
 
 

Delft University of Technology

Time Series Analysis of 3D Coordinates Using Nonstochastic Observations

Velsink, Hiddo

DOI
10.1515/jag-2015-0027
Publication date
2016
Document Version
Final published version
Published in
Journal of Applied Geodesy

Citation (APA)
Velsink, H. (2016). Time Series Analysis of 3D Coordinates Using Nonstochastic Observations. Journal of
Applied Geodesy, 10(1), 5-16. https://doi.org/10.1515/jag-2015-0027

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1515/jag-2015-0027
https://doi.org/10.1515/jag-2015-0027


 Journal of Applied Geodesy 2016; 10(1): 5–16

*Corresponding author: Hiddo Velsink, Department of Built  
Environment, University of Applied Sciences, Utrecht. Postbus 182, 
NL-3500 AD Utrecht. Department of Geosciences and Remote  
Sensing, Delft Technical University. e-mail: hvelsink@outlook.com

DOI 10.1515/jag-2015-0027
received November 22, 2015; accepted December 09, 2015.

Abstract: Adjustment and testing of a combination of sto-
chastic and nonstochastic observations is applied to the 
deformation analysis of a time series of 3D coordinates. Non-
stochastic observations are constant values that are treated 
as if they were observations. They are used to formulate 
constraints on the unknown parameters of the adjustment 
problem. Thus they describe deformation patterns. If defor-
mation is absent, the epochs of the time series are supposed 
to be related via affine, similarity or congruence transfor-
mations. S-basis invariant testing of deformation patterns is 
treated. The model is experimentally validated by showing 
the procedure for a point set of 3D coordinates, determined 
from total station measurements during five epochs. The 
modelling of two patterns, the movement of just one point 
in several epochs, and of several points, is shown. Full, rank 
deficient covariance matrices of the 3D coordinates, resulting 
from free network adjustments of the total station measure-
ments of each epoch, are used in the analysis. 

Keywords: Geodetic Deformation Analysis, Time Series, 
3D Coordinates, Full, Singular Covariance Matrices, Non-
stochastic Observations, S-basis Invariant Testing

1  Introduction
Geodetic deformation analysis is about change of form 
and size of the earth’s surface or of objects on, below or  
above it, and also of the relative position and orienta-
tion of the objects. The objects to be analysed are rep-
resented by points that constitute a three- dimensional 
geodetic network. It is nowadays common practice to 
use total stations, GPS receivers and other devices for 
the analysis. If processing the measurements results in  

three-dimensional x, y, z coordinates, these can be pre-
sented in two-dimensional graphs, showing the displace-
ments in time or in space or both. It is, however, generally  
difficult to come to statistically sound conclusions by ana-
lysing the graphs. Computational methods to test statis-
tical hypotheses are desirable. For two epochs methods 
are available to perform an adjustment of the coordi-
nates, taking into account their covariance matrix, and to 
perform hypothesis testing [4, p. 494 ff.]. The analysis is  
generally not invariant for the used S-basis [10].

In this paper an adjustment model is proposed that 
analyses a time series of 3D coordinates, taking account of 
the covariance matrices and analysing the deformations 
of all points and all epochs simultaneously, by comput-
ing statistics of deformation patterns and testing them. 
The model can be applied to any 3D geodetic network, 
observed quasi-continuously (i. e. with permanently 
installed sensors measuring frequently). Examples are the 
monitoring of the movement of a subset of points through 
all epochs, or the periodic oscillation of a subset of points.

In the next section the problem is defined. After 
describing existing approaches in section 3, section 4  
describes the solution set-up. The adjustment model is 
treated in section 5. The adjustment itself, the deformation 
testing and the S-basis invariance are handled in section 6.  
Section 7 gives an experimental validation of the model.

2  Problem Definition
The problem addressed in this paper is the adjustment 
and testing for deformations of a time series of three- 
dimensional coordinates of a geodetic network, with a 
covariance matrix of the coordinates that is full and gen-
erally singular, because each epoch of the time series is 
adjusted as a free network.

The described problem will be handled by con-
structing a least squares adjustment model. As a prac-
tical application to show the usability of the model, the 
continuous monitoring by a total station of points, situ-
ated on built structures that are prone to deformations, 
is analysed.
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6   H. Velsink, Time Series Analysis of 3D Coordinates Using Nonstochastic Observations

3  Existing Solutions
Heunecke et al. give an overview of existing approaches 
for deformation analysis of two time epochs of deforma-
tion measurements [4, p. 521]. The general approach is 
to compute displacement vectors between coordinates 
of two epochs and their covariance matrix. Different 
approaches exists to analyse the displacement vectors, 
e. g. by using 95 %-confidence ellipsoids after a least 
squares adjustment [2, 5] or a L1-norm adjustment [1, 3],  
or using constraints on common points and analys-
ing the quadratic form of the weighted estimated least 
squares residuals [4, p. 500 ff.].

Heunecke et al. give also methods to analyse time 
series [4, p. 548]. They do not take advantage of the covari-
ance matrices of the coordinates and do not perform the 
analysis for all three dimensions (x, y and z) simulta-
neously. As a consequence the choice of datum definition 
and the solution’s invariance for it, are not addressed.

A comprehensive 3D multi-epoch model is treated by 
[2, p. 164 ff.]. It takes care of singular covariance matri-
ces and incorporates deterministic deformation models. 
It assumes all epochs to be defined relative to the same 
S-basis, which has to be defined by points, measured in 
all epochs. Testing is treated for the sequential adjustment 
case. Quality description of the tests is not treated.

