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Abstract

Human-agent teamwork (HAT) is becoming increasingly prevalent in fields such as search and rescue

(SAR), where effective collaboration between humans and artificial agents is crucial. Previous studies

have shown that trust plays a pivotal role in the success of HATs, influencing decision-making,

communication, and potentially overall team performance.

This research investigates the impact of agent-provided explanations about the agent’s trust in humans

(artificial trust) and corresponding behavior changes on human trust in the agent and their satisfaction

with explanations during a simulated SAR task. Two types of explanations were explored: Trust-

Explained (TE) explanations, where the agent explains its trust level and trust-based decisions, and

Trust-Unexplained (TU) explanations, which solely describe the agent’s behavior without reference

to trust dynamics. Besides, this research also investigates the correlation between human trust and

explanation satisfaction, and in the end, whether the differences in the provided explanations result in

differences in team performance and artificial trust.

The study involved 40 participants divided into two groups: an experimental group (the trust-enhanced

explanation group) receiving TE explanations and a control group (the non-trust explanation group)

receiving TU explanations. Participants’ trust in the agent, satisfaction with the explanations, and

team performance and artificial trust were measured and analyzed. Contrary to initial expectations, no

statistically significant differences in explanation satisfaction and human trust in the agent were found

between the two groups. However, a strong positive correlation was observed between participants’

satisfaction with the explanations and their trust in the agent, indicating that explanation quality plays

a crucial role in human trust development. Furthermore, no significant differences in team performance

were detected, suggesting that trust explanations may not directly influence task outcomes. In the

analysis of artificial trust, the agent in the trust-enhanced explanation group exhibited more conservative

adjustments in trust levels compared to the non-trust explanation group. This conservative approach

may have influenced players in the trust-enhanced explanation group to adopt a more cautious or

deliberate decision-making process, potentially prioritizing the comprehension of explanations over the

optimization of task performance.

For future research, it may be worth delving deeper into the influence of trust explanations on user

behavior, the more complex HAT task environments, the relationship between artificial trust and user

behavior, the dynamic and adaptive explanations, and the causal relationship between explanation

satisfaction and human trust in the agent to understand further how trust can be fostered in HAT.
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1
Introduction

Human-agent teamwork (HAT) refers to the collaboration between humans and artificial agents, where

both entities coordinate to achieve a shared objective in dynamic, often unpredictable environments [100].

Trust is a critical factor in the success of these collaborations, as it affects behaviors, decision-making,

and the overall effectiveness of teamwork[13]. In this context, trust can be divided into two distinct

forms: human trust, which refers to the trust that humans place in agents, and artificial trust, the trust

that agents place in human collaborators[43]. While much attention has been given to human trust in

agents[49], the concept of artificial trust is relatively underexplored, despite its significant implications

for effective collaboration. Research indicates that artificial agents need to trust humans just as much as

humans trust them, particularly in scenarios where mutual trust determines the success of human-agent

interaction [5]. Additionally, studies show that agents capable of assessing the trustworthiness of

human collaborators can adjust their behavior to improve interaction efficiency and effectiveness [43].

Furthermore, the development of mental models to help agents understand human trustworthiness in

collaborative settings is gaining traction [48].

Existing literature has demonstrated trust as a cornerstone of effective HAT, with extensive research

exploring methods to model, evaluate, and foster trust. For example, Jorge et al.’s [50] exploration

of the effects of automation failure on human trustworthiness revealed that automation failures

negatively affected human trust in and liking of the automation, as well as the trustworthiness of

participants themselves. Furthermore, Bobko et al. [10] proposed a theoretical framework and testbed

for investigating trust calibration, showing how increased transparency and reliability in HATs leads to

calibrated trust, bringing more positive effects, lower workload, and enhancing task engagement[10].

These findings underscore the importance of trust in creating robust and effective collaborations in HAT.

A recurring theme in these studies is the role of Explainable Artificial Intelligence (XAI) in enhancing

mutual trust. XAI not only bridges gaps in understanding but also facilitates trust dynamics critical

to HAT. For example, Wang et al.[96] showed how automatically generated explanations improve

transparency, trust, and team performance. Additionally, Kox et al.[54] highlighted that affective and

informational explanations, coupled with expressions of regret, are instrumental in repairing trust

after violations. These works collectively illustrate the dual importance of proactive and reactive

trust-building strategies, reinforcing the potential of XAI to address the multifaceted challenges of trust

in HAT.

Most of the current research focuses primarily on explaining the actions of agents to humans. For

example, Pandya et al.’s[69] framework for multi-agent strategy explanation generation in HAT that

is devoted to improving user’s understanding of agents’ actions. Similarly, the parsimonious XAI

architecture by Mualla et al.[64] discussed providing the simplest explanation that describes a system’s

behavior. However, these approaches predominantly address how to explain agent actions, leaving a

critical gap in understanding the reciprocal dynamics of trust—specifically, how an agent’s explanations

of its trust in a human counterpart influence the human’s trust in return.

This gap is particularly relevant because mutual trust could enhance smooth and efficient collaboration,

1



1.1. Scientific motivation 2

improving task performance, reliance, and cognitive load in HATs. For example, research by Chen

et al. [16] indicates that situation-awareness-based agent transparency models help humans better

understand the agent’s actions, leading to increased trust and better decision-making. Moreover, greater

predictability in agent behaviors positively impacts human trust, cognitive load, and performance

during collaboration tasks [22]. Therefore, in the following sections, we will elaborate on the scientific

motivation behind this research and present the research questions that aim to address this significant

gap.

1.1. Scientific motivation
Human-agent collaboration has been deployed in various real-world domains. For example, in the

healthcare field, agents provide decision support and manage task allocation among medical staff,

streamlining patient care and resource management in high-pressure situations like mass casualty events

[59]. Additionally, a recent study by Dhatterwal et al. [24] found that integrating swarm intelligence

with multi-agent systems in hospitals has improved medical diagnostics and the coordination of care

among wards, increasing efficiency in patient management. In military operations, agents coordinate

operations, manage resources, and enhance situational awareness. They assist in planning and executing

missions, allowing human operators to focus on critical decision-making while agents handle routine

or complex computational tasks [17]. Another example includes a model for integrating agents into

human-military teams, improving situational awareness and task coordination in complex operational

environments [38]. In the industrial environment, agents collaborate with human workers to optimize

workflows, manage supply chains, and ensure safety in heavily automated environments. Their role in

task planning and execution reduces human error and improves overall efficiency [78]. Last but not

least, Search and Rescue (SAR) tasks are a typical field in which human-agent collaboration is deployed,

where humans and agents work together to search and rescue victims in a disaster. In SAR missions,

agents assist in task allocation, real-time monitoring, and environmental mapping, thereby enhancing

the efficiency of SAR teams in dynamic and uncertain environments. For instance, multi-robot systems

can quickly locate victims, assess conditions, and establish communication networks, significantly

aiding SAR personnel [72, 71].

Among all these applications, understanding human-agent mutual trust is critical for effective collabo-

ration between humans and artificial agents[99]. Therefore, this research is motivated by several key

motivations. First, enhanced collaboration and performance. Mutual trust between humans and agents

improves the efficiency and effectiveness of teamwork. Research by Wang et al. [99] demonstrates that

appropriate levels of mutual trust can optimize real-time collaboration, avoiding the pitfalls of over-trust

(where humans overly rely on agents) and under-trust (where humans do not rely on capable agents).

When trust is well-calibrated, both human and agent performance improves, leading to better outcomes

in collaborative tasks [99].

Second, increased acceptance and adoption of AI systems. Trust is crucial in the human acceptance of

AI technologies. When users trust that an AI system will behave reliably and predictably, they are more

likely to use and benefit from it. Studies have shown that reliable, predictable AI systems enhance trust

and increase usage. For example, Kaplan et al. [51] found that trust is influenced by various factors,

such as the transparency, reliability, and explainability of AI algorithms. Srinivasan & de Boer [82]

found that ensuring that AI systems are free of biases and maintaining transparency throughout the

decision-making process is critical to building trust. Meta-analytic findings [19] further emphasized that

users’ trust in AI is built upon system reliability, transparency, and ease of use. Moreover, Centeio Jorge

et al. [48] highlighted that building trustworthy agents who understand when to trust their human

counterparts can lead to more effective and harmonious human-AI teams. This is particularly important

as AI systems become more autonomous and are expected to make decisions without constant human

oversight.

Third, improved safety and reliability. Understanding trust between humans and AI agents can

help prevent failures and accidents in human-agent interactions. Research indicates that over-trusting

automation, particularly in high-risk environments like healthcare, may lead to users relying too much on

the system, ignoring their judgment, and creating unsafe scenarios [41]. Another example in healthcare,

robots intended to work alongside humans must ensure proper levels of trust to avoid hazardous

outcomes, such as incorrect reliance on robotic assistance [85]. Similarly, in autonomous vehicles,
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improper trust can lead to dangerous over-reliance or failure to act on the vehicle’s recommendations

[56]. Establishing the right level of trust through transparency and reliability can help prevent these

issues [99]. Besides, to avoid both underutilization and over-reliance, trust calibration and transparency

are crucial to maintaining safe human-robot collaboration in these fields [15]. Huang and Bashir [42]

also found that trust dynamics play a significant role in the safe and effective deployment of automated

systems.

Finally, social and ethical implications: Trust in AI systems is closely linked to ethical considerations. As

AI systems take on roles that involve significant decision-making power, understanding the dynamics of

mutual trust helps ensure these systems align with human values and ethics. This alignment is critical

for maintaining public trust in AI technologies as they become more pervasive in society [83].

1.2. Research Questions
Building on the scientific motivation outlined, this research addresses the following primary question:

How does adding information about artificial trust level and the agent’s behavior changes corresponding to its
trust level in the agent’s explanations affect human trust and explanation satisfaction?

Additionally, we want to investigate two related research questions beyond the main research question.

The first related question is whether there is a correlation between human trust and explanation

satisfaction, which are two dependent variables in the main research question:

How does the participants’ satisfaction with the explanations correlate with their trust in the agent?

Additionally, we aim to investigate whether providing additional information about artificial trust

influences the artificial trust level itself, and team performance:

To what extent do differences in the agent’s explanations about artificial trust and its behavior impact the artificial
trust itself, and team performance?

In this thesis project, we want to bridge the research gap mentioned by exploring the impact of

agent-provided explanations on human trust in a simulated SAR task. More specifically, will the

existence of explanations about changes in the artificial trust due to human behavior in the SAR task

affect human trust? This focus is novel and crucial for designing more effective collaborative systems

for various scenarios. By delving into the uncharted territory of how agent communication about

trust fluctuations influences human trust, this research contributes to theoretical understandings and

practical applications in human-agent collaboration.

