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Abstract

Background: Patients suffering from critical congenital heart disease (cCHD) require cardiac
intervention within the first year of life. During the postoperative period, patients are at risk of
haemodynamic instability resulting in insufficient organ perfusion and subsequent organ failure.
To prevent this, patients are placed in the paediatric intensive care unit (PICU) where various
vital parameters can be monitored. However, interpreting these continuous data streams can be
challenging. Machine learning offers the potential to support clinical decision-making in this setting,
but challenges remain, particularly in labelling haemodynamic instability and accounting for varying
physiology of this patient demographic. The goal of this study was to improve the retrospective
labelling of haemodynamic instability and evaluate the affect of age-stratified subpopulation on
model performance.

Methods: This study used a retrospective dataset of continuously measured parameters (heart
rate, respiratory rate, mean arterial pressure, central venous pressure, oxygen saturation, and per-
fusion index) collected from post-operative cCHD patients admitted to the PICU of Erasmus MC
Sophia Children’s Hospital, the Netherlands, between January 2016 and April 2025. A new scoring
system was developed to quantify the haemodynamic support received by patients and to iden-
tify intervention times at which support was increased. These interventions were used to label
haemodynamic instability in the a period dI' prior to intervention. The resulting labelling was
applied to train a random forest algorithm to predict haemodynamic instability, and the model was
subsequently retrained on age-based subpopulations.

Results: A total of 425 patients were included for this study. The new labelling method resulted
in 5.7% of the data being labelled as haemodynamically unstable. The random forest using the new
labelling achieved an average (SD) area under precision-recall curve (AUCPR) of 0.233 (0.041) on the
test set during cross-validation and final test AUCPR of 0.203. The largest age subpopulations were
0-30 days and 90-180 days. The class prior of instability was 9.2% in the 0-30 days subpopulation
and the prediction model achieved an AUCPR of 0.244 (0.064). In the 90-180 day subpopulation
the class prior was 4.9% and an AUCPR of 0.221 (0.105) was achieved.

Conclusion: This study proposed a new method of retrospectively labelling haemodynamic insta-
bility with the goal of training a predictive model to predict these instabilities. A random forest
model trained using the new labelling showed limited improvement, with an AUCPR of 0.204 and
an AUCROC of 0.762. Age-based subpopulation analysis indicated potential for reduced data
variation, though larger cohorts are needed for better generalisation. Further refinements in the
retrospective labelling of haemodynamic instability are required for an effective prediction model
to be developed.
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Introduction

Approximately 8-9 in 1000 children are born with congenital heart disease (CHD), making it the
most common birth defect!™. Of these, around 26% present with critical congenital heart disease
(cCHD), requiring cardiac intervention within the first year of life®. During the perioperative period,
these infants are at risk of haemodynamic instability, a clinical state in which the body is unable
to maintain adequate blood pressure, leading to insufficient blood flow and oxygen delivery, and
consequently compromised organ perfusion.

To reduce this risk, patients are admitted to the paediatric intensive care unit (PICU), where
multimodal monitoring provides continuous measurements of vital parameters such as heart rate
(HR), respiration rate (RR), mean arterial pressure (MAP), central venous pressure (CVP), and
oxygen saturation (SpOgz). Although multimodal monitoring helps track these physiological pa-
rameters, it is not feasible for hospital staff to continuously track all parameters for all patients.
Subtle but clinically important changes can therefore be overlooked. Recent advances in machine
learning (ML) offer the potential to support clinical decision-making by automating the analysis of
the vital parameters. Supervised learning, which uses labelled data to train models that can classify
or predict clinical outcomes, has already been widely applied in healthcare for tasks such as risk
stratification and outcome prediction.

For supervised ML to be applied effectively, accurate labelling is necessary to distinguish stable
from unstable periods. Retrospective labelling of instability remains challenging. MAP is often
used in adult patients, with a predefined threshold below which instability is assumed, but this
oversimplifies the complex developing cardiovascular physiology of young children®. An alternative
approach is to define haemodynamic instability based on the interventions used to counteract it,
such as the administration of fluids or vasopressors/inotropes” ?.

One example of this intervention-based approach is the work of Van Winden et al., who defined
instability using retrospective labelling based on such treatments!?. Their algorithm generated
predictions from five continuously monitored vital parameters: HR, RR, MAP, CVP, and SpOs.
They found that performance was highest when the model was trained on data from the same
patient to whom it was later applied (in-patient training), but declined when trained on data from
other patients in the same cohort (inter-patient training). Since the aim is to enable real-time
prediction, requiring prior training on the specific patient would be impractical, especially during
the early hours of admission when timely detection is most critical.

In their method, a period of time before an intervention was labelled unstable. Interventions
were defined as the administration of inotropes, vasopressors, pulmonary vasodilators, or fluids. This
definition did not account for dosage differences and treated all intervention changes as equivalent.
As aresult, labelling errors could occur. For example, errors arose when medication was re-registered
in the electronic health record (EHR) despite no change in dose, or when the dosage was reduced.
Such entries would still be labelled as interventions, even though the patient’s haemodynamic state
was stable or improving.

In addition to labelling inaccuracies the large difference between the in-patient and inter-patient
performance is notable. This suggests that the heterogeneity within the patient population limits
the ability of models trained across patients to generalise effectively. One strategy to address this
issue is to identify subpopulations with lower variability in the patient physiology, where predictive
models might perform more reliably. The normal range for vital parameters of children changes
as they grow older 2. By stratifying patients into age-based groups, models may better capture
the unique physiological characteristics within each subgroup, potentially improving inter-patient
prediction accuracy.
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The aim of this study is to build upon the algorithm developed by van Winden et al., with
the goal of enhancing the performance of the inter-patient algorithm by addressing the previously
discussed labelling and patient variability issues. Before turning to these improvements, the Data
Acquisition & Model Setup section will describe the original study cohort and how it was expanded
for this study, as well as outline the model setup and training pipeline employed in the work by van
Winden et al. Chapter 1 will focus on redefining the labelling of haemodynamic instability, while
Chapter 2 will examine how model performance can be improved by training subpopulations based
on age. In Chapter 3 some of the assumptions made during labelling will be assessed to gain further
insight into the data and to inform future research directions.
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Data Acquisition & Model Setup

The work of van Winden et al. serves as the foundation for this study, providing the original
patient cohort, preprocessing, and modelling framework. In this study, the cohort was extended
to include extra patients, applying the same inclusion and exclusion criteria. In addition, an extra
vital parameter was added to the full cohort in the form of the perfusion index (PI), which reflects
the ratio of pulsatile to non-pulsatile blood flow and serves as an indicator of peripheral perfusion.
The following section describes the pipeline and model setup used by Van Winden et al. as well as
the expanded cohort used for this study.