4  Solution Set-up

4.1  Form and Size, Position and Orientation

The subject of geodetic deformation analysis is the 
change in time of the form and size of objects, and also 
of the relative position and orientation of the objects.  
Form, size, relative position and orientation can be 
recorded by Euclidian x, y, z coordinates. It is assumed 
that the coordinates are normally distributed with a 
probability density function, which is fully described by 
a known covariance matrix, except for the first moments. 
This matrix may be singular, e. g. because it stems from 
a free network adjustment. If there are reference points, 
i. e. points that are considered not to be influenced by 
the deformation to be analysed, they are part of the 
 geodetic network, and are analysed simultaneously with 
the object points.

The Euclidian coordinates describe the position 
and orientation of the network relative to the coordinate 
origin and axes as well. These, however, are not subject 
of the analysis. Their uncertaintity, as it is reflected in  

the covariance matrix, has to be eliminated from the 
analysis. This is realised in the adjustment model by 
a congruence or similarity transformation of the co-
ordinates of each epoch to the coordinate system of the 
reference epoch. It is shown that after these transforma-
tions, testing of deformation hypotheses can be done 
 independently from the S-bases chosen for the individ-
ual epochs. The first epoch is chosen in this paper as 
reference epoch, but any other epoch as reference epoch 
would give the same analysis results.

The choice between a congruence and a similarity 
transformation depends on the question, whether the 
scale (unit of length) is considered stable between epochs 
and essential for the analysis.

The set-up of the adjustment model, with transforma-
tions between the epochs incorporated into it, not only 
removes the influence of origin, axes and scale of the ref-
erence system on the analysis. It also makes it possible 
to test, without additional S-transformations, for defor-
mations of all kinds of subsets of points, independent of 
their being reference or object points, or being part of the 
S-basis or not. It is possible to include in one hypothesis 
that is to be tested, both reference and object points, and 
both points within and outside the S-basis.

4.2  Nonstochastic Observations

The adjustment model is built as a model of observation 
equations with the coordinates as observations, arranged 
according to the epochs. The parameters are the expecta-
tions of the coordinates of all epochs. Each point has for 
each epoch different coordinates in the parameter vector. 
Also the transformation parameters of each epoch relative 
to the previous one appear in the parameter vector.

Constraints are stated concerning the coordinates 
of all epochs. In the case of stability analysis the con-
straints state that the expectations of coordinates of the 
same points in different epochs are equal. These con-
straints are added to the observation vector as nonsto-
chastic observations, following the approach of [9]. If 
coordinates are assumed to be subject to some kind of 
deformation, for example a linear movement of one or 
more points, or a deformation pattern with a periodic 
character for a subset of points, the constraints add 
extra unknown parameters, for example the linear rate 
of movement, or the coefficients of the periodic pattern, 
to the parameter vector.

The advantage of using nonstochastic observa-
tions is that testing of deformation hypotheses is done 
in the same way as testing of one- or multi-dimensional 
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hypotheses on biases in the other observations. Least 
squares estimates of the deformations are determined 
using standard formulas. Also minimal detectable biases 
can be computed with standard formulas, giving infor-
mation on the deformation sizes that can be detected 
with the tests.

4.3  Full, Singular Covariance Matrices

Observations, for example direction and distance obser-
vations of total stations, and their stochastic model are 
used for a deformation analysis, which is performed in 
two phases. In the first phase the direction and distance 
observations are adjusted for each epoch separately. The 
results are coordinates and their covariance matrices for 
all epochs. The second step is the subject of this paper: the 
deformation analysis of the coordinates of many epochs. 
The covariance matrices of all epochs have to be used  
[7, p. 154]. These matrices are generally full matrices (no or 
few zeros) and singular, because each epoch is adjusted 
as a free network, not connected to control points. The 
adjustment model of section 5 can handle full, singular 
covariance matrices.

4.4  Solution Characteristics

An overview of the solution characteristics can now 
be given. The most relevant terms are listed below 
and the solution procedure is illustrated by a Nassi- 
Schneidermann diagram (figure 1).

A geodetic network per epoch is a set of points on, 
above, or under the earth’s surface, in this paper assumed 
to be represented by 3D Euclidian coordinates.

Form and size of a geodetic network (and their 
changes in time) are of interest, not the position and ori-
entation relative to the reference system. Transformations 
are therefore included in the adjustment model.

Stability assumes the expectations of coordinates to 
be equal through all epochs, except for the above men-
tioned transformations.

A deformation pattern is the relation between the 
geodetic networks per epoch, formulated by giving the 
expectations of coordinates through the epochs using 
mathematical functions, described by nonstochastic 
observations, which depend on unknown deformation 
parameters, for example a linear movement rate, or the 
coefficients of a series expansion of a periodic function.

Inside or outside the adjustment model we put the 
description of the deformation. If it is inside, nonstochastic 

Collect input:
mi , D { mi }:  measurements and their precision (covari-

ance matrix) of  the geodetic networks of
all epochs i

Adjustment of measurements of every epoch as free
network (not treated in this paper)
Collect intermediate results:
bi , D { bi } : coordinates and their precision (covari-

ance matrix) of the geodetic networks of
all epochs i

Determine deformation pattern
Equate corresponding points in epochs using
nonstochastic observations

No deformation?
true false

Add deformation pattern to equated
points using matrix Z∇ of equation (16)Ø

Describe transformations between epochs using
i.a. nonstochastic observations

Perform testing

Null hypothesis
rejected?

true false

Formulate alternative hypotheses
Test alternative hypotheses and select
best one
Formulate new deformation pattern

Ø

New deformation pattern formulated?