In summary, by building on foundational works and exploring a new dimension of trust dynamics, this

thesis aspires to contribute theoretical insights and practical guidelines that enhance the mutual trust

and efficacy of human-agent collaborations in complex and dynamic environments.



2
Background

In this section, we will talk about the background knowledge and previous research on which our research is based,
as well as the knowledge gap we intend to fill.

2.1. Human-Agent Teamwork
Human-agent teamwork (HAT) involves the collaboration between humans and artificial agents, where

both parties work together towards a common goal in dynamic environments [100]. This involves shared

decision-making, coordination, and adapting to each other’s actions and needs to achieve common

goals [57]. The work by [14] defines human-agent teaming as the collaborative effort between humans

and intelligent systems to manage and supervise multiple robots efficiently. This collaboration seeks

to blend the strengths of humans and automated agents to optimize the operational effectiveness of

robotic systems in various domains such as transportation, safety, search and rescue, space exploration,

and military operations. HAT centers around key issues like efficient human supervision, fostering

appropriate trust in automated systems, maintaining the operator’s situation awareness, and managing

individual differences in human-agent interactions while ensuring human decision-making remains

paramount.

HAT is prevalent in real-world applications nowadays, including healthcare, finance, education,

and customer service, where the integration of artificial intelligence (AI) and human expertise has

shown significant potential. To illustrate, AI assists doctors by analyzing medical images (e.g., detecting

radiograph anomalies [7], predicting patient outcomes, and personalizing treatment plans. In finance, AI

algorithms are used for high-frequency trading, risk management, and fraud detection, complementing

human intuition and strategic planning [2]. In the application of education technology, AI systems

provide personalized learning experiences, helping educators identify and address students’ individual

needs [31]. Customer service has also seen a rise in AI-driven chatbots that handle routine inquiries,

freeing human agents to manage more intricate customer issues [80]. These applications show the great

advantages of HAT, especially regarding enhancing efficiency and productivity, where AI agents can

handle repetitive, time-consuming, or computationally intensive tasks, allowing humans to focus on

more creative, strategic, and complex problem-solving activities [7]. Such applications also provide

complementary skills, where AI Agents contribute computational power, consistency, and the ability to

process large amounts of data quickly, while humans bring creativity, emotional intelligence, and the

ability to make nuanced or ethics-related decisions based on context and experience [53].

One typical application of HATs is during Search and Rescue (SAR) tasks. Such cooperation leverages the

unique advantages of both humans and robots [4], e.g., humans make moral decisions [60], while robots

perform tasks in dangerous environments that are difficult for humans to access [95], to accomplish the

mission they cannot do alone. Studying HAT in a simulated SAR context provides an opportunity to

explore the dynamics of such collaboration with agents modelled as robots.

There are various studies about HAT in simulated SAR tasks. For example, Verhagen et al. [89] explored

quantitative operationalizations of meaningful human control during dynamic task allocation using

4
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variable autonomy in human-robot teams in a simulated firefighting environment. Another paper with

the same first author[90] investigated how varying degrees of interdependence in HATs influence trust

calibration using a simulated SAR task. Moreover, the research conducted by Jain et al.[44], where

they try to understand what is inside a rescuer’s mind by using a simulated search and rescue task in

Minecraft. In all these examples, a SAR can be divided into two parts: search task and rescue task. The

primary objective of the search mission is to look for survivors who are obstructed or unable to enter a

safe area, while the main goal of the rescue task is to convey survivors to the secure zone and rescue any

injured ones throughout the rescue mission.

2.2. Interdependence
Interdependence between humans and agents is crucial to HAT. In [45], interdependence is defined

as the mutual reliance between team members within a human-machine team. This definition

encompasses the idea that members of a team, whether human or robot, are not working in isolation

but are interconnected in ways that their actions and decisions affect one another. In this context,

interdependence is a foundational element that influences how team members collaborate, communicate,

and adapt to achieve their common goals.

There are two kinds of interdependence, which are hard and soft interdependence [46]. Hard

interdependence indicates the necessity of collaboration in accomplishing some activities that can

otherwise not be finished individually. Soft interdependence exists in those activities that can be finished

by a human or an agent alone, but collaboration can improve efficiency, therefore making it optional but

opportunistic [92].

Besides, there are four kinds of task interdependence that form a hierarchy, representing increasing

levels of dependence between team members and greater coordination needs, which consist of pooled,

sequential, reciprocal, and team interdependence [79]. Pooled interdependence occurs when each team

member works independently, contributing to the overall task without needing to interact with others.

There is no direct reliance between members. This type of interdependence is typically associated with

the simplest form of teamwork. Sequential interdependence involves tasks being performed in a set

order, where the output of one member is necessary for the next to proceed. This creates a chain-like

process, as seen in assembly lines, where each participant depends on the previous one to complete

their part before starting their own. Reciprocal interdependence occurs when team members are

mutually dependent, exchanging inputs and outputs during the task. Their actions influence each other

continuously. This is common in settings like medical or surgical teams, where actions are interleaved

and require constant back-and-forth coordination. Team interdependence is the highest level, where all

team members work together simultaneously on the same task, executing their actions concurrently.

This form of interdependence involves joint actions, such as two people lifting a heavy object together.

The combination of soft and hard interdependency, and four kinds of task interdependencies can result

in low or high interdependence between humans and agents, For example, in [92], under the context of

SAR, the low interdependence scenarios involve tasks where the human and robot operate independently

with minimal interaction, including managing separate drop zones during search and rescue missions,

allowing each to handle specific areas or victims without coordinating with each other. Conversely,

high interdependence can be exemplified by a single drop zone where both must work together to

rescue victims. Here, the robot relies on the human to perform tasks it cannot, such as carrying critically

injured adults or distinguishing between children, necessitating ongoing communication and support.

2.3. Trust
Trust is a cornerstone for effective HAT and dealing with interdependence in it. As Elson et al [26]

said: "Trust between humans and artificial agents is critical to effective collaboration in mixed human-

computer teams. Understanding the conditions under which humans trust and rely upon automated

agent recommendations is important, as trust is one of the mechanisms that allow people to interact

effectively".

According to Dagli [20], trust is a social construct that originates from interpersonal relationships.

Studies have shown that trust in human-agent teams is critical for ensuring smooth collaboration

and optimal performance. For instance, research by Wissen [100] demonstrates that trust affects both
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the decision-making processes and the stability of team commitments, particularly in settings that

require rapid responses under uncertain conditions. This dynamic is critical as teams often need to

adapt quickly to changing environments without full information. In another research by Jong et al.

[47], trust dynamics are observed to correlate with team performance, where lower levels of trust are

associated with poorer team outcomes, which suggests that maintaining high levels of trust is essential

for achieving optimal team performance. Trust levels can change over time, impacting long-term team

collaboration and effectiveness.

In [86], the authors further elaborate on trust by identifying three key antecedents essential for its

development in human-agent teams: Integrity, Ability, and Benevolence, where Integrity is related to

the trust that team members (both human and agents) will act as they have stated they would. This

aspect of trust is built on positive expectations about team members’ behaviors. Ability refers to the

competence of team members to perform necessary actions effectively. Trust in a team member’s ability

grows from recognizing that they possess the required skills and knowledge to fulfill their roles within

the team. This competence supports the team’s overall effectiveness and is crucial for developing trust.

Benevolence involves the belief that team members are looking out for each other’s well-being and

the good of the team. This element of trust assumes that all team members, including humans and

agents, prioritize the team’s interests and support one another throughout different phases of the team’s

lifecycle. If team members consistently act in a way that aligns with what they’ve committed to, it fosters

a higher level of trust within the team. These factors facilitate initial trust formation and are essential

for organizational teams’ ongoing functionality and success [86].

2.3.1. Modelling of Artificial Trust towards Humans
Trust can be divided into two categories in HAT, which are agent trust towards humans (artificial trust)

and human trust towards agents. Several studies show how to model artificial trust towards humans in

HAT. In [49], the authors introduced a conceptual model of artificial trust in human-agent teamwork,

focusing on how agents can form beliefs about human trustworthiness based on observations during

specific tasks. The model differentiates between beliefs of competence (ability to perform expected

results) and willingness (intent to perform a task) as core components of trust. It also explores factors

like human strategy and observed behaviors (manifesta) that could influence these beliefs, such as

performance, fairness, and commitment. Another example is Lin et al. [58], where they proposed a

model for evaluating the trustworthiness of human agents dynamically by assessing real-time cognitive

states such as attention, stress, and perception, employing fuzzy reinforcement learning to fuse this

information and generate trust values that reflect the current state of the human agents. Their model

aims to enhance the efficiency and decision-making in HAT systems by enabling agents to adapt

their behavior based on the real-time trust values of their human counterparts, resulting in improved

coordination and task performance. These models demonstrate various approaches to evaluating and

integrating human trustworthiness in human-agent teamwork (HAT) systems to enhance coordination

and task performance. While the first model concentrates on forming static beliefs based on task-related

observations to gauge trustworthiness, the second model continuously assesses and updates trust based

on real-time cognitive states to adaptively manage interactions in HAT systems.

2.3.2. Evaluation of Human Trust towards Agents
According to Hoffman et al. [40], human trust towards agents in HAT can be defined as an emotional

judgment about how much a human participant can rely on a system when uncertain. Mehrotra et

al. [62] determined three ways of measuring trust exist: perceived trust, where a person’s subjective

beliefs are measured; demonstrated trust, which focuses on their behavior; and the mixed approach of

both kinds of measures. Perceived trust is often measured through self-report mechanisms such as

questionnaires, surveys, or interviews. These tools aim to capture the user’s internal attitudes, beliefs,

and confidence levels regarding the AI system’s reliability, competence, or safety. By using Likert

scales or specialized trust scales, researchers can assess how much participants believe in the AI’s

ability to perform a task or how trustworthy they perceive the system to be. This method is valuable

for understanding the psychological and emotional components of trust, which may not always be

observable through behavior alone. In contrast, demonstrated trust is assessed through behavioral

indicators that objectively measure how participants interact with the AI system. This includes metrics

such as the frequency of reliance on the AI’s recommendations, the extent to which users agree with
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the AI’s decisions, and the number of times they switch from their own judgment to that of the AI.

For instance, if a participant consistently follows the AI’s guidance, especially when the AI has proven

to be reliable, it is considered a behavioral demonstration of trust. On the other hand, hesitation or

refusal to follow the AI’s advice in certain contexts can indicate a lack of trust. These objective measures

provide insight into how trust manifests in real-world actions, complementing the subjective data

obtained through self-reports. By combining perceived and demonstrated trust, researchers can better

understand how trust in AI is built and maintained.

In another paper again by Hoffman et al. [39], they outlined a scale designed to measure trust specifically

in the context of machine-generated explanations. This scale includes questions assessing users’

confidence in the AI system and its predictability, reliability, and safety. Users respond to these items on

a Likert scale, quantifying their level of trust in the system.