Method
Study Cohort

This single centre retrospective study consisted of data collected in patients with cCHD. All pa-
tients were admitted to the PICU in the Erasmus MC Sophia Children’s Hospital, Rotterdam, the
Netherlands, between January 2016 and April 2025. Patients of an age between 0 and 365 days
were included if they were admitted for a minimum duration of 800 minutes (13.33 hours). Patients
with a birth weight < 2500 g were excluded. This was used to exclude prematurely born patients,
since gestational age was not registered consistently. The chance of a full-term infant being born
with a birth weight of 2500 g is 2.5% 3. Patients were excluded if not all of the following parameters
were measured HR, RR, MAP, CVP, SpO,, and PI. Patients were also excluded if fewer than five
unique values were measured in one of the parameters as this was assumed to be the result of faulty
measurements.

Data Collection & Preprocessing

HR and RR were measured using three-lead electrocardiogram (3M, St. Paul, MN, USA). The
SpO2 and PI was measured using the Rainbow SET pulse oximeter (Masimo, Irvine, CA, USA).
MAP and CVP were measured using an arterial line and central venous line respectively (Becton
and Dickinson, Franklin Lakes, NJ, USA).

The exact preprocessing pipeline is detailed in Appendix A.1. To summarise, data was resampled
to 1/60 Hz, scaled, and imputed for missing values. To balance the data across patients, a continuous
segment of 800 minutes was selected for each patient. A binary indicator was added to mark imputed
data points, which served as a seventh feature alongside the six vital parameters.

Model Design & Training

The prediction model consists of a random forest classifier that uses vital parameters measured
within a window (W) as input features to predict future instability (Figure 1). The prediction
horizon (H) dictates how many minutes into the future the model makes its predictions. The
window moves along the signal in steps of one minute.

The model was trained using a nested cross-validation structure, with five-fold cross-validation
applied in both the inner and outer loops (see Figure 2). The inner loop selects the optimal hyper-
parameters by training each fold with a different set of hyperparameter configurations. Appendix
A.2 provides an explanation of hyperparameters and a full list of tuned hyperparameters. This
process is repeated 20 times, and the configuration achieving the highest average precision on the
validation set of the five inner folds is selected. These hyperparameters are then used to train the
model on the corresponding outer fold and evaluated on its associated test sets. This procedure is



Data Acquisition & Model Setup 4

repeated for each outer fold. A final test set is kept separate from the training data during model
development and is only used for the final evaluation of the model.

— Vital sign
== Haemodynamic Instability
Window

Window (W) Horizon (H)

Vital signs

_____
~

Time

Figure 1: Illustration of the model input and labelling framework. Vital signs are observed in
a moving time window (W), which is used to predict haemodynamic instability at a future time
point. How many minutes into the future the prediction is made is dependant on the set prediction
horizon (H).

Train-set | Final Test-set

Test | Train

Outer-loop

Train with optimal
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Figure 2: Nested cross-validation procedure. The outer loop splits the dataset into training and
test folds to evaluate the model with optimal hyperparameters. Within each outer training fold,
the inner loop further splits the data into training and validation folds for hyperparameter tuning.
The final performance is assessed on the independent test set.

Model Evaluation

The area under the precision-recall curve (AUCPR) was selected as the primary metric for evalu-
ating model performance due to the low prevalence of positive instability labels in the dataset. In
imbalanced settings, metrics such as accuracy or the area under the receiver operating character-
istic curve (AUCROC) can be misleading. ROC curves plot sensitivity against the false positive
rate, which is strongly influenced by the large number of negative cases. As a result, a model that
identifies very few positive cases can still achieve a high AUCROC if it predicts the majority class
well. In contrast, AUCPR focuses on recall (synonymous to sensitivity) and precision, making it
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more responsive to changes in positive class detection. This is especially important when the goal
is to detect haemodynamic instability, where missing a positive case carries a greater cost than
generating a false alarm.

When interpreting AUCPR, it is important to be aware that the baseline performance is directly
tied to the proportion of positive labels in the dataset, referred to as the class prior. For example,
if 10% of the samples are positive, a random classifier would result in an AUCPR of 0.10. This is in
contrast to the more commonly used AUCROC which has a fixed baseline of 0.50 regardless of class
distribution. As a result, AUCPR values are not directly comparable across datasets with different
class distributions.

For all model the mean and standard deviation (SD) of the outer-fold CV performance metrics
was given for the train set, the test set was only used for a final performance evaluation.

Results
Study Cohort

An overview of the study cohort characteristics and vital parameters is given in Table 1. The study
cohort consisted of 651 eligible ICU patients aged between 0 and 1 year and with a minimum ICU
stay of 800 minutes. Of these, 169 patients were excluded due to one or more vital parameter not
having been recorded. An additional 43 patients were excluded for having a birth weight below 2,500
grams. A final 14 patients were removed because one or more of their vital parameters contained
fewer than five unique values, resulting in a final cohort of 425 eligible patients.

Table 1: Summary of study population and vital sign characteristics for both the old cohort
originally used by Van Winden et al. and the new extended cohort used for this study. The PI
was not used in the old cohort.

Study Population Old Cohort (n=224) New Cohort (n=425)
Male population, n (%) 136 (61) 234 (55)

Age (days), median [Q1-Q3] 132 [85-182] 104 [43-169]

Vital Signs Median [Q1-Q3] Median [Q1-Q3]

HR (beats/min) 137 [121-175] 140 [125-154]

RR (breaths/min) 41 [32-54] 35 [28-42]

SpOs (%) 97 [94-99] 97 [95-99]

MAP (mmHg) 57 [34-68] 59 [50-69]

CVP (mmHg) 12 [8-18] 10 [6-13]

PI - 1[1-3]

HR, heart rate; RR, respiratory rate; SpOaz, peripheral oxygen saturation; MAP, mean arterial pressure;
CVP, central venous pressure; PI, perfusion index
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Chapter 1: Labelling Haemodynamic Instability

As mentioned, one of the constraints of the labelling method employed by van Winden et al. was
that it did not account for medication dosage. This led to errors in the labelling, as the continuation
or reduction of administered medication was registered the same as an increase, resulting in false
labels as we are only interested in increases. In this chapter we propose a new method for labelling
instability that quantifies the haemodynamic support received by the patient. The new labelling
method is compared to the previous approach, and the effect of expanding the study cohort is
examined.

