations: the
requirement of uniform meshes and periodic boundary conditions.

In this chapter, we focus on overcoming these two limitations. We propose position-
dependent derivative filters to approximate the derivatives of the DG solution over
nonuniform meshes and near boundaries. Our main contributions are:

Nonuniform Meshes. Filtering over nonuniform meshes has always been a sig-
nificant challenge for SIAC filtering because the 2k + 1 accuracy order is no longer
guaranteed in general. Most of previous work for nonuniform meshes (such as [30, 55])
only considered a particular family of nonuniform meshes, smoothly-varying meshes.
Among these works, only [55] mentioned derivatives over nonuniform meshes. It dis-

53

54 Chapter 3. Derivative SIAC Filters

cussed the challenges of derivative filtering over nonuniform meshes and presented
preliminary results concerning smooth-varying meshes. In this chapter, we propose a
method for arbitrary nonuniform meshes: using the scaling H = hµ for filtering over
nonuniform meshes. This does not guarantee that the derivative filtering improves the
derivatives of DG solutions to accuracy order of 2k + 1, but we prove that a higher
convergence rate (compared to DG solution) is still obtained. Further, the numerical
examples suggest that the accuracy is improved once the mesh is sufficiently refined.

Boundaries. First, we point out that previously derivative filters could not be
used near boundaries except for periodic meshes. Without considering derivatives, as
mentioned in the previous chapters there are three existing position-dependent filters
that can be used to handle boundary regions. The first one is the RS filter (1.12)
introduced by Ryan and Shu [57]; the second one is the SRV filter (1.14) given by van
Slingerland, Ryan and Vuik [65]; lastly, the newly defined postion-dependent filter dis-
cussed in Chapter 2, which we simply refer to the new filter in this chapter. The RS and
SRV filters, [57, 65], are constructed by only using central B-splines. They show good
performance over uniform meshes. The new filter introduced in Chapter 2 is aimed at
nonuniform meshes. It uses 2k+1 central B-splines and an extra general B-spline. The
results in Chapter 2 suggest that adding the extra general B-spline improves the perfor-
mance of the position-dependent filter over nonuniform meshes compared to using only
central B-splines. In this chapter, we extend the SRV position-dependent filter [65]
and the new position-dependent filter in Chapter 2 to position-dependent derivative fil-
ters. Then, we discuss the advantages and disadvantages of these position-dependent
derivative filters over uniform and nonuniform meshes. For nonuniform meshes, we
prove that by using the position-dependent derivative filtering, the convergence rate of
derivatives of the DG solution can be improved. Numerical comparisons over uniform
and nonuniform meshes also demonstrate that the derivative filtered solutions are more
accurate than the derivatives of DG approximations.

3.2 Symmetric and One-Sided Derivative Filters

Smoothness-Increasing Accuracy-Conserving filtering is named after its improvement
of the smoothness of the filtered approximation. Using the filter in equation (1.6), the
filtered solution is a Ck−1 function. One can see that the smoothness is significantly
improved from the original weakly continuous DG solution. By taking advantage of
the improved smoothness, we can obtain better derivative approximations.

3.2.1 Derivative Filters over Nonuniform Meshes

The symmetric derivative filter over uniform meshes was introduced in [56, 62]. In these
papers, the authors identified two ways to calculate the derivatives. The first method
is a direct calculation of the derivatives of the filtered solution (1.5). The convergence
rate of the filtered solution is higher than the derivatives of the DG approximation
itself, but the accuracy order decreases and oscillations in the error increase with each
successive derivative. The second method is employed to maintain a fixed accuracy
order regardless of the derivative order. To calculate the αth derivative of the DG

3.2. Symmetric and One-Sided Derivative Filters 55

approximation without losing any accuracy order, we have to use higher-order central
B-splines to construct the filter. We remind the reader that

∂αxu
?
h = ∂αx

(
K

(2k+1,k+1+α)
h ? uh

)
=

(
dα

dxα
K

(2k+1,k+1+α)
h

)
? uh

=
(
∂αh K̃

(2k+1,k+1,α)
h

)
? uh = K̃

(2k+1,k+1,α)
h ? ∂αhuh,

(3.1)

where the symmetric derivative filter is

K(2k+1,k+1+α)(x) =

2k∑
γ=0

c(2k+1,k+1+α)
γ ψ(k+1+α)(x+ k − γ). (3.2)

For uniform meshes, [56] showed the filtered solution (3.1) has superconvergence rate
of 2k + 1 regardless of the derivative order α.

‖∂αxu− ∂αxu?h‖0 ∼ O(h2k+1).

Unfortunately, these methods are limited to uniform meshes. For nonuniform meshes,
applying the SIAC filter becomes complicated, and the derivative SIAC filter is even
more difficult. If we naively apply the same derivative filter (3.2) over nonuniform
meshes, we will lose accuracy from O(h2k+1) to O(hk+1−α) since over nonuniform
meshes the divided differences of the DG solution no longer have the superconvergence
property, see the next chapter for details.

A brief introductory description of symmetric derivative filtering over nonuniform
meshes can be found in [55]. It discusses the challenges of symmetric derivative filtering
over nonuniform meshes and gives preliminary results for smoothly-varying meshes (an
affine mapping of a uniform mesh [30]). Also, in Chapter 2, we have already provided
the error estimates for the filtered solutions over smoothly-varying meshes. From those
previous results, we can see that the key to SIAC filtering over nonuniform meshes is:
the filter scaling H and the divided differences of the DG solution. To begin the study,
we first present an error estimate for the divided differences of the DG solution over
general nonuniform meshes with a general scaling H.

Lemma 3.2.1. Under the same conditions in Theorem 1.2.1, let uh be the DG approx-
imation over a nonuniform mesh. Denote Ω0 ⊂⊂ Ω1 ⊂⊂ Ω, ` ≥ k + 1. The negative
order norm estimate of u− uh satisfies,

‖(u− uh)(T)‖−`,Ω1 ≤ Ch2k+1,

and
‖∂αH(u− uh)(T)‖−`,Ω0 ≤ Cαh

2k+1H−|α|,

where α = (α1, . . . , αd) is an arbitrary multi-index and H is the scaling of the divided
difference operator ∂αH .

Proof. The proof of the negative order norm estimate was given in [25] and the divided
difference estimate was presented as a hypotheses. The proof is trivial and therefore
we only give a proof for d = 1 case.

56 Chapter 3. Derivative SIAC Filters

Set Ω0 such that Ω0+
[
− |α|H

2 , |α|H2

]
⊂ Ω1. Consider the first divided difference, by

the definition of the negative order norm, we have

‖∂H(u− uh)‖−`,Ω0

= sup
Φ∈C∞

0 (Ω0)

((
(u− uh)(x+ H

2),Φ
)
−
(
(u− uh)(x− H

2),Φ
)

H‖Φ‖`,Ω0

)
,

≤ sup
Φ∈C∞

0 (Ω0)

(
(u− uh)(x+ H

2),Φ
)

H‖Φ‖`,Ω0

+ sup
Φ∈C∞

0 (Ω0)

(
(u− uh)(x− H

2),Φ
)

H‖Φ‖`,Ω0

,

≤ 2

H
‖u− uh‖−`,Ω1 .

By induction, we have

‖∂αH(u− uh)(T)‖−`,Ω0 ≤ Cαh
2k+1H−|α|,

where Cα = 2|α|C. The proof is similar for d > 1 case.

Lemma 3.2.1 demonstrates the optimal accuracy order estimation of the divided
differences of the DG approximation in the sense that the nonuniform mesh is arbi-
trary [25, 51]. Based on Lemma 3.2.1, we can give the following error estimations for
nonuniform meshes.

Theorem 3.2.2. Under the same conditions as in Lemma 3.2.1, let K(r+1,k+1+α) be
the symmetric derivative filter given in (3.2). Denote

Ω0 + 2supp(K
(r+1,k+1+α)
H) ⊂⊂ Ω1 ⊂⊂ Ω.

Then, for general nonuniform meshes, we have

‖∂αxu− ∂αx
(
K

(r+1,k+1+α)
H ? uh

)
‖0,Ω0 ≤ Ch

r+1
r+k+2+α

(2k+1),

where H = hµ and µ = 2k+1
r+k+2+α .

Proof. Set Ω1/2 such that

Ω0 + supp(K
(r+1,k+1+α)
H) ⊂ Ω1/2, Ω1/2 + supp(K

(r+1,k+1+α)
H) ⊂ Ω1.

By applying Lemma 1.2.2 and Lemma 3.2.1, we have∥∥∥∂αxu− ∂αx (K(r+1,k+1+α)
H ? uh

)∥∥∥
0,Ω0

≤
∥∥∥∂αxu−K(r+1,k+1+α)

H ? ∂αxu
∥∥∥
0,Ω0

+
∥∥∥∂αx (K(r+1,k+1+α)

H ? (u− uh)
)∥∥∥

0,Ω0

≤C0H
r+1 + C1

∑
|β|≤k+1

∥∥∥∂α+β
x

(
K

(r+1,k+1+α)
H ? (u− uh)

)∥∥∥
−(k+1),Ω1/2

=C0H
r+1 + C1

∑
|β|≤k+1

∥∥∥(K̃(r+1,k+1−β,α+β)
H ? ∂α+β

H (u− uh)
)∥∥∥

−(k+1),Ω1/2

=C0H
r+1 + C1

∑
|β|≤k+1

∥∥∥K̃(r+1,k+1−β,α+β)
H

∥∥∥
L1

∥∥∥∂α+β
H (u− uh)

∥∥∥
−(k+1),Ω1

≤C0H
r+1 + C2h

2k+1H−(k+1+α),

3.2. Symmetric and One-Sided Derivative Filters 57

Let the scaling H = hµ such that

Hr+1 = h2k+1H−(k+1+α).

We then have that µ = 2k+1
r+k+2+α and∥∥∥∂αxu− ∂αx (K(r+1,k+1+α)

H ? uh

)∥∥∥
0,Ω0

≤ Ch
r+1

r+k+2+α
(2k+1).

Remark 3.2.1 (Discussion of the Number of B-splines). The filter given in (3.2) uses
(r + 1) B-splines. Theorem 3.2.2 implies that by increasing the value of r, one can
increase the value of r+1

r+k+2+α , and then approximate the superconvergence rate 2k+1
as close as we want and regardless of the derivative order α. However, increasing the
value of r presents a serious inconvenience for computational implementation. For
example, while r � 2k, a multi-precision package is required during the computation
process, see Chapter 2. Another disadvantage is that the support size of the filter,
(r+k+1+α)hµ, increases with r [25]. The increased support size means the convolution
involves more DG elements and that the computational cost is increased as well. For
nonderivative filtering, we usually keep r = 2k. There is another consideration for
derivative filtering. We notice that the accuracy order decreases with the derivative
order α if we keep r = 2k. One solution is to eliminate the negative effect of the
derivative order α is to use r = 2(k + α) instead of r = 2k. However, our experience
shows that the benefit of using r = 2(k+α) is limited. It slightly improves the accuracy
and smoothness, but increases the computational cost. In this chapter, we will focus
on using r = 2k for nonuniform meshes.

3.2.2 Position-Dependent Derivative Filters

For convenience, we use symbol ` instead of k + 1 + α in following section.

Derivative RS Filter

To begin, we first introduce how to extend the first one-sided filter, the RS filter, to
the derivative RS filter.

Since the RS filter is an integer shifted symmetric filter, we can easily extend it
to the derivative RS filter by increasing the order of B-splines and then modifying the
shift function.

K(2k+1,`)(x) =
2k∑
γ=0

c(2k+1,`)
γ ψ(`) (x− xγ(x̄)) , (3.3)

where xγ depends on the location of the evaluation point x̄ and is given by

xγ(x̄) = −k + γ + [λ](x̄),

with discrete shift

[λ](x̄) =

{
min{0,−2k+`

2 + b x̄−xL
h c}, x̄ ∈ [xL,

xL+xR
2),

max{0, 2k+`
2 + d x̄−xR

h e}, x̄ ∈ [xL+xR
2 , xR].

58 Chapter 3. Derivative SIAC Filters

Here xL and xR are the left and right boundaries, respectively. An example of the
derivative RS filter (for the left boundary) with k = 2 is given in Figure 3.1.

α = 0

−10 −8 −6 −4 −2 0
−20

−10

0

10

20

30
α = 1

−10 −8 −6 −4 −2 0
−20

−10

0

10

20

30
α = 2

−10 −8 −6 −4 −2 0
−20

−10

0

10

20

30

Figure 3.1: Derivative RS filter (3.3) with k = 2.

Derivative SRV Filter

The SRV filter has a similar structure as the RS filter, without the discrete shift. By
using a similar method, we can extend it to the derivative SRV filter. This is given as

K(4k+1,`)(x) =

4k∑
γ=0

c(4k+1,`)
γ ψ(`) (x− xγ(x̄)) , (3.4)

where xγ depends on the location of the evaluation point x̄ and is given by

xγ(x̄) = −2k + γ + λ(x̄).

We adjust the shift function λ(x̄) (1.15) by

λ(x̄) =

{
min{0,−4k+`

2 + x̄−xL
h }, x̄ ∈ [xL,

xL+xR
2),

max{0, 4k+`
2 +

x̄−xright

h }, x̄ ∈ [xL+xR
2 , xR].

Here xL and xR are the left and right boundaries, respectively. An example of the
derivative SRV filter (for the left boundary) with k = 2 is given in Figure 3.2.

Remark 3.2.2. As mentioned in Chapter 1, the main difference between the RS filter
and the SRV filter is the number of B-splines.

Remark 3.2.3. The theoretical analysis of the derivative RS and SRV filters remains
the same as in Theorem 3.2.2. Unlike the derivative RS filter and the symmetric

derivative filter, the derivative SRV filter has a scaling H = h
2k+1

5k+2+α , which is much
larger than the scaling of the symmetric derivative filter (or the derivative RS filter),

H = h
2k+1

3k+2+α .

3.2. Symmetric and One-Sided Derivative Filters 59

α = 0

−14−12−10 −8 −6 −4 −2 0
−400

−200

0

200

400

600
α = 1

−14−12−10 −8 −6 −4 −2 0
−400

−200

0

200

400

600
α = 2

−14−12−10 −8 −6 −4 −2 0
−400

−200

0

200

400

600

Figure 3.2: Derivative SRV filter (3.4) with k = 2.

New Position-Dependent Derivative Filter

For the new position-dependent filter introduced in Chapter 2, we need to shift the
2k + 1 central B-splines and then change the extra general B-spline according to the
derivative order α. To complete these changes, we have to change the knot sequence of
the original new position-dependent filter, which is used only for the DG approximation
uh without derivatives. For the new position-dependent derivative filter near the left
boundary (similar for the right boundary), we need to redistribute the knots in the
knot matrix T to meet the derivative requirement by

T (γ, j) =

{
−2k − `+ j + γ + x̄−xL

h , 0 ≤ γ ≤ 2k, 0 ≤ j ≤ `;
x̄−xL

h +min{j − α, 0}, γ = 2k + 1, 0 ≤ j ≤ `. (3.5)

The position-dependent derivative filter is then given by

K
(2k+1,`)
T (x) =

2k∑
γ=0

c(2k+1,`)
γ ψ

(`)
T(γ)(x)︸ ︷︷ ︸

2k + 1 central B-splines

+ c
(2k+1,`)
2k+1 ψ

(`)
T(2k+1)︸ ︷︷ ︸

General B-spline

. (3.6)

We note that in formula (3.5), if we keep the order of B-splines as k + 1, then when
α > k the general B-spline added at the boundary will reduce to the central B-spline
and then the purpose of adding a special B-spline at the boundary fails. It is necessary
to use B-splines of order ` = k + 1 + α instead of k + 1 when α > k. We note
that the new position-dependent derivative filter allows us to approximate arbitrary
order derivatives near boundaries theoretically. For example, Figure 3.3 shows the new
position-dependent derivative filters with k = 2 for the first and second derivatives at
the left boundary. Compared to the derivative RS filter (3.3), the derivative SRV filter
(3.4), the new position-dependent derivative filter clearly has reduced support and
magnitude (range from −400 to 600 versus −4 to 6).

Theorem 3.2.3. Under the same conditions as in Lemma 3.2.1, let K
(2k+1,`)
T be the

new position-dependent derivative filter (3.6). We have∥∥∥∂αxu− ∂αx (K(2k+1,`)
HT ? uh

)∥∥∥
0,Ω0

≤ Chµ(2k+2),

where H = hµ, µ = 2k+1
3k+3+α .

60 Chapter 3. Derivative SIAC Filters

α = 0

−10 −8 −6 −4 −2 0
−4

−2

0

2

4

6
α = 1

−10 −8 −6 −4 −2 0
−4

−2

0

2

4

6
α = 2

−10 −8 −6 −4 −2 0
−4

−2

0

2

4

6

Figure 3.3: New position-dependent derivative filter (3.6) with k = 2.

Proof. ∥∥∥∂αxu− ∂αx (K(2k+1,`)
HT ? uh

)∥∥∥
0,Ω0

≤C0H
2k+2 +

∥∥∥∥∥∥∂αx
 2k∑

γ=0

cγψ
(`)
HT(γ) ? (u− uh)

∥∥∥∥∥∥
0,Ω0

+
∥∥∥∂αx (c2k+1ψ

(`)
HT(2k+1) ? (u− uh)

)∥∥∥
0,Ω0

For the second term on the left side of the above inequality, which only involves central
B-splines, similar to Theorem 3.2.2, we have∥∥∥∥∥∥∂αx

 2k∑
γ=0

cγψ
(`)
HT(γ) ? (u− uh)

∥∥∥∥∥∥
0,Ω0

≤ C1h
2k+1H−(k+1+α).

For the third term with a general B-spline, we have∥∥∥∂αx (c2k+1ψ
(`)
HT(2k+1) ? (u− uh)

)∥∥∥
0,Ω0

≤C2

∑
β≤k+1

∥∥∥∥c2k+1

(
dα+β

dxα+β
ψ
(`)
HT(2k+1)

)
? (u− uh)

∥∥∥∥
−(k+1),Ω1/2

≤C2

∑
β≤k+1

∥∥∥∥c2k+1

(
dα+β

dxα+β
ψ
(`)
HT(2k+1)

)∥∥∥∥
L1

‖u− uh‖−(k+1),Ω1

≤C3

∑
β≤k+1

H−(α+β)

∥∥∥∥(dα+β

dxα+β
ψ
(`)
T(2k+1)

)∥∥∥∥
L1

‖u− uh‖−(k+1),Ω1

≤C4h
2k+1H−(k+1+α),

where

Ω0 + supp(K
(2k+1,`)
HT) ⊂ Ω1/2, Ω1/2 + supp(K

(2k+1,`)
HT) ⊂ Ω1.

3.2. Symmetric and One-Sided Derivative Filters 61

Then, we have∥∥∥∂αxu− ∂αx (K(2k+1,`)
HT ? uh

)∥∥∥
0,Ω0

≤ C0H
2k+2 + C5h

2k+1H−(k+1+α).

Similar to the symmetric filter case in Theorem 3.2.2, we require that the scaling H
satisfies H2k+2 = h2k+1H−(k+1+α) and finally, we have∥∥∥∂αxu− ∂αx (K(2k+1,`)

HT ? uh

)∥∥∥
0,Ω0

≤ Chµ(2k+2),

where H = hµ and µ = 2k+1
3k+3+α .

3.2.3 Computational Considerations

Theorem 3.2.2 and Theorem 3.2.3 give convergence rates of the symmetric and position-
dependent derivative filters, respectively. One can easily verify that the convergence
rates are better than calculating the derivatives of DG approximation directly, k+1−α.
Now, let us consider the computational efficiency of the one-sided derivative filters.

Support Size of the Filters

As mentioned before, the support size of the filters is one import component which
affects the computational cost of using the filters. For nonuniform meshes, Theorem
3.2.2 and Theorem 3.2.3 require the scaling has the form H = hµ. For convenience
we let the degree k → ∞. Then, the symmetric derivative filter, the derivative RS
filter, and the new derivative filters have the same scaling H = h2/3 and support size
(3k + 1 + α)h2/3; the derivative SRV filter has a much larger scaling H = h2/5 and
support size (5k+1+α)h2/5. It is obvious that the SRV filter has a significantly larger
support size compared to other filters, especially when h is very small (a very fine
mesh). It follows that the computational cost of using the new filter is much cheaper
than using other filters.

However, we notice that the scaling H = hµ is still quite large compared to h. The
large support usually has negative effects on the accuracy over coarse meshes. Let the
domain be Ω = [0, 1] and h = 1/N , where N is the number of elements. In order
to guarantee the conclusions in Theorem 3.2.2 and Theorem 3.2.3, we must choose N
large enough so that the support size of the filters is less than the domain size, which
requires

(r + k + α+ 1)hµ ≤ 1 =⇒ N ≥ (r + k + α+ 1)1/µ,

here r = 2k for the symmetric and new position-dependent derivative filters and r = 4k
for the derivative SRV filter. Table 3.1 gives the minimum number of elements for
different filters. We note that for the SRV filter, the required number of elements is
always too large, this is one important reason that the SRV filter performs poorly over
nonuniform meshes. Once N is smaller than the minimum requirement given in Table
3.1, we have to rescale the filter by using scaling H = 1/(r+ k+α+1). However, this
rescaling technique normally has negative effects on the accuracy order.

62 Chapter 3. Derivative SIAC Filters

Table 3.1: The minimum number of elements according to the derivative order α.
Here, N1 is used for the symmetric and new position-dependent derivative filters and
N2 is used for the derivative SRV filter.

��������N1

N2
α = 0 α = 1 α = 2 α = 3 α = 4 α = 5

k = 1
��������8

89 ��������12
130 ��������15

182 ��������19
243 ��������23

317 ��������27
402

k = 2
��������19

402 ��������23
499 ��������27

610 ��������32
734 ��������37

872 ��������42
1024

k = 3
��������32

1024 ��������37
1192 ��������42

1375 ��������47
1574 ��������53

1789 ��������59
2021

Order of the B-splines

Although we know that the new derivative filter is already much more efficient than the
derivative SRV filter, it still less efficient compared to the filters for uniform meshes
(scaling H = O(h)). It is understandable that one needs more effort to deal with
nonuniform meshes compared to uniform meshes, but we still want to reduce the
computational cost if possible. Based on the current support size, (3k + 1 + α)hµ

with µ = 2/3, there are two directions to reduce the support size. The first one is to
increase the value of µ. This idea will lead to a new analysis about the relation of µ
and the structure of nonuniform meshes. This will be discussed in the next chapter.
The second thought is to reduce the order of the B-splines. One can use only the order
k + 1 for derivatives of order ≤ k. Then the support size is reduced to (3k + 1)h2/3.
Although the improvement is not too much and has a risk to reduce the accuracy when
α ' k.

Remark 3.2.4. Reducing the support size of the filters has another benefit besides
reducing the computational cost. Once the support size of the filters is reduced, one
can apply the symmetric filter in a larger region, which enhances the performance.

3.3 Numerical Results

In the previous section, we proposed three position-dependent derivative filters and
investigated how to choose the proper scaling of the filters over nonuniform meshes.
We also proved that the filtered solutions have better accuracy order and smoothness
compared to the original DG approximations regardless of the derivative order α. We
now turn to the numerical examples for the position-dependent derivative filters. The
aims of this section are:

1. Testing the position-dependent derivative filters (the SRV and new filter) for
uniform meshes, which has never been done before;

2. Applying the symmetric and position-dependent derivative filters over different
nonuniform meshes;

3. Comparing the derivative filters with different order B-splines. For convenience,
we introduce the following notation:

3.3. Numerical Results 63

• the derivative of the filtered solution, ∂αxu
?
h. This filtered solution uses the

standard filter and then takes the derivative.

• the filtered derivative,
(
∂αHK̃H

)
?uh, which uses the higher order derivative

filter K
(r+1,k+1+α)
H for filtering the DG solution.

Remark 3.3.1. Here, we do not present the results of using the derivative RS filter
as it is very similar to the derivative SRV filter. Their difference is the number of
B-splines, and we will discuss the effects of the number of B-splines in the next chap-
ter. We note that for the following uniform mesh examples, the SRV filter has better
performance compared to the RS filter.

We note that the DG approximation makes sense only when α ≤ k. In addition, the
derivative of the filtered solution ∂αxu

?
h loses the wanted accuracy order when α > k

(u?h = Kr+1,k+1
H ?uh is a Ck−1 function only). Therefore, we mainly present comparison

examples with α ≤ k situation in this section. When α > k, we only present the

results of the filtered derivative
(
∂αHK̃H

)
? uh, and we point out that the filtered

solution
(
∂αHK̃H

)
? uh has a theoretical meaning for an arbitrary α, but the accuracy

deteriorates with each successive derivative. However, we also note that once α > k,
the nonuniform meshes have to be sufficiently refined in order to see the accuracy
improvement. Because of these reasons, we only present α = k+1 case for nonuniform
meshes. Also, since the symmetric derivative filter is applied in the interior region of
each example, we do not present it separately.

3.3.1 Uniform Mesh

Before approaching nonuniform meshes, we first apply the position-dependent deriva-
tive filters over uniform meshes. Here we present results of using both the SRV filter
and the new filter since each of them has an advantage over uniform meshes that we
address in the following examples. Consider a linear convection equation

ut + ux = 0, x ∈ [0, 1], (3.7)

u(x, 0) = sin(2πx),

at time T = 1 with periodic boundary conditions. For uniform meshes, we can also use
scaling H = hµ and obtain results as Theorems 3.2.2 and 3.2.3 described. However,
according to the analysis in [25, 65], in order to maximize the benefits of using central
B-splines over uniform meshes, we choose the uniform mesh size, h, as the filter scaling.
Here, we compare the derivatives of the DG approximation, the filtered solutions (the
SRV and new filter) with using B-splines of order k+1+α (Table 3.2 and Figure 3.4)
and using B-splines of order k + 1 (Table 3.3 and Figure 3.5). From the tables, we

can see that the filtered solutions
(
∂αHK̃H

)
?uh and ∂αx (KH ?uh) have better accuracy

compared to the original DG solutions. Generally speaking, ∂αx (KH ? uh) is better for

high order derivatives and
(
∂αHK̃H

)
?uh performs well for the first derivative. Further

comparison of these two methods will list in the end of the section.

64 Chapter 3. Derivative SIAC Filters

With the scaling H = h, the SRV filter clearly has an advantage for uniform
meshes. Because the SRV is constructed using only central B-splines, and was proven
to have 2k + 1 accuracy order regardless of the derivative order α for linear equations
over uniform meshes in [57]. In Tables 3.2 and 3.3, the SRV filter shows smaller errors
compared to the new filter near the boundaries, especially when α is large. For the
new position-dependent derivative filter, we notice that the filtered solutions only have
accuracy of order k+1−α in Tables 3.2 and 3.3. This is because we use a scaling H = h
instead of a scalingH = hµ as in Theorem 3.2.3. We note that if using a multi-precision
package is acceptable, then the SRV filter is more advantageous for the accuracy order.
However, if only double precision is available during computation (for example, GPU
computing), then in order to avoid round-off errors, the new position-dependent filter
is a better choice, see Chapter 2. However, when α > k, the optimal choice is still the
SRV filter with B-splines of order k + 1 + α because only this filter does not lose the
accuracy with each successive derivative.

We note that the derivative of filtered solution ∂αx (KH ? uh) also performs well
near boundaries for uniform meshes, especially for the new position-dependent filter.
However, for the derivative order α > k, we still need to use higher-order B-splines
to construct the derivative filters. Figures 3.4 and 3.5 present the point-wise error
plots in log scale using the DG approximation of degree k = 2. After filtering, the
filtered approximations are much smoother than the DG solution. In order to reduce
oscillations in the interior regions, we still have to use B-splines of order k + 1 + α.

Remark 3.3.2. For uniform meshes, we choose to use the scaling H = h instead of
the scaling H = hµ in Theorem 1.3.4. This is because for uniform meshes, the scaling
H = h can provide a better accuracy order of 2k + 1 compared to the conclusion in
Theorem 1.3.4, especially in the interior region. Also, the SRV filter benefits of the
scaling H = h in the boundary region once quadruple precision is used. If the scaling
H = hµ is used for uniform meshes, the accuracy order will decrease and the error
magnitude will increase in the interior region. However, the RLKV filter will have
better accuracy order in the boundary region, and the error magnitude will improve
once the mesh is sufficiently refined.

3.3.2 Nonuniform Mesh

Now we show the main results of this chapter: the position-dependent derivative fil-
tering over nonuniform meshes. Before proceeding further, we first give the numerical
setting of nonuniform meshes. In order to generate a more general format for nonuni-
form meshes, we use a random number generator to design the following two meshes.

Mesh 3.3.1. The first nonuniform mesh that we consider is defined by

x 1
2
= 0, xN+ 1

2
= 1, xj+ 1

2
=
(
j + b · rj+ 1

2

)
h, j = 1, . . . , N − 1

where
{
rj+ 1

2

}N−1

j=1
are random numbers between (−1, 1), and b ∈ (0, 0.5] is a constant

number. The size of element ∆xj = xj+ 1
2
− xj− 1

2
is between ((1− 2b)h, (1 + 2b)h). In

3.3. Numerical Results 65

Table 3.2: L2− and L∞−errors for the αth derivative of the DG approximation ∂αxuh
together with the two filtered solutions (the SRV and new filters) for linear convection
equation (3.7), over uniform meshes. The B-spline order is k + 1 + α and the filter
scaling is taken as H = h.