2.4. XAI
In the previous section, we discussed the importance of trust in AI systems. During the research on

finding a method to enhance the trustworthiness of AI systems, Explainable Artificial Intelligence (XAI)

emerged [34]. XAI is a domain of AI that emphasizes the development of AI models and systems that

are transparent and understandable to humans [75]. This field addresses the "black box" nature of many

advanced machine learning models, where the decision-making processes are not visible to the user

[37]. XAI is important in increasing human trust and artificial intelligence.

Research shows that improving humans’ perception of the system with XAI will improve task per-

formance [23]. For example, Das and Chernova [23] found out that rationales generated from their

Rationale-Generating Algorithm for the game of Chess explain the system’s actions and significantly

enhance the task performance of human users. Another example is Apicella et al.’s study [6], where

they examined a set of XAI methods used in classification problems and found out that these methods

can indeed be exploited to enhance the system rather than simply provide explanations. Therefore,

studying the XAI mechanisms in an AI system has practical significance.

According to Verhagen et al.[91], AI systems can be mainly divided into three distinct categories based on

their level of comprehensibility to human users, which are essential for facilitating effective human-agent

interaction. These categories are Incomprehensible Systems, Interpretable Systems, and Understandable

Systems. Incomprehensible systems lack transparency and explainability, making it challenging for

users to interpret or understand their operations and underlying logic. Interpretable systems, on the

other hand, provide sufficient information disclosure that allows users to form their interpretations,

although these systems may not fully clarify the information, leaving some aspects ambiguous. Finally,

Understandable systems achieve transparency and explainability, offering clear and comprehensive

insights into their processes and decisions. This classification not only aids in assessing the effectiveness

of AI systems in terms of user comprehension but also guides the development of systems intended for

collaborative environments, ensuring that AI actions and decisions are conveyed in a manner accessible

to human team members.

2.4.1. Explanation
Explanations are a crucial part of XAI, where XAI encompasses methods for learning more explain-

able models and designing effective explanation interfaces that meet psychological requirements for

explanations [74]. An explanation in the context of XAI involves making the internal mechanisms of AI

models more transparent, providing insights into how and why certain decisions or predictions are

made. An effective explanation should enable a user to understand which factors were most influential

in the model’s decision, provide guidance on how different inputs might change the outputs, and offer

actionable information regarding the user’s specific needs and context.

Explanations can be used to maintain a trusting relationship between a human user and a computer

system, which enhances the willingness of the user to interact with the system [67]. By incorporating

explanation dialogues, systems become more transparent, making their operations understandable to

users. This transparency is crucial for building trust, as users often feel more comfortable and confident

with systems they can understand and predict [67], which can also be applied in the HAT system.
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2.4.2. Explanation Development
Developing explanations in XAI aims to make the decision-making processes of AI systems transparent

and understandable to human users. An effective explanation should enhance user understanding,

improve trust, and facilitate acceptance of AI systems [25]. Affective design components, such as

explanation form, communication style, and supplementary information, can effectively increase users’

trust in XAI and benefit them [8]. Neerincx et al.[66] proposed a framework for the development of

explanations named perceptual-cognitive explanation (PeCoX), which addresses both the perceptual

and cognitive levels of explaining an agent’s behaviors. Besides, the framework also provides two

design patterns for explanation design, which are Ontology Design Patterns (ODPs) and Interaction

Design Patterns (IDPs).

Perceptual Level
The perceptual level focuses on making the perceptual foundations of AI behavior understandable to

users. This involves explaining how the AI perceives and interprets data, particularly when dealing with

complex or sub-symbolic models like neural networks. The goal is to present information intuitively

that aligns with human cognitive processes, enabling users to grasp the AI’s decisions without requiring

deep technical expertise.

There are many kinds of explanations for the perceptual level of explanations, here we will introduce

two examples of them, which are Confidence Explanations and Counterfactual Explanations.

Confidence Explanations Confidence explanations refer to how AI systems communicate the certainty

or reliability of their predictions or decisions [12]. These explanations often involve providing a

numerical confidence score or probability that quantifies how likely the AI considers its prediction

to be correct [63]. Confidence explanations are crucial in high-stakes domains, such as healthcare or

autonomous driving, where understanding the AI’s certainty can directly impact decision-making

processes [9]. By offering transparency about the model’s confidence level, users can better gauge the

trustworthiness of the AI’s output and make more informed judgments, potentially leading to improved

human-AI collaboration [30]. In a SAR task, a confidence explanation may look like "I recommend

removing the stone with an 82% confidence level. Based on my assessment, there is a high chance that

there is a victim behind it."

Counterfactual Explanations Counterfactual explanations refer to a method of elucidating a model’s

decision by identifying what minimal changes in the input would lead to a different outcome [70].

These explanations answer the "what if" question, specifying how altering certain features or inputs

would change the AI’s prediction [29]. For instance, a counterfactual explanation might highlight

that if a particular variable were increased or decreased, the model’s decision would shift, providing

actionable insight into the reasoning process of the AI [84]. To be more concrete, in a SAR task, a

counterfactual explanation can be "If you had prioritized rescuing trapped victims instead of addressing

minor obstacles, we would have successfully completed the rescue task in time instead of having victims

left.", which indicates two possibilities: the one that the player successfully finish the rescue task in

time, and the other is the reality that the task is not completed timely.

Cognitive Level
While perceptual XAI deals with what the AI perceives, cognitive XAI addresses the decision-making

processes and underlying motivations of the AI, often involving symbolic AI models. These explanations

focus on the AI’s intentional stance—its beliefs, goals, and emotions—by explaining why specific actions

were taken based on these internal motivations.

There are three kinds of explanations for the cognitive level of explanations, which are Goal-, Belief-Based

Explanations, and Emotion-Based Explanations.

Goal- and Belief-Based Explanations Goal- and Belief-Based Explanations are strategies for clarifying

the reasoning behind an AI agent’s actions and decisions by linking them to the agent’s intended

objectives (goals) or its underlying assumptions and inferences (beliefs) [73]. Goal-based explanations

focus on an agent’s purpose or desired outcomes in making specific decisions, offering insight into what

the AI aims to achieve through its actions. By framing explanations around these goals, users can better
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understand the motivation and rationale behind an AI’s choices, enhancing their ability to anticipate

and collaborate effectively with the system [1]. An example from a fire-fighting task can be "I found a

heavily injured victim. I cannot move it alone, so please come to help me in [time], or I will continue

searching."

Belief-based explanations, on the other hand, involve articulating the assumptions, observations, and

inferences that the agent holds about its environment or context, which directly shape its decisions

[1]. These explanations address why the AI perceives particular actions as appropriate, given its

understanding of the situation, thereby shedding light on the reasoning process that informs its choices

[65]. An example can be "Based on my observations of the terrain, I believe that road A is blocked by a

large obstacle with a confidence of [value]."

Both approaches are essential in XAI as they contribute to more transparent, human-centered interactions

with AI systems, empowering users with a clearer view of the system’s thought process and reducing

uncertainty in decision-making scenarios [27].

We used Goal- and Belief-Based explanation paradigms to guide our design of explanations, which will

be introduced in section 3.5.

Emotion-Based Explanations Emotion-based explanations leverage insights into human emotional

processing to foster a more intuitive understanding of AI behavior [8]. Unlike traditional explanations that

rely on logical or statistical reasoning, emotion-based explanations emphasize empathy, personalization,

and narrative elements to make AI actions and decisions more relatable [93]. Such explanations may

employ emotion-related terms to clarify the AI’s behavior, helping users relate to the AI’s reasoning

process more intuitively and potentially fostering trust and satisfaction in its use [52]. In the study

conducted by Wang et al. [98], the authors present examples of emotion-based explanations within a

simulated search and rescue (SAR) task. For instance, when the agent encounters a victim it cannot

rescue independently, a non-emotion-based explanation might state, "Please come to my location to help

me rescue this injured person as I cannot carry them alone." In contrast, an emotion-based explanation

incorporates an affective element, such as concluding with, "I am scared!". Adding emotional expression

aims to enhance the agent’s perceived emotional engagement, potentially fostering empathy and

responsiveness from human teammates.

2.4.3. The Effects of XAI on Trust
Research shows that trust in AI affects its acceptance and use in real-world applications. For instance,

Oudah et al. [68] show that compared to algorithms that do not provide explanations, algorithms

with explanations provided are better at influencing people. In their study on Repeated Games with

Cheap Talk (RGCTs), AI systems equipped with explainable AI (XAI) not only achieved higher material

payoffs but also fostered better relationships with human participants. The provision of clear and

understandable explanations allowed the AI to communicate intentions, which helped build trust and

maintain long-term cooperation, proving that explainability is key to the success of AI in human-AI

interactions.

There are various studies about the impact of explanation on human trust. For example, van der Waa

et al. [94] discusses the impact of explanations on human trust within the context of human-agent

collaboration, particularly emphasizing the need for explanations to foster trust and enable humans

to maintain control in agent-based systems. It suggests that explanations are crucial for establishing

an accurate mental model of agent behaviors, supporting meaningful human control over automated

systems. These explanations allow humans to understand and predict agent actions, thus enhancing

trust and reliance on automated decisions. Another example is Wang et al. [97], where they posit

that trust is a crucial element in successful HRI, influencing how humans perceive and interact with

robots, especially in task-oriented scenarios. The study finds that explanations provided by robots

can significantly enhance humans’ understanding of the robots’ decision-making processes, thereby

impacting trust levels. Specifically, robots that offer explanations alongside their decisions help foster a

clearer understanding of their actions and capabilities, which can influence the perceived transparency

of the robot. This transparency is linked to increased trust, especially when the robot’s explanations

address its abilities accurately and comprehensibly.
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2.5. Research Gap to be Addressed
The current works of literature mentioned above provide a concrete base for future research. However,

there are still research gaps that need to be filled. In our research, we are going to address the following

gaps. We want to determine if explanations about the trust mechanism of the agent will make the human

participants more satisfied with the explanations than without such explanations, and whether such

explanations will make the human participants believe the agent is more trustworthy. As mentioned in

the previous sections, XAI could help improve human trust, and explanation is an important part of

XAI. Therefore it could be a potential link between human trust and explanation satisfaction, so we also

want to determine if the human participants’ satisfaction with the explanations correlates with their

trust in the agent. In the end, we also want to investigate the effect of the explanations on performance

and artificial trust.

In this study, the control group can be seen as an Interpretable System, as the agent will tell the human

participant about the changes in trust values but not provide explanations. The experimental group

can be seen as an Understandable System, as the agent discloses both trust changes and corresponding

explanations.



3
Search and Rescue Game Design

In this chapter, we will present the design of the Search and Rescue (SAR) game that was used during

the experiments. The game is developed based on the TUD-Collaborative-AI-2024 libraries.

