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Abstract
The goal of this graduation project was to design a state-of-the-art central farm controller. The designedcentral farm controller distinguishes itself from prevailing controllers by including a subsystem (the optimi-
sation unit) that contributes to an improvement in power transmission efficiency, decrease inmaintenancecosts and an increase in system reliability/robustness. This thesis describes the design process of the op-
timisation unit and the verification of its feasibility. Originally, the plan was to test the design on a remoteterminal unit (RTU), but unfortunately due to the current crisis, this was not possible. Therefore, the im-plementation and testing were carried out only in MATLAB. Tests were performed using a MATPOWERsystemmodel which has been derived from a real wind farm topology. The optimisation unitmakes use ofa meta-heuristic algorithm to solve an optimal reactive power flow dispatch optimisation problem. In thisthesis, the feasibility of this optimisation unit is investigated. Furthermore, it is determined which devicesshould be controlled and of which the usage is optimised. This makes the treated optimisation problema multiple objective optimisation. Lastly, the robustness is verified by extending the topology and testingthe solutions of the optimisation unit.
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Chapter 1
Introduction
1.1 Background
1.1.1 Power Flow Management in Substations
There are several ongoing wind farm (WF) projects in the Netherlands. There are for example a lot ofsmall and old wind turbines that are being replaced with fewer and larger turbines. Wind parks generallyconsist of several wind turbine generator (WTG) strings. The power cables of the strings are gathered inthe substation and transformers step up the voltage to deliver the power to the grid. Delivery is done at thepoint of common coupling (PCC). It is becoming a new case in the Netherlands that solar farms (SF) arealso connected to these substations. The new farms havemore generation capacity and thus substationsshould be scaled accordingly.
Power flow management is done as follows in such a substation: A central farm controller (CFC) receivessetpoints from the transmission system operator (TSO). These setpoints can be converted into an amountof active and reactive power required at the PCC. It is usual that the required amount of active power isequal to the maximum active power generation possible at that moment. To achieve these setpoints, theCFC requests a certain amount of reactive power from each generating string. This is done by communi-cating these amounts to the local wind farm controllers (LWFC) and the local solar farm controllers (LSFC)by sending setpoints. Each local farm controller (LWFC or LSFC) distributes the active and reactive powerproduction as desired between the available generation units on a string but ensures that the requiredsetpoint by the CFC is met. While reaching the setpoint, the grid code must also be satisfied.
1.1.2 The System Topology in Question
The research is done on a real-life based case study of a WF. Due to confidentiality reasons, the exact caseunder study is not disclosed. However, a general system topology is presented in Fig. A.5. The systemtopology is shortly elaborated in this paragraph and then the optimisation problem is presented. The sys-tem in question consists of four 33 kV bus bars. To each bus bar, multiple WTG strings are connected. Forreliability reasons, the bus bars can also be interconnected. Between the two bus bars in the middle, thereis a shunt reactor which can absorb extra reactive power if needed. The bus bars are connected in pairsto the two main transformers. These transformers step up the voltage to 150 kV and have multiple tappositions. The tap positions alter the number of windings at the secondary side of the transformer. Theswitching of the taps is done by an on-load tap changer (OLTC). The transformers are connected to theswitchgear at the PCC. After ensuring the grid requirements are met, power is delivered to the main grid.
1.2 Project Breakdown
As already mentioned in Section 1.1.1, requirements are given in the form of TSO setpoints and grid code.However, there are multiple ways in which these requirements can be reached. This is due to the factthat there are multiple controllable devices available in the system. These are for instance the individualreactive power outputs of the strings, the tap positions of the transformers and the connection of the shuntreactor. Each of these devices could receive a setpoint in order to reach an optimal system solution. Thiscreates the possibility of achieving the same requirements using different combinations of setpoints, withsome combinations to be more (economic) feasible than others. This means that some combinationsallow for less active power losses and reduced system maintenance costs.
Currently, a CFC uses a rule-based approach for the distribution of reactive power but neglects the con-trol of transformers and shunt devices. Furthermore, it takes grid compliance into account but neglectsthe possibility of more feasible setpoint combinations. Thus, current CFC’s do not consider active power
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losses and system maintenance costs when performing park management. In this project, a CFC is pro-posed which distributes optimised setpoints that take the minimisation of active power losses and sys-tem maintenance costs into account. Furthermore, the proposed CFC also has the ability to control tap-changing transformers and the shunt reactor within a system. The design of the proposed CFC can bedecomposed into three different sub-designs: the control unit, the optimisation unit and the power flow
model of the farm. The interaction between the three sub-systems is displayed in Figure 1.1. In this thesis,the optimisation unit is designed and simulated. Below, the role of the optimisation unitwithin the CFC andits envisioned operation are discussed.

Figure 1.1: Decomposition of the Central Farm Controller
Optimisation UnitIn order to achieve an optimal system configuration, the CFC must be able to compute a combination ofoptimal setpoints using the system inputs presented in Figure 1.1. This is the responsibility of the optimisa-
tion unit. The purpose of the optimisation unit is to provide the control unit with a reference set of optimalsetpoints which then ensures that those setpoints are achieved at the controllable devices. Using a certainwind/solar profile, the optimisation unit determines the physical boundaries of the control variables andsubsequently determines the optimal setpoints such that the requests at the PCC are satisfied and the gridcode is enforced. During the process of optimisation, the optimisation unit utilises the power flow modelto determine the feasibility of a combination of setpoints. Therefore, the realistic feasibility of the optimalsetpoints is bounded by the accuracy of the power flow model.
This project must realise the functioning of the optimisation unit as described above. The optimisation
unit must be able to receive the wind speed, the solar irradiance, information about the system topologyand the requested reactive power setpointQref by the TSO andmust convert this information into optimalsetpoints for the different controllable deviceswithin a farm. These optimal setpoints should result inmoreeconomic feasibility in the long run and a more reliable system. Furthermore, the setpoints must lie withinthe physical boundaries of the system, i.e they must be physically possible and they must be computed
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every time the TSO gives new requests. The design process of the optimisation unit is elaborated in thisthesis. For the exact decomposition of the requirements, please refer to Chapter 2.
1.3 Research Goal & State-of-the-Art Analysis
In order to realise the design of the optimisation unit, optimal power flow (OPF) problems are consideredand especially optimal reactive power dispatch (ORPD) problems. The reactive power that circulateswithina power system plays an important role in the real power transfer and voltage stability of that power sys-tem. The main objectives of ORPD include the minimisation of active power losses, maximisation of volt-age stability and the minimisation of transmission costs [1]. Therefore, the research objective for thisthesis concerns the proper formulation of an ORPD problem for the system in question and how to solveit. There are multiple and different types of control variables (the variables can be discrete, continuousor binary) which influence the solution of an ORPD problem. Such problems are researched extensivelyby the scientific community. In literature, OPF problems are investigated concerning the optimisation ofcontrollable device settings within a WF such as in [2] and [3]. Furthermore, cases are considered in whichoptimisation is performed within a distribution network such as in [4], [5] and [6]. In the previously men-tioned systems the goals of optimisation are for instance theminimisation of economic costs [4] or powerlosses within the network ( [2], [6] and [7]). Other goals include the maximisation of the lifetime of compo-nents by minimising transformer tap switches [3] or deviations from system ratings such as bus voltageratings [6]. Furthermore, the technical constraints of a system must be taken into account when reachingthese optimisation goals. This makes the optimisation a high-dimensional, constrained, non-linear andmixed-integer programming problem.
Until now, research has been focusing on the proposal and implementation of various state-of-the-art al-gorithms to solve previously mentioned OPF problems. However, no investigation has been done aboutthe feasibility of optimisation of controllable devices in a generator farm consisting of both wind and solarmodules. Furthermore, no emphasis has been placed yet on the flexibility and extendability of the opti-misation problems with variations within a farm’s topology, i.e adding and removing generating units andcontrolling different devices. This goal of this thesis is to add knowledge to this grey area.
The previous mentioned optimal control improvements are beneficial to substation manufacturers whooperate in renewable energy generation parks. As mentioned in Subsection 1.1.1, it is becoming morecommon to connect a SF to a(n), already existing, WF’s. This requires more flexibility and robustness ofthe CFC and therefore also of the optimisation unit. The feasibility of the improvements is verified usingthe case study mentioned in Subsection 1.1.2.
1.4 Thesis Structure
The thesis is structured as follows: In Chapter 2, the programof requirements (PoR) of the optimisation unitis presented. Chapter 3 explains the taken design steps and how the design is implemented in MATLAB.In Chapter 4, the performance results of the design are presented and discussed. Finally, a conclusion isgiven in Chapter 5 together with recommendations for future work.
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Chapter 2
Program of Requirements
The central farm controller (CFC) is in charge of maintaining grid compliance. That is, the controller needsto make sure that the requirements drafted by the transmission system operator (TSO) and governmentalentities are satisfied. The controller ensures this by sending out setpoints to the local farm controllers(LFCs), transformers and shunt devices. The controller receives measurements at the PCC and LFC’s asfeedback, needed by the control unit. The TSO setpoint requests are described by the requested active(Pref) and reactive power (Qref) at the PCC, which are refreshed every 15 minutes. The requested activepower is usually equal to the maximum possible active power generation at a certain wind speed and so-lar irradiance. In case of a different active power request, the control unit provides the optimisation unitwitha correct distribution of the active power outputs across the strings such that the active power request issatisfied. Furthermore, the final setpoints sent by the CFCmust take the active losses and systemmainte-nance costs into account. The minimisation of active power losses indicates that the controller is efficientand therefore increases its value. The minimisation of hardware maintenance occasions results in lesslong term maintenance costs. The implementation of this controller is thus beneficial for farm operators.Lastly, in order to guarantee robustness and usefulness of solutions, the requested setpoints should be asfar away as possible from the devices’ physical limits. From these functional requirements, the followingmandatory and trade-off requirements are derived for the optimisation unit within the controller:
Mandatory requirements for the optimisation unit:

• The computation time of new optimal setpoints must not exceed 15 minutes.
• The computed optimal setpoints must be physically possible. That is, the setpoints must lie withinthe physical boundaries of the controllable system devices.
• The resulting reactive power (Qpcc) and voltage (Vpcc) from the calculated setpoints must lie withinthe allowed grid boundaries respectively presented in Figures A.1 and A.2.
• The resulting reactive power (Qpcc) from the calculated setpoints must lie within the maximum al-lowed deviation from Qref. This maximum allowed deviation equals 5% of the maximum reactivepower capability of the farm [8].
• The computed setpoints must never result in violations of the system’s technical constraints. Theseconstraints include maximum bus voltages, branch currents and transformer power flows.

Trade-off requirements:
• The computed setpoints should result inminimal active power losses to increase active power whichcan be sold.
• The computed setpoints should result in minimal switching of transformer tap positions tominimisemaintenance costs.
• The computed setpoints should result in minimal on and off switching of the shunt reactor to de-crease system disturbances.
• The computed setpoints of the generator strings should be as far as possible from their physicalboundaries to increase system robustness.
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The optimisation unit consists of a configurable framework built around a meta-heuristic algorithm. Thisframework must satisfy the mandatory requirements and after configuration, it should meet the trade-offrequirements as much as possible. In order to investigate the feasibility and robustness of the proposed
optimisation unit, the optimisation unit must be benchmarked using different configurations and challeng-ing operating conditions. Furthermore, it must be shown that the optimisation unit is able to operate whendifferent sources of renewable energy generation are incorporated in the farm. Thus, the optimisation unitmust satisfy the previously mentioned requirements when the topology in Fig. A.5 consists solely of WTGstrings, i.e. the PV generator strings are removed. Thereafter, withminimal adjustments to the optimisation
unit, the requirements should be fulfilled when the PV generator strings are connected in Fig. A.5.
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Chapter 3
Design Methodology
In this chapter, the design methodology of the optimisation unit is presented. While designing the optimi-
sation unit, the PoR (Ch. 2) is taken into account. Firstly, a formulation is given of the optimisation problemwhich the optimisation unit needs to solve (Section 3.1). Next, the choice of the optimisation algorithm iselaborated (Section 3.2). Then, it is discussed how the optimisation unit is implemented in MATLAB andhow it is ensured that the mandatory requirements in Ch. 2 are satisfied (Section 3.3). Finally, an elab-oration is given of the approach to arrive at the optimisation unit’s final configuration (Section 3.4). Thisconfiguration is decisive for the satisfaction of the trade-off requirements in Ch. 2.
3.1 The Optimisation Problem
This section presents the optimisation problem which needs to be solved by the optimisation unit. This isdone by firstly presenting the standard mathematical formulation of an optimisation problem. Thereafter,the mathematical optimisation formulation is applied to the system in question.
3.1.1 Mathematical Formulation
To begin with, the optimisation problem needs to be formulated. Knowing the type of problem allows for amore educated choice of an optimisation algorithm. In fact, the formulation of the optimisation problem istreated extensively in literature (see [2] and [3] for instance). Note that thementioned literature sources aretreating an optimisation problem at park level which is most closely related to the optimisation problempresented in Section 1.2. The mathematical formulation of an optimisation is as follows (from Eqs. 1-4of [6]):

minimizex OF (x) (3.1a)
subject to g(x)i ≤ 0, for i = 1 . . . ,m (3.1b)

h(x)j = 0, for j = 1, . . . , p (3.1c)
x ∈ X (3.1d)

In Eq. 3.1a, the vector x represents the set of control variables. These control variables are bounded by X(Eq. 3.1d). X is the set containing all possible values of x. TheOF (x) is the objective function which repre-sents the factors which need to be minimised. Furthermore, Eqs. 3.1b and 3.1c represent the constraintswhich the solution must meet.
3.1.2 Application to the System in Question
Themathematical formulation consists of various components namely the control/optimisation variablesin x, the set of possible values of those variables in X, the constraints of the system and the OF. Thereal system must be mapped to these components. Firstly, the control variables in x are determined.Please note that these control variables are changed at each optimisation instant (case) and therefore,the equations presented in the optimisation problem must hold for each x. The control variables in x aredependent on the system topology that is used and which devices of a topology are controlled. In this
optimisation unit, the following controllable devices are considered: the reactive power output of the WTGand photo-voltaic generator (PVG) strings, the main transformers’ tap positions and the shunt reactor. Thesetpoints for these controllable devices are found in the vector x. Firstly, only the reactive power output ofthe WTG strings is controlled. The controllable variables consist then of the reactive power outputs of thedifferent WTG strings QWTGi. The vector x is then:

x = [QWTG1, . . . , QWTG13] (3.2)
9



In order to minimise active power losses and to maximise the components’ lifetime, the transformer tappositions and the shunt reactor should be controlled as well. In order to do this, Eq. 3.2 needs to beextended with extra variables. The twomain transformers havemultiple tap positions which are describedby (tapT 1 and tapT 2). The shunt reactor can be connected or disconnected which is given by (R). Thevector x is thus extended as:
x = [QWTG1, . . . , QWTG13, tapT1, tapT2, R] (3.3)

In the last case, the system topology is changed by adding four photo-voltaic (PV) generator strings. Theirreactive power output is represented by (QPV i). Adding these control variables yields the final vector x:
x = [QWTG1, . . . , QWTG13, QPV 1, . . . , QPV 4, tapT1, tapT2, R] (3.4)

These control variables are bounded by their physical limits. EachWTG has a limited reactive power rangeand the same holds for the inverter of the PV strings. This range is dependent on the wind speed and solarirradiation available at the evaluated time instance. Moreover, the transformers have a fixed number of tappositions. Lastly, the shunt reactor is either on (denoted by a 1) or off (denoted by a 0). All setpoints forthe controllable devices given in x must lie within these limits since it is physically impossible to producevalues outside this range. These limits are implemented in the optimisation problem as the bounds of thesearch space (Eq. 3.1d) and are given by the following set of equations:
Qmin

WTGi ≤ QWTGi ≤ Qmax
WTGi (3.5a)

Qmin
PV i ≤ QPV i ≤ Qmax

PV i (3.5b)
tapTmin

i ≤ tapTi ≤ tapTmax
i (3.5c)

R ∈ {0, 1} (3.5d)
The system constraints include the grid code requirements at the PCC, the maximum allowed deviationfrom TSO reactive power requests and voltage/current limits within the system. These constraints makethe distinction within feasible and infeasible solutions; solutions that result in violations of these con-straints are considered infeasible. The main constraint is given by the TSO and concerns the maximumallowed deviation (ε) from the TSO request. Furthermore, the reactive power at the PCC (QPCC) must liewithin the grid limits shown in Fig. A.1. The next constraint is that the bus voltages should be within a min-imum value and maximum value vmin and vmax. At the PCC, these limits are dependent on the amount ofreactive power delivered to the grid (see Fig. A.2). In the system, the limits are given by the rated voltageof the system devices. If these devices operate at a different voltage, they can be damaged.There are two other constraints which are due to the capacity limits of the system components: Firstly,the line currents should be below a maximum allowed limit imax

line . Secondly, the power flowing through thelines and transformers should not exceed the long term ratings smax
line . Violation of these two constraints canlead to system components being damaged or destroyed. Note that there are actually to other constraintswhich need to be met: nodal active and reactive power balance. However, MATPOWER already takescares of these two constraints and they will therefore not be considered as constraints for the MATLABimplementation of the optimisation unit. The constraints are summarised as follows:

|QPCC −Qref | ≤ ε (3.6a)
vmin ≤ vi ≤ vmax (3.6b)
iline,i ≤ imax

line,i (3.6c)
sline,i ≤ smax

line,i (3.6d)
Finally, the OF which needs to be minimised is formulated. With regard to the requirements in Ch. 2, theobjective function needs to minimise the following parameters: power losses between the strings andthe PCC (denoted by P loss), the number of transformer tap switches (denoted by OLTCcost), the usageof the shunt reactor (denoted by Rcost) and the distances to the origin of the reactive power outputs ofthe strings w.r.t. their maximum (denoted by Qdistance). These are the trade-off requirements. It makessense to implement them in the objective function since it is not possible to have all of these requirementsminimal. This has to do with the fact that the setpoints leading to the minimum of one objective probablydo not lead to the minimum of the other objectives. The objective function has the following form:
OF = w1 · P loss(xt) + w2 ·OLTCcost(xt) + w3 ·Rcost(xt) + w4 ·Qdistance(xt) for t = 1, . . . , tmax (3.7)
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In Eq. 3.7, thewi are theweights of the corresponding objectives and they are used to givemore importanceto a certain aspect of the multi-objective optimisation problem. The model used for the weights is theWeightedSumModel (WSM). In thismodel, theweights of the different objectives add up to 1. Thismodel isonly valid under the additive utility assumption. In short, thismeans that the units of the different objectivesneed to be the same since otherwise, one would compare apples to oranges (as explained in [9]). Theobjectives in Eq. 3.7 have different units. To prevent a false comparison, all the values are normalised. For
P loss, it means that the p.u. value is taken. For the OLTCcost, the taps are first normalised using the totalnumber of tap changes possible per transformer and then divided by the total number of transformers.This way, when there are maximum tap position changes, the value is equal to 1. The Rcost is left as it issince it is a binary value so it is either 1 or 0. Qdistance is normalised by dividing the Q per string by themaximum possible value at that time instant Qmax. Moreover, the sum is divided by the total number ofstrings controlled. This results in a 1 when all strings are at their reactive power limit. Normalisation in thisway results in the OF having a value between 0 and 1 at all times where a 0 is the best possible value.
In this last part, it is explained how the different objectives of Eq. 3.7 are computed. P loss is given by thepower flow calculation which is done using a MATPOWER model of the system in question. For moreinformation about the model, please refer to [10]. The way in which the losses are calculated can be foundin Section 9.2.4 of [11]. The total loss is then normalised to its p.u. value in order to have a value between0 and 1. The OLTCcost is modelled as in [3] where a larger tap change results in a greater cost. This isdue to the increased maintenance and operational costs when changing the tap positions. Moreover, theon-load tap changer (OLTC), which changes tap positions, is 30% of the time the reason of transformerfailures (from Fig. 54 of [12]) so also from a reliability aspect, changing tap positions should occur as littleas possible. The OLTC cost function is implemented as follows:

OLTCcost(xt) = 1

NT
·
NT∑
i=1

|tapTi,t − tapTi,t−1|
tapTi,range

(3.8)
In Eq. 3.8, tapTi,t and tapTi,t−1 are the current and previous tap position of a transformer respectively,NTis the number of transformers (which for this topology equals 2) and tapTi,range is the maximum numberof possible tap changes of a given transformer. This equation does not only consider if there is a tapswitch between the current and the previous time instance, but it also implements how much the tap haschanged. If the tap positions do not change, the costs are 0 as desired. Moreover, this equation is at most1 which is the case when there is maximal tap change of all transformers. Minimising the switching of theshunt reactor is also desired. This is due to the fact that the considered shunt reactor has a fixed value.When this reactor is connected, a large amount of reactive power is suddenly injected in the system. Thisresults in a temporary disturbance of the power flows in the system and therefore the on/off switching ofthe reactor should be minimised. The cost of the reactor is implemented in a similar way to the cost of theOLTC:

Rcost(xt) = 1

NR
·
NR∑
i=1

|Ri,t −Ri,t−1| = |Rt −Rt−1| with NR = 1 (3.9)
In Eq. 3.9, Rt and Rt−1 represent the current and previous reactor status respectively and NR is the totalnumber of reactors (in this case this is 1). Lastly, it is desired to have the strings’ reactive power output asfar away as possible from their maximum reactive power output range at a given profile. In reality, thereis turbulence. Turbulence, together with other factors such as wind shear, can impact a turbine’s perfor-mance [13]. Giving setpoints near the reactive power boundary can result in this reactive power amountnot being available due to changing atmospheric conditions. Giving a lower reactive power setpoint canprevent this; a low amount of reactive power is available for more wind speeds. In order to improve therobustness and usefulness of the setpoints, a setpoint is given which lies further away from the reactivepower limit. Operating further away from the limits means that the distance is closer to 0 reactive poweroutput. Implementing this requirement in this way is more suitable for the optimisation since the OF andthus its objectives are minimised. This ’extremeness’ of the reactive power setpoints is determined asfollows:

Qdistance = 1

Nstrings
·
Nstrings∑

i=1

| Qi

Qi,max
| (3.10)
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The average normalised distance to 0 is denoted by the termQdistance. First, the requested reactive poweroutputQi is divided by the maximum operating limit for a given profileQi,max. The absolute value is takensince in this implementation, it is assumed that the reactive power limits are symmetrical around 0. This isdone for all strings (indicated by Nstrings). The summation is divided by the number of strings in order tooperate in a normalised range and s.t. Qdistance is 1 iff. all strings operate at their operating limit. One thingto note on the objective of Eq. 3.10: This objective minimises the distance of the string reactive poweroutput w.r.t. 0. However, the LWFCs take care that these setpoints are reached at the bus bar. This meansthat it is possible that the LWFCs balance the reactive power output using extreme setpoints within thestring. It is presumed that this situation does not occur. This is based on the assumption that it would notmake sense to stress the turbines with extreme setpoints since this would result in a shorter lifetime ofthe components.
3.2 Optimisation Algorithm
In this section, the optimisation algorithm is presented and discussed. Firstly, the process of choosing anadequate optimisation algorithm is elaborated. Thereafter, a description of the algorithm mechanism isgiven. The types of algorithms used to solve an OPF can be distinguished into two types: classical andheuristic. Classical algorithms use mathematical techniques such as (non)linear programming or New-ton’s method to achieve the optimal solution [14] whereas heuristic algorithms often use nature-inspiredtechniques to achieve a (near-)optimal solution [2], [15]. Classical algorithms usually have reduced com-putational time and are guaranteed to find the best solution. However, they have difficulties when dealingwith an optimisation problem type like the one mentioned in Sections 1.3 and 3.1. They require a sim-plification of the OPF problem formulation which is based on linearised equations of the system model.Therefore the use of classical algorithms for the previous mentioned OPF problem is undesired. On theother hand, heuristic algorithms overcome these difficulties but in return, they attempt to find a near-to-optimal solution (i.e not the best solution, but a sufficiently good solution). Disadvantages of heuristicalgorithms are the possibility of local stagnation and premature convergence [3]. However, these could beovercome by adjusting the parameter settings of the algorithm. These features make heuristic algorithmsworth investigating for the described OPF problem. The emphasis is placed on the comparison of differ-ent meta-heuristic algorithms i.e heuristic algorithms which treat optimisation problems as black-boxesand therefore allow for more flexibility when changes happen in the OPF problem. The choice of an algo-rithm is discussed and elaborated in Subsection 3.2.1. The working of the chosen algorithm is presentedin Subsection 3.2.2.
3.2.1 Choice of Algorithm
The computation speed of the optimisation unit is mainly determined by the convergence time of the opti-misation algorithm. This is the time needed for an algorithm to find a sufficiently good solution. Therefore,the convergence time of the algorithmmust not exceed 15minutes and is desired to be as short as possiblein order to satisfy the requirements mentioned in Chapter 2. However, the convergence speed is a dubiousperformance measure when comparing the performance of algorithms on different types of OPF prob-lems. This is because the convergence speed depends on factors such as problem characteristics (e.gnumber of constraints or solution dimension), computation hardware and algorithm parameters. There-fore it is chosen to focus on a meta-heuristic algorithm with a large set algorithm parameters allowingmore flexibility and control in terms of solution quality and convergence speed.
It is chosen to implement an improved variant of mean-variance mapping optimisation (MVMO) namelyMVMO-SHM as the optimisation algorithm in the optimisation unit. MVMO-SHM is a meta-heuristic opti-misation algorithm that makes use of a memory archive consisting of the best solutions so far during oneoptimisation attempt. The algorithm then applies statistical techniques to this archive in order to improvethe so far best solution. The procedure of MVMO-SHM is described in Subsection 3.2.2. The choice ofMVMO-SHM is based on the fact that the predecessor of this algorithm is proven to be effective for similarOPF problems in terms of convergence characteristics. That is, MVMO is proven to be effective for opti-mal reactive power management in a near-shore wind farm which contains a similar amount of controlvariables [2]. Furthermore, the algorithm has a large pool of strategic parameters that influence differentstages of the evolutionary process of the algorithm [16]. This allows for flexibility and control in terms ofsolution quality and convergence speed.
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3.2.2 MVMO-SHM
MVMO-SHM is an evolutionary, multi-particle andmeta-heuristic algorithm. Each particle ofMVMO-SHM ismoved throughout the possible solution space in order to find the region where the solution is feasible andmore optimal. The aspect that makes MVMO-SHM unique is that it makes use of an on statistics basedmapping function for improving the optimal solution throughout its iterative search process [16]. Thismapping function uses the mean and variance of the so far N-best solutions in order to steer the generalbest solution towards a more feasible direction. N is the size of a particle’s solution archive. In order tomake use of this statistical mapping function, the different optimisation variables are normalised to therange [0,1]. The newly calculated solutions at every iteration are within the [0,1] range and consequently,the optimal solution always stays within the allowed physical boundaries. Thus, the implementation ofMVMO-SHM allows for the satisfaction of the second mandatory requirement presented in Chapter 2.Furthermore, the algorithm easily switches between search exploration (i.e searching more globally) andexploitation (i.e searching more accurately in a specific region; usually around the best solutions so far).This decreases the possibility of the solution to be trapped in a local optimum. The algorithm also allowsthe enabling of an external local search mechanism. This mechanism is computationally expensive butallows the algorithm to generate more feasible solutions within a region.
The iterative procedure of the MVMO-SHM is depicted in Figure 3.1. To begin with, the algorithm andoptimisation problem parameters must be initialised. Then, the optimisation variables are normalisedusing the specified physical min/max bounds. Thereafter, the iterative loop is initiated where the solutionin the first algorithm iteration of every particle consists of a vector with random samples from the U(0, 1)distribution.
The termination criterion in Figure 3.1 is defined by a pre-specified number of allowed iterations. To clarify,a generation evaluation describes the process of an evaluation of all particles. Every particle evaluation isdescribed as one iteration. If the local search mechanism is carried out, a particle evaluation can take upmultiple iterations. Then, an intensive search around the first ranked solution of a particle’s archive xbestkis carried out and the solution archive is updated accordingly. When no local search is carried out, thepreviously generated solution is evaluated on its fitness and the solution archive is updated accordingly.
Thereafter, a new solution vector of the kth particle xnewk is generated using the hitherto best solution xbestkand a mapping function that uses the statistical properties of the solutions within this particle’s solutionarchive. The mapping function is applied tom selected variables in the best solution vector (xbestk) with m
≤D, whereD is the number of optimisation variables. Themapping function uses themeans and variancesof these m variables (from the solution archive) to generate a new solution xnewk. The mapping functionis described and analysed extensively in [16]. Since understanding this mapping function allows for betterunderstanding and implementation of the MVMO-SHM algorithm, a behavioural analysis of the mappingfunction is presented.
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Figure 3.1: Procedure of the MVMO-SHM Algorithm (Figure 1 from [16]).
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Figure 3.2: Mapping Function Behaviour (Figure 3 from [16])

Figure 3.2 describes how the mapping function behaves for different shape factors si. The shape factor isa controllable parameter within the meta-heuristic algorithm. Each solution x contains multiple variables;one variable is denoted as xi. The newly generated variable xi depends on randomsamples from theU(0, 1)distribution (xi*), the shape factor (si) and the mean (xi). For a bigger si, the newly generated variables aremore likely to be mapped around the mean, creating new solutions that are close to the solutions storedin the solution archive. For a smaller si, the newly generated variables are more dependent on the randomsample xi*, creating new solutions that are further away from the solutions in the solution archive. Thusfor bigger si, the algorithm searches more accurately around the hitherto best solutions while for smaller
si, the algorithm searches more globally. Equations 3.11a, 3.11b and 3.11c from [16] describe the algorithmparameters that can influence the solution search during the optimisation process.

si = −ln(vi) · f s (3.11a)
with f s = |f s0 · [4 + 1.65(rand− 0.15)]| (3.11b)
and f s0 = f s_ini + k · (f s_final − f s_ini) (3.11c)

Equation 3.11a shows the expression of the shape factor, where vi is the variance of the ith variable and
fs is the scaling factor. The expressions corresponding to the scaling factor are given in Equations 3.11band 3.11c in which rand is a random sample from the U(0, 1) distribution, k is the relative iteration count(i.e iteration count divided by the number of allowed iterations) and fs_ini and fs_final are tunable algorithmparameters that influence the initial and final values of fs. Thus, the scaling parameter fs_final allows si to beadjusted automatically throughout the optimisation process. At the beginning of an optimisation process,the algorithm is desired to searchmore globally such that more (feasible solution) regions are explored. Atthe later stages of the process, it is desired to searchmore accurately i.e to search the best solutionswithinthe feasible solution regions. This can be realised by tuning fs_ini and fs_final such that si gradually increasesthroughout the optimisation process. Other parameters that influence the optimisation process and con-sequently the solution quality include the solution archive size, number of particles, maximum allowediterations, number of variables to be selected for mutation and the local search mechanism threshold. [17]suggests that an archive size of 2-5 is sufficient. The local search mechanism threshold consists of aminimum amount of iterations and a probability of application after the minimum amount of iterationshas been reached. The method for determining the best parameters is discussed in Subsection 3.4.2.
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3.3 Implementation
In this section, the breakdownof the implementation of the optimisation unit is discussed. The optimisation
unit is implemented and tested inMATLAB. A flowchart of the optimisation unit is found in Fig. A.6. The goalof the optimisation unit is to provide the control unitwith a set of optimal setpoints every time the operatingconditions are updated, that is every 15 minutes. To clarify: the ’setpoints’ are named ’solutions’ within the
optimisation unit. This is due to the fact that these setpoints essentially are solutions to the formulatedoptimisation problem. This section mainly focuses on the working and interaction of the different sub-components of the optimisation unit that are presented in Fig. A.6.
In Subsection 3.3.1, the initialisation of the optimisation unit before starting an optimisation process isdiscussed. Subsection 3.3.2 presents the interaction between the algorithm and the optimisation unit. InSubsection 3.3.3, the implementation of the optimisation problem is elaborated. Lastly, Subsection 3.3.4explains the selection of the final solution.
3.3.1 Initialisation
Before the process of optimisation commences, the system configuration is initialised. The optimisation
unit receives the operating conditions of the park at a certain time. This is denoted by the ’Measurements’input in Fig. A.6. These operating conditions consist of the wind/solar profile, requested reactive poweramount by the TSO and an up-to-date farm topology. The latter is described by a MATPOWER case filewhich represents a model of the farm topology in matrix notation. The topology is updated when faultsin the farm occur. Certain devices/components in the farm are then disconnected and the topology mustbe updated accordingly. Now and then, the TSO can request an amount of active power that is below themaximum available generation at a certain moment. In this case, the optimisation unit receives the de-sired active power dispatch of the generating strings from the control unit, such that the TSO demand ismet. In the common case, the active power dispatch of the strings equals the maximum amount of activepower that they can generate at that moment. Based on the given operation conditions, the active powergenerations of the strings are entered in the MATPOWER case file. This file is used by the fitness evalu-ation component to perform power flow runs. Furthermore, the boundaries of the optimisation variablesare calculated. These boundaries correspond to the physical limitations of the system devices which arecontrolled and are used by the optimisation algorithm to generate solutions. The boundaries of reactivepower outputs of strings depend on their active power outputs and should, therefore, be calculated forevery update of operating conditions. While the possible reactive power outputs are continuous betweentheir boundaries, the optimisation variables corresponding to the transformer taps and reactor status canonly take discrete and binary values, respectively. The boundaries corresponding to these discrete valuesare fixed at all times, given that these devices are in service. The boundaries of the optimisation variablesare stored in vectors that follow the same sequence as the vector presented in Equation 3.3.
3.3.2 Algorithm Interaction
The implemented algorithm is MVMO-SHM. This algorithm belongs to the superior class of meta-heuristicalgorithms. This is backed up by the fact that MVMO-SHM won the world competition on computationalexpensive problems of the IEEE Computational Intelligence Society in 2018. The source code of this algo-rithmwas given by this group’s supervisor and contains the appropriate acknowledgements. It was chosento use a source code since the fundamentals behind an algorithm are not part of the EE curriculum andit is possible to use more advanced features of the algorithm. However, note that the algorithm can beedited so desired adjustments can easily be made.
Once the algorithm is called, it generates a random initial solution. Then, it evaluates howgood this solutionis. For this, it calls the fitness evaluation function, a function which represents the objective function of theoptimisation problem. A smaller fitness value corresponds to a better fitness. The fitness evaluation pro-cess is elaborated in Subsection 3.3.3. Throughout the evaluation of the objective function, the algorithmtakes a solution, evaluates its fitness and mutates the solution vector towards the feasible regions. Thebest fitness value is saved and updated when a new solution yields a better fitness. After the maximumnumber of iterations, the algorithm stops and the best solution is returned. The algorithm is limited to acertain amount of iterations in order to reduce the computational impact of the algorithm. Note that dueto the meta-heuristic nature of the algorithm, this solution is not necessarily the best possible solution but
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a sufficiently good solution. It is possible that another run yields a better solution. Therefore, it is recom-mended to evaluate a profile multiple times, i.e the algorithm is run multiple times for a given wind/solarprofile. This is also possible since the computational speed of the algorithm allows for multiple runs withinthe allowed 15 minutes limit. This does not eliminate the possibility of the existence of a better solutionbut it decreases that probability. The selection of the best solution out of multiple runs is discussed inSubsection 3.3.4.
3.3.3 Fitness Evaluation
In order to determine what the feasible solutions are (i.e. solutions which do not violate constraints), afitness evaluation function is needed. This function uses the currently proposed solution (in the form ofEq. 3.4) to evaluate how feasible this solution is regarding the constraints and objectives and it shoulddifferentiate between feasible and infeasible regions. A solution is considered infeasible when either:

a) The MATPOWER power flow computation does not converge.
b) One or more constraints of Eqs. 3.6a-3.6d are violated.

To determine this, the function first updates the controllable devices in the MATPOWER casefile with theproposed solution. One thing needs to be noted about this: The algorithm does not differentiate betweencontinuous and discrete variables. Since someof the devices in the systemare discrete, those variables arefirst rounded to their closest discrete value. For the transformers, these are the different taps or turn ratio’scorresponding to the taps. For the reactor, this is either on or off. Rounding the variables allows for mixed-integer optimisation. After this step, it is possible to run the power flow computation with MATPOWER. If asolution does not yield convergence of the power flows, this means that the power flow equalities are notsatisfied. A large penalty is then given to the fitness. If a solution yields convergence, it is checked whetherconstraints are violated or not. The constraints from Eqs. 3.6b and 3.6c are obtained from the systemtopology. The value of smax
line,i is taken from the long term rating of the lines. Even though temporarily itmight be allowed to have a higher power flowing through a line, the optimisation unit must give long termsolutions and not stress the system when possible. If at least one constraint is violated, the solution isconsidered to be infeasible. This is done to ensure that no physical limits are violated. The fitness valuestill receives a large penalty multiplied by the number of violations but the number is smaller than in theprevious case. This is to help the algorithm to differentiate betweenmore and less infeasible solutions andsteer its solution to the feasible regions. If there are no violations, it means that the solution is feasible.In that case, the fitness equals the value of the OF. If a solution is better, it means that the value of theobjectives is also smaller and this means that the fitness is also smaller. This allows for differentiationbetween more and less feasible solutions. The fitness function is thus implemented as:

F (x) =

p2 · S(x) S(x) 6= 0

p1 · CV (x) S(x) = 0 and CV (x) 6= 0

OF (x) otherwise
(3.12)

In Eq. 3.12, OF (x) is the objective function of Eq. 3.7, CV (x) is a function which computes the constraintviolation andS(x) is a functionwhich is used to penalise unsuccessful power flow computations. p1 and p2are penalty factors with 1� p1 � p2 in order to differentiate between constraint violations and optimisa-tion objectives. p1 is set to 1020 and p2 is set to 1050. When there is no power flow convergence, S(x) is setto 1 and otherwise, it is 0. CV (x) implements the constraints of Eqs. 3.6a-3.6d. For the bus voltages (Eq.3.6b) and branch limits (Eqs. 3.6c and 3.6d), it is looked at howmany violations there are. For the accuracyof the amount of reactive power at the PCC (Eq. 3.6a), it is looked at themagnitude of the difference. If thisdifference is between the threshold ε, the magnitude of the difference is rounded to 0. This is done in orderto have CV (x) equal to 0 when no constraints are violated. The implementation of the fitness as in Eq.3.12 has amajor advantage: it allows for unconstrained optimisation. By implementing the constraints intothe fitness directly, it is possible to evaluate and minimise a single function. It also allows for an intuitiveinterpretation of the fitness; the order of the fitness value is different for different kinds of violations. Thisapproach allows for a distinction between setpoints that do and do not satisfy mandatory requirements2-5 in Ch. 2. In case the optimal setpoints satisfy the requirements, the resulting fitness value F (xoptimal)equals the value of the objective function OF (xoptimal); otherwise, it equals a big penalty value.
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3.3.4 Selection between Solutions
The optimisation unit stores the results from the different algorithm runs in a results buffer. This buffer isemptied every 15 minutes when the operational conditions are updated. It contains the calculated optimalsolutions of the different runs and their corresponding fitness. Furthermore, other results of the powerflows, such as the active power loss, are also stored in the buffer for each optimal solution. The bestsolution for a given set of operating conditions is solely defined by its fitness value. This is due to the factthat the fitness value already incorporates the different minimisation objectives. Thus, the solution whichresults in the lowest fitness is selected as the best solution. This solution is then sent to the control unitas the set of optimal setpoints.
3.4 Research Approach on the Trade-off Requirements
The implementation discussed in the previous section is mainly related to the mandatory requirements ofChapter 2. These requirementsmust always be satisfied, independent on the scope of optimisation. In thissection, the approach for satisfying the trade-off requirements is discussed. These are the requirementswhich are satisfied as much as possible but a perfect combination of them does not exist since there areinterdependencies.
The performance of the optimisation unit depends on multiple aspects: the performance of the algorithm,which control variables are optimised and the optimisation objectives. In this section, it is discussed howto arrive at the final configuration of the optimisation unit. The first task is to define a way to measure theperformance of the optimisation unit. For this, the Key Performance Indicators (KPIs) are created. Theseare presented in Subsection 3.4.1. Hereafter, it is discussed what approach is used to determine the finalconfiguration of the optimisation unit such that the trade-off requirements are also satisfied as much aspossible. In order to do this, four steps are needed. In the first step, the algorithm parameters are tuned.In the next two steps, the optimal configuration of the optimisation unit is determined. In the last step,the performance of the unit is investigated under an extended topology. These steps are elaborated inSubsection 3.4.2. Lastly, a test profile is created. This is done to ensure that the optimisation unit is ableto perform under different operating conditions. This benchmark is presented in Subsection 3.4.3.
3.4.1 Key Performance Indicators
In this section, the key performance indicators (KPIs) are discussed. These indicators show how well the
optimisation unit performs. These indicators are used to discriminate between the different solutions andresults obtained in the research on the trade-off requirements. To determine how well the optimisation
unit works, different KPIs are used. These KPIs can be divided into two different parts: The first part isan indication of how well the unit as a whole performs. The second part is related to the solutions the
optimisation unit yields. The KPIs are:
For the complete unit:

• The average runtime per run. Lower is better since this allows for faster results of the optimisation
unit.

• The number of runs yielding a significant solution per case. Higher is better since this means thatthe optimisation unit is able to find solutions in more cases and is thus more robust.
For the solutions given by the unit:

• The best fitness value. Depending on the objectives of the OF, this value indicates how much thesolution is in line with the objectives. As explained in Section 3.1, a lower OF value is better.
• The variability of the solutions for different runs of the same case. A small variability indicates thatthere is a higher chance to have solutions around the global optimum of the optimisation problem.
• The variability of the fitness value; lower is better. As with the variability of the solutions, a smallvariability ensures that all runs yield more or less the same results and thus, the solutions of the
optimisation unit are robust.
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Two small remark needs to be made on the KPIs: Firstly, it is possible that the variability of the solutionsis high. If the fitness value is still the same, this can indicate that the optimisation problem has no globaloptimum but only local optima with similar OF values. This indicates that there are multiple operationregions which yield the same results for the different objectives. On the other hand, high variability in thesolutionsmay also indicate that the algorithm is not tuned properly and is easily trapped in local optima. Todetermine which of the two is the case, proper algorithm parameter determination needs to be performed.Secondly, the KPIs are mostly used to determine the performance and robustness of the optimisation unit.For steps 2 and 3 of Subsection 3.4.2, these indicators are not very significant. This has to do with the factthat in those cases, the absolute value of the objectives is important and not the deviations in the objec-tives. Nevertheless, the KPIs and thus the deviations in the objectives are considered when comparing theresults.
3.4.2 Steps to Determine the Final Configuration
Now that the KPIs are known, the four steps are presented which will yield the final configuration of the
optimisation unit:
Step 1: Algorithm Parameter Tuning
In this step, the optimal configuration of the algorithm is determined. This configuration is determinedby means of a parametric sensitivity analysis. This means that certain algorithm parameters are sweptindividually while leaving the others fixed. In order to carry out the sensitivity analysis, the following as-sumption is made: The influences of different parameters on the results are independent. That is, whenvariations in the results (KPI) occur as a consequence of the parameter sweep, these variations are entirelydue to the parameter that is swept and not due to other parameters. If this assumption is not made, thesensitivity analysis would be immensely time- and power-consuming. The parameters of the algorithmcan be summarised as:

• Number of particles: Nparticles

• Solution archive size: Narchive

• Maximum allowed iterations: imax

• Number of mutated variables: initial (mini) and final (mfinal) value
• Scaling parameter: initial (fs_ini) and final (fs_final) value
• Minimum amount iterations before enabling local search: ilocal
• Local search probability: plocal

Empirical analysis showed that the local search mechanism is too time-consuming while yielding no sig-nificant improvements in the results. Therefore the use of the local search mechanism is excluded inthis optimisation problem. This sensitivity analysis is desired to be carried out every time the optimisa-tion problem dimension changes. However, due to the power/time-consuming nature of this sensitivityanalysis, this is not done.
The parameter sweeps are carried out by optimising one challenging profile. The optimisation process isrepeated 10 times for a total of 10 runs. The following operation conditions apply:

• Only the 13 WTG strings are controlled.
• vwind = 7 m/s.At this wind speed, the strings allow for the biggest range of reactive power outputs. This corre-spondswith the biggest possible solution search space for the and consequently finding an optimumwill be harder.
• Qrequest = -100 MVAr (-0.286 p.u).It is empirically found that for different operating conditions, the branches within the topology con-sistently result in a positive line charging injections; the injection is approximately 40 MVAr at thePCC. Consequently, negative TSO requests are harder to satisfy than positive requests. However, bygiving this setpoint, it can be guessed where the optimal solution lies within the solution space: theoptimal string outputs should be close to their min. boundaries.
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This challenging profile requires for the algorithm to go to the boundary of the search space i.e. reactivepower outputs close to the (negative) boundary of the WTG strings. Since the initial solution is chosenrandomly, it is possible that the solution lies in the very positive end of the search space. If the algorithmof the optimisation unit is still able to find a feasible solution, it will also be possible to do this for all theother profiles as well since the search space is either smaller or less challenging.
Step 2: Choosing the Variables
In this step, it is decidedwhich controllable devices are used in the optimisation. This is done by comparingthe active power losses for different sets of control variables. There are several devices available in thesystem in question: the WTG and PVG strings, the on-load tap changer of the transformers and the shuntreactor. In practice, the CFC only controls the reactive power outputs of the strings. However, throughoutliterature, OLTCs and shunt reactors are also controlled while minimising the active power losses ( [2]and [3]). The results were that not controlling these devices yielded an inferior solution. Probably, thisis due to the fact that part of the search space is already bounded by an external factor which is notcontrollable. It is therefore desired to determine whether controlling these devices has a positive influenceon minimisation of the active power losses.
Step 3: Determining the Weighting of the Objectives
In this step, the exact weighting of the different objectives is determined. The goal of this weighting is tosatisfy the trade-off requirements in Chapter 2. In Eq. 3.7, each objective is weighted by a weightwi. Theseweights determine the relative importance of the different objectives. Note that the objectives consideredin this step are dependent on the controllable variables chosen in the previous step. For instance, if itis decided not to control the shunt reactor, it is impossible to minimise for reactor switching since thecontrol is out of reach for the CFC. The main objective is a reduction in active power losses. Besidesthat, it is desired to reduce maintenance costs as well. Presumably, it is impossible to find a solutionwhich minimises all these objectives. This has to do with the fact that the solution which minimises oneobjective completely is not the same as the solution which does this for another objective. Therefore, theinterplay between the different objectives needs to be determined. For instance, it is possible that applyinga higher weight to one objective (e.g. the changing of the transformer tap positions) results in only a minorincrease of active power losses. In this case, it would be desirable to weight the first objective higher sincea lot of maintenance could be saved in this way.
Sweeping the weights can quickly result in a lot of optimisation runs. Therefore, several choices and as-sumptions are made to reduce the computational effort: Firstly, the different cases are run only once. Thisis done since the optimisation unit already has a small variability in solutions and fitness (as can be seenfrom the standard deviation in Appendix B.1). It is therefore assumed that one run yields values compara-ble to those of multiple runs. The best solution is probably not found but in this section, the relative effectof the different objectives is of interest. Therefore, it is considered acceptable to use only one run.Secondly, not all cases of the test profile are considered. For the first 15 cases, the improvement in activepower losses is small when adding controllable devices. Controlling the transformer tap positions yieldsa large improvement in active power losses for cases 21-24 (Fig. 4.2). However, adding restrictions to thecontrollable devices could reduce this improvement. To check how the active power losses are reducedwhen reducing the other objectives as well, these cases with large improvement potential are considered.Thirdly, the main objective is considered to be a reduction in costs. Reduction of reactor switching and therequested amount of reactive power from the strings are more important from a reliability and robustnesspoint of view. An imbalance in power flows caused by switching the reactor is undesirable but is usuallyresolved pretty quickly. Moreover, requesting reactive power amounts near the WTG strings their bound-aries can result in that range being unavailable by changing atmospheric conditions within the 15-minuteinterval. However, simulations demonstrated that the setpoints are usually far from the boundaries exceptwhen a negative setpoint is requested. Then, the park must generate large amounts of negative reactivepower in order to compensate for the branch injections. Also, should the setpoint become unavailable dueto e.g. turbulence, there are still other control mechanisms in the controller unit that are able to cope withthese fluctuations. This demonstrates that the importance of the last two objectives is lower than that ofthe first two objectives. In order to reduce the computational effort, it is chosen to keep w3 and w4 fixedand to have a small value.
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In order to compare the results of the different weight combinations, a total cost is computed:
Cost(xt) = c1 · tpassed · Ploss(xt) + c2 · taps(xt). (3.13)

In Eq. 3.13, c1 and c2 are the costs of the power loss and tap switching respectively, tpassed indicates howmuch time there is between two cases, Ploss(xt) is the active power loss in MW and taps(xt) is the numberof tap switches. c1 is taken to be around 80 € per MWh which is just above the cost price for producing aMWh usingwind turbines. tpassed is needed to determine howmuch time has passed (in hours) and is usedto determine how much MWh losses there is at time t. The exact value of c2 is unknown but is chosen inthe range of [2] and [3], namely 2 € per tap switch. Only the first two objectives are directly related to cost;minimising reactor switching and maximising the distance of the setpoints to their boundary is done inorder to improve the stability and robustness of the optimisation unit. Therefore, the latter two objectivesare omitted from Eq. 3.13.
Step 4: Determining the Flexibility and Robustness of the Optimisation Unit

In the previous two steps, the final balance between the trade-off requirements has been established.Whereas the previous steps focused on the performance of the optimisation unit for the WF topology, thisstep will focus on the flexibility and robustness of the unit when expanding the system. For this, the PVGstrings in Fig. A.5 are connected and the optimisation process is run. The scope is to determine whether itis still possible to find feasible solutions. Moreover, it is desired to determine whether these solutions aregood and whether tuning of the parameters yields an improvement of the solutions.
3.4.3 Test Profile
In order to ensure that the optimisation unit is able to operate under different profiles, a test profile iscreated. The goal of this test profile is to simulate a wide range of possible operating conditions. Thisis done in order to demonstrate the general feasibility and robustness of the optimisation unit. The testprofile of Fig. 3.3 contains different reactive power setpoints at different wind speeds and solar irradiances.The operating conditions corresponding to the cases within the test profile are presented in Table A.1.The requested amount of reactive power is based on the usual setpoints given by the TSO. The step sizebetween the different amounts of reactive power is 50 MVAr (from [8]). A setpoint of 0 MVAr is usuallyrequired,± 50 MVAr (± 0.143 p.u) occurs and in rare cases,± 100 MVAr (± 0.286 p.u) is requested. Thesesetpoints are requested for the different environmental conditions. As can be seen in Fig. A.4, the reactivepower capability range of the turbines changes significantly with different wind speeds. For the test profile,five different wind speeds are chosen namely 4.5, 5, 7, 12 and 15 m/s. Each wind speed is from a differentreactive power capability region. The first two (4.5 and 5 m/s) are from the region after cut-in wind speedwhere the amount of reactive power produced increases cubically. At 7 m/s, the range of reactive poweris at its maximum. At 12 m/s, the amount of reactive power is decreasing; this is due to the capabilitycurves of the WTGs. At 15 m/s, the turbines operate at rated power and the reactive power range does notchange anymore. It must be noted that, unlike the WTG strings, the reactive power capabilities of the PVGstrings are proportional to the solar irradiance. Furthermore, the PVG strings do not allow for absorptionof reactive power [18].
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Figure 3.3: Test Profile for the Optimisation Unit

The chosen wind speeds represent a wide variety of ranges of the available amount of reactive power.Together with the different reactive power setpoints, a lot of challenging scenarios are covered. Somethings need to be noted about the test profile: Firstly, at low wind speeds, the reactive power range isincreasing but fairly small. This can result in the farm not having enough reactive power available to satisfyvery negative setpoints. Another possibility is that the farm does have enough (negative) reactive poweravailable, but due to branch injections of (positive) reactive power it is impossible to satisfy the negativesetpoints. The second thing which should be noted is that a larger range increases the search spaceenormously. This has to do with the optimisation problem being multidimensional. The ability to findsolutions in a large search space proves that the optimisation unit is robust enough to find a solution andis able to deal with the problem accordingly. The third thing to mention is that this test profile is only usedin steps 2-4 of Subsection 3.4.2. This has to do with the fact that parameter tuning must be done in thehardest search space possible; this corresponds to a setpoint of -100 MVAr and a wind speed of 7 m/s.This results in the largest search space and if the optimisation unit is able to find a solution there, it is ableto do so for all cases (provided a solution exists). The last thing which should be noted is that the testprofile is fairly big. It has 25 cases and if each case is run multiple times, the total amount of runs neededsoon exceeds 100. Therefore, in order to save computational time only certain regions of interest may beinvestigated. If this is the case, it will be mentioned together with a motivation.
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Chapter 4
Results and Interpretation
In this chapter, the results that lead to the final configuration of the optimisation unit are presented anddiscussed. To begin with, it is described how the optimal algorithm parameters are found (Section 4.1).Secondly, the potential feasibility of the optimisation unit is discussed and it is investigated how this fea-sibility varies when different sets of system devices are controlled (Section 4.2). Thirdly, an elaboration isgiven of the selection process of the different objectives’ weights (Section 4.3). Furthermore, a verificationof the optimisation unit’s flexibility and robustness is given (Section 4.4). This is accomplished by demon-strating the working of the optimisation unitwhen the system’s topology is extended with controllable PVGstrings. Finally, it is discussed how the optimisation unitwould perform and operate in a physical prototype(Section 4.5).
4.1 Algorithm Parameters
In this section, the values of the algorithmparameters are determined. The following algorithmparametersare considered to have an impact on the performance of the optimisation unit and are therefore taken intoaccount:

• Number of particles: Nparticles

• Solution archive size: Narchive

• Maximum allowed iterations: imax

• Number of mutated variables: initial (mini) and final (mfinal) value
• Scaling parameter: initial (fs_ini) and final (fs_final) value

The following suggestions for the algorithm parameter values are given by this group’s supervisor and isdeemed to be most feasible:
• Nparticles: 1-200 particles (default: 1)
• Narchive: 2-5 solutions (default: 4)
• imax: 500·Nparticles (default: 500·Nparticles)
• mini: 0.5D-0.75D (default: 1D) and mfinal: <0.5D (default: 0.09D) where D is the total number of opti-misation variables
• fs_ini: 1 (default: 1) and fs_final: 1-20 (default: 2)

The results of the parameter sweeps are presented in the tables in Appendix B.1. It is found that thefollowing algorithm configuration yielded the best KPI results and therefore, is most feasible:
• Nparticles: 35 particles
• Narchive: 3 solutions
• imax: 17500 iterations
• mini: 0.54D and mfinal: 0.31D where D is the total number of optimisation variables
• fs_ini: 1 and fs_final: 1
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The population size sweep initially consisted of the following values: 1, 5, 20, 50, 100 and 200. However, itwas found that the values of 20 and 50 were relatively more feasible in terms of the KPIs. Therefore it isdecided to sweep more values between 20-50, namely 35, 40 and 45. The value of 35 is chosen becauseit yielded a significant smaller variability in fitness and solution values than a population size of 20, onlyat the cost of runtime. The latter is not a problem since the average runtime for 35 particles equals 86seconds and thereby satisfying the first mandatory requirement in Ch. 2. Larger population sizes wouldnot yield significant improvements but would require more time. In a similar fashion, the other parametersare determined.
It is noteworthy that (minor) differences within the average runtimes of the other sweeps are possiblycaused by the operating conditions of the hardware on which the simulations are carried out. Therefore,the average runtime becomes an inaccurate performance measure when the average runtimes are in asimilar range. Consequently, the remaining optimal parameterswere selected based on their fitness valuesand the corresponding variabilities.
4.2 Feasibility
In this section, the feasibility of the optimisation is determined. Firstly, only reactive power setpoints arecomputed. If optimisation is feasible, it is investigated whether the feasibility of optimisation can be im-proved by controlling different devices.
4.2.1 Optimisation vs No Optimisation
Fig. 4.1 shows a comparison of the active power losses with and without optimisation for the differentoperating conditions within the test profile. This comparison is carried out when the control variablesonly consist of the reactive power outputs of the WTG strings. With ’No Optimisation’ it is meant that the
optimisation unit does not minimise the active power losses. This is achieved by setting w1 equal to 0 andthereby removing the objective of minimal active power losses. When the optimisation mechanism of the
optimisation unit is disabled, the fitness function equals the following:

F (x) =

p2 · S(x) S(x) 6= 0

p1 · CV (x) S(x) = 0 and CV (x) 6= 0

0 otherwise
(4.1)

By implementing this fitness function, the algorithmwithin the optimisation unit searches for solutions thatsatisfy system constraints but do not result in minimal active power losses. This approach is used as anapproximation of setpoints that a prevailing CFC would give. This approximation is necessary to quantifythe feasibility of the optimisation unit since MATLAB models of those CFC’s are unavailable. Furthermore,it must be noted that the losses in cases 1,2 and 6 are equal to 0. It was found that in these cases, the TSOrequests were outside the physical limitations of the farm (see also Figure A.4). That is, for those operatingconditions the farm is unable to generate/absorb enough reactive power to satisfy those requests. It isassumed that in reality, the TSO does not request setpoints that are outside the capabilities of the farm.
It can be seen in Fig. 4.1 that lower active power losses are achieved when the optimisation mechanismis enabled. However, the amount of loss reduction varies substantially for different operating conditions.This verifies the contribution of the optimisation unit to an increase in transmission efficiency from WTGstrings to the PCC. Furthermore, it is noticeable that the relative loss reduction (i.e loss reduction dividedby the windfarm’s total active power output) is the largest for cases 11-15; this follows from Figures 4.1and A.3. These cases correspond with a wind speed of 7 m/s and according to Fig. A.4, this wind speedgives the largest possible reactive power capability of the farm. This implies that at 7m/s, theWTG stringshave the biggest possible range of reactive power outputs and consequently, the min/max bounds of theoptimisation variables are also the largest possible. Thus, at 7 m/s the algorithm searches solutions in thelargest possible search space. A possible explanation for the large relative loss reduction at 7 m/s is thata larger solution search space results in more feasible solution regions and consequently there are moresolution regions that result in better solutions, i.e solutions that result in lower active power losses.
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Figure 4.1: Active Power Loss Comparison: with and without Optimisation.
4.2.2 Choice of Control Variables
Fig. 4.2 shows the improvements of loss reductions for different sets of control variables. The improve-ments are calculated with respect to the loss reductions presented in Fig. 4.1. Thus, Fig. 4.2 representsthe improvements when different control devices are added into the set of control variables. It can be seenthat including transformer taps into the set of control variables improves the loss reduction significantlywhereas only adding the reactor has no significant effect. However, the biggest improvement in loss re-duction is achieved when both transformer taps and reactors are included in the set of control variables.This improvement can be explained by the fact that adding more control variables increases the searchspace of the algorithm and thereby the possibility of a better solution. Thus, the biggest active power lossreduction is achieved when the set of optimal setpoints consists of the Q’s of theWTG strings, transformertap positions and reactor status. Fig. 4.3 shows a loss comparison when the transformer taps and reactorstatus are included as well into the set of control variables.
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Figure 4.3: Active Power Loss Comparison: Loss Reduction Due to Most Feasible Set of Control Variables