∂αx uh

(
∂αHK̃H

)
? uh (SRV)

(
∂αHK̃H

)
? uh (New)

Mesh L2 error order L∞ error order L2 error order L∞ error order L2 error order L∞ error order

α = 1 P1

20 4.62E-01 – 1.22E+00 – 1.43E-02 – 4.41E-02 – 1.22E-02 – 2.07E-02 –
40 2.32E-01 0.99 6.22E-01 0.98 1.55E-03 3.20 2.61E-03 4.08 1.55E-03 2.97 4.60E-03 2.17
80 1.16E-01 1.00 3.12E-01 0.99 1.91E-04 3.02 2.74E-04 3.25 2.04E-04 2.92 1.20E-03 1.94
160 5.82E-02 1.00 1.56E-01 1.00 2.37E-05 3.01 3.36E-05 3.03 2.84E-05 2.84 3.01E-04 1.99
320 2.91E-02 1.00 7.81E-02 1.00 2.96E-06 3.01 4.18E-06 3.01 4.22E-06 2.75 7.50E-05 2.00

P2

20 2.19E-02 – 7.97E-02 – 1.40E-04 – 9.00E-04 – 4.78E-04 – 3.09E-03 –
40 5.48E-03 2.00 2.01E-02 1.98 6.69E-07 7.71 1.91E-06 8.88 8.14E-05 2.55 6.83E-04 2.18
80 1.37E-03 2.00 5.05E-03 2.00 1.69E-08 5.31 2.52E-08 6.24 1.44E-05 2.50 1.68E-04 2.02
160 3.43E-04 2.00 1.26E-03 2.00 5.13E-10 5.04 7.37E-10 5.09 2.54E-06 2.50 4.20E-05 2.00
320 8.56E-05 2.00 3.16E-04 2.00 2.14E-11 4.58 3.04E-11 4.60 4.50E-07 2.50 1.05E-05 2.00

P3

20 6.55E-04 – 2.80E-03 – 2.41E-06 – 1.59E-05 – 6.24E-06 – 2.50E-05 –
40 8.20E-05 3.00 3.53E-04 2.99 2.10E-09 10.16 3.89E-09 11.99 1.04E-07 5.91 7.61E-07 5.04
80 1.02E-05 3.00 4.42E-05 3.00 9.95E-12 7.72 1.63E-11 7.90 2.18E-09 5.58 2.99E-08 4.67
160 1.28E-06 3.00 5.53E-06 3.00 1.10E-13 6.50 1.62E-13 6.65 9.58E-11 4.51 1.78E-09 4.07
320 1.60E-07 3.00 6.92E-07 3.00 8.98E-15 3.62 1.27E-14 3.67 4.24E-12 4.50 1.11E-10 4.00

α = 2 P2

20 2.67E+00 – 6.96E+00 – 7.20E-04 – 4.12E-03 – 6.42E-02 – 3.71E-01 –
40 1.34E+00 1.00 3.50E+00 0.99 5.90E-06 6.93 1.73E-05 7.89 2.27E-02 1.50 1.74E-01 1.09
80 6.70E-01 1.00 1.75E+00 1.00 1.29E-07 5.51 1.83E-07 6.57 8.03E-03 1.50 8.67E-02 1.00
160 3.35E-01 1.00 8.78E-01 1.00 3.55E-09 5.19 5.02E-09 5.19 2.84E-03 1.50 4.33E-02 1.00
320 1.67E-01 1.00 4.39E-01 1.00 1.39E-10 4.67 1.97E-10 4.67 1.00E-03 1.50 2.17E-02 1.00

P3

20 1.34E-01 – 4.78E-01 – 6.13E-05 – 3.87E-04 – 6.48E-04 – 4.84E-03 –
40 3.36E-02 2.00 1.21E-01 1.99 2.35E-08 11.35 3.59E-08 13.39 1.58E-05 5.36 1.49E-04 5.03
80 8.40E-03 2.00 3.02E-02 2.00 1.03E-10 7.83 1.48E-10 7.93 1.39E-06 3.51 1.73E-05 3.10
160 2.10E-03 2.00 7.56E-03 2.00 8.46E-13 6.93 1.20E-12 6.95 1.23E-07 3.50 2.16E-06 3.00
320 5.25E-04 2.00 1.89E-03 2.00 5.70E-14 3.89 8.06E-14 3.89 1.09E-08 3.50 2.70E-07 3.00

α = 3 P3

20 1.64E+01 – 4.16E+01 – 3.68E-04 – 2.26E-03 – 1.74E-02 – 1.09E-01 –
40 8.19E+00 1.00 2.09E+01 0.99 1.93E-07 10.90 8.61E-07 11.36 3.07E-03 2.50 2.54E-02 2.10
80 4.10E+00 1.00 1.05E+01 1.00 7.68E-10 7.97 1.30E-09 9.38 5.43E-04 2.50 6.42E-03 1.99
160 2.05E+00 1.00 5.24E+00 1.00 5.93E-12 7.02 8.96E-12 7.18 9.60E-05 2.50 1.61E-03 2.00
320 1.02E+00 1.00 2.62E+00 1.00 8.50E-13 2.80 2.53E-11 -1.50 1.70E-05 2.50 4.02E-04 2.00

order to save space, in this chapter we present an example with b = 0.4 only, other
values of b such as 0.1, 0.2 and 0.45 have also been calculated.

Mesh 3.3.2. The second nonuniform mesh is more irregular than the first one. We
distribute the element interface by xj+ 1

2
, j = 1, . . . , N − 1 randomly for the entire

domain and require only

∆xj = xj+ 1
2
− xj− 1

2
≥ b · h, j = 0, . . . , N.

In this paper, we only present b = 0.5 case for this mesh, other values of b such as
0.6, 0.8, etc. have also been calculated.

We remark that we have tested various differential equations over both kinds of
nonuniform meshes: Mesh 3.3.1 and Mesh 3.3.2. However, the filtered approximations

66 Chapter 3. Derivative SIAC Filters

DG SRV New
α = 1

0.0 0.2 0.4 0.6 0.8 1.0
x

10−12

10−8

10−4

100

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

0.0 0.2 0.4 0.6 0.8 1.0
x

10−12

10−8

10−4

100

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

0.0 0.2 0.4 0.6 0.8 1.0
x

10−12

10−8

10−4

100

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

α = 2

0.0 0.2 0.4 0.6 0.8 1.0
x

10−12

10−8

10−4

100

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

0.0 0.2 0.4 0.6 0.8 1.0
x

10−12

10−8

10−4

100
|er

ro
r|

N = 20
N = 40
N = 80
N = 160

0.0 0.2 0.4 0.6 0.8 1.0
x

10−12

10−8

10−4

100

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

Figure 3.4: The point-wise errors in log scale of the first and second derivatives of the
DG approximation ∂αxuh together with the two filtered solutions (the SRV and new
filters) for linear equation (3.7), over uniform meshes. The B-spline order is k+1+α,
the filter scaling is taken as H = h, and k = 2.

have similar performance since the performance mainly depends on the mesh. In order
to save space, we present one equation for each nonuniform mesh.

Comparison of the SRV filter and new filter over Nonuniform Mesh 3.3.1

In Chapter 2, we showed that the SRV filter has worse performance compared to the
new position-dependent filter over nonuniform meshes for filtering the solution itself.
We also mentioned that the enormous support size of the SRV filter causes problems:
we have to rescale the SRV filter to fit the domain size then we can not guarantee either
the accuracy order nor error reduction. Table 3.1 shows the minimum requirement
of the number of elements for the SRV filter, and we can see that it is difficult to
satisfy. Based on these deficiencies, we conclude that the SRV filter is not suitable for
approximating derivatives over nonuniform meshes. However, in order to provide a
complete view of the position-dependent derivative filters, we still give one example of
using the SRV filter for the first derivative over Mesh 3.3.1. Table 3.4 shows that with
the SRV filter, the filtered solutions (no matter what order of B-splines are used) are
even worse than the derivative of the DG approximation. In the rest of this section,
we focus on testing the new filter over nonuniform meshes.

3.3. Numerical Results 67

Table 3.3: L2− and L∞−errors for the αth derivative of the DG approximation ∂αxuh
together with the two filtered solutions (the SRV and new filters) for linear convection
equation (3.7), over uniform meshes. The B-spline order is k+ 1 and the filter scaling
is taken as H = h.

∂αx uh ∂αx (KH ? uh) (SRV) ∂αx (KH ? uh) (New)
Mesh L2 error order L∞ error order L2 error order L∞ error order L2 error order L∞ error order

α = 1 P1

20 4.62E-01 – 1.22E+00 – 1.25E-02 – 2.52E-02 – 1.45E-02 – 6.89E-02 –
40 2.32E-01 0.99 6.22E-01 0.98 1.53E-03 3.03 2.25E-03 3.48 1.91E-03 2.92 1.28E-02 2.43
80 1.16E-01 1.00 3.12E-01 0.99 1.91E-04 3.01 2.72E-04 3.05 2.63E-04 2.86 2.64E-03 2.28
160 5.82E-02 1.00 1.56E-01 1.00 2.38E-05 3.00 3.38E-05 3.01 3.84E-05 2.78 5.90E-04 2.16
320 2.91E-02 1.00 7.81E-02 1.00 2.96E-06 3.00 4.22E-06 3.00 5.95E-06 2.69 1.39E-04 2.09

P2

20 2.19E-02 – 7.97E-02 – 5.03E-05 – 3.23E-04 – 5.66E-05 – 2.84E-04 –
40 5.48E-03 2.00 2.01E-02 1.98 5.38E-07 6.55 9.68E-07 8.38 1.05E-06 5.75 8.34E-06 5.09
80 1.37E-03 2.00 5.05E-03 2.00 1.51E-08 5.16 2.22E-08 5.44 2.25E-08 5.55 2.87E-07 4.86
160 3.43E-04 2.00 1.26E-03 2.00 4.83E-10 4.96 6.93E-10 5.00 7.49E-10 4.91 1.39E-08 4.37
320 8.56E-05 2.00 3.16E-04 2.00 2.10E-11 4.53 2.98E-11 4.54 3.22E-11 4.54 8.03E-10 4.12

P3

20 6.55E-04 – 2.80E-03 – 9.62E-07 – 6.45E-06 – 4.03E-06 – 1.64E-05 –
40 8.20E-05 3.00 3.53E-04 2.99 1.34E-09 9.48 2.51E-09 11.33 3.56E-08 6.83 2.59E-07 5.98
80 1.02E-05 3.00 4.42E-05 3.00 6.65E-12 7.66 1.09E-11 7.85 4.55E-10 6.29 6.34E-09 5.35
160 1.28E-06 3.00 5.53E-06 3.00 9.66E-14 6.11 1.41E-13 6.27 1.95E-11 4.55 3.50E-10 4.18
320 1.60E-07 3.00 6.92E-07 3.00 8.92E-15 3.44 1.26E-14 3.48 8.61E-13 4.50 2.17E-11 4.01

α = 2 P2

20 2.67E+00 – 6.96E+00 – 1.94E-04 – 5.41E-04 – 1.14E-03 – 1.11E-02 –
40 1.34E+00 1.00 3.50E+00 0.99 1.19E-05 4.03 2.50E-05 4.44 7.49E-05 3.92 7.18E-04 3.95
80 6.70E-01 1.00 1.75E+00 1.00 7.42E-07 4.00 1.49E-06 4.07 6.31E-06 3.57 8.11E-05 3.15
160 3.35E-01 1.00 8.78E-01 1.00 4.64E-08 4.00 9.73E-08 3.93 5.45E-07 3.53 9.89E-06 3.04
320 1.67E-01 1.00 4.39E-01 1.00 2.90E-09 4.00 6.16E-09 3.98 4.76E-08 3.52 1.22E-06 3.02

P3

20 1.34E-01 – 4.78E-01 – 5.93E-06 – 4.03E-05 – 1.24E-04 – 1.02E-03 –
40 3.36E-02 2.00 1.21E-01 1.99 1.04E-08 9.15 1.91E-08 11.05 2.22E-07 9.12 2.66E-06 8.58
80 8.40E-03 2.00 3.02E-02 2.00 5.43E-11 7.58 1.20E-10 7.31 3.92E-10 9.15 7.91E-09 8.39
160 2.10E-03 2.00 7.56E-03 2.00 7.45E-13 6.19 1.70E-12 6.15 5.52E-12 6.15 1.03E-10 6.27
320 5.25E-04 2.00 1.89E-03 2.00 5.65E-14 3.72 9.20E-14 4.21 1.67E-13 5.05 5.58E-12 4.20

α = 3 P3

20 1.64E+01 – 4.16E+01 – 3.87E-05 – 2.55E-04 – 4.23E-04 – 3.61E-03 –
40 8.19E+00 1.00 2.09E+01 0.99 4.36E-07 6.47 1.12E-06 7.83 4.26E-06 6.63 5.85E-05 5.95
80 4.10E+00 1.00 1.05E+01 1.00 1.48E-08 4.88 3.47E-08 5.01 8.67E-08 5.62 1.26E-06 5.54
160 2.05E+00 1.00 5.24E+00 1.00 4.68E-10 4.98 1.09E-09 5.00 3.73E-09 4.54 6.67E-08 4.24
320 1.02E+00 1.00 2.62E+00 1.00 1.48E-11 4.98 7.85E-11 3.79 1.65E-10 4.50 4.15E-09 4.01

Linear Equation over Mesh 3.3.1

For Mesh 3.3.1, we present results for the linear equation (3.7) with the first, second
and third derivatives. The L2 and L∞ norm errors are given in Table 3.5 and Figure
3.6 shows the point-wise error in log scale. When α ≤ k, both the derivative of

filtered solutions ∂αx (KH ? uh) and the filtered derivative
(
∂αHK̃H

)
? uh have better

accuracy and convergence rates than the original DG approximation. The filtered

approximation
(
∂αHK̃H

)
? uh shows better smoothness and theoretically has a better

accuracy order than ∂αx (KH ? uh) when α ≤ k, but ∂αx (KH ? uh) has better accuracy
near the boundaries. For smoothness, the results are similar to the uniform mesh case;(
∂αHK̃H

)
? uh has fewer oscillations compared to the DG solution and ∂αx (KH ? uh).

Furthermore, we point out that by using higher-order B-splines we can disregard the
requirement that α ≤ k.

68 Chapter 3. Derivative SIAC Filters

DG SRV New
α = 1

0.0 0.2 0.4 0.6 0.8 1.0
x

10−12

10−8

10−4

100

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

0.0 0.2 0.4 0.6 0.8 1.0
x

10−12

10−8

10−4

100

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

0.0 0.2 0.4 0.6 0.8 1.0
x

10−12

10−8

10−4

100

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

α = 2

0.0 0.2 0.4 0.6 0.8 1.0
x

10−12

10−8

10−4

100

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

0.0 0.2 0.4 0.6 0.8 1.0
x

10−12

10−8

10−4

100
|er

ro
r|

N = 20
N = 40
N = 80
N = 160

0.0 0.2 0.4 0.6 0.8 1.0
x

10−12

10−8

10−4

100

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

Figure 3.5: The point-wise errors in log scale of the first and second derivatives of the
DG approximation ∂αxuh together with the two filtered solutions (the SRV and new
filters) for linear equation (3.7), over uniform meshes. The B-spline order is k+1, the
filter scaling is taken as H = h, and k = 2.

The point-wise error plots are given in Figure 3.6, the middle column is the fil-

tered approximation ∂αx (KH ? uh), which shows more oscillations than
(
∂αHK̃H

)
? uh,

especially in the interior regions. We note, however that the support size of the filter
that uses a higher-order B-spline increases with the derivative order α and it slightly
increases the computational cost. Near the boundaries, the filtered solutions have a
larger error magnitude than those in the interior region. This is because near the
boundaries we cannot use symmetric information around the filtered points, and the
general B-spline has less regularity compared to the central B-spline. We note that the
coarse meshes (such as N = 20 or even N = 40) are not sufficient to use the position-
dependent derivative filter, the filtered solution may have larger errors compared to
the original DG approximation.

Variable Coefficient Equation over Mesh 3.3.2

After testing the constant coefficient equation (3.7), we move to a variable coefficient
equation,

ut + (au)x = f, (x, t) ∈ [0, 1]× (0, T]

u(x, 0) = sin(2πx),
(3.8)

3.3. Numerical Results 69

Table 3.4: L2− and L∞−errors for the first derivative of the DG approximation ∂αxuh

together with the two filtered solution ∂αx (KH ? uh) and
(
∂αHK̃H

)
? uh (with the SRV

filter) for linear equation (3.7), over Mesh 3.3.1. The filter scaling is taken as H = h2/5

near boundaries and H = h2/3 for the interior region (where the symmetric filter is
applied) .

∂αx uh ∂αx (KH ? uh)
(
∂αHK̃H

)
? uh

Mesh L2 error order L∞ error order L2 error order L∞ error order L2 error order L∞ error order

P1

20 5.48E-01 – 1.76E+00 – 2.85E-01 – 1.49E+00 – 5.91E-01 – 2.54E+00 –
40 2.82E-01 0.96 1.05E+00 0.74 2.63E-01 0.11 1.57E+00 -0.08 4.90E-01 0.27 2.37E+00 0.10
80 1.37E-01 1.05 4.98E-01 1.08 2.11E-01 0.32 1.52E+00 0.05 4.17E-01 0.24 2.38E+00 -0.00
160 6.72E-02 1.02 2.57E-01 0.96 1.29E-01 0.71 1.18E+00 0.36 3.08E-01 0.43 2.30E+00 0.05
320 3.38E-02 0.99 1.30E-01 0.98 3.12E-02 2.05 3.75E-01 1.65 9.55E-02 1.69 9.77E-01 1.24

P2

20 3.56E-02 – 2.01E-01 – 1.15E-02 – 8.74E-02 – 3.30E-02 – 1.35E-01 –
40 8.96E-03 1.99 5.80E-02 1.79 2.32E-03 2.31 1.90E-02 2.20 4.21E-03 2.97 2.41E-02 2.49
80 1.96E-03 2.20 1.16E-02 2.32 2.08E-03 0.16 1.49E-02 0.35 3.70E-03 0.19 2.34E-02 0.05
160 4.86E-04 2.01 3.88E-03 1.58 1.68E-03 0.30 1.49E-02 -0.00 3.16E-03 0.23 2.35E-02 -0.01
320 1.32E-04 1.88 8.95E-04 2.11 1.36E-03 0.30 1.50E-02 -0.01 2.63E-03 0.27 2.36E-02 -0.01

P3

20 1.53E-03 – 1.10E-02 – 1.33E-02 – 7.20E-02 – 4.03E-02 – 2.58E-01 –
40 2.10E-04 2.86 1.72E-03 2.68 7.05E-05 7.56 3.40E-04 7.73 4.44E-05 9.83 3.07E-04 9.72
80 2.27E-05 3.21 1.80E-04 3.26 4.84E-06 3.86 3.58E-05 3.25 6.48E-06 2.78 4.29E-05 2.84
160 2.72E-06 3.06 2.52E-05 2.84 3.30E-06 0.55 2.89E-05 0.31 5.84E-06 0.15 4.53E-05 -0.08
320 3.42E-07 2.99 3.22E-06 2.97 2.71E-06 0.28 2.91E-05 -0.01 4.97E-06 0.23 4.55E-05 -0.01

where the variable coefficient is a(x, t) = 2+sin(2π(x+t)) and the forcing term, f(x, t),
is chosen to make the exact solution

u(x, t) = sin(2π(x− t)).

As with the linear example, we present the L2 and L∞ errors in Table 3.6 with the first
three derivatives over Mesh 3.3.2. The respective point-wise error plots (k = 2 case) are
shown in Figure 3.7. The results are similar to the results for the constant coefficient
case. In order to save space we no longer repeat the descriptions, which are similar.
However, we still want to point out one phenomenon. In this variable coefficient case,
the filtered solution ∂αx (KH ? uh) shows somewhat better accuracy than the filtered

solution
(
∂αHK̃H

)
? uh near the boundaries when α ≤ k. This performance suggests

that when α ≤ k we can consider not increasing the order of the B-splines, although
it causes more oscillations in the error.

Remark 3.3.3. Here we conclude by discussing the consequences of using B-splines
of order k + 1 compared to using the usual order k + 1 + α; they are the following:

• it can give better accuracy near the boundaries;

• it can give better accuracy in the interior regions (when α� k), but it damages
the smoothness of filtered solution (more oscillations);

• it has a smaller support size;

• it allows the use of the symmetric filter over a larger area; and

70 Chapter 3. Derivative SIAC Filters

∂αxuh ∂αx (KH ? uh)
(
∂αHK̃H

)
? uh

α = 1

0.0 0.2 0.4 0.6 0.8 1.0
x

10−8

10−4

100

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

0.0 0.2 0.4 0.6 0.8 1.0
x

10−8

10−4

100

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

0.0 0.2 0.4 0.6 0.8 1.0
x

10−8

10−4

100

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

α = 2

0.0 0.2 0.4 0.6 0.8 1.0
x

10−8

10−4

100

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

0.0 0.2 0.4 0.6 0.8 1.0
x

10−8

10−4

100

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

0.0 0.2 0.4 0.6 0.8 1.0
x

10−8

10−4

100

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

Figure 3.6: The point-wise errors in log scale for the first and second derivatives
of DG approximation ∂αxuh together with the two filtered solutions ∂αx (KH ? uh) and(
∂αHK̃H

)
?uh (with the new filter) for linear convection equation (3.7) over Mesh 3.3.1.

The filter scaling is taken as H = h2/3, and k = 2.

• it requires α ≤ k.

Remark 3.3.4. We notice that in Tables 3.5 and 3.6, the accuracy order is smaller
than the conclusion in Theorem ??. The reason is twofold:

• The first one is the effect of the boundary region. The error magnitude of the
filtered solution in the interior region is much better than the error magnitude in
the boundary region. Therefore, the accuracy order in the L2 norm appears to be
unstable and the numbers are smaller than the theoretical expectation. If we look
at Figures 3.6 and 3.7 (right column), the convergence rates are stable respective
to boundary and interior regions separately.

• The second reason is that the Meshes 3.3.1 and 3.3.2 are randomly generated.
There is no strict refined relation among the meshes. Therefore, the accuracy
order is affected by the randomness of the meshes, and a very stable accuracy
order is not observed. One can see that once the effect caused by randomness
becomes smaller in the two-dimensional example, the accuracy order becomes
stable, see Tables 3.7 and 3.8.

3.4. Two-Dimensional Example 71

∂αxuh ∂αx (KH ? uh)
(
∂αHK̃H

)
? uh

α = 1

0.0 0.2 0.4 0.6 0.8 1.0
x

10−8

10−4

100
|er

ro
r|

N = 20
N = 40
N = 80
N = 160

0.0 0.2 0.4 0.6 0.8 1.0
x

10−8

10−4

100

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

0.0 0.2 0.4 0.6 0.8 1.0
x

10−8

10−4

100

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

α = 2

0.0 0.2 0.4 0.6 0.8 1.0
x

10−8

10−4

100

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

0.0 0.2 0.4 0.6 0.8 1.0
x

10−8

10−4

100

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

0.0 0.2 0.4 0.6 0.8 1.0
x

10−8

10−4

100

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

Figure 3.7: The point-wise errors in log scale of the first and second derivative of
the DG approximation ∂αxuh together with the two filtered solutions ∂αx (KH ? uh) and(
∂αHK̃H

)
? uh (with the new filter) for variable coefficient equation (3.8) over Mesh

3.3.2. The filter scaling is taken as H = h2/3, and k = 2.

3.4 Two-Dimensional Example

For the two-dimensional example, we consider a 2D version of the linear hyperbolic
equation

ut + ux + uy = 0, (x, y) ∈ [0, 1]× [0, 1],

u(x, y, 0) = sin(2πx+ 2πy),
(3.9)

at time T = 1. The nonuniform meshes we used are the 2D quadrilateral extension of
Meshes 3.3.1 and 3.3.2. Here, we show the cross-derivative ∂2xy, the first derivatives ∂x
and ∂y are omitted as they are similar to the 1D results. We give the L2 and L∞ error
in Tables 3.7 - 3.8 and the point-wise error plots in Figures 3.8 - 3.9. We note that the
filtered accuracy error seems slightly worse than the DG approximation over coarse
meshes, because near the boundary regions we need sufficiently refined meshes to show
the advantage of the position-dependent filter. Once the mesh is sufficient refined, we
see better results. We also note that although we require a relatively refined mesh for
boundary regions, the results in the interior regions are always much better (see the
point-wise error plots Figures 3.8 and 3.9).

72 Chapter 3. Derivative SIAC Filters

∂2xyuh ∂2xy(KH ? uh)
(
∂Hx∂HyK̃H

)
? uh

Figure 3.8: The point-wise errors in log scale of the cross-derivative DG approximation
∂2xyuh together with the filtered solution ∂2xyu

?
h for the two-dimensional linear equation

(3.9) over Mesh 3.3.1 (2D, N = 160× 160).

∂2xyuh ∂2xy(KH ? uh)
(
∂Hx∂HyK̃H

)
? uh

Figure 3.9: The point-wise errors in log scale of the cross-derivative DG approximation
∂2xyuh together with the filtered solution ∂2xyu

?
h for the two-dimensional linear equation

(3.9) over Mesh 3.3.1 (2D, N = 160× 160).

3.5 Conclusion

In this chapter, we have proposed three position-dependent derivative filter, to approx-
imate the derivatives of a discontinuous Galerkin solution over uniform and nonuniform
meshes. These position-dependent derivative filters allow us to obtain more accurate
derivatives of the DG solutions compared to calculating the derivatives of DG solu-
tions directly. The derivative SRV filter uses 4k + 1 central B-splines, and obtains a
convergence rate of 2k+1 over uniform meshes regardless of derivative order. The new
position-dependent derivative filter uses 2k + 1 central B-splines and an extra general
B-spline, where the B-splines rely on the derivative order α. We have proved that the
new position-dependent derivative filter has accuracy order of µ(2k + 2) when using
filter scaling H = hµ (µ ≈ 2/3). Additionally, we are able, for the first time, to extend
the symmetric derivative filter to nonuniform meshes. Through numerical examples,
we compared the derivative SRV and new filter over uniform and nonuniform meshes.

3.5. Conclusion 73

We demonstrated that once the required conditions are satisfied the derivative SRV
filter has a better performance over uniform meshes compared to the new derivative
filter. However, for nonuniform meshes, only the new derivative filter can maintain its
performance and improve the accuracy of the DG approximations. Also, we compared
derivative filters with different orders of B-splines: order k + 1 and order k + 1 + α.
Numerical results indicate that using B-splines of order k+1 may improve the accuracy
of the filtered solution near the boundaries. For interior regions where the symmetric
derivative filtering is applied, using B-splines of order k+1+α shows better accuracy
and smoothness. Lastly, we point out that for given nonuniform meshes there may
exist a better scaling that allows us to obtain better results.

Our new contributions are:

• Testing the position-dependent derivative filters for uniform meshes, which was
not previously accomplished before;

• Applying the symmetric and position-dependent derivative filters over different
nonuniform meshes.

74 Chapter 3. Derivative SIAC Filters

Table 3.5: L2− and L∞−errors for the αth derivative of the DG approximation ∂αxuh

together with the two filtered solutions ∂αx (KH ? uh) and
(
∂αHK̃H

)
? uh (with the new

filter) for linear convection equation (3.7), over Mesh 3.3.1. The filter scaling is taken
as H = h2/3.

∂αx uh ∂αx (KH ? uh)
(
∂αHK̃H

)
? uh

Mesh L2 error order L∞ error order L2 error order L∞ error order L2 error order L∞ error order

α = 1 P1

20 5.48E-01 – 1.76E+00 – 4.19E-02 – 1.52E-01 – 5.36E-02 – 9.92E-02 –
40 2.82E-01 0.96 1.05E+00 0.74 8.18E-03 2.36 3.36E-02 2.18 1.14E-02 2.23 4.02E-02 1.30
80 1.37E-01 1.05 4.98E-01 1.08 1.89E-03 2.11 6.12E-03 2.46 2.19E-03 2.38 8.22E-03 2.29
160 6.72E-02 1.02 2.57E-01 0.96 4.93E-04 1.94 2.09E-03 1.55 3.51E-04 2.64 1.44E-03 2.51
320 3.38E-02 0.99 1.30E-01 0.98 1.46E-04 1.76 6.15E-04 1.76 5.04E-05 2.80 2.35E-04 2.61

P2

20 3.56E-02 – 2.01E-01 – 3.13E-02 – 9.60E-02 – 5.84E-02 – 1.32E-01 –
40 8.96E-03 1.99 5.80E-02 1.79 3.22E-04 6.60 1.26E-03 6.25 1.04E-03 5.82 2.45E-03 5.75
80 1.96E-03 2.20 1.16E-02 2.32 7.59E-05 2.08 4.26E-04 1.57 1.78E-04 2.54 6.73E-04 1.86
160 4.86E-04 2.01 3.88E-03 1.58 5.28E-06 3.85 3.78E-05 3.49 1.46E-05 3.61 6.65E-05 3.34
320 1.32E-04 1.88 8.95E-04 2.11 3.20E-07 4.04 2.60E-06 3.86 8.71E-07 4.07 4.83E-06 3.78

P3

20 1.53E-03 – 1.10E-02 – 4.08E-03 – 1.23E-02 – 5.34E-03 – 1.42E-02 –
40 2.10E-04 2.86 1.72E-03 2.68 8.01E-04 2.35 2.63E-03 2.22 2.89E-03 0.88 7.96E-03 0.83
80 2.27E-05 3.21 1.80E-04 3.26 4.79E-06 7.38 2.39E-05 6.78 3.10E-06 9.87 1.44E-05 9.11
160 2.72E-06 3.06 2.52E-05 2.84 3.62E-07 3.73 2.03E-06 3.56 9.36E-07 1.73 4.15E-06 1.79
320 3.42E-07 2.99 3.22E-06 2.97 9.64E-09 5.23 6.87E-08 4.89 2.71E-08 5.11 1.51E-07 4.78

α = 2 P1

20 – – – – – – – – 1.94E+00 – 9.16E+00 –
40 – – – – – – – – 2.63E-01 2.89 1.51E+00 2.60
80 – – – – – – – – 3.42E-02 2.94 1.99E-01 2.93
160 – – – – – – – – 6.39E-03 2.42 2.11E-02 3.23
320 – – – – – – – – 2.19E-03 1.54 8.55E-03 1.30

P2

20 3.16E+00 – 9.99E+00 – 3.19E-01 – 1.83E+00 – 3.42E-01 – 1.80E+00 –
40 1.60E+00 0.98 5.79E+00 0.79 2.87E-02 3.47 2.05E-01 3.16 1.00E-01 1.77 5.59E-01 1.69
80 7.57E-01 1.08 2.60E+00 1.16 1.11E-03 4.69 1.21E-02 4.07 5.25E-03 4.25 3.72E-02 3.91
160 3.78E-01 1.00 1.52E+00 0.78 5.10E-04 1.12 5.79E-03 1.07 2.07E-04 4.66 1.96E-03 4.24
320 1.96E-01 0.94 7.38E-01 1.04 2.65E-05 4.26 2.02E-04 4.85 8.54E-06 4.60 4.75E-05 5.37

P3

20 2.15E-01 – 1.12E+00 – 2.11E-02 – 1.39E-01 – 2.21E-02 – 1.21E-01 –
40 5.70E-02 1.92 3.46E-01 1.70 9.02E-03 1.23 6.45E-02 1.11 2.23E-02 -0.01 1.25E-01 -0.06
80 1.31E-02 2.12 7.71E-02 2.17 2.40E-04 5.23 2.13E-03 4.92 1.15E-03 4.28 7.69E-03 4.03
160 3.17E-03 2.05 2.05E-02 1.91 3.76E-06 6.00 4.21E-05 5.66 2.06E-05 5.80 1.71E-04 5.49
320 7.98E-04 1.99 5.27E-03 1.96 5.25E-08 6.16 7.68E-07 5.78 2.93E-07 6.14 3.10E-06 5.79

α = 3 P2

20 – – – – – – – – 4.98E+00 – 2.58E+01 –
40 – – – – – – – – 1.01E+00 2.31 5.55E+00 2.22
80 – – – – – – – – 3.06E-02 5.04 2.73E-01 4.35
160 – – – – – – – – 3.25E-03 3.24 2.95E-02 3.21
320 – – – – – – – – 1.64E-03 0.99 1.66E-02 0.83

P3

20 1.95E+01 – 5.77E+01 – 2.74E-01 – 1.78E+00 – 3.40E-01 – 2.21E+00 –
40 9.94E+00 0.97 3.54E+01 0.70 7.63E-02 1.84 5.36E-01 1.73 3.45E-01 -0.02 2.12E+00 0.06
80 4.81E+00 1.05 1.67E+01 1.08 1.59E-03 5.59 1.51E-02 5.15 5.12E-03 6.07 3.62E-02 5.87
160 2.37E+00 1.02 8.62E+00 0.96 3.54E-04 2.17 4.15E-03 1.87 1.81E-04 4.83 1.73E-03 4.39
320 1.19E+00 0.99 4.37E+00 0.98 1.42E-05 4.64 2.12E-04 4.29 6.44E-06 4.81 7.71E-05 4.49

3.5. Conclusion 75

Table 3.6: L2− and L∞−errors for the αth derivative of the DG approximation ∂αxuh

together with the two filtered solutions ∂αx (KH ? uh) and
(
∂αHK̃H

)
? uh (with the new

filter) for variable coefficient equation (3.8), over Mesh 3.3.2. The filter scaling is taken
as H = h2/3.