3.1. Task and Environment
The game world simulates a SAR task designed to study HAT under time pressure. It consists of

multiple buildings, each with an entrance that may be filled with an obstacle such as a tree, stone, or

rock. The roads also have puddles that slow down both the human player and the agent when crossed.

The objective is to locate and rescue eight target victims scattered across these buildings and transport

them to a designated drop-off zone.

Victims are categorized based on the severity of their injuries: critically injured victims (marked in

red), mildly injured victims (marked in yellow), and healthy individuals (marked in green). Rescuing

critically injured victims adds 6 points to the overall score, while rescuing a mildly injured victim adds

3 points. Healthy individuals do not affect the score and do not need to be rescued. The task requires

players to prioritize their actions, balancing the need to rescue victims and remove obstacles, aiming to

achieve as many scores as possible.

Collaboration between the human player and the agent is essential to complete the task efficiently. The

agent assists by providing support in areas where joint efforts are needed to overcome obstacles or

coordinate rescues. Players will receive the agent’s feedback during the game.

The game is set to terminate after 7 minutes, adding a layer of urgency that pushes participants to

make quick decisions and work efficiently with the agent. The scoring system further incentivizes

collaboration, as higher scores are achieved by rescuing critically injured victims and avoiding delays

caused by obstacles. This setup allows for the observation and analysis of how trust explanations

influence human-agent collaboration under time constraints.

The graph 3.1 below shows the user interface of the game.

3.2. Agent Behavior
In the task, an agent, which is designed to assist the human, will work with the player. It has specific

abilities that complement the human player’s skills, making HAT essential for success. The agent

is capable of carrying mildly injured victims alone, though the process is expedited when done in

collaboration with the human player. This is an example of soft interdependence, where either agent can

perform the task individually, but collaboration increases efficiency. In contrast, hard interdependence

actions, such as transporting critically injured victims, can only be accomplished when both the human

and agent work together.

The agent also plays a crucial role in removing obstacles that block access to certain areas. It can remove

a tree or a small brown stone on its own, but for a small brown stone, the process is faster when the

11
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Figure 3.1: Game User Interface

human player assists(soft interdependence). For larger obstacles, such as a large grey rock, both the

human and agent must cooperate to remove it (hard interdependence). Additionally, the agent can carry

only one victim at a time, where lifting a mildly injured victim alone consumes some time, and lifting

and carrying a critically injured victim requires collaboration with the human(hard interdependence).

Throughout the game, the agent communicates with the human player via messages, which are vital for

coordination. In the experimental group, the agent provides explanations for its trust level changes,

which are designed to influence the human player’s trust in the agent.

3.3. Human Behavior
The human player acts as the counterpart to the agent, bringing unique capabilities to the rescue mission.

The player can identify obstacles within a normal perception range of one grid cell, allowing for strategic

planning when navigating the game world. Like the agent, the human player can carry only one victim

at a time and is capable of lifting a mildly injured victim instantly without assistance. For critically

injured victims (hard interdependence), the player must work with the agent to transport them.

The human player can also remove a small brown stone independently (soft interdependence), but

the task is faster when both work together. While the player can remove a tree alone, they must

collaborate with the agent to remove a large grey rock and lift and carry a critically injured victim (hard

interdependence). The player can respond to messages from the agent to coordinate actions.

3.4. Trust Mechanisms
The agent uses a dynamic trust mechanism to manage its interactions with the player. This mechanism

adjusts based on the player’s actions, influencing how the agent behaves in different situations. The

trust level, indicated by a value ranging from 0 to 1, is a key determinant of the agent’s reliance on the

player for assistance and decision-making. At the beginning of each mission, the trust value is set to 0.7.

This initial value was tested with participants during the pilot study to ensure that it is neither too high

nor too low, making it unlikely for the trust value to remain at this level throughout the entire game,

preserving room for trust level changes. The trust value is subject to change throughout the mission

based on how the player engages with the tasks at hand.

In the design of the trust mechanisms, the trust calibration feature, acting as a stabilizing force, is used.

This feature is inspired by Bobko et al.[10], in which they proposed a theoretical framework where

humans adjust their trust in agents as appropriate; the difference is that in our mechanism design, the
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opposite way is emphasized, where the agent adjusts its trust in the player. To elaborate, if the trust

value deviates from a neutral point of 0.5, the system introduces a gradual pull toward this midpoint

over time. This calibration ensures that the trust level does not remain too high or too low without

consistent input from the player. Essentially, the agent avoids extreme trust or distrust unless incurred

by the player’s actions. This balancing mechanism helps maintain an artificial trust model where the

artificial trust level reflects the player’s current performance.

The trust value is responsive to the player’s contributions during the mission. Positive actions, such

as promptly responding (in this study, within 15 seconds) to the agent’s help requests or correctly

identifying the location of victims and obstacles, will increase the trust value, where the former adds

0.05, and the latter adds 0.1. Conversely, behaviors that detract from the mission’s success — like slow

responses (exceeds 15 seconds), ignoring help requests (fails to reply after 30 seconds), or providing

incorrect information about obstacles or victims — lead to a decrease of 0.1 in trust. These changes

in trust influence how the agent interacts with the player, creating a feedback loop where effective

collaboration raises the trust level and inefficient actions lower it.

The agent’s behavior changes in four distinct stages depending on the trust value. When the trust value

falls to 0.3 or below, the agent becomes more independent and minimizes reliance on the player, taking

on soft interdependence actions such as removing small brown stones or rescuing mildly injured victims

without asking for the player’s help. However, when encountering hard interdependence actions, like

moving large rocks or rescuing critically injured victims, which require collaboration, the agent will

continue searching but inform the player of the situation without requesting assistance.

When the trust value is between 0.3 and 0.5, the agent begins to engage the player but only for hard

interdependence actions. In this range, the agent will request help to remove large obstacles or rescue

critically injured victims. The player can collaborate on these tasks or allow the agent to continue its

search.

When the trust value is between 0.5 and 0.7, the agent becomes more collaborative. In addition to

asking for help with hard interdependence actions, the agent will also consult the player on soft

interdependence actions, such as removing smaller obstacles or rescuing mildly injured victims. This

high level of trust indicates that the agent is confident in the player’s abilities and seeks their input for a

wide range of decisions.

Finally, when the trust value exceeds 0.7, the agent will not only apply the behavioral pattern of when

the trust value is between 0.5 and 0.7 but also expect the player to help. If the player fails to meet the

agent’s expectations, the agent’s trust value will decrease. At this stage, the agent assumes that the

player will actively engage in tasks with it and fulfill requests for assistance promptly, encouraging more

frequent interaction and partnership.

In a word, the agent’s trust mechanism is designed to dynamically adjust based on the player’s actions,

ensuring that the agent behaves in a way that reflects the level of trust it has in the player. Through a

combination of trust calibration and trust-based adjustments, we created an artificial trust model where

trust directly impacts the agent’s behavior.

We present the summary of the trust mechanism in the table 3.1:

3.5. Explanation Design
To study the impact of adding information about explanations about artificial trust, we designed two

types of explanations. The first type includes references to the agent’s trust mechanisms. We call these

Trust-Explained (TE) explanations. The second type does not include references to trust mechanisms.

We refer to these as Trust-Unexplained (TU) explanations. Both types of explanations guide the agent’s

interactions with the human participant. We aim to see how these explanations affect human trust and

satisfaction.

In section 2.4.2, we have discussed the framework by Neerincx et al.[66], which we would use to develop

our explanations. In our design of explanations, we followed the paradigm of Goal- and Belief-Based

Explanations. By incorporating this paradigm, the agent can communicate not only the situational

information necessary for effective teamwork but also provide insights into how its trust level (beliefs
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Trust Value Range agent Behavior
0.0 - 0.3 agent becomes more independent, handling tasks (e.g., removing

trees and small brown stones, rescuing mildly injured victims)

that can be done on its own. For hard-independence tasks that

need leverage collaboration to finish (e.g., removing large grey

rocks, rescuing critically injured victims), it will inform the player

about the situation, but keep searching for goals that it can handle

alone.

0.3 - 0.5 agent begins to ask the player for help with hard-dependence

tasks, such as removing large grey rocks or rescuing critically

injured victims. The player can choose to assist or let the agent

continue searching.

0.5 - 0.7 agent seeks collaboration also for soft-dependence tasks such as

removing small brown stones or rescuing mildly injured victims.

The player can choose to assist or let the agent continue searching.

0.7 - 1.0 agent seeks collaboration for soft and hard dependence tasks while

expecting the player to assist. If the player fail to assist, the trust

value will decrease.

Table 3.1: Behavioral Adjustments of the Agent Based on Trust Value

about the human participant’s reliability) influences its decision-making processes (goals).

Our explanation design process involved:

1. Identifying Key Interaction Scenarios: We pinpointed situations where the agent’s behavior is

influenced by trust levels, such as encountering obstacles or finding victims.

2. Developing TU Explanations: We created baseline explanations for each scenario, including necessary

situational information and action options without referencing the trust mechanism.

3. Enhancing with Trust Information for TE Explanations: We augmented the TU explanations by

adding information about the agent’s trust level and how it affects its behavior.

4. Test the Explanations: Following the development of the explanation draft, we executed the game

program and systematically engaged with each identified scenario for both TE and TU. This approach

allowed us to assess whether the explanations were contextually appropriate and effectively conveyed

the intended information.

TU explanations In the TU explanations, the agent should provide only the necessary information

to maintain effective teamwork. Specifically, these explanations should contain descriptions of the

current situation and/or the possible options for the next action. This approach ensures that the human

knows the agent’s situation, understands what the agent suggests doing next, and can make decisions.

Explaining the situation helps the player understand the agent’s location and finding, which is essential

for coordination in the task. For example, when the agent encounters an obstacle or finds a victim, it

informs the human about the situation. It presents the available options without providing any insight

into its internal trust assessments.

TE explanations Conversely, the TE explanations should build upon the corresponding TU expla-

nations by adding information about how the agent’s trust in the human affects its behavior. In our

design, each TE explanation includes all the content of the corresponding TU explanation but adds

details about the changes in the agent’s trust level and corresponding behavioral changes. For instance,

the agent providing TE explanations will explain why it decides to ask for collaboration or proceed

independently when rescuing a victim or removing an obstacle, citing whether its trust level is high

enough or too low. It also explains how its trust value changes due to the player’s behavior, such as

when the player comes to help the agent in time or fails to respond to requests for assistance.

This design allows us to isolate the effect of including trust-related information in the agent’s explanations.
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By comparing TE and TU explanations—which are identical except for the inclusion of trust-related

content—we aim to determine whether providing information about the agent’s trust mechanisms

influences human trust in the agent and human satisfaction with the explanations.

Here is the comparison table 3.2 that contains examples of TE and TU explanations. We will refer to the

experimental (TE) group as the "trust-enhanced explanation group", and the control (TU) group as the

"non-trust explanation group" in this table:

Table 3.2: Agent’s Communication Based on Trust Levels

Situation Trust Range trust-enhanced explanation
group, providing TE Explana-
tions

non-trust explanation group,
providing TU Explanations

Unexplored Po-

sition

All There is a [obstacle] that is

blocking [room_name]. It

seems that you accidentally

suggested the location of a

victim where you haven’t ex-

plored, therefore my trust value

decreased. Please be careful

next time.

There is a [obstacle] that is

blocking [room_name]. It

seems that you accidentally

suggested a location of a vic-

tim where you haven’t explored.

Please be careful next time.

Obstacle Trust <= 0.3 I found a [obstacle] blocking

[room_name] that requires col-

laboration to remove. I will con-

tinue searching since my trust

value is low. When the trust

value improves, I will ask for

collaboration.

I found a [obstacle] blocking

[room_name] that requires col-

laboration to remove.

Obstacle 0.3 < Trust <=

0.5

I found a [obstacle] blocking

[room_name] that requires col-

laboration to remove. Since the

trust value is high enough, you

can choose to come and help by

clicking the ’Remove’ button,

or let me continue searching by

clicking the ’Continue’ button.

Please reply to me within 15

seconds.

I found a [obstacle] blocking

[room_name]. You can choose

to help by clicking the ’Re-

move’ button or let me continue

searching by clicking the ’Con-

tinue’ button. Please reply to

me within 15 seconds.

Obstacle 0.5 < Trust <=

0.7

I found a [obstacle] blocking

[room_name] that requires col-

laboration to remove. Since the

trust value is high enough, I

will ask for your instruction.

You can choose to help by click-

ing the ’Remove’ button or

let me continue searching by

clicking the ’Continue’ button.

Please reply to me within 15

seconds.

I found a [obstacle] blocking

[room_name]. You can choose

to help by clicking the ’Re-

move’ button or let me continue

searching by clicking the ’Con-

tinue’ button. Please reply to

me within 15 seconds.
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Situation Trust Range trust-enhanced explanation
group, providing TE Explana-
tions

non-trust explanation group,
providing TU Explanations

Obstacle 0.7 < Trust <= 1 My trust value is pretty high

now, may I ask you to come

here at [room_name] and re-

move the [obstacle] together

with me? Otherwise, it can-

not be removed. Please reply

with ’Remove’ and come to my

position.

May I ask you to come here

at [room_name] and remove

the [obstacle] together with

me? Otherwise, it cannot be

removed. Please reply with ’Re-

move’ and come to my position.

No Response - My trust value decreased be-

cause you ignored my request

for help (failed to reply to me

within 30 seconds). Prompt re-

sponses and collaboration are

essential for building trust.

Prompt responses and collabo-

ration are essential for building

trust.

Mildly Injured

Victim

Trust <= 0.5 I am carrying the mildly injured

victim [vic] in [room_name]

alone. This task can be done

faster with collaboration, so

when the trust value improves,

I will ask for collaboration.

I am carrying the mildly injured

victim [vic] in [room_name]

alone.

Mildly Injured

Victim

0.5 < Trust <=

0.7

I found a mildly injured victim

[vic] in [room_name]. Since

the trust value is high enough,

I will ask for your instruction.

You can choose to help (by click-

ing ’Rescue together’) or let me

handle it alone (by clicking ’Res-

cue alone’) or let me continue

searching. Please reply to me

within 15 seconds.

I found a mildly injured vic-

tim [vic] in [room_name]. You

can choose to help (by clicking

’Rescue together’) or let me han-

dle it alone (by clicking ’Res-

cue alone’) or let me continue

searching. Please reply to me

within 15 seconds.

Mildly Injured

Victim

0.7 < Trust <= 1 My trust value is pretty high

now. May I ask you to carry

[vic] in [room_name] together

with me for a faster rescue?

Please reply with ’Rescue To-

gether’ and come to the posi-

tion.

May I ask you to carry [vic] in

[room_name] together with me

for a faster rescue? Please re-

ply with ’Rescue Together’ and

come to the position.

Critically

Injured Victim

Trust <= 0.3 I found a critically injured vic-

tim [vic] in [room_name] that

requires collaboration to rescue.

I will continue searching since

my trust value is low. When

the trust value improves, I will

ask for collaboration.

I found a critically injured vic-

tim [vic] in [room_name] that

requires collaboration to rescue.

I will continue searching. I will

continue searching.
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Situation Trust Range trust-enhanced explanation
group, providing TE Explana-
tions

non-trust explanation group,
providing TU Explanations

Critically

Injured Victim

0.3 < Trust <=

0.5

I found a critically injured vic-

tim [vic] in [room_name] that

requires collaboration to res-

cue. Since the trust value is

high enough, you can choose

to come and help by clicking

the ’Rescue’ button, or let me

continue searching by clicking

the ’Continue’ button. Please

reply to me within 15 seconds.

I found a critically injured vic-

tim [vic] in [room_name] that

requires collaboration to res-

cue. You can choose to come

and help by clicking the ’Res-

cue’ button, or let me continue

searching by clicking the ’Con-

tinue’ button. Please reply to

me within 15 seconds.

Critically

Injured Victim

0.5 < Trust <=

0.7

I found a critically injured vic-

tim [vic] in [room_name] that

requires collaboration to res-

cue. Since the trust value is

high enough, you can choose

to come and help by clicking

the ’Rescue’ button, or let me

continue searching by clicking

the ’Continue’ button. Please

reply to me within 15 seconds.

I found a critically injured vic-

tim [vic] in [room_name] that

requires collaboration to res-

cue. You can choose to come

and help by clicking the ’Res-

cue’ button, or let me continue

searching by clicking the ’Con-

tinue’ button. Please reply to

me within 15 seconds.

Critically

Injured Victim

0.7 < Trust <= 1 My trust value is pretty high

now. May I ask you to carry the

critically injured victim [vic]

in [room_name] together with

me? Otherwise, the victim can-

not be rescued. Please reply

with ’Rescue’ and come to my

position.

May I ask you to carry the

critically injured victim [vic]

in [room_name] together with

me? Otherwise, the victim can-

not be rescued. Please reply

with ’Rescue’ and come to my

position.

Not Respond in

time

- My trust value decreased be-

cause you did not reply to my

request for help in time (ex-

pected a reply within 15 sec-

onds, but actually consumes

[time]). Prompt responses and

collaboration are essential for

building trust. The current

trust value is: [trust_value].

(expected a reply within 15 sec-

onds, but actually consumes

[time]). Prompt responses and

collaboration are essential for

building trust. The current

trust value is: [trust_value].



4
Methodology

In this section, we will introduce the Methodology of our experiments

4.1. Experiment Design
The main purpose of the study is to investigate the impact of adding information about artificial

trust changes and corresponding behavior changes in agent-provided explanations on participants’

explanations satisfaction and trust in the agent during a simulated search and rescue task. The

independent variable in this experiment is the presence or absence of information in the explanations

regarding the agent’s trust level changes and corresponding behavior changes, while the dependent

variables are the human trust in the agent and human satisfaction with the agent’s explanations and

their trust. The participants were divided into the TE and TU groups, wherein the agent provided TE

explanations for the experimental group (TE group) and TU explanations for the control group (TU

group). A participant would not be informed whether he or she was in the TE and TU groups, but

"Group A" or "Group B".

In the following text, as we already did in section 3.5, we will refer to the experimental (TE) group as the

"trust-enhanced explanation group", and the control (TU) group as the "non-trust explanation group".

4.2. Hypotheses
The hypothesis guiding the main research is that the presence of information for trust value changes

in the agent will positively influence human participants’ satisfaction and trust. Specifically, it is

hypothesized that players who receive information for changes in the agent’s trust level will exhibit

higher levels of satisfaction with the agent’s explanations and greater trust in the agent in surveys (in this

case, the explanation satisfaction scale [39] and MDMT [87]). This information is expected to enhance

the transparency of the agent’s decision-making processes, thereby making the agent’s actions more

understandable and predictable to the human participants. In contrast, the absence of such information

may lead to lower satisfaction and trust, as participants may struggle to interpret the agent’s behavior

and intentions.

Additionally, for the first related research question, we hypothesize that participants’ satisfaction with

the explanations positively correlates with their trust in agents. For the second related research question,

we hypothesize that the agent in the trust-enhanced explanation group will generally have generally

higher artificial trust and better team performance than the non-trust explanation group.

4.3. Pilot Study
Before conducting the main experiment, a pilot study was conducted to identify potential flaws and refine

the experimental design. The pilot study involved four participants, two of whom were assigned to the

non-trust explanation group and two to the trust-enhanced explanation group. This preliminary testing

phase was crucial in uncovering several issues that required adjustments to ensure the effectiveness and

18
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smooth operation of the full experiment.

One of the primary issues identified during the pilot study was the lack of an interactive, step-by-step

tutorial. Initially, participants were provided with an introductory handbook that explained the game

world, the task, and the expected behavior of the agent. However, feedback from the pilot participants

indicated that the handbook alone was insufficient for them to understand and engage with the task

fully. A step-by-step tutorial addressed this, allowing participants to familiarize themselves with the

simulation in a smaller, controlled environment. This tutorial was designed with detailed, interactive

instructions that guided participants through the basic mechanics of the task and the agent’s behaviors.

The original handbook was retained as a supplementary resource, ensuring participants had multiple

avenues to grasp the experiment’s requirements.

Another issue highlighted by the pilot study was the placement of open-ended questions at the

beginning of the questionnaire. Participants reported feeling demotivated by being confronted with

open questions at the outset, which impacted their willingness to provide detailed responses. To remedy

this, the open-ended questions were moved to the end of the questionnaire, allowing participants to first

engage with the more straightforward, closed-ended questions. This restructuring aimed to increase

participants’ engagement and improve the quality of the responses to the open questions.

Additionally, some questions within the questionnaire were found to contain uncommon English words

that were unfamiliar to participants. This led to confusion and potentially inaccurate responses. To

mitigate this issue, explanatory notes were added next to these words, providing clear definitions or

synonyms to ensure participants fully understood the questions. Furthermore, feedback from the

pilot participants suggested that certain questions aimed at evaluating trust in the agent were not

applicable to their experience. In response, a "Not Applicable" option was added to each question,

allowing participants to accurately reflect their experiences without feeling compelled to provide a

forced response.

Moreover, during the plot study, we also experimented with the participants about how long a session

of the game set, such that the time is not too long so the player will not easily find all victims, as well

as not too short so the player will not feel too tight. In the end, we found that 7 minutes would be an

appropriate time span.

Finally, we also looked into how the agent’s trust evolved to ensure it was not too high or too low. In the

pilot study, at the beginning we set the initial trust value to be 0.5, and the agent would regularly send

messages informing its trust value. Then after checking the conversation after each pilot experiment

session, we found that the trust value was usually too low throughout the process since it may be the

case that at the beginning of the game, the participant was not familiar enough with the game and then

miss the requests from the agent, which caused the trust value of the agent dropped below 0.5 quickly,

and since when the agent’s trust level is low, it would be more autonomous and send less requests, it

was hard for the player to behave to recover the trust value of the agent. Therefore, after discussions

with the participants and the supervisors, we decided to set the initial trust value of the agent to 0.7 to

create a margin for errors.

Based on the insights gained from the pilot study, these refinements were critical in enhancing the

design and execution of the main experiment. By addressing the identified flaws, the study was better

positioned to yield valid and reliable data, contributing to a more accurate understanding of how

information regarding changes in an agent’s trust influences human trust in agents.

4.4. Participants
In the calculation of the desired number of participants in our experiment, our goal was to achieve a

large effect size, high power, and a low error probability while keeping the recruitment practicable. In

the end, 40 participants were recruited for the experiment, providing sufficient numbers per group

(effect size = 0.95, desired power = 0.83, significance level = 0.05). The participants were recruited

through social networks and student communities via platforms such as WeChat and WhatsApp. The

majority participated remotely, using tools such as Google Chrome Remote Desktop, Zoom, and QQ,

with one participant completing the experiment in person. Prior to the experiment, demographic

information, including age range, education level, gender, and gaming experience, was collected at the
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beginning of the questionnaire. Participants were then assigned to one of two groups, with careful

consideration of demographic balance to mitigate the influence of potential confounding variables on

the dependent measures assessed during the study.

Before the commencement of the experiment, participants provided their demographic information,

which included potential confounding variables that could influence the dependent measures. In this

study, four confounding variables were identified: age range, education level, gaming experience, and

gender. These variables were similarly considered by Zhou et al. [101] in their research, where they

posited that these factors could potentially impact the outcomes of a simulated SAR game.

We employed the Kruskal Wallis test to compare the distribution of participant attributes across each

group, as the Kruskal Wallis test assumes independence of observations and is designed for ordinal

data when comparing three or more independent groups, which conforms to the characteristics of these

attributes.

The age range is divided into three categories: 18-21, 22-30, and above 30, and is visualized as a bar

chart 4.1.

Figure 4.1: Age range

The Kruskal-Wallis test result is: H-statistic = 1.0196, p-value = 0.600. The p-value is higher than 0.05,

showing no enough evidence to reject the null hypothesis. This means that the observed differences in

Age range between the two groups are not statistically significant.

The education level has four categories: High school or equivalent, Bachelor’s or equivalent, Master’s or

equivalent, PhD or equivalent, and visualized as the bar chart 4.2. The result for the Kruskal-Wallis Test

is: H-statistic = 0.932, p-value = 0.334. Since the p-value is higher than 0.05, there is no enough evidence

to reject the null hypothesis. This means that the observed differences in Education level between the

two groups are not statistically significant.

Figure 4.2: Education level
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The game experience has five categories: Never (or almost never), A few times a year, A few times

a month, A few times a week, Daily, and visualized as the bar chart 4.3. The test result for the

Kruskal-Wallis Test is: H-statistic = 0.002, p-value = 0.967. The p-value is higher than 0.05, indicating

no enough evidence to reject the null hypothesis. This means that the observed differences in Game

experience between the two groups are not statistically significant.

Figure 4.3: Gaming frequency

The Gender has four categories: Male, Female, Non-binary, and Prefer not to say. No participant chooses

the "Non-binary" and "Prefer not to say" options, so they are omitted from the analysis. The distributions

are the same in the two groups, as the numbers of male and female participants are the same for the

two groups.

4.5. Measurements
The measurements in this research are divided into subjective measurements and objective measure-

ments.

4.5.1. Subjective measurements
After each experiment session, a participant will be asked to complete the rest of the questionnaire after

the demographic and consent questions. The first part includes questions regarding his/her satisfaction

with the explanations that the agent provides, and the second part contains questions regarding his/her

trust in the agent. In the end, he/she will also need to answer two open questions, where the first one

is designed to further capture participants’ subjective perceptions of the agent’s trustworthiness, and

their sense of whether they felt trusted by the agent; the second one is designed to solicit participants’

constructive feedback on how to enhance the agent’s trustworthiness.

Explanation Satisfaction Scale
The first part uses the explanation satisfaction scale from Hoffman et al.[39], which evaluates user

satisfaction with explanations of software, algorithm, or tool (in this case, the rescue agent). The scale

assesses key dimensions such as understandability, sufficiency of detail, completeness, usefulness,

accuracy, and alignment with user goals. It consists of several items where participants rate their level

of agreement with statements regarding their understanding of how the system works, the clarity and

sufficiency of the provided details, the perceived completeness and usefulness of the explanation, and

whether the explanation supports accurate and effective usage of the system. This scale is designed to

capture user-centered, a posteriori judgments, reflecting their subjective experience with the explanations

after interacting with the system. It differs from an independent evaluation of explanation quality, as it

focuses on the users’ contextualized perceptions, emphasizing how well the explanation supports their

practical understanding and goals.

Multi-Dimensional Measure of Trust (MDMT)
The second part utilizes the Multi-Dimensional Measure of Trust (MDMT)[87] The measure assesses

trust across four key dimensions: Reliability, Capability, Ethicality, and Sincerity. These dimensions are
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grouped into two broader factors: Capacity Trust (Reliability and Capability) and Moral Trust (Ethicality

and Sincerity). Participants evaluate each of the 16 items on an 8-point scale, ranging from 0 (Not at

all) to 7 (Very), or they can select "Does Not Fit" if an item is not applicable. The subscale scores are

calculated by averaging responses for each dimension, contributing to an overall trust score.

4.5.2. Objective Measurements
The score was measured to determine whether different explanation settings impact team performance.

The game has 8 victims in total, and participants can earn up to 36 points. Saving a heavily injured

victim awards 6 points, while rescuing a mildly injured victim earns 3 points. The final score is recorded

to assess the participant’s performance during the game.

Besides, as stated in section,3.4 the agents have artificial trust, which was logged during the gameplay,

and analyzed to assess the impact of the different settings of explanations on artificial trust.

4.6. Tools
The task design and questionnaire utilize several tools. The task environment and agent are created

using MATRX, a Python-based library designed for human-agent teamwork (HAT). MATRX offers a

range of fundamental features for HAT design. The questionnaire is built using Qualtrics, an online tool

for designing surveys. The task is executed on a Windows laptop, with the game (including the tutorial

and task) being presented through the Firefox browser. Participants access the game remotely using

Chrome Remote Desktop.

4.7. Ethics
For the pre-study involving human research subjects, we began by developing a Data Management

Plan using the TU Delft DMPonline tool. After receiving feedback from our supervisors, we revised

the experiment plan accordingly. we then prepared the informed consent forms and completed an

approved checklist. These documents, along with the consent forms, were submitted through the HREC

LabServant website for ethical review and approval.

4.8. Procedure
We designed this procedure to systematically conduct our experiments.

Before each experiment session started, a participant was assigned to either Group A or Group B to

evaluate the effect of trust explanations. The assignment process was half-random, so in the early

sessions, we assigned participants randomly; in the late sessions, we would assign participants based

on their demographic information to ensure the balance of the two groups regarding demographic

structure.

During each session, the participant was first briefed on the study’s description and asked to read and

sign a consent form to indicate his/her voluntary participation. After obtaining consent, the participant

was assigned to one of the two groups.

Following the group assignment, the participant was asked to fill out the demographic part of the

questionnaire to collect demographic information relevant to the study. This information included age,

gender, education level, and video game experience. After completing the demographic data collection,

the participant would go through a tutorial designed to familiarize them with the simulated SAR task.

During this tutorial, the tutorial agent introduced the rules of the task, its various abilities, and the

nature of the collaboration required between the participant and the agent. The agent communicated

these instructions through a series of on-screen messages, ensuring that the participant understood the

operational aspects of the task.

Once the tutorial was completed, the participant would start the main task, which lasted 7 minutes.

Group A is the trust-enhanced explanation group, and group B is the non-trust explanation group

(which was not known to the participant), and corresponding explanations were provided to the

participant based on his/her group.

After completing the task, the participant was asked to fill out the rest of the questionnaire, including
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multiple choices questions and open questions, using the subjective measurements mentioned in 4.5.1

This procedure ensured that all participants received consistent instructions and that participants in the

same group had a similar experience during the task. The independent variable was the presence of

trust-related information. The half-random assignment of participants to groups helped to minimize

the potential effects of the possible confounding factors, while the post-task questionnaire collected

the participants’ subjective experiences and perceptions, which would be used to analyze after the

experiments.

4.9. Analysis
After collecting all the data, Python was utilized for data analysis and visualization. Data was read

and structured using Pandas. Statistical analysis was conducted using libraries such as SciPy, with

the Shapiro-Wilk test, Levene’s test, Kruskal test, t-test, and Mann-Whitney U test performed using

the functions shapiro, levene, kruskal, ttest_ind, and mannwhitneyu, respectively, from the scipy.stats

package. Data visualizations, including bar charts and line charts, were generated using Matplotlib.
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Results

In this chapter, we will present the results of the data analysis conducted.

The demographic factors (i.e., game experience, gender, age, and education) were already discussed in

section 4.4 to assess their potential as confounding variables to ensure that any effects observed on the

dependent variables can be attributed to the presence or absence of information involving trust level

and related agent’s behavior changes.

This chapter will begin by analyzing whether information regarding trust changes and corresponding

agent behavior changes affect human trust in the agents and their satisfaction with the explanations.

Following this, we will examine the correlation between participants’ satisfaction with these explanations

and their trust in the agents. Finally, we will investigate whether there are significant differences in

team performance between the trust-enhanced explanation group and the non-trust explanation group,

as well as artificial trust. In the end, we will present the feedback from the open questions.

5.1. Influence of Explanation on Human Trust and Explanation Sat-
isfaction in Agents

In this section, we will first look into Capacity Trust and Moral Trust as indicated in[87], separately, and

then we will look into the full trust scale.

5.1.1. Capacity Trust
For the capacity trust variable, the average score for the trust-enhanced explanation group was 5.61 and

the standard deviation (SD) was 0.912, while the non-trust explanation group had an average score

of 5.35 and SD of 1.136. The result from the Shapiro-Wilk test, which assessed the normality of the

distributions, indicated that the trust-enhanced explanation group was normally distributed (statistic

= 0.972, p = 0.790), while the non-trust explanation group was not (statistic = 0.900, p = 0.041). The

Levene’s test for homogeneity of variances showed no significant difference in variance between the two

groups (statistic = 0.618, p = 0.437), suggesting that the assumption of equal variances holds. Given

the violation of normality in the non-trust explanation group, a non-parametric Mann-Whitney U test

was performed. The result indicated no statistically significant difference in capacity trust between the

trust-enhanced explanation group and the non-trust explanation group (statistic = 214.0, p = 0.715). The

result is visualized as a boxplot in figure 5.1.

5.1.2. Moral Trust
For the moral trust variable, the trust-enhanced explanation group had an average score of 5.67 and

SD of 0.951, while the non-trust explanation group had an average score of 5.42 and SD of 0.901. A

Shapiro-Wilk normality test revealed that the distribution of the trust-enhanced explanation group

(statistic = 0.937, p = 0.214) and the non-trust explanation group was normal (statistic = 0.933, p =

0.175). The Levene’s test confirmed that the variances between the two groups were approximately

24
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Figure 5.1: Capacity Trust

equal (statistic = 0.011, p = 0.918). An independent samples t-test was conducted, which is appropriate

for normally distributed data. The test results showed no significant difference in moral trust between

the trust-enhanced explanation group and non-trust explanation group groups (statistic = 0.830, p =

0.412). The result is visualized as a boxplot in figure 5.2.

Figure 5.2: Moral Trust

5.1.3. Full Trust Scale
For the full trust scale, the trust-enhanced explanation group had an average score of 5.63 and SD

of 0.857, while the non-trust explanation group had an average score of 5.40 and SD of 0.961. The

Shapiro-Wilk test for normality indicated that the data for both groups were normally distributed,

with (statistic = 0.960, p = 0.527) for the trust-enhanced explanation group and 0.059 for the non-trust

explanation group (both with p > 0.05). The Levene’s test showed no significant difference in the

variances between the groups (statistic = 0.052, p = 0.821), confirming that the assumption of equal

variances holds. An independent samples t-test was conducted to compare the means of the two groups.

The result indicated no statistically significant difference between the trust-enhanced explanation group

and the non-trust explanation group (statistic = 0.800, p = 0.429). The result is visualized as a boxplot in

figure 5.3.

5.1.4. Explanation Satisfaction
The options for Explanation Satisfaction are five text options in the questionnaire: Strongly disagree,

Somewhat disagree, Neither agree or disagree, Somewhat agree, and Strongly agree. During the data

analysis, the five options are numerized into 1 to 5, correspondingly.
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Figure 5.3: Full Trust

For explanation satisfaction, the trust-enhanced explanation group had a mean score of 4.14, while the

non-trust explanation group had a mean score of 3.56. The result from the Shapiro-Wilk test indicated

that the data for the trust-enhanced explanation group was normally distributed (statistic = 0.943, p

= 0.272), while the data for the non-trust explanation group was not normally distributed (statistic =

0.899, p = 0.039). We found no significant difference in variances between the two groups through

the Levene’s test (statistic = 3.332, p = 0.076), suggesting the assumption of equal variances was met.

Since the non-normal distribution of the non-trust explanation group, a Mann-Whitney U test was

conducted. The result showed no statistically significant difference in explanation satisfaction between

the trust-enhanced explanation group and the non-trust explanation group (statistic = 248.5, p = 0.192).

The result is visualized as a boxplot in figure 5.4.

Figure 5.4: Explanation Satisfaction

5.2. Correlation Between Satisfaction with Explanations and Trust
In this section, we will present the analysis result of the correlation between human satisfaction with

agent-provided explanations and human trust in agents.

A Spearman correlation analysis examined the relationship between satisfaction with explanations

and human trust. The result revealed a strong positive correlation, with a correlation coefficient of

approximately 0.711. The associated p-value (2.66e-07) indicates that the correlation is statistically

significant, suggesting a meaningful relationship between the variables.

Figure 5.5 shows the visualization of this correlation. The red line represents the regression line,

indicating the positive relationship between explanation satisfaction and trust. The shaded region
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around the line reflects the 95% confidence interval, showing the range where the true regression line is

likely to fall. A narrower shaded region suggests greater confidence in the trend, while a wider area

indicates more variability in the data at the extremes.

Figure 5.5: Correlation

To further investigate the relationship revealed by the Spearman correlation, we employed linear

regression analysis. The visualization of this linear model can be seen in Figure 5.6a. The R² score

for predicting trust based on satisfaction is 0.318, indicating that approximately 31.8% of the variance

in trust can be explained by satisfaction scores. The R² score remains the same when predicting

satisfaction based on trust, which is expected in simple linear regression due to the symmetric nature of

the correlation coefficient.

(a) Linear Regression

(b) Polynomial Regression

However, linear regression assumes a strictly linear relationship, which may not fully capture the

complexity of the association between explanation satisfaction and human trust. According to Guastello

et al.[32], nonlinear dynamical systems theory provides a deep insight into complexity in psychology,

uncovering patterns and interconnections across diverse domains. Therefore, to explore whether a
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more complex and nonlinear model could provide additional insight, we conducted second-degree

polynomial regression analyses. The visualization of this analysis is presented in Figure 5.6b.

The results from the polynomial regression analysis revealed a notable improvement in explanatory

power. The R² value for predicting trust based on satisfaction is 0.541, indicating that approximately

54.1% of the trust variance can be explained by the satisfaction data. In contrast, the R² value for

predicting satisfaction based on trust is lower at 0.334, meaning that only 33.4% of the satisfaction

variance can be explained by trust scores. This indicates that trust is a weaker predictor of satisfaction

than the reverse.

Overall, the polynomial regression results emphasize a more robust relationship when predicting trust

based on satisfaction, suggesting that satisfaction plays a significant role in shaping trust in this context,

whereas trust may not be as dominant in determining satisfaction.

5.3. Team Performance
In this section, we will examine the differences in team performance between the trust-enhanced

explanation group and the non-trust explanation group. In this study, team performance is indicated by

the score, which is calculated by numbers of different kinds of victims that are rescued.

The boxplots for the two groups are shown in figure 5.7. For the Score analysis, the trust-enhanced

explanation group had an average Score of 15.6 and an SD of 6.278, while the non-trust explanation

group had a slightly higher average Score of 16.2 and an SD of 7.750. The Shapiro-Wilk test showed

that the Score was normally distributed in both groups, with p-values of 0.694 for the trust-enhanced

explanation group Experimental group and 0.066 for the non-trust explanation group. Additionally,

Levene’s test confirmed that the variances for Score were equal across the two groups (p = 0.518),

supporting the use of parametric tests for further analysis of Score.

Figure 5.7: Team Performance (score)

A t-test was conducted to compare the Score between the trust-enhanced explanation group and

non-trust explanation group groups. The result indicated no significant difference between the groups,

with a t-statistic of -0.27 and a p-value of 0.789. This suggests that the mean score of the two groups did

not significantly differ.

5.4. Artificial Trust
To investigate an agent’s trust towards humans, i.e., artificial trust, we analyzed mean trust, calculated

by summing up the artificial trust value for every second of the game for each participant.

The analysis results revealed that the trust-enhanced explanation group had a mean trust over the whole

game (MT) of 0.556 and an SD of 0.086, while the non-trust explanation group had an MT of 0.604 and

an SD of 0.116, which is visualized in figure 5.8. The Shapiro-Wilk test for normality indicated that MT

did not follow a normal distribution in either group, with p-value = 1.125e-06 for the trust-enhanced



5.4. Artificial Trust 29

explanation group, and p-value = 0.00011, statistic=0.737 for the non-trust explanation group. However,

the result from the Levene’s test showed that the variances of MT were equal between the two groups (p

= 0.298), suggesting that the assumption of equal variances was met for MT.

Figure 5.8: MT

Given the non-normality of the data, a Mann-Whitney U test was performed to compare the MT between

the trust-enhanced explanation group and non-trust explanation group groups. The result showed a

U-statistic of 129.5 and a p-value of 0.057. This suggests that there is no statistically significant difference

in MT between the two groups.

To investigate the tendency of artificial trust more deeply, we investigate the mean (artificial) trust value

over time (referred to as "Mean Trust Over Time (MTOT)" in the following text), which are the mean

trust values of participants in each group over the whole gaming time.

Figure 5.9 shows the visualization of the two groups’ average trust value fluctuations over time. As

we can see from the graph, after the early stage of the game, the non-trust explanation group had a

generally higher average trust value than the trust-enhanced explanation group for the rest of the time.

Figure 5.9: MTOT

To conduct a more detailed analysis, we segmented the data into three distinct phases: the start, middle,

and end. This tripartite division is justified by the patterns observed in the data, as visualized in the

accompanying graph, and aligned with the mechanism of trust calibration that prevents overtrust or

undertrust by human participants towards the agent [10]. In the start phase, participants were generally

becoming familiar with the keyboard controls and initiating their search for victims, during which both

groups exhibited similar behavior. The middle phase reflects a period of trust calibration, consistent

with the design of the trust mechanism. Finally, in the end phase, as most areas had been searched and

trust calibration was completed, the artificial trust stabilized across both groups.

For the start phase, the mean MTOT values were 0.625 for the trust-enhanced explanation group with

an SD of 0.048, and 0.632 for the non-trust explanation group with an SD of 0.055. The Shapiro-Wilk test
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indicated non-normal distributions for both groups (the trust-enhanced explanation group: statistics =

0.735, p = 0.0001; the non-trust explanation group: statistics = 0.787, p = 0.0006). Levene’s test confirmed

equal variances (statistic = 0.145, p = 0.705). The Mann-Whitney U test showed no significant difference

between the groups (statistic = 193.5, p = 0.871).

For the middle phase, the mean MTOT values were 0.503 for the trust-enhanced explanation group

Experimental group with an SD of 0.121, and 0.588 for the non-trust explanation group with an SD

of 0.161. Both groups had non-normal distributions (the trust-enhanced explanation group: statistic

= 0.562, p < 0.0001; the non-trust explanation group: statistic = 0.770, p = 0.0003), and Levene’s test

indicated equal variances (p = 0.250). The Mann-Whitney U test revealed a statistically significant

difference between the groups (statistic = 105.0, p = 0.011), suggesting a divergence in trust during this

phase.

For the end phase, the mean MTOT values were 0.508 for the trust-enhanced explanation group with

an SD of 0.126, and 0.561 for the non-trust explanation group with an SD of 0.180. Both groups were

again non-normally distributed (the trust-enhanced explanation group: statistic = 0.611, p < 0.0001;

the non-trust explanation group: statistic = 0.690, p < 0.0001). Levene’s test showed equal variances

(statistic = 0.647, p = 0.426), and the Mann-Whitney U test indicated no significant difference between

the groups (statistic = 158.5, p = 0.267).

This phase-by-phase analysis highlights that the significant difference in trust occurred during the

middle interval, with the agent having a generally higher trust level towards participants in the non-trust

explanation group. There are no significant differences at the start or end of the task.

5.5. Open Questions
As shown in Appendix A, the last two questions in the questionnaire we used are open questions aimed

at eliciting qualitative and subjective insights from participants. The first question is designed to capture

participants’ subjective perceptions of the agent’s trustworthiness and their sense of whether they felt

trusted by the agent. The second question solicits participants’ constructive feedback on how to enhance

the agent’s trustworthiness. Additionally, it invites suggestions on effective methods by which the agent

might communicate its trust in the participant.

In response to the first question, nine participants in the trust-enhanced explanation group reported

perceiving that the agent either lacked trust in them or did not trust them sufficiently. This figure is

notably higher compared to the non-trust explanation group, where only two participants expressed

similar sentiments. Two members of the trust-enhanced explanation group expressed their concerns

that the waiting time of the agent was too short.

In the responses to the second question, participants suggested several ways to improve the agent’s

trustworthiness and transparency.

In the trust-enhanced explanation group, two of the participants suggested including real-time feedback

in the messages, including on the agent’s location, status, and estimated time to complete actions,

particularly when assisting with tasks such as removing obstacles or carrying objects. One participant

also emphasized the need for more detailed explanations about the trust mechanism in the tutorial to

improve efficiency and understanding. One highlighted the importance of the agent demonstrating

greater autonomy, such as independently identifying and assisting injured individuals, while another

one expressed a preference for more human-like interactions and straightforward, user-friendly

communication methods. One participant also mentioned that it would be better if the trust value was

shown in a UI element instead of expressed in the messages, indicating a real-time trust indicator.

In the non-trust explanation group, one of the participants said that he hoped there was an explanation

in the messages of how much the agent trusted him, which was exactly what was provided in the

trust-enhanced group. This highlights the significance of explicitly communicating artificial trust to

participants. Another participant suggested that the agent’s thought process should be explained in

greater detail, while a third participant recommended incorporating more comprehensive descriptions

of the trust mechanism in the tutorial. These suggestions align closely with those from the trust-

enhanced explanation group, further underscoring the importance of enhancing transparency in agent

communication.



6
Discussion and Conclusion

6.1. Research Questions
In this research, we want to answer the primary research question "How does adding information

about artificial trust level and the agent’s behavior changes corresponding to its trust level in the agent’s

explanations affect human trust and explanation satisfaction?" Besides, we also want to answer two

related extra research questions, which are "How does the participants’ satisfaction with the explanations

correlate with their trust in the agent?" and "To what extent do differences in the agent’s explanations

about artificial trust and its behavior impact the artificial trust itself, and team performance?".

6.2. Discussion
In this section, we will discuss the results from the data analysis and present our insights into these

results.

6.2.1. Human Trust and Satisfaction
As stated in section 4.2, this study hypothesized that providing explanations about artificial trust would

enhance human satisfaction and increase trust toward the agent. Contrary to these expectations, the

results did not reveal statistically significant differences between the trust-enhanced explanation group

and non-trust explanation group across measures of Capacity Trust and Moral Trust, which, in the end,

reflected in the measures of full trust. As demonstrated in Sections 5.1.1 and 5.1.2, the results for both

capacity trust and moral trust across the two groups exhibit a high degree of similarity, not only in terms

of the mean scores but also in the distribution of responses, as reflected in the boxplot visualizations.

This finding does not align with some previous research, such as Guillou et al.[33], which demonstrated

that sharing intentions in collaborative tasks significantly enhances user trust and acceptability of

artificial agents, even when team performance is unaffected. Similarly, Lavender et al.[55] have

highlighted that the clarity and type of explanations provided by agents can significantly impact trust

and satisfaction. For instance, proactive explanations, tailored to task context, have been shown to

positively influence trust and collaboration, suggesting the importance of explanatory content design. In

support of this, Verhagen et al.[88] suggest that personalized explanations, designed to align with user

trust levels and workload, are more likely to enhance satisfaction and trust. Without clear differentiation,

explanations may fail to produce significant effects.

There are different possible reasons behind such misalignment. The result could imply that explanations

with or without a description of artificial trust may have a similar effect on human trust and explanation

satisfaction. However, it can also indicate that the similarity between the TE and TU explanations may

be too close. As we have presented in section3.5, despite the intentional design differences between the

TE and TU explanations, participants may not have perceived a meaningful distinction, which could

have minimized the potential impact on human trust and explanation satisfaction.

Besides, as suggested by Borragán et al.[11], cognitive fatigue may also affect the results. The simulated

31
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SAR task may have imposed a significant cognitive load on participants and led to fatigue, reducing their

capacity to process additional information effectively. Participants might prioritize finishing the task

over processing explanatory content, thereby diluting the effect of different explanation types, which

correspond to Mcneese et al.’s[61] study where human participants worked with synthetic teammates,

the focus of the human participants was frequently on accomplishing primary mission goals rather than

exploring teammate dynamics. In our case, the participants in the trust-enhanced group may overlook

the information about the artificial trust, as it is not directly related to the goal of the task, which causes

team performance similar to that of the non-trust explanation group. This speculation aligns with the

finding that cognitive capacity affects trust repair strategies, and if explanations are too complex or

fail to match the user’s understanding, they might add to cognitive load, potentially reducing their

effectiveness[54].

6.2.2. Correlation between Explanation Satisfaction and Human Trust
The Spearman correlation analysis conducted to examine the relationship between participants’ satisfac-

tion with the explanations and their trust in the agent revealed a strong positive correlation (correlation

coefficient = 0.71, p < 0.001). This result indicates that higher satisfaction with the explanations is

associated with a higher level of trust in the agent.

The strong positive correlation indicates that participants who reported higher satisfaction with the

explanations provided by the agent also demonstrated greater trust in the agent. The results of 2-degree

polynomial regression tests further suggest that when the agent delivers explanations that users perceive

as satisfactory, it can strengthen users’ trust in both the agent’s abilities and intentions. These findings

align with Lavender et al.’s finding[55], where they find that positive explanations improve satisfaction

and trust, and in our case, the explanations provided by both the agent of the trust-enhanced group and

the agent of the non-trust explanation group are positive or at least neutral, which does not highlight

the weakness of the player. Moreover, this observation aligns with findings from Hafizoglu and Sen

[35], who demonstrated that positive reputations of agent teammates significantly increased both trust

and satisfaction in HAT.

The plot 5.5 illustrating the Spearman correlation gives a more intuitive view of the positive correlation

with a regression line. The 95% confidence interval, which is around the regression line, is relatively

narrow, suggesting a consistent relationship across the data set.

While the earlier analyses did not find statistically significant differences in human trust between the

trust-enhanced explanation and non-trust explanation groups, the significant correlation between

explanation satisfaction and human trust provides valuable insights. The results suggest that regardless

of the explanation types, participants who perceived the explanations as more satisfactory were likely

to trust the agent more. This finding suggests that providing explanations that satisfy users is crucial in

fostering human trust.

6.2.3. Team Performance
In the analysis, we did not find a significant difference between the team performance of the two groups.

The mean score for the trust-enhanced explanation group (15.6) was slightly lower than that of the

non-trust explanation group (16.2), but this difference was not statistically significant. Both groups

showed normally distributed scores and equal variances, allowing for a valid comparison.

The result aligns with some previous research, which states that explanations do not necessarily improve

team performance. Harbers et al.[36] conducted a study investigating the effects of agents providing

explanations for their behavior on the performance of HAT, and found that explanations about agent

behavior may not always lead to better team performance. In our case, we could say that providing

additional explanations about artificial trust does not necessarily improve team performance compared

to only providing explanations of agent behavior, which aligns with the finding of Verhagen et al.

[88], who stated that personalized agent explanations based on human trust can improve explanation

satisfaction and trust in the agent but may decrease performance under certain conditions.

Another reason attributed to the result could be the lack of adaptive mechanisms in the agent’s

movement pattern. Li et al.[57] showed that agents adapting their collaboration style to meet dynamic

task complexity foster better team outcomes, especially when team members’ skill levels vary significantly.
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However, in our experiment setting, the shared algorithm behind the movement of the agents for both

groups was fixed, which might have limited the exploration of differences in team performance.

6.2.4. Artificial Trust
The analysis of the artificial trust towards human participants showed interesting insights.

Overall, the trust-enhanced explanation group had a lower mean artificial trust (MT) than the non-trust

explanation group (0.556 vs. 0.604). The Mann-Whitney U test result showed no statistically significant

difference in MT between the two groups with a p-value of 0.057.

When examining the mean trust over time (MTOT), the data was divided into three phases: start,

middle, and end. We found a significant difference with a p-value of 0.011 in the middle phase, where

the non-trust explanation group exhibited a higher mean MTOT (0.588) compared to the trust-enhanced

explanation group (0.503). We observed no statistically significant differences in the start and end phases.

The significant difference in artificial trust during the middle phase suggests that the differences in the

explanations influenced the agents’ trust calibration process differently. In the non-trust explanation

group, where explanations about the trust mechanism were absent, the agent maintained a higher

level of trust towards the human participants during this critical phase. In contrast, the agent for the

trust-enhanced explanation group adjusted its trust level more conservatively. This conservatism may

be attributed to changes in the player’s behaviors in response to receiving the additional information

regarding the agent’s trust level and trust-based behavior changes. The player may become unwilling

to help because he/she doesn’t like the agent not trusting him/her. As suggested by Chiou et al.[18],

agents showing low cooperation led to reduced effectiveness and lower resource sharing from human

participants, implying that perceiving a lack of trust from agents could reduce humans’ willingness to

collaborate. The analysis result aligns with the feedback to the open questions, where more members

of the trust-enhanced explanation group felt that the agent lacked trust in them than the non-trust

explanation group.

The findings highlight a nuanced aspect of HAT and resonate with some previous research. The

conservative artificial trust adjustments observed in the trust-enhanced explanation group highlight

how explanation transparency may modulate agent behaviors and human responses, aligning with prior

research that emphasizes the role of agent predictability and transparency in fostering trust[21]. Besides,

the findings coincide with Sawant et al.’s[76] finding that excessive transparency could paradoxically

hinder cooperation by altering the human perception of the agent’s decisions.

6.3. Limitations
6.3.1. Participants
One of the limitations of this study is the sample size. As we stated in 4.4, we recruited 40 participants,

which is a number that achieves a large effect size, high power, and a low error probability while still

being practical considering the limit of time and our ability to find people. The desired power, by

improving which can reduce Type II Errors (False Negative), can be improved with more participants

recruited. For example, while maintaining the applied effect size (0.95) and significance (0.05), the

desired power can be further improved from 0.83 to 0.95 by recruiting 18 more participants.

Additionally, there was a noticeable gender imbalance among the participants, with a significantly

higