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Summary

The root-zone storage capacity (Sr) represents the amount of water that is stored
in the soil pore volume, which is accessible for vegetation to extract water for tran-
spiration. Sr has a critical function in the partitioning of water fluxes, making it a
key component in hydrological models (Savenije & Hrachowitz, 2017). There are
different ways to compute the root-zone storage capacity. For example, the water
balance method, which assumes that the root-zone storage capacity is derived from
the maximum annual water deficits that results from the difference between the cu-
mulative daily precipitation and transpiration (e.g. Gao et al., 2014; Nijzink et al.,
2016). In hydrological models it is common practice to estimate the root-zone stor-
age capacity by calibrating the parameter with the use of observed historical climate
conditions. The model then assumes that the parameters do not change when the
model is forced with future climate projection data (e.g. Parajka et al., 2016; Marx
et al., 2018). This approach assumes that the parameter values are static in time.
However, this is not a plausible assumption for long term predictions as it neglects
any hydrological changes in the system. Recent studies have shown the importance
of time-dynamic root-zone storage capacities in hydrological models to predict the
future hydrological response of the system (Gao et al., 2014; Bouaziz et al., 2021).
The current methods to compute the root-zone storage capacity contain a number
of uncertainties, especially when we want to quantify the impact that the changing
climate will have on future Sr values.

The aim of this research is (1) to propose a regression relationship using climate
analogy, to estimate the time-dynamic root-zone storage capacity for theMeuse basin
and (2) to quantify the impact of this time-dynamic root-zone storage capacity on the
change in hydrological response under future climate conditions. The time-dynamic
root-zone storage capacity is created by estimating the root-zone storage capacity
for simulated historical and 2K climate data.

Previous studies have shown that the root-zone storage capacity can be associated
with different catchment characteristics, like leaf cover, seasonality timing index,
runoff-coefficient and aridity index (de Boer-Euser et al., 2019; van Voorst, 2020;
Gao et al., 2014). In this study we propose a regression relationship between the
root-zone storage capacity and a selection of catchment descriptors. This relation-
ship has been derived based on climate analogy mapping. Climate analogy mapping
is the practice of matching the expected future climate at one location with the cur-
rent climate of another location (Fitzpatrick & Dunn, 2019). This means that the
root-zone storage capacities of the 2K Meuse catchments are matched to the root-
zone storage capacities of current catchments with similar catchment descriptors.

This study uses four data sets for the analysis, CAMELS-USA, CAMELS-GB, LamaH
for Central Europe, and observed historical E-OBS data for the Meuse catchments.
Catchments with little human influence and less then 10% annual snowfall were se-
lected for the analysis. 27 catchment descriptors have been calculated for each of the
selected catchments. These descriptors describe the characteristics of a catchment
by climatic, soil, land-use and topography. Additionally, the root-zone storage capac-
ity for each of the selected catchments has been computed using the water-balance
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method. Multi-Linear Regression (MLR) analysis has been applied using the com-
puted root-zone storage capacities and the catchment descriptors. The regression
relationship that is derived states that the root-zone storage capacity can be esti-
mated based on the Holdridge Aridity Index (HAI), phase shift of precipitation (sP ),
seasonal amplitude for the potential evaporation (δE) and sand fraction (sand_frac)
(Equation 1).

Sr = β0 + βHAI ∗HAI + βsP ∗ sP + βδE
∗ δE + βsandfrac ∗ sandfrac (1)

The regression relationship has been used to estimate the root-zone storage capacity
of the Meuse catchments for the simulated historical climate data (Sr-HistRM) and
the simulated 2K climate data (Sr-2kRM). The root-zone storage capacity for the sim-
ulated historical climate data has also been computed with the water balance method
(Sr-HistWB). Comparing Sr-HistRM to Sr-HistWB gives a mean error of 25 mm, which
indicates that the regression method has a significant error with the water balance
method. Comparing Sr-HistRM to Sr-2kRM indicates that the simulated 2K climate
data results in an increase of the root-zone storage capacity by 11.8%.

The Wflow_FLEX-Topo model has been used to quantify the impact of a time-dynamic
root-zone storage capacity. Three different model scenarios have been considered
for the Meuse catchments. Each scenario consists of a run that models the historical
hydrological response, which is forced using the simulated historical climate data,
and a run that represents the 2K hydrological response which is forced using the
simulated 2K climate data. The difference in hydrological response between the two
model runs has been determined for each model scenario. The three model scenar-
ios are: (1) The benchmark for the water balance method, this scenario uses the
Sr-HistWB for both the historical and 2K run of the model, (2) The benchmark for the
regression relationship, this scenario uses the Sr-HistRM for both the historical and
2K run of the model, and (3) The dynamic regression relationship, which uses the
Sr-HistRM for the historical run and Sr-2KRM for the 2K run of the model.

Both benchmark models use a static root-zone storage capacity, the only difference
between the scenarios is the method with which the root-zone storage capacity is es-
timated. By comparing the benchmark scenarios, we can quantify the impact of the
regression relationship on the hydrological response of the system. The differences
between the two scenarios in projected change of the streamflow, actual evaporation,
root-zone moisture storage, and groundwater storage range between 0.2-1.12%, 0-
1.5%, 0.03-1.1%, and 0.44-0.87%, respectively. The relatively small differences show
that the regression method is in good agreement with the water balance method,
making the benchmark scenario for the regression a realistic reference scenario with
which the impact of the time-dynamic root-zone storage capacity can be identified.

Comparing the dynamic regression scenario to the regression benchmark scenario
indicates that the implementation of the time-dynamic root-zone storage capacity re-
sults in changes in mean monthly hydrological response for the streamflow, actual
evaporation, root-zone moisture storage, and groundwater storage with maximum
-8.6%, +6.6%, +23.6%, and -4.8% respectively. These values indicate that the use of
a time-dynamic root-zone storage capacity results in an increase of absolute evapora-
tion during the summer months, while at the same time resulting in lower values for
the streamflow and groundwater storage during the winter months. The root-zone
storage capacity shows an increase throughout the whole year. In other words, the
time-dynamic root-zone storage capacity has a significant impact on the seasonality
of the change in the hydrological response.

To conclude the use of a time-dynamic root-zone storage capacity parameter has
a large impact on the hydrological response of a system. The results of the regres-
sion relationship are promising and suggest that it might be a good way to estimate
the root-zone storage capacity for climate projections in temperate climates. How-
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ever, for the direct implementation of this relationship into hydrological models, a
decrease in the error with the water balance would be favorable. Therefore, further
research regarding the root-zone storage capacity might provide new insights and
create a better understanding regarding the processes that influence the root-zone
storage capacity.
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1 | Introduction

In order to survive dry periods it is assumed that vegetation naturally adapts to
changing hydro-climatic conditions at the eco-system scale (e.g. Wang-Erlandsson
et al., 2016; de Boer-Euser et al., 2016). A critical strategy for vegetation is the
adaptation of its root-system. This strategy impacts the root-zone storage capacity
(Sr) of the system, which represents the amount of water that is stored in the soil
pore volume, that is accessible for vegetation to extract water for transpiration. The
vegetation adapts its root-zone storage capacity to satisfy canopy water demand,
creating a buffer to survive dry periods (Bouaziz et al., 2021; Gao et al., 2014). This
sub-surface property is at the core of any hydrological system as it regulates the
water storage release dynamics and in particular the partitioning of water into evap-
orative fluxes and drainage (Savenije & Hrachowitz, 2017).

The critical function of the root-zone storage capacity in the partitioning of water
fluxes makes it a key component in hydrological models. It is common practice for
these models to estimate the root-zone storage capacity by calibrating the parameter
with the use of observed historical climate conditions. The model then assumes that
the parameters do not change when it is forced with future climate projection data
(e.g. Parajka et al., 2016; Marx et al., 2018). By using present day model parameters
for future predictions it is assumed that the properties of the hydrological system do
not change over time. For near future projections this assumption seems plausible,
as there are no fundamental changes to the hydrology. However, for long-term pre-
dictions, this assumption is in clear contrast with the notion that vegetation actively
adapts its root-system. Moreover, it neglects the possible impact that climate change
might have on vegetation species and land-use.

Different approaches can be used to quantify the value of the root-zone storage capac-
ity on a catchment scale. The value can be determined based on field observations, as
the product of root-depths or root-distributions and the pore water content between
field capacity and permanent wilting point. This approach gives accurate values for
the root-zone storage capacity, but can be difficult to apply on a catchment scale, as
the required data is typically not available at a sufficient resolution (Hrachowitz et
al., 2020). Another approach is to estimate the root-zone storage capacity with the
use of a look-up table. The estimates are based on literature values of themean biome
rooting depth and soil texture data. This approach makes the root-zone storage ca-
pacity a function of land cover and soil type, thereby fully neglecting the impact of
the climatic conditions (Wang-Erlandsson et al., 2016). Moreover, the root-zone stor-
age capacity value can also be estimated by calibration of a hydrological model. The
calibration approach uses hydrological observations from the precipitation, evapora-
tion, and streamflow to determine the root-zone storage capacity. This method can
be used at a catchment scale, however the resulting values are tied to the model for
which the calibration has been used. Therefore, they are not necessarily comparable
to measurable values in nature. They also tend to compensate for uncertainties in
model structure and data (Wang-Erlandsson et al., 2016). Alternatively, increasing
evidence has shown that the root-zone storage capacity at catchment-scale can be ro-
bustly and directly estimated using water balance data. The water balance method
assumes that the root-zone storage capacity is derived from the maximum annual
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1. Introduction

water deficits that results from the difference between the cumulative daily precip-
itation and transpiration (Gao et al., 2014; Nijzink et al., 2016; de Boer-Euser et al.,
2016; Wang-Erlandsson et al., 2016; Bouaziz et al., 2021; Hrachowitz et al., 2020).

These methods use different catchment characteristics to compute the root-zone
storage capacity. The look-up approach bases the value on rooting depth and soil
structure, while the calibration and water balance method use hydrological data.
The relationship between the root-zone storage capacity and different catchment
characteristics has been investigated in multiple studies. de Boer-Euser et al. (2019)
showed that the root-zone storage capacity has a positive correlation with leaf cover,
tree length, and biomass. On the other hand van Voorst (2020) concluded that the
variance of Sr between catchments in Canada was mainly described by a combina-
tion of long-term average variables (aridity index and runoff coefficient) and by the
coherence of seasonal and timing effects (seasonality timing index). Gao et al. (2014)
also indicated that aridity index and seasonality index were positively correlated to
the root-zone storage capacity.

Climate change causes the altering of the means and extremes of precipitation, evap-
oration, and streamflow rates of rivers (Milly et al., 2008). Climate analogy mapping
is the practice of matching the expected future climate at one location with the cur-
rent climate of another location. This technique can be used to visualize how the
climate zones will shift over the Earth’s surface as a result of climate change. Fitz-
patrick & Dunn (2019) studied urban areas in North America. This study shows that
the future climate of most urban areas match urban climates that are currently hun-
dreds of kilometers away.

The fast changing climatic conditions make that stationarity is no longer a valid
assumption. The predictions that are made by hydrological models that use static
parameters are subjected to increasing uncertainties. Therefore, it is important to
quantify the non-stationarity of relevant hydrological parameters, as a temporally-
adaptive hydrological model will likely providemore reliable predictions under change.
With better predictions of future hydrological responses, catastrophic events in the
river system can be predicted and suitable measures can be created to prevent such
events from happening in the future. For example, by building water retention areas
or applying dyke reinforcements.

1.1 Problem statement

Multiple studies have described the importance of a non-stationary or time-dynamic
root-zone storage capacity in hydrological models, to predict the future hydrolog-
ical response of the system (Gao et al., 2014; Nijzink et al., 2016). Bouaziz et al.
(2021) showed that the implementation of a time-dynamic root-zone storage capac-
ity in a process-based hydrological model, for the Meuse basin, could strongly alter
the predicted hydrological response to a 2K warming projection. Current methods
result in a number of uncertainties when they are used to quantify the impact that
the changing climate will have on the future Sr values. The methods are not suitable
for catchment scale computations or their use is limited by the data that is needed
for the computations. Each method contains a level of uncertainty, since there is no
perfect method to determine the root-zone storage capacity.

1.2 Research objective

In this study we propose a new method to estimate the root-zone storage capacity
by combining the fact that the root-zone storage capacity can be associated with a
number of catchment characteristics with the principle of climate analogy. We as-
sume that two catchments with the same characteristics will have the same root-zone
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storage capacity. This means that knowing the future characteristics of a catchment
makes it possible to determine the future root-zone storage capacity. To be able to
quantify this analogy a regression relationship has been derived between the root-
zone storage capacity and a selection of catchment characteristics. The objective of
this study is (1) to propose a regression relationship using climate analogy to esti-
mate the time-dynamic root-zone storage capacity for the Meuse basin, and (2) to
quantify the impact of this time-dynamic storage capacity on the change in hydrolog-
ical response under future climate change.

Since previous studies have suggested that the root-zone storage capacity can be
correlated to different catchment characteristics (van Voorst, 2020; de Boer-Euser et
al., 2019; Gao et al., 2014), we hypothesize that we can make reliable estimates of the
root-zone storage capacity using a regression relationship with the use of catchment
descriptors. Moreover, we hypothesize that the use of a time-dynamic root-zone stor-
age capacity will change the hydrological response, by resulting in more pronounced
seasonality changes under future conditions relative to current-day conditions.

This study will use large sample data sets containing catchments with a broad range
of climate characteristics that are relatively close to the conditions of the current and
future Meuse basin. The Sr value of these catchments has been computed with the
water balance method. Additionally, for each catchment the values of 27 catchment
descriptors were also computed. From this data a regression relationship has been
derived by correlating the catchment descriptors to the root-zone storage capacity.
Based on this regression relationship, the root-zone storage capacity is estimated for
simulated historical and 2K climate data of the Meuse basin. These two Sr estimates
create a time-dynamic root-zone storage capacity. The Wflow_FLEX-Topo model has
been used to quantify the impact of a time-dynamic root-zone storage capacity on the
change in hydrological response.
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2 | Study Area

This study is focused on the river basin of the Meuse, which is an important basin for
flood forecasting in the Netherlands (de Boer, 2017). This chapter provides general
information regarding this river basin.

The Meuse river basin in Northwest Europe has a basin area of approximately 36
000 km2 covering parts of the Netherlands, Belgium, France, Germany, and Luxem-
bourg (Figure 2.1a). The source of the river is found at the Langres Plateau in France
from where the river travels approximately 925 km to its mouth at the Rhine-Meuse-
Scheldt delta in the Netherlands. Approximately 60% of the river basin is used for
agricultural purposes and 30% is forested. The elevation ranges between approx-
imately 50 and 750 m across the river basin (Figure 2.1b) (de Wit, Peeters, et al.,
2007).

The basin area can be divided into three major geological zones. The first zone is
located South of Charleville-Mézières and is called the Lorraine Meuse. This part
mainly consists of sedimentary Mesozoic rocks. The area is characterized by hilly
landscapes with wide floodplains through which the Meuse flows. The second zone
is called the Ardennes Meuse. Here the river transects the paleozoic rock of the
Ardennes Massif. This part is characterized by narrow, steep valleys. The last geo-
logical zone consists of the Dutch and Flemmish lowlands. The area is made up of
Cenozoic unconsolidated rocks and can be characterized by wide floodplains and a
low river gradient (de Wit, Peeters, et al., 2007).