Output of adjustment and testing results
Output of m.d.d.’s

Determine minimal detectable deformations (m.d.d.) 
as description of deformation analysis quality

Perform adjustment using model (28), with iteration, 
if necessary

observations describe the deformation pattern, and extra 
deformation parameters are included in the parameter 
vector. If it is outside, the adjustment model assumes 
stability and no extra deformation parameters are in the 
parameter vector. The hypothesis of stability is tested 
against alternative hypotheses, describing deformation 
patterns, by appropiate test statistics, which make use of 
the nonstochastic observations to determine matrix Z∇ of 
equation (16).

Singular, full covariance matrices result from the 
free network adjustments of each epoch, and are used in 
the adjustment model. If only coordinates are available 
for each epoch, a substitute matrix, for example a unit 
matrix, is used as covariance matrix, which yields sub 
optimal adjustment and testing results. 

Figure 1: Solution procedure.
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5  Adjustment Model

5.1  Observations and Parameters

The adjustment model is built taking as:
 – observations:

i. cartesian 3D point coordinates of a geodetic 
network and their covariance matrix, available 
for at least two epochs. For the first epoch they 
are assembled in vector a1 (an underlined variable 
indicates a stochastic variable) with the covari-
ance matrix D{ a1}. For the second and later epochs 
they are assembled in vectors b i, with i the epoch 
number, which runs from 2 to p with p the number 
of epochs. Each b i has a covariance matrix D{ b i};

ii. nonstochastic observations zf, describing con-
straints on the transformation parameters; their 
covariance matrix is the zero matrix;

iii. nonstochastic observations zd, describing the de -
formation pattern; their covariance matrix is the 
zero matrix. 

 – unknown parameters:
i. expectations of cartesian 3D network point coor-

dinates, for each epoch assembled in vector ci of 
epoch i. Vector c takes all epochs together: 

�( )c c c= , , .p

T

1

ii. vector of transformation parameters f, subdi-
vided in subvectors fi, i–1 for the transformation 
in each epoch interval between epoch i and i – 1, 
with i = 2, . . ., p.

iii. additonal parameters ∇ to describe the trend 
function of the deformation, see section 4.2. 

5.2  Nonlinear Adjustment Model

In the adjustment model the expectations of all point 
coordinates are expressed in the reference system of the 
first epoch, and are parameters in vector c. The observed 
coordinates in the first epoch are taken together in vector 
a 1. We have:

{ }E a c P c= = ,1 1 1

with E{.} the expectation operator, and P1 the matrix that 
selects the points of the first epoch from c. P1 has only 
ones and zeros. The observed coordinates b i in a following 

epoch i (i = 2, . . ., p) are assumed to be in a separate refer-
ence system, indicated by a superindex (i): 

b b= .i i
i( )

These coordinates are transformed with a vector function 
ϕi, i–1 to the reference system of epoch (i – 1): 

ϕ






−

− −b b f= , ,i
i

i i i

i
i i

( 1)
, 1

( )
, 1

then with ϕi–1, i–2 to the reference system of epoch (i – 2), 
and so on, and we get the transformed coordinates a i: 

ϕ ϕ( )( )



− −a b b f f= = , , , ,i i i i i i i

(1)

2, 1 , 1 , 1 2,1… …

and:

{ }E a c P c= = .i i i

Pi selects ci from c. It follows that:

… …E b f f P c, , , = .i i i i i i2,1 , 1 , 1 2,1ϕ ϕ( )( )











− −

Hopping from epoch i through all intermediate epochs 
to the first one, is chosen, and not a direct transforma-
tion to the first epoch, because it is assumed that in 
general more common points are available for succes-
sive epochs.

Following the approach of [8], the transformation ϕi,j 

between epoch i and j, is of a general form, for example an 
affine transformation, which is changed to another type of 
transformation, for example a similarity transformation, 
by the use of constraints. These constraints are formu-
lated as nonstochastic observations: 

ζ )(z f= ,f f

for which zeros are assumed as observed values.
The deformation pattern is described by a vector of 

nonstochastic observations zd and a deformation function 
ζd, which gives a relation between the elements of c and 
the elements of a vector of deformation parameters ∇: 

z c= , .d dζ ( )∇

For zd we assume zeros as the observed values.
From equations (2), (7), (8) and (9) follows the  following 

system for p epochs: 

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)
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�

ϕ

ζ

ζ

{ }

{ }

{ }
( )

( )

∇




















E

E

E g

a P c

b f P c

b f P c

z f

z c

= ,

, = ,

, = ,

= ( ),

= ( , ),

p p

f f

d d

1 1

2,1 2 2,1 2

with 

… …g b f b f f, = , , , .p p p p p p2,1 , 1 , 1 2, 1ϕ ϕ( )( ) ( )



− −

A point may be present in an epoch, but missing in one 
or more other epochs. This is handled by matrix Pi. The 
S-basis definition of an epoch is arbitrary (see section 
6.3) and may be realised by only a few points, by many 
points, or by all. There can even be no S-basis, i. e. the 
covariance matrix is regular, and the S-basis can be con-
sidered to lie outside the geodetic network. The fact that 
a point is missing, be it in the first or in any other epoch, 
does therefore not pose any problem for the deformation 
analysis with model (10).