4.3 Multiple Objective Optimisation
In this section, the optimisation is extended to all the objectives (to the full formof Eq. 3.7). All the objectivesare considered since it is most feasible to regulate all controllable devices. The goal is to determine theweights of the different objectives. The main objective of the optimisation unit is to minimise the activepower losses. To determine the effect of the different objectives, the weights are swept and it is looked attheir effect on the cost fromEq. 3.13. Running the first parameters sweeps revealed something interesting:As soon as weight w2 was non-zero, there were hardly any transformer switches and increasing the value
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w2 hardly had any effect on the amount of transformer tap switches. This is unexpected since increasingthe weight should result in more emphasis lying on that objective. After sweepingw2 for very small values,the following was found: Even though the weights suggested that the second objective was considered tobe less important than the first, during optimisation the algorithm considered it to be the other way around.The problem lies in using the weighted-sum model in Eq. 3.7. This approach works well if the objectivesare within the same range. This, however, is not the case. The reactor has a value in 100, the transformertaps in 10−2, the losses in 10−5 and the distance of reactive power setpoints are in the range of 101 to 102 .Therefore, the actual order of importance is different from the intended order of importance. To solve this,the objectives must be transformed into the same unit. In this case, it would be costs in euro:
Cost(xt) = c1 · tpassed · Ploss(xt) + c2 · taps(xt) + c3 · reactor(xt) + c4 ·Qdistance(xt). (4.2)

In Eq. 4.2, c1, c2, c3 and c4 are the costs associated to the different objectives, tpassed indicates howmuchtime there is between two cases, Ploss(xt) is the active power loss in MW, taps(xt) and reactor(xt) arethe number of tap and reactor switches and Qdistance(xt) is the average distance of the reactive powersetpoints w.r.t. their boundary. To achieve this, Eqs. 3.8 and 3.9 are denormalised. In order to comparethe different units, a cost is assigned to a change in each objective. The exact cost of energy is known.This is c1 and is taken to be around 80 € per MWh which is just above the cost price for producing aMWh using wind turbines. It is assumed that an active power loss results in less power that can be sold.
tpassed is needed to determine how much time has passed (in hours) and is used to determine how muchMWh losses there is at time t. Since each case in the test profile describes a period of 15 minutes, tpassedshould equal 1

4 such that the total costs per case equal the costs induced after the 15-minute time span.The other objective costs are computed from c1. To determine the other costs, it needs to be determinedwhich changes are considered to yield an equal cost. For this, it is looked at the typical range of changesin the different objectives. To check the accuracy of these assumptions, an extensive reliability analysisof the system would be needed. Unfortunately, time and the available data do not allow this. Therefore,estimations are made which also illustrate the interplay between the different objectives based on simu-lations run so far.First of all, one change in transformer taps is considered to be as costly as switching the reactor. Switch-ing a couple of taps occurs often for different cases. Changing taps is considered to be worse than theswitching of the reactor since it leads to maintenance costs whereas the other leads to temporary powerflow disturbances. Also, the distance to the origin of the reactive power setpoints is of low importancein comparison with the other objectives. It is desired to have this value as close to the boundary as pos-sible (in order to find solutions in challenging cases e.g. negative setpoints by the TSO) but not on theboundary itself. Therefore, an average distance of 70% of the boundaries is considered to be as costly asa transformer tap switch. Lastly, the difference in active power losses is in tens of kW (as shown in Fig.4.2). Since the maximum improvement is sometimes just 10 kW, it is chosen to consider a small changein Ploss already significant. Therefore, a change of 5 kW in is considered to be as costly as 1 transformertap change. This 5 kW corresponds to 1.25 kWh per 15 minutes which is also used to compute the price.Qdistance has a value between 0 and 1 and indicates the average of the normalised distances to the originof the different string setpoints. To compute the cost corresponding to Qdistance = 1, the price of 1.25 kWhis divided by 0.7. The costs of the different objectives are chosen such that they reflect this behaviour. Thecost function of Eq. 4.2 becomes the OF which needs to be minimised by the algorithm. The costs aresummarised in Tab. 4.1.
Table 4.1: Cost of Different Changes of the Controllable Devices

Change 5 kW or 1.25 kWh 1 tap switch 1 reactor switch 100% of Qrange

Associated ci c1 c2 c3 c4

Price [€] 0.10 0.10 0.10 0.14
To determine the weights, w3 and w4 are kept fixed and have values of 0.1 and 0.15. Then, w1 and w2 areswept. The result can be seen in Fig. B.3. The costs are around 419 € for w1 < w2. Then as w1 ≥ w2, thecosts suddenly drop. An investigation into the cause resulted in the following: When w1 < w2, there areno transformer tap switches. This is expected since the weight of tap switches is larger than the weight ofpower losses. The sudden drop in cost is due to the shift of importance between minimising active powerlosses and minimising transformer tap switches. As soon as w1 > w2, the active power loss decreasesand the transformer tap switches increases. The cost stabilizes around 415 €. The small fluctuations
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are due to the deviations in the algorithm as was concluded during tuning of the algorithm parameters.The reduction in active power losses results in a larger cost reduction than the cost of the increase intransformer tap switches. Therefore, the optimisation unit concludes that the cost is lower by changingtaps. This holds for different values of w3 and w4. Thus, it is concluded that using these costs, optimisingon transformer tap switches does not increase savings (it decreases them). Consequently, w2 is set to 0.To determine the values of w3 and w4, the small fluctuations of Fig. B.3 must be prevented. These aremainly due to deviations in the solutions between different runs. Therefore, 5 runs are performed per casewhile sweeping w3 = w4 from 0 to 0.2 while keeping w1 constant. The results can be seen in Tab. B.6.For w3, w4 = 0, there is a larger cost. This is expected since these two objectives are not minimised andeach causes a cost. After w3, w4 = 0.10, the cost starts increasing. This has to do with the fact that areduction in active power losses results in a larger saving. Thus, the optimum of w3 and w4 is consideredto be 0.05. To verify these parameters, the complete test profile of Fig. 3.3 was run. This is done for a CFConly controlling the reactive power setpoints of the WTG strings and for a CFC which also controls thetaps and reactor. The latter is done to simulate a CFC of which the taps and reactor are in a more feasibleposition as is the case in reality. With no optimisation and only reactive power setpoints, the results withoptimisation are always lower. For the second case, the costs with optimisation were larger in cases 3 and7 of the test profile (see Fig. B.4). This was due to large changes in taps. The conclusions made beforeon minimising the tap switches were only for a small part of the test profile. That optimisation still yieldedsmaller costs in the end. To investigate whether there exists a combination of w1 and w2 which results insmaller losses for all cases, a final sweep is done on those weights with w1 > w2. The results can beseen in Figures 4.4 and B.5. These figures represent the cumulative costs for the test profile so the valueafter case 25 represents the total costs of the test profile.
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Figure 4.4: Final Cumulative Costs for the Test Profile of Subsection 3.4.3
Fig. 4.4 is zoomed in at the end of Fig. B.5. This is done in order to see the exact difference between thedifferent weights. From Figure 4.4, it can be concluded that w1 = 0.70 result in the smallest cumulativecosts for the test profile and this value is chosen. The difference, however, is small and could also becaused by variations due to the algorithm. w2 is computed by 1-w1-w3-w4 and thus is 0.20. Please notethat the costs without optimisation are higher and cannot be seen in this figure (but it is visible in Fig. B.5).In Fig. B.4, it is visible that the proposed final weights result in costs that are smaller than the costs withoutoptimisation for case 3 and 7. This also holds for all cases as can be seen in Fig. B.6. The final weights aresummarised in Tab. 4.2. With this step, the trade-off requirements of Chapter 2 are satisfied as much aspossible. It is impossible to satisfy them all maximally since they have an influence on each other. Basedon the costs of Tab. 4.1, the optimal combination is found i.e. the combination that yields the smallest
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costs.
Table 4.2: Value of the Final Weights

Weight wi w1 w2 w3 w4

Value 0.70 0.20 0.05 0.05

4.4 Flexibility and Robustness
This section discusses the flexibility and robustness of the optimisation unit when the 4 PVG strings areadded into the system topology. Firstly, it is elaborated how the configuration of the optimisation unitchanges when the extra strings are taken into account. Then, the feasibility after the addition of the extrastrings is discussed. Finally, another algorithm parameter tuning for the final optimisation unit configu-ration is performed. This additional parameter tuning has the objective of additional improvement of the
optimisation unit’s performance and robustness.
When the PVG strings are added into the farm’s topology, changes to the MATPOWER topology case filemust be made. The locations of the extra strings were known beforehand and therefore the generator,branch and bus components describing the extra strings were already declared in the case file. However,the status of those generator, branch and bus components were initialised as ’disconnected’. This has thesame effect as using a topology case file that describes thewind farm only. Now that the PVG stringsmustbe taken into account, the status of the components describing the stringsmust be changed to ’connected’during the initialisation process of the optimisation unit. Furthermore, the number of optimisation variablesof the optimisation problem changes from 16 (13 WTG strings, 2 transformers and 1 reactor) to 20 (13WTG strings, 4 PVG strings, 2 transformers and 1 reactor). This increase in problem dimension requiresspecification of extra min/max boundaries of the new variables. These boundaries correspond to the PVGstrings’ reactive power capability; this depends on themomentary operating conditions, i.e solar irradiance.Therefore, solar irradiance must become an additional input of the optimisation unit.
Fig. 4.5 presents the feasibility of the optimisation unit when the PVG strings are added in addition to theset of control variables determined in Subsection 4.2.2. In this instance, ’No Optimisation’ means that inaddition to the WTG strings, the PVG strings are also controlled. This is based on the assumption thatprevailing CFC’s are also capable of controlling PVG strings since they require similar setpoints as WTGstrings. Furthermore, ’Optimisation’ means optimising for the optimal combination of weighted objectivesdetermined in Section 4.3. Therefore, the feasibility is determined in terms of monetary costs (in e) ratherthan only the active power losses. The results presented in Fig. 4.5 state that the optimisation unit is ableto find feasible solutions after the addition of the PVG strings. Thereby the optimisation unit’s flexibility androbustness for varying system topologies are verified.
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Figure 4.5: Cost Comparison: No Optimisation vs Optimisation

To establish how flexible and robust the optimisation unit is, another tuning of the parameters is done todetermine whether choosing different parameters yields a significant improvement. The tuning is donewith the extended topology using the approach of Section 4.1. The KPIs for the different parameters arepresented in Appendix B.4. The following values for the algorithm parameters yielded the best KPIs andare chosen as parameters for the extended topology:
• Nparticles: 50 particles
• Narchive: 2 solutions
• imax: 25000 iterations
• mini: 0.80D and mfinal: 0.25D where D is the total number of optimisation variables
• fs_ini: 1 and fs_final: 1

As can be seen, the optimal parameters have changed. This was expected since the dimension of theoptimisation problem has also changed by adding PVG strings. Running the optimisation unit withouttuned parameters still yields good solutions but tuning the parameters could ensure that smaller costsare obtained. In Fig. 4.6, the test profile is run for the tuned parameters. The results are compared tothe performance of the optimisation unit without tuning of the parameters. The total costs are almostidentical. When plotting the difference, it can be seen that in some cases tuning improves the costs andin others, it increases the costs. It is remarkable that for the case on which tuning is performed, the oldparameters perform better than the new ones. Investigation revealed that the best fitness is indeed lowerfor the tuned parameters but the total costs are higher. This is due to the fact that some objectives (withdifferent costs) are weighted higher in the fitness. This means that the relation between the fitness andthe total costs is not linearly (as it was assumed) and therefore considering the fitness in the KPIs is not agood indication of the final objective (i.e. minimising costs). This means that no conclusion can be drawnfrom the tuning and therefore the old parameters are kept. If the parameters are chosen based on the totalcost, it is possible that tuning improves the optimisation results for the changed topology provided thatthe improvement of tuning is significantly larger in comparison with the variation in solutions due to thenon-deterministic nature of the algorithm.
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4.5 Prototype Integration
This section discusses two possible physical implementations of the optimisation unitwithin the designedCFC. Furthermore, a demonstration of the working principle of the optimisation unit is given based on theproposed implementation.
The proposed implementation involves calculating setpoints for the next time interval. This means thatat t = x minutes until t = x + 15 minutes, the optimisation unit calculates the optimal setpoints for theoperating conditions at t = x+15minutes using a 15-minute-ahead weather prediction. It is assumed that15-minute-ahead weather predictions are fairly accurate in reality. Furthermore, it is assumed that the re-quested active power output usually equals the momentary available active power and that the requestedreactive power equals zero [8]. When there is a request of active power curtailment, it is assumed that thisinformation is known 15minutes in advance. If the requested reactive power amount is nonzero as a resultof reactive power imbalances in the grid, it is known that the possible requests take up a set discrete of val-ues. The optimisation unit is then able to calculate setpoints for all possible reactive power requests usingthe 15-minute-ahead predictions. Therefore, this way of implementing the optimisation unit is expected tobe feasible in reality. The other possible implementation is to perform real-time optimisation i.e calculateoptimal setpoints at t = xminutes using the measured operating conditions at t = xminutes. However,this implementation is deemed to be less feasible due to the execution times of the optimisation unit: Ittakes around 5 - 10 minutes to complete 5 runs leaving only a few minutes for the actual implementationof the optimal setpoints.
For the demonstration of the proposed CFC, all the subgroups make use of the same test profile. Thisself-devised profile is one hour long and it consists of different operating conditions. The relevant profileinformation for the optimisation unit is presented in Tab. 4.3. It must be noted that the wind speeds andsolar irradiances are not the actual values at the given times but they should be interpreted as predictions.The actual wind speed and solar irradiance values corresponding to the test profile are particularly relevantfor the control unit and can be found in [19]. To clarify, the optimal setpoints corresponding to the first caseare calculated at T = 0 min, the setpoints corresponding to the second case at T = 15 min and so forth.The calculated setpoints are presented in Tab. 4.4. The corresponding strings can be read from Fig. A.5.
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These optimal setpoints are then passed on to the model unit for power flow analysis and to the control
unit for enforcement of these setpoints and real-time control of the system. Those results are discussedin [10] and [19] respectively.

Table 4.3: Test Profile for the Prototype
Case Wind Speed [m/s] Solar Irradiance [W/m2] Prequested[% of Pavailable] Qsetpoint [MVAr]
1) T = 15 min 7.5 600 80 -50
2) T = 30 min 8.5 800 90 0
3) T = 45 min 10 450 100 50
4) T = 60 min 10 450 100 -50

Table 4.4: Optimal Setpoints for the Test Profile of the Prototype
Case QWTG1 QWTG2 QWTG3 QWTG4 QWTG5 QWTG6 QWTG7 QWTG8 QWTG9 QWTG10[min] [MVAr] [MVAr] [MVAr] [MVAr] [MVAr] [MVAr] [MVAr] [MVAr] [MVAr] [MVAr]
T = 15 -14.049 -9.079 -14.739 -5.230 -5.814 -8.252 -1.912 -4.488 -6.758 -5.504
T = 30 -6.493 -3.734 -5.479 -3.333 -2.775 -3.272 -2.535 -2.769 -3.476 -3.575
T = 45 0.147 0.127 0.680 -0.662 -1.225 -1.376 -1.149 -0.854 0.101 -0.691
T = 60 0.092 -0.473 1.727 1.693 -1.154 -1.180 -1.309 -0.680 0.410 -0.043

Case QWTG11 QWTG12 QWTG13 QPVG1 QPVG2 QPVG3 QPVG4 tapT1 tapT2 R1[min] [MVAr] [MVAr] [MVAr] [MVAr] [MVAr] [MVAr] [MVAr] [position] [position] [status]
T = 15 -4.274 -4.146 -9.449 2.023 1.823 1.945 0.604 9 9 ON
T = 30 -2.750 -2.835 -3.043 1.026 0.663 1.750 1.534 9 9 ON
T = 45 -1.545 -1.317 -0.142 1.918 0.984 2.425 3.022 9 9 ON
T = 60 -1.063 -1.282 -0.836 1.477 1.581 1.721 1.188 9 9 ON
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Chapter 5
Concluding Remarks andRecommendations
This project concerns the design of the optimisation unit for a state-of-the-art central farm controller. Theworking principle of the optimisation unit is verified using the farm topology presented in Fig. A.5 which isbased on a case study. The designed optimisation unit should be able to provide the control unitwith a setof optimal setpoints for various operating conditions and within a time limit of 15 minutes. The calculatedsetpoints must be within the physical boundaries of the controllable devices and they must satisfy theTSO requests (Qref), the grid code (Figures A.1 and A.2) and all the technical constraints (Eqs. 3.6a-3.6d).Moreover, the calculated setpoints must take the following into account:

• Minimal active power losses
• Minimal long-term maintenance costs
• Minimal system disturbances
• Maximal system robustness/reliability

As presented in Chapter 4, the design of such a unit was successful. The optimisation results in costreduction which is beneficiary in the long term; this is achieved while complying to all the mandatory re-quirements of Chapter 2. To achieve this, it is desired to control all the controllable devices in the farm.Moreover, the trade-off requirements are also satisfied as much as possible and it is demonstrated thatthis optimisation unit is able to perform under changing topologies. Also, it was found that based on theresults obtained from the tuning of the algorithm parameters, no conclusion could be drawn about an im-provement in performance. Lastly, the prototype is presented. It is also shown that this prototype worksas desired and fulfils the requirements drafted in Chapter 2.
Recommendations for Further Research:The final design of the optimisation unitwas satisfactory. Looking back at the design process, some pointsof improvement are found. Moreover, some further research is needed in order to make such a unit readyfor real-time implementation in a CFC. In order to have an even better optimisation unit, these points arepresented below as recommendations for future research:
First of all, the parameter tuning is discussed. Ideally, this tuning is done after changing the optimisationproblem. In this thesis, thiswas omitted fromsomesteps in order to save computational time. If parametertuning is done after each change of the optimisation problem, the best operation is ensured. Moreover, thistuning is ideally done in a controlledmeasurement environment. With this, it is meant that a computer witha clean install of Windows is used, which is also the device on which the optimisation unit is implemented.For logistic reasons, this was not possible for this group. Doing parameter tuning in this way allows forvalid comparisons between run times and gives a better comparison between the results. Another thingneeds to be noted on tuning: The costs of the objectives used in this optimisation problem (Tab. 4.1) arerelatively low and thus different parameters result in a small change in total costs which has no meaningin real life. If the costs become larger, a small change in one of the algorithm parameters can result in largesavings. Then, using different parameters will have a significant effect on the final savings. It is thereforerecommended to checkwhat the influence of tuning iswhen changing the optimisation problem. Moreover,it needs to be determined whether the change is caused by the change of the algorithm parameter or dueto the variability in solutions.
Secondly, more accurate costs can be used for the multiple objective optimisation. In this thesis, thiswas based on the real costs of wind energy and equivalent importance was determined for the differentobjectives. In reality, it is possible that e.g. the transformers hardly ever fail. For this, a probabilistic studycan be carried out to determine what the chance is for a transformer to fail. Together with the repair cost
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it can be used to compute a more realistic cost per tap switch. The same holds for the other objectives aswell. In the end, the different costs can result in a different distribution of the weights for the objectives.This results in an optimisation closer to reality.
Thirdly, a more accurate model can be used. The model used is based on a real-life case study but hassome simplifications. This is partly due to the amount of data available. In the end, a more accurate modelresults inherently in a better optimisation which is closer to reality.
Moreover, the functionality of the optimisation unit can be extended. For instance, it is possible to considerpast data to generate better setpoints more quickly. Also, it is possible to implement a different decisionsystem for the final solution. Currently, this is done based on the best costs. It is also possible to choosesolutions based on different criteria such as setpoint distances w.r.t. past setpoints. Moreover, researchcan be carried out to investigate the possibility to compute the optimal active power setpoints as well. Thiswould result in optimal setpoints for both active and reactive power which increases the efficiency of theCFC.
Lastly, the possible implementation of the optimisation unit in a real CFC is discussed. Essentially, there aretwo methods in which this is possible. The first one is predictive optimisation and the second one is real-time optimisation. In this thesis, predictive optimisation is used. This method relies on a prediction of theoperating conditions of the given time intervals. The major advantage of this method is that there is moretime available to find optimal setpoints. This allows for longer andmore optimisation runs which decreasethe variability due to themeta-heuristic nature of the algorithm. There is one problemwith this approach: Itis not knownwhat the TSO request is beforehand and sudden setpoints requests are unaccounted for. Thefirst issue can be solved by running multiple optimisations in parallel for the possible setpoint requests ofthe TSO. When the time slot in question arrives, the final setpoint is known and the corresponding solutionis chosen. The latter problem can be solved by switching to real-time optimisation. In this type of optimi-sation, speed and small variability are crucial. The idea here is to run a quick optimisation run. Control isfirstly done by the control unit since it is needed to have grid compliance quickly after the request. Whenthe optimal setpoints are known, the control unit will move towards the optimal setpoints thus ensuringmore efficient operation of the farm. This real-time optimisation can be investigated in more detail andalgorithm parameters should be chosen such that runtimes and variability in solutions are as small aspossible. Also, this mode of operation should be tested extensively in order to ensure correct operationunder different conditions.The proposed optimisation unit can be implemented with non-expensive computer hardware. A fast,multiple-core processor with a large amount of memory is recommended in order to speed up MATLABsimulations. The other components are fairly basic. An estimated pricewould probably lie in the 1000-2000€ range. This would yield optimisation run times under a minute (probably around 30 seconds) which istherefore also suited for real-time optimisation.
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Appendix A
Code, Tables & Figures
This appendix contains a reference to the source code. Moreover, this appendix has supplementary tablesand figures. These tables and figures help with the clarification of certain statements/conclusions butare not considered to be essential enough to be placed in the main body of this thesis. These tables andfigures are related to the design of the optimisation unit. The tables and figures related to the results canbe found in Appendix B.
A.1 Source Code
The source code is published on GitHub at the following link:
www.github.com/acneaguu/CFC-Optimisation.
A.2 Grid Code
This section contains multiple figures which illustrate the required reactive power and voltage at the PCC.

Figure A.1: Allowed Active and Reactive Power at the PCC (Figure 3-1 from [20])
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Figure A.2: Allowed Voltage Range as Function of the Reactive Power at the PCC (Figure 3-2 from [20])
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A.3 Power Capabilities of the System
A.3.1 Active Power Capability
In Fig. A.3, the active power capability of the WF is presented. This capability is approximated using anaggregated model of all the WTG strings’ active power capabilities .
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Figure A.3: Approximation of the Active Power Capability of the WF
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A.3.2 Reactive Power Capability
In Fig. A.4, the reactive power capability of the WF and hybrid wind- and solar farm is presented. Theblue lines indicate the smallest amount of reactive power the farm can produce and the red lines indicatethe largest amount of reactive power. For the other lines, refer to the key. Please note that this figureis a rough approximation; reactive power losses are unaccounted for. This results in the actual injectedreactive power by the branches having a lower effective value. The reactive power capability is thereforesmaller than represented by the solid blue and red lines. This means that the reactive power capability istherefore between the dashed and solid blue and red lines. Nevertheless, this figure gives useful insight inwhat kind of setpoints can be reached, what kinds could be reached and which setpoints are impossibleto satisfy at a given wind speed.