The Meuse is located in a zone with temperate climate conditions. This climate zone
is characterized by frequent weather variations (Pfister et al., 2004). The streamflow
of the rain-fed river experiences strong seasonality. The river has high streamflow
during the winter months and low streamflow during the summer months. The av-
erage summer streamflow of the Meuse is approximately one quarter of the average
winter streamflow (de Wit, van den Hurk, et al., 2007). Since the precipitation re-
mains relatively constant throughout the year, the seasonality in the streamflow rep-
resents the fluctuation in potential evaporation. High potential evaporation in the
summer, results in relatively low streamflow, while low potential evaporation in the
winter results in high streamflow. The snow impact in the basin area is generally
small, however it can be of significant importance in specific events (de Boer, 2017).
The mean annual precipitation, potential evaporation, and streamflow of the Meuse
basin are approximately 968 mm yr−1, 593 mm yr−1, and 397 mm yr−1 respectively.
These values are computed using the observed historical E-OBS climate data and the
streamflow data (Section 3.1).
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Figure 2.1: (a) The Location of the Meuse basin in Northwest Europe. (b) The elevation range
in the basin and the location of the 35 catchments of the Meuse basin
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3 | Data sources

The data sets that are used in this study can be divided into two groups. The first
group contains the data sets that describe the historical and future climate conditions
of the Meuse basin. The second group consists of large sample catchment data sets.
This chapter describes the data sources and the corrections that were made.

3.1 Meuse Data

The Meuse basin is divided into 35 catchments (Figure 2.1b). This section describes
the source of three meteo-hydrological data sets for the Meuse, followed by the
streamflow data and additional catchment data that have been used in this research.

3.1.1 Observed historical E-OBS climate data

The E-OBS data set (v20.0e) is based on the station data collated by the European Cli-
mate Assessment Dataset (ECA&D) initiative. It contains daily gridded observation
data for the precipitation, temperature, and sea level pressure in Europe. The data is
provided at a 25 km2 resolution for the period between 1980 and 2018 (Cornes et al.,
2018). Bouaziz et al. (2021) has pre-processed the data for the Meuse catchments by
using a digital elevation model and a fixed lapse rate of 0.0065 ◦C m−1 to downscale
the temperature. Additionally, a monthly bias-correction factor has been applied im-
proving the consistency between the precipitation estimates of the E-OBS dataset
and the local precipitation data that was provided by the Service Public de Wallonie,
because the difference between the two data sets exceeded 20% in the center of the
Meuse catchment. Lastly, the potential evaporation has been estimated using the
Makkink formula (Hooghart & Lablans, 1988).

3.1.2 Simulated Climate data

The Royal Netherlands Meteorological Institute (KNMI) provides two simulations for
the climatic conditions of the Meuse catchments, a historical climate simulation for
the period 1979-2018 and a 2K global warming simulation. These simulations have
been generated at 12 km x 12 km resolution, with the regional climate model KNMI-
RACMO2 (van Meijgaard et al., 2008). The KNMI-RACMO2 model uses initial- and
lateral boundary conditions based on which the climate conditions are simulated.
For the historical climate simulation the initial- and lateral boundary conditions are
provided by the ERA5 reanalysis data (Hersbach et al., 2020). To generate high-
resolution climate change information the 2K global warming simulation uses an al-
ternative method, so-called pseudo-global warming (PSG) (Schär et al., 1996). This
method re-simulates the historical period, with perturbations to the initial and bound-
ary conditions that are provided by the ERA5. These perturbations mimic the change
in the mean climate state under the conditions that occur with a globally 2K warmer
world. These perturbations have been derived from a large initial condition Global
Climate Model (GCM) ensemble (Aalbers et al., 2018). Aalbers et al. (2019) provides
a full description of the simulation data sets.
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3.1.3 Streamflow

The streamflow data covers the period 2005 to 2017 for the 35 catchments that are
nested within the Meuse basin in the area upstream of Borgharen. Borgharen is lo-
cated downstream of a river stretch at the border between Belgium and the Nether-
lands where a number of canals branch off. The total streamflow at Borgharen is
a constructed time series, which sums the observed streamflow of the Meuse at St
Pieter with the streamflow of the Albert Canal at Kanne, before part of it is extracted
in the Albert Canal (Bouaziz et al., 2021; de Wit, Van Den Hurk, et al., 2007).

3.1.4 Catchment attributes

Besides the hydro-meteorological conditions of the Meuse catchments, we used ad-
ditional data sets to obtain information regarding topography, land-use, and soil
characteristics of the Meuse basin. MERIT Hydro data (Yamazaki et al., 2019) has
been used to determine the slope and land elevation. The land-use characteristics of
the catchments have been determined based on CORINE Land Cover data (Agency,
2020). Lastly, the soil properties have been selected from the SoilGrids at a resolu-
tion of 250 m (Hengl et al., 2017).

3.2 Large Sample Data sets

We also used three different large sample data sets, namely CAMELS-USA, CAMELS-
GB, and LamaH for Central Europe. CAMELS stands for Catchment Attributes and
Meteorology for Large-sample Studies and LamaH stands for Large-sample Data for
Hydrology. In this section the origin of the data sets will be described as well as the
corrections that have been applied.

3.2.1 CAMELS-USA

The CAMELS data set for the contiguous United States (CONUS) is a combination
of the hydro-meteorological time series provided by Newman et al. (2015) and the
catchment attributes provided by Addor et al. (2017). The catchments are a selection
of the Geospatial Attributes of Gages for Evaluating Streamflow (GAGES-II) from the
United States Geology Survey (USGS) of 2011 (Falcone et al., 2010; Falcone, 2011).
The gages that have been selected are marked as HCDN-2009 (Lins, 2012), meaning
that they meet the following criteria: 1) the gages were active as of 2009 and have
complete flow data for at least 20 years in the period between 1990 and 2009, 2) the
gage is a GAGES-II reference gage, 3) The National Land Cover Database (NLCD-
2011) measures less than 5% imperviousness (Jin et al., 2013), and 4) they passed a
manual survey of human impacts in the basin by local Water Science Center evalua-
tors (Falcone et al., 2010). These gages have been used as the starting point for the
CAMELS data set, as they should best represent natural flow conditions. After initial
processing and data availability requirements, the 671 remaining catchments were
combined for the CAMELS-USA data set (Newman et al., 2015). The location of the
catchments are shown in Figure 3.1b.

The data set provides meteorological forcing and observed discharge data for the
period between 1981 and 2008. The forcing includes three data sets: NLDAS, Mau-
rer, and Daymet. In this study the Daymet data set has been selected, since this
daily-gridded data has the highest spatial resolution (1 x 1 km). The data is derived
from daily observations of temperature and precipitation. In this study the following
variables have been used from the data: daily maximum and minimum temperature,
precipitation, shortwave downward radiation, and day length. These daily values
are estimated with the use of an iterative method. The method is dependent on
local station density as well as on the spatial convolution of a truncated Gaussian
filter for station interpolation. To estimate the short-wave incoming radiation, the
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Mountain Climate Simulator (MT-CLIM) has been used. The potential evaporation
has been estimated using the Priestly-Taylor equation. The observed discharge data
has been obtained from the USGS Water information System server for the period,
1980-2010. (Newman et al., 2015). In this study, the choice was made to use the
data provided for the period 1 October 1989 to 30 September 2009 to describe the
conditions within the catchments. This is the same time period that has been used
for the computations of the climatic indices, due to the proportion of missing daily
dischargemeasurements in the years before and after this period (Addor et al., 2017).

The CAMELS-USA data also provides additional catchment attributes, that are de-
rived from different sources. Topography and location, hydrological signatures, and
forest fraction are all extracted from the USGS data. The climatic indices have been
derived with the use of the Daymet data set (Newman et al., 2015; Addor et al., 2017)
and the soil characteristics have been obtained from Miller & White (1998).

For a full description of the data set the reader is directed to (Newman et al., 2015;
Addor et al., 2017).

3.2.2 CAMELS-GB

The CAMELS-GB data set consists of 671 catchments across Great-Britain (Figure
3.1a). The catchments have been selected from the UK National River Flow Archive
(NRFA) Service Level Agreement (SLA) Network. This network contains stations that
are selected based on a number of criteria, including the hydrometric performance,
representativeness of the catchment, length of record, and degree of artificial dis-
turbance to the natural flow regime (Dixon et al., 2013; HANNAFORD, 2004). They
have also been subjected to an additional level of validation from the NRFA (Muchan
& Dixon, 2014), focused on the credibility of flows in the extreme ranges and the
need to maintain sensibly complete time series. The resulting stations provide good-
quality data for long time series. The daily streamflow data has been obtained from
these stations (Coxon et al., 2020). Daily meteorological time series are provided cov-
ering the period between October 1st 1961 to September 30th 2015. In this study
the following variables have been used from these time series: precipitation, temper-
ature, and incoming short-wave radiation. The daily precipitation has been obtained
from the CEH Gridded Estimates of Areal Rainfall dataset (CEH-GEAR) (Keller et al.,
2015; Tanguy et al., 2016). The data set contains gridded estimates at a resolution
of 1 km2. The data has been derived with the use of natural neighbour interpolation
of quality controlled, observed precipitation from the Met Office UK rain gauge net-
work. The temperature and incoming shortwave radiation have been obtained from
the Climate Hydrology and Ecology research Support System meteorology data set
(CHESS-met) (E. Robinson et al., 2017). This data set consists of daily gridded esti-
mates at a resolution of 1 km2. The data has been derived from the 40 km gridded
dataset MORECS, which has been derived by interpolating daily station data (Hough
& Jones, 1997; Thomson et al., 1981) The temperature for the CAMELS-GB data has
been directly downscaled from MORECS, while the incoming short-wave radiation
has been calculated from the downscaled temperature, vapour pressure, and sun-
shine hours (E. L. Robinson et al., 2017). Potential evaporation has been estimated
with the Penman-Monteith equation for FAO-defined well-watered grass (Allen et al.,
1998). (Coxon et al., 2020).

This data set also provides each catchment with a number of catchment attributes
(Coxon et al., 2020). The topographic attributes have been extracted from the UK
National River Flow Archive using the NRFA, API, and the CEH’s Integrated Hydro-
logical Digital Terrain Model (Morris et al., 1990). The UK Centre for Ecology &
Hydrology has produced the UK Land Cover Map (2015) that has been used to de-
termine the land cover attributes of the catchments (Rowland et al., 2017). The soil
attributes have been derived from the European Soil Database Derived Data product
(Hiederer, 2013) and the modelled depth to bedrock global product (Pelletier et al.,
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2016).

For a full description of the data set the reader is directed to (Coxon et al., 2020).

3.2.3 LamaH Central Europe

The LamaH data set for Central Europe consists of 859 catchments, which are spread
out over 9 different countries, namely Austria, Germany, Czech Republic, Switzer-
land, Slovakia, Italy, Liechtenstein, Slovenia, and Hungary (Figure 3.1c). The data
set contains meteorological and streamflow data. The meteorological data has been
derived from the ERA5-Land data set with global coverage (Muñoz-Sabater et al.,
2021). Gap-free time series have been obtained with daily resolution for 15 meteo-
rological parameters in the period between October 1st 1989 and September 30th
2009. The ERA5-Land has a spacial resolution of 0.1 arc degrees. The observations
are indirectly implemented via the assimilated atmospheric fields of ERA5 (Henner-
mann & Guillory, 2020; Yang & Giusti, 2020). The potential evaporation has been
estimated using the Penman-Monteith equation for FAO-defined well-watered grass
(Allen et al., 1998). The streamflow data has been derived from daily and hourly time
series for 882 gauges, located in Austria, Germany, Switzerland, and Czech Republic.
The data was provided by the Hydrographic Central Bureau of Austria (HZB, 2020),
the hydrographical services of the German federal states Bavaria (GKD, 2020) and
Baden-Württemberg (LUBW, 2020), hydrological office of Switzerland (BAFU, 2020),
and the Czech Hydrometeorological Institute (CHMI, 2020). The time series have
been derived from rating curves. The streamflow time series has been limited to the
period 1981 to 2017, since the ERA5-Land forcings start in 1981 and 2017 is the last
year for which the streamflow data from Austria was quality-controlled. When utiliz-
ing the data set, it is important to check the data availability, since not all institutes
covered the same time period. (Klingler et al., 2021).

This data set includes several catchment attributes. Topographical indices have been
derived using the Shuttle Radar Topography Mission digital elevation data, which is
provided by NASA JPL at a resolution of approximately 30 m (Farr et al., 2007). The
land cover attributes have been based on the CORINE Land Cover (CLC) 2012 raster
with a grid-size of 100 m. The soil attributes have been derived from the European
Soil Database Derived Data product (Hiederer, 2013).

For a full description of the data set the reader is directed to (Klingler et al., 2021).

3.2.4 Data Correction

The potential evaporation has been estimated with different formulas in the data sets.
CAMELS-USA used the Priestly-Taylor equation while both the CAMELS-GB and
LamaH data set used the Penman-Monteith equation for FAO-defined well-watered
grass. The observed historical E-OBS data set used the Makkink equation to esti-
mate the potential evaporation for the Meuse catchments. The different equations
result in different values for the potential evaporation. In order to create more con-
sistency between the data sets, an attempt has been made to use one method for all
the data sets. Considering the fewer meteorological variables available in the ob-
served historical E-OBS data set, we decided to compute the potential evaporation
with the Makkink equation for the catchments of the large sample data sets. The
Makkink equation uses the mean daily temperature and shortwave incoming radia-
tion (Hooghart & Lablans, 1988).

For the CAMELS-USA data set the mean daily temperature is provided in degrees
Celsius and the incident shortwave radiation flux density is provided in [W m−2].
The radiation has been multiplied by the daily number of sunshine hours, to obtain
the incoming shortwave radiation in [J m−2day−1] (Hiemstra & Sluiter, 2011). Ap-
pendix A provides the Makkink equation that has been applied to obtain the potential
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evaporation.

For the CAMELS-GB data set the mean daily temperature is provided in degrees
Celsius and the shortwave incoming radiation in [W m−2]. Since this data did not
contain daily sunshine hours, a variation of the Makkink equation has been used.
Appendix A provides the Makkink equation that has been applied to obtain the po-
tential evaporation.

The LamaH data set provides the temperature in degrees Celsius, however no suit-
able parameter for the shortwave incoming radiation has been provided. This makes
it difficult to estimate the potential evaporation using the Makkink equation. Instead
the potential evaporation estimates provided by the data set have been used in this
study.

Figure 3.1: The locations of the catchments that are provided by (a) CAMELS-GB, (b)
CAMELS-USA, and (c) LamaH of Central Europe.
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This chapter provides a description of the different methods and strategies that have
been used in this study. An overview of the methodology is shown in Figure 4.1. The
chapter starts by discussing the water balance method for computing the root-zone
storage capacity (Section 4.1), after which we discuss the regression approach that
is based on climate analogy (Section 4.2). In Section 4.3 we discuss the Wflow_FLEX-
Topo model and the way in which it is used to determine the impact of the dynamic
root-zone storage capacity on the hydrological response. The entire approach of this
study has been coded in Python. Appendix B provides an overview of the most rele-
vant scripts that have been used.