5.3  Transformations

5.3.1  Affine Transformation

As general form of transformation ϕi, j the affine transfor-
mation is taken, written as: 

= ε

( )



























 +

































ε

a a a
a a a
a a a

t
t
t

x
y
z

R
u
v
w

t

R t= , = ,

= 1, 1, ,1 .

T

T

T

T

T

T

x

y

z

11 12 13

21 22 23

31 32 33

…

,

The column vectors u, v, w contain resp. the x˗, y˗, z˗ 
coordinates of bi before transformation. The vectors x, y, z 
contain the coordinates after transformation. R describes 
the rotation, shear and scale change of the affine transfor-
mation, t the translation.

5.3.2  Congruence Transformation

Equation (11) describes a congruence (or rigid body) trans-
formation, if the nine coefficients of matrix R meet the fol-
lowing six constraints: 

a
a
a

i j

j i i j

a a a= , = , , = 1, 2, 3,

, = 1 if = , otherwise = 0.

i
T

j ij i

i

i

i

ij ij

1

2

3

δ

δ δ

















≥

In the following sections a linearised adjustment model is 
derived. The linearised constraints are: 

a a 0
a 0 a
0 a a

a 0 0
0 a 0
0 0 a

a
a
a

∆
∆
∆

=

0
0
0
0
0
0

,

2
0

1
0

3
0

1
0

3
0

2
0

1
0

2
0

3
0

1

2

3

T T

T T

T T

T

T

T





























































where 0 is the (1 × 3) zero vector and a0
i (i = 1, 2, 3) is the 

vector of approximate values of ai. ∆ indicates the dif-
ference of the quantity concerned and its approximate 
value.

5.3.3  Similarity Transformation

For the similarity transformation the affine transfor-
mation is constrained with five constraints. Three con-
straints state that the three rows of R are perpendicular 
to each other. The two remaining constraints state that 
the lengths of the first and second row, and those of 
the second and third row are equal. The linearised con-
straints are: 

a a 0
a 0 a
0 a a

a a 0
a 0 a

a
a
a

∆
∆
∆

=

0
0
0
0
0

.

2
0

1
0

3
0

1
0

3
0

2
0

1
0

2
0

1
0

3
0

1

2

3

T T

T T

T T

T T

T T
−

−



























































5.3.4  Approximate Transformation

Before the adjustment, b i is approximately transformed 
to b¢i in the reference system of a 1, using equation (5). 
Likewise D{ b i} is transformed to D{ b¢i} by applying the 

(10)

(11)

(12)

(13)

(14)
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law of propagation of covariances. The approximate 
transformation parameters are determined as affine 
parameters, and subsequently adapted to those of a 
congruence or similarity transformation using singular 
value decomposition [8]. The transformations of equa-
tion (10) are now differential transformations. In each 
iteration step of the adjustment this is repeated with 
adapted transformation parameters from the previous 
iteration step. Therefore as approximate values for aij in 
the constraints of the congruence or similarity transfor-
mation we can take a0

ij = δij.
In the following sections, if b i is written, b¢i is meant.

5.4  Linearised Adjustment Model

A linearised adjustment model is built for the deformation 
analysis. Linearisation of all equations of system (10) is 
done with implicit differentiation relative to the observed 
vectors a1, b i (i = 2, . . ., p), zd and zf, and the unknown param-
eter vectors f, c and ∇.

The first and last two equations of system (10) are 
 linearised as: 

E a P c

z
f

f

z
c

c

∆ = ∆ ,

∆ = ∆ ,

∆ = ∆ + ∆ .

f
f

d
d d

1 1

0

0 0

ζ

ζ ζ

{ }
∂

∂













∂

∂











∂

∂∇









 ∇

















We define for later use: 

Z
f

Z
c

Z

= ,

= , = .

f
f

d
d d

0

0 0

ζ

ζ ζ

∂

∂













∂

∂











∂

∂∇









∇

The partial derivatives of the vectors ζf and ζd with 
respect to the vectors f, c and ∇ are matrices. The paren-
theses with zero (.)0 indicate that approximate values of 
the parameters have to be used to get the values in the 
matrices.

For the equations with b i (i = 2, . . ., p) in system (10) the 
linearised equations are: 

EB b F f P c∆ + ∆ = ∆ ,i i i i i{ }

with the matrices Bi defined as follows: 

� −B B B B= ,i i i2,1 3,2 , 1

and with ( j = 2, . . ., i – 1):

B
b

B
b

= = ,

= .

j j
j j

j j

j j

i
j

i i
i i

i
i

, – 1
, – 1

+ 1, 0

, – 1

( )

0

, 1
, – 1

( )

0

ϕ

ϕ

ϕ

ϕ

∂

∂













∂

∂













∂

∂











−

Fi is defined for i = 2, . . . p as follows: 

( )−F F F 0 0= , , , , , ,i i i2,1 , 1� �

with (p-i) matrices 0 of zeros, which have the same 
number of rows as F2,1 , and the partioning of Fi in columns 
in accordance with the partitioning of ∆f: 

( )− + −f f f f f∆ = ∆ , , ∆ , ∆ , ∆ .i i i i p p2,1 , 1 1, , 1� �

For Fi,i–1 (i = 2, . . ., p) we have: 