∂αx uh ∂αx (KH ? uh)
(
∂αHK̃H

)
? uh

Mesh L2 error order L∞ error order L2 error order L∞ error order L2 error order L∞ error order

α = 1 P1

20 5.73E-01 – 2.04E+00 – 4.28E-02 – 9.17E-02 – 4.04E-02 – 8.51E-02 –
40 2.76E-01 1.05 9.98E-01 1.03 1.29E-02 1.73 6.62E-02 0.47 1.47E-02 1.46 5.53E-02 0.62
80 1.53E-01 0.85 6.35E-01 0.65 3.44E-03 1.91 1.31E-02 2.34 2.72E-03 2.43 7.98E-03 2.79
160 7.16E-02 1.10 3.43E-01 0.89 1.01E-03 1.76 5.63E-03 1.22 6.26E-04 2.12 1.82E-03 2.13
320 4.07E-02 0.82 2.46E-01 0.48 9.81E-04 0.05 8.33E-03 -0.57 6.37E-04 -0.02 3.11E-03 -0.77

P2

20 6.60E-02 – 4.27E-01 – 3.38E-02 – 1.10E-01 – 6.16E-02 – 1.42E-01 –
40 1.27E-02 2.38 9.22E-02 2.21 3.17E-04 6.73 1.26E-03 6.45 9.68E-04 5.99 2.46E-03 5.85
80 2.12E-03 2.58 1.27E-02 2.87 7.71E-05 2.04 4.28E-04 1.55 1.78E-04 2.44 6.61E-04 1.89
160 6.40E-04 1.73 5.66E-03 1.16 5.33E-06 3.85 3.71E-05 3.53 1.47E-05 3.60 6.54E-05 3.34
320 2.48E-04 1.37 2.99E-03 0.92 4.67E-07 3.51 2.70E-06 3.78 8.72E-07 4.08 4.93E-06 3.73

P3

20 2.95E-03 – 2.29E-02 – 4.28E-03 – 1.29E-02 – 5.72E-03 – 1.52E-02 –
40 2.88E-04 3.35 2.84E-03 3.01 8.01E-04 2.42 2.61E-03 2.31 2.89E-03 0.98 7.97E-03 0.93
80 3.95E-05 2.87 3.84E-04 2.89 4.82E-06 7.38 2.36E-05 6.79 3.10E-06 9.87 1.41E-05 9.15
160 4.74E-06 3.06 6.15E-05 2.64 3.62E-07 3.73 2.05E-06 3.53 9.36E-07 1.73 4.15E-06 1.76
320 1.28E-06 1.89 2.14E-05 1.52 9.64E-09 5.23 6.95E-08 4.88 2.71E-08 5.11 1.51E-07 4.78

α = 2 P1

20 – – – – – – – – 2.45E+00 – 1.14E+01 –
40 – – – – – – – – 4.39E-01 2.48 2.61E+00 2.12
80 – – – – – – – – 6.57E-02 2.74 2.23E-01 3.55
160 – – – – – – – – 3.48E-02 0.92 1.13E-01 0.98
320 – – – – – – – – 5.99E-02 -0.78 2.80E-01 -1.31

P2

20 3.89E+00 – 1.40E+01 – 3.34E-01 – 2.36E+00 – 3.39E-01 – 2.26E+00 –
40 1.78E+00 1.13 6.49E+00 1.10 2.93E-02 3.51 2.23E-01 3.40 1.03E-01 1.72 5.84E-01 1.95
80 7.66E-01 1.22 2.54E+00 1.35 1.11E-03 4.72 9.19E-03 4.60 5.31E-03 4.28 3.73E-02 3.97
160 4.10E-01 0.90 1.86E+00 0.45 2.28E-04 2.28 1.26E-03 2.87 1.86E-04 4.84 1.62E-03 4.52
320 2.28E-01 0.85 1.36E+00 0.45 2.00E-04 0.19 1.38E-03 -0.14 1.39E-05 3.74 8.73E-05 4.22

P3

20 2.89E-01 – 1.67E+00 – 2.16E-02 – 1.63E-01 – 1.84E-02 – 1.13E-01 –
40 6.24E-02 2.21 4.20E-01 1.99 9.03E-03 1.26 6.49E-02 1.33 2.22E-02 -0.28 1.25E-01 -0.15
80 1.80E-02 1.79 1.27E-01 1.72 2.35E-04 5.27 2.09E-03 4.96 1.15E-03 4.28 7.60E-03 4.04
160 4.12E-03 2.13 3.67E-02 1.79 3.66E-06 6.00 4.28E-05 5.61 2.06E-05 5.80 1.73E-04 5.46
320 1.51E-03 1.45 1.79E-02 1.03 1.06E-07 5.10 7.61E-07 5.81 2.93E-07 6.14 3.11E-06 5.80

α = 3 P2

20 – – – – – – – – 6.75E+00 – 4.36E+01 –
40 – – – – – – – – 1.18E+00 2.51 7.23E+00 2.59
80 – – – – – – – – 2.36E-02 5.65 2.19E-01 5.04
160 – – – – – – – – 7.55E-03 1.64 7.38E-02 1.57
320 – – – – – – – – 1.28E-03 2.57 7.79E-03 3.24

P3

20 2.04E+01 – 6.86E+01 – 1.68E+00 – 1.10E+01 – 2.37E+00 – 1.56E+01 –
40 9.76E+00 1.06 3.31E+01 1.05 9.36E-02 4.17 6.06E-01 4.18 3.52E-01 2.75 2.16E+00 2.85
80 5.39E+00 0.86 2.14E+01 0.63 4.87E-04 7.59 3.77E-03 7.33 5.15E-03 6.10 3.73E-02 5.86
160 2.52E+00 1.10 1.15E+01 0.89 1.55E-04 1.65 1.84E-03 1.04 1.76E-04 4.87 1.73E-03 4.43
320 1.39E+00 0.86 7.30E+00 0.66 6.97E-05 1.16 5.24E-04 1.81 6.60E-06 4.74 7.91E-05 4.45

76 Chapter 3. Derivative SIAC Filters

Table 3.7: L2− and L∞−errors for the cross-derivative DG approximation ∂2xyuh
together with the filtered solution ∂2xyu

?
h for the two-dimensional linear equation (3.9)

over Mesh 3.3.1 (2D).

∂2xyuh ∂2xy(KH ? uh) ∂Hx
∂Hy

K̃H ? uh
Mesh L2 error order L∞ error order L2 error order L∞ error order L2 error order L∞ error order

P1

20× 20 5.47E+00 – 2.32E+01 – – – – – 1.32E+00 – 1.25E+01 –
40× 40 2.71E+00 1.01 1.33E+01 0.81 – – – – 1.97E-01 2.75 1.80E+00 2.79
80× 80 1.33E+00 1.03 6.39E+00 1.06 – – – – 2.81E-02 2.81 2.56E-01 2.81

160× 160 6.62E-01 1.00 3.38E+00 0.92 – – – – 4.08E-03 2.78 3.39E-02 2.92
P2

20× 20 3.48E-01 – 2.49E+00 – 4.68E-01 – 3.44E+00 – 5.66E-01 – 3.59E+00 –
40× 40 8.16E-02 2.09 7.13E-01 1.80 2.65E-02 4.14 3.63E-01 3.24 5.38E-02 3.40 6.81E-01 2.40
80× 80 1.93E-02 2.08 1.81E-01 1.98 1.38E-03 4.26 1.96E-02 4.22 2.83E-03 4.25 4.03E-02 4.08

160× 160 4.79E-03 2.01 4.53E-02 2.00 6.86E-05 4.33 8.74E-04 4.48 1.44E-04 4.30 1.84E-03 4.45
P3

20× 20 1.54E-02 – 1.47E-01 – 4.11E-02 – 2.79E-01 – 4.06E-02 – 2.63E-01 –
40× 40 1.75E-03 3.13 2.29E-02 2.68 1.14E-02 1.85 1.27E-01 1.13 2.45E-02 0.73 2.04E-01 0.37
80× 80 2.00E-04 3.13 2.51E-03 3.19 2.42E-04 5.56 4.26E-03 4.90 5.30E-04 5.53 8.51E-03 4.58

160× 160 2.47E-05 3.02 3.58E-04 2.81 4.91E-06 5.62 8.59E-05 5.63 1.08E-05 5.62 1.81E-04 5.56

Table 3.8: L2− and L∞−errors for the cross-derivative DG approximation ∂2xyuh
together with the filtered solution ∂2xyu

?
h for the two-dimensional linear equation (3.9)

over Mesh 3.3.2 (2D).

∂2xyuh ∂2xy(KH ? uh) ∂Hx
∂Hy

K̃H ? uh
Mesh L2 error order L∞ error order L2 error order L∞ error order L2 error order L∞ error order

P1

20× 20 6.03E+00 – 2.94E+01 – – – – – 1.53E+00 – 1.27E+01 –
40× 40 3.20E+00 0.91 1.95E+01 0.59 – – – – 2.72E-01 2.50 2.07E+00 2.62
80× 80 1.61E+00 0.99 1.09E+01 0.84 – – – – 5.44E-02 2.32 4.01E-01 2.37

160× 160 7.39E-01 1.12 5.18E+00 1.07 – – – – 8.35E-03 2.70 1.37E-01 1.55
P2

20× 20 5.60E-01 – 7.00E+00 – 4.73E-01 – 3.48E+00 – 5.68E-01 – 3.59E+00 –
40× 40 1.68E-01 1.73 2.65E+00 1.40 2.67E-02 4.15 3.67E-01 3.24 5.34E-02 3.41 6.88E-01 2.38
80× 80 3.85E-02 2.13 5.30E-01 2.32 1.36E-03 4.29 1.94E-02 4.24 2.98E-03 4.16 4.12E-02 4.06

160× 160 7.27E-03 2.41 1.03E-01 2.37 7.90E-05 4.11 1.05E-03 4.21 1.54E-04 4.27 1.89E-03 4.44
P3

20× 20 4.02E-02 – 3.66E-01 – 4.12E-02 – 2.79E-01 – 4.05E-02 – 2.64E-01 –
40× 40 7.60E-03 2.40 1.03E-01 1.83 1.14E-02 1.86 1.29E-01 1.12 2.45E-02 0.72 2.06E-01 0.36
80× 80 7.71E-04 3.30 1.68E-02 2.61 2.42E-04 5.55 4.21E-03 4.93 5.30E-04 5.53 8.40E-03 4.62

160× 160 5.76E-05 3.74 1.31E-03 3.69 4.91E-06 5.62 8.65E-05 5.60 1.08E-05 5.62 1.82E-04 5.51

4
SIAC Filters over Nonuniform Meshes

In practical applications, there are strong motivators for the adoption of unstruc-
tured meshes for handling complex geometries and using adaptive mesh refinement
techniques. Based on this practical necessity, it is widely believed that discontinuous
Galerkin methods, which provide high-order accuracy on unstructured meshes, will
become one of the standard numerical methods for future generations. However, SIAC
filters are still limited primarily to structured meshes. For general nonuniform meshes,
the quality of the filtered solution is usually unsatisfactory. The ability to deal with
nonuniform meshes is an obstacle to the further development of SIAC filters.

In this chapter, we focus on applying the SIAC filter for DG solutions over nonuni-
form meshes. Specifically, this study focuses on the barrier to applying the SIAC filter
to nonuniform meshes – the scaling. We establish a relation between the filtered solu-
tions and the unstructuredness of nonuniform meshes. Further, we demonstrate that
there exist an optimal accuracy of the filtered solution for a given nonuniform mesh,
and it is possible to approximate the optimal accuracy by the method we propose. By
applying the newly designed SIAC filter over nonuniform meshes, the filtered solution
has demonstrated improvement in accuracy order as well as improve the quality of
the numerical solution. The key concept in the extension to unstructured meshes is
understanding the divided differences, as discussed in the following section.

4.1 Divided Differences: Uniform Meshes

In order to use the SIAC filter to improve the quality of DG solutions over nonuniform
meshes, we need to study the theoretical challenges of using the SIAC filter, namely
the divided differences of DG solutions. To get full appreciation of the situation, we
begin discussing from the uniform meshes in this section.

As presented in Chapter 1, Theorem 1.2.1 is the theoretical foundation of using
SIAC filters for DG approximations. Theorem 1.2.1 shows that the divided differences
of the DG solution have the same accuracy order as the DG solution itself in the L2

norm (1.3) and the negative order norm (1.4). When the divided difference of order
α = 0, the conclusion is well known and studied. Nevertheless, the estimates for α > 0
are equally important for the theoretical foundations of the SIAC filter. In [25], after

77

78 Chapter 4. SIAC Filters over Nonuniform Meshes

presenting the proof for the α = 0 case, the authors simply claimed the conclusion
for α > 0 case also holds for translation invariant meshes without presenting details.
In order to study the divided differences of the DG approximations over nonuniform
meshes, we have to understand what happens over uniform meshes.

For writing convenience, instead of considering equation (1.1), we only write the
analysis for the simplest one-dimensional linear hyperbolic equation,

ut + ux = 0, (x, t) ∈ [0, 1]× (0, T]

u(x, 0) = u0(x),
(4.1)

where u0 is sufficiently smooth and the domain Ω = [0, 1] is covered by a uniform mesh
{Ij}Nj=1, where Ij = [xj− 1

2
, xj+ 1

2
] with size h = 1

N . Then, the DG scheme of equation

(4.1) is given by∫
Ij

(uh)tvhdx−
∫
Ij

uh(vh)xdx

+uh(x
−
j+ 1

2

)vh(x
−
j+ 1

2

)− uh(x−j− 1
2

)vh(x
+
j− 1

2

) = 0,
(4.2)

where uh, vh ∈ V k
h =

{
ϕ ∈ L2(Ω) : ϕ|Ij ∈ Pk, j = 1, . . . , N

}
, and the upwind flux is

used.

4.1.1 Scaling h: ∂huh

Consider the DG scheme (4.2) over Ij− 1
2
= [xj−1, xj] and Ij+ 1

2
= [xj , xj+ 1

2
]. This can

be written as∫
I
j− 1

2

(
uh(x+

h

2
)

)
t

vh(x+
h

2
)dx−

∫
I
j− 1

2

uh(x+
h

2
)

(
vh(x+

h

2
)

)
x

dx

+ uh(x
−
j+ 1

2

)vh(x
−
j+ 1

2

)− uh(x−j− 1
2

)vh(x
+
j− 1

2

) = 0,

∫
I
j+1

2

(
uh(x−

h

2
)

)
t

vh(x−
h

2
)dx−

∫
I
j+1

2

uh(x−
h

2
)

(
vh(x−

h

2
)

)
x

dx

+ uh(x
−
j+ 1

2

)vh(x
−
j+ 1

2

)− uh(x−j− 1
2

)vh(x
+
j− 1

2

) = 0.

Since the mesh is uniform, and h is the mesh element size, with the periodic boundary
condition we know the space V k

h (x−
h
2) and V

k
h (x+

h
2) are the same piecewise polynomial

space, see Figure 4.1. Denote this space as

Ṽ k
h =

{
ϕ ∈ L2(Ω) : ϕ|I

j− 1
2

∈ Pk, j = 1, . . . , N
}
.

Then we can rewrite the previous formula as∫
I
j− 1

2

(
uh(x+

h

2
)

)
t

ṽh(x)dx−
∫
I
j− 1

2

uh(x+
h

2
) (ṽh(x))x dx

+ uh(x
−
j+ 1

2

)ṽh(x
−
j)− uh(x

−
j− 1

2

)ṽh(x
+
j−1) = 0,

4.1. Divided Differences: Uniform Meshes 79

uh x

uh(x+ h
2) x− h

2

uh(x− h
2) x+ h

2

Figure 4.1: The top mesh is for the original DG solution uh over a uniform mesh x,
the middle mesh is the value uh(x + h

2) which shifts the mesh x by −h
2 , the bottom

mesh is the value uh(x− h
2) which shifts the mesh x by h

2 .

∫
I
j− 1

2

(
uh(x−

h

2
)

)
t

ṽh(x)dx−
∫
I
j− 1

2

uh(x−
h

2
) (ṽh(x))x dx

+ uh(x
−
j− 1

2

)ṽh(x
−
j)− uh(x

−
j− 3

2

)ṽh(x
+
j−1) = 0,

where ṽh ∈ Ṽ k
h . Subtracting the above two formulas and dividing by h, we obtain

Bj− 1
2
(∂huh; ṽh)

=

∫
I
j− 1

2

(∂huh(x))t ṽh(x)dx−
∫
I
j− 1

2

∂huh(x) (ṽh(x))x dx

+ ∂huh(x
−
j)ṽh(x

−
j)− ∂huh(x

−
j−1)ṽh(x

+
j−1) = 0,

(4.3)

where ∂huh(x
−
j) =

(
uh(x

−
j+ 1

2

)− uh(x−j− 1
2

)

)
/h.

Proposition 4.1.1 (Cell Entropy Inequality). The solution ∂huh to scheme (4.3)
satisfies the following cell entropy inequality

d

dt

∫
I
j− 1

2

U(∂huh)dx+ F̂j − F̂j−1 ≤ 0,

where the entropy U(∂hu) =
1
2 (∂uh)

2, for entropy flux F̂j =
1
2(∂huh)

2(x−j).

Proof. Taking ṽh = ∂huh in (4.3),

Bj− 1
2
(∂huh; ∂huh) =

∫
I
j− 1

2

U(∂huh(x))tdx−
1

2
(∂huh(x))

2|∂I
j− 1

2

dx

+ (∂huh(x
−
j))

2 − ∂huh(x−j−1)∂huh(x
+
j−1)

=
d

dt

∫
I
j− 1

2

U(∂huh(x))dx+ F̂j − F̂j−1 +Θj−1 = 0

80 Chapter 4. SIAC Filters over Nonuniform Meshes

where

Θj−1 =
1

2

(
∂huh(x

+
j−1)− ∂huh(x

−
j−1)

)2
≥ 0

This completes the proof of the cell entropy inequality.

Similar to the primary value uh, we also have

Proposition 4.1.2 (L2 stability). For periodic boundary conditions, the divided dif-
ference, ∂huh, to scheme (4.3) satisfies the following L2 stability condition

d

dt

∫ 1

0
(∂huh)

2 dx ≤ 0 or ‖∂huh(·, t)‖ ≤ ‖∂huh(·, 0)‖.

Proposition 4.1.3 (Error Estimate). The divided difference ∂huh of DG scheme (4.2)
for equation (4.1) with a smooth solution u satisfies the following error estimates. In
the L2 norm:

‖∂hu− ∂huh‖0,Ω ≤ Chk+1,

and in the negative order norm:

‖∂hu− ∂huh‖−(k+1),Ω ≤ Chk+1,

where C depends on u and its derivatives but is independent of h.

Remark 4.1.1. Using induction, the above propositions also hold for α > 1.

4.1.2 Constant Scaling H: ∂Huh

In the previous analysis, we give the error estimate of the divided difference of the DG
solution ∂huh with the scaling h, where h is the uniform mesh size. In this section,
we investigate the behavior of using a general constant scaling H. Based on the DG
scheme (4.2), similar to using scaling h, we have∫

Ij−H
2

(
uh(x+

H

2
)

)
t

vh(x+
H

2
)dx−

∫
Ij−H

2

uh(x+
H

2
)

(
vh(x+

H

2
)

)
x

dx

+ uh(x
−
j+ 1

2

)vh(x
−
j+ 1

2

)− uh(x−j− 1
2

)vh(x
+
j− 1

2

) = 0,

∫
Ij+

H
2

(
uh(x−

H

2
)

)
t

vh(x−
H

2
)dx−

∫
Ij+

H
2

uh(x−
H

2
)

(
vh(x−

H

2
)

)
x

dx

+ uh(x
−
j+ 1

2

)vh(x
−
j+ 1

2

)− uh(x−j− 1
2

)vh(x
+
j− 1

2

) = 0,

If H = h, then the situation will follow the previous analysis, we can subtract the
above two formulas directly. However, if H 6= h, then things become complicated. We
can not subtract them directly like in the H = h case, since the space V k

h (x−
H
2) and

V k
h (x+ H

2) are no longer the same space, see Figure 4.2. Once the spaces V k
h (x−

H
2)

and V k
h (x+

H
2) are not the same space, the traditional analysis techniques can not be

performed. Therefore, in order to obtain a scheme for ∂Huh, we have to require the

4.1. Divided Differences: Uniform Meshes 81

uh x

uh(x+ H
2) x− H

2

uh(x− H
2) x+ H

2

Figure 4.2: The top mesh is the original DG solution uh over a uniform mesh x, the
middle mesh is the value uh(x + H

2) which means shifting the mesh x by −H
2 , the

bottom mesh is the value uh(x− H
2) which shifts the mesh x by H

2 .

scaling H to satisfy some other conditions. For uniform mesh with periodic conditions,
we need a scaling H which makes the space V k

h (x −
H
2) and V k

h (x + H
2) be the same

polynomial space. This requires

Ij −
H

2
+mh = Ij +

H

2
,

where m is a positive integer. The above relation is equivalent to

H = mh.

Figure 4.3 shows a example with the scaling H = 2h.

uh x

uh(x+ H
2) x− H

2

uh(x− H
2) x+ H

2

H = 2h

Figure 4.3: The top mesh is the original DG solution uh over a uniform mesh x, the
middle mesh is the value uh(x + H

2) which means shifting the mesh x by −H
2 , the

bottom mesh is the value uh(x− H
2) which shifts the mesh x by H

2 . Here, H = 2h.

When H = mh, denote

Ṽ k
h = V k

h (x+
H

2
) = V k

h (x−
H

2
),

82 Chapter 4. SIAC Filters over Nonuniform Meshes

we have ∫
Ij−m

2

(
uh(x+

mh

2
)

)
t

ṽh(x)dx−
∫
Ij−m

2

uh(x+
mh

2
) (ṽh(x))x dx

+ uh(x
−
j+ 1

2

)ṽh(x
−
j−m−1

2

)− uh(x−j− 1
2

)ṽh(x
+
j−1−m−1

2

) = 0,

∫
Ij−m

2

(
uh(x−

mh

2
)

)
t

ṽh(x)dx−
∫
Ij−m

2

uh(x−
mh

2
) (ṽh(x))x dx

+ uh(x
−
j−m+ 1

2

)ṽh(x
−
j−m−1

2

)− uh(x−j−m− 1
2

)ṽh(x
+
j−1−m−1

2

) = 0,

where ṽh ∈ Ṽ k
h . Subtracting the above two formulas and dividing by H = mh, we

obtain ∫
Ij−m

2

(∂Huh(x))t ṽh(x)dx−
∫
Ij−m

2

∂Huh(x) (ṽh(x))x dx

+ ∂Huh(x
−
j−m−1

2

)ṽh(x
−
j−m−1

2

)− ∂Huh(x−j−1−m−1
2

)ṽh(x
+
j−1−m−1

2

) = 0,

where ∂Huh(xj−m−1
2

) =

(
uh(x

−
j+ 1

2

)− uh(x−j−m+ 1
2

)

)
/(mh). The rest of the analysis is

same as the ∂huh case. We then have the following corollaries:

Corollary 4.1.4. Under the same conditions as in Theorem 1.2.1. The divided dif-
ferences of the DG approximation, ∂αHuh in the L2 norm have the error

‖∂αH(u− uh)‖0,Ω ≤ Chk+1,

and in the negative order norm:

‖∂αH(u− uh)‖−(k+1),Ω ≤ Ch2k+1,

where H = mh and α = (α1, . . . , αd) is an arbitrary multi-index.

Corollary 4.1.5. Under the same conditions as in Theorem 1.3.4, the scaling H =
mh, then

‖u−K(2k+1,k+1)
H ? uh‖0,Ω0 ≤ Ch2k+1.

Remark 4.1.2. Aside from H = mh case, it is very difficult to analyze the rest of the
cases. Numerical examples suggest that the accuracy order is drops from 2k + 1 for
uniform meshes.

Although it is very difficult to analyze a general scaling H directly, when H is very
close to a known results such as h or mh we can take advantage of the known results
to bound ∂αH(u− uh).

4.2. Divided Differences: Nonuniform Meshes 83

For example, considering a scaling of H = (1− c ·h)h or H = (1−O(h))h. Denote
the error e = u− uh. For the first divided difference of the DG error e, we have:

∂He =
1

H

(
e(x+

1

2
h− c

2
h2)− e(x− 1

2
h+

c

2
h2)

)
=

1

H

{(
e(x+

1

h
)− ch2

2
e′(x+

1

h
) +

1

2
e(2)(ξ)

(
ch2

2

)2
)

−

(
e(x− 1

h
) +

ch2

2
e′(x− 1

h
) +

1

2
e(2)(ζ)

(
ch2

2

)2
)}

=
1

(1− c · h)h

{
h∂he−

ch2

2

(
e′(x+

1

h
) + e′(x− 1

h
)

)
+O(h4)

}
=

1

(1− c · h)

{
∂he−

ch

2

(
e′(x+

1

h
) + e′(x− 1

h
)

)
+O(h3)

}
In the L2 norm, then

‖∂He‖0 ≤ C0‖∂he‖0 + C1h‖e′‖+ C2h
3‖e(2)‖.

Since ‖e(i)‖0 ≤ C‖e‖i ≤ Ch−i‖e‖0 ≤ Chk+1−i , we have

‖∂He‖0 ≤ C0‖∂he‖0 + C3h
k+1.

Now, we have shown that using a scaling H = (1 − c · h)h has no negative effect on
the accuracy order of the divided differences of the DG error. In fact, we can change
the value of c to approach the optimal accuracy for the filtered solution in the L2

norm (usually the optimal value of c is larger than zero and the respective scaling
H = (1− c · h)h < h).

4.2 Divided Differences: Nonuniform Meshes

After investigation of the divided differences of DG solutions for uniform meshes, we
move to nonuniform meshes. Since we do not know what is the suitable scaling for
nonuniform meshes, we use the scaling H to represent a general scaling.

Similar to using a general scaling H for uniform meshes, the challenge is to for
uh(x + H

2) and uh(x − H
2) to be in the a same space. Figure 4.4 indicates a general

situation of the first divided difference. We can see that the situation is much worse in
Figure 4.4 than in Figure 4.2. For a general nonuniform mesh, it is almost impossible
to find a constant scaling H such that uh(x + H

2) and uh(x −
H
2) belong to the same

approximation space. In other words, for general nonuniform meshes, we can not
provide a traditional analysis such as the error estimates for uniform meshes.

Therefore, we have to find a different way of finding a suitable scaling for nonuni-
form meshes. Generally speaking, there are two possible directions to consider:

• Using known results (results over uniform meshes or smoothly-varying meshes)
to bound the errors over nonuniform meshes. This is the method we used to
analyze the results over smoothness-varying meshes in Chapter 2.

84 Chapter 4. SIAC Filters over Nonuniform Meshes

uh x

uh(x+ H
2) x− H

2

uh(x− H
2) x+ H

2

Figure 4.4: The top mesh is the original DG solution uh over a nonuniform mesh x,
the middle mesh is the value uh(x+

H
2) which means shifting the mesh x by −H

2 , the
bottom mesh is the value uh(x− H

2) which shifts the mesh x by H
2 .

• Considering a variable scaling H(x) to force the divided difference components,
uh(x + H

2) and uh(x − H
2), into the same space. Then, processing the same

analysis as used in Section 4.1.

4.2.1 Variable Scaling H(x)

In this section, we first consider the idea of using a variable scaling H(x), x ∈ Ω.
For the first divided difference, we try to choose an H(x) such that uh(x + H

2) and
uh(x− H

2) are in the same space. For element Ij = [xj− 1
2
, xj+ 1

2
], we denote that

Ij ±
H

2
=

{
x± H(x)

2
, x ∈ Ij

}
,

of course, we require x± H(x)
2 are monotonically increasing with x. In order to get the

same space we require that (the choice is the simplest one but not unique)

Ij +
H

2
= Ij+1 −

H

2
, j = 1, . . . , N − 1.(the choice is not unique)

Denote H(xj−1/2) = Hj−1/2, this gives

xj−1/2 +
Hj−1/2

2
= xj+1/2 −

Hj+1/2

2
j = 1, . . . , N − 1,

or,

1

2

(
H1/2 +H3/2

)
= ∆x1

1

2

(
H3/2 +H5/2

)
= ∆x2

. . .

1

2

(
HN−1/2 +HN+1/2

)
= ∆xN .

4.2. Divided Differences: Nonuniform Meshes 85

Here we have N equations with N + 1 unknown variables H1/2, . . . , HN+1/2, hence
we still need one more relation to solve this system. We can let H1/2 = HN+1/2, but
then the linear system may not have a solution. Another approach is to make an
initial guess of H1/2 (HN+1/2) then solve the entire linear system. Once we obtain
H1/2, . . . , HN+1/2, the scaling H(x) can be designed as

H(x) =
1

2
(Hj−1/2 +Hj+1/2)−

1

2
(Hj−1/2 −Hj+1/2)

x− xj
∆xj

, x ∈ Ij .

Finally, we obtain x − H
2 and x − H

2 in the same space, the remain proof will be the
same as for uniform meshes.

To give a simple example of this idea, we consider a nonuniform mesh x with N = 4
elements, ∆x1 = 2, ∆x2 = 1, ∆x3 = 1 and ∆x4 = 2, with x 1

2
= 0, x 3

2
= 2, x 5

2
= 3,

x 7
2
= 4 and x 9

2
= 6. Here a solution {Hj+ 1

2
}4j=0 satisfies the condition we mentioned,

Ij +
H
2 = Ij+1 − H

2 , H 1
2
= 3.0, H 3

2
= 1.0, H 5

2
= 1.0, H 7

2
= 1.0 and H 9

2
= 3.0. By

designing a proper scaling H(x), we can obtain a result such as in Figure 4.5 which
has a similar structure to the uniform mesh.

0 2 3 4 6
x

−1.5 1.5 2.5 3.5 4.5
x−H(x)/2

1.5 2.5 3.5 4.5 7.5
x+H(x)/2

H(x)

Figure 4.5: A four element nonuniform mesh with a proper choice variable scaling
H(x).

Here, we present an example of using the variable scaling for a smoothly-varying
mesh used in Chapter 2.

Example 4.2.1. As a simple example of the DG method and SIAC filter, consider the
linear hyperbolic equation

ut + ux = 0, (x, t) ∈ [0, 1]× (0, T]

u(x, 0) = sin(2πx)

with final time T = 1 over a smoothly-varying mesh: Mesh 2.4.1. The L2 and L∞ norm
errors and respective accuracy order are given in Table 4.1, and Figure 4.6 shows the
point-wise errors in log scale.

The preliminary results of using the variable scaling seems to work well for smoothly-
varying meshes. However, we point out the following problems for general nonuniform
meshes:

86 Chapter 4. SIAC Filters over Nonuniform Meshes

Table 4.1: L2− and L∞−errors for the DG approximation uh and the filtered solution
u?h.

DG error After filtering
Mesh L2 error order L∞ error order L2 error order L∞ error order

P1

20 8.41E-03 – 2.25E-02 – 4.42E-03 – 6.77E-03 –
40 1.95E-03 2.11 6.38E-03 1.82 5.48E-04 3.01 8.17E-04 3.05
80 4.75E-04 2.03 1.68E-03 1.92 6.79E-05 3.01 1.01E-04 3.02
160 1.18E-04 2.01 4.30E-04 1.97 8.45E-06 3.01 1.25E-05 3.01

P2

20 3.07E-04 – 1.54E-03 – 2.51E-05 – 4.47E-05 –
40 3.85E-05 2.99 1.98E-04 2.96 5.36E-07 5.55 8.97E-07 5.64
80 4.82E-06 3.00 2.49E-05 2.99 1.28E-08 5.38 2.07E-08 5.43
160 6.03E-07 3.00 3.12E-06 3.00 3.49E-10 5.20 5.56E-10 5.22

P3

20 7.45E-06 – 2.63E-05 – 1.21E-06 – 2.35E-06 –
40 4.70E-07 3.99 1.65E-06 4.00 5.03E-09 7.91 9.28E-09 7.99
80 2.94E-08 4.00 1.04E-07 3.99 2.02E-11 7.96 3.82E-11 7.92
160 1.84E-09 4.00 6.49E-09 4.00 9.06E-14 7.80 1.74E-13 7.78

DG error After filtering

0 0.2 0.4 0.6 0.8 1.0

x

10−16

10−12

10−8

10−4

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

0 0.2 0.4 0.6 0.8 1.0

x

10−16

10−12

10−8

10−4

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

Figure 4.6: Comparison of the point-wise errors in log scale of the DG approximation
together the filtered solution with polynomial P3.

• We can not guarantee that I1 − H/2 and IN + H/2 are in the same space, or
there may not exist a proper scaling H.

• H(x) may be negative for some region of x, then the filter is undefined.

• It is only for the first divided difference, the higher order divided differences still
are not be guaranteed.

4.3. Optimal Accuracy of Filtered Solutions 87

Further, there is a fundamental problem of using a variable scaling H(x). Indeed, a
variable scaling H(x) is flexible to address the divided difference issue. However, we
have to remind the reader that the divided difference operator is from the derivative
of the filter (more precisely, the central B-splines). The divided difference scaling is
also the filter scaling. In fact, consider the first order derivative of a scaled central
B-spline,

d

dx
ψH =

d

dx

(
1

H
ψ
(x
H

))
= −H

′

H2
ψ
(x
H

)
+

1

H
ψ′
(x
H

)(1− xH ′

H2

)
.

From the above formula, we can see that if the scaling H is a variable function with
respect to x, then we no longer are able to convert the derivatives into divided dif-
ferences. That means we have to develop a completely new theoretical foundation for
using a variable scaling H. Hence, we leave this direction for future work.

Now, we draw the attention back to using a constant scaling H. We note that
a constant scaling is very important to keep the smoothness property of the filtered
solutions.

4.3 Optimal Accuracy of Filtered Solutions

4.3.1 Preliminary Results over Nonuniform Meshes

In Chapter 1, Theorem 1.2.1 shows the error estimates of the DG approximation and
its divided differences over uniform meshes. Unfortunately, for nonuniform meshes,
estimates (1.3) and (1.4) are only vaild for the DG approximation itself, that is

Lemma 4.3.1 (Cockburn et al. [25]). Under the same conditions as in Theorem 1.2.1.
The DG approximation over a nonuniform mesh satisfies

‖u− uh‖0,Ω ≤ Chk+1,

and in the negative order norm:

‖u− uh‖−(k+1),Ω ≤ Ch2k+1.

As for the divided differences, ∂αhuh, over nonuniform meshes, instead of (1.4), we
only have

Lemma 4.3.2. Under the same conditions as in Lemma 4.3.1, let H be a general
constant, for nonuniform meshes the divided differences of the DG approximation in
the L2 norm satisfies

‖∂αH(u− uh)‖0,Ω ≤ Cαh
2k+1H−|α|,

and in the negative order norm:

‖∂αH(u− uh)‖−(k+1),Ω ≤ Cαh
2k+1H−|α|,

where α = (α1, . . . , αd) is an arbitrary multi-index.

Proof. c.f. Lemma 3.2.1.

88 Chapter 4. SIAC Filters over Nonuniform Meshes

Here, we claim that without further assumptions on the nonuniform meshes, the
estimates in Lemma 4.3.2 are already optimal. To explain this statement, in Table 4.2,
we provide the L2 and L∞ errors for the divided differences of the L2 projection of
a sine function for a nonuniform mesh. The results show that the divided differences
∂αhuh have accuracy order of only k + 1 − α in the L2 norm for a nonuniform mesh.
Since the premise that the divided differences also have k+1 order accuracy in the L2

norm has already failed, the accuracy order of 2k+1 cannot be theoretical guaranteed
in the negative order norm.

Table 4.2: The L2 error for the DG approximation and its divided differences of equa-
tion (4.17) at the initial time with u(x, 0) = sin(x), uh = P sin(x), over a nonuniform
mesh.

uh ∂huh ∂2huh
Mesh L2 error order L2 error order L2 error order

P2

20 8.43E-05 – 1.29E-03 – 3.63E-02 –
40 1.02E-05 3.05 3.61E-04 1.84 1.79E-02 1.02
60 2.92E-06 3.09 1.44E-04 2.27 1.08E-02 1.26
80 1.19E-06 3.13 8.46E-05 1.84 8.33E-03 0.89

P3

20 1.78E-06 – 2.99E-05 – 7.01E-04 –
40 1.17E-07 3.93 4.39E-06 2.77 1.75E-04 2.01
60 2.03E-08 4.32 1.10E-06 3.42 6.86E-05 2.30
80 6.50E-09 3.96 4.57E-07 3.05 3.83E-05 2.03

Based on Lemma 4.3.1 and Lemma 4.3.2, for general nonuniform meshes, the only
theoretical estimate is

Theorem 4.3.3. Under the same conditions as in Lemma 4.3.1, denote

Ω0 + 2supp(K
(2k+1,k+1)
H) ⊂⊂ Ω1 ⊂⊂ Ω.

Then, for general nonuniform meshes, we have

‖u−K(2k+1,k+1)
H ? uh‖0,Ω0 ≤ Chµ(2k+1),

where the scaling H is chosen as

H = hµ, µ =
2k + 1

3k + 2
.

Proof. c.f. Theorem 3.2.2 or [25].

In some respects, Theorem 1.3.4 gives a useful conclusion that allows us to enhance
the accuracy order of the DG solution, especially the derivatives of the DG solution
in Chapter 3. However, if we consider the error reduction of the DG solution, there is
still room for improvement. We will discuss the details in the following sections. For
convenience, in this paper we refer to µ as the scaling order and µ0 =

2k+1
3k+2 .

4.3. Optimal Accuracy of Filtered Solutions 89

Remark 4.3.1. A more precise conclusion of Theorem 4.3.3 should use scaling order
µ0 =

2k+1
3k+3 .

The conclusion of Theorem 4.3.3 can easily be extended to hyperbolic conservation
laws by using the same method. However, the error estimates of the divided differences
of the DG solutions for nonlinear equations become quite complicated. It follows
that there is no complete theoretical estimate of the filtered solutions for nonlinear
hyperbolic conservation laws even for uniform meshes.

Now, we again focus on Theorem 4.3.3 itself. As mentioned earlier, Theorem 4.3.3
is the only theoretical result for general nonuniform meshes. In Chapter 3, the results
demonstrated that this theorem is quite useful for improving the derivatives of DG
approximations. However, from the perspective of improving the DG approximation
itself, Theorem 4.3.3 is impractical in practice. With respect to improving the accuracy
order, only if k ≥ 2 is the accuracy order higher than the original DG approximation:

µ0(2k + 1) > k + 1 ⇒ k ≥ 2.

If at least one order higher accuracy order is desired, then k ≥ 5:

µ0(2k + 1) ≥ k + 2 ⇒ k ≥ 5.

With respect to the computational efficiency, as given in Chapter 3, when h is small
(fine mesh), the filter scaling H = hµ0 ≥ h2/3 dramatically increases the support size of
the filter. It follows that the computational cost dramatically increases too. Because
the improvement in the accuracy order is quite small compared to the dramatically
increased computational cost, Theorem 4.3.3 has rarely been used in practical appli-
cations since it was introduced in [25].

More importantly, instead of increasing the accuracy order, practical applications
are more concerned about reducing the error. Although Theorem 4.3.3 improves the
accuracy order, many practical examples suggest that using a scaling order of µ0 usually
increases the errors. For example, for the numerical experiments given in this chapter
(Section 4.5), the filtered solutions that use scaling order of µ0 have a worse error in
the L2 norm compared to the original DG solutions.

4.3.2 The Optimal Accuracy

Due to the impracticality and dissatisfactory accuracy of Theorem 4.3.3, we have to
reconsider the filter scaling for nonuniform meshes. To complete this task, we first
explore the relation between the filter scaling and the error of the filtered solution. We
remind the readers that in this chapter, H represents the filter scaling and h represents
the mesh size. By using Lemma 1.2.2, we can write the error estimate of the filtered
solution as

‖u− u?h‖0,Ω0 ≤‖u−K
(2k+1,k+1)
H ? u‖0,Ω0 + ‖K

(2k+1,k+1)
H ? (u− uh)‖0,Ω0

≤Θ1 +Θ2, (4.4)

where

Θ1 = ‖u−K(2k+1,k+1)
H ? u‖0,Ω0 ≤ C1H

2k+2|u|H2k+2 , (Property 1.3.2) (4.5)

90 Chapter 4. SIAC Filters over Nonuniform Meshes

and

Θ2 = C0

∑
|α|≤k+1

‖DαK
(2k+1,k+1)
H ? (u− uh)‖−(k+1),Ω1/2

, (Lemma 1.2.2)

≤ C0C1

∑
|α|≤k+1

‖∂αH(u− uh)‖−(k+1),Ω1
, (4.6)

where Ω0 + supp(K
(2k+1,k+1)
H) ⊂ Ω1/2 and Ω1/2 + supp(K

(2k+1,k+1)
H) ⊂ Ω1. According

to the above estimates, the error is bounded by Θ1 and Θ2, where Θ1 describes the
error generated by reproducing polynomials and Θ2 represents the error in the negative
order norm.

The estimate for Θ1 is clear. The error is given by the polynomial reproduc-
tion property (1.9) and the exact solution u. It is obvious from (4.5) that Θ1,
C1H

2k+2|u|H2k+2 , is increasing with the scaling H and is mainly determined by the
scaling H and the exact solution u.

The Θ2 term is a challenge. Lemma 4.3.2 gives an estimate of ‖∂αH(u−uh)‖−(k+1),Ω1

for nonuniform meshes,

‖∂αH(u− uh)‖−(k+1),Ω1
≤ Ch2k+1H−|α|.

The above estimate can be used for any nonuniform mesh, but it is not accurate for
many nonuniform meshes, such as for the smoothly-varying meshes. It is easy to see
that the Θ2 term is strongly dependent on the unstructuredness of the mesh. However,
based on [25], there is a trend that Θ2 decreases with the scaling H. One can refer to
Figure 4.7 for numerical support.

In this chapter, the purpose is to obtain the optimal accuracy of the filtered solution
(minimize the error of the filtered solution). To do this, we need to find a proper scaling
order µ (the scaling H = hµ) such that Θ1 = Θ2. As mentioned in [25], in the worst
case the scaling order µ = µ0 =

2k+1
3k+2 ≥ 0.6, and in the best case µ ≈ 1. We examine the

L2 and L∞ errors with scaling order µ in the range of [0.6, 1] over different nonuniform
meshes: Mesh 3.3.1 and Mesh 3.3.2. Figure 4.7 shows the variations. We can see that
the optimal accuracy in the L2 and L∞ norms correspond to different scaling orders
µ, see also Table 4.3. Since the theoretical estimates are based on the L2 norm, in the
following we focus only on the optimal accuracy in the L2 norm. For convenience, we
denote the value of µ that minimizes the error in the L2 norm of the filtered solutions
to be µ? and refer to it as the optimal scaling order.

The Convergence Rate

As shown in Figure 4.7, we notice that once µ < µ?, the errors of filtered solutions
are dominated by the Θ1 term, which has the convergence rate of µ(2k + 2) (straight
line with µ in the plots). Tables 4.4 and 4.5 show the results of using µ such that
µ0 < µ < µ?. The filtered solutions have a higher accuracy order, and the errors
are reduced compared to the original DG solutions. We also compare the results to
the filtered solutions that use a scaling order µ0 to demonstrate the improvement
of using scaling order µ > µ0. However, limited by the desire to obtain the same

4.3. Optimal Accuracy of Filtered Solutions 91

P2 P3

Mesh 3.3.1

0.6 0.7 0.8 0.9 1.0

µ

10−12

10−10

10−8

10−6

10−4

10−2

|er
ro

r|
L2

N = 20
N = 40
N = 80
N = 160

0.6 0.7 0.8 0.9 1.0

µ

10−12

10−10

10−8

10−6

10−4

10−2
L∞

N = 20
N = 40
N = 80
N = 160

0.6 0.7 0.8 0.9 1.0

µ

10−12

10−10

10−8

10−6

10−4

10−2

|er
ro

r|

L2

N = 20
N = 40
N = 80
N = 160

0.6 0.7 0.8 0.9 1.0

µ

10−12

10−10

10−8

10−6

10−4

10−2
L∞

N = 20
N = 40
N = 80
N = 160

Mesh 3.3.2

0.6 0.7 0.8 0.9 1.0

µ

10−12

10−10

10−8

10−6

10−4

10−2

|er
ro

r|

L2

N = 20
N = 40
N = 80
N = 160

0.6 0.7 0.8 0.9 1.0

µ

10−12

10−10

10−8

10−6

10−4

10−2
L∞

N = 20
N = 40
N = 80
N = 160

0.6 0.7 0.8 0.9 1.0

µ

10−12

10−10

10−8

10−6

10−4

10−2

|er
ro

r|

L2

N = 20
N = 40
N = 80
N = 160

0.6 0.7 0.8 0.9 1.0

µ

10−12

10−10

10−8

10−6

10−4

10−2
L∞

N = 20
N = 40
N = 80
N = 160

Figure 4.7: The L2 and L∞ errors in log scale of the filtered solutions with various
scaling H = hµ, µ ∈ [0.6, 1.0]. The black dashed line marks the location of µ0 =

2k+1
3k+2 .

The DG approximation is for the linear equation (4.17) with polynomials of degree
k = 2, 3 over Mesh 3.3.1 and Mesh 3.3.2.

accuracy order for all the filtered solutions, the results are still far from optimal. In
fact, for nonuniform meshes, it does not make much sense to compare the results of the
two meshes with different numbers of elements. For nonuniform meshes, we mainly
concentrate on the given nonuniform mesh only, in other words, we want to find the
optimal accuracy of the filtered solutions over the given nonuniform mesh.

Effects of the Number of B-splines

Aside from the scaling, the number of B-splines also has a significant effect on the
filtered solution. Usually, the filter is constructed using 2k+1 B-splines. 2k+1 is the
minimum requirement to obtain 2k+1 accuracy order for uniform meshes. In Chapter
3, we reported that the accuracy order in Theorem 4.3.3 can be further improved by
increasing the number of B-splines. Instead of considering the accuracy order, here
we investigate the effect of the number of B-splines on the optimal accuracy. In order
for Property 1.3.2 to remain valid, we consider using only 2(k+ β) + 1 B-splines. The
relation between β and the optimal L2 accuracy, and the respective optimal scaling
order are given in Table 4.6. The filtered solutions have a smaller error in the L2 norm
compared to the DG solutions. We see that by increasing the number of B-splines,
both the optimal accuracy and computational cost (support size) are increased, which

92 Chapter 4. SIAC Filters over Nonuniform Meshes

Table 4.3: The optimal scaling order µ? with respect to Mesh 3.3.1 and Mesh 3.3.2
with N = 20, 40, 80, 160.

Mesh Mesh 3.3.1 Mesh 3.3.2
uh u?h uh u?h

N L2 error order µ? L2 error order L2 error order µ? L2 error order
P2

20 2.62E-04 – 0.90 2.69E-05 – 8.01E-04 – 0.82 1.21E-04 –
40 3.26E-05 3.00 0.85 1.58E-06 4.08 6.30E-05 3.67 0.81 4.16E-06 4.87
80 3.23E-06 3.34 0.84 6.50E-08 4.61 3.86E-06 4.03 0.82 1.10E-07 5.24
160 4.03E-07 3.00 0.81 4.25E-09 3.94 1.43E-06 1.44 0.75 2.84E-08 1.96

P3

20 7.31E-06 – 0.97 2.25E-07 – 2.07E-05 – 0.90 1.39E-06 –
40 5.23E-07 3.80 0.91 5.69E-09 5.31 9.49E-07 4.45 0.87 1.95E-08 6.16
80 2.64E-08 4.31 0.88 9.46E-11 5.91 7.12E-08 3.74 0.85 3.31E-10 5.88
160 1.58E-09 4.07 0.86 2.65E-12 5.16 5.77E-09 3.63 0.80 2.56E-11 3.69

Table 4.4: L2− and L∞−errors for the DG approximation uh together with two filtered
solutions (using a scaling of order µ = µ0 and µ = 0.75) for the linear equation (4.17)
over Mesh 3.3.1.

uh µ = µ0 µ = 0.75
Mesh L2 error order L∞ error order L2 error order L∞ error order L2 error order L∞ error order

P1

20 7.59E-03 – 3.00E-02 – 2.91E-02 – 4.12E-02 – 4.39E-03 – 7.68E-03 –
40 1.87E-03 2.02 9.51E-03 1.66 7.47E-03 1.96 1.06E-02 1.96 6.03E-04 2.86 1.39E-03 2.47
80 4.17E-04 2.16 2.23E-03 2.10 1.88E-03 1.99 2.66E-03 1.99 6.97E-05 3.11 1.94E-04 2.84
160 1.00E-04 2.06 5.95E-04 1.90 4.74E-04 1.99 6.71E-04 1.99 9.35E-06 2.90 3.23E-05 2.59

P2

20 2.62E-04 – 1.64E-03 – 5.13E-03 – 7.25E-03 – 6.12E-05 – 9.86E-05 –
40 3.26E-05 3.00 2.36E-04 2.80 5.86E-04 3.13 8.29E-04 3.13 2.75E-06 4.48 4.40E-06 4.49
80 3.23E-06 3.34 2.11E-05 3.49 6.21E-05 3.24 8.79E-05 3.24 1.19E-07 4.53 1.85E-07 4.57
160 4.03E-07 3.00 4.01E-06 2.39 6.36E-06 3.29 8.99E-06 3.29 5.48E-09 4.44 1.33E-08 3.80

P3

20 7.31E-06 – 4.16E-05 – 1.08E-03 – 1.52E-03 – 3.82E-06 – 5.45E-06 –
40 5.23E-07 3.80 3.23E-06 3.68 5.17E-05 4.38 7.31E-05 4.38 6.26E-08 5.93 9.09E-08 5.91
80 2.64E-08 4.31 1.60E-07 4.33 2.22E-06 4.54 3.14E-06 4.54 9.94E-10 5.98 1.49E-09 5.93
160 1.58E-09 4.07 1.16E-08 3.79 9.10E-08 4.61 1.29E-07 4.61 1.57E-11 5.99 2.53E-11 5.88

implies that we can either increase the computational cost to obtain better accuracy
or sacrifice accuracy to reduce the computational cost. In this chapter, for consistency
we use only the filter K(2k+1,k+1).

Remark 4.3.2 (Effects of the order of B-splines). Unlike using a different number of
B-splines, using a different order of B-splines has only a small effect on the optimal
accuracy. Our study shows that there is a negative impact on the optimal accuracy by
using B-splines of an order less than k+1, and using B-splines of an order higher than
k + 1 does not provide any added benefits. The details are neglected in this chapter.

4.4 The Unstructuredness of Nonuniform Meshes

In the previous section, we demonstrated that there exists an optimal scaling order µ?

such that using a scaling of H = hµ
?
minimizes the error of the filtered solutions in

4.4. The Unstructuredness of Nonuniform Meshes 93

Table 4.5: L2− and L∞−errors for the DG approximation uh together with two filtered
solutions (using a scaling order of µ = µ0 and µ = 0.7) for the linear equation (4.17)
over Mesh 3.3.2.

uh µ = µ0 µ = 0.7
Mesh L2 error order L∞ error order L2 error order L∞ error order L2 error order L∞ error order

P1

20 1.00E-02 – 3.12E-02 – 3.16E-02 – 4.46E-02 – 7.81E-03 – 1.17E-02 –
40 1.99E-03 2.34 1.03E-02 1.60 7.60E-03 2.06 1.07E-02 2.05 8.42E-04 3.21 1.50E-03 2.96
80 6.38E-04 1.64 3.99E-03 1.37 1.90E-03 2.00 2.70E-03 1.99 1.10E-04 2.94 2.88E-04 2.38
160 1.43E-04 2.15 1.06E-03 1.92 4.79E-04 1.99 6.80E-04 1.99 1.97E-05 2.48 5.86E-05 2.30

P2

20 8.01E-04 – 5.52E-03 – 5.15E-03 – 7.28E-03 – 1.64E-04 – 2.63E-04 –
40 6.30E-05 3.67 5.42E-04 3.35 5.87E-04 3.13 8.30E-04 3.13 7.96E-06 4.37 1.28E-05 4.37
80 3.86E-06 4.03 2.67E-05 4.35 6.22E-05 3.24 8.79E-05 3.24 4.21E-07 4.24 6.20E-07 4.36
160 1.43E-06 1.44 2.23E-05 0.26 6.36E-06 3.29 8.99E-06 3.29 3.05E-08 3.79 1.53E-07 2.02

P3

20 2.07E-05 – 1.17E-04 – 1.08E-03 – 1.52E-03 – 1.24E-05 – 1.79E-05 –
40 9.49E-07 4.45 7.44E-06 3.97 5.17E-05 4.38 7.31E-05 4.38 2.71E-07 5.52 3.84E-07 5.54
80 7.12E-08 3.74 5.57E-07 3.74 2.22E-06 4.54 3.14E-06 4.54 5.71E-09 5.57 8.47E-09 5.50
160 5.77E-09 3.63 6.75E-08 3.04 9.10E-08 4.61 1.29E-07 4.61 1.19E-10 5.58 1.78E-10 5.57

the L2 norm. Then, the remaining question is how to find µ? for a given nonuniform
mesh. Table 4.3 provides µ? by testing different values of the scaling, which is certainly
impractical in practice. Theoretically, even for uniform meshes whose optimal scaling
order is µ? ≈ 1, it is impossible to find the exact value of µ?. However, in this section,
we propose an approximation µh that is sufficiently close to µ? and leads to filtered
solutions with improved quality.

Figure 4.7 suggests that for different structures of nonuniform meshes, the optimal
scaling order is different. The rule of thumb is that the more unstructured the mesh,
the smaller the value of µ?. In order to approximate the value of µ?, it is important
to define a measure of the unstructuredness of nonuniform meshes.

4.4.1 The Measure of Unstructuredness

Before discussing the unstructuredness, we first provide a definition of structured
meshes.

Definition 4.4.1 (Structured Mesh). A mesh with N elements is considered struc-
tured if there exists a function f ∈ C∞ and f ′ > 0, such that

xj+ 1
2
= f(ξj+ 1

2
), ∀j = 0, . . . , N, (4.7)

where
{
ξj+ 1

2

}N

j=0
corresponds to a uniform mesh with N elements over the same do-

main.

According to Chapter 2, filtered solutions for structured meshes have the same
accuracy order (2k + 1 for linear hyperbolic equations) as for uniform meshes.

Now we introduce a new parameter σ, the unstructuredness of the nonuniform
mesh, to measure the difference between the given nonuniform mesh and a structured
mesh with the same number of elements.

94 Chapter 4. SIAC Filters over Nonuniform Meshes

Table 4.6: The optimal L2 accuracy and the respective µ? (scaling H = hµ
?
) with

filters constructed by 2(k + β) + 1 B-splines for the linear equation (4.17) over Mesh
3.3.1 and Mesh 3.3.2.

β = −2 β = −1 β = 0 β = 1 β = 2
Mesh L2 error µ? L2 error µ? L2 error µ? L2 error µ? L2 error µ?

Mesh 3.3.1 P2

20 – – 9.78e-05 1.08 2.69e-05 0.90 1.25e-05 0.82 9.01e-06 0.77
40 – – 9.85e-06 1.02 1.58e-06 0.85 5.24e-07 0.77 3.49e-07 0.71
80 – – 7.16e-07 1.01 6.50e-08 0.84 1.80e-08 0.75 9.82e-09 0.66
160 – – 7.16e-08 0.98 4.25e-09 0.81 8.73e-10 0.72 3.83e-10 0.63

P3

20 4.62e-04 1.39 1.16e-06 1.09 2.25e-07 0.97 6.39e-08 0.89 2.73e-08 0.84
40 3.33e-05 1.31 5.31e-08 1.02 5.69e-09 0.91 1.30e-09 0.84 7.86e-10 0.77
80 1.67e-07 1.27 1.52e-09 1.00 9.46e-11 0.88 2.36e-11 0.82 8.60e-12 0.72
160 1.01e-08 1.24 5.32e-11 0.97 2.65e-12 0.86 6.07e-13 0.75 1.48e-13 0.69

Mesh 3.3.2 P2

20 – – 3.50e-04 0.97 1.21e-04 0.82 5.99e-05 0.74 4.15e-05 0.70
40 – – 2.16e-05 0.97 4.16e-06 0.81 1.34e-06 0.73 8.60e-07 0.68
80 – – 9.76e-07 1.00 1.10e-07 0.82 2.65e-08 0.73 1.97e-08 0.65
160 – – 4.01e-07 0.90 2.84e-08 0.75 8.33e-09 0.65 3.45e-09 0.60

P3

20 1.46e-05 1.30 4.93e-06 1.01 1.39e-06 0.90 4.99e-07 0.83 2.40e-07 0.78
40 6.61e-07 1.27 1.37e-07 0.98 1.95e-08 0.87 4.75e-09 0.80 2.45e-09 0.74
80 4.53e-08 1.22 5.17e-09 0.95 3.31e-10 0.85 8.20e-11 0.77 4.66e-11 0.69
160 4.20e-09 1.17 4.07e-10 0.90 2.56e-11 0.80 6.34e-12 0.71 1.73e-12 0.65

Definition 4.4.2 (Unstructuredness). For a nonuniform mesh
{
xj+ 1

2

}N

j=0
, its un-

structuredness σ is given by

σ = inf
f∈C∞,f ′>0

 N∑
j=0

(
f(ξj+ 1

2
)− xj+ 1

2

)2
/(N + 1)

 1
2

, (4.8)

where
{
ξj+ 1

2

}N

j=0
corresponds to the uniform mesh with N elements over the same

domain. The smaller the σ, the more structured the mesh.

Without loss of generality, we denote the domain Ω = [0, 1]. Then in the worst
case we have N∑

j=0

(
f(ξj+ 1

2
)− xj+ 1

2

)2
/(N + 1)

 1
2

<

 N∑
j=0

(1− 0)2/(N + 1)

 1
2

= 1⇒ σ < 1.

Remark 4.4.1. The definition of unstructuredness is designed by considering the dis-
crete L2 norm formula. It is a natural choice since the focus is on the error in the L2

norm. Also, there are different ways to identify the unstructuredness of the mesh, such
as through the variation of the mesh elements.

4.4. The Unstructuredness of Nonuniform Meshes 95

4.4.2 SIAC Filtering Based on the Unstructuredness Parameter

After defining the unstructuredness σ, we now study the relation of σ and the filter
scaling. However, the challenge is that due to the definition, it is nearly impossible to
estimate the negative order norm exactly, let alone the effect of the divided differences
over nonuniform meshes. Even for the first divided difference, since uh(x + H

2) and
uh(x− H

2) are not in the same space, the traditional error estimates are not rigorous.
Let us first consider the first divided difference, ∂Huh. Theorem 4.3.3 is based on the
inequality that

‖∂H(u− uh)‖0 ≤
1

H

{∥∥∥∥(u− uh)(x+
H

2
)

∥∥∥∥
0

+

∥∥∥∥(u− uh)(x− H

2
)

∥∥∥∥
0

}
≤ 2‖u− uh‖0H−1.

The above estimate bounds the first divided difference by considering the two parts
separately instead of treating the divided difference as one component. This is the
reason Theorem 4.3.3 does not consider the structure of the nonuniform meshes.

In this chapter, we propose a method based on relating the nonuniform mesh to
its closest structured mesh (under definition (4.8)). That is

‖∂H(u− uh)‖0︸ ︷︷ ︸
nonuniform mesh

≤ ‖∂H(u− uh)‖0,f(ξ)︸ ︷︷ ︸
structured mesh

+ ‖∂H(u− uh)‖0,diff︸ ︷︷ ︸
difference

.

As mentioned earlier, we know that the first divided difference over the structured

mesh
{
f(ξj+ 1

2
)
}N

j=0
has nice properties. Then, we assume that the error of the first

divided difference of the DG solution for the nonuniform mesh
{
xj+ 1

2

}N

j=0
is dominated

by the difference between the nonuniform mesh and its closest structured mesh.

Now, consider the difference term ‖∂H(u− uh)‖0,diff and denote that
Ωj = [xj+ 1

2
, f(ξj+ 1

2
)] (or Ωj = [f(ξj+ 1

2
), xj+ 1

2
]) for j = 0, . . . , N . We have

‖∂H(u− uh)‖0,diff =
2

H

 N∑
j=0

‖u− uh‖20,Ωj
/(N + 1)

 1
2

.

Since the approximation uh on the interval Ωj cannot be estimated rigorously through
the traditional error estimates, we assume that

‖u− uh‖20,Ωj
=

∫
Ωj

(u− uh)2dx ≤ C |Ωj |h2k+2

= C
∣∣∣xj+ 1

2
− f(ξj+ 1

2
)
∣∣∣h2k+2. (4.9)

96 Chapter 4. SIAC Filters over Nonuniform Meshes

Then, we have

‖∂H(u− uh)‖0,diff =
2

H

 N∑
j=0

‖u− uh‖20,Ωj
/(N + 1)

 1
2

≤Chk+1H−1

 N∑
j=0

∣∣∣xj+ 1
2
− f(ξj+ 1

2
)
∣∣∣ /(N + 1)

 1
2

≤Chk+1H−1

(N + 1)

N∑
j=0

(
xj+ 1

2
− f(ξj+ 1

2
)
)2 1

2

/(N + 1)

1
2

=Chk+1H−1

 N∑

j=0

(
f(ξj+ 1

2
)− xj+ 1

2

)2
/(N + 1)

 1
2

1
2

By using definition (4.8) and the assumption that ‖∂H(u− uh)‖0,diff is the dominant
term, we obtain

‖∂H(u− uh)‖0 ≤ C
√
σ

H
hk+1 = C

h
1
2
logh σ

H
hk+1, (4.10)

with induction

‖∂αH(u− uh)‖0 ≤ C
√
σ

H
hk+1 = C

(
h

1
2
logh σ

H

)α

hk+1. (4.11)

Remark 4.4.2. The above estimates are the reason we use formula (4.8) to define the
unstructuredness. Also, we point out that the assumption (4.9) is empirical rather than
a rigorous theoretical estimate. Furthermore, the assumption that ‖∂H(u− uh)‖0,diff
dominates ‖∂H(u− uh)‖0 is true only when the nonuniform mesh is not so close to
the respective structured mesh (σ � 0).

Based on the value of σ, we divided the nonuniform meshes into two groups and
discuss them separately.
• Nearly structured meshes: logh σ ≥ 2.

This definition is based on estimate (4.11), when

√
σ

h
≥
√
σ

H
≥ 1, ⇒ σ ≥ h2 ⇒ logh σ ≥ 2.

Then, the nonuniform mesh is almost a structured mesh, and the effect of the difference
is negligible. In other words, we can treat these almost structured meshes as structured
meshes and use the conclusions in Chapter 2. Also, we note that the definition is not
strict; when logh σ ≈ 2 we can also treat these nonuniform meshes as structured
meshes.
• Unstructured meshes: logh σ < 2.

4.4. The Unstructuredness of Nonuniform Meshes 97

Under the same conditions as in Lemma 4.3.1, we assume that for a nonuniform
mesh with the unstructuredness parameter σ as defined in equation (4.8), the divided
differences of DG solutions satisfy

‖∂αH(u− uh)‖−(k+1),Ω0
≤ Ch2k+1

(
h

1
2
logh σ

H

)α

, (4.12)

when H ≤ h
1
2
logh σ.

Remark 4.4.3. Hypotheses (4.12) is based on estimate (4.11) and the results in [62],
which is why it is an empirical rather than a rigorous theoretical analysis.

Theorem 4.4.1. Under the same conditions as in Theorem 4.3.3, and suppose that
hypotheses (4.12) holds. Then, for a given general nonuniform mesh, we have

‖u−K(2k+1,k+1)
H ? uh‖0,Ω0 ≤ Chµ(2k+2),

where the filter scaling is H = hµh with µh = 2k+1
3k+3 + 1

6 logh σ.

Proof. With the assumption (4.12), the divided differences of the approximation satisfy

k+1∑
α=0

‖∂αH(u− uh)‖−(k+1) ≤ C

(
h

1
2
logh σ

H

)k+1

h2k+1,

and according to equations (4.4) - (4.6), let

H2k+2 =

(
h

1
2
logh σ

H

)k+1

h2k+1,

Then we have

H = hµh µh =
2k + 1

3(k + 1)
+

1

6
logh σ ≈

2

3
+

1

6
logh σ >

1

2
logh σ. (4.13)

Here, we note that H = hµh ≤ h
1
2
logh σ.

Theorem 4.4.1 demonstrates the relation of the scaling order µh and the unstruc-
turedness σ. By using µh the filtered solution can obtain a better accuracy order
compared to Theorem 4.3.3 for the given nonuniform mesh. This improvement is
dependent on σ.

Computing σ

Formula (4.13) gives a relation between the scaling order µ and unstructuredness σ,
but we still need to calculate the value of σ. Since σ can not be easily calculated by
formula 4.8, here we present an alternative approximation σh for σ, which is calculated
by implementing the least squares algorithm:

σh = min
f∈Pn

 N∑
j=0

(
f(ξj+ 1

2
)− xj+ 1

2

)2
/(N + 1)

 1
2

, (4.14)

98 Chapter 4. SIAC Filters over Nonuniform Meshes

where

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0,

and

a0
a1
...
an

 = A−1

N∑
j=0

xj+ 1
2

(
ξj+ 1

2

)0
N∑
j=0

xj+ 1
2

(
ξj+ 1

2

)1
...

N∑
j=0

xj+ 1
2

(
ξj+ 1

2

)n

,

with

A =

N∑
j=0

(
ξj+ 1

2

)0 N∑
j=0

(
ξj+ 1

2

)1
· · ·

N∑
j=0

(
ξj+ 1

2

)n
N∑
j=0

(
ξj+ 1

2

)1 N∑
j=0

(
ξj+ 1

2

)2
· · ·

N∑
j=0

(
ξj+ 1

2

)n+1

...
... · · ·

...
N∑
j=0

(
ξj+ 1

2

)n N∑
j=0

(
ξj+ 1

2

)n+1
· · ·

N∑
j=0

(
ξj+ 1

2

)2n

.

Remark 4.4.4. We note that the condition f ′ > 0 in formula 4.8 is usually satisfied
by requiring n� N .

In order to give an idea of the computational cost of this algorithm, we present
the CPU time of calculating σh with different n and N in Table 4.7. The CPU time
is given by the average of 10000 times computation, using quadruple precision. The
computational environment is a Intel(R) Core(TM)2 Duo CPU E8500 @3.16GHZ, Intel
Fortran compiler 9.1. Table 4.7 shows that the computational cost of calculating σh is

Table 4.7: The CPU time (seconds) of calculating σh with polynomials of degree
n = 2, 3, 4, 5, 6 for N = 20, 40, 80, 160.

time n = 2 n = 3 n = 4 n = 5 n = 6
N = 20 5.08e-5 6.40e-5 7.88e-5 9.48e-5 1.13e-4
N = 40 8.68e-5 1.12e-4 1.38e-4 1.66e-4 2.00e-4
N = 80 1.58e-4 2.05e-4 2.57e-4 3.09e-4 3.71e-4
N = 160 3.00e-4 3.91e-4 4.93e-4 5.90e-4 7.12e-4

negligible.

Table 4.3 gives the values of σh for different nonuniform meshes with different
number of elements N . Also, we calculate the value of µh by formula (4.13) and
compare it with the value of µ? given in Table 4.3. Since we obtain σh from equation
(4.14), it is a little larger than σ in equation (4.8), and µh is little smaller than the
optimal scaling order. The numerical experiments using µh will be presented in the
next section.

4.4. The Unstructuredness of Nonuniform Meshes 99

Table 4.8: The value of logh σh and µh (4.13) with three different nonuniform meshes
of domain Ω = [0, 1]: structured meshes (4.7) with f(ξ) = ξ + 0.1 · sin(2πξ), Mesh
3.3.1 and Mesh 3.3.2. Here we use a polynomial of degree n = 8 in the least squares
algorithm (4.14).

Structured Mesh 3.3.1 Mesh 3.3.2
N logh σh logh σh µh: P2,P3 µ?: P2,P3 logh σh µh: P2,P3 µ?: P2,P3

20 3.65 1.53 0.81 0.84 0.90 0.97 1.49 0.80 0.83 0.82 0.90
40 2.96 1.40 0.79 0.82 0.85 0.91 1.29 0.77 0.80 0.81 0.87
80 2.50 1.33 0.78 0.81 0.84 0.88 1.15 0.75 0.78 0.82 0.85
160 2.17 1.30 0.77 0.80 0.81 0.86 1.09 0.74 0.76 0.75 0.80

Correction of Formula (4.13)

In the previous analysis, we used formula (4.13) to calculate the scaling H. However,
using formula (4.13) the scaling order µh is still smaller than the optimal scaling order
µ? (see Table 4.8) because when we obtain (4.13), we have not consider the effects of
the constants in (4.5) and (4.6) which do not depend on the nonuniform mesh. Ignoring
the constants is not a problem if we consider only the accuracy order, but if we want
to achieve the optimal accuracy and make a better approximation, we have to take
these constants into account as well. Here, we propose an alternative that accounts
for the effect of the exact solution:

H = m · hµ µ =
2k + 1

3(k + 1)
+

1

6
logh σ ≈

2

3
+

1

6
logh σ, (4.15)

where m depends on the exact solution u, more precisely, m = C
(
|u|

H2k+2

|u|
Hk+1

) 1
3k+3

.

Usually |u|H2k+2 < |u|Hk+1 so that the value of m is usually < 1. In other words, we
can also write (4.15) as

H = hµ µ =
2k + 1

3(k + 1)
+

1

6
logh σ ≈

2

3
+

1

6
logh σ + loghm. (4.16)

The optimal scaling order is decided by three parts: the basic order, µ0 = 2k+1
3(k+1) , the

effect of the mesh, 1
6 logh σ, and the effect of the exact solution. The first two parts

are calculable, but the third is usually decided by experience in practice. For example,
we know that the exact solution of Table 4.3 is sin(2π(x − T)). We can consider
the m to be (π)−1/3 to obtain a more precise result. However, in order to avoid this
manufactured aspect, we do not consider m in the following examples.

Remark 4.4.5. It is possible that the optimal scaling H < h, if the mesh is nearly
structured or a structured mesh. In fact, if we consider a wave function sin(λπ) for uni-
form meshes, the optimal scaling is much smaller than h when λ is large, see Chapter
6.

4.4.3 A Note on Computation

Aside from error reduction, the computational cost of using the filter is also an impor-
tant factor in practical applications. As mentioned in previous sections, the scaling

100 Chapter 4. SIAC Filters over Nonuniform Meshes

H used in Theorem 4.3.3 or Theorem 4.4.1 is usually larger than h over nonuniform
meshes, which means that the computational cost is higher than the uniform mesh
case in Chapter 2 and [25]. Based on Figure 4.7, when µ ∈ [µ?, 1], the final accuracy
is directly related to the scaling order µ, which means one can sacrifice accuracy to
improve computational efficiency. For example, if the mesh is not so unstructured, a
naive choice of scaling H = max

j
∆xj (or H = 1.5max

j
∆xj , H = 2max

j
∆xj) can lead

to acceptable results as obtained in [30, 48].

4.5 Numerical Results

In the previous section, we proposed using the scaling order µh given by (4.13). Using
the scaling order µh can improve the accuracy order from the original discontinuous
Galerkin solutions. Also, since µh is designed to approximate the optimal scaling order
µ?, the filtered solutions are expected to have a reduction in error compared to DG
solutions. For numerical verification, we apply the newly designed scaling order µh for
various differential equations over nonuniform meshes - Mesh 3.3.1 and Mesh 3.3.2 -
and compare it with using scaling order µ0 mentioned in Theorem 4.3.3.

4.5.1 Linear Equation

Consider a linear equation

ut + ux = 0, (x, t) ∈ [0, 1]× (0, T],

u(x, 0) = sin(2πx),
(4.17)

at time T = 1 over Mesh 3.3.1 and Mesh 3.3.2. Table 4.9 includes the L2 and L∞

norm errors of the DG solutions and two filtered solutions with scaling order µ0 and
µh. First we check the results of using scaling order µ0 in Theorem 4.3.3. Although the
filtered solutions have better accuracy order, both the L2 and L∞ errors are worse than
the original DG solution! Theorem 4.3.3 only says something about the order, but not
about the quality of the errors. For using a scaling order µh, SIAC filtering is able to
reduce the errors in the L2 and L∞ norm and improve the accuracy order. Especially
when using a higher order polynomials or a sufficiently refined mesh the filtered errors
are reduced compared to the DG errors. Figure 4.8, the point-wise error plots, demon-
strate the other feature of SIAC filtering as its name implies: smoothness-increasing.
Both the filtered solutions are Ck−1 functions, the smoothness is significantly improved
compared to the weakly continuous DG solutions. This continuity is the reason we only
consider a constant scaling. In Figure 4.8 both filtered solutions reduce the oscillations
in the DG solution and using a scaling order µ0 completely removes the oscillations
due to the large filter support size.

Comparing the results between Mesh 3.3.1 and Mesh 3.3.2, we can see that the DG
solutions and filtered solutions with scaling order µh are better over Mesh 3.3.1 than
over Mesh 3.3.2. It is because that Mesh 3.3.1 is more structured than Mesh 3.3.2.
However, using scaling order µ0 generates almost the same result, evidence that µ0
does not take advantage of the mesh structures.

4.5. Numerical Results 101

Table 4.9: L2− and L∞−errors for the DG approximation uh together two filtered
solutions (using scaling order µ = µ0 and µ = µh) for linear equation (4.17) over Mesh
3.3.1 and Mesh 3.3.2

uh µ = µ0 µ = µh

Mesh L2 error order L∞ error order L2 error order L∞ error order L2 error order L∞ error order

Mesh 3.3.1 P1

20 7.59E-03 – 3.00E-02 – 2.91E-02 – 4.12E-02 – 4.95E-03 – 8.26E-03 –
40 1.87E-03 2.02 9.51E-03 1.66 7.47E-03 1.96 1.06E-02 1.96 7.19E-04 2.78 1.35E-03 2.61
80 4.17E-04 2.16 2.23E-03 2.10 1.88E-03 1.99 2.66E-03 1.99 9.10E-05 2.98 1.86E-04 2.87
160 1.00E-04 2.06 5.95E-04 1.90 4.74E-04 1.99 6.71E-04 1.99 1.23E-05 2.89 2.67E-05 2.80

P2

20 2.62E-04 – 1.64E-03 – 5.13E-03 – 7.25E-03 – 7.19E-05 – 1.11E-04 –
40 3.26E-05 3.00 2.36E-04 2.80 5.86E-04 3.13 8.29E-04 3.13 3.97E-06 4.18 6.03E-06 4.21
80 3.23E-06 3.34 2.11E-05 3.49 6.21E-05 3.24 8.79E-05 3.24 1.99E-07 4.32 2.90E-07 4.38
160 4.03E-07 3.00 4.01E-06 2.39 6.36E-06 3.29 8.99E-06 3.29 9.23E-09 4.43 1.40E-08 4.37

P3

20 7.31E-06 – 4.16E-05 – 1.08E-03 – 1.52E-03 – 3.17E-06 – 4.50E-06 –
40 5.23E-07 3.80 3.23E-06 3.68 5.17E-05 4.38 7.31E-05 4.38 6.03E-08 5.72 8.72E-08 5.69
80 2.64E-08 4.31 1.60E-07 4.33 2.22E-06 4.54 3.14E-06 4.54 9.97E-10 5.92 1.49E-09 5.87
160 1.58E-09 4.07 1.16E-08 3.79 9.10E-08 4.61 1.29E-07 4.61 1.42E-11 6.13 2.44E-11 5.93

Mesh 3.3.2 P1

20 1.00E-02 – 3.12E-02 – 3.16E-02 – 4.46E-02 – 7.90E-03 – 1.19E-02 –
40 1.99E-03 2.34 1.03E-02 1.60 7.60E-03 2.06 1.07E-02 2.05 9.35E-04 3.08 1.58E-03 2.91
80 6.38E-04 1.64 3.99E-03 1.37 1.90E-03 2.00 2.70E-03 1.99 1.41E-04 2.73 2.87E-04 2.46
160 1.43E-04 2.15 1.06E-03 1.92 4.79E-04 1.99 6.80E-04 1.99 2.38E-05 2.56 5.00E-05 2.52

P2

20 8.01E-04 – 5.52E-03 – 5.15E-03 – 7.28E-03 – 1.25E-04 – 2.98E-04 –
40 6.30E-05 3.67 5.42E-04 3.35 5.87E-04 3.13 8.30E-04 3.13 6.27E-06 4.32 1.14E-05 4.70
80 3.86E-06 4.03 2.67E-05 4.35 6.22E-05 3.24 8.79E-05 3.24 4.35E-07 3.85 6.50E-07 4.14
160 1.43E-06 1.44 2.23E-05 0.26 6.36E-06 3.29 8.99E-06 3.29 3.18E-08 3.78 1.44E-07 2.17

P3

20 2.07E-05 – 1.17E-04 – 1.08E-03 – 1.52E-03 – 3.80E-06 – 5.99E-06 –
40 9.49E-07 4.45 7.44E-06 3.97 5.17E-05 4.38 7.31E-05 4.38 1.03E-07 5.20 1.47E-07 5.35
80 7.12E-08 3.74 5.57E-07 3.74 2.22E-06 4.54 3.14E-06 4.54 2.84E-09 5.18 4.22E-09 5.12
160 5.77E-09 3.63 6.75E-08 3.04 9.10E-08 4.61 1.29E-07 4.61 5.98E-11 5.57 1.07E-10 5.30

4.5.2 Variable Coefficient Equation

After the linear equation (4.17), which has a constant coefficient, we consider the
variable coefficient equation

ut + (au)x = f, (x, t) ∈ [0, 1]× (0, T]

u(x, 0) = sin(2πx),
(4.18)

where the variable coefficient a(x, t) = 2+sin(2π(x+ t)) and the right side term f(x, t)
is chosen to make the exact solution be u(x, t) = sin(2π(x− t)).

Similar to the linear equation example, we compare the L2 and L∞ norm errors
in Table 4.10, and the point-wise error plots are given in Figure 4.9. The results are
similar to the previous results for the constant coefficient equation. Here we only point
out the features that are different to the linear equation. Using a scaling order µ0 does
not reliably reduce the errors in the L2 norm and the L∞ norm errors are still worse
than the DG solutions. However, using a scaling order µh reduces the errors in the L2

norm and the L∞ norm. The point-wise error plots in Figure 4.9 are more oscillatory
compared to Figure 4.8 due to the effects of the variable coefficient.

102 Chapter 4. SIAC Filters over Nonuniform Meshes

DG µ = µ0 µ = µh
Mesh 3.3.1

0 0.2 0.4 0.6 0.8 1.0

x

10−12

10−10

10−8

10−6

10−4

10−2

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

0 0.2 0.4 0.6 0.8 1.0

x

10−12

10−10

10−8

10−6

10−4

10−2

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

0 0.2 0.4 0.6 0.8 1.0

x

10−12

10−10

10−8

10−6

10−4

10−2

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

Mesh 3.3.2

0 0.2 0.4 0.6 0.8 1.0

x

10−12

10−10

10−8

10−6

10−4

10−2

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

0 0.2 0.4 0.6 0.8 1.0

x

10−12

10−10

10−8

10−6

10−4

10−2
|er

ro
r|

N = 20
N = 40
N = 80
N = 160

0 0.2 0.4 0.6 0.8 1.0

x

10−12

10−10

10−8

10−6

10−4

10−2

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

Figure 4.8: Comparison of the point-wise errors in log scale of the DG approximation
together with two filtered solutions (using scaling order µ = µ0 and µ = µh) for linear
equation (4.17) over Mesh 3.3.1 and Mesh 3.3.2 with polynomial of degree k = 2.

4.5.3 Two-Dimensional Example

For the two-dimensional example, we consider a two-dimensional linear equation

ut + ux + uy = 0, (x, y) ∈ [0, 1]× [0, 1],

u(x, y, 0) = sin(2π(x+ y)),
(4.19)

at time T = 1 over a two-dimensional quadrilateral extension of Mesh 3.3.1 and Mesh
3.3.2.

The L2 and L∞ norm errors are presented in Table 4.11 and Table 4.12, the point-
wise error plots (pcolor plots) are included in Figure 4.10 and Figure 4.11. The results
are very similar to the one-dimensional examples: the filtered solutions with scaling
order µh reduce the errors in the L2 norm; using a scaling order µ0 increases the error
in the L2 norm over the DG error. In the two-dimensional case, the computational
efficiency becomes more important compared to the one-dimensional case due the in-
creased computational cost. As mentioned before, using a scaling order µ0 is far more
inefficient compared to using the scaling order µh. In particular, for a P3 polynomial
basis with N = 160× 160 meshes, using a scaling order µ0 is more than 8 times slower
over Mesh 3.3.1 (5 times slower over Mesh 3.3.2) than using the scaling order µh.

4.6. Conclusion 103

Table 4.10: L2− and L∞−errors for the DG approximation uh together two filtered
solutions (using scaling order µ = µ0 and µ = µh) for variable coefficient equation
(4.18) over Mesh 3.3.1 and Mesh 3.3.2.

uh µ = µ0 µ = µh

Mesh L2 error order L∞ error order L2 error order L∞ error order L2 error order L∞ error order

Mesh 3.3.1 P1

20 6.93E-03 – 3.51E-02 – 2.50E-02 – 3.57E-02 – 1.61E-03 – 4.04E-03 –
40 1.83E-03 1.92 1.05E-02 1.74 6.83E-03 1.87 9.71E-03 1.88 2.32E-04 2.79 5.47E-04 2.89
80 4.15E-04 2.14 2.29E-03 2.20 1.82E-03 1.91 2.58E-03 1.91 3.72E-05 2.64 1.37E-04 2.00
160 1.00E-04 2.05 6.10E-04 1.91 4.66E-04 1.96 6.60E-04 1.97 6.00E-06 2.63 2.09E-05 2.71

P2

20 2.67E-04 – 1.71E-03 – 5.12E-03 – 7.25E-03 – 7.02E-05 – 1.32E-04 –
40 3.26E-05 3.03 2.25E-04 2.93 5.86E-04 3.13 8.29E-04 3.13 3.81E-06 4.20 6.82E-06 4.27
80 3.24E-06 3.33 2.11E-05 3.42 6.21E-05 3.24 8.79E-05 3.24 1.99E-07 4.26 3.23E-07 4.40
160 4.05E-07 3.00 4.01E-06 2.39 6.36E-06 3.29 8.99E-06 3.29 1.03E-08 4.27 2.78E-08 3.54

P3

20 7.43E-06 – 3.68E-05 – 1.08E-03 – 1.52E-03 – 3.18E-06 – 4.75E-06 –
40 5.25E-07 3.82 3.14E-06 3.55 5.17E-05 4.38 7.31E-05 4.38 6.07E-08 5.71 1.05E-07 5.50
80 2.65E-08 4.31 1.56E-07 4.33 2.22E-06 4.54 3.14E-06 4.54 1.01E-09 5.91 1.73E-09 5.93
160 1.58E-09 4.07 1.14E-08 3.78 9.10E-08 4.61 1.29E-07 4.61 1.53E-11 6.04 3.58E-11 5.59

Mesh 3.3.2 P1

20 9.59E-03 – 4.42E-02 – 2.13E-02 – 3.00E-02 – 3.93E-03 – 7.08E-03 –
40 1.95E-03 2.30 1.14E-02 1.96 6.77E-03 1.65 9.62E-03 1.64 3.86E-04 3.35 1.09E-03 2.70
80 6.38E-04 1.61 4.19E-03 1.44 1.82E-03 1.90 2.60E-03 1.89 8.86E-05 2.12 2.85E-04 1.93
160 1.43E-04 2.15 1.09E-03 1.94 4.64E-04 1.97 6.60E-04 1.98 1.65E-05 2.42 5.72E-05 2.32

P2

20 7.90E-04 – 4.96E-03 – 5.08E-03 – 7.19E-03 – 1.71E-04 – 5.14E-04 –
40 6.33E-05 3.64 5.08E-04 3.29 5.86E-04 3.12 8.29E-04 3.12 8.54E-06 4.32 2.74E-05 4.23
80 3.88E-06 4.03 2.59E-05 4.29 6.21E-05 3.24 8.79E-05 3.24 4.40E-07 4.28 8.34E-07 5.04
160 1.44E-06 1.42 2.15E-05 0.27 6.36E-06 3.29 8.99E-06 3.29 1.28E-07 1.78 5.14E-07 0.70

P3

20 2.13E-05 – 1.12E-04 – 1.08E-03 – 1.52E-03 – 4.10E-06 – 8.22E-06 –
40 9.62E-07 4.47 6.98E-06 4.01 5.17E-05 4.38 7.31E-05 4.38 1.08E-07 5.24 2.02E-07 5.35
80 7.22E-08 3.74 5.24E-07 3.74 2.22E-06 4.54 3.14E-06 4.54 2.94E-09 5.20 5.31E-09 5.25
160 5.79E-09 3.64 6.05E-08 3.11 9.10E-08 4.61 1.29E-07 4.61 1.89E-10 3.96 9.78E-10 2.44

4.6 Conclusion

In this chapter, in order to apply a SIAC filter to DG solutions over nonuniform
meshes, we have proposed implementing the filter with a scaling H = hµh . The scaling
order µh is chosen according to the unstructuredness of the given nonuniform mesh.
We have proved that by using the scaling H = hµh with µh given in Theorem 4.4.1,
the filtered solutions have an accuracy order of µh(2k + 2), which is higher than the
accuracy order of the DG solutions. In addition, since the scaling order µh is designed
to approach the optimal scaling order µ?, which minimizes the errors of the filtered
solutions, the error reduction after filtering can be expected. The numerical results are
promising: compared to the original DG errors, the filtered error (with scaling order
µh) has significantly increased the accuracy as well as the accuracy order. Future work
will concentrate on extending this scaling order µh to unstructured triangular meshes
in two dimensions and tetrahedral meshes in three dimensions.

104 Chapter 4. SIAC Filters over Nonuniform Meshes

DG µ = µ0 µ = µh
Mesh 3.3.1

0 0.2 0.4 0.6 0.8 1.0

x

10−12

10−10

10−8

10−6

10−4

10−2

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

0 0.2 0.4 0.6 0.8 1.0

x

10−12

10−10

10−8

10−6

10−4

10−2

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

0 0.2 0.4 0.6 0.8 1.0

x

10−12

10−10

10−8

10−6

10−4

10−2

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

Mesh 3.3.2

0 0.2 0.4 0.6 0.8 1.0

x

10−12

10−10

10−8

10−6

10−4

10−2

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

0 0.2 0.4 0.6 0.8 1.0

x

10−12

10−10

10−8

10−6

10−4

10−2

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

0 0.2 0.4 0.6 0.8 1.0

x

10−12

10−10

10−8

10−6

10−4

10−2

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

Figure 4.9: Comparison of the point-wise errors in log scale of the DG approximation
together with two filtered solutions (using scaling order µ = µ0 and µ = µh) for variable
coefficient equation (4.17) over Mesh 3.3.1 and Mesh 3.3.2 with polynomial of degree
k = 2

DG µ = µ0 µ = µh

Figure 4.10: Comparison of the point-wise errors in log scale of the DG approximation
together with two filtered solutions (using scaling order µ = µ0 and µ = µh) for
two-dimensional linear equation (4.19) over Mesh 3.3.1 (2D, P2 and N = 160× 160).

4.6. Conclusion 105

Table 4.11: L2− and L∞−errors for the DG approximation uh together two filtered
solutions (using scaling order µ = µ0 and µ = µh) for two-dimensional linear equation
(4.19) over Mesh 3.3.1 (2D).

DG µ = µ0 µ = µh

Mesh L2 error order L∞ error order L2 error order L∞ error order L2 error order L∞ error order
P1

20× 20 1.28E-02 – 6.09E-02 – 5.76E-02 – 8.20E-02 – 1.08E-02 – 1.86E-02 –
40× 40 2.57E-03 2.31 1.86E-02 1.71 1.48E-02 1.96 2.11E-02 1.96 1.39E-03 2.96 2.55E-03 2.87
80× 80 5.79E-04 2.15 4.94E-03 1.91 3.76E-03 1.98 5.33E-03 1.98 1.80E-04 2.94 3.62E-04 2.81
160× 160 1.42E-04 2.03 1.26E-03 1.98 9.48E-04 1.99 1.34E-03 1.99 2.50E-05 2.85 5.27E-05 2.78

P2

20× 20 3.92E-04 – 3.19E-03 – 1.02E-02 – 1.45E-02 – 1.59E-04 – 2.37E-04 –
40× 40 4.46E-05 3.13 4.85E-04 2.72 1.17E-03 3.12 1.66E-03 3.12 7.81E-06 4.34 1.19E-05 4.32
80× 80 5.09E-06 3.13 5.29E-05 3.20 1.24E-04 3.24 1.76E-04 3.24 3.76E-07 4.38 5.69E-07 4.38
160× 160 6.27E-07 3.02 7.49E-06 2.82 1.27E-05 3.29 1.80E-05 3.29 1.89E-08 4.31 3.22E-08 4.14

P3

20× 20 1.18E-05 – 8.74E-05 – 2.15E-03 – 3.04E-03 – 7.21E-06 – 1.03E-05 –
40× 40 6.63E-07 4.16 6.65E-06 3.72 1.03E-04 4.38 1.46E-04 4.38 1.19E-07 5.92 1.74E-07 5.89
80× 80 3.67E-08 4.17 4.03E-07 4.04 4.44E-06 4.54 6.28E-06 4.54 1.83E-09 6.02 2.82E-09 5.94
160× 160 2.24E-09 4.04 2.53E-08 3.99 1.82E-07 4.61 2.57E-07 4.61 2.95E-11 5.96 5.08E-11 5.80

Table 4.12: L2− and L∞−errors for the DG approximation uh together two filtered
solutions (using scaling order µ = µ0 and µ = µh) for two-dimensional linear equation
(4.19) over Mesh 3.3.2 (2D).

DG µ = µ0 µ = µh

Mesh L2 error order L∞ error order L2 error order L∞ error order L2 error order L∞ error order
P1

20× 20 2.11E-02 – 1.72E-01 – 6.29E-02 – 9.05E-02 – 1.72E-02 – 3.69E-02 –
40× 40 5.44E-03 1.96 6.98E-02 1.30 1.60E-02 1.97 2.32E-02 1.97 3.04E-03 2.50 9.63E-03 1.94
80× 80 1.18E-03 2.21 1.42E-02 2.29 3.90E-03 2.04 5.59E-03 2.05 4.00E-04 2.93 1.17E-03 3.04
160× 160 2.18E-04 2.43 2.90E-03 2.30 9.57E-04 2.03 1.36E-03 2.04 4.80E-05 3.06 1.11E-04 3.40

P2

20× 20 1.03E-03 – 7.74E-03 – 1.03E-02 – 1.45E-02 – 2.53E-04 – 5.66E-04 –
40× 40 1.94E-04 2.41 2.17E-03 1.84 1.18E-03 3.13 1.67E-03 3.13 2.34E-05 3.43 8.41E-05 2.75
80× 80 1.97E-05 3.30 3.55E-04 2.61 1.24E-04 3.24 1.76E-04 3.24 1.08E-06 4.44 5.13E-06 4.04
160× 160 1.47E-06 3.74 2.77E-05 3.68 1.27E-05 3.29 1.80E-05 3.29 6.07E-08 4.15 1.26E-07 5.35

P3

20× 20 5.18E-05 – 6.23E-04 – 2.15E-03 – 3.04E-03 – 8.67E-06 – 1.63E-05 –
40× 40 6.16E-06 3.07 9.20E-05 2.76 1.03E-04 4.38 1.46E-04 4.38 2.75E-07 4.98 1.01E-06 4.02
80× 80 2.83E-07 4.44 3.84E-06 4.58 4.44E-06 4.54 6.28E-06 4.54 5.50E-09 5.64 1.57E-08 6.01
160× 160 8.38E-09 5.08 1.40E-07 4.78 1.82E-07 4.61 2.57E-07 4.61 1.40E-10 5.30 2.85E-10 5.78

DG µ = µ0 µ = µh

Figure 4.11: Comparison of the point-wise errors in log scale of the DG approximation
together with two filtered solutions (using scaling order µ = µ0 and µ = µh) for
two-dimensional linear equation (4.19) over Mesh 3.3.2 (2D, P2 and N = 160× 160).

5
Applications of SIAC Filters in the Visualization

In the previous Chapters, we introduced different SIAC filters: symmetric filters, one-
sided filters, derivative filters, etc. We demonstrated that by using SIAC filters, one
can improve the results of DG approximation over uniform and nonuniform meshes
with respect to both accuracy and smoothness. In this chapter, we apply SIAC filters
in the visualization area and illustrate that the SIAC filter has great potential in these
practical applications.

5.1 Introduction

Visualization is concerned with techniques that extract information from the results
of simulations and computations, such as computational fluid dynamics simulations.
The visualization technique is giving a picture to an approximation that helps one
to understand the vector fields resulting from numerical simulations. Given a vector
field, the streamlines of the field are curves that are tangential to the vector field
at each point. Streamlines have been demonstrated in much of the literature, such
as [12], to be a powerful and popular visualization method. However, application
of streamline-based visualization to discontinuous field data represents a significant
challenge due to the discontinuities in the fields. By applying SIAC filters to the
discontinuous data prior to streamline integration, one can overcome the difficulties
of the discontinuous nature of the data. This chapter is aimed at developing good
performance algorithms of streamline integration by using different SIAC filters that
were proposed in the previous chapters.

5.1.1 Streamline Integration

For a stationary vector field u, a streamline is an integral curve that is given by the
ordinary differential equation

dr

dt
= u(r), r(t0) = x0. (5.1)

Hence, streamline integration is often accomplished through the application of an or-
dinary differential equation (ODE) integrator such as Runge-Kutta (RK) schemes or

107

108 Chapter 5. Applications of SIAC Filters in the Visualization

backward differentiation (BDF) methods. Since the theoretical foundation of these
ODE schemes relies on a Taylor expansion, the errors of streamline integration are
often related to the smoothness of the field through which the streamline is being
integrated.

Discontinuous data fields generated by the finite volume and discontinuous Galerkin
methods are very popular for numerical simulation, such as fluid dynamics simulation.
However, calculating streamlines in such discontinuous data field presents a significant
challenge to the classical streamline integration based on the Taylor expansion. Lacking
smoothness at the inter-element level of DG data limits the accuracy of the streamline
[61]. In the following sections, we will provide two different ways to use SIAC filters
to enhance the performance of streamline integration over discontinuous data fields.

In this paper, we focus on two-dimensional vector fields with notation

u = [u(x, y), v(x, y)]T , (x, y) ∈ Ω

and the streamlines

r(t) = [x(t), y(t)]T .

5.2 Filtering the Entire Domain

The first method is straightforward and introduced in [61]. First we apply the SIAC fil-
ter over the entire domain Ω and obtain a smooth vector field u? = [u?(x, y), v?(x, y)]T ,
then uses ODE integrators, such as Runge-Kutta schemes, to calculate the streamline.

More precisely, consider a vector field given by the DG approximation,

u = [u(x, y), v(x, y)]T .

Then the filtered vector field is given by

u? = [u?(x, y), v?(x, y)]T ,

with

u?(x, y) =
(
u ? K

(2k+1,k+1)
h

)
(x, y),

v?(x, y) =
(
v ? K

(2k+1,k+1)
h

)
(x, y).

Here, the two-dimensional SIAC filter is given by a tensor product of two one-dimensional
filters that

K
(2k+1,k+1)
h (x, y) = K

(2k+1,k+1)
hx

(x) ·K(2k+1,k+1)
hy

(y),

and

u?h(x, y) =

∫
R2

K
(2k+1,k+1)
hx

(x− ξ)K(2k+1,k+1)
hy

(y − η)uh(ξ, η)dξdη,

v?h(x, y) =

∫
R2

K
(2k+1,k+1)
hx

(x− ξ)K(2k+1,k+1)
hy

(y − η)vh(ξ, η)dξdη.

5.2. Filtering the Entire Domain 109

Remark 5.2.1. In the original work [61], the authors only used the symmetric fil-
ter (1.6) in the interior region of the given domain over uniform meshes. Now, with
the new position-dependent filter (2.4) introduced in Chapter 2, and the methods dis-
cussed in Chapter 4, we can treat the entire domain over both uniform and nonuniform
meshes.

After filtering the domain, we simply use an explicit Runge-Kutta scheme to cal-
culate the streamlines from equation (5.1). More details of Runge-Kutta schemes and
their error estimations can be found in standard numerical methods textbook, such as
[38].

5.2.1 Numerical Results

For the numerical experiments, we consider three analytic fields given in [61], which
have form:

z = x+ iy,

u = Re(r),

v = −Im(r).

Field 1

r =(z − (0.74 + 0.35i))(z − (0.68− 0.59i))

(z − (−0.11− 0.72i))(z̄ − (−0.58 + 0.64i))

(z̄ − (0.51− 0.27i))(z̄ − (−0.12 + 0.84i))2.

Field 2

r =(z − (0.74 + 0.35i))(z̄ + (−0.18− 0.19i))

(z − (−0.11− 0.72i))(z̄ − (−0.58 + 0.64i))

(z̄ − (0.51− 0.27i)).

Field 3

r =(z − (0.74 + 0.35i))(z − (0.11− 0.11i))2

(z − (−0.11 + 0.72i))(z̄ − (−0.58 + 0.64i))

(z̄ − (0.51− 0.27i)).

The domain of interest is [−1, 1] × [−1, 1] for the above three vector fields. The DG
approximations of these fields are given by the L2 projection onto linear piecewise
polynomial basis functions over a uniform 40 × 40 mesh. Once the approximation
fields are obtained, we apply SIAC filters through the entire domain. Here, we point
out that by using the new one-sided filter near the boundaries, we are able to deal
with the entire domain [−1, 1]× [−1, 1] compared to the original results in [61] which
considered only the interior region of the domain. For the streamline integration, in
this example we use the second order Runge-Kutta scheme with a time step dt = 0.01.

110 Chapter 5. Applications of SIAC Filters in the Visualization

For convenience, we refer to the streamlines based on the analytic fields to the “exact”
streamlines, the streamlines based on the L2 projection fields as DG streamlines, and
the streamlines based on the SIAC filtered fields as filtered streamlines. Streamline
integration examples based on the given vector fields are presented in Figure 5.1. Note
that in Figure 5.1, the filtered streamline more closely follows the exact streamline.
In some cases, one can observe that in regions where bifurcations occur, the filtered
streamline follows the exact streamline, but the DG streamline is diverging away.
This behavior can be attributed to enhanced accuracy and smoothness of the filtered
approximation due to applying SIAC filters, and is similar to those found in Steffan et
al. [61].

Field 1 Field 2

Field 3

Figure 5.1: Streamlines based upon vector fields: Field 1, Field 2 and Field 3. Black
solid lines denote the “exact” solution, red dashed lines are the DG streamlines and
blue dashed dot lines are the filtered streamlines. Note the black lines are overlapped
by the blue lines.

In addition, we use the Hausdorff distance metric to measure the error of the
DG streamline and the filtered streamline with respect to the “exact” streamline. The
Hausdorff distance is a very popular technique to define a distance between two curves.

5.3. Filtering Along the Streamline 111

Given two curves X and Y , their Hausdorff distance dH(X,Y) is defined by

d(X,Y) = max

{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}
,

where d(x, y) denotes the standard euclidean distance between two points. Table 5.1
presents the Hausdorff distances of the streamlines given in Figure 5.1. In Table 5.1,
we observe that the filtered streamlines are close to the exact streamlines compared to
the DG streamlines.

Table 5.1: The error (Hausforff distance) for the DG streamlines and the filtered
streamlines in Figure 5.1.

����������DG
Filtered

line 1 line 2 line 3

Field 1
����������2.71E-2

1.28E-3 ����������2.83E-2
9.80E-3 ����������9.75E-1

1.32E-2

Field 2
����������1.37E-0

1.73E-3 ����������2.89E-1
2.90E-3 ����������7.33E-2

1.83E-3

Field 3
����������4.63E-3

4.48E-3 ����������7.71E-3
4.90E-3 ����������1.00E-1

4.70E-3

5.3 Filtering Along the Streamline

The first streamline integration method demonstrated good performance. However,
the algorithm of filtering the entire domain is computationally expensive, especial for
higher dimensional vector fields. In order to develop an alternative efficient algorithm,
Walfisch et al. [68] proposed the idea of filtering along the streamline. This idea uses
the information from the streamline instead of information from the entire domain.
To implement this idea, one needs to use one-sided filters. In [68], the authors used
the RS filter (1.12). In this section, we will use the newly defined position-dependent
filter (2.4) which has proved to have better performance than the RS filter.

5.3.1 Backward-Differentiation Methods

In [68], the authors used the 1D one-sided filtering with Runge-Kutta schemes for the
streamline integration. However, we point out these Runge-Kutta schemes require
sampling the field from positions that are not along the streamline. Since the filtering
proposed in the algorithm is done along the streamline, evaluating the points which
are not on the streamline is inconsistent. To explain this, we give the formula for the
second order Runge-Kutta scheme

k1 = hf(tn, yn)

k2 = hf(tn +
h

2
, yn +

k1
2
)

yn+1 = yn + k2.

112 Chapter 5. Applications of SIAC Filters in the Visualization

In the above formula, it is clear that the point (tn +
h
2 , yn +

k1
2) in step 2 usually does

not belong to the streamline, and then we can not use filtering at this point along the
streamline. The same thing occurs with any other multi-stage methods.

Also, we want the algorithm to work reasonably well for other integration curves,
such as streaklines and pathlines. Based on these reasons, we use backward differenti-
ation methods as the integrator for the streamline integration. By choosing backward
differentiation for integration, it allows us to use a larger time-step which will be
outside an explicit integrator’s stability region.

Consider the general formula for multi-step schemes and select backward differenti-
ation as the time-stepping method, one gets a backward differentiation formula (BDF)
of the form

p∑
i=0

αir
n+1−i = ∆tβun+1

where the coefficients for a fixed time step are given as in Table 5.3.1, see [38].

Table 5.2: Backward Differentiation Coefficients
Order p β α1 α2 α3 α4

1 1 −1
2 2

3 −4
3

1
3

3 6
11 −18

11
9
11 − 2

11

4 12
25 −48

25
36
25 −16

25
3
25

The standard practice for reaching an order (i.e. p) scheme is to start with a
p = 1 scheme and “jump-start” once calculations up through the orders as more
positional data becomes available. In this section, we initiate the time-stepping with
the trapezoidal rule version of the BDF given by:

rn+1 = rn +∆t

(
1

2
un +

1

2
un+1

)
.

Note that this is an implicit formula and hence requires a root finding technique. In this
section, we use the multi-dimensional Newton’s method which requires us to re-write
the scheme in root finding form as:

g(rn+1) = rn+1 − rn −∆t

(
1

2
un +

1

2
un+1

)
= 0.

The goal is to find the Newton’s method iterate (denoted by k) such that g(rn+1,k+1) =
0 (or in our case, machine zero).

To implement Newton’s method, we define the Jacobian matrix

Jg(rn+1,k) =

(
∂g1
∂x

∂g1
∂y

∂g2
∂x

∂g2
∂y

)
rn+1,k

and iterate Newton’s formula given by:

rn+1,k+1 = rn+1,k − [Jg(rn+1,k)]−1g(rn+1,k). (5.2)

5.3. Filtering Along the Streamline 113

Once the time-stepping has been initiated, one can work their way up the different
orders p using the following formula:

rn+1 = ∆tβu(rn+1)−
p∑

i=1

αir
n+1−i.

To be able to solve the multi-dimensional Newton’s method, we do the same method
and construct a function:

g(rn+1) = ∆tβu(rn+1)− rn+1 −
p∑

i=1

αir
n+1−i = 0.

The goal is to find the Newton’s method iterate (denoted by k) such that g(rn+1,k+1) =
0.

5.3.2 Algorithm

To give the complete algorithm of filtering along the streamline, we consider a vector
field Ω (triangles or quadrilaterals in two-dimension and tetrahedra, hexahedra, prisms
or pyramids in three-dimensions).

First, we describe the outline of the algorithm of filtering along the streamline.
Once we obtain r0, r1, . . . , rn−1, rn, like Figure 5.2, we can evaluate the new position
rn+1 in the following steps:

1. Construct a streamline based on the known information by using interpolation
methods.

2. Rewrite the streamline from Cartesian coordinates to arc-length coordinates.

3. Apply a one-sided filter along the streamline to obtain a filtered vector field.

4. Use backward-differentiation methods to obtain the new position rn+1.

Figure 5.2: Structure of the algorithm: filtering along the streamline.

The discontinuous Galerkin approximation of the vector filed is given by

u = [u(x, y), v(x, y)]T .

114 Chapter 5. Applications of SIAC Filters in the Visualization

A streamline r(t) = [x(t), y(t)]T of this vector field u is an integration curve that
satisfies

dr

dt
= u(r).

We now present the details of how to filtering along the streamline. To filtering along
the streamline, we need to consider using the arc-length coordinates instead of the
Cartesian coordinates as mentioned above.

By considering the arc-length coordinates, we can write the filtered vector field as

u?(r(sn)) = Kh ? u(sn) =

∫ ∞

−∞
Kh(sn − s)u(r(s))ds,

where r(sn) is the new position of the streamline. Here, we assume that there is enough
history of the data to apply the one-sided filter (2.4) proposed in Chapter 4. Denote
the support of the filter included in segment I1, . . . , In, where Ij = [sj−1, sj], then we
can rewrite the above formula as

u?(r(sn)) =
n∑

j=1

∫
Ij

Kh(sn − s)u(r(s))ds.

For each segment Ij , let τ ∈ [0, 1] be the variable which we parameterize the curve, so
that ∫

Ij

Kh(sn − s)u(r(s))ds =
∫ 1

0
Kh(sn − s(τ))u(rj(τ))

ds

dτ
dτ.

In each segment Ij , the curve rj(τ) has form

rj(τ) = (x(τ), y(τ)), τ ∈ [0, 1],

and

ds

dτ
=

√(
dx(τ)

dτ

)2

+

(
dy(τ)

dτ

)2

, s(τ) =

∫ τ

0

ds

dτ
dτ.

In particular, for linear interpolation

rj(τ) = xj−1 + τ(xj − xj−1),

with
ds

dτ
=
√
(xj − xj−1)2 + (yj − yj−1)2 = ∆sj , s(τ) = ∆sjτ,

then we have ∫
Ij

Kh(∆sm−j + sj − s)r(s)ds

=

∫ 1

0
Kh(∆sm−j + (1− τ)∆sj)rj(τ)∆sjdτ.

In order to use backward differentiation methods and Newton iteration (5.2), we
also need to calculate the Jacobian matrix

Jg(rn+1,k) =

(
∂g1
∂x

∂g1
∂y

∂g2
∂x

∂g2
∂y

)
rn+1,k

=

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
rn+1,k

−
(

1 0
0 1

)
.

5.3. Filtering Along the Streamline 115

Since the above Jacobian matrix includes the derivatives, we also need to use the
one-sided derivative filter proposed in Chapter 3. In Chapter 3, the formula of the
filtered solution for αth derivative was given by:

dαu?

dxα
=

dα

dxα

(
K

(2k+1,k+1+α)
h ? u

)
=
(
∂αh K̃

(2k+1,k+1,α)
hT

)
? u,

where the filter Kh is one-sided derivative filter, K
(2k+1,k+1,α)
hT , given in (3.6).

First, we consider the ∂u?

∂x term. The filtered solution is

u?(r(sn)) = Kh ? u(sn).

Using the same notation as in previous steps, we get

∂

∂x
u? =

n∑
j=1

∫
Ij

∂

∂x
Kk+1+1

h (sn − s)u(r(s))ds

=

n∑
j=1

∫
Ij

(
∂hK̃

k+1
h

)
(sn − s)

∂s

∂x
u(r(s))ds.

For linear interpolation, we will have

∂

∂x
u? =

n∑
j=1

∫ 1

0

(
∂hK̃

k+1
h

)
(sn − s(τ))

ds

dτ

dτ

dx
u(rj(τ))

ds

dτ
dτ

=
n∑

j=1

∫ 1

0

(
∂hK̃

k+1
h

)
(sn − s(τ))u(rj(τ))

(∆sj)
2

xj − xj−1
dτ.

Similarly, for the remaining three terms,

∂

∂y
u? =

n∑
j=1

∫ 1

0

(
∂hK̃

k+1
h

)
(sn − s(τ))u(rj(τ))

(∆sj)
2

yj − yj−1
dτ

∂

∂x
v? =

n∑
j=1

∫ 1

0

(
∂hK̃

k+1
h

)
(sn − s(τ))v(rj(τ))

(∆sj)
2

xj − xj−1
dτ

∂

∂y
v? =

n∑
j=1

∫ 1

0

(
∂hK̃

k+1
h

)
(sn − s(τ))v(rj(τ))

(∆sj)
2

yj − yj−1
dτ

Remark 5.3.1. The integration can be calculated by using Gauss quadrature, but we
need to consider both the DG breaks and the filter breaks as mentioned in Chapter 1.

116 Chapter 5. Applications of SIAC Filters in the Visualization

5.3.3 Preliminary Results

Time Cost

First, we check the computational cost for the algorithm of filtering along the stream-
line and compare it with the method of filtering the entire field. To avoid interruption,
we test two algorithms for the simplest vector field, a constant vector field u = [1, 1]T .
Then the streamlines will be straight lines, and the numerical approximations should
be exactly the same, see Figure 5.3. Also, we provide Table 5.3, which shows the com-
putational cost (time) of using these two algorithms. From the table, we can clearly
see that filtering along the streamline can significantly reduce the computational cost,
which is almost 70 times faster than filtering the entire field.

Filtering entire domain Filtering along streamline

Figure 5.3: Straight-line streamlines based upon vector field u = [1, 1]T . We note
that the numerical approximations are exact.

Table 5.3: Number of steps, time per integration step and ratio of filtering along
the streamline to filtering the entire field time per step required to calculate three
streamlines on the constant vector field u = [1, 1]T .

Filtering entire field Filtering along streamline

streamline Steps Time/Step(sec) Steps Time/Step(sec) Ratio

1 190 2.64e-02 190 3.79e-04 69.72

2 120 2.61e-02 120 3.67e-04 71.14

3 120 2.62e-02 120 3.67e-04 71.36

Then, we consider the same three analytic fields used in the previous section. The
domain is [−1, 1]× [−1, 1], and the DG approximations are given by the L2 projection,
polynomial P1, onto a uniform 40×40 mesh. Here, the filtered streamline is obtained by
using the algorithm of filtering along the streamline. For streamline integration, we use
the second order backward-differentiation method with time step dt = 0.01. Streamline

5.3. Filtering Along the Streamline 117

integration examples based the given vector fields are presented in Figure 5.4. Unlike
Figure 5.1, the difference between the filtered streamline and the DG streamline is
quite small and hard to observe from the plots (unless zoom in). However, we can still
compare the error by using the Hausdorff distance. Table 5.4 presents the Hausdorff
distances of the streamlines given in Figure 5.4. From Table 5.1, we observe that the
filtered streamlines are slightly close to the exact streamlines compared to the DG
streamlines, but the advantage is not obvious.

Field 1 Field 2

Field 3

Figure 5.4: Streamlines based upon vector fields: Field 1, Field 2 and Filed 3. Black
solid lines denote the “exact” solution, red dashed lines are the DG streamlines and
blue dashed dot lines are the filtered streamlines. Using one-sided filtering along the
streamline.

Remark 5.3.2. The filtered streamline obtained by applying the method of filtering
along the streamline is less accurate compared to the method of filtering the entire
domain. It is a method to sacrifice accuracy for speed.

Remark 5.3.3. The results presented in this section are only preliminary results. In
order to obtain optimal results, we must answer the following questions:

118 Chapter 5. Applications of SIAC Filters in the Visualization

Table 5.4: The error (Hausforff distance) for the DG streamlines and the filtered
streamlines in Figure 5.4.

����������Before
After

line 1 line 2 line 3

Field 1
����������4.72E-3

3.49E-3 ����������3.45E-2
2.37E-3 ����������1.00E-1

9.08E-2

Field 2
����������8.09E-2

2.00E-2 ����������2.26E-3
1.17E-3 ����������5.00E-3

3.34E-3

Field 3
����������2.70E-3

4.03E-3 ����������1.54E-2
8.24E-4 ����������1.85E-2

1.26E-2

• Which method should be used for reconstructing the streamline: linear interpola-
tion, Hermite interpolation or others?

• Are backward-differentiation methods the best integration method when filtering
along the streamline?

• Which one-sided filter is the most suitable one for filtering along the streamline?

• How should the filter scaling be chosen for filtering along the streamline? When
filtering along the streamline, in order to use the one-dimensional one-sided filter,
we must consider arc-length coordinates. It follows that we have to use the filter
over a nonuniform mesh. As mentioned in Chapter 4, the choice of the filtering
scaling is directly related to the final accuracy.

5.3.4 Which One-Sided Filter?

For filtering along the streamline, one must use a one-sided filter. It follows that an
interesting question is which one-sided filter is the most suitable one for this algorithm.
As introduced earlier, there are three one-sided filters: the RS filter (1.12), the SRV
filter (1.14) and the new filter (2.4). In the previous parts of this chapter, we use
only the new filter since the other two filters do not acquire any information at the
point where the filtered value needs to be computed. However, it is still interesting to
compare the behaviors of using these three one-sided filters for streamline integration.

In Figure 5.5 and Table 5.5, we compare the results of using these three one-sided
filters over Field 2. One can observe that the new filter provides the most accurate
results, then the RS filter. For the SRV filter, the results are significantly worse than
the other two one-sided filters and the DG solutions.

Table 5.5: The error (Hausforff distance) for the DG streamlines and the filtered
streamlines with three different one-sided filters in Figure 5.5.

DG RS filter SRV filter New filter
line 1 8.09E-2 6.71E-2 5.11E-2 2.00E-2
line 2 2.26E-3 1.41E-3 2.21E-1 1.17E-3
line 3 5.00E-3 3.61E-3 4.36E-2 3.34E-3

5.3. Filtering Along the Streamline 119

RS filter SRV filter

New filter

Figure 5.5: Streamlines based upon Field 2. Black solid lines denote the “exact”
solution, red dashed lines are the DG streamlines and blue dashed dot lines are the
filtered streamlines. Using three different one-sided filters.

Then, we consider an interesting field given by [68] which was defined in polar
coordinates by [

u(r, θ)
v(r, θ)

]
=

[
1
2 cos(20θ) cos(θ)− r sin(θ)
1
2 cos(20θ) sin(θ) + r cos(θ)

]
. (5.3)

This field has streamlines which are oscillating closed circuits. In [68], the author
compared the results of the DG streamline and the filtered streamline with using the
RS filter, see Figure 5.6.

In order to compare the results of using different one-sided filters, we redo the
example with the same settings by using SRV filter (1.14) and the new filter (2.4), see
Figure 5.7. Comparing the results in Figures 5.6 and 5.7, the new filter is still the
winner. However, we point out the results of using the RS filter are also acceptable,
and the SRV filter is diverging away from the actual streamline. Through the above
examples, we can clearly see that for filtering along the streamline one can use either
the new filter or the RS filter, but the SRV filter is not a suitable choice.

120 Chapter 5. Applications of SIAC Filters in the Visualization

Figure 5.6: Streamline integrations [68] based upon vector field (5.3). Using the RS
filter.

SRV filter new filter

Figure 5.7: Streamline integrations based upon vector field (5.3). Black solid lines
denote the “exact” solution and red dashed dot lines are the filtered streamlines. Using
the SRV filter and the new filter.

5.4 Conclusion

The SIAC filtering technique has demonstrated its ability to improve the continuity
of the discontinuous Galerkin solution and maintain the accuracy. Therefore, SIAC
filtering has potential value as a preprocessing tool prior to other techniques such as
visualization techniques. In this chapter, we presented the preliminary results of apply-
ing SIAC filters for streamline visualization. We briefly discussed how to apply SIAC
filters for the discontinuous Galerkin approximations that results in more accurate

5.4. Conclusion 121

streamline placements. There are two ways to use SIAC filters for streamline integra-
tion. The first one is using the filter introduced in Chapter 2 to filter the entire vector
field, and then perform the streamline integration. This method is mature and robust,
and the filtered streamlines are closer to the exact streamlines compared to the DG
streamlines. Also, applying SIAC filtering before the streamline integration, to a great
extent, has avoided diverging situations for the streamlines. The second method is
proposed based on computational considerations. This method considers filtering only
along the streamline rather than the entire domain. Clearly, filtering along the stream-
line is more efficient compared to filtering the entire domain. However, as mentioned
in this chapter, the method of filtering along the streamline is on-going research, and it
is not robust as the method of filtering the entire domain. Through some preliminary
results, we indicate there are several points that need to be discussed or resolved:

• The first question is: which one-sided filter to use? The algorithm of filtering
along the streamline requires using a one-sided SIAC filter. Based on numer-
ical experiments, we point out we should make a choice between the RS filter
(1.12) and the new filter (2.4). The SRV filter (1.14) is not a suitable choice for
streamline integration.

• The second question is: how should the filter scaling be chosen? As mentioned
in Chapter 4, the filter scaling is the crucial factor for filtering over nonuniform
meshes, and algorithm of filtering along the streamline is always performed over
nonuniform meshes no matter the original tessellation.

• There are some remaining details about the implementation of the algorithm,
such as which interpolation method to reconstruct the streamline, and which
integration method for the streamline integration.

If these are solved, this algorithm could be of great value to visualization techniques.
Additionally, the idea of this algorithm that is dealing with multi-dimensional data in
a one-dimensional operation has great potential value for many other applications.

Further works relate this chapter are:

• Further investigation of the algorithm of filtering along the streamline and de-
velop it into a robust algorithm.

• Extend the algorithm to other visualization techniques, such as other integration
curves (streakline, pathline, etc.).

• Theoretical analysis of the algorithm, such as error estimates.

6
Further Inverstigation of SIAC Filter

In Chapter 1, we introduced the original definition and properties of the SIAC filter.
In this chapter, we will investigate further details of the SIAC filter and its variations.
For convenience, without specification the filters in this chapter are symmetric filters.
However, one can easily extend the results in this chapter to one-sided filters.

6.1 Structure of SIAC Filter

In Chapter 1, we discussed the structure of the original symmetric SIAC filter - a linear
combination of central B-splines. Following this construction an interesting question
is: is there another structure that allows one to extract the superconvergence order of
2k + 1 from DG solutions?

To answer this question, we recall the necessary components to extract the su-
perconvergence order of 2k + 1, Theorem 1.3.4. Through the proof of Theorem 1.3.4
given in [25], one can see that there are four main components behind Theorem 1.3.4,
namely, Lemma 1.2.2, Theorem 1.2.1, Property 1.3.2 and Property 1.3.3:

• Lemma 1.2.2 shows that the L2 norm of a function can be bounded by the
negative order norm of the derivatives of the same function. It is dependent on
the regularity of the function.

• Theorem 1.2.1 proves that the DG solution and its divided differences have super-
convergence order of 2k+1 in the negative order norm. It is the superconvergence
of the DG solution.