Figure 4.1: Flow diagram of the Methodology.

4.1 The water balance method

The root-zone storage capacity represents the amount of water that is stored in the
soil pore volume, which is accessible for vegetation to extract water for transpiration.
The vegetation and the hydrological system act in co-evolutionary way, to reach an
equilibrium between the canopy water demand and the water availability in the sys-
tem. The water balance method assumes that this equilibrium is maintained by the
vegetation adapting its root-zone storage capacity, in order to create a large enough
buffer to overcome a drought of a certain return period (Gao et al., 2014). Themethod
assumes that the catchment-scale root-zone storage capacity can be derived from the
maximum annual water deficits that results from the difference between the cumu-
lative daily precipitation and transpiration. Figure 4.1, shows how the water balance
method is used in this study.

The long-term water balance (Equation 4.1) has been used to derive an expression

Delft University of Technology 11



4. Methodology

Figure 4.2: Flow diagram for the water balance method.

for the long-term mean transpiration (ET ). For this study the changes in storage
and inter-catchment groundwater flows are assumed to be zero. This results in the
elimination of the storage factor from the water balance equation (dSdt = 0). Moreover,
interception and soil or built-surface evaporation have also been assumed negligible.
These assumptions make it possible to rewrite the water balance and equate the long-
term mean transpiration to the long-term mean evaporation (Equation 4.2).

P − ET −Q− dS

dt
= 0 (4.1)

ET = P −Q (4.2)

The water balance approach requires daily precipitation (P) and transpiration (ET )
data. Daily precipitation observations are provided by the different data sets as de-
scribed in Section 3. Currently there is no existing method that can be used to mea-
sure daily transpiration at the catchment scale. Therefore, transpiration data is not
provided in any of the data sets. Estimations of the daily transpiration have been
made by scaling the long-term mean transpiration with the ratio of the daily poten-
tial evaporation (EP (t)) over the mean annual potential evaporation (EP ) (Equation
4.3). Scaling the data with the use of the potential evaporation, retains the season-
ality of transpiration without violating the long-term mean transpiration amounts.

ET (t) =
EP (t)

EP
ET (4.3)

Based on the results of Equation 4.2 and 4.3, the cumulative deficit between the daily
transpiration and precipitation can be calculated. During dry periods the transpira-
tion will exceed the precipitation resulting in higher storage deficits. While periods
with large amounts of precipitation will lead to a decrease of the storage deficit.
The storage deficit is assumed to be zero at the start of the computation and should
always be negative. The mathematical notation to compute the cumulative storage
deficit is given in Equation 4.4.

SD(t) = min(0,

∫ t2

t1

(P (t)− ET (t))dt) (4.4)

The annual maximum storage deficits have been fitted to the Gumbel extreme value
distribution, to derive the root-zone storage capacity at the catchment scale for a
certain return period. For this study the root-zone storage capacity has been de-
termined using a return period of 20 years. This means that it is assumed that the
root-systems of the vegetation have developed a buffer to survive droughts with a
return period of 20 years.
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The water balance method has been used to estimate the root-zone storage capacity
for the Meuse catchments using the simulated historical climate data and the ob-
served historical E-OBS data. Moreover, the method has also been used to compute
the root-zone storage capacity for a selection of the Large sample data set catch-
ments, this is discussed in the next section of this chapter.

4.2 The regression relationship

The aim of this study is to use climate analogy to estimate the time-dynamic root-zone
storage capacity for the Meuse catchments. Climate analogy matches the expected
future climate at one location with the current climate of another location. Assum-
ing that the root-zone storage capacity can be estimated based on catchment char-
acteristics, we state that catchments with the same catchment characteristics have
the same root-zone storage capacity. The root-zone storage capacity of the future
Meuse catchments can then be estimated by finding current locations with similar
catchment characteristics. The relationship between the root-zone storage capacity
and the catchment characteristics is derived with the use of Multi-Linear Regression
analysis (MLR).

First we select catchments that are suitable to be part of the study based on several
requirements, which are described in Section 4.2.1. This is followed by an expla-
nation of the catchment descriptors that form the basis for the regression analysis
(Section 4.2.2). To identify the existing patterns between the different catchment
descriptors and the root-zone storage capacity, two different statistical procedures
have been applied: Principal Component Analysis (PCA) and K-means Clustering
(Section 4.2.3). Using the results from the statistical procedures, Multi-Linear Re-
gression (MLR) analysis has been performed, resulting in an expression for the root-
zone storage capacity based on a number of catchment descriptors (Section 4.2.4).
Based on this relationship the root-zone storage capacity has been estimated for the
simulated historical and 2K climate data of the Meuse catchments. Combining the
Sr values of the simulated historical and 2K climate data, creates a time-dynamic
root-zone storage capacity. Figure 4.5 provides a schematic overview of this section.

Figure 4.3: Flow diagram for the regression relationship.

4.2.1 Catchment Selection

The data sets that are discussed in the previous chapter contain a multitude of catch-
ments. Not all of the catchments are suitable to be part of the regression relationship.
Therefore, a selection has been made based on the following requirements. Firstly,
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the catchment should have natural flow conditions. This means that the impact of
human activities in the catchment should be minimal, as human activities can dras-
tically alter the root-zone storage capacity resulting in unreliable model outcomes.
Secondly, the catchments should experience little snowfall. Snowfall is a complex
process as it has the ability to store water for a period of time, before it melts and
transforms from a storage to a flux. The root-zone storage capacity in catchments
with significant snowfall can be under- or overestimated due to this delay of water
input (de Boer-Euser et al., 2019). This problem is eliminated by only selecting catch-
ments with little snowfall. The snowfall is considered to be little when it makes up less
than 10% of the annual precipitation. For each catchment this percentage has been
calculated by dividing the annual precipitation on days with a negative temperature
by the annual precipitation amount. The catchments that met these requirements
have been processed and checked for data availability and reliability, which resulted
in the elimination of some additional catchments.

4.2.2 Catchment descriptors

This section describes the different catchment descriptors. The descriptors have
been selected based on recent studies focusing on the relationship between root-
zone storage capacity and catchment characteristics. Additionally, each descriptor
should be able to be calculated based on data provided by future climate projections.
The catchment descriptors can be divided into two categories. The first category
contains climatic descriptors and can be computed with meteorological data. The
second category consist of landscape descriptors including topography, land-use, and
soil characteristics. Table 4.1 gives an overview of all the catchment descriptors that
are discussed.

Climatic descriptors

The climatic catchment descriptors have been computed for the selected catchments
using the python scripts provided in Appendix B. For CAMELS-USA the calculations
have been done with the time period between January 1st 1980 and December 31st

2008. CAMELS-UK used the period from January 1st 1980 to December 31st 2012.
LamaH used the period from January 1st 1989 to December 31st 2009. Finally, the
observed historical E-OBS data covered the period between January 1st 1980 to De-
cember 31st 2018.

Mean annual values
The first climatic descriptors are the mean annual values for precipitation (P ), poten-
tial evaporation (EP ), and temperature (T ). Theoretically, With more precipitation
entering the soil the root-systems require less water to survive, resulting in low Sr
values. It should be noted that this also depends on the seasonality of the precipi-
tation as well as on the evaporation. Higher temperatures result in more potential
evaporation which may increase the root-zone storage capacity.

Aridity Index
Based on these mean annual values the Aridity Index (AI) can be calculated. AI is the
ratio of annual potential evaporation over annual precipitation (Equation 4.5). The
parameter is a measure of the dryness of the climate at a given location. A low AI
value means that the potential evaporation is relatively large compared to the precip-
itation, indicating arid circumstances. While a high AI value means that the amount
of precipitation is large relative to the potential evaporation, indicating humid cir-
cumstances. Gao et al. (2014) suggests a positive correlation between the Aridity
Index and the root-zone storage capacity.

AI =
Ep

P
(4.5)
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Holdridge Aridity Index
The Holdridge Aridity Index (HAI) is a variation of the Aridity Index, describing the
climatic water availability of a catchment. HAI is defined as the ratio of the mean
annual bio-temperature to the mean annual precipitation, making it an index of the
potential evaporation rate (Shen et al., 2011). The mean annual bio-temperature is
the value of themeanmonthly temperature above freezing and below 30 °C. All values
below freezing are adjusted to 0 °C, as plants are dormant at negative temperatures.
Temperatures above 30 °C are adjusted to 30 °C as temperatures above 30 °C start
to damage or kill the plants. HAI can be calculated using Equation 4.6.

HAI =
58.93×

∑m=12
m=1 Tm

P
(4.6)

Tm is the monthly mean temperature in °C.

Seasonality Index
The Seasonality Index (SI), describes the yearly spread of precipitation. Equation 4.7
has been used to calculate this index. SI can fluctuate between 0 and 11

6 . If SI equals

zero all months have equal amounts of precipitation, while a value of 11
6 indicates

that all precipitation occurs in one month (Guhathakurta & Saji, 2013). Gao et al.
(2014) states that the root-zone storage capacity increases with an increase in the
SI.

SI =
1

P

m=12∑
m=1

|Pm − P

12
| (4.7)

Pm is the mean monthly precipitation in mm.

Additional precipitation descriptors
For each catchment the following six descriptors have been determined. These de-
scriptors contain information about the occurrence of high and low precipitation
amounts. The low precipitation frequency (lpf) indicates the amount of dry days
(< 1mm precipitation) that annually occur. Low precipitation duration (lpd) or in-
terstorm duration (is_dur) indicates the maximum annual amount of consecutive dry
days. Low precipitation timing (lpt) indicates in which season the most dry days
occur. The high precipitation frequency (hpf) indicates the days during which the
precipitation exceeds five times the annual mean daily precipitation amount. Using
these days the high precipitation duration (hpd) and high precipitation timing (hpt)
have been calculated using the same approach as for the dry days.

Seasonal variability indexes
Berghuijs et al. (2014) states that the seasonal variability of precipitation, potential
evaporation, and temperature can be modelled as simple sinusoidal curves, using
Equations 4.8, 4.9, and 4.10.

P (t) = P [1 + δP sin(2π(t− sP )/τP )] (4.8)

E(t) = E[1 + δE sin(2π(t− sE)/τE)] (4.9)

T (t) = T +∆T [sin(2π(t− sT )/τT )] (4.10)

t is the time in days, s stands for the phase shifts and τ indicates the duration of the
seasonal cycle, which has been set to 1 year or 365 days. δ and ∆ are dimensionless
seasonal amplitudes, and the subscripts P, E, and T represent precipitation, potential
evaporation, and temperature, respectively.
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P(t), E(t), and T(t) represent the rates of precipitation [mm/d], potential evaporation
[mm/d], and temperature [°C] as a function of time. The time-averaged mean values
of these rates are given by P , E, and T . The dimensionless seasonal amplitudes (δP ,
δE , and ∆T ) as well as the phase shifts (sP , sE , and sT ) have been determined using
least squares optimization. The dimensionless seasonal amplitudes and the phase
shifts are used in the regression analysis.

The phase difference between the precipitation and the temperature regime (sd)
can be computed using Equation 4.11 (Berghuijs & Woods, 2016). If sd = 0, the
precipitation and temperature are completely in phase, sd = -0.5 indicates that the
precipitation peaks before the temperature and sd = 0.5 indicates the precipitation
to peak after the temperature.

sd = sP − sT for |sP − sT | ≤ 0.5 (4.11a)

sd = −1 + (sP − sT ) for sP − sT > 0.5 (4.11b)

sd = 1 + (sP − sT ) for sP − sT < −0.5 (4.11c)

Seasonality Timing Index
Based on the parameters that have been calibrated by using the least square error
optimization, the Seasonality Timing Index (ST) can be calculated. ST describes the
seasonality of precipitation and whether the precipitation is in phase with the poten-
tial evaporation and temperature regimes.

ST = δP sgn(∆T )cos(2π(sP − sT )/τ) (4.12)

Higher temperatures result in higher potential evaporation, therefore the equation
only uses sT . The ST value can range from -1 to 1. ST = 0 indicates uniform precipi-
tation throughout the year. ST < 0 indicates that the signal is out of phase, with the
precipitation being strongly winter dominant and ST>0 indicate that the precipita-
tion is strongly summer-dominant. (Berghuijs et al., 2014)

Landscape descriptors

Besides climatic descriptors there are also several landscape descriptors that have
been used for the regression. The catchment attributes that have been provided by
the large sample data sets is the limiting factor when it comes to selecting these de-
scriptors. In total seven descriptors have been classified, which can be divided into
three categories, topography, land-use, and soil characteristics.

Topography
Two descriptors are used to describe the topography of a catchment, namely the
mean elevation of a catchment and the mean slope.

Land-use
This category contains the forest fraction of the catchments. This fraction does not
make any division between different types forests, but combines them all. Forests
use a lot of water for transpiration, to survive dry periods they need a relatively large
root-zone storage capacity.

Soil characteristics
This includes the soil porosity (soil_poros) and the fractions of sand, silt, and clay
present in the soil (sand_frac, silt_frac, and clay_frac). It is expected that the com-
position of the soil has an impact on the root system of vegetation. de Boer-Euser
et al. (2016) compared soil-derived and climate-derived root-zone storage capacities.
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The climate data showed a higher explanatory power for the root-zone storage ca-
pacity, compared to the soil data. However, the combination of both climate and soil
data was not investigated and might result in better values for the root-zone storage
capacity.

Table 4.1: Overview of all catchment descriptors and their abbreviations.

Abbreviation Catchment descriptor
P Mean Annual Precipitation
T Mean Annual Temperature
Ep Mean Annual Potential Evaporation
AI Aridity Index
HAI Holdridge Aridity Index
SI Seasonality Index
hpf High precipitation frequency
hpd High precipitation duration
hpt High precipitation timing
lpf Low precipitation frequency
lpd Low precipitation duration
isdur Interstorm duration
lpt Low precipitation timing
δP Seasonal precipitation amplitude
sP Phase shift of precipitation from reference date
∆T Seasonal temperature amplitude
sT Phase shift of temperature from reference date
sd Phase difference between precipitation and temperature
δE Seasonal potential evaporation amplitude
sE Phase shift of potential evaporation from reference date
ST Seasonality Timing Index
mean_elev Mean elevation
mean_slope Mean slope
forest_frac Forest fraction
soil_poros Soil porosity
sand_frac Sand fraction
silt_frac Silt fraction
clay_frac Clay fraction

4.2.3 Principal Component Analysis and K-means clustering

It can be difficult to identify pattern within large data sets. In this study, Principal
Component Analysis (PCA) and K-means clustering are used to specify the relation-
ship between the catchment descriptors and the root-zone storage capacity.

Principal Component Analysis

Principal Component Analysis (PCA) is a mathematical algorithm, that identifies pat-
terns within the data by highlighting differences and similarities. The aim of this
algorithm is to reveal the dominating characteristics of the given multivariate data
set (Wold et al., 1987). Since managing large data sets can be quite challenging,
the algorithm also aims to reduce the dimensions of the data set in order to increase
the readability, without losing much of the information (Smith, 2002). PCA requires
a matrix with N objects and K variables per object. The matrix should satisfy the
following assumptions; the variables should be measured at a continuous level and
linearly related, the matrix should be suitable for reduction and not contain any out-
liers, and the sample size must be adequate (> 150 objects).