�F B B B
f

= .i i i i
i i

i i

, – 1 2,1 3,2 – 2, 1
, – 1

, – 1 0

ϕ∂

∂











−

Matrix Bi, i–1 for an affine transformation is given by [8] as 
follows: 

















−

a a a
a a a
a a a

B
I I I
I I I
I I I

= ,i i, 1

11
0

12
0

13
0

21
0

22
0

23
0

31
0

32
0

33
0

with a0
ij (i, j = 1, 2, 3) the approximate values of aij and I the 

(n × n) unit matrix and n the amount of points in b i.
As explained in section 5.3.4, we can take a0

ij = δij, 
which results in a unit matrix for Bi, i–1, from which follows, 
see equations (18) and (22): 

B I

F
f

= ,

= .

i

i i
i i

i i

, – 1
, – 1

, – 1 0

ϕ∂

∂













Matrix Fi, i–1 for an affine transformation is given by [8] as 
follows: 

F
0 0

0 0
0 0

= ,i i

i

i

i

, 1

1

2

3

ε
ε
ε

β
β

β

















−

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)
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where βi, 1, 2, 3 and 0 are all (n × 3) matrices, as follows:

βi = (u0, v0, w0); u0, v0, w0 are approximate values of 
u, v, w, (the x, y, z coordinates in b  i), which can be 
transformed to make the barycentre the origin. 

















ε =
1 0 0
1 0 0

1 0 0

,1 � � �

2 and 3 are analogous matrices as 1 with ones in the 
second, resp. third column, 0 is the (n × 3) zero matrix. 

We define F1 as the null matrix 0 and put it together with 
the Fi, i = 2 . . . p of equation (20) into matrix F. Analogously 
we take all Pi together in a matrix P: 

( )
( )

F F F

P P P

= , ,

= , ,

p

T

p

T

1

1

…

…

We define vector ∆b as: 

( )b a b b∆ = ∆ , ∆ , , ∆ .p

T

1 2 …

We can now formulate the linearised equivalent of 
system (10): 
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∆
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The covariance matrix of the observation vector on the 
left-hand side consists of the covariance matrices of a1 
and bi, i = 2, . . .,p, as described in section 5.1, approxi-
mately transformed as described in section 5.3.4, and zero 
matrices for the remainder if no correlation between the 
epochs is assumed (which is, however, not necessary to 
solve the model).

The model takes each epoch as a separate geodetic 
network: each point has a different point number for 
each epoch, for example point A is called A1 in epoch 1, 
A2 in epoch 2, etc. The hypothesis that no deformation has 
occured is formulated by stating that

−

−

−














x x
y y
z z

0 = ,
0 = ,
0 = ,

etc.

A A

A A

A A

2 1

2 1

2 1

The separate geodetic networks are linked together in  
this way. Equation (29) gives the nonstochastic observa-
tion equations (the zeros constitute together vector zd and 
have a standard deviation of zero). The number of rows 
of matrix Zd is three times the number of points. In each 
row there are zeros and one 1 and one −1 for respectively 
the coordinate of epoch 2 and epoch 1 (which are separate 
unknowns in the parameter vector). There are no parame-
ters ∇ and no matrix Z∇.

Let us now assume that a deformation is present for 
point A. Let it be a linear movement for which we write: 

x x a t
y y a t
z z a t

0 = – + ,
0 = – + ,
0 = – +

A A x

A A y

A A z

2 1 12

2 1 12

2 1 12

The ax, ay, az are unknown parameters, which enter the 
parameter vector ∇, and for which a least squares esti-
mate is determined in the adjustment. t12 is the time inter-
val between epoch 1 and 2. The matrix Z∇ is in this case a 
matrix with three columns and three elements t12 on the 
rows of the three nonstochastic observations mentioned, 
and with zeros on all other positions.

We can also leave ax, ay, az out of the adjustment. Then 
the last column of the coefficient matrix of equation (28)
disappears. The null hypothesis states now that there is no 
deformation. We test for a linear movement by using Z∇ in 
the test statistic of equation (34) .

Generally the transformation between epoch i and i – 1 
is a similarity or congruence, not an affine transformation. 
Matrix Fi is constructed according to equation (20) from 
matrices Fi, i –1 as given in equation (22) for the affine transfor-
mation. Matrix Zf is the matrix that describes the constraints 
for a congruence or similarity transformation. The coefficient 
matrix of equation (13) or (14) is used to construct matrix Zf.

6  Adjustment and Testing

6.1  Adjustment

System (28) is a linear system of observation equations 
and can be solved by least squares. If sufficient points are 
available in all epochs to determine the transformation 
parameters, the coefficient matrix is of full rank.

Because of the nonstochastic observations, and 
because of possible singularities of the covariance matri-
ces of a1 and the vectors b i, the covariance matrix of the 
observation vector of system (28) is singular. To get a least 

(26)

(27)

(28)

(29)

(30)
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12   H. Velsink, Time Series Analysis of 3D Coordinates Using Nonstochastic Observations

squares solution of the system, at least five methods are 
available that make it possible to test nonstochastic obser-
vations in the same way as stochastic observations [9]:
i. The adjustment model is split into two parts for the sto-

chastic and the nonstochastic observations respectively, 
and a sequential adjustment is applied.

ii. A switch is made from the model of observation equa-
tions to the model of condition equations.

iii. The covariance matrix is regularised.
iv. The standard deviations in the covariance matrix that 

are zero, are replaced by values that are very small. 
v. The observations are orthogonalised and the nonsto-

chastic observations eliminated. A follow-up adjust-
ment determines the test quantities.