1.1 Methods

One existing method of quantifying a patient’s need for cardiovascular support is the vasoactive
inotropic score (VIS) !4, The VIS sums the dosage of various vasopressors and inotropes, weighting
each according to its pharmacological potency, resulting in Formula 1.

=1

Where w; is the weighting factor for vasoactive/inotropic agent i, d; is the dosage in ug/kg/min,
and m is the total number of vasoactive or inotropic agents included in the score.

Since its introduction, several additional drugs have been incorporated into the formula, resulting
in the complete list of weights shown in Table 21518

Table 2: Weight factor used in VIS score calculation for various drugs.

Drug Weight (w)
Dopamine 1
Dobutamine 1

Enoximone 1
Phenylephrine 10

Milrinone 10

Olprinone 10

Levosimendan 50
Epinephrine 100
Norepinephrine 100
Vasopressin 10,000

Traditionally, the VIS score has been used to predict patient morbidity and mortality after
cardiac surgery'”. For our purpose of defining interventions, we expanded upon this method by
adding fluid administrations and the application of extracorporeal membrane oxygenation (ECMO)
in order to capture all methods of intervention in cases of haemodynamic instability. Fluid adminis-
tration included sodium chloride, Ringer’s lactate, and blood products, and was weighted using the
administered volume by body weight in ml/kg. The application of ECMO was assigned a set weight
of 150, as it is considered the last-resort intervention in cases of haemodynamic deterioration, and
therefore a high weight was appropriate. This combined scoring resulted in what we referred to as
the intervention score (IS), shown in Formula 2.

IS = VIS + FA + ECMO (2)
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Where VIS is the VIS score calculated according to Formula 1, FA is the administered fluid
volume relative to body weight in ml/kg, and ECMO represents the administration of ECMO,
assigned a fixed weight of 150. The IS serves as a comprehensive measure of all haemodynamic
support a patient is receiving. An increase in the IS is interpreted as an intervention responding
to haemodynamic instability. The dynamic and continuous nature of the IS enables distinguishing
between different levels of intervention severity by applying a threshold to the IS increase considered
a relevant intervention. The minimum increase in IS required for an intervention to be classified
as indicative of instability is denoted as AIS,,;,. An increase in haemodynamic support serves as
a response to instability. However, because instability is often not recognised immediately, it is
assumed that a time period precedes the intervention during which the patient is already unstable.
This delay between the onset of instability and the intervention is referred to as dT'. An illustration
of all algorithm and labelling parameters is provided in Figure 3.

— Vital sign

— = Labelled Instability
—— Intervention Score
—e— Intervention

Window (W) Horizon (H) Window
S o
&
@
T
5 //\/\/\ als L
k) S /

]

Time

Figure 3: Illustration of the model input and labelling framework. Vital signs are observed in a
time window (W), which is used to predict haemodynamic instability at a future time point. How
many minutes into the future the prediction is made is dependant on the set prediction horizon
(H). Instability is labelled retrospectively using increases in the intervention score (AIS). If
AIS is larger than the set threshold AIS,,;, it is marked as an intervention (). The delay
dT represents the assumed time between the onset of instability and the clinical response, during
which the patient is labelled as unstable.

1.1.1 New Labelling

The new labelling method was compared to the original method used by Van Winden et al. The
same random forest classifier and nested cross-validation framework were applied to both labelling
methods. The model was trained on the old cohort of 224 patients using both the original and
the new IS-based labels to compare the two labelling methods. The IS-based labelling was then
applied to the new enlarged cohort of 425 patients. For these experiments, the following labelling
and algorithm parameters were used: W = 50 min, H = 45 min, d7" = 120 min, and Al S, = 0
(only for the IS-based labelling).

1.1.2 Varying dT and AISin

The IS-based labelling method allows flexibility in defining what constitutes a relevant intervention.
Rather than treating every increase in IS as an intervention, the minimum required increase AIS,;n
can be raised to be more selective in what is considered a relevant intervention. To examine how
this affects model performance, three values of AIS,,;, were tested: 0, 4, and 8. Appendix A.3
explains why these thresholds were chosen. For every AISy,n, dI' was varied to reassess the effect
of this parameter when we set higher thresholds for AIS .
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To ensure that observed differences were due to the labelling strategy rather than other mod-
elling choices, the prediction horizon, H, was fixed at 1 minute, which provided the best baseline
performance. The window size, W, was kept constant at 50 minutes.

The baseline AUCPR is influenced by the class prior, meaning that changes in the labelling of
instability—such as changing AIS,,;, and dT—alter the class balance and thus shift the baseline.
This complicates comparisons between labelling strategies. To address this, negative samples were
undersampled until the class distribution was balanced at 1:1 across all definitions of instability.

After this evaluation, the labels that produced the best performance were used to train a new
model with a prediction horizon of 45 minutes.

Feature importance was assessed using the mean decrease in impurity (MDI), calculated as the
total reduction in Gini impurity across all splits. This measure reflects the contribution of each
feature to the model’s predictions. For interpretability, feature importances were aggregated across
all time points of a single vital parameter, so that cumulative importance values for each parameter
were reported rather than importances for individual minutes.

1.1.3 Impact of Population Size on Model Performance

The influence of population size on model performance was assessed by creating subsets of varying
sizes. Subset sizes started at 50 patients and increased in steps of 50 up to the full cohort size of
425. For each subset size, patients were randomly drawn from the full population, and the model
was retrained on each subset. This process was repeated five times for every subset size to account
for variability due to random selection. The labelling settings with the best performance resulting
from Section 1.1.2 were used for this evaluation.

1.2 Results
1.2.1 New Labelling

A full overview of the results of the new labelling and extended cohort is shown in Table 3. The IS-
based labelling resulted in a much lower class prior of 6.6% compared to the old labelling class prior
of 17.5%. The IS-based labelling also resulted in a lower AUCPR compared to the old method, with
values of 0.189 (0.073) and 0.423 (0.074), respectively. The AUCROC of the old and new labelling
was 0.766 (0.050) and 0.745 (0.074), respectively. When the new extended cohort was used, the
class prior was 5.7% and the performance increased to an AUCPR of 0.233 (0.041).