PCA works with principal components to represent as much data as possible. Prin-
cipal components of the data are variables constructed as linear combinations or
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mixtures of the initial variables. These combinations are made so that the princi-
pal components are uncorrelated and contain as much information as possible in
the first component. In other words, the first principal component (PC1) tries to
explain as much data variance as possible. The second principal component (PC2)
tries to explain as much as possible of the remaining variance. This process contin-
ues until there are an equal amount of principal components as there are variables
in the matrix. The PCs are computed using the following steps. The first step is to
standardize the data. This results in a data set for which each variable has a mean
of zero. Based on this data the eigenvalues and eigenvectors are computed from
the covariance matrix. The eigenvectors represent the directions of the axes where
there is the most variance. These eigenvectors are the principal components. The
eigenvalues are the coefficients that are attached to the eigenvectors, which contain
information regarding the amount of variance that is explained. The eigenvector with
the highest eigenvalue, explains the most variance and is therefore called PC1. PC2
should be uncorrelated to PC1, therefore this vector should be orthogonal to PC1.
The eigenvector with the highest eigenvalue that is orthogonal to PC1 is called PC2.
This process is continued until all principal components have been identified (Smith,
2002).

The results of a PCA are often visualized in a plot. The PCA-plot utilizes PC1 and
PC2 as the axes of the figure. This approach makes it possible to plot the original
data set using the linear combinations of all dimensions as described by the principal
components. The amount of variance that is explained by each of the principal com-
ponents is often given in the axis description of the plot. The amount of explained
variance indicates the amount of initial data that is presented in the plot. In most
cases the first two components are unable to explain 100% of the variance, meaning
that part the information from the initial data set has been lost. However, based on
the variance that is explained by the components, the main features of the data are
still visible in the PCA-plots. The plots contain PC scores and loadings. The PC scores
are all the dots that are present, which represent the objects of the matrix. This way,
objects that plot close to each other show largely similar behavior for most of the
variables that are considered. The loadings are visualized with vectors, which have
a magnitude and a direction. Each vector represents a variable. The magnitude of
the vector indicates the influence that the variable has on the principal component.
The larger the vector, the higher the influence. The direction of the vectors can give
information about the variables as well as the PC scores. If the vector is pointing
in the direction of a group of PC scores, this indicates that this variable has a large
positive influence on these scores. At the same time if the vector points in oppo-
site direction, this variable is negatively correlated to these objects. If a vector is
orthogonal to a group of scores, the variable is most likely not strongly correlated.
The same principal applies to the vectors themselves. Vectors pointing in the same
direction are positively correlated, when they point in opposite directions they are
negatively correlated, and orthogonal vectors are not strongly correlated.

In this study the PCA has been utilized to determine the relationships between the
root-zone storage capacity and the catchment descriptors as described in Section
4.2.2. The PCA objects are the selected catchments, while the variables are the
catchment descriptors. From the PCA-plot it can be determined how the different
catchment descriptors are related to the root-zone storage capacity.

K-means Clustering

The PCA-plot gives an overview of the objects with similar behavior and how they
are related to the parameters. Therefore, this makes it possible to identify data clus-
ters of similar functioning. To obtain these clusters a second assessment technique
is used, called K-means clustering (MacQueen et al., 1967). K-means clustering is
an iterative process that results in a user-specified number of clusters. The method
starts by identifying a random point (centroid) for each cluster that should be cre-
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ated. Each of the data points in the plot are then assigned to one of these centroids,
after which the centroids move to the average of all its assigned data points. This
process is repeated until the centroids no longer move as a result of the iterations,
meaning that every point is assigned to the nearest centroid. This results in a num-
ber of clusters within which the objects show similar behavior.

In this study this technique can determine which catchment descriptors are impor-
tant for the clustering of the data, providing information about the ability of a catch-
ment descriptor to characterize a catchment. Additionally, comparing the root-zone
storage capacity within each cluster can provide more insight to the influence of cer-
tain catchment descriptors on the root-zone storage capacity.

4.2.4 Multi-Linear Regression

The aim of this study is to propose a method with which the time-dynamic root-zone
storage capacity can be estimated for the Meuse catchments. This means that the
method can be applied to estimate the root-zone storage capacity for both the sim-
ulated historical and the simulated 2K climate data. Combining the past and future
root-zone storage capacity results in a time-dynamic root-zone storage capacity. The
proposed method is a regression relationship that is derived with Multi-Linear Re-
gression (MLR). MLR is a technique that uses several independent variables to pre-
dict the outcome of a dependent variable. The mathematical formulation for this
technique is given in Equation 4.13 (Schneider et al., 2010; Uyanık & Güler, 2013).

y = β0 + β1x1 + ...+ βnxn + ε (4.13)

y = dependent variable
xi = independent variables
β0 = y-intercept (constant term)
βi = regression coefficients for each of the independent variables
ε = error

The following assumptions are made when performing a MLR. It is assumed that
there is a linear relationship between the dependent and independent variables. The
data has been observed independently and has no significant outliers. There is no
strong correlation between the independent variables, also called multi-collinearity.
The data shows homoscedasticity, meaning the variance along the line of the best
fit remains similar when moving up and down on the line and the errors of the re-
gression line are normally distributed. In other words, the assumptions of MLR are
linearity, independence, multi-collinearity, homoscedasticity, and normality. (Alex-
opoulos, 2010; Uyanık & Güler, 2013)

The performance of the MLR can be expressed in several ways. The most common
method is the coefficient of determination (R2). This statistical metric measures the
amount of variation in the outcome that can be explained by the variation in the inde-
pendent variables. Calculated using Equation 4.14, the value of R2 can range from 0
to 1. If R2 = 0 there is no relationship between the dependent and independent vari-
able, if R2 = 1 there is a perfect linear relationship between the variables (Schneider
et al., 2010). The value of R2 always increases when adding an independent variable
to the regression. To eliminate this problem the adjusted R2, also called the Ezekiel
estimator, can be used. This number penalizes the R2 formula based on the num-
ber of independent variables that the regression uses (Equation 4.15) (Chen & Liu,
2015). The adjusted R2 value is lower compared to R2 when it contains independent
variables that do not impact the dependent variable.

Other methods to quantify the performance of the regression used in this study are:
the Mean Error (ME), the Mean Absolute Error (MAE), and the Mean Absolute Per-
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centage Error (MAPE). The formulas for these methods are given in Equations 4.16,
4.17, and 4.18, respectively.

R2 =

∑i=1
n (ŷi − y)2∑i=1
n (yi − y)2

=
explained variance

overall variance
(4.14)

Adjusted R2 = 1− n− 1

n− p− 1
(1−R2) (4.15)

Mean error (ME) =
1

n

i=1∑
n

(ŷi − yi) (4.16)

Mean absolute error (MAE) =
1

n

i=1∑
n

∣∣ŷi − yi
∣∣ (4.17)

Mean percentage error (MAPE) =
100

n

i=1∑
n

∣∣yi − ŷi
yi

∣∣ (4.18)

n = Number of observations in the regression
ŷi = The regression results for the dependent variable
yi = The observed values for the dependent variable
y = The mean of the observed values for the dependent variables
p = Number of independent variables in the regression.

To get an estimate of the number of independent variables that are needed for the
regression, the adjusted R2 values have been plotted against the number of catch-
ment descriptors. This gives an idea of the optimal amount of variables for the MLR.
The amount of variables should be carefully considered, since the use of too little
variables gives inaccurate results. On the other hand the use of too many variables
increases the possibility of equifinality. Equifinality, is the notion that the chosen
variables compensate for a wrong value. When applying the regression results to
new data, this can result in large deviations (Fitzgerald, 2019).

Additionally, the regression must adhere to the assumption of no multi-collinearity.
Therefore, all independent variables that are strongly correlated should not be con-
sidered in the same regression. These variable pairs are based on literature and have
been verified with the results that are obtained from the PCA and K-means cluster-
ing. By eliminating these variable pairs, the possible combination of independent
variables have decreased. The remaining combinations are investigated using multi-
linear cross-validation. In this study the Hold-out cross-validation method has been
used. This method splits the available data into two non-overlapping parts. The first
part is used for training (70% - 90%) and the second part was is for testing (10% -
30%) (Berrar, 2019). The MLR has been calibrated based on the training set, after
which the resulting regression relationship was validated using the test set. This
reduces the possibility of equifinality resulting in a more accurate estimation for the
generalized performance of the regression (Refaeilzadeh et al., 2009). This process
has been repeated multiple times. For each iteration the best regression relation-
ships have been selected based on the adjusted R2 values of the test set. These
relationships have then been further investigated by comparing the performance for
the Meuse catchments, using the ME, MAE, and MAPE values.

In this study the MLR is executed using the Ordinary Least Squares method. The
dependent variable is the root-zone storage capacity, and the independent variables
is formed by the catchment descriptors. To determine the performance of the re-
gression, the MLR is comparing the outcomes to the Sr values that result from the
water balance method. Based on the MLR results and the ability of the regression
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to predict the root-zone storage capacity for the Meuse catchments, a relationship is
selected. This regression relationship is used to estimate the time-dynamic root-zone
storage capacity for the Meuse catchments.

4.3 The Wflow_FLEX-Topo model to evaluate the impact of
a time-dynamic root-zone storage capacity

The Wflow_FLEX-Topo model has been used to evaluate the impact of a time-dynamic
root-zone storage capacity on the change in the hydrological response of the Meuse
catchments as a result of 2K climate change. In this section the model is explained,
followed by an explanation regarding the application of this model within this study.

4.3.1 The Wflow_FLEX-Topo model

The Wflow_FLEX-Topo model is a fully-distributed process-based model. The model
uses a Flux Exchange (FLEX) modelling approach, meaning that the relevant hydro-
logical processes within the catchments have been represented by a combination
of reservoirs and transfer functions (Fenicia et al., 2006). The spatial variability of
the hydrological processes within a catchment have been simulated by different con-
figurations of reservoir and transfer functions. These different configurations are
also called Hydrological Response Units, HRUs. The Wflow_FLEX-Topo model has
specified three different HRUs, called wetlands, hillslopes, and plateaus. Table 4.2
contains the thresholds that are used to determine which HRU should be used to
model an area within a catchment (Gharari et al., 2011).

The model input consists of distributed precipitation, temperature, and potential
evaporation data. The different HRUs are all connected to each other through the
common groundwater storage Ss [mm]. Moreover, all HRUs include storage for snow
SW , interception SI , root-zone SR, and a fast runoff component SF , as well as trans-
fer functions for Evaporation [mm d−1] from snow storage (EW ), interception storage
(EI ), and the root-zone storage (ER). The total streamflow Q [mm d−1] is made up of
the groundwater runoff Qs and the fast runoff QF from the different HRUs (Bouaziz
et al., 2021). Figure 4.4 gives a schematic overview of these storage and transfer
functions within the model.

The main differences between the HRUs include potential differences in parameter
values. In Figure 4.4, the subscripts P, H, and W are used to distinguish between the
Plateaus, Hillslopes, and Wetlands respectively. Other differences are the presence
of percolation in the plateau class, while this is not present in the other HRUs. More-
over, the wetlands include capillary rise but exclude preferential recharge (Bouaziz
et al., 2021). Appendix C provides a definition for the different fluxes and storage
of Figure 4.4. An overview of the water balances and the equations for each of the
HRUs can be found in the supplements of Bouaziz et al. (2021).

Bouaziz et al. (2021) has calibrated the model for theMeuse catchments. The calibra-
tion was done using the streamflow at Borgharen and the observed historical E-OBS
meteorological data. The calibration used the data from 2007-2011, with 2005-2006
as warm-up years, and the period from 2012-2017 as the post-calibration period. This
data has been used as it is assumed to most closely represent the current-day condi-
tions. The aim of the calibration was to retain an ensemble of plausible realizations,
to optimally reflect different aspects of the hydrograph. The seasonal streamflow
regime is relatively well reproduced by the model, as the four objective functions
show a relatively similar performance during calibration and evaluation, with me-
dian values of approximately 0.93 and 0.78 for Borgharen and for the 35 catchments
of the Meuse, respectively (Bouaziz et al., 2021).
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Figure 4.4: Schematic overview of the Wflow_FLEX-Topo model structure. The subscripts P,
H, and W are used for the Plateaus, Hillslopes, and Wetlands respectively (source: (Bouaziz et
al., 2021)).

Table 4.2: The threshold values for the different Hydrological Response Units (HRUs).

Wetlands Hillslope Plateau
Height Above the Nearest
Drainage (HAND) [m] <5.9 N/A >5.9

Slope [-] <0.125 >0.125 <0.125

4.3.2 Evaluating the change in hydrological response

Figure 4.5, gives an overview of the way in which the Wflow_FLEX-Topo model has
been used in this study. The model has been used to evaluate the impact that a time-
dynamic root-zone storage capacity has on the change in hydrological response. This
impact is quantified with the use of 3 different model scenarios. Each scenario con-
sists of a part that models the historical hydrological response, which is forced using
the simulated historical climate data, and a part that represents the future hydro-
logical response which is forced using the simulated 2K climate data. The impact
that the time-dynamic root-zone storage capacity has on the change in hydrological
response is determined by subtracting the results of the historical part of the model
from the results of the 2K part of the model. Besides the root-zone storage capacity,
all other parameters have remained static for the model runs.

Scenario 1: Benchmark - Water balance method
In scenario 1 it is assumed that the vegetation has not adapted its root-zone storage
capacity as a result of the 2K climate. The root-zone storage capacity has been com-
puted using the simulated historical climate data and the water balance method that
is explained in Section 4.1. These values have been used in both the historical and
2K run of the model. This scenario implies all model parameters to be static and can
be seen as the benchmark scenario for the water balance method.

Scenario 2: Benchmark - Regression relationship
In scenario 2 the same assumption has been applied. However, this time the root-
zone storage capacity has been estimated using the regression relationship that is
explained in Section 4.2. This relationship has been applied to the simulated histori-
cal climate data of the Meuse to obtain root-zone storage capacity estimates for each
of the 35 catchments. These values have been used in both the historical and 2K run
of the model. This scenario implies all model parameters to be static and can be seen
as the benchmark scenario for the regression relationship.

Scenario 3: Dynamic - Regression relationship
In Scenario 3 it is assumed that vegetation has adapted its root-zone storage capacity
as a result of the globally 2K warming climate. The simulated historical climate data
is used to estimate the root-zone storage capacity for the historical run and the sim-

22 E.J. van Noppen



MSc Thesis

ulated 2K climate data is used to estimate the root-zone storage capacity for the 2K
run. It should be emphasized, that both root-zone storage capacities have been esti-
mated with the regression relationship. This scenario no longer implies a stationary
root-zone storage capacity and is therefore called the dynamic regression scenario.

Figure 4.5: Flow diagram for the use of the Wflow_FLEX-Topo model in this study.

Evaluation
Each scenario that is discussed gives an indication of the change in hydrological
response when comparing the 2K climate run with the historical climate run. This
response is quantified by plotting the change in mean monthly hydrological response
of several flux and state variables between the 2K and historical model run, namely
the streamflow (Q), actual evaporation (EA), root-zone storage (Sr), and groundwa-
ter storage (Ss).