Because the system is linearised, iteration is needed to 
find the least squares solution. To start the iteration good 
approximate values for all observations and all parame-
ters are needed, which have to satisfy the non-linear 
equations (10) and the non-linear constraints of section 
5.3.2 or 5.3.3. As described by [8], in each iteration step 
the approximate transformation parameters are updated, 
using singular value decomposition. Also, in each itera-
tion step, all b i and their covariance matrices D{ b i } are 
transformed with the new approximate transformation 
parameters to new coordinates b¢i and D{ b¢i } that are (for 
the common points) almost equal to a1 and in the refer-
ence system of a1.

In each iteration step the approximate values of all 
observations, and of all parameters have to comply again 
with the non-linear equations (10) and the non-linear con-
straints of section 5.3.2 or 5.3.3.

6.2  Deformation Testing

If one of the five methods, mentioned in the previous 
section, is used, standard methods for testing can be 
applied with the formulas given by [9]. Also the nonsto-
chastic observations can be tested with the same formu-
las, which means that a method of testing deformation 
patterns is provided.

If it is not sure whether there is any deformation, or 
what type of deformation happens, a null hypothesis H0 
is formulated, where no deformation is assumed (∇ is 
missing in system (28)), and an alternative hypothesis Ha:

H E

H E

y A x

y A x Z

: ∆ = ∆ ,

: ∆ = ∆ + ∆ ,a

0 { }
{ } ′ ∇∇

where ∆y, A and ∆x are respectively the observation 
vector, the coefficient matrix and the parameter vector of 
system (28). In A the last column of the coefficient matrix 
is missing and in ∆x the parameters ∆∇. Z¢∇ is the last 
column of the coefficient matrix of equation (28):

Z
0
0
Z

=′

















∇

∇

The alternative hypothesis is tested against the null 
hypothesis, without the need to perform a complete 
adjustment of (32), by using test statistic T q [6, p. 77]: 

T r Z Z Q Z Z r= 1 ˆ ˆ.q
T T

r
T

2 ˆ

1

σ ( )′ ′ ′ ′∇ ∇ ∇

−

∇

q is the number of columns in Z¢∇ and gives the degrees of 
freedom of the test. σ 2 is the variance factor of unit weight, 
and r ̂ are the reciprocal least squares residuals as they 
follow from a weighted least squares adjustment [8] and 
for which holds, with e ̂ the usual least squares residuals 
and Qy the cofactor matrix of the observations y: 

e Q rˆ = ˆ.y

Qr̂ is the cofactor matrix of r ̂. Z¢∇ describes a testable defor-
mation pattern, if the product Z¢T

∇  Qr̂ Z¢∇ is a regular matrix.
The probability density function of T q is a χ2-distribution 

with an expected value of q. The test is to choose a signif-
icance level α, to compute the critical value and to test, 
whether the computed value of T q exceeds the critical 
value. If this happens, the null hypothesis is rejected  
[6, p. 78].

6.3  S-basis Invariance

In [9] and [10] it is shown that the test statistic of equa-
tion (34) is invariant for a change of S-basis of the para-
meter vector x. It is evident from the fact that r ̂ can 
be computed from the model of condition equations, 
which is dual to the model of observation equations. In 
this dual model the parameter vector x has been elim-
inated, and therefore a change of S-basis of x doesn’t 
influence r ̂.

The test statistic of equation (34) is also invariant for 
changes of S-bases of the observed coordinate vectors a1 
and b i, i = 2, . . ., p, if deformation patterns are tested. To 
see this, model (28) is simplified and reduced. To do this, 

(31)

(32)

(33)

(34)

(35)
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and the vector d, containing the difference vectors of all 
epoch intervals, as: 

d H b= .T

Premultiplying equation (43) with HT, we get: 

E d H F f∆ = – ∆ .T{ }
This model has the same redundancy as model (43) and 
yields the same least squares solution.

Let the vectors a1 and b i, i = 2, . . .,p all have been 
S-transformed to other S-bases. It means that we have new 
vectors a¢1 and b¢i, taken together in vector b¢:

ψb b S= + ,′

where ψ is the vector of the differential transformations 
of the coordinate vectors of all epochs. These relate, 
however, to the same degrees of freedom as the trans-
formations in ∆f. This means that we can take S = F.

A proof for two epochs that test statistic (34) is invar-
iant for changes of S-bases of a1 and b 2, by proving that 
r ̂ and Qr ̂ are invariant, is given by [10] . The extension 
to more than two epochs is possible by using reduced 
model (46). This model can be solved by switching to 
the model of condition equations with matrix G, which 
is chosen to fulfil: 

G H F 0= ,T T

with R(G) the complementary space of R(HT  F). It follows 
with the same reasoning as given by [10] that r ̂ and Qr̂, 
as they follow from solving model (46), are invariant for 
changes in S-bases of a1 and b i, i = 2, . . ., p.

The conclusion is that if hypotheses concerning 
deformation patterns are formulated in terms of the orig-
inal model (28), and they can be reformulated in terms of 
model (46), which is generally possible, test statistic (34) 
is invariant for changes to other S-bases of the coordinate 
vectors a1 and b i, i = 2, . . ., p.

A deformation hypothesis may concern a point that is 
part of the S-basis definition and whose coordinates are 
fixed with a zero standard deviation. No S-transformation 
is needed to test such a point for deformation. It is demon-
strated by the example of [9].