Table 3: Performance of the random forest classifier with the original labels on the old cohort,
with IS-based labels on the old cohort, and with IS-based labels on the new cohort.

Old Cohort, Old Cohort, New Cohort,
Old Label New Label New Label

(n=224) (n=224) (n=425)
Class Prior 17.5% 6.6% 5.7%
AUCPR 0.423 (0.074) | 0.189 (0.073) | 0.233 (0.041)

AUCROC | 0.766 (0.050) | 0.745 (0.074) | 0.833 (0.029)

Reported performance metrics are the mean (SD) of the outer CV folds. SD, standard deviation; CV,
cross-validation; AUCPR, area under the precision-recall curve; AUCROC, area under the receiver
operator characteristic curve.
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1.2.2 Varying dT and AISin

The AUCPR of the models trained at different AIS,,;, with varying dT are shown in Figure 4.
Increasing dT with AIS,,;, = 0 led to a gradual increase in AUCPR, with the best performance
of 0.606 (0.054) at dT = 120 minutes. The best overall result was achieved with AIS,,;, = 4 and
dT = 20 minutes, with an AUCPR of 0.624 (0.073). AIS,,;, = 8 performed best with dT = 40
minutes, achieving an AUCPR of 0.605 (0.038).

0.700

—— AlSmin =0
M- AlSmin =4
0.675 —k- AlSpin=8

0.650 1
3 0.625
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+
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AUC PR (mean

0.575

0.550
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Figure 4: AUCPR as a function of evaluation window length (dT') for different thresholds of
minimum required increase in instability score (AISy,;n). FEach curve shows the mean model
performance across CV folds for AIS,,;, values of 0, 4, or 8, with the SD as error bars. To enable
fair comparison across thresholds, the class balance was fixed by undersampling negative samples
until a 1:1 ratio was achieved. AUCPR, area under the precision-recall curve; SD, standard
deviation; CV, cross-validation.

The two best performing labelling techniques, AIS;:, = 0 with dT = 120 and AIS,,;, = 4 with
dT = 20, were used to train two models for the final test set. This resulted in AUCPR values of
0.204 and 0.043 and AUCROC values of 0.762 and 0.880, respectively. The class prior for AISin
= 0 with dT = 120 was 4.19% in the test set, and at AIS,,;, = 4 with dT = 20, the class prior
was (.81

The cumulative feature importance for both models is shown in Figure 5. Both models scored
MAP highest, followed by HR, while the imputation indicator scored lowest in both.

1.2.3 Impact of Population Size on Model Performance

The model performance across various population sizes is shown in Figure 6. AIlS,,;, = 0 and dT
= 120 were used as labelling settings for the model training as they achieved the best performance
in Section 1.2.2.

1.3 Interpretation of Results

The new labelling resulted in a much lower class prior compared to the old labelling, suggesting that
the old method contained a lot of false labels. The results show that the AUCPR of our trained
random forest using the new labelling method was lower compared to the old method. However, the
drop in AUCPR can be explained by a lower class prior under the new IS-based labelling method,
which set a lower baseline AUCPR. After new patients were added to the dataset, the average CV-
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Feature Importance (MDI)
Feature Importance (MDI)

MAP HR Pl cvp SpO; RR 1 HR cvp RR Sp02 Pl I
Feature Feature

(a) AISmin =0, dT = 120 (b) AISin =4, dT = 20

Figure 5: Cumulative feature importance score for the final model trained using different param-
eters for the labelling of haemodynamic instability. (a) Feature importance in the model trained
using AIS,,in = 0, dT = 120. (b) Feature importance in the model trained using AIS,,;, = 4,
dT = 20. MAP, mean arterial pressure; HR, heart rate; PI, perfusion index; CVP, central venous
pressure; SpOq, peripheral oxygen saturation; RR, respiratory rate; 11, imputation indicator; MDI,
mean decrease in impurity.
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Figure 6: Model performance across population sizes. The mean AUCPR and standard deviation
are shown for population subsets ranging from 50 to 425 patients. AIS,,;, = 0, dT = 120, were
used as labelling parameters. AUCPR, area under the precision—recall curve

fold performance increased and the SD of fold performance decreased, indicating that the enlarged
cohort helped the model generalise better and reduced overfitting.

When comparing different AIS,,;, and varying dT, the effect on performance differed. With a
higher threshold for AIS,;», performance increased when a shorter dT was used, contrary to what
was observed at AIS,,;, = 0, where performance was best at the highest dT setting. This may
be attributed to more severe interventions, and thus larger increases in VIS score, being associated
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with shorter, more acute episodes of haemodynamic deterioration. In contrast, smaller medication
changes may have reflected longer, more gradual periods of deterioration. For AIS),;, = 8, the
behaviour appeared to follow a similar trend to AIS),;, = 4, with the best performance at shorter
dT, peaking at dT = 40. However, at dT = 20 performance decreased again, which could have been
caused by the stricter instability parameters resulting in fewer positive labels and thus a smaller
training dataset. It should be noted however that all differences in performance were very small
and overall performance was poor. If anything the results demonstrate how it is difficult to pick a
single dT" which accurately captures all instability events.

The final test performance using AIS,,;, = 4 and dT = 20 as labelling parameters achieved a
higher AUCROC but a poor AUCPR. This is likely the result of the low class prior of the positive
class hindering proper model training and leading to biased AUCROC results. The final AIS,,;, =0
and d1I" = 120 model performed as expected based on the nested CV results. Noteworthy is the
model’s heavy reliance on MAP for predictions, although not unexpected as blood pressure is
the main contributor to adequate organ perfusion and often the driving factor when it comes to
increasing haemodynamic support. Most of the interventions included in the IS also aim to increase
blood pressure.

Reducing the population size resulted in decreasing performance. As population size increased,
the performance gains showed diminishing returns, although the variance continued to decrease.
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Chapter 2: Age-stratifed Subpopulations

In the experiments conducted by van Winden et al., both in-patient and inter-patient performance
of the model were evaluated. Inter-patient refers to training the model on one set of patients and
applying it to a separate set, while in-patient refers to training (partially) on data from a patient
and then applying the model to new data from the same patient. The in-patient models achieved
much better results, indicating high inter-patient variability. To address this, this chapter aims
to reduce inter-patient variability by stratifying patients by age and asses how this affects model
performance.