The only changing component within the benchmark scenarios is the forcing data
that is used for the 2K run. The results of these scenarios therefore give the change
in hydrological response that results from this difference in forcing data. When com-
paring the benchmark scenarios with each other, the only difference is the method
with which the root-zone storage capacities are estimated. Therefore, by compar-
ing the benchmark for the regression relationship with the benchmark for the water
balance method, we can quantify the impact that the regression method has on the
change in mean monthly hydrological response.

For the dynamic regression model scenario, the forcing data and the root-zone stor-
age capacity were changed for the 2K run of the model. In other words, it used a
time-dynamic root-zone storage capacity in comparison to the static root-zone stor-
age capacity that has been used in the benchmark scenarios. Both the regression
benchmark scenario and the dynamic regression scenario have used the regression
relationship to obtain the root-zone storage capacities. Therefore, the only differ-
ence between these model scenarios is the static versus the time-dynamic root-zone
storage capacity. By comparing the dynamic regression to the regression bench-
mark scenario, we can quantify the impact that the time-dynamic root-zone storage
capacity has on the change in mean monthly hydrological response.
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This section presents the results of the root-zone storage capacity computations using
the water balance method (Section 5.1), followed by the results of the regression
relationship (Section 5.2). In Section 5.3 the differences between the results from
these two methods are discussed for the simulated climate data sets of the Meuse
catchments. Lastly, the Wflow_FLEX-Topo model is used to evaluate the difference
in hydrological response of the Meuse basin, when using a static root-zone storage
capacity compared to a time-dynamic root-zone storage capacity (Section 5.4).

5.1 Root-zone storage capacity estimates based on the wa-
ter balance method

The root-zone storage capacities are estimated using the water balance method, as
explained in Section 4.1. The root-zone storage capacities for the simulated historical
climate data of the Meuse (Sr-HistWB) range between 140 and 291 mm as shown in
Figure 5.1b. The exact magnitudes of these root-zone storage capacities have been
provided in Appendix D. The Sr-HistWB values are used as reference values to de-
termine how well the regression method can predict the root-zone storage capacity
of the Meuse catchments. Additionally, they are also used in the Wflow_FLEX-Topo
model, as part of the water balance benchmark scenario (Section 5.4).

Part of the data processing consisted of plotting the catchments in the Budyko frame-
work. The Aridity Index is estimated by relating the long-term average potential
evaporation to the long-term average precipitation. The Evaporative Index relates
the long-term actual evaporation to the long-term precipitation. The actual evapo-
ration is estimated by subtracting the streamflow out of the system from the incom-
ing precipitation. Figure 5.1a indicates the position of the different Meuse catch-
ments and shows that two catchments exceed the energy limit that is provided by
the Budyko framework. The two catchments that plot on the left side of the energy
limit are Beverce and La Sormonne. This indicates that in these catchments the
estimated actual evaporation exceeds the estimated potential evaporation. These
differences could be the result of deep underground discharge or water subtraction
by human activities. Since the data does not provide enough information to account
for these differences, the root-zone storage capacities would not provide accurate
results. These catchments have been given the same root-zone storage capacities as
one of their neighbouring catchments, as the Wflow_FLEX-Topo model requires a Sr
value for all catchments. Beverce catchment received the same root-zone storage ca-
pacity as Maastricht catchment and La Sormonne Belval received the same root-zone
storage capacity as La Bar Cheveuges catchment (Figure 5.1b). These neighbouring
catchments have been chosen based on the similarity in hydrological data.

24 E.J. van Noppen



MSc Thesis

127 - 151 

151 - 191 

191 - 231 

231 - 262 

262 - 291 

Root-zone storage capacity [mm]

127 - 151 

151 - 191 

191 - 231 

231 - 262 

262 - 291 

Root-zone storage capacity [mm]

Figure 5.1: (a) The Budyko framework of the Meuse catchments from the simulated historical
climate data. (b) The Meuse catchments, and the root-zone storage capacity estimates for the
simulated historical climate data using the water balance method (Sr-HistWB). Catchments
exceeding the energy limit have a pink border (Beverce and Sormonne Belval). The purple
border indicate the catchments which root-zone storage capacity has been used for the pink
catchments (Maastricht and La Bar Cheveuges).

5.2 Deriving the regression relationship

This section describes the results of the regression relationship used to estimate the
root-zone storage capacity for the simulated historical and 2K climate data. First, the
catchment selection is discussed (Section 5.2.1), followed by the root-zone storage
capacities computed with the water balance method (Section 5.2.2), and the catch-
ment descriptors that are used as the input for the MLR analysis (Section 5.2.3).
The results of the PCA and K-means clustering that have been performed with this
data are described in Section 5.2.4. This is followed by the Multi-Linear Regres-
sion analysis, which resulted in the regression relationship that is used to estimate
the root-zone storage capacities of the Meuse catchments for historical and future
conditions (Section 5.2.5).

5.2.1 Catchment selection

For the catchment selection each of the catchments has been screened in order to
determine whether it is suitable for the analysis. The requirements state that the
catchments should have minimal human impact and less than 10% of the annual pre-
cipitation can consist of snowfall. The amount of human impact has been determined
based on the information provided by each of the data sets.

CAMELS-USA
The CAMELS-USA data set contains 671 catchments. All initial catchments are char-
acterized by low human impact, meaning no catchments have been eliminated due to
this requirement (Newman et al., 2015). This in contrast to the snowfall requirement,
which resulted in the elimination of 331 catchments. The data sets were selected in
order to find catchments in similar climatic conditions as the current or futureMeuse.
Therefore, the choice was made to only consider catchments on the East Coast. This
requirement resulted in an additional elimination of 135 catchments. The remaining
catchments have been processed and checked for data availability, which resulted
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in the elimination of 18 catchments. Finally, we kept a total of 187 catchments that
were suitable for the analysis.

CAMELS-GB
The CAMELS-GB data set provides information on the human impact in each of the
catchments. The human impact has been determined by data on reservoirs, abstrac-
tion, and discharge returns. For this study only the UK Benchmark Network catch-
ments have been used. These catchments are characterised by modest influence of
humans on the flow regimes and can be treated as relatively ’near-natural’ (Coxon
et al., 2020). Based on this 534 catchments could be eliminated, as they did not ad-
here to the requirement of minimal human influence. An additional 6 catchments
have been eliminated due to the snowfall requirement. Finally, data processing and
availability resulted in the additional elimination of 3 catchments. The remaining
128 catchments have been used in the analysis.

LamaH
From the 859 catchments present in the LamaH data set, 454 catchments were iden-
tified to have minimal human impact (Klingler et al., 2021). Since the catchments
are located in a mountainous area, the snow impact is significant in the majority of
the catchments, resulting in the elimination of 309 catchments. An additional 42
catchments have been eliminated, as the result of processing and missing stream-
flow data. Resulting in a total of 103 catchments that are suitable for the analysis.

Observed historical E-OBS data
The observed historical E-OBS data has been processed. Similar to the simulated
historical climate data the Beverce and La Sormonne Belval catchments, exceeded
the energy limit. As previously discussed, this could be caused by for example, deep
underground discharge or water subtraction by human activities. Since the data
shows a deviation, the decision was made to eliminate these two catchments from
the analysis. The remaining catchments have all been used as part of the analysis.

From the approximately 2200 catchments that are present in the data sets, 451 catch-
ments could be used in this study. Figure 5.2 gives an overview of the locations of
these catchments.

5.2.2 Computing the root-zone storage capacities with the water bal-
ance method

The performance of the regression relationship is determined based on its ability
to reproduce the root-zone storage capacity values as computed with the water bal-
ance method. The regression uses the selected catchments from the large sample
data sets, as well as the catchments from the observed historical E-OBS data. The
results of the Sr computations for these catchments have been visualized in Figure
5.2. The root-zone storage capacities range from 36 to 499 mm. Figure 5.2, clearly
shows that there is a geo-spatial spread when it comes to Sr. The lowest values are
found in the Northern part of Great-Britain, from where the values increase towards
the Southeast. The highest values are found in the center of the United States, with
decreasing values towards the East coast. The LamaH and observed historical E-
OBS data contain average root-zone storage capacity values. This geo-spatial spread
suggests that the value of Sr depends on the climatic conditions in a region. This
suggestion is further validated by the position of the catchments within the Budyko
framework as shown in Figure 5.3. The figure indicates that the current position of
the Meuse catchment overlaps with catchments from each of the large sample data
sets. Additionally, the root-zone storage capacity shows an increase with increasing
values for the Aridity and Evaporative Index. Global warming will likely result in
a shift of the Meuse catchments within the Budyko framework, towards increasing
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values for the Aridity and Evaporative index. Therefore, the root-zone storage capac-
ities of the Meuse catchments might increase in future climate conditions.

Figure 5.2: The selected catchments and their respective root-zone storage capacities com-
puted with the water balance method (a) CAMELS-USA, (b) CAMELS-GB, (c) LamaH, and the
observed historical E-OBS data

Figure 5.3: (a) The location of the selected catchments within the Budyko framework. (b)
The variation of the root-zone storage capacity in the Budyko framework, the magnitude of
the root-zone storage capacity is indicated by the colour scale.

5.2.3 Computing the catchment descriptors

The catchment descriptors have been computed for the selected catchments as ex-
plained in Section 4.2.2. The Python scripts that have been used for these computa-
tions are provided in Appendix B.
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5.2.4 Principal Component Analysis and K-means clustering

PCA has been performed using the root-zone storage capacities and the catchment
descriptors that have been described in the previous sections. The 451 catchments
form an adequate sample size with which PCA can be performed.

The results of the PCA have been visualized in Figure 5.4. Figure 5.4a shows the
loadings of the climatic descriptors, while Figure 5.4b shows the loadings of the
landscape descriptors. These loadings have been separated into two plots for read-
ability purposes. The axes of the figure indicate that PC1 and PC2 explain 38.2%
and 16.1% of the range, respectively. In other words, the plot contains 54.3% of the
information provided by the initial data.

The loading vectors that have been visualized in Figure 5.4 contain additional in-
formation regarding the inter-correlations of the input data. The input data consist-
ing of the root-zone storage capacities and the catchment descriptors, which are all
represented in the plots. The root-zone storage capacity has been added to both
plots by the abbreviation ’Sr_20_yr’. The plots show that the root-zone storage ca-
pacity is positively correlated with: annual temperature and potential evaporation
(T , EP ), Holdridge Aridity Index (HAI), high precipitation frequency and duration
(hpf, hpd), low precipitation frequency and duration (lpf, lpd), and forest fraction
(forest_frac). The root-zone storage capacity is clearly negatively correlated with:
Seasonality Index (SI), phase difference between precipitation and temperature (sd),
seasonal potential evaporation and precipitation amplitude (δE , δP ), Seasonality Tim-
ing index (ST), high precipitation timing (hpt), sand fraction, mean slope, and mean
elevation. The remaining catchment descriptors that do not show a strong correla-
tion to the root-zone storage capacity are annual precipitation (P ), Aridity Index (AI),
phase shift of precipitation, temperature, and potential evaporation (sP , sT and sE),
seasonal temperature amplitude (∆T ), low precipitation timing (lpt), soil porosity,
and fraction of silt and clay (silt_frac, clay_frac).

Figure 5.4: The PCA-plot for (a) climatic descriptors, (b) landscape catchment attributes.
’Sr_20_yr’ indicates the loading for the root-zone storage capacity.

The K-means clustering approach is used to identify catchment clusters of similar
functioning, since catchments that plot closely together in the PCA-plot have shared
descriptor variables. In total 6 different clusters have been identified. Figure 5.5a
shows the clusters within the PCA-plot and indicates the data set from which the
catchment originates. The Meuse catchments are part of cluster 4 and has been vi-
sualized by a black border in the figures. The root-zone storage capacity in this clus-
ter ranges between approximately 200 and 270 mm, as shown in Figure 5.5b. This
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figure also shows that each of the clusters has their own range of root-zone storage
capacities, which indicates that different catchment descriptor values result in dif-
ferent root-zone storage capacities. Boxplots for each of the catchment descriptors
have been provided in Appendix E. Based on these boxplots the main characteristics
of each cluster are determined. An overview of the geo-spatial spread of the clusters
and their main characteristics is shown in Figure 5.6.

Cluster 2 contains the catchments with the lowest root-zone storage capacities. This
cluster contains mainly catchments from the CAMELS-GB data set. The catchments
are characterized by high annual precipitation and low values for both the high and
low precipitation frequency. Moreover, these catchments are characterized by low
annual potential evaporation and temperatures. Cluster 1 also contains catchments
with low root-zone storage capacities. These catchments are mainly located in Cen-
tral Europe and are characterized by the low values for temperature and high and
low precipitation frequency. Additionally, they have a relatively high Seasonality In-
dex, which explains the low root-zone storage capacity values.

The catchments of clusters 4 and 5 have average root-zone storage capacities. Clus-
ter 4 consists of catchments from all the data sets that have been used in the cluster-
ing, while cluster 5 consists mainly of catchments from the CAMELS-USA data. The
clusters are characterized by a low Seasonality Index, which indicates the presence
of uniform precipitation throughout the year. Additionally, they contain average val-
ues for the low and high precipitation frequency. The clusters can be distinguished
from each other, as cluster 4 is characterized by low annual temperature and po-
tential evaporation values, while cluster 5 is characterized by high annual potential
evaporation values.

Clusters 0 and 3 consist of CAMELS-USA catchments. These clusters have high
root-zone storage capacity values and can be characterized by high annual poten-
tial evaporation and temperature values. Both clusters also show high values for the
high and low precipitation frequencies. They can be distinguished from one another
as cluster 3 is characterized by high SI and AI values and low annual precipitation
values, while cluster 0 can be characterized by low Seasonality Timing Index and
high annual precipitation value.

To conclude, the PCA in combination with the K-means clustering have clustered
the catchments based on similar functioning. A clear distinction between the rele-
vant catchment descriptor variables and the root-zone storage capacity in the differ-
ent clusters can be made, which indicates that Sr is indeed described by different
variable values in different regions. This forms the basis on which the Multi-Linear
Regression has been performed.
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Figure 5.5: (a) PCA-plot indicating clusters with catchments of similar functioning as well as
the origin of the catchments in the clusters. (b) Boxplot visualizing the range of the root-zone
storage capacity within each cluster. In both figures the black border indicates the position of
the observed historical E-OBS catchments.

Figure 5.6: Geo-spatial distribution of functional catchment clusters.
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5.2.5 Multi-Linear Regression

Multi-Linear Regression Analysis has been applied to the catchment descriptors, re-
sulting in a relationship that can be used to estimate the root-zone storage capacity
for the simulated historical and 2K climate data. The MLR has been developed with
the use of the root-zone storage capacities computed with the water balance method.

To determine the optimal number of independent variables that should be used in
the regression, the adjusted R2 value has been plotted against the number of in-
dependent variables. Figure 5.7 indicates that the adjusted R2 value increases up
until the use of 6 independent variables, after which the curve flattens at a value of
approximately 0.76. Since there are minimal increases in adjusted R2 when using
more than 6 independent variables, this study will focus on regression results that
consider 6 or less independent variables.