• Property 1.3.2 demonstrates that the filter has the ability to reproduce polyno-
mials by convolution. It is due to equation (1.8).

• Property 1.3.3 allows us to express derivatives in term of divided difference quo-
tients. It is due to the structure of the SIAC filter, more precisely, the central
B-splines.

Through the above analysis, we know the key structure of the filter is to provide the
ability to express derivatives in term of divided differences. Therefore, the task is to

123

124 Chapter 6. Further Inverstigation of SIAC Filter

find a basis function φ(`), such that

d

dx
φ
(`)
H (x) = ∂Hφ

(`−1)(x) =
1

h

(
φ(`−1)(x+ h/2)− φ(`−1)(x− h/2)

)
, (6.1)

then we can construct the filter by

K(2k+1,k+1) =

2k∑
γ=0

c(2k+1,k+1)
γ φ(k+1)(x− (−k + γ)), (6.2)

where c
(2k+1,k+1)
γ is decided by (1.8).

In order to find such a basis function φ(`), we take the Fourier transform of equation
(6.1)

2πiξφ̂(`) = φ̂(`−1)eπiξ − φ̂(`−1)e−πiξ =⇒ φ̂(`) = φ̂(`−1) sin(πξ)

πξ
.

It is easy to verify that χ̂[−1/2,1/2] =
sin(πξ)

πξ , then we have

φ(`) = φ(`−1) ? χ[−1/2,1/2]. (6.3)

Once we decide the initial function φ(1), the filter, constructed by (6.2) and (6.3), can
extract the superconvergence order of 2k + 1 from the DG solution. The simplest
and natural choice is φ(1) = χ[−1/2,1/2], which leads to the central B-spline filter. Of

course, we can choose another initial function, such as φ(1) = cos(πx)χ[−1/2,1/2], φ
(k)

with k = 2, 3, 4. These are shown in Figure 6.1.

k = 2 k = 3 k = 4

−1 0 1
0.0

0.2

0.4

0.6

0.8

1.0

−1.5 −0.5 0.5 1.5
0.0

0.2

0.4

0.6

0.8

1.0

−2 −1 0 1 2
0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.1: Basis φ(k), which satisfies (6.3), with φ(1) = cos(πx)χ[−1/2,1/2].

We can see that the filter given in (6.2) constructed by the basis function φ(k+1),
which satisfies (6.3), also has Property 1.3.3. Then, the following question is: do there

exist constants c
(2k+1,k+1)
γ such that filter (6.2) reproduces polynomials by convolution

until degree up to degree 2k? To answer this question, we present Theorem 6.1.1 for
the more general situation.

Theorem 6.1.1. Assume φγ , γ = 0, . . . , r are r + 1 normalized linear independent
functions, each with has compact support. Then the linear system

r∑
γ=0

cγ

∫ ∞

−∞
φγ(ξ)(x− ξ)mdξ = xm, m = 0, 1, . . . , r (6.4)

6.1. Structure of SIAC Filter 125

has a unique solution.

Proof. For convenience, we denote that

A(γ,m)(x) =

∫ ∞

−∞
φγ(ξ)(x− ξ)mdξ, γ,m = 0, 1, . . . , r,

= xm +

m−1∑
j=0

λjγ,mx
j ,

where λjγ,m =
∫∞
−∞ φγ(ξ) (−ξ)j

(
m
j

)
dξ. Then, the conclusion in Theorem 6.1.1 is equiv-

alent to matrix A(γ,m) is nonsingular, in other words, we only need to prove the r+1
rows {A(γ,m)}rγ=0 are linear independent.

Assume there exist constants bm,m = 0, . . . , r such that

r∑
m=0

bmA(γ,m)(x) = 0, γ = 0, . . . , r.

By substituting the form of A(γ,m), we have

r∑
m=0

bm

xm +
m−1∑
j=0

λjγ,mx
j

 = 0 ⇒
r∑

m=0

bm +
r∑

j=m+1

bjλ
m
γ,i

xm = 0.

Since the above relation is true for all x ∈ R, we know

bm +

r∑
j=m+1

bjλ
m
γ,i = 0 ⇒

br = 0
br−1 = −λr−1

γ,r br = 0

. . .

b0 = −

(
r∑

j=1
λ0γ,jbj

)
= 0.

.

It follows that the r + 1 rows of linear system (6.4) is linear independent.

Since φ(k+1)(x+k−γ), γ = 0, . . . , r, are r+1 linear independent compact functions,

Theorem 6.1.1 indicates that there exists unique constants c
(2k+1,k+1)
γ such that filter

(6.2) reproduces polynomials by convolution up to degree 2k. For example, the filters
with φ(1) = cos(πx)χ[−1/2,1/2] are presented in Figure 6.2.

Finally, we know that there are infinitely many structures of the SIAC filter that
allow us to extract the superconvergence order of 2k + 1 from the DG solutions.

Theorem 6.1.2. Under the same conditions in Theorem 1.3.4, the filter given in
(6.2), then

‖u−K(2k+1,k+1)
h ? uh‖0,Ω0 ≤ Ch2k+1.

Proof. The proof is the same as in Theorem 1.3.4

Here, we point out that if we limit a SIAC filter to be a piecewise polynomial, then
the original symmetric filter constructed by central B-splines has the simplest formula.

126 Chapter 6. Further Inverstigation of SIAC Filter

k = 1 k = 2 k = 3

−2 −1 0 1 2
−0.2

0.0

0.4

0.8

1.2

−4 −3 −2 −1 0 1 2 3 4
−0.2

0.0

0.4

0.8

1.2

−5−4−3−2−1 0 1 2 3 4 5
−0.2

0.0

0.4

0.8

1.2

Figure 6.2: K(2k+1,k+1) given in (6.2) constructed by basis φ(k+1), which satisfies
(6.3), with φ(1) = cos(πx)χ[−1/2,1/2].

Remark 6.1.1. Through the technique discussed in this section, we can create an
infinitely smooth SIAC filter to enhance the smoothness of the filtered solutions. For
example, we can choose

φ(1) =

{
exp

(
− 1

1−4x2

)
, |x| < 1

2

0, |x| ≥ 1
2

.

Then we can obtain a filter which has the same support size as the original filter,
but it belongs to C∞0 . It follows that the filtered solution u?h ∈ C∞ and also has accuracy
order of 2k + 1.

6.2 The Order of B-splines

As mentioned in the previous chapters, the order of the SIAC filter plays a very import
role, such as for derivative filters. According to the error estimates, one must use a
certain order of B-splines to convert all the required derivatives into divided differences.
This is the reason we can not use a linear filter to filter a cubic DG approximations.

6.2.1 The Lowest Order of B-splines

This leads to the following question: what is the lowest order of B-spline that ensures
obtaining accuracy order of 2k + 1. Usually, we choose the order of B-splines to be
k + 1, which means the filter K(2k+1,k+1) is a piece-wise polynomial of degree k.

One can verify that the filtered solution, u?h = K
(2k+1,k+1)
h ? uh, is a piecewise

polynomial of degree 2k+1. Based on the approximation theorem, as a polynomial of
degree 2k + 1, the filtered solution does not obtain its optimal accuracy order 2k + 2.
In fact, due to the superconvergence property of the DG solution, Theorem 1.2.1, the
accuracy order of 2k+2 is usually impossible unless uh is a L2 projection of the exact
solution.

However, it leads to a conjecture that we can use filter K(2k+1,k), order k filter, to
approach the accuracy order of 2k + 1.

6.2. The Order of B-splines 127

Theorem 6.2.1. Under the same conditions in Theorem 1.3.4, then

‖u−K(2k+1,k)
h ? uh‖0,Ω0 ≤ Ch2k+1.

Proof. The proof is the same as in Theorem 1.3.4.

Remark 6.2.1. Theorem 6.2.1 also explains the behavior that after using the filter
K(2k+1,k+1), the first derivative of the filtered solution has accuracy order 2k + 1 not
2k as theorem in [56] suggested.∥∥∥∂xu− ∂x (K(2k+1,k+1)

h ? uh

)∥∥∥
0,Ω0

≤ Ch2k+1.

Since K
(2k+1,k)
h ? uh is only a piecewise polynomial of degree 2k, we can claim that

the accuracy order 2k + 1 is already optimal. Also, the approximation theorem tells
us the order of filter can not be lower than k, and order k is already the lowest order if
an accuracy order of 2k+1 is desired. Now, we compare the differences between using
the k + 1th order filter and the kth order filter.

Example 6.2.2. Consider a linear hyperbolic equation

ut + ux = 0, (x, t) ∈ [0, 1]× (0, T]

u(x, 0) = sin(2πx)

with final time T = 1 over uniform meshes. The L2 and L∞ norm errors and respective
accuracy order are given in Table 6.1. Figure 6.3 shows the point-wise errors in log
scale. The respective results of the DG approximation can be found in Example 1.3.5.

K(2k+1,k+1) K(2k+1,k)

0 0.2 0.4 0.6 0.8 1.0

x

10−16

10−12

10−8

10−4

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

0 0.2 0.4 0.6 0.8 1.0

x

10−16

10−12

10−8

10−4

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

Figure 6.3: Comparison of the point-wise errors in log scale of the filtered solutions
with the kth and (k + 1)th symmetric filter. The DG basis are polynomials P3 for a
linear advection equation.

128 Chapter 6. Further Inverstigation of SIAC Filter

Table 6.1: L2− and L∞−errors for the filtered solutions u?h with the kth and (k+1)th
symmetric filter for a linear advection equation.

K(2k+1,k+1) K(2k+1,k)

Mesh L2 error order L∞ error order L2 error order L∞ error order
P1

20 1.97E-03 – 2.80E-03 – 1.94E-03 – 2.75E-03 –
40 2.44E-04 3.02 3.46E-04 3.02 2.42E-04 3.00 3.44E-04 3.00
80 3.02E-05 3.01 4.28E-05 3.01 3.02E-05 3.00 4.29E-05 3.00
160 3.76E-06 3.01 5.33E-06 3.01 3.77E-06 3.00 5.35E-06 3.00

P2

20 4.11E-06 – 5.82E-06 – 3.09E-06 – 4.39E-06 –
40 9.49E-08 5.44 1.34E-07 5.44 7.88E-08 5.29 1.12E-07 5.29
80 2.49E-09 5.25 3.52E-09 5.26 2.24E-09 5.14 3.19E-09 5.14
160 7.75E-11 5.00 1.10E-10 5.00 7.38E-11 4.92 1.05E-10 4.93

P3

20 6.97E-08 – 9.86E-08 – 4.15E-08 – 5.87E-08 –
40 2.83E-10 7.95 4.00E-10 7.95 1.70E-10 7.93 2.40E-10 7.93
80 1.23E-12 7.85 1.73E-12 7.85 7.82E-13 7.76 1.11E-12 7.76
160 1.59E-14 6.27 2.25E-14 6.27 1.41E-14 5.79 2.00E-14 5.79

Table 6.1 shows that both the kth and (k + 1)th order filters can give us accuracy
order of 2k+ 1 for the filtered solutions. Here, we point out although the difference is
quite small, and the filtered solutions obtain by using the kth order filter have better
accuracy compared to using the (k+1)th order filter. These results are consistent with
studies in Chapter 4 that with the higher order filter, the optimal scaling is increased.

Figure 6.3 reveals that for high order polynomials, such as P3, the filtered solutions
look almost the same as filters K(2k+1,k) and K(2k+1,k+1). However, if we check the
results for P1 in Figure 6.4, we can see that using the (k + 1)th order filter generates
a smoother result than using the kth order filter.

The conclusion is simple, using kth order filter is computationally more efficient
but the filtered solutions are less smooth compared to using (k+1)th order filter. Also,
we note that for higher order cases, k ≥ 3, the difference is negligible.

6.2.2 Inexact Gaussian Quadrature Approach

After discussing using lower order B-splines, we now present the benefits of using higher
order B-splines. As discussed in Chapter 1, the basic operation of the filtering process
is the convolution of the DG solution against the filter. Usually, this convolution
operator is calculated by using Gaussian quadrature. As mentioned in Section 1.3.4,
since the DG solution is discontinuous at the element interface, and the filter is also
a piecewise polynomial, one has to consider the breaks in integration of both. In
other words, one needs to divide the integration region into several subintervals such
that in each subinterval both the DG solution and the filter are C∞ polynomials (not
piecewise polynomials). However, the Gaussian quadrature is quite costly especially

6.2. The Order of B-splines 129

K(2k+1,k+1) K(2k+1,k)

0 0.2 0.4 0.6 0.8 1.0

x

10−8

10−4

100

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

0 0.2 0.4 0.6 0.8 1.0

x

10−8

10−4

100

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

Figure 6.4: Comparison of the point-wise errors in log scale of the filtered solutions
with the kth and (k + 1)th symmetric filter. The DG basis are polynomials P1 for a
linear advection equation.

for unstructured meshes and high-dimensional cases. Therefore, [50] proposed an idea
of using inexact integration to overcome this issue by ignoring the breaks of the filter.
Compared to the DG solution which is only weakly continuous at the DG breaks,
the filter still has Ck−1 continuity at the filter breaks. Therefore, numerically we can
use some techniques to overcome the filter breaks, but not the DG breaks. We note
that, in this section, the inexact Gaussian quadrature represents using the Gaussian
quadrature to calculate the convolution without considering the filter breaks.

First, we present Example 6.2.3 to show what happens if we ignore the filter breaks.

Example 6.2.3. Consider a linear hyperbolic equation

ut + ux = 0, (x, t) ∈ [0, 1]× (0, T]

u(x, 0) = sin(2πx)

with final time T = 1 over uniform meshes. The L2 and L∞ norm errors and respective
accuracy orders are given in Table 6.2, and Figure 6.5 shows the point-wise errors in
log scale.

In Table 6.2, we can see that although the filtered solutions still have better accu-
racy compared to the DG solutions, the accuracy order drops down from 2k + 1 due
to the inexact Gaussian quadrature. However, we note that using the inexact Gaus-
sian quadrature leads to less accurate filtered solutions compared to using the exact
Gaussian quadrature, see Table 1.1. Also, the filtered solutions have many oscillations
in the plots in Figure 6.5.

In [50], the authors increased the Gaussian quadrature points to overcome the
drawbacks of using the inexact Gaussian quadrature. In this section, we propose an
alternative way, which is more natural. Increasing the regularity of the filter by using
higher order B-splines. The losts of accuracy of using inexact Gaussian quadrature is

130 Chapter 6. Further Inverstigation of SIAC Filter

Table 6.2: L2− and L∞−errors for the DG approximation uh and the filtered solution
u?h with the inexact Gaussian quadrature for a linear advection equation.

DG error After filtering
Mesh L2 error order L∞ error order L2 error order L∞ error order

P1

20 4.60E-03 – 1.13E-02 – 1.75E-03 – 2.72E-03 –
40 1.09E-03 2.08 3.21E-03 1.82 1.89E-04 3.21 3.30E-04 3.04
80 2.67E-04 2.02 8.49E-04 1.92 1.73E-05 3.45 3.92E-05 3.07
160 6.65E-05 2.01 2.18E-04 1.96 1.64E-06 3.40 4.44E-06 3.14

P2

20 1.07E-04 – 3.67E-04 – 4.38E-06 – 6.57E-06 –
40 1.34E-05 3.00 4.62E-05 2.99 2.12E-07 4.37 3.96E-07 4.05
80 1.67E-06 3.00 5.78E-06 3.00 2.37E-08 3.16 4.64E-08 3.09
160 2.09E-07 3.00 7.23E-07 3.00 2.95E-09 3.01 5.78E-09 3.01

P3

20 2.06E-06 – 6.04E-06 – 5.34E-08 – 9.92E-08 –
40 1.29E-07 4.00 3.80E-07 3.99 1.18E-09 5.50 2.40E-09 5.37
80 8.07E-09 4.00 2.38E-08 4.00 8.63E-11 3.77 1.73E-10 3.79
160 5.04E-10 4.00 1.49E-09 4.00 5.44E-12 3.99 1.09E-11 3.99

DG After filtering

0 0.2 0.4 0.6 0.8 1.0

x

10−16

10−12

10−8

10−4

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

0 0.2 0.4 0.6 0.8 1.0

x

10−16

10−12

10−8

10−4

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

Figure 6.5: Comparison of the point-wise errors in log scale of the DG approximation
uh and the filtered solution u?h with the inexact Gaussian quadrature. The DG basis
are polynomials P3 for a linear advection equation.

due to the regularity (or continuity) of the filter not being sufficient at the filter breaks.
One can simply increase the order of B-splines to increase the regularity of the filter.
In Table 6.3 and Figure 6.6, we present the filtered solutions using B-splines of order
k + 2 and order k + 3. The results suggest that by increasing the order of B-splines,
the filtered solutions with inexact Gaussian quadrature can be improved to the same
level of using exact quadrature. In addition, we point out that increasing the order

6.2. The Order of B-splines 131

of B-splines also slightly increases the support size of the filter. However, the extra
cost of the increased support size is negligible compare to using the exact Gaussian
quadrature.

Table 6.3: L2− and L∞−errors for the filtered solution u?h with the inexact Gaus-
sian quadrature for a linear advection equation. The filters used are K(2k+1,k+2) and
K(2k+1,k+3).

K(2k+1,k+2) K(2k+1,k+3)

Mesh L2 error order L∞ error order L2 error order L∞ error order
P1

20 2.03E-03 – 2.87E-03 – 2.09E-03 – 2.96E-03 –
40 2.47E-04 3.04 3.50E-04 3.04 2.51E-04 3.06 3.56E-04 3.06
80 3.05E-05 3.02 4.31E-05 3.02 3.07E-05 3.03 4.35E-05 3.03
160 3.78E-06 3.01 5.34E-06 3.01 3.80E-06 3.02 5.37E-06 3.02

P2

20 5.47E-06 – 7.76E-06 – 7.26E-06 – 1.03E-05 –
40 1.16E-07 5.56 1.65E-07 5.55 1.45E-07 5.64 2.05E-07 5.64
80 2.76E-09 5.39 4.01E-09 5.37 3.28E-09 5.47 4.64E-09 5.47
160 7.85E-11 5.14 1.17E-10 5.09 8.99E-11 5.19 1.27E-10 5.19

P3

20 1.08E-07 – 1.53E-07 – 1.59E-07 – 2.25E-07 –
40 4.38E-10 7.95 6.20E-10 7.95 6.44E-10 7.95 9.10E-10 7.95
80 1.85E-12 7.89 2.63E-12 7.88 2.65E-12 7.93 3.74E-12 7.93
160 1.93E-14 6.58 2.89E-14 6.51 2.14E-14 6.95 3.03E-14 6.95

K(2k+1,k+2) K(2k+1,k+3)

0 0.2 0.4 0.6 0.8 1.0

x

10−16

10−12

10−8

10−4

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

0 0.2 0.4 0.6 0.8 1.0

x

10−16

10−12

10−8

10−4

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

Figure 6.6: Comparison of the point-wise errors in log scale of the filtered solu-
tions with the inexact Gaussian quadrature. The filters used are K(2k+1,k+2) and
K(2k+1,k+3). The DG basis are polynomials P3 for a linear advection equation.

The idea of the inexact Gaussian quadrature is intended to reduce the compu-

132 Chapter 6. Further Inverstigation of SIAC Filter

tational cost of using SIAC filters. The benefits are not obvious for one-dimensional
uniform mesh cases. However, this idea has great potential value for multi-dimensional
applications especially for unstructured meshes. For example, consider the two dimen-
sional unstructured triangular meshes, it is computationally expensive to divide the
integration region into subregions, and numerical quadrature over these irregular sub-
regions is also very expensive. The computational costs will become more expensive
in three-dimensional cases, such as tetrahedral meshes. This is the reason a method
that allows us to ignore the filter breaks has great potential values with respect to the
computational considerations, and it is a subject of future work.

6.3 SIAC Filtering for Wave Functions

Wave functions are used in many branches of mathematics, science and engineer-
ing. Mathematically, wave propagation problems are usually described by hyperbolic
equations, and developing efficient methods and algorithms to solve wave-related ap-
plication problems becomes an interesting task. In this section, we will introduce
the preliminary methods of using SIAC filters to enhance the discontinuous Galerkin
solutions that relate to wave functions.

6.3.1 Sufficient Elements of the DG Approximation

It is well known that when using piecewise polynomials to approximate a wave function,
one should at least use a certain number elements-per-wavelength. In other words,
in order to approximate a wave function, we need sufficient resolution for the DG
approximation.

Consider a simple example, a sine function with λ wavenumber in the domain [0, 1],
sin(2λπx). First we expand sin(2λπx) into Legendre polynomials. Denote ξ = 2x− 1,
then we have

sin(2λπx) = sin(λπ(ξ + 1)), ξ ∈ [−1, 1].
The Legendre expansion can be written as

sin(λπ(ξ + 1)) =
∞∑
n=0

anPn(ξ),

where Pn is the Legendre polynomials of degree n over [−1, 1] and

an =
1√
2λ

(2n+ 1)Jn+1/2(λπ) sin(λπ + nπ/2).

Here, Jn+1/2 is the Bessel function of the first kind of order n + 1/2. If the approxi-
mation is given as a polynomial of degree k, then the truncation error E(λ, k) is

|E(λ, k)| ≤
∞∑

n=k+1

|an|.

Here, the coefficient an satisfies

|an| ≤
1√
2λ

(2n+ 1)|Jn+1/2(λπ)|.

6.3. SIAC Filtering for Wave Functions 133

If N elements are used for the approximation, which means the wavenumber on each
element is λ/N , then the new error is

|E(λ, k,N)| ≤
∞∑

n=k+1

1√
2λ/N

(2n+ 1)

∣∣∣∣Jn+1/2

(
λπ

N

)∣∣∣∣ .
Using the asymptotic form for the Bessel function (as x→ 0) (Eq. (9.1.7) in [1])

Jv(x) ∼
1

Γ(v + 1)

(x
2

)v
,

we have

|an| ≤
1√
2λ/N

(2n+ 1)

(
λπ

2N

)n+1/2 1

Γ(n+ 3/2)

=
1√
2λ/N

(2n+ 1)

(
λπ

2N

)n+1/2 4n+1(n+ 1)!√
π(2n+ 2)!

=
1

(2n− 1)!!

(
λπ

N

)n

Since h = 2
N , we obtain the lowest order term of h for the truncation error,

|E(λ, k,N)| ≤ (λπ)k+1

(2k + 1)!!
hk+1.

The required number of elements, N � λπ, is needed for this desired accuracy.
Then, we check the details of the condition N � λπ. This condition is required by

using the asymptotic form for the Bessel function of the first kind that

Jv(z) ∼ (
1

2
z)v/Γ(v + 1).

The above asymptotic form requires z → 0 when v is fixed. In the above error esti-
mate, z = λπ

N , then we get N � λπ. In order to understand further details of this
requirement, we write the exact formula of the Bessel function of the first kind (Eq
(9.1.10) in [1]),

Jv(z) =
(z
2

)v ∞∑
n=0

bn(z) =
(z
2

)v ∞∑
n=0

(
− z2

4

)n
n!Γ(v + n+ 1)

.

Comparing the first term b0(z) and the second b1(z) with z =
λπ
N and v = k + 3/2,

|b0(z)/b1(z)| =
4Γ(v + 2)

z2Γ(v + 1)
=

4(v + 1)

z2
=

(4k + 6)N2

(λπ)2
.

Therefore, we can require b0(z)/b1(z) ≥ N to guarantee a reasonable accuracy and
accuracy order. This means,

(4k + 6)N2

(λπ)2
≥ N =⇒ N ≥ (λπ)2

4k + 6
.

134 Chapter 6. Further Inverstigation of SIAC Filter

The above formula gives the requirement of the number of elements for approximating
a wave function. Furthermore, the divided differences of the approximations are also
needed in the process of SIAC filtering. Consider the first divided difference of the
wave function, sin(2λπx),

∂h sin(2λπx) =
1

h
(sin(2λπx+ λπh)− sin(2λπx− λπh))

=
2

h
sin(λπh) cos(2λπx).

According to the above formula, the wave number does not change for the divided
differences. Therefore, we know that once the number of elements is sufficient for the
DG approximation, then there is no problem with its divided differences.

6.3.2 SIAC Filtering for Wave Functions

Through the analysis in the previous section, we know that the theoretical foundations
of using SIAC filters for wave functions are solidly established. However, things are
not going as well as we expected.

Consider a linear hyperbolic equation

ut + ux = 0, (x, t) ∈ [0, 1]× (0, T]

u(x, 0) = sin(2λπx)
(6.5)

with final time T = 1 over uniform meshes. In this example, we test λ = 1, 2, . . . 8
cases. In order to save space, we only present the L2 and L∞ norm errors for λ = 8
case of equation (6.5) in Table 6.4. Here, the filter used is the standard symmetric
filter given in (1.6) with scaling H = h (h is the mesh size).

Table 6.4: L2− and L∞−errors for the DG approximation uh and the filtered solution
u?h for a function that has 8 waves for a linear advection equation.

DG error After filtering
Mesh L2 error order L∞ error order L2 error order L∞ error order

P2

20 6.37E-01 – 9.41E-01 – 6.71E-01 – 9.96E-01 –
40 6.29E-02 3.34 1.04E-01 3.17 9.50E-02 2.82 1.87E-01 2.41
80 3.21E-03 4.29 1.08E-02 3.27 3.23E-03 4.88 6.24E-03 4.91
160 2.98E-04 3.43 1.53E-03 2.82 8.97E-05 5.17 1.59E-04 5.30

P3

20 1.02E-01 – 1.82E-01 – 4.87E-01 – 9.34E-01 –
40 2.45E-03 5.38 1.07E-02 4.09 3.68E-02 3.72 9.42E-02 3.31
80 1.36E-04 4.17 6.73E-04 3.99 3.43E-04 6.75 9.21E-04 6.68
160 8.54E-06 4.00 4.16E-05 4.02 1.69E-06 7.66 4.63E-06 7.64

From Table 6.4, we can see that only if the mesh is sufficiently refined, N = 80 for P2

and P3, the filtered solution has better accuracy compared to the original DG solution.

6.4. Compressed SIAC Filter 135

Also, we point out that the improvement after filtering is not as impressive compared
to the single wave example. To further investigate this problem, we present Figure 6.7
that shows the variation of the errors with the wave number λ. We can see that if the
standard filter is used, when the wave number λ is large, the filtered solutions does not
behave well, it can behave even worse than the original DG solution. In this section,
we propose two possible ways to solve this problem. The first method is considering
the idea of optimal scaling H? introduced in Chapter 4. By using the optimal scaling
H?, the filtered solutions are at least as good as the DG approximation. The second
method is to use the compressed filter (6.7) introduced in the next section. One can
use a compression factor η = 1/λ by considering the concept of splines-per-wavelength,
the same number of B-splines for each wavelength as the standard filter for the single
wave function. The results of using two methods are shown in Figure 6.7. From Figure
6.7, the results suggest that both methods work well and better than the DG solution
and using the standard filter.

1 2 3 4 5 6 7 8
λ

10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2

|er
ro

r|

P3, N = 40

DG
scaling h
scaling H?

compressed filter

1 2 3 4 5 6 7 8
λ

10−13
10−12
10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4

|er
ro

r|

P3, N = 80

DG
scaling h
scaling H?

compressed filter

Figure 6.7: Point-wise errors in log scale of the DG solution and filtered solutions:
the standard filter with scaling h, the standard filter with optimal scaling H? and the
compressed filter (η = 1/λ) with scaling h, for a function with wave number λ for a
linear advection equation.

Remark 6.3.1. We note that this section is a very preliminary study of SIAC filtering
for wave functions. Further research is needed to develop a rigorous conclusion for this
problem.

6.4 Compressed SIAC Filter

During the previous discussions, we addressed different components of SIAC filters,
such as the order of B-splines and the number of B-splines. In this section, we treat
another basic component of the filter: the sampling of the B-splines.

136 Chapter 6. Further Inverstigation of SIAC Filter

Recall the formula of the symmetric filter,

K(2k+1,k+1)(x) =

r∑
γ=0

c(2k+1,k+1)
γ ψ(k+1)(x+ k − γ). (6.6)

In formula (6.6), the B-splines are uniformly distributed with distance 1. However,
the proof of Theorem 1.3.4 suggests that the sampling of the 2k + 1 B-splines has no
effect on the final accuracy order, 2k + 1. The theoretical results allow us to sample
in different ways. It is then important to sample the B-splines in a way that we can
obtain additional benefits.

As mentioned earlier, one important computational factor of the filter is its support
size. A large support size usually leads to many computational problems. Based on
this, we can sample the B-splines more closely to each other and reduce the support
size of the filter.

K(2k+1,k+1)
η (x) =

r∑
γ=0

c(2k+1,k+1)
γ ψ(k+1)(x− xγ), (6.7)

where the sampling is
xγ = η(−k + γ).

Here, we refer to the filter given in (6.7) as the compressed filter and η as the com-
pression factor. Figure 6.8 shows the compressed filters with η = 0.5, see the original
filters in Figure 1.2. The support size of the compressed filter is (2η + 1)k + 1.

Remark 6.4.1. If one changes the scaling of the original filter in (6.6) by a scaling

H = (2η+1)k+1
3k+1 , then the scaled filter K

(2k+1,k+1)
H has the same support size as the

compressed filter K
(2k+1,k+1)
η . However, these two filters are not equivalent. Only the

compressed filter is able to obtain supperconvergence.

k = 1

−2 −1 0 1 2
−0.4

0.0

0.4

0.8

1.2

1.6
k = 2

−3 −2 −1 0 1 2 3
−0.4

0.0

0.4

0.8

1.2

1.6
k = 3

−4 −3 −2 −1 0 1 2 3 4
−0.4

0.0

0.4

0.8

1.2

1.6

Figure 6.8: Solid black lines represent the compressed filter K
(2k+1,k+1)
η given in

(6.7) with k = 1, 2, 3, dashed red lines represent the respect central B-splines. The
compression factor η = 0.5.

For the filtered solutions, we denote the scaled compressed filter as K
(2k+1,k)
h,η (x) =

1
hK

(2k+1,k+1)
η , then one can prove

6.4. Compressed SIAC Filter 137

Theorem 6.4.1. Under the same conditions in Theorem 1.3.4, the compressed filter
defined in (6.7) with η > 0, then

‖u−K(2k+1,k)
h,η ? uh‖0,Ω0 ≤ Ch2k+1.

Proof. The proof is the same as in Theorem 1.3.4.