2.1 Method
2.1.1 Data Leakage Assessment

As an initial test to assess the impact of patient-specific patterns on performance using our IS-
based labelling approach, we conducted an experiment in which cross-validation splits were no
longer stratified by patient, thus allowing data from the same patient to leak between the training
and test sets. This permitted segments of a single patient’s data to appear in both sets. These
tests were performed on both the original cohort used by Van Winden et al. and the new complete
dataset. The following model parameters were used in this analysis: W = 50 min, H = 45 min, dT
= 120 min, and AIS,;» = 0.

2.1.2 Age-stratified Models

Subgroup analysis was performed by dividing the population into quarter-year age groups, with
neonates (0-30 days) as a separate age group resulting in five age groups: 0-30 days, 30-90 days,
90-180 days, 180-270 days, and 270-365 days. Neonates were used as a separate age group due to
the high prevalence of this age group within our cohort and the rapid development of children during
this early period. Based on the results in Figure 6 we chose to require a minimum of 100 patients
per age group for model training. The models were trained using the following model parameters:
W = 50 min, H = 45 min, dI’" = 120 min, and AIS,,;, = 0.

2.2 Results
2.2.1 Data Leakage Assessment

The full results of the models trained with data leakage are shown in Table 4. The models resulted
in a mean (SD) AUCPR of 0.824 (0.095) on the old data cohort, and an AUCPR of 0.681 (0.136).

2.2.2 Age-stratified Subpopulation

An overview of the results of the age-based subpopulation models be found in Table 5. Two of
the defined age groups contained enough patients for model training, with 105 patients in the 0-30
day old group and 168 patients in the 90-180 day old group. The occurrence of instability differed
between the two age populations. The class prior of instability was 9.2% for the 0-30 day group and
4.9% for the 90-180 day group. The 0-30 day subpopulation achieved an AUCPR of 0.244 (0.064),
and the 90-180 day subpopulation achieved an AUCPR of 0.221 (0.105).
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Table 4: Performance metrics of the old and new study cohort with model trained with
non-patient stratified train and test splits.

Old Cohort New Cohort

(n=224) (n=425)
Class Prior 6.6% 5.7%
AUCPR 0.824 (0.095) | 0.681 (0.136)

AUCROC | 0.983 (0.011) | 0.968 (0.015)

Reported performance metrics are the mean (SD) of the outer CV folds. SD, standard deviation; CV,
cross-validation; AUCPR, area under the precision-recall curve; AUCROC, area under the receiver
operator characteristic curve.

Table 5: Performance metrics for models trained on age-based subpopulation fo 0-30 day and
90-180 days old.

0-30 Days 90-180 Days

(n=105) (n=168)
Class Prior 9.2% 4.9%
AUCPR 0.244 (0.064) 0.221 (0.105)

AUCROC | 0.796 (0.106) | 0.794 (0.077)

Reported performance metrics are the mean (SD) of the outer CV folds. SD, standard deviation; CV,
cross-validation; AUCPR, area under the precision-recall curve; AUCROC, area under the receiver
operator characteristic curve.

2.3 Interpretation of Results

Models trained with data leakage show drastic improvements in predictive performance, suggesting
substantial variability in patient-specific patterns related to haemodynamic instability. The decrease
in performance observed when using the full cohort may indicate that the larger dataset introduces
greater variance in the population, also reflected in our patient characteristics in Table 5. However,
a caveat of the method used for this test is that—for smaller populations—a larger proportion of
the training data comes from the same patient to whom the model is being applied. For example,
if a model is trained on 200 patients, then for any given test window roughly 1/200 of the training
data comes from the same patient. If the cohort doubles to 400 patients, this overlap is reduced
to 1/400. As a result, the performance drop seen in the full cohort may not reflect higher variance
in the dataset but rather a reduction in patient-level leakage. The increase performance of the old
cohort can thus be a result of the methodology used.

The two models trained on age-based subpopulations do not achieve better results than the
model trained on the full study cohort. Both also exhibit high variance across the CV folds, likely
due to the smaller population size within each subpopulation, limiting model generalisation. At this
scale, there is no advantage to training models on age-based subpopulations. However, compared
with non-age-stratified populations of a similar size, as shown in Figure 6, these models perform
better than the AUCPR of 0.149 (0.111) and 0.159 (0.064) achieved with a sample size of 100 and
150 patients, respectively. With larger cohorts within the age categories, performance may improve
and generalise if the trend of Figure 6 holds.
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Chapter 3: Labelling Evaluation

In Chapter 1 the best labelling parameters were assessed. The method used there applied the same
algorithmic setup as for the prediction of instability, except the prediction horizon, H, was set to
one minute. The prediction algorithm relied on prior time windows as input data, meaning that—
particularly at the start of an instability period—the model input consisted of time points outside
of the labelled instability period. In order to asses the labelled period itself, we want to compare
individual minutes within the labelled instability period rather than prior time windows, allowing
us to directly evaluate whether unstable minutes can be distinguished from stable minutes using our
labelling. Repeating this experiment for different labelling parameters for dT" and AIS,,;, allows
for a reevaluation of the labelling parameters.

Another aspect of the labelling requiring reevaluation is the assumption that an instability
period ends immediately after an intervention. It is physiologically improbable that the patient will
become stable immediately after an intervention yet the current labelling assumes so.

In this chapter, we tested whether unstable minutes can be distinguished from stable minutes
when compared directly. The current labelling method was further examined by assessing both the
distinction between stable and unstable minutes under different labelling settings and the assump-
tion that instability ends immediately after intervention.

3.1 Method
3.1.1 Stable vs. Unstable

A classifier was trained to distinguish between stable and unstable samples. Each sample consisted
of a single minute of data containing the measured vital parameters. Class balance was achieved
by undersampling stable samples to obtain a 1:1 ratio. Training was repeated for different values
of dT and AIS,in. dT was varied from 20 to 240 minutes in steps of 20 minutes, and for each dT
setting, AISn values of 0, 4, and 8 were tested. A second-degree polynomial regression classifier
was used, selected for its simplicity and its ability to capture basic non-linear relationships.

3.1.2 Pre- vs. Post-Intervention

To evaluate whether our assumption that instability is immediately over after intervention is re-
flected in the data a similar method to Section 3.1.1 was used. Instead of using randomly selected sta-
ble minutes we compare the minutes immediately post-intervention to the minutes pre-intervention.
For each intervention ending a labelled period of instability, 120 minutes of data before and after
were selected. The method of positive and negative samples selection ensured balanced classes.
AIS,,in was set at 0 for this experiment. A second-degree polynomial regression classifier.

3.2 Results

3.2.1 Stable vs. Unstable

Figure 7 shows the performance of the model across different d1’ and AIS,,;, settings. The per-
formance The best performance was achieved using d1I" = 180 minutes and AIS,,;, = 8 with an
AUCPR of 0.789 (0.003).

3.2.2 Pre- vs. Post-Intervention

The classifier trained on pre- and post-intervention data resulted in an AUCROC of 0.571 (£0.006).
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Figure 7: AUCPR (mean 4 SD) of a second-degree polynomial regression classifier distinguishing
stable from unstable minutes across different d7T" settings. Results are shown for AIS,,;, values of
0, 4, and 8.

3.3 Interpretation of Results

The algorithm was able to consistently achieve reasonable performance across different d1' values,
demonstrating we can distinguish between the unstable and stable labelled data. The model was still
able to distinguish unstable from stable minutes even at longer d1', with performance maintained
up to d1" = 240. An unexplained but noticeable improvement in performance occurred between
dT = 120 and dT = 140 across all AIS,,;, thresholds. Increasing AIS,,;, to 8 yielded clear improve-
ments compared with the lower thresholds, which aligns with expectations that more substantial
interventions correspond to more pronounced periods of haemodynamic instability, making them
easier to distinguish.

The model showed limited ability to differentiate between pre- and post-intervention samples.
This suggests that, although interventions stabilise patients, there is likely a period of adjustment
during which medication takes effect. The onset and impact of medication also vary across the
different medication included in the VIS. When compared with the AIS,,;, = 0, dT" = 120 results
from Figure 7, performance was significantly higher in the stable vs. unstable experiment at 0.756
(0.002). Both experiments used the same setup, with the exception of the stable samples. In the
stable vs. unstable experiment, stable samples were randomly selected from all available stable
data and could therefore originate from periods without recent interventions. This supports the
hypothesis that the period immediately after intervention cannot yet be considered stable.
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Discussion & Conclusion

This study aimed to improve upon the prediction algorithm developed by van Winden et al. by
improving the labelling of instability and test model performance on age-stratified subpopulation. A
new labelling method was introduced, based on an intervention scoring system designed to capture
all forms of haemodynamic support. The new IS-based labelling resulted in a significantly lower
prevalence of instability compared to the old labelling suggesting the inaccuracies of the old labelling
caused a lot of false labels now no longer present. The IS-based labelling performed best with
parameters AIS,,;, = 0 and dT = 120, yielding an AUCPR of 0.204 and an AUCROC of 0.880 on
the test set of the new cohort. Retraining models on age-stratified subpopulations resulted in mean
(SD) AUCPR values of 0.244 (0.064) and 0.221 (0.105)for the age groups 0-30 days and 90-180 days,
respectively, and AUCROC values of 0.796 (0.106) and 0.794 (0.077). Although these results were
comparable to those from the full cohort, the subpopulation models showed poorer generalisation,
likely due to the smaller sample sizes.

Comparison to Literature

Existing research on the prediction of haemodynamic deterioration in the paediatric patients re-
mains limited. The available studies differ substantially in their methodological approaches. In
the following sections, key areas of divergence are examined and compared to the approach of this
study, including the definition of haemodynamic instability, the selected features, and the choice of
prediction horizon.

Most studies predicting deterioration in the PICU use more severe outcomes for labelling, such
as mortality, cardiac arrest, or unplanned intubation??23. Others adopt definitions similar to ours,
relying on indicators such as fluid administration and medication changes®?*. Studies predicting
clearly defined events—mortality, cardiac arrest, and unplanned intubation—have achieved good
performance, with all achieving an AUCROC of > 0.94. Potes et al. used intervention-based
labelling and achieved an AUCROC of 0.81 when predicting interventions within the next hour?.
Stein et al. also used intervention-based labelling similar to ours, achieving an AUCPR of 0.55 and
an AUCROC of 0.95, although they used an even broader prediction window of 12 hours?*.

Our model was designed using a 50 minute data window making predictions 45 minutes into
the future. Our models makes per minute prediction. In order to improve the current results using
a broader prediction window can help, attempting to predict instability at some point within a
time window instead of predicting instability exactly minute-by-minute. Stein et al. instead of
using a moving window to make minute-by-minute predictions, designed their algorithm to predict
deterioration at any point within the next 12 hours, based on data from the preceding 6 hours??.
This provides a much broader time frame for prediction and bypasses some of the challenges we
have faced in accurately labelling instability on a minute-by-minute basis. Although this approach
may be less clinically relevant in (P)ICU wards where patients are closely monitored, it can still
be valuable in hospital wards with less intensive care and a lower staff-to-patient ratio. In these
settings, it helps identify high-risk patients who should be monitored closely over the next 12 hours.

Beyond the differences in prediction window Stein et al. also utilised a broader range of feature
variables. They incorporated ventilator settings, the COMFORT score, and various laboratory
24 Their analysis identified bilirubin, creatinine, ion gap, and the COMFORT score, in
addition to blood pressure metrics, as the most influential features for the prediction of instability.
Potes et al. used 36 ICU measurements, with the Shock Index, pH, mean airway pressure, and
normalised urine output ranking highest in their feature importance analysis?. Limiting their
model to vital signs only reduced AUCROC from 0.77 to 0.71, illustrating the added value of

values
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laboratory data and mechanical ventilation settings. Both studies outperformed our model, though
methodological differences such as the broader prediction windows used limit direct comparison.
Nevertheless, their results suggest that incorporating a broader range of features can be of added
value to prediction performance.

Limitations

The biggest limitation of this study is the need for retrospective labelling of instability. The reliance
on interventions without further insight into the status of the patient makes distinguishing clinically
relevant periods of haemodynamic instability challenging. There are many considerations that go
into the clinical decision-making surrounding an intervention, and it will not always be the result of
haemodynamic instability. The retrospective labelling also required an estimation of the duration of
instability preceding intervention, where a single duration was attributed to all periods of instability.
This use of a fixed duration is a simplification, as the true length of instability events is likely to
vary considerably between cases.

Another limiting factor arises from faults in the EHR registration. The analysis of subpop-
ulations was restricted to age-based groups because many patients did not have clearly recorded
diagnoses. With more than 50% of the database lacking a registered diagnosis, it was not possi-
ble to create diagnosis-based subpopulations for model training. The registration of administered
interventions also showed inconsistencies, with limited clarity on how certain interventions were
administered. This may have resulted in some false labels.

Finally, the use of a random forest introduced a limitation in eligible patients, as random forests
cannot handle missing features. This reduced the patient population by 25%. Excluding patients
with missing parameters also introduced bias into the dataset. For example, difficulty with arterial

line placement is associated with a worse patient condition?®.

Future Directions

In order to improve labelling accuracy, it would be valuable to prospectively record haemodynamic
instability events of interest as they occur. Having access to a couple of clearly defined instability
events would provide clearer insight into how such events present themselves. Analysing common
characteristics of these instability periods, such as specific medication types used as intervention, the
duration of instability, or increases in IS, could help define more selective and clinically meaningful
labelling criteria to be used for retrospective labelling in the future.

For further labelling improvements, it is also important to consider how current labelling choices
influence model training. In Chapter 1 and Chapter 3 two different approaches were used to assess
the best dT'. In both cases, results were similar across all values of dI'. This shows that there is
likely a large variation between the duration of instability events and applying one value for dT" does
not capture all accurately. The current algorithm punishes itself during training as a result of the
incorrect labelling due to having to pick a single dT'. For example an instability with a duration of
90 minutes is labelled as having a 120 minute duration. The algorithm is now penalised during the
first 30 minutes if it predicts no instability, even though it is correct in reality, because our labelling
falsely says the instability has already started. To avoid this the definition of a true prediction
can be adapted by considering any positive prediction during a consecutively labelled instability
period as a correct prediction for that entire instability period. This way the algorithm does not
penalise itself during training for late predictions. From a clinical perspective a late prediction
is still valuable, even if only the last minute within a labelling period is predicted positive, the
prediction horizon still gives the algorithm a 45-minute lead time. A post hoc analysis (Appendix
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A.5), in which any positive prediction within a labelled period was counted as correctly identifying
the entire event, improved AUCPR to 0.32 and AUCROC to 0.79 without retraining the model.

Similarly, a positive prediction before the labelled instability period is currently considered a
false positive, even though it may represent correct early detection of an instability which lasted
longer than the assigned dT'. Our current method also assumes that patients stabilise immediately
after intervention. In reality, the onset of action varies between interventions, and there is likely a
stabilisation period while medication takes effect. In Chapter 3 we have shown that it is hard to
distinguish between unstable time points and time points immediately after intervention, indicating
that the assumption that this period can be considered stable is false.

Ghorbani et al. developed Proximity-Aware Time Series Anomaly Evaluation (PATE)?6, a
metric that addresses such issues by introducing buffer zones before and after anomalies (in our
data an anomaly would correspond to a period of instability) and calculating AUC metrics using
weighted true and false positives based on their temporal proximity to the anomaly. Considering the
post-intervention period as neither stable or unstable during evaluation is also an option. Adopting
such evaluation strategies and retraining could yield better performing prediction algorithms while
still aligning with clinical application.

Beyond labelling and evaluation, feature selection additional features can aid in improving model
performance. Our feature importance analysis in Chapter 1 showed that MAP provided greater
discriminatory value than all other features combined, suggesting some features may be obsolete.
Features currently not included in our algorithm such as laboratory measurements and ventilatory
settings have been shown by other studies to improve prediction of haemodynamic instability. In-
corporating these features will provide a more comprehensive view of the patient’s condition and
improve predictive performance.

Adding more features, particularly laboratory values and mechanical ventilation settings, will
introduce additional missing data into the dataset, as some patients will not be receiving mechan-
ical ventilation and certain laboratory tests are not routinely performed on all patients. To avoid
discarding patients without a complete feature set or resorting to extensive imputation, using an
algorithm capable of handling missing data should be considered. XGBoost is a decision tree-based
algorithm which can natively handle missing data and exploit patterns in the missingness to im-
prove predictions?”. In the study by Stein et al., XGBoost also achieved the best performance,

outperforming recurrent neural networks and logistic regression in predicting interventions??.

As discussed in the literature comparison an entirely different application of the predictive model
would be to shift the focus from minute-by-minute forecasts to identifying patients at elevated risk
of haemodynamic instability within a broader time frame. A post hoc analysis was performed
(Appendix A.6) in which we used a positive prediction within the first 2 hours of a patient admission
to label patients as unstable or stable for the next 10 hours. This resulted in an AUCPR of 0.621
and an AUCROC of 0.800. A caveat of this approach that some of the vital parameters used for
our model are not measured continuously in medium care wards, so adaptation of the features used
to train the model is necessary.

Expanding the study cohort may not substantially improve performance for the overall patient
population, but it would provide larger age-based subpopulations, which could enhance both their
predictive performance and generalisation.
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Conclusion

This study proposes a new method of labelling haemodynamic instability based on interventions
using the developed IS. However, the random forest model trained with the IS-based labelling,
aimed at predicting haemodynamic instability, did not show substantial improvement, achieving an
AUCPR of 0.204 and an AUCROC of 0.762.

Analysis using age-based subpopulations with the goal of reducing variation in the data showed
promising results, although a larger population is needed to improve performance and enhance
generalisation.

Further analysis of the labelling revealed that some assumptions about the start and end of
periods of instability need to be revisited in order to improve labelling in the future before a viable
prediction model can be developed.
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Appendix

A.1 Preprocessing

Artefact removal was performed by identifying and excluding physiologically impossible values.
Specifically, values equal to zero were replaced with missing values across all parameters except for
heart rate, where a value of zero may represent a valid reading during asystole. Additionally, any
negative values in pressure measurements were considered artefactual and were similarly replaced
with missing values.

Next, last observation carried forward imputation was applied to fill in missing data in the
measurements. A binary indicator was added to track whether any of the vital parameters had
been imputed.

The vital parameters were recorded at varying frequencies. To standardise the frequency across
parameters and patients—and to reduce computational demand—all parameters were downsampled
to one per minute. The mean was used during downsampling for all parameters except the binary
imputation indicator, for which the median was more appropriate due to its binary nature.

The duration of stay varies between patients. To ensure the algorithm is trained on equal length
data from each patient, we select 800 consecutive minutes for each patient. In order to use as
much real data as possible the 800 minutes are selected with the least imputations. The three data
sections at the start, middle, and end of the admission are selected and the imputation indicator is
used to select the period with the most real data.

The variability between patients extends beyond variability in length of stay. The baseline value
of the vital parameters in our algorithm also varies based on age and pathophysiology. To correct
for this, we scale each parameter using Scikit-learn’s RobustScaler function. RobustScaler removes
the median and scales the data according to the interquartile range, which makes it less sensitive
to outliers compared with methods such as standardisation or min-max scaling. This ensures that
extreme values do not disproportionately influence the distribution of the scaled features. The
data scaler is created based on the first hour of the train and test set and applied to those two
respectively.
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A.2 Explanation of Hyperparameters

Hyperparameters are model parameters for na machine learning model which are not learned from
the data itself. They must be chosen before training and can strongly influence both predictive
performance and computational efficiency. For Random Forests, hyperparameters regulate aspects
such as the number of trees, the maximum depth of each tree, how many features are considered at
each split, and how splits are evaluated. Table A.2.1 shows the hyperparameters tuned during our
nested cross-validation setup with a brief explanation of the parameter.

Table A.2.1: Overview of random forest hyperparameters tuned during nested cross-validation.

Hyperparameter Explanation

n_estimators Number of trees in the forest. More trees reduce variance at the
cost of training time.

max_depth Maximum depth of each tree. Controls model complexity; shallow
trees prevent overfitting, while deeper trees capture more struc-
ture.

max_features Number of features considered when looking for the best split.

Smaller values increase tree diversity, larger values reduce bias.
min samples_split Minimum number of samples required to split an internal node.
Higher values make trees more conservative and reduce overfitting.
max_leaf nodes Maximum number of leaf nodes per tree. Restricts growth and
can improve generalisation.
criterion Function used to measure the quality of a split. gini is slightly
faster, entropy may be more informative.
class_weight Adjusts weights inversely to class frequencies to handle imbalance.
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A.3 AIS Threshold Choice

To determine suitable thresholds for labelling significant increases in IS, the distribution of all IS
increases across all patients was examined. Figure A.3.1 shows a histogram of the frequency of
observed IS increases across all data points. The distribution is highly skewed, with the majority
of increases being small and only a few large jumps occurring. Based on this distribution, two
thresholds were selected to define meaningful IS increases: a lower threshold of AIS = 4 to capture
more frequent but still notable changes, and a higher threshold of AIS = 8 which ignores the bulk
of the smaller increases we observe.

IS Increase Distribution

Figure A.3.1: Histogram showing the distribution of IS increase values across the dataset. This
figure was used to inform the choice of thresholds for identifying significant increases in IS. IS,
Intervention Score
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A.4 Table of Full Varying dT" and AIS,;, Results

The complete results for all combinations of dT" and AISn, are provided in Table A.4.1. These
values correspond to the experiments described in Section 1.2.2, where the effect of varying dT’
under different AIS,;, thresholds was analysed. Table A.4.1 reports the mean AUCPR and SD

across CV folds for every setting.

Table A.4.1: Mean (SD) AUCPR across CV folds for AISy,i, values of 0, 4, or 8, whilst varying

dT.
dT | AISmin=0 | AISmn=4 | AISun =38
20 | 0.579 (0.031) | 0.624 (0.073) | 0.577 (0.065)
40 | 0.575 (0.027) | 0.607 (0.080) | 0.606 (0.038)
60 | 0.586 (0.028) | 0.577 (0.023) | 0.597 (0.031)
80 | 0.593 (0.030) | 0.551 (0.030) | 0.554 (0.028)
100 | 0.600 (0.031) | 0.571 (0.056) | 0.564 (0.026)
120 | 0.606 (0.054) | 0.588 (0.072) | 0.581 (0.046)
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A.5 Event Level Detection Performance

We conducted a post hoc event-level analysis to complement per-minute evaluation metrics. Yyrye
denotes the ground-truth labels, assigned using IS-based labelling. Correspondingly, y,,eq denotes
the binary predictions of the model and ¥, the associated continuous prediction scores. A deterio-
ration event was defined as a continuous block of ¥4 = 1, which corresponds to the pre-intervention
interval. Each such block was treated as a single event regardless of its length.

An event was considered correctly predicted, and thus a true positive, if yp.q = 1 occurred at
least once within the first 120 minutes of the event block. If no positive prediction was present
in this interval, the event was classified as a false negative. Outside of event blocks, continuous
sequences of y,req = 1 were grouped together and counted as a single false positive, thereby avoiding
inflation of false alarms due to successive positive predictions. Negative periods without any positive
prediction were considered true negatives. From these definitions, we obtained event-level counts
of true positives, false negatives, false positives, and true negatives, and used these to compute
sensitivity, specificity, precision, and the F1l-score.

To assess threshold-independent performance, event-level AUCPR and AUCROC were also cal-
culated using yp... For each positive event, the maximum value of y,,0, within the 120-minute
detection window was taken as the representative event score. For each negative period that con-
tained at least one positive prediction, the maximum ., within that block was used. These event
scores, combined with their corresponding binary event labels, provided the basis for calculating
AUCPR and AUCROC at the event level.

We applied this method to the final test set using AISy,;» = 0, dT" = 120 as labelling settings.
The model was not retrained for this analysis only the performance metrics were recalculated. This
resulted in an AUCPR of 0.36.
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A.6 Patient Level Instability Prediction

Ad a post hoc patient-level analysis was conducted to see whether we can label stable or unstable
patients based on only the start of 12 hours of data. ¥ denotes the ground-truth labels, assigned
using IS-based labelling. Correspondingly, yp.cq denotes the binary predictions of the model and
Yprob the associated continuous prediction scores. A patient was considered unstable if yiye = 1
occurred at any point during the full observation period, and stable if no positives occurred.

To make an early classification, we restricted evaluation to the first two hours of each patient’s
data. The patient-level prediction was defined as positive if y,,.q = 1 occurred at least once within
this early window. For the purpose of threshold-independent evaluation, the maximum value of
Yprob Within the same early window was taken as the representative patient-level score. These
patient-level scores and labels were then used to calculate AUCPR and AUCROC.

We applied this method to the final test set using AISy,;, = 0, dT" = 120 as labelling settings.
The model was not retrained for this analysis only the performance metrics were recalculated. This
resulted in an AUCPR of 0.621 and an AUCPR of 0.800.
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