Figure 5.7: The adjusted R2 value plotted against the number of independent variables in the
regression

The regression model must adhere to the assumption of no multi-collinearity. How-
ever, this assumption is not valid for all the catchment descriptors. For example, the
mean annual potential evaporation is used to compute the Aridity Index, which makes
these variables strongly correlated. Any change in potential evaporation will directly
change the Aridity Index. To make sure that the assumption of no multi-collinearity
is met by the regression, strongly correlated descriptors are not allowed to be part
of the same model. A complete list of strongly correlated descriptors is provided in
Appendix F.

Cross-validation has been applied decreasing the possibility of equifinality, produc-
ing a more accurate regression. The total of 451 catchments that are considered in
the MLR have been randomly divided into a training data set and a test data set. The
training data set contains 380 catchments (∼84%), leaving 71 catchments (∼16%)
for the test data set.

After eliminating the strongly correlated catchment descriptors and specifying the
division of the data, the Multi-Linear Regression with cross-validation has been ex-
ecuted. The regression has been executed multiple times for each possible combi-
nation of catchment descriptors, using different test and training data sets. From
these iterations we identified the regression relationships with the highest adjusted
R2 value for the test data. The independent variable combinations that created these
values have been further investigated. This process has been executed for models
containing 2 to 6 independent variables. For each iteration the five best performing
regression relationships for each of these models is provided in Appendix G. For the
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models containing 2 to 6 independent parameters, the best regressions resulted in
adjusted R2 values of 0.71, 0.74, 0.72, 0.75, and 0.73, respectively. This shows that
the regression performance is not drastically impacted by the addition of an inde-
pendent variable.

The regression relationships that are identified by the iterations have been further
investigated with the use of the PCA results. From the PCA it has been determined
whether there is a positive, negative or weak relationship between each of the catch-
ment descriptors and the root-zone storage capacity. Based on this information the
sign of the regression coefficients has been checked. A positive relationship between
the catchment descriptor and the root-zone storage capacity should be represented
by a positive regression coefficient. A negative relationship should be represented
by a negative regression coefficient. The regression models that did not adhere to
this principle have been eliminated from the selection.

After this additional validation, the best performing regression relationships have
been selected for each of the models with 2 to 6 independent variables. This selec-
tion has been based on the ability of the regression to predict the root-zone storage
capacity of theMeuse catchments for the observed historical E-OBS data and the sim-
ulated historical climate data. The performance of the 2 to 6 variable models have
been quantified by the ME, MAE, and MAPE values of 1000 iterations with the differ-
ent regression relationships. This process resulted in the selection of one regression
relationship for each of the 2 to 6 variable models. Table 5.1 shows the regression
relationships and the median of R2 and adjusted R2 for the training and test data.
From this table it can be concluded that the differences in model performance are
relatively small. The R2 of the training and test data ranges between 0.70-0.73 and
0.67-0.72, respectively. The adjusted R2 of the training and test data ranges between
0.70-0.73 and 0.67-0.70, respectively.

Figure 5.8 shows boxplots for the iterations of the models that are indicated in Table
5.1. The first graph shows the R2 and adjusted R2 values for both the training and
test data of the different models. These boxplots show that the addition of a third
independent variable has some effect on the performance of the model as it increases
the R2 and adjusted R2 between 0.01 and 0.05. However, the addition of a fourth,
fifth, or sixth independent variable changes the R2 and adjusted R2 with values be-
tween -0.02 and 0.02. The remaining graphs in Figure 5.8 show the ME, MAE, and
MAPE boxplots for different parts of the data. The boxplots represent model values
for training data, test data, observed historical E-OBS data, and simulated histori-
cal climate data for the Meuse catchments. The boxplots for the training and test
data show that the ME values plot around the zero line, which is expected, since
the aim of a multi-linear regression is to minimize the mean error. For the MAE the
values of these categories show a decrease with increasing independent variables.
The median for the training data decreases from 37.61 to 34.19 mm and the test data
decreases from 38.11 to 34.33 mm. This means that the root-zone storage capacity
computed with the regression model deviates on average around 35 mm compared
to the value computed with the water balance method. The MAPE boxplot shows the
same decrease for the training and test data, the decrease is approximately 20-18%
and 20-19%, respectively.

The ME for the observed historical E-OBS data has a negative value for the model
with 2 independent variables, and has positive values for the remaining models. The
ME for the simulated historical climate data has negative values for all models. The
4 and 6 variable models result in the smallest ME values. The MAE shows the same
pattern for the simulated historical climate data, with the smallest error in the 4
and 6 parameter models. The MAE for the observed historical E-OBS data shows a
decrease with increasing independent variables, however this decrease is relatively
small.
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Figure 5.8: The performance of the different independent variable models, based on different
parts of the data set (a) the R2 and adjusted R2 values for the training and test data. (b) The
mean error (ME), (c) the mean absolute error (MAE), and (d) the mean absolute percentage
error (MAPE). Boxplots b,c, and d show the values of the training and test data as well as for
the simulated historical climate data (HCM) and the observed historical E-OBS data (OHM) of
the Meuse catchments

Table 5.1: The R2 and adjusted R2 values for the training and test data of the selected regres-
sion relationships for each of the models with 2 to 6 independent variables.

Independent variables R2

Training data
R2

Test data
Adjusted R2

Training data
Adjusted R2

Test data
HAI, δE 0.70 0.67 0.70 0.67
HAI, sP , δE 0.72 0.71 0.71 0.70
HAI, sP , δE , sand-frac 0.73 0.69 0.72 0.68
HAI, sP , δE , silt-frac, SI 0.72 0.71 0.72 0.69
HAI, sP , δE , sand-frac, EP , forest-frac 0.73 0.72 0.73 0.70

Themodels are of similar performance, whichmakes it difficult to decidewhichmodel
should be used. A balance must be found between the number of variables and the
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performance of the model. When computing the root-zone storage capacity for the
simulated historical climate data the model with 4 or 6 variables are the most promis-
ing. Since the model with 4 independent variables has less variables, this model
is preferred over the model with 6 variables. The observed historical E-OBS data
catchments are also relatively well predicted by the 4 variable model. Therefore,
the model with 4 independent variables has been selected as the best performing
model. The model has a Mean Absolute Percentage Error of 11% for the historical
climate data of the Meuse and 15% for the observed historical E-OBS data. The inde-
pendent variables that make up this model are Holdridge Aridity Index (HAI), phase
shift of precipitation (sP ), seasonal amplitude for the potential evaporation (δE), and
sand fraction (sand_frac). The equation that results from these variables is given in
Equation 5.1.

Sr = β0 + βHAI ∗HAI + βsp ∗ sp+ βde ∗ de+ βsandfrac ∗ sandfrac (5.1)

Figure 5.9: The values of the catchment descriptors that are part of the regression analysis,
for the simulated historical and 2K climate data catchments of the Meuse. The catchment
descriptors are: Holdridge Aridity Index (HAI), phase shift of precipitation (sP ), seasonal am-
plitude for the potential evaporation (δE), and sand fraction (sand_frac).

Based on the PCA it is known that sP is not strongly correlated to the root-zone
storage capacity, while HAI is positively correlated, and sandfrac and δE are nega-
tively correlated. This means that the highest root-zone storage capacity values are
found in areas with high HAI and low δE and sandfrac values. Figure 5.9 shows the
variable values for the simulated historical and 2K climate data of the Meuse catch-
ments. Comparing the simulated historical and 2k climate data results in differences
for HAI, sP , and δE that range between 0.08-0.12, 0.02-0.21 year, and -0.01-0.01
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respectively. The change in δE is small, which has limited impact on the root-zone
storage capacity. The increase in HAI results in an increase of the root-zone storage
capacity. The increase of sP results in a decrease of the root-zone storage capacity.
sandfrac does not impact the root-zone storage capacity as it remains constant. Since
the HAI has a stronger correlation to the root-zone storage capacity compared to sP ,
the root-zone storage capacity is expected to increase as a result of the simulated 2K
warming climate data. The variable values for each of the selected catchments are
shown in Figure 5.10. The current catchments that have the most similar variable
values compared to the simulated 2K climate data catchments are outlined with pur-
ple. These catchments are found in the Southern part of Great-Britain.

To estimate the root-zone storage capacity, the regression relationship has been ap-
plied to the catchments. To estimate the regression coefficients for each of the catch-
ments, the regression model with cross-validation has been iterated 1000 times using
the independent variables that have been selected. Each iteration results in differ-
ent regression coefficients. These coefficients have then been used to estimate the
root-zone storage capacity of the catchments in question. For each catchment 1000
different root-zone storage capacities are computed. The median of these values is
the root-zone storage capacity that is assigned to the catchment.

This regression relationship is used to estimate the root-zone storage capacity for
the simulated historical climate data Sr-HistRM and the simulated 2K climate data
Sr-2KRM of the Meuse catchments. The resulting root-zone storage capacity values
are given in Appendix D.
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Figure 5.10: The values of the catchment descriptors that are part of the regression analysis,
for each of the selected catchments. The catchment descriptors are: Holdridge Aridity Index
(HAI), phase shift of precipitation (sP ), seasonal amplitude for the potential evaporation (δE),
and sand fraction (sand_frac).
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5.3 Comparison of the root-zone storage capacitymethods

The root-zone storage capacities of the Meuse catchments have been estimated for
the simulated historical and future 2K warming conditions using the water balance
method and the regression relationship. In this study these root-zone storage ca-
pacities are distinguished using the following abbreviations: Sr-HistWB is used for
the Sr calculated for the simulated historical climate data using the water balance
method. Sr-HistRM is used for the Sr estimated for the simulated historical climate
data using the regression relationship and Sr-2KRM is used for the Sr estimated for
the simulated 2K climate data using the regression relationship. The exact magni-
tudes of these different Sr estimates for each of the Meuse catchments have been
provided in Appendix D.

The regression method has been calibrated using Sr values that were computed
with the water balance method. Since the regression model is not perfect there
remains a difference between Sr-HistWB and Sr-HistRM (Figure 5.11). Generally,
the Sr-HistWB values are larger compared to the Sr-HistRM values, with four catch-
ments showing extreme difference between the two Sr values (> 49mm). The mean
error, mean absolute error, and mean absolute percentage error between the two
Sr estimates are -15 mm, 25 mm, and 11.4% respectively. When ignoring the four
extreme values the ME, MAE, and MAPE become -12 mm, 18 mm, and 8.5%. These
values indicate that overall the regression relationship results in underestimations
of the root-zone storage capacity.

The aim of the regression model is to be able to produce time-dynamic root-zone
storage capacities. Therefore, the regression model is used to compute Sr for both
the simulated historical (Sr-HistRM) and the simulated 2K climate data set (Sr-2KRM)
(Figure 5.12a,b). The values of Sr-2KRM are all larger compared to the Sr-HistRM
values, with an average increase of approximately 27 mm or 11.8%. The difference
between the root-zone storage capacities is shown in Figure 5.12c. This figure shows
that differences are largest in the Southern catchments, and smallest for the catch-
ments in the Northeastern part of the river system.
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Figure 5.11: The root-zone storage capacities for the Meuse catchments (a) Sr-HistRM, (b)
Sr-HistWB, and (c) the difference between Sr-HistWB and Sr-HistRM.

Figure 5.12: Map of the estimated root-zone storage capacities for the Meuse catchments (a)
Sr-HistRM, (b) Sr-2KRM, and (c) the difference between Sr-2KRM and Sr-HistRM.
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5.4 Evaluation of the scenario results

5.4.1 Scenario results

As mentioned in the methodology, three different model scenarios have been con-
sidered. Each of these scenarios evaluates the difference in hydrological response
between a model run forced with the historical climate simulation and a model run
forced with the 2K climate simulation. The model forcings are identical for each
of the scenarios, it is the root-zone storage capacity that is adjusted to describe ei-
ther stationary or time-dynamic model parameters. The provided results indicate the
difference in hydrological response between the 2K climate simulation and the his-
torical climate simulation. For example, an increase in streamflow indicates that for
the 2K simulation a higher streamflow has been projected relative to the projection
of the historical simulation.

Figure 5.13: Percentage change in mean monthly hydrological response of several flux and
state variables between the 2K and historical model runs for the three scenarios, each based
on different assumptions for the root-zone storage capacity parameter Sr. Percentage change
in mean monthly (a) streamflow Q, (b) actual evaporation EA, (c) root-zone storage Sr, (d)
groundwater storage Ss.

Scenario 1: Benchmark - Water balance method
For the first scenario Sr-HistWB has been used as the root-zone storage capacity
value for both the historical and the 2K climate simulation part of the model. The
model uses the root-zone storage capacity as a static parameter. This scenario is
called the benchmark model for the water balance method. Figure 5.13, illustrates
the percentage change in mean monthly hydrological response of several flux and
state variables between the 2K and historical model runs.

The projected streamflow shows an increase from December to August with an av-
erage of +5.7%. The maximum increase of approximately +12.8% is projected in
February. The streamflow shows a decrease in the period between September and
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November with a maximum of around -12.1% in October. The projected actual evap-
oration shows increased values for most of the year, with an average increase of
+3.6%. The figure shows that during the spring the actual evaporation will increase
as a result of the 2K climate simulation, with a maximum increase of around +7.2%
in June. However, during the summer months the difference in actual evaporation
between the climate scenarios decreases, with a minimum of -2.9% in August. The
projected root-zone soil moisture remains similar at the start of the year, after which
a slight increase is projected during April and May. During the rest of the year the
root-zone soil moisture is projected to decrease with a maximum of approximately
-23.1% in September. The projected groundwater storage increases the majority of
the year with an average of +4.0% and a maximum of approximately +5.5% in June.
A slight decrease has been projected in the period between October and December,
with a maximum of -2.8%.

Scenario 2: Benchmark - Regression relationship
In the second scenario Sr-HistRM has been used for both the historical and the 2K
climate simulation part of the model. Similar to scenario 1, the root-zone storage ca-
pacity has also beenmodelled as a static parameter. This scenario is called the bench-
mark model for the regression relationship. Figure 5.13, illustrates the percentage
change in mean monthly hydrological response of several flux and state variables
between the 2K and historical model run.

The projected streamflow shows an increase from December to August with an av-
erage of +6.2%. The maximum increase of approximately +12.9% is projected in
February. The streamflow shows a decrease in the period between September and
November with a maximum of around -11.5% in October. The actual evaporation
shows increased values for most of the year, with an average increase of +3.4%.
The graph shows that during the spring the actual evaporation will increase as a re-
sult of the 2K climate simulation, with a maximum increase of approximately +7.2%
projected in June. However, during the summer months the difference in actual
evaporation between the scenarios decreases, with a minimum of -3.7% in August.
The projected root-zone soil moisture remains similar at the start of the year, after
which a slight increase is projected during April and May. During the rest of the
year the root-zone soil moisture is projected to decrease with a maximum of -22.6%
in September. The projected groundwater storage increases the majority of the year
with an average of +4.2% and a maximum of +6.0% in June. A slight decrease has
been projected in the period between October and December, with a maximum of
-1.9%.

Scenario 3: Dynamic - Regression relationship
In contrast to the previous scenarios, the third scenario uses a time-dynamic root-
zone storage capacity. The scenario is called the dynamic regression scenario. For
the historical part of the model Sr-HistRM has been used, while Sr-2KRM has been
used for the 2K part of the model. The differences between the hydrological response
between the 2K part of the model and the historical part of the model are illustrated
in Figure 5.13.