40



0
5

1
0

1
5

2
0

2
5

W
in

d
s
p

e
e

d
 [m

/s
]

-2
0
0

-1
0
0 0

1
0
0

2
0
0

3
0
0

Q [MVAr]

Q
m

in
 w

ith
 re

a
c
to

r

Q
m

in
 w

ith
 re

a
c
to

r a
n
d
 b

ra
n
c
h
 in

je
c
tio

n
s

Q
m

a
x

Q
m

a
x  w

ith
 in

je
c
tio

n
s

Q
s
e

tp
o

in
t  =

 -1
0
0
 M

V
A

r

Q
s
e

tp
o

in
t  +

 6
.2

5
 M

V
A

r

Q
s
e

tp
o

in
t  - 6

.2
5
 M

V
A

r

Q
s
e

tp
o

in
t  =

 -5
0
 M

V
A

r

Q
s
e

tp
o

in
t  +

 6
.2

5
 M

V
A

r

Q
s
e

tp
o

in
t  - 6

.2
5
 M

V
A

r

Q
s
e

tp
o

in
t  =

 0
 M

V
A

r

Q
s
e

tp
o

in
t  +

 6
.2

5
 M

V
A

r

Q
s
e

tp
o

in
t  - 6

.2
5
 M

V
A

r

Q
s
e

tp
o

in
t  =

 5
0
 M

V
A

r

Q
s
e

tp
o

in
t  +

 6
.2

5
 M

V
A

r

Q
s
e

tp
o

in
t  - 6

.2
5
 M

V
A

r

Q
s
e

tp
o

in
t  =

 1
0
0
 M

V
A

r

Q
s
e

tp
o

in
t  +

 6
.2

5
 M

V
A

r

Q
s
e

tp
o

in
t  - 6

.2
5
 M

V
A

r

Figure A.4: Approximation of the Reactive Power Capability of the WF

41



A.4 The System in Question
This section presents the system topology used for the research in this paper. The system topology isseen in Fig. A.5.
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A.5 Flowchart of the Optimisation Unit
In this section, the flowchart of the optimisation unit is presented. Please note that the algorithm is notelaborated in this flowchart. For the exact working of the algorithm, please refer to Fig. 3.1.
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A.6 Test Profile
This section presents the operating conditions corresponding to the cases of the test profile in Fig. 3.3.

Table A.1: Cases within the Test Profile.
Case Wind Speed [m/s] Solar Irradiance [W/m2] Pavailable [p.u] Qsetpoint [p.u]

1 4.5 0 0.024434 -0.286
2 4.5 0 0.024434 -0.143
3 4.5 0 0.024434 0
4 4.5 0 0.024434 0.143
5 4.5 0 0.024434 0.286
6 5 340 0.092738 -0.286
7 5 340 0.092738 -0.143
8 5 340 0.092738 0
9 5 340 0.092738 0.143

10 5 340 0.092738 0.286
11 7 680 0.231201 -0.286
12 7 680 0.231201 -0.143
13 7 680 0.231201 0
14 7 680 0.231201 0.143
15 7 680 0.231201 0.286
16 12 510 0.731243 -0.286
17 12 510 0.731243 -0.143
18 12 510 0.731243 0
19 12 510 0.731243 0.143
20 12 510 0.731243 0.286
21 15 170 1.062984 -0.286
22 15 170 1.062984 -0.143
23 15 170 1.062984 0
24 15 170 1.062984 0.143
25 15 170 1.062984 0.286
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Appendix B
Results
This appendix contains tables and figures which give more insight on the results obtained in Chapter 4.These tables and figures are omitted since they are either very extensive or not important enough to placein the main body.
B.1 Algorithm Parameter Tuning using only Reactive Power Setpointsof WTGs

Table B.1: KPI Results for Various Particle Population Sizes
Population Size 1 5 10 20 35
Best Fitness 1.6176E-03 1.5522E-03 1.5316E-03 1.5355E-03 1.5317E-03
Avg Fitness 1.9554E+18 1.5745E-03 1.5611E-03 1.5473E-03 1.5376E-03
Std Fitness 6.1835E+18 1.8141E-05 2.7258E-05 9.9401E-06 3.9681E-06
Avg Runtime [s] 2.50E+00 1.20E+01 2.28E+01 4.65E+01 8.64E+01
Times Converged 9 10 10 10 10
Avg Std Q’s [MVAr] 7.9036 3.6335 3.1936 2.3555 1.5945

Population Size 40 45 50 100 200
Best Fitness 1.5280E-03 1.5313E-03 1.5293E-03 1.5301E-03 1.5268E-03
Avg Fitness 1.5362E-03 1.5371E-03 1.5349E-03 1.5314E-03 1.5295E-03
Std Fitness 5.7779E-06 4.3594E-06 3.8842E-06 1.2109E-06 1.8077E-06
Avg Runtime [s] 1.09E+02 1.15E+02 1.21E+02 2.84E+02 4.80E+02
Times Converged 10 10 10 10 10
Avg Std Q’s [MVAr] 1.6955 1.5028 1.3834 1.0798 0.9645

Table B.2: KPI Results for Various Archive Sizes
Archive Size 2 3 4 5
Best Fitness 1.5523E-03 1.5528E-03 1.5557E-03 1.5543E-03
Avg Fitness 1.5593E-03 1.5569E-03 1.5602E-03 1.5598E-03
Std Fitness 8.1151E-06 3.4172E-06 4.1224E-06 3.0968E-06
Avg Runtime [s] 9.33E+01 8.95E+01 7.83E+01 8.05E+01
Times Converged 10 10 10 10
Avg Std Q’s [MVAr] 1.7235 1.2636 1.6462 1.3434
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Table B.3: KPI Results for Various Initial Mutation Sizes
Initial Mutations 11(0.85) 10(0.77) 9(0.69) 8(0.62) 7 (0.54)
Best Fitness 1.5541E-03 1.5539E-03 1.5540E-03 1.5522E-03 1.5538E-03
Avg Fitness 1.5609E-03 1.5598E-03 1.5628E-03 1.5596E-03 1.5590E-03
Std Fitness 6.3629E-06 3.6423E-06 7.9250E-06 5.3148E-06 2.8282E-06
Avg Runtime [s] 8.50E+01 8.09E+01 7.83E+01 7.95E+01 8.10E+01
Times Converged 10 10 10 10 10
Avg Std Q’s [MVAr] 1.6419 1.4594 1.7897 1.5392 1.4994

Table B.4: KPI Results for Various Final Mutation Sizes
Final Mutations 6 (0.46) 5 (0.38) 4 (0.31) 3 (0.23) 2 (0.15)
Best Fitness 1.5523E-03 1.5574E-03 1.5561E-03 1.5552E-03 1.5593E-03
Avg Fitness 1.5594E-03 1.5597E-03 1.5582E-03 1.5590E-03 1.5617E-03
Std Fitness 6.0213E-06 2.4327E-06 1.8099E-06 3.0313E-06 2.6677E-06
Avg Runtime [s] 8.82E+01 9.07E+01 8.71E+01 8.65E+01 8.95E+01
Times Converged 10 10 10 10 10
Avg Std Q’s [MVAr] 1.3016 1.4019 1.3773 1.659 1.7511

Table B.5: KPI Results for Various Final Scaling Parameters
Final scaling parameter 1 5 10 20
Best Fitness 1.5540E-03 1.5556E-03 1.5551E-03 1.5547E-03
Avg Fitness 1.5594E-03 1.5624E-03 1.5638E-03 1.5643E-03
Std Fitness 4.4933E-06 5.8378E-06 6.7457E-06 7.3463E-06
Avg Runtime [s] 5.51E+01 5.34E+01 6.39E+01 5.33E+01
Times Converged 10 10 10 10
Avg Std Q’s [MVAr] 1.5453 1.8606 1.9491 1.9664
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B.2 Feasibility of Optimisation
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B.3 Multiple Objective Optimisation
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Table B.6: Costs with Different Values of w3 = w4

Value of w3 and w4 0.00 0.05 0.10 0.15 0.20
Total Costs [€] 415.29 415.24 415.33 415.30 415.33
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B.4 Parameter Tuning for the Extended Topology
Table B.7: KPI Results for Various Particle Population Sizes

Population Size 1 5 10 20 35 50
Best Fitness 8.20586 7.95923 7.92667 7.88969 7.87790 7.84870
Avg Fitness 8.64707 8.10474 7.99779 7.95799 7.89663 7.87294
Std Fitness 0.2445 0.1223 0.0599 0.0434 0.0211 0.0166
Avg Runtime [s] 1.466 6.285 11.837 23.433 42.020 61.995
Times Converged 10 10 10 10 10 10
Avg Std Q’s [MVAr] 4.9838 2.9867 2.9000 2.2316 1.4209 1.1039
Population Size 65 75 85 100 200
Best Fitness 7.84357 7.83957 7.83528 7.83983 7.83420
Avg Fitness 7.86150 7.85833 7.85736 7.85317 7.84232
Std Fitness 0.0126 0.0113 0.0133 0.0081 0.0048
Avg Runtime [s] 83.869 95.087 105.681 129.883 472.141
Times Converged 10 10 10 10 10
Avg Std Q’s [MVAr] 0.9441 0.9196 0.9161 0.8213 0.6907

Table B.8: KPI Results for Various Archive Sizes
Archive Size 2 3 4 5
Best Fitness 7.84283 7.85277 7.85544 7.86425
Avg Fitness 7.86538 7.87073 7.89011 7.88262
Std Fitness 0.0150 0.0109 0.0279 0.0100
Avg Runtime [s] 124.176 124.929 127.695 116.329
Times Converged 10 10 10 10
Avg Std Q’s [MVAr] 1.0916 1.1750 1.2145 1.0487

Table B.9: KPI Results for Various Initial Mutation Sizes
Initial mutations 17 (0.85) 16 (0.80) 15 (0.75) 14 (0.70) 13 (0.65) 12 (0.60)
Best Fitness 7.85382 7.85392 7.85537 7.85360 7.85266 7.84445
Avg Fitness 7.87261 7.87706 7.86791 7.86876 7.87372 7.86926
Std Fitness 0.0127 0.0123 0.0148 0.0156 0.0167 0.0189
Avg Runtime [s] 104.670 92.332 86.089 94.712 119.904 119.803
Times Converged 10 10 10 10 10 10
Avg Std Q’s [MVAr] 1.1570 1.0609 1.2334 1.1734 1.2013 1.1393
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Table B.10: KPI Results for Various Final Mutation Sizes
Final mutation size 9 (0.45) 7 (0.35) 5 (0.25) 3 (0.15) 2 (0.10) 1 (0.05)
Best Fitness 7.84707 7.85235 7.83793 7.84315 7.86328 7.85897
Avg Fitness 7.87802 7.88018 7.87213 7.88516 7.88415 7.90535
Std Fitness 0.0202 0.0159 0.0249 0.0239 0.0186 0.0419
Avg runtime [s] 92.700 76.229 84.931 90.734 139.590 139.369
Times Converged 10 10 10 10 10 10
Avg Std Q’s [MVAr] 1.2499 1.2793 1.2808 1.4062 1.5752 1.7279

Table B.11: KPI Results for Various Final Scaling Parameters
Final mutation size 1 5 10 20
Best Fitness 7.84046 7.85387 7.88128 7.88163
Avg Fitness 7.86554 7.87022 7.90569 7.92222
Std Fitness 0.0173 0.0155 0.0179 0.0367
Avg runtime [s] 120.864 121.257 120.106 123.535
Times Converged 10 10 10 10
Avg Std Q’s [MVAr] 1.0961 1.1915 1.1841 1.5702
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