(44)

(45)

(46)

(47)

(48)

we assume all observed vectors a1 and b i, and also the 
parameter vectors ci to contain coordinates of the same 
points in the same order, from which follows: 

P = unit matrix.

We also assume stability of all points, and therefore: 

…i j pc c∆ = ∆ ,with , = 1, , ,i j

and we reduce ∆c to a vector ∆c with the coordinate 
parameters of only one epoch. With matrix Ip defined with 
unit matrices I as: 

…I I I= , , ,p

T( )
 we get: 

c I c∆ = ∆ .p

This means that the nonstochastic observations z d disappear. 
Furthermore we assume that the nonstochastic observations 
z f are elimated. This can be done by noting that the equation: 

0 Z f= ∆f

means that ∆f lies in the nullspace of Z f. If N is a base 
matrix that spans this nullspace, we have:

f N f∆ = ∆ ,

with ∆f a vector of coefficients, which can be used as the 
new vector of unknown transformation parameters. If, for 
example, ∆f contains 12 parameters of an affine transfor-
mation and there are 5 nonstochastic observations to con-
strain the transformation into a similarity transformation, 
∆f contains 7 transformation parameters. With the defini-
tion F = FN, it follows that: 

F f F f∆ = ∆ .

So if we use F ∆f instead of F ∆f in model (28), we can omit 
the nonstochastic observations zf.

Because of the stability assumption, no parameters ∇ 
exist and no matrix Z∇.

With (36), (39) and (42), model (28) is written as: 

E b I c F f∆ = ∆ – ∆p{ }
To eliminate ∆c, we define matrix H as: 

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)
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7  Experimental Validation
The proposed model can be applied to the 3D monitoring by 
GPS and total stations of deformations of buildings, harbour 
quays, bridges, tunnels, land slides, etc. The model gives 
the possibility to compute statistics and to test hypotheses 
that describe complex deformation patterns, like the abnor-
mal movement of a subset of points through many epochs, 
or the periodic oscillation of a subset of points, for example 
caused by changes of temperature.

To validate experimentally the model, the monitoring 
of some buildings is taken. To be able to judge effectively 
the performance of the model, observations have been gen-
erated with known standard deviations, to which artificially 
deformations have been added. Fifteen points have been 
measured with direction and distance observations from a 
total station during five epochs. The fifteen points are posi-
tioned on three buildings (figure 2), which are monitored 
because of construction works. The instrument point is not 
fixed (not monumented). The observations are adjusted 
using the software package MOVE3 (http://www.move3.
com), resulting in x, y, z coordinates and their covariance 
matrix. The network is not attached to a control network.

A Matlab programme has been written to do the com-
putations. The observations have been generated with the 
following standard deviations:

 – directions: 0.3 mgon; 
 – distances: 1 mm; 
 – zenith angles: 0.3 mgon. 

The precision with which a point is defined (idealisation 
precision) is supposed to be 0.5 mm, indicating the preci-
sion by which a removable prism can be put on a point.

First no deformation is put in the observations. The 
adjustment model to test stability of all points is created 
by adding for each epoch interval, for each point and for 
each coordinate direction a nonstochastic observation, 
i. e. 4 × 15 × 3 = 180 nonstochastic observations: 

0 c c
0 c c
0 c c
0 c c

= ∆ – ∆
= ∆ – ∆
= ∆ – ∆
= ∆ – ∆

1 2

2 3

3 4

4 5













From these equations follows matrix Zd in equation (28).
The epochs are joined together with similarity 

transformations, which are realised for each epoch 
interval by five constraints on the affine transformation 
parameters.

The model contains 425 observations (5 × 15 × 3 = 225 
coordinates, 4 × 5 = 20 transformation constraints, 180 
point constraints), and 273 parameters (225 coordinates, 
4 × 12 = 48 transformation parameters), which yields 
a redundancy of 152. Adjusting the model leads to an 
overall model test of 0.60. With a critical value of 1.004, 
based on the use of the B-method of testing with a sig-
nificance level of a one- dimensional test of 0.1 % and 
of 47 % for the overall model test, the null hypothesis is 
accepted.

Then a movement of 1 mm in each epoch interval, 
in the direction of each coordinate axis of one point 
(point 101), is added and observations are generated. 
The same adjustment model as before is used and leads 
to rejection of the null hypothesis. The movement is 
then modelled with twelve nonstochastic observations. 
Assume vector c101

(i) is the subvector of vector c that con-
tains the x, y, and z coordinates of point 101 in epoch i. 
Let vector a contain the movements in x, y and z direc-
tion between epoch i and j, and ∆a the difference of a 
with its approximate value, necessary for the linearised 
model. The following 12 nonstochastic observations 
describe the deformation. 

0 c c a
0 c c a
0 c c a
0 c c a

= ∆ –∆ +∆
= ∆ –∆ +∆
= ∆ –∆ +∆
= ∆ –∆ +∆

101
(1)

101
(2)

101
(2)

101
(3)

101
(3)

101
(4)

101
(4)

101
(5)













From these equations the matrix Z ¢∇ of equation (32) is 
deduced, and the alternative hypothesis tested against 
the null hypothesis. The same test is used to test for 
linear movement of all other points. The deformed point 

(49)

(50)

Figure 2: 15 object points, 5 instrument points.
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shows the largest value of the test statistic (table 1 under 
“Stat.”), with a critical value of 12.6 and a significance 
level of 0.6 %. The estimated deformation [10, equation 
(42)] in each epoch interval is given in the same table for 
point 101 and three other points with large test statis-
tics. The estimated deformation of point 101 resembles 
closely the values that have been put intentionally into 
the coordinates, and the length of the deformation vector 
is even the same: 1.7 mm in each epoch interval. Table 2 
gives the minimal detectable deformations as the lengths 
of the semi-axes of the ellipsoid determined by [10, equa-
tion (44)]:

Z Q Z= ,T T
r

2
0 0 ˆ 0σ λ ∇ ′ ′ ∇∇ ∇

with λ0 the non-centrality parameter of the χ2- distribution 
and ∇0 describing the minimal detectable deformations. 
They give the deformations that can be detected with the 
three-dimensional point test of five epochs with a power 
of 80 %.