The projected streamflow shows an increase from January to August with an average
of +5.0%. The maximum increase of approximately +9.1% is projected in February.
The streamflow shows a decrease in the period between September and December
with a maximum of around -15.4% in November. The actual evaporation projects an
average annual increase of +3.4%. This increase is small during the first months
of the year, but reaches a maximum of +9.2% in June, after which it decreases to
+2.1% in August, which is followed by higher values towards the end of the year.
The projected root-zone soil moisture will increase in the first half year with an aver-
age of +12% and maximum of +19.9% in June. After which the change will decrease
and reaches a minimum of -9.9% in September. The projected groundwater stor-
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age shows a decrease in the winter period, with a maximum of -4.6% in December,
while an average increase of +2.4% is projected during the rest of the year, with a
maximum increase of +4.0% in June.

5.4.2 Comparing the scenario results

Evaluating the model results gives insight into the hydrological response of the fu-
ture systems. It gives an indication of how the systems will be changing as a result of
climate change. Additionally, by comparing the different scenario results the impact
of the computation method and the use of a time-dynamic root-zone storage capacity
can be quantified.

The impact of the computation method for Sr on the hydrological response
Scenario 1 and 2 both used the same Sr value for the historical and 2K simulation part
of the model. Therefore, the only difference between these scenarios is the method
which has been used to estimate the Sr values of the Meuse catchments. Comparing
the scenarios indicates the impact of the estimation approach on the hydrological
response of the Meuse catchments. Figure 5.13 shows that both benchmark mod-
els follow the same trends for the flux and state variables that have been discussed.
The difference in projected streamflow ranges from 0.2% to 1.12%. The benchmark
scenario of the regression model provides higher streamflow changes relative to the
benchmark scenario of the water balance method. For the absolute evaporation,
the water balance benchmark projects larger changes, ranging from 0.0% to 1.5%
in July. The difference between the benchmark scenarios for the root-zone storage
capacity range from 0.03% to 1.1%. Finally, the differences for the groundwater
storage ranges from 0.44% to 0.87%. For both the root-zone storage and groundwa-
ter storage the benchmark model for the regression model projects higher changes.
Based on these values it can be stated that the method that is used to estimate the
Sr values only has a small impact on the change in hydrological response. The small
differences shows that the regression method is in good agreement with the water
balance method, making scenario 2 a realistic reference scenario with which the im-
pact of the dynamic root-zone storage capacity can be identified.

The observed streamflow and the modelled streamflow of the benchmark scenarios
for the historical run are plotted in Figure 5.14. This figure shows that the modelled
streamflow for the historical run follows roughly the same pattern as the observed
streamflow. This indicates that the Wflow_FLEX-Topo model responds correctly to
the forcing data. Although the model shows the same response to the data, the dif-
ference between the modelled and observed values does indicate that there is some
uncertainty in the modelled streamflow.

The impact of the time-dynamic root-zone storage capacity on the change in
hydrological response
Scenario 2 and 3 both use the regression relationship to estimate the Sr values that
have been used within themodel runs. The difference between the scenarios lies with
the fact that the second scenario uses a static Sr value, while scenario 3 adapted the
Sr value to the changing climatic conditions by using a time-dynamic root-zone stor-
age capacity. Since the estimation method remains the same, the difference between
these two scenarios only represents the impact of the time-dynamic Sr value on the
change in hydrological response of the Meuse catchments.

For the projected streamflow the dynamic regressionmodel produces generally lower
values compared to the benchmark model. The largest differences have been pro-
jected during the winter months, with a maximum difference of 8.6% during Decem-
ber. The projected actual evaporation differs between the scenarios for the summer
and autumn months. The maximum difference between the scenarios has been pro-
jected in July with 6.6%. The root-zone storage capacity shows larger changes for

Delft University of Technology 41



5. Results

the dynamic regression scenario. These differences range from 8.0% in November
to 23.6% in July. Finally, for the groundwater storage the differences between the
scenarios are smallest during the summer month but increase to a 4.8% difference
in January.

These values indicate that the use of a time-dynamic root-zone storage capacity re-
sults in an increase of absolute evaporation during the summer months, while at
the same time resulting in lower values for the streamflow and groundwater storage
during the winter months. The root-zone storage shows an increase throughout the
whole year. In other words, the time-dynamic root-zone storage capacity has a sig-
nificant impact on the seasonality of the change in the hydrological response.

Figure 5.15 shows the modelled streamflow for the 2K run of the benchmark sce-
narios and the dynamic regression scenario. This figure shows that all the modelled
streamflows follow the same pattern. During the summer months, the streamflow
is the same for all model scenarios. In the winter months, the streamflow of the
dynamic regression run is slightly less compared to the benchmark models.

Figure 5.14: The observed streamflow for 2007 and the modelled historical streamflow of
both benchmark scenarios for 2007.

Figure 5.15: The modelled streamflow for the 2K run of each scenario.
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This chapter discusses the main assumptions of the study and how they might have
affected the results. First the data sets are discussed (Section 6.1), after which we
highlight the water balance and regression method (Section 6.2 and 6.3). Two strong
assumptions that have beenmade in this study are discussed in the study implications
(Section 6.4). Finally, the wider application of this research is described in Section
6.5.

6.1 Data uncertainty

The data sets described in Section 3 have been used in different ways throughout
this study. Errors in these data sources can have affected the computed root-zone
storage capacities. For hydrological data the uncertainty magnitudes are typically in
the range 10-40%. This uncertainty can be caused by measurements, derived data,
interpolation, scaling, and data management uncertainty (McMillan et al., 2018).
Large sample data sets are often created by combining different data sources into
one large data set. During the assembly process the data is vigorously checked to
ensure the quality of the data. For this study additional requirements have been
set to the data, to make sure that the compared data is influenced by the same pro-
cesses. Therefore, both catchments with large human and/or snow impact have been
excluded from this research. Although these measures have been taken, the reader
should remain aware that there will always be some uncertainty resulting from the
use of data sets. More information regarding the uncertainty of the different data
sets can be found in the respective documentation as mentioned in Section 3.2.

One source of data uncertainty that must be discussed in more detail, is the un-
certainty related to the estimation of the potential evaporation. As mentioned in
Section 3.2.4, most of the data sets used different methods to estimate the poten-
tial evaporation in the catchments. The simulated climate data used the Makkink
equation for the Meuse catchments, while the Priestly-Taylor equation was used by
CAMELS-USA, and both CAMELS-GB and LamaH for Central Europe used the FAO
Penman-Monteith equation. In order to compare the data accurately the method in
which the potential evaporation has been estimated should be the same for each of
the data sets. Therefore, the Makkink equation has been used to estimate the poten-
tial evaporation in the majority of the data sets. The Makkink equation estimates the
potential evaporation solely on the temperature and the incoming short-wave radia-
tion data. However, relative humidity, wind and other factors also play a role when
it comes to the potential evaporation. Therefore, this method introduces an uncer-
tainty to the potential evaporation values.

Section 3.2.4 describes how the Makkink equation has been applied to CAMELS-
USA and CAMELS-GB. Due to this new method the mean daily potential evapora-
tion of the selected CAMELS-USA catchments have decreased with -0.03 to -1.08
mm day−1, depending on the catchment. The mean daily potential evaporation of
the selected CAMELS-GB catchments increased with +0.02 to +0.25 mm day−1, de-
pending on the catchment. Since both the CAMELS-GB and CAMELS-USA data set
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have been created with the use of a different potential evaporation equation, apply-
ing the Makkink equation will have a slight impact on the accuracy of the data set.
The LamaH catchments did not contain data for the incoming shortwave radiation,
making it difficult to apply the Makkink equation to this data set. An attempt has
been made to determine a correction factor based on the changes in potential evap-
oration of the CAMELS-GB data set, since this data set used the same approach of
computing the potential evaporation as the LamaH data set. However, based on the
computed changes in potential evaporation no correction factor could be derived.
The decision was made to use the LamaH catchments with the provided estimates
of the potential evaporation. Applying the Makkink equation to the majority of the
catchments, decreased the uncertainty drastically, however a part of this uncertainty
remains as the potential evaporation of the LamaH catchment could not be derived
with this method.

6.2 The water balance method

The water balance method is based on the assumption that the root-zone storage
capacity can be derived from the maximum annual water deficits caused by the dif-
ference between the cumulative daily precipitation and transpiration. The daily pre-
cipitation and transpiration values have been determined based on the hydrological
data which comes with its uncertainty as discussed in the previous section. Since
transpiration is too complex to measure at the catchment scale, this parameter has
been determined based on the long-term water balance. Daily potential evaporation
rates have been used to scale the data and create daily transpiration values. This
method retains the seasonality of transpiration without violating the long-term mean
transpiration amounts. However, this method excludes any extreme events and po-
tential inter-annual variability in the transpiration. Hydrological events during which
the water availability is limited or abundant are therefore not present in the transpi-
ration data. This lack of inter-annual variability introduces an uncertainty within the
water balance method. The impact of this uncertainty is difficult to quantify, since
the values cannot be compared to real world transpiration data.

Moreover, this research has neglected the presence of interception when using the
water balance method. The absence of interception causes all precipitation to enter
the soil meaning less water will be available for transpiration, resulting in an un-
derestimation of the storage deficits. However, Bouaziz et al. (2020) states that the
magnitude of the fluctuations due to interception are minor relative to the magnitude
of the storage deficits. Based on this research, it is believed that the assumption of
no interception will not have a significant impact on the results of this study.

Since interception has been neglected, the water balance method implicitly assumes
that all precipitation immediately infiltrates into the root-zone. This assumption ne-
glects other processes such as Infiltration Excess Overland Flow and Saturation Ex-
cess Overland Flow (Stewart et al., 2019). Infiltration Excess Overland Flow occurs
when the water input exceeds the infiltration rate of the soil. This might occur dur-
ing periods of extreme precipitation. The water that is not able to enter the soil will
be routed towards different areas. Saturation Excess Overland Flow occurs when
soil pores of the unsaturated zone are completely filled, making the pores saturated,
which also results in overland flow. Both of these processes indicate a high volume
of water that wants to or has already entered the system. These processes will there-
fore not occur in times of water deficits. Therefore, the absence of these processes
in the water balance method are unlikely to impact the estimates of the root-zone
storage capacities.

Different ecosystems have evolved different strategies to survive droughts of dif-
ferent return periods. Vegetation like grasslands, shrublands, croplands, and barren
or sparsely vegetated lands survive extreme droughts by going dormant (Brunner et
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al., 2015). Therefore, the root-zone storage capacity of these vegetation types are
adapted to the droughts of average years. Which means that the Sr for these vege-
tation types can be computed using short return periods. Forests on the other hand
are adapting their root-zone storage capacity for extreme years. The Sr for these
vegetation types should be computed using longer return periods (Wang-Erlandsson
et al., 2016). For this research the choice has been made to use a return period of 20
years for all catchments. This choice will have likely resulted in an overestimation of
the root-zone storage capacity in the areas with high percentages of low vegetation.

6.3 The regression relationship

In this studyMulti-Linear Regression analysis has been applied to a selection of catch-
ment descriptors, in order to obtain a regression relationship which can predict the
time-dynamic root-zone storage capacity. The multi-linear regression that is used in
this study is a conditional mean of the root-zone storage capacity given a selection of
catchment descriptors. This regression relationship has a specific functional form.
Another approach to find a relationship between the root-zone storage capacity and
the catchment descriptors can be found by using a joint distribution. This approach
does not assume a specific functional form between the root-zone storage capac-
ity and the catchment descriptors, but the relationship is governed by the choice of
the distribution. Additional research can be done to determine whether such an ap-
proach would provide a relationship with higher predictive powers.

The regression relationship that has been selected and used in this study has an
adjusted R2 value of approximately 0.70. This value indicates that although there is
a linear relationship between the catchment descriptors and the root-zone storage
capacity, this relationship is not perfect. The imperfectness of the relationship intro-
duces an uncertainty for the root-zone storage capacities that have been estimated
with this method. The results show that, for the Meuse catchments, the regression
model deviates from the water balance method with approximately 11%.

There might be ways in which the regression relationship can be improved. Cur-
rently, it is believed that the selected relationship is the best relationship that can
be created based on the catchment descriptors that have been used in this study.
The knowledge about the root-zone storage capacity and what processes influence
this parameter is still evolving. Chances are that there are descriptors that have not
been considered in this study, that would result in a better performing regression
relationship.

The regression relationship itself has been created to best predict the root-zone stor-
age capacity of the Meuse catchments. The large sample data sets that have been
used, contain catchments close to the climate conditions of the current and future
Meuse catchments. This gives an indication of how the root-zone storage capacities
will change under these conditions. However, there is still a difference between the
variable values of the catchments that were matched to the Meuse catchments of
the simulated 2K climate data as shown in Section 5.2.5. Especially the δE value is
not matched perfectly. The limited availability of large sample data sets might be the
reason for these results. The climate zones in the Northern Hemisphere are expected
to shift northwards as a consequence of climate change. This means that the current
climate conditions of France are expected to be the closest match with the future
Meuse climate. Therefore, adding a France data set to the regression would proba-
bly result in more accurate estimates for the dynamic root-zone storage capacity. The
CAMELS-FR data set that has been created in the past year might be a good addition.

The objective of this study is to propose a method with which dynamic root-zone
storage capacities can be computed in order to predict the change in hydrological
response of the Meuse catchments as a result of climate change. Although the re-
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sults of the regression relationship might not be perfect, they can be used for this
purpose. The difference between the benchmark scenarios show that the use of the
regression relationship only has a small impact on the projected change compared
to the use of the water balance method. Thereby, validating the regression relation-
ship as a way to estimate the dynamic root-zone storage capacities for hydrological
climate modelling purposes.

Bouaziz et al. (2021) studied the change in root-zone storage capacity as a result
of climate change, by shifting the catchments within the Budyko framework. This
approach resulted in an increase of +34% for the future root-zone storage capacity,
this is a relatively large increase compared to the +11.8% that was found in this
study. This indicates that the approach with which the root-zone storage capacity is
estimated, has a large impact on the root-zone storage capacity values. Additional
research to increase our understanding of the impact that climate change has on the
root-zone storage capacity might provide more information regarding the accuracy
of these estimated changes.

The magnitude of uncertainty that is introduced by the Wflow_FLEX-Topo model is
outside the scope of this study.

6.4 Study implications

There are two major assumptions and unknowns that have not yet been highlighted
in this discussion. These assumptions have to do with the principles that underline
this entire research. First of all, the regression relationship has been derived with
the use of climate analogy. This means that in theory, the root-zone storage capaci-
ties of the 2K Meuse catchments are matched to the root-zone storage capacities of
current regions with similar catchment descriptors. This implies that the vegetation
that is currently present in the matched region, is similar to the vegetation of the
future Meuse basin. However, it is unknown whether the vegetation of the Meuse
basin will be able to adapt to climate change so that the effect that it has on the hy-
drology will eventually resemble the effect of the vegetation in the matched region.
Assuming that the vegetation will be able to adapt in the same way, it remains uncer-
tain how long this adaption will take. This includes adaptations of individual plants,
such as different water-use efficiency and root-systems but also actual changes of the
vegetation community as a whole from the combination of species that are currently
present to a completely new combination of (better adapted) species.