Example 6.4.2. Consider a linear hyperbolic equation

ut + ux = 0, (x, t) ∈ [0, 1]× (0, T]

u(x, 0) = sin(2πx)

with final time T = 1 over uniform meshes. The L2 and L∞ norm errors and respective
accuracy orders are given in Table 6.5. Figure 6.9 shows the point-wise errors in log
scale. The respective results of the DG approximation and the original filtered solution
can be found in Example 1.3.5.

Table 6.5: L2− and L∞−errors for the filtered solution u?h with compressed filters
(η = 0.5 and η = 0.25) for a linear advection equation.

K
(2k+1,k+1)
0.5 K

(2k+1,k+1)
0.25

Mesh L2 error order L∞ error order L2 error order L∞ error order
P1

20 1.94E-03 – 2.78E-03 – 1.93E-03 – 2.78E-03 –
40 2.42E-04 3.00 3.44E-04 3.01 2.41E-04 3.00 3.44E-04 3.01
80 3.01E-05 3.00 4.27E-05 3.01 3.01E-05 3.00 4.27E-05 3.01
160 3.76E-06 3.00 5.32E-06 3.01 3.75E-06 3.00 5.32E-06 3.01

P2

20 2.51E-06 – 3.66E-06 – 2.27E-06 – 3.47E-06 –
40 6.95E-08 5.17 1.00E-07 5.19 6.57E-08 5.11 9.72E-08 5.16
80 2.09E-09 5.06 2.98E-09 5.07 2.03E-09 5.02 2.94E-09 5.05
160 7.12E-11 4.87 1.01E-10 4.88 7.03E-11 4.85 1.01E-10 4.87

P3

20 1.11E-08 – 1.57E-08 – 5.89E-09 – 9.15E-09 –
40 4.81E-11 7.84 6.86E-11 7.84 2.76E-11 7.74 4.25E-11 7.75
80 3.04E-13 7.30 4.33E-13 7.31 2.24E-13 6.95 3.30E-13 7.01
160 1.23E-14 4.63 1.74E-14 4.64 1.20E-14 4.23 1.70E-14 4.28

Through Example 6.4.2, we can see the compressed filter works as good as the
original filter, same accuracy order, same error level and same smoothness. The com-
pressed filter has reduced support size and maintains the same accuracy level as the
original filter. The compressed filter idea can help solve many issues caused by the large
support size of the filter, such as filtering over nonuniform meshes and boundaries. It
is a subject of future work.

138 Chapter 6. Further Inverstigation of SIAC Filter

K
(2k+1,k+1)
0.5 K

(2k+1,k+1)
0.25

0 0.2 0.4 0.6 0.8 1.0

x

10−16

10−12

10−8

10−4

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

0 0.2 0.4 0.6 0.8 1.0

x

10−16

10−12

10−8

10−4

|er
ro

r|

N = 20
N = 40
N = 80
N = 160

Figure 6.9: Point-wise errors in log scale of the filtered solutions with compressed
filters (η = 0.5 and η = 0.25). The DG basis are polynomials P3 for a linear advection
equation.

6.5 Conclusion

In this chapter, we have discussed several interesting topics of SIAC filters. Each topic
can lead us to a deeper understanding of SIAC filters and can be further studied. Here,
we just name a few future problems that are based on the topics in this chapter:

• Fast SIAC filtering for unstructured meshes and high-dimensional problems by
combining the idea of the inexact Gaussian quadrature and the compressed filter.

• SIAC filtering for wave-related application problems by using the compressed
filter or the optimal scaling concept.

• New structured filters based on Section 6.1, such as infinity smooth filter, trigono-
metric filter, etc.

7
Conclusion and Future Work

In this dissertation, we focus on exploiting superconvergence for discontinuous Galerkin
solutions and constructing a superconvergence extraction techniques, in particular,
Smoothness-Increasing Accuracy-Conserving filtering. We contributed to a series of
studies of SIAC filters for a variety of circumstances by proving theoretical analysis and
numerical experiments. The particular contributions of this thesis are the following:

• One-Sided SIAC Filtering Over Uniform and Nonuniform Meshes.
Typically, most of the studies of SIAC filtering are confined to the interior of the
underlying domain. For boundary regions, a one-sided filter is needed. The exist-
ing one-sided filters are not directly useful for most applications since they were
limited to uniform meshes, linear equations, using multi-precision pages in com-
putation. Also, the theoretical proof relied on a periodic boundary assumption.
We aimed to overcome these deficiencies and develop a new fast one-sided filter
for both uniform and nonuniform meshes. By studying B-splines and the negative
order norm analysis, we generalized the structure of SIAC filters from a combi-
nation of central B-splines to using more general B-splines. Then, a “boundary
shape” B-spline (using multiplicity knots at the boundary) was used to construct
a new one-sided filter. We also presented the first theoretical proof of convergence
for SIAC filtering over nonuniform meshes (smoothly-varying meshes). Details
are given in Chapter 2.

• Derivative Filtering Over Nonuniform Meshes and Near Boundaries.
One advantage of SIAC filtering is that it improves the smoothness of DG solu-
tions. Because of the increased smoothness, we can obtain a better approxima-
tion of the derivatives of DG solutions. The derivative filtering over the interior
region of uniform meshes was previously studied. However, nonuniform meshes
and boundary regions still remain a big challenge. We extended the one-sided
filter to a one-sided derivative filter. Nonuniform meshes are a difficult area,
by investigating the negative order norm over arbitrary meshes, we proposed to
scale the one-sided derivative filter with scaling hµ. For arbitrary nonuniform
rectangle meshes, we proved that the one-sided derivative filter can enhance the
order of convergence for αth derivative of DG solution from k+1−α to µ(2k+2),

139

140 Chapter 7. Conclusion and Future Work

where µ ≈ 2
3 . Details are in Chapter 3.

• Superconvergence Extraction Over Nonuniform Meshes. The most chal-
lenging part of this project is recovering the superconvergence of a DG solu-
tion over nonuniform meshes through SIAC filtering. Typically, most theoretical
proofs for the SIAC filter are limited to uniform meshes (or translation invariant
meshes). The few theoretical investigations for nonuniform meshes were given
in the one-sided and derivative filtering studies. Although our early research for
nonuniform meshes was able to provide good engineering accuracy, we want to
do better mathematically. This is not an easy task since unstructured meshes
give DG solutions irregular performance under the negative order norm. In our
work, we introduced a parameter to measure the “unstructuredness” of a given
nonuniform mesh. Then by adjusting the scaling of SIAC filter based on this
“unstructuredness” parameter, we are able to obtain the optimal filtered approx-
imation (best accuracy) over a given nonuniform mesh. Details are in Chapter
4.

• Application to Streamline Integration. After introducing the new one-sided
filter, we aimed to verify its usage in realistic engineering applications. The
topic we chose was streamline integration. By taking advantage of the one-sided
property of the new filter, we designed an efficient algorithm which filters the
velocity field along the streamline, then uses a backward differentiation formula
(BDF) for integration. Compared to the traditional method that filters the entire
field (multi-dimensions algorithm), the computational cost drops dramatically
since it is only a one-dimensional algorithm. Details can be found in Chapter 5.

• Further Topics of SIAC Filters. After studying SIAC filters for a broad range
of applications, we returned to further investigations of SIAC filters themselves.
Further topics such the uniqueness of the structure SIAC filters, the effects of the
order of B-splines to SIAC filters and the compressed SIAC filters are included
in Chapter 6. These topics give us in-depth insight into SIAC filters and reveal
some future directions for the development of SIAC filters.

Future Work

• This dissertation studies the superconvergence and SIAC filters for DG methods.
The extension is also possible to other numerical methods, such as finite element
methods, finite volume methods, finite difference methods and spectral methods.

• The theoretical error estimates for SIAC filters are only established for linear
hyperbolic problems. Nevertheless, the numerical results suggest that the filters
work well for a broad range of problems, such as variable coefficient equations
and linear hyperbolic conservation laws. Theoretical support for the nonlinear
problems could be a significant step towards real-world applications.

• Uniform or nonuniform quadrilateral meshes were considered in this disserta-
tion. The extension of SIAC filters for unstructured triangular or tetrahedral
tessellation is still a problem that is not perfectly solved. Developing an efficient

141

and accurate way to use SIAC filters over these unstructured meshes has great
practical values.

• The mathematical foundation of SIAC filters has been well established for many
situations. It is time to evolve SIAC filters widely to real-world applications. For
example, the use of SIAC filters for streamline integration is a subject of ongoing
research.

Bibliography

[1] Milton Abramowitz and Irene A. Stegun, editors. Handbook of mathemat-
ical functions with formulas, graphs, and mathematical tables. Dover Pub-
lications, Inc., New York, 1992. Reprint of the 1972 edition. http://peo-
ple.math.sfu.ca/∼cbm/aands/intro.htm.

[2] Slimane Adjerid and Mahboub Baccouch. The discontinuous Galerkin method for
two-dimensional hyperbolic problems. II. A posteriori error estimation. J. Sci.
Comput., 38(1):15–49, 2009.

[3] Slimane Adjerid and Mahboub Baccouch. A superconvergent local discontinuous
Galerkin method for elliptic problems. J. Sci. Comput., 52(1):113–152, 2012.

[4] Slimane Adjerid, Karen D. Devine, Joseph E. Flaherty, and Lilia Krivodonova.
A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic
problems. Comput. Methods Appl. Mech. Engrg., 191(11-12):1097–1112, 2002.

[5] Slimane Adjerid and Idir Mechai. A superconvergent discontinuous Galerkin
method for hyperbolic problems on tetrahedral meshes. J. Sci. Comput.,
58(1):203–248, 2014.

[6] Slimane Adjerid and Helmi Temimi. A discontinuous Galerkin method for the
wave equation. Comput. Methods Appl. Mech. Engrg., 200(5-8):837–849, 2011.

[7] Rick Archibald, Anne Gelb, Sigal Gottlieb, and Jennifer K. Ryan. One-sided
post-processing for the discontinuous Galerkin method using ENO type stencil
choosing and the local edge detection method. J. Sci. Comput., 28(2-3):167–190,
2006.

[8] Mahboub Baccouch. The local discontinuous Galerkin method for the fourth-
order Euler-Bernoulli partial differential equation in one space dimension. Part I:
Superconvergence error analysis. J. Sci. Comput., 59(3):795–840, 2014.

143

144 BIBLIOGRAPHY

[9] Mahboub Baccouch. The local discontinuous Galerkin method for the fourth-order
Euler-Bernoulli partial differential equation in one space dimension. Part II: A
posteriori error estimation. J. Sci. Comput., 60(1):1–34, 2014.

[10] Mahboub Baccouch. Superconvergence and a posteriori error estimates of a local
discontinuous Galerkin method for the fourth-order initial-boundary value prob-
lems arising in beam theory. Int. J. Numer. Anal. Model. Ser. B, 5(3):188–216,
2014.

[11] Mahboub Baccouch and Slimane Adjerid. Discontinuous Galerkin error estimation
for hyperbolic problems on unstructured triangular meshes. Comput. Methods
Appl. Mech. Engrg., 200(1-4):162–177, 2011.

[12] Georges-Pierre Bonneau, Thomas Ertl, and Gregory M. Nielson, editors. Scientific
visualization: the visual extraction of knowledge from data. Mathematics and
Visualization. Springer-Verlag, Berlin, 2006.

[13] J. H. Bramble and A. H. Schatz. Higher order local accuracy by averaging in the
finite element method. Math. Comp., 31(137):94–111, 1977.

[14] Susanne C. Brenner and L. Ridgway Scott. The mathematical theory of finite
element methods, volume 15 of Texts in Applied Mathematics. Springer, New
York, third edition, 2008.

[15] Waixiang Cao, Zhimin Zhang, and Qingsong Zou. Superconvergence of discontin-
uous Galerkin methods for linear hyperbolic equations. SIAM J. Numer. Anal.,
52(5):2555–2573, 2014.

[16] Fatih Celiker and Bernardo Cockburn. Element-by-element post-processing
of discontinuous Galerkin methods for Timoshenko beams. J. Sci. Comput.,
27(1-3):177–187, 2006.

[17] Yingda Cheng and Chi-Wang Shu. Superconvergence and time evolution of discon-
tinuous Galerkin finite element solutions. J. Comput. Phys., 227(22):9612–9627,
2008.

[18] Yingda Cheng and Chi-Wang Shu. Superconvergence of discontinuous
Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and
convection-diffusion equations in one space dimension. SIAM J. Numer. Anal.,
47(6):4044–4072, 2010.

[19] Philippe G. Ciarlet. The finite element method for elliptic problems, volume 40 of
Classics in Applied Mathematics. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 2002. Reprint of the 1978 original [North-Holland,
Amsterdam; MR0520174 (58 #25001)].

[20] Bernardo Cockburn. An introduction to the discontinuous Galerkin method for
convection-dominated problems. In Advanced numerical approximation of nonlin-
ear hyperbolic equations (Cetraro, 1997), volume 1697 of Lecture Notes in Math.,
pages 151–268. Springer, Berlin, 1998.

BIBLIOGRAPHY 145

[21] Bernardo Cockburn. Discontinuous Galerkin methods for convection-dominated
problems. In High-order methods for computational physics, volume 9 of Lect.
Notes Comput. Sci. Eng., pages 69–224. Springer, Berlin, 1999.

[22] Bernardo Cockburn. Discontinuous Galerkin methods. ZAMM Z. Angew. Math.
Mech., 83(11):731–754, 2003.

[23] Bernardo Cockburn, George E. Karniadakis, and Chi-Wang Shu, editors. Discon-
tinuous Galerkin methods, volume 11 of Lecture Notes in Computational Science
and Engineering. Springer-Verlag, Berlin, 2000. Theory, computation and appli-
cations, Papers from the 1st International Symposium held in Newport, RI, May
24–26, 1999.

[24] Bernardo Cockburn, George E Karniadakis, and Chi-Wang Shu. The development
of discontinuous Galerkin methods. In Discontinuous Galerkin methods (Newport,
RI, 1999), pages 3–50. Springer, Berlin, 2000.

[25] Bernardo Cockburn, Mitchell Luskin, Chi-Wang Shu, and Endre Süli. Enhanced
accuracy by post-processing for finite element methods for hyperbolic equations.
Math. Comp., 72(242):577–606, 2003.

[26] Bernardo Cockburn and Chi-Wang Shu. TVB Runge-Kutta local projection
discontinuous Galerkin finite element method for conservation laws. II. General
framework. Math. Comp., 52(186):411–435, 1989.

[27] Bernardo Cockburn and Chi-Wang Shu. The local discontinuous Galerkin
method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal.,
35(6):2440–2463 (electronic), 1998.

[28] Bernardo Cockburn and Chi-Wang Shu. The Runge-Kutta discontinuous Galerkin
method for conservation laws. V. Multidimensional systems. J. Comput. Phys.,
141(2):199–224, 1998.

[29] Bernardo Cockburn and Chi-Wang Shu. Runge-Kutta discontinuous Galerkin
methods for convection-dominated problems. J. Sci. Comput., 16(3):173–261,
2001.

[30] Sean Curtis, Robert M. Kirby, Jennifer K. Ryan, and Chi-Wang Shu. Postpro-
cessing for the discontinuous Galerkin method over nonuniform meshes. SIAM J.
Sci. Comput., 30(1):272–289, 2007/08.

[31] Carl de Boor. A practical guide to splines, volume 27 of Applied Mathematical
Sciences. Springer-Verlag, New York, revised edition, 2001.

[32] Daniele Antonio Di Pietro and Alexandre Ern. Mathematical aspects of discon-
tinuous Galerkin methods, volume 69 of Mathématiques & Applications (Berlin)
[Mathematics & Applications]. Springer, Heidelberg, 2012.

[33] Jim Douglas, Jr. and Todd Dupont. Some superconvergence results for Galerkin
methods for the approximate solution of two-point boundary problems. In Topics

146 BIBLIOGRAPHY

in numerical analysis (Proc. Roy. Irish Acad. Conf., University Coll., Dublin,
1972), pages 89–92. Academic Press, London, 1973.

[34] Jim Douglas, Jr., Todd Dupont, and Mary Fanett Wheeler. Some superconver-
gence results for an H1-Galerkin procedure for the heat equation. In Computing
methods in applied sciences and engineering (Proc. Internat. Sympos., Versailles,
1973), Part 1, pages 288–311. Lecture Notes in Comput. Sci., Vol. 10. Springer,
Berlin, 1974.

[35] Lawrence C. Evans. Partial differential equations, volume 19 of Graduate Studies
in Mathematics. American Mathematical Society, Providence, RI, 1998.

[36] Xiaobing Feng, Ohannes Karakashian, and Yulong Xing, editors. Recent devel-
opments in discontinuous Galerkin finite element methods for partial differential
equations, volume 157 of The IMA Volumes in Mathematics and its Applications.
Springer, Cham, 2014. 2012 John H. Barrett Memorial Lectures, Selected papers
from the workshop held at the University of Tennessee, Knoxville, TN, May 9–11,
2012.

[37] Casey Hufford and Yulong Xing. Superconvergence of the local discontinuous
Galerkin method for the linearized Korteweg-de Vries equation. J. Comput. Appl.
Math., 255:441–455, 2014.

[38] Arieh Iserles. A first course in the numerical analysis of differential equations.
Cambridge Texts in Applied Mathematics. Cambridge University Press, Cam-
bridge, second edition, 2009.

[39] Liangyue Ji, Paulien van Slingerland, Jennifer K. Ryan, and Kees Vuik. Supercon-
vergent error estimates for position-dependent smoothness-increasing accuracy-
conserving (SIAC) post-processing of discontinuous Galerkin solutions. Math.
Comp., 83(289):2239–2262, 2014.

[40] Liangyue Ji, Yan Xu, and Jennifer K. Ryan. Accuracy-enhancement of discontin-
uous Galerkin solutions for convection-diffusion equations in multiple-dimensions.
Math. Comp., 81(280):1929–1950, 2012.

[41] Liangyue Ji, Yan Xu, and Jennifer K. Ryan. Negative-order norm estimates for
nonlinear hyperbolic conservation laws. J. Sci. Comput., 54(2-3):531–548, 2013.

[42] C. Johnson and J. Pitkäranta. An analysis of the discontinuous Galerkin method
for a scalar hyperbolic equation. Math. Comp., 46(173):1–26, 1986.

[43] James King, Hanieh Mirzaee, Jennifer K. Ryan, and Robert M. Kirby.
Smoothness-increasing accuracy-conserving (SIAC) filtering for discontinuous
Galerkin solutions: improved errors versus higher-order accuracy. J. Sci. Comput.,
53(1):129–149, 2012.

[44] Michal Kř́ıžek and Pekka Neittaanmäki. Bibliography on superconvergence. In
Finite element methods (Jyväskylä, 1997), volume 196 of Lecture Notes in Pure
and Appl. Math., pages 315–348. Dekker, New York, 1998.

BIBLIOGRAPHY 147

[45] P. Lasaint and P.-A. Raviart. On a finite element method for solving the neu-
tron transport equation. In Mathematical aspects of finite elements in partial
differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madi-
son, Wis., 1974), pages 89–123. Publication No. 33. Math. Res. Center, Univ. of
Wisconsin-Madison, Academic Press, New York, 1974.

[46] Randall J. LeVeque. Finite volume methods for hyperbolic problems. Cambridge
Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2002.

[47] Xiaozhou Li, Yan Xu, and Yishen Li. Investigation of multi-soliton, multi-cuspon
solutions to the Camassa-Holm equation and their interaction. Chin. Ann. Math.
Ser. B, 33(2):225–246, 2012.

[48] Hanieh Mirzaee, James King, Jennifer K. Ryan, and Robert M. Kirby.
Smoothness-increasing accuracy-conserving filters for discontinuous Galerkin
solutions over unstructured triangular meshes. SIAM J. Sci. Comput.,
35(1):A212–A230, 2013.

[49] Hanieh Mirzaee, Jennifer K. Ryan, and Robert M. Kirby. Quantification of errors
introduced in the numerical approximation and implementation of smoothness-
increasing accuracy conserving (SIAC) filtering of discontinuous Galerkin (DG)
fields. J. Sci. Comput., 45(1-3):447–470, 2010.

[50] Hanieh Mirzaee, Jennifer K. Ryan, and Robert M. Kirby. Efficient implementa-
tion of smoothness-increasing accuracy-conserving (SIAC) filters for discontinuous
Galerkin solutions. J. Sci. Comput., 52(1):85–112, 2012.

[51] Michael S. Mock and Peter D. Lax. The computation of discontinuous solutions
of linear hyperbolic equations. Comm. Pure Appl. Math., 31(4):423–430, 1978.

[52] Kassem Mustapha and Jennifer K. Ryan. Post-processing discontinuous Galerkin
solutions to Volterra integro-differential equations: analysis and simulations. J.
Comput. Appl. Math., 253:89–103, 2013.

[53] Todd E. Peterson. A note on the convergence of the discontinuous Galerkin
method for a scalar hyperbolic equation. SIAM J. Numer. Anal., 28(1):133–140,
1991.

[54] W.H. Reed and T.R. Hill. Triangular mesh methods for the neutron transport
equation. Los Alamos Report LA-UR-73-479, 1973.

[55] Jennifer K. Ryan. Local Derivative Post-processing: Challenges for a non-uniform
mesh. Delft University of Technology Report 10-18, 2013.

[56] Jennifer K. Ryan and Bernardo Cockburn. Local derivative post-processing for
the discontinuous Galerkin method. J. Comput. Phys., 228(23):8642–8664, 2009.

[57] Jennifer K. Ryan and Chi-Wang Shu. On a one-sided post-processing technique
for the discontinuous Galerkin methods. Methods Appl. Anal., 10(2):295–307,
2003.

148 BIBLIOGRAPHY

[58] Jennifer K. Ryan, Chi-Wang Shu, and Harold Atkins. Extension of a postprocess-
ing technique for the discontinuous Galerkin method for hyperbolic equations with
application to an aeroacoustic problem. SIAM J. Sci. Comput., 26(3):821–843,
2005.

[59] Alfred H. Schatz. Pointwise error estimates and asymptotic error expansion in-
equalities for the finite element method on irregular grids. I. Global estimates.
Math. Comp., 67(223):877–899, 1998.

[60] Larry L. Schumaker. Spline functions: basic theory. Cambridge Mathematical
Library. Cambridge University Press, Cambridge, third edition, 2007.

[61] M Steffen, S Curtis, R M Kirby, and J K Ryan. Investigation of Smoothness-
Increasing Accuracy-Conserving Filters for Improving Streamline Integration
Through Discontinuous Fields. Visualization and Computer Graphics, IEEE
Transactions on, 14(3):680–692, 2008.

[62] Vidar Thomée. High order local approximations to derivatives in the finite element
method. Math. Comp., 31(139):652–660, 1977.

[63] Vidar Thomée. Negative norm estimates and superconvergence in Galerkin meth-
ods for parabolic problems. Math. Comp., 34(149):93–113, 1980.

[64] Paulien van Slingerland, Jennifer K. Ryan, and C Vuik. Smoothness-Increasing
Convergence-Conserving Spline Filters Applied to Streamline Visualization of
DG Approximations. Delft University of Technology Report 09-06, 2009.
http://ta.twi.tudelft.nl/nw/users/vuik/papers/Sli09RV.pdf.

[65] Paulien van Slingerland, Jennifer K. Ryan, and C. Vuik. Position-dependent
smoothness-increasing accuracy-conserving (SIAC) filtering for improving discon-
tinuous Galerkin solutions. SIAM J. Sci. Comput., 33(2):802–825, 2011.

[66] M.J. Vuik. Limiting and shock detection for discontinuous Galerkin solutions using
multiwavelet. TU Delft MSc Thesis, 2012. http://ta.twi.tudelft.nl/users/vuik/nu-
manal/vuik afst.pdf.

[67] Lars B. Wahlbin. Superconvergence in Galerkin finite element methods, volume
1605 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1995.

[68] David Walfisch, Jennifer K. Ryan, Robert M. Kirby, and Robert Haimes. One-
sided smoothness-increasing accuracy-conserving filtering for enhanced streamline
integration through discontinuous fields. J. Sci. Comput., 38(2):164–184, 2009.

[69] Ziqing Xie and Zhimin Zhang. Uniform superconvergence analysis of the discon-
tinuous Galerkin method for a singularly perturbed problem in 1-D. Math. Comp.,
79(269):35–45, 2010.

[70] Yan Xu and Chi-wang Shu. Local discontinuous Galerkin methods for three classes
of nonlinear wave equations. J. Comput. Math., 22(2):250–274, 2004. Special issue
dedicated to the 70th birthday of Professor Zhong-Ci Shi.

BIBLIOGRAPHY 149

[71] Yan Xu and Chi-Wang Shu. Local discontinuous Galerkin methods for nonlinear
Schrödinger equations. J. Comput. Phys., 205(1):72–97, 2005.

[72] Yan Xu and Chi-Wang Shu. Local discontinuous Galerkin methods for the
Kuramoto-Sivashinsky equations and the Ito-type coupled KdV equations. Com-
put. Methods Appl. Mech. Engrg., 195(25-28):3430–3447, 2006.

[73] Yan Xu and Chi-Wang Shu. A local discontinuous Galerkin method for the
Camassa-Holm equation. SIAM J. Numer. Anal., 46(4):1998–2021, 2008.

[74] Yang Yang and Chi-Wang Shu. Analysis of optimal superconvergence of discon-
tinuous Galerkin method for linear hyperbolic equations. SIAM J. Numer. Anal.,
50(6):3110–3133, 2012.

[75] Yang Yang and Chi-Wang Shu. Discontinuous Galerkin method for hyperbolic
equations involving δ-singularities: negative-order norm error estimates and ap-
plications. Numer. Math., 124(4):753–781, 2013.

[76] Tie Zhang and Shun Yu. The derivative patch interpolation recovery technique
and superconvergence for the discontinuous Galerkin method. Appl. Numer.
Math., 85:128–141, 2014.

[77] Zuozheng Zhang, Ziqing Xie, and Zhimin Zhang. Superconvergence of discon-
tinuous Galerkin methods for convection-diffusion problems. J. Sci. Comput.,
41(1):70–93, 2009.

Curriculum vitae

Xiaozhou Li

• 2010.12 - 2015.7: Ph.D., Delft Institute of Applied Mathematics, Delft University
of Technology, The Netherlands.

– Supervisors: Dr. Jennifer Ryan and Prof. Kees Vuik

– Thesis Title: Smoothness-Increasing Accuracy-Conserving Filters for Dis-
continuous Galerkin Methods: Challenging the Assumptions of Symmetry
and Uniformity

• 2007 - 2010: B.S., Mathematics and Applied Mathematics, University of Science
and Technology of China, China.

– Supervisors: Prof. Qing Chen

– Thesis Title: Geometric Measure Theory

• 2006 - 2007: School of Information Science and Technology, University of Science
and Technoloty of China, China.

• Born on 24-05-1987 in Chongqing, China.

• See more on my website, http://xiaozhouli.com.

151

http://xiaozhouli.com

List of publications

Journal papers

• Smoothness-Increasing Accuracy-Conserving (SIAC) Filtering for Discontinuous
Galerkin Solutions over Nonuniform Meshes: Superconvergence and Optimal
Accuracy. X. Li, J.K. Ryan, R.M. Kirby, and C. Vuik. SIAM Journal on Scientific
Computing, submitted.

• Smoothness-Increasing Accuracy-Conserving (SIAC) Filters for Derivative Ap-
proximations of DG solutions over Nonuniform Meshes and Near Boundaries. X.
Li, J.K. Ryan, R.M. Kirby, and C. Vuik. Journal of Computational and Applied
Mathematics, submitted.

• One-Sided Position-Dependent Smoothness-Increasing Accuracy-Conserving (SIAC)
Filtering Over Uniform and Non-uniform Meshes. J.K. Ryan, X. Li, R.M. Kirby,
and C. Vuik. Journal of Scientific Computing, accepted.

Others

• SIAC Filtering for Nonlinear Hyperbolic Equations. X. Li and J.K. Ryan. Pro-
ceedings of AMMCS 2013.

• One-Sided SIAC Filtering for Streamline with BDF Time Integrator. X. Li, J.K.
Ryan, R.M. Kirby, and C. Vuik. Preprint.

153

Acknowledgements

At the end of my thesis, I would like to acknowledge the people who helped and
supported me a lot in various aspects of my research and stayed in Delft.

First of all, my most sincere gratitude goes to my supervisor Dr. Jennifer Ryan.
During my PhD, I have benefited greatly from her guidance and encouragement. With-
out her help, the research work would have never been finished. Beside research, she
also helped me to adapt the life in the Netherlands and United Kingdom, and created
the comfortable research environment. It was a great pleasure for me to do research
under her supervision. I thank her for her patience and care that were of enormous
importance to me.

I would also like to thank Prof. Kees Vuik for accepting me to work in the Group
of Numerical Analysis at Delft Institute of Applied Mathematics, and for his wise
suggestions during our meeting.

The present research was done cooperated with Prof. Mike Kirby at the University
of Utah, Unite States. The cooperation was valuable for me and resulted in interesting
research achievements.

My gratitude also goes to my committee, for taking their time to evaluate this
thesis and providing helpful comments and suggestions.

I am also grateful to my first supervisor Prof. Yan Xu at the University of Science
and Technology of China. She played an important role in my research in the primary
stage, and without her my PhD in Delft would not be started.

I am thankful to Liangyue Ji, for having delightful discussions and offering useful
suggestions. Also, I am grateful to members of our research group: Thea, Daniel,
Julia and Xiong for their helping and discussions. Special thanks go to Thea Vuik, for
helping me translate part of this thesis into Dutch.

I am thankful to Theda Olsder, who has managed with an amount of formal pro-
cedures related to my arrival and stay in Delft. Deborah Dongor, who has helped with
official affairs. Kees Lemmens, who has provided technical support.

It was a pleasure to share the office with friendly office mates Pavel and Reijer, and
then Guido and Joost, and then Jing, Thea and Peiyao. During my study in Delft,
I met a lot of friendly and pleasant colleagues in Numerical Analysis group. Many

155

156 BIBLIOGRAPHY

thanks to Fred, Duncan, Domenico, Matthias, Neil, Fons, Martin, etc. Moreover, I
would also like to thank former and current PhD students Bowen, Menel, Manuel,
Dennis, Daniël, Rohit, Martijn, Fahim, Abdul, Behrouz, Reinaldo, Fei, Yue, Fei, Lisa,
Xin, Jiao, Gabriela, Luis, etc.

Finally, I would like to give my greatest gratitude to my parents.

Xiaozhou Li
Delft, June 2015

	cover