Table 2: Minimal detectable deformations (m. d. d.); values are per 
epoch interval. 

 M. d. d. (mm)

Pnt.  axis 1  axis 2  axis 3 

101  1.55  0.80  0.76 
103  1.49  0.73  0.73 
102  1.52  0.76  0.74 
104  1.48  0.72  0.72 

Finally five points (101, . . .,105) are given a movement of 
1 mm in both the x and y direction and −0.7 mm in the z 
direction in each epoch interval. It is modelled by 60 non-
stochastic observations. Let vector c101

(i)
–105 be the subvector 

of vector c that contains the x, y, z coordinates of the five 
points in epoch i. Let k = (1, 1, 1, 1, 1)T, I3 the (3 × 3)-unit 
matrix, and E = I3 ⊗ k, with ⊗ denoting the kronecker 
product. From the following nonstochastic observations 
the matrix Z∇ is deduced:

(51)

0 c c E a
0 c c E a
0 c c E a
0 c c E a

= ∆ – ∆ + ∆
= ∆ – ∆ + ∆
= ∆ – ∆ + ∆
= ∆ – ∆ + ∆

101–105
(1)

101–105
(2)

101–105
(2)

101–105
(3)

101–105
(3)

101–105
(4)

101–105
(4)

101–105
(5)













with ∆a as defined before. 
The null hypothesis is rejected again. The test of 

the hypothesis that the five points have shifted gives a 
very large test statistic (74.2 with a critical value of 12.6, 
if the significance level is 0.6 %), indicating that it is a 
very good hypothesis. The estimated deformation and 
the minimal detectable deformations are given in table 3. 
The length of the deformation vector is 1.6 mm, which is 
exactly the length of the vector that has been put inten-
tionally into the coordinates. 

Table 3: Linear movement of points 101–105 over five epochs; values 
are per epoch interval. 

 Est. def. (mm) M. d. d. (mm)

Pnt.  x y  z  axis 1  axis 2  axis 3 

101–105  1.0 0.7  –1.1  0.93  0.71  0.60

Point movements that are nonlinear in time are modelled 
by nonstochastic observations that are nonlinear func-
tions of the deformation parameters. To be used in the 
model, the functions have to be linearised.

If the deformation pattern to be expected is not 
known, a search has to be performed for the best alter-
native hypothesis. A strategy is described by [9] for two 
epochs. Extending it to more than two epochs, one could 
for example systematically test for a constant linear move-
ment through all epochs of each point individually, of com-
binations of two points close together, of combinations of 
three points close together, etc. Because it is not needed 
to solve a complete adjustment model, only to compute 
test statistic (34), its degrees of freedom q determines the 
computational burden of testing many hypotheses.

8  Conclusions
A model has been built for the adjustment of a time series 
of 3D coordinates in a geodetic point field. The covariance 
matrices of the coordinates of all epochs of the time series 
are used and they may be full and singular. Deformation 
patterns, or their absence, are modelled as nonstochastic 
observations. To make the testing of the model invariant 

(52)

Table 1: Test of linear point movement over 5 epochs; values are per 
epoch interval.

 Stat. Est. def. (mm)

Pnt.  x y z 

101 70.9 0.9 1.1 1.0 
103 16.9 –0.4 –0.5 –0.3 
102 7.0 –0.1 –0.1 –0.5 
104 4.7 –0.2 –0.3 –0.1 
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16   H. Velsink, Time Series Analysis of 3D Coordinates Using Nonstochastic Observations

for S-transformations, transformations between all epochs 
are built into the model. The transformations can be simi-
larity or congruence transformations, and are modelled as 
affine transformations, subject to constraints. 

The constraints are implemented as nonstochastic 
observations. The model is first built as a nonlinear one, 
and then linearised. The approximate parameter values 
and their updates in the iteration steps (needed because 
of the linearisation) have to comply with all nonstochastic 
observations. For the rotation parameters this is accom-
plished with singular value decomposition.

In many cases it is a sound deformation analysis proce-
dure to formulate a null hypothesis that assumes no defor-
mation. The nonstochastic observation equations state that 
the coordinate differences between the epochs are expected 
to be zero after the transformations. Alternative hypotheses 
are formulated that describe movements of one or many 
points over one or many epoch intervals. Standard hypoth-
esis testing is used to test the alternative hypothesis against 
the null hypothesis. The quality of the tests is described by 
the sizes of the minimal detectable deformations.

The point movements are formulated as nonstochas-
tic observation equations, which give the matrices to be 
used in the testing equations.

The model and its adjustment and testing have been 
verified experimentally with a geodetic network, where 15 
points are measured by a total station during five epochs. 
The results show that 3D deformation analysis of time 
series of coordinates is possible with the model proposed.
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