The previous reasoning assumes that there is no human disturbance in the catch-
ments. However, in reality there are always human disturbances, especially in the
Meuse basin. Therefore, the assumption that the vegetation will reach a natural
equilibrium is rather implausible. Instead human interactions might alter the Meuse
basin, for example by planting species or using the land. The water balance derived
estimates of the root-zone storage capacity implicitly includes these effects, for the
specific locations for which these estimates are computed. When transferring the
root-zone storage capacity following the regression relationship to the 2K Meuse
basin, the indirect assumption is that the humans will interfere with vegetation in
the same way as they currently do in the matched region.

The unknowns related to the way in which vegetation will adapt and how humans
will interfere with the natural conditions, create a large uncertainty in the results
of this research. These uncertainties should be kept in mind when discussing the
wider applications of this study. Additional research should be done to investigate
the validity of these assumptions.
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6.5 Wider application

The regression relationship that is proposed in this study has been specifically cre-
ated for the Meuse basin. The catchments that were part of the analysis were mainly
located in temperate climate zones. Therefore, this relationship might be suitable for
locations within the temperate climate zones, but it is unsure if reliable estimation
can be made for locations without a temperate climate.

This study indicates that the use of a time-dynamic root-zone storage capacity, has a
significant impact on the change in hydrological response of the Meuse catchments,
under 2K global warming conditions. The results show a large increase in seasonality
with the time-dynamic Sr values. This increase is important for water management as
it might result in water shortages during the summer months. Therefore, especially
for long-term climate predictions, the use of a time-dynamic root-zone storage ca-
pacity should be incorporated into the hydrological models. However, the proposed
method is subject to uncertainties, as comparing the results from the regression re-
lationship with the water balance method, resulted in a mean absolute percentage
error of approximately 11%. The results of the regression relationship are promising
and suggest that it might be a good way to estimate the root-zone storage capacity
for climate projections. However, for the direct implementation of this relationship
into hydrological models, a decrease in the error with the water balance would be
favorable. Therefore, further research must be done to create a better understand-
ing about the processes that influence the root-zone storage capacity. As this might
result in new catchment descriptors that produce better performing models. Current
hydrological models might already benefit from the use of the water balance method
to estimate the root-zone storage capacity, instead of calibrating the parameter, as
this method is more reliable then the calibration.
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dations

The use of non-stationary root-zone storage capacities has been recognized as an
important step towards more accurate hydrological models. This study proposes
a regression relationship to estimate the root-zone storage capacity of the Meuse
catchments for historical and future 2K warming conditions. This method is based
on climate analogy mapping, which matches the root-zone storage capacities of the
Meuse for simulated 2K climate data to the root-zone storage capacities of current
regions with similar catchment descriptors. Based on this principle a regression re-
lationship has been derived, that estimates the root-zone storage capacity based on
the following catchment characteristics: Holdridge Aridity Index (HAI), phase shift
of precipitation (sP ), seasonal amplitude for the potential evaporation (δE), and sand
fraction (sand_frac) (Equation 7.1).

Sr = β0 + βHAI ∗HAI + βsP ∗ sP + βδE
∗ δE + βsandfrac ∗ sandfrac (7.1)

This regression relationship has an adjusted R2 value of approximately 0.70 and a
mean error of 25 mm compared to the values that were computed with the water
balance method for the simulated historical climate data of the Meuse catchments.
Further research into the processes that influence the root-zone storage capacity and
the addition of additional catchment might increase the accuracy of the regression
relationship.

The impact of the regression relationship on the hydrological response of the Meuse
catchments under change, has been quantified with the use of the Wflow_FLEX-Topo
model. Three model scenarios were identified and each model scenario consisted
of two parts, namely a historical and a 2K model run. The benchmark models use
the same root-zone storage capacity for both parts of the model, in other words the
root-zone storage capacity is a static parameter in these scenarios. Comparing the
benchmark scenario of the water balance method with the benchmark scenario of
the regression relationship showed that the differences in projected changes for
the streamflow, actual evaporation, root-zone moisture storage, and groundwater
storage range between 0.2-1.12%, 0-1.5%, 0.03-1.1%, and 0.44-0.87%, respectively.
These relatively small differences indicate that the impact of the regression relation-
ship on the change in hydrological response is limited compared to the use of the
water balance approach. This supports the conclusions that will follow for the use of
a dynamic root-zone storage capacity.

The dynamic regression scenario used the regression relationship to estimate the
root-zone storage capacity for the simulated historical climate data and used these
estimations for the historical part of the model. The regression relationship was
also used to estimate the root-zone storage capacities for the simulated 2K climate
data. These values were used for the 2K part of the model. Comparing the dy-
namic regression scenario to the regression benchmark scenario indicates that the
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implementation of the time-dynamic root-zone storage capacity, results in changes
in mean monthly hydrological response for the streamflow, actual evaporation, root-
zonemoisture storage, and groundwater storagewithmaximum -8.6%, +6.6%, +23.6%,
and -4.8%, respectively. These values indicate that the use of a time-dynamic root-
zone storage capacity results in an increase of absolute evaporation during the sum-
mer months, while at the same time resulting in lower values for the streamflow
and groundwater storage during the winter months. The root-zone storage capac-
ity shows an increase throughout the whole year. In other words, the time-dynamic
root-zone storage capacity has a significant impact on the seasonality of the change
in the hydrological response.

The changes in hydrological response with the use of a time-dynamic root-zone stor-
age capacity, indicate the importance of implementation of time-dynamic parame-
ters into hydrological models. Especially for long-term climate predictions a time-
dynamic root-zone storage capacity can largely impact the model outcomes. The re-
sults of the regression relationship are promising and suggest that it might be a good
way to estimate the root-zone storage capacity for climate projections in temperate
climates. However, for the direct implementation of this relationship into hydro-
logical models, a decrease in the error with the water balance would be favorable.
Therefore, further research must be done to create a better understanding about the
processes that influence the root-zone storage capacity. Current hydrological mod-
els might already benefit from the use of the water balance method to estimate the
root-zone storage capacity, as this method is based on hydrological data, resulting
in more accurate values compared to the calibration approach.
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A | Makkink equation

CAMELS-USA

For the CAMELS-USA data set the Makkink equation that has been used is given by
Equation A.1 (Hiemstra & Sluiter, 2011).

ETref = 0.65 ∗ s

s+ γ
K

λ ∗ ρ
(A.1)

ETref = potential evaporation [m d−1]

γ = psychrometric constant (at sea level 0.066 kPa °C−1)
s = the slope of the curve of saturation water vapor pressure [kPa °C−1]
K = daily incoming short-wave radiation [J m−2 day−1]
λ = Heat of vaporization of water [J kg−1]
ρ = 1000 kg m−3 = bulk density of water

The slope of the curve of saturation water vapor pressure is calculated with:

slope =
7.5 ∗ 237.3
(237.3 + T )2

∗ log 10 ∗ es (A.2)

Where es is the saturated vapor pressure which can be calculated with:

es = 0.6107 ∗ 10
7.5∗TDay

237.3+TDay (A.3)

The heat of vaporization is calculated with Equation A.4 and the psychrometric con-
stant with Equation A.5.

λ = (2501− 2.375 ∗ TDay) ∗ 1000 (A.4)

γ = 0.0646 + 0.00006 ∗ TDay (A.5)

CAMELS-GB

For the CAMELS-GB data set the incoming short-wave radiation is provided in Wm−2

instead of in J m−2 day−1, therefore the previous method should be adjusted to these
different units. Equation A.6 will be used for the CAMELS-GB.

ETref = 0.65 ∗ s

s+ γ
K

λ
(A.6)
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A. Makkink equation

ETref = potential evaporation [m d−1]

γ = psychrometric constant (at sea level 0.066 kPa °C−1)
s = the slope of the curve of saturation water vapor pressure [kPa °C−1]
K = daily incoming short-wave radiation [J m−2 day−1]
λ = Heat of vaporization of water [J kg−1]

The slope of the curve of saturation water vapor pressure is calculated with:

slope =
abc

(c+ T )2
∗ exp bT

c+ T
(A.7)

a = 6.1078 mbar
b = 17.294 [-]
c = 237.73 °C
T = Temperature [°C]

The heat of vaporization and the psychrometric constant have been computed in the
same way as for the previous Makkink equation.
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B | Python scripts

The most relevant Python scripts are published in an online repository. This reposi-
tory can be accessed with the QR-code or on:

https://gitfront.io/r/user-4717306/05154cf13f200ba62c7d2d9c1d3b35ea8dd9c558/MSc-
Thesis/

Figure B.1: QR-code to the Python scripts in an online repository
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C | Model parameters

The symbols that are used for the fluxes of the Wflow_FLEX-Topo model are given
in Table C.1. The symbols for the storage are provided in Table C.2. (Bouaziz et al.,
2021)

Table C.1: Definitions of the symbols used to denote the different model fluxes (source:
(Bouaziz et al., 2021))

Fluxes (mm d−1) Definition
P Precipitation
PR Rainfall
PS Snowfall
PM Snow melt
EP Potential Evaporation
EW Evaporation from snow storage
EI Evaporation from interception
ER Evaporation from the root-zone storage
PE Effective precipitation
RR Outflow from the root-zone storage
RRS Recharge to the slow storage
RRF Recharge to the fast storage
RP Percolation
RC Capillary rise
QF Fast runoff
QS Slow runoff
Q Streamflow

Table C.2: Definitions of the symbols used to denote the different storages (source: (Bouaziz
et al., 2021))

Storage (mm) Defenition
SW Snow storage
SI Interception storage
SR Root-zone storage
SF Fast runoff storage
SS Slow runoff storage
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D | The root-zone storage ca-
pacity of theMeuse catch-
ments

Table D.1 shows the root-zone storage capacities of theMeuse catchments. Sr-HistWB
represents the Sr calculated for the simulated historical climate data using the water
balance method. Sr-HistRM represents the Sr estimated for the simulated historical
climate data using the regression relationship. Sr-2KRM represents the Sr estimated
for the simulated 2K climate data using the regression relationship. Besides the ex-
act magnitudes of the different Sr estimations, the table also presents the percentage
difference between Sr-HistWB and Sr-HistRM and between Sr-2KRM and Sr-HistRM.

Table D.1: The root-zone storage capacities of the Meuse catchments and the percentage
difference between the root-zone storage capacities using different computation methods and
simulated climate data.

Station
Sr −HistWB

[mm]
Sr −HistRM

[mm]
Sr − 2KRM

[mm]

Percentage difference
Sr −HistWB and

Sr −HistRM

Percentage difference
Sr − 2KRM and
Sr −HistRM

La Meuse Goncourt 218.61 215.58 255.86 1.41 18.68
Le Mouzon Circourt-sur-Mouzon [Villars] 230.05 206.79 245.04 11.25 18.5
Le Vair Soulosse-sous-Saint-Élophe 203.7 212.54 254.87 -4.16 19.92
La Meuse Saint-Mihiel 198.15 223.36 258.76 -11.29 15.85
La Meuse Stenay 198.62 220.12 253.73 -9.77 15.27
La Bar Cheveuges 291.7 206.13 229.24 41.51 11.21
La Vence la Francheville 197.95 199.72 221.34 -0.89 10.83
La Sormonne Belval 291.7 206.13 229.24 41.51 11.21
Membre Pont 171.02 170.41 190.78 0.36 11.95
Sainte-Marie 203.93 194.42 218.89 4.89 12.59
Straimont 180.85 166.27 186.07 8.77 11.91
La Chiers Carignan 240.48 206.67 234.62 16.36 13.52
La Chiers Longlaville 140.94 214.06 246.62 -34.16 15.21
La Crusnes Pierrepont 270.1 208.12 237.8 29.78 14.26
Le Ton Éouviez 237.09 193.67 219.14 22.42 13.15
Le Loison Han-lés-Juvigny 244.19 220.57 250.57 10.71 13.6
Treignes 232.47 196.17 224.14 18.5 14.26
Chooz 215.52 202.86 229.17 6.24 12.97
Daverdisse 195.78 172.86 193.88 13.26 12.16
Jemelle 203.78 175.31 198.2 16.24 13.06
Gendron 220.64 188.98 212.96 16.75 12.69
Hastiere 226.13 222.33 252.71 1.71 13.66
Yvoir 235.0 217.64 244.99 7.98 12.57
Warnant 222.11 226.67 260.58 -2.01 14.96
Modave 237.94 213.31 240.13 11.55 12.57
Ortho 201.61 176.01 195.98 14.54 11.35
Mabompre 169.0 178.26 199.96 -5.19 12.17
Tabreux 215.38 182.42 205.24 18.07 12.51
Wiheries 204.47 219.89 247.98 -7.01 12.77
Salzinnes Ronet 240.67 225.57 254.31 6.69 12.74
Huccorgne 234.95 247.4 277.4 -5.03 12.13
Amay 223.09 205.96 231.87 8.32 12.58
Martinrive 179.61 163.28 183.9 10.0 12.63
Chaudfontaine Pisc 224.47 203.74 228.12 10.17 11.97
Maastricht 224.47 203.74 228.12 10.17 11.97
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E | Boxplots for the range of
catchment descriptors within
each cluster

For each catchment descriptors a boxplot has been created, in which the range of
this descriptor within the clusters is provided. The boxplots are given in Figure E.1.
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Figure E.1: Boxplots containing the range of the catchment descriptors within each cluster.
The black border indicates the cluster that contains the Meuse catchments from the observed
historical E-OBS data.
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F | Correlating catchment de-
scriptors

The catchment variables that are strongly correlated and the reason for the correla-
tions are provided in Table F.1

Table F.1: The strongly correlated catchment descriptor pairs and the reason for the corre-
lation

Reason for correlation:
1 Ep T Closely related as higher temperature result in higher potential evaporation.
2 AI HAI Both indicate the Aridity index, but calculated differently.
3 AI Ep AI is computed with Ep
4 AI P AI is computed with P
5 HAI P HAI is computed with P
6 HAI T HAI is computed with P
7 HAI Ep Indirectly correlated to AI
8 SI P SI is computed with P
9 SI ST Both indicate the seasonality of precipitation
10 ST δP ST is computed with δP
11 ST ∆T ST is computed with ∆T
12 ST sP ST is computed with sP
13 ST sT ST is computed with sT
14 Is_dur lpd Practically the same descriptor
15 δP P δP depends on P
16 sP P sP depends on P
17 Ep δE δE depends on Ep
18 Ep sE sE depends on Ep
19 T ∆T ∆T depends on T
20 T sT sT depends on T
21 sd sP sd is computed with sP
22 sd sT sd is computed with sT
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G | Multi-Linear Regression it-
eration results

This appendix contains the results of the iterations of the Multi-Linear regression.
The ’param’ columns show the independent variables or catchment descriptors that
have been used in the regression model. The ’constant’, indicates the regression
coefficient of the whole line, while the ’coef’-values are the regression coefficients
that correspond to the respective parameter value. For each of the models theR2 and
adjusted R2 values of the test set have also been provided. The condition number, in
the last column, indicates the multi-collinearity measured by the regression method.

Figure G.1: The best iterations for the model with 2 independent variables.
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G. Multi-Linear Regression iteration results

Figure G.2: The best iterations for the model with 3 independent variables.
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Figure G.3: The best iterations for the model with 4 independent variables.
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G. Multi-Linear Regression iteration results

Figure G.4: The best iterations for the model with 5 independent variables.
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Figure G.5: The best iterations for the model with 6 independent variables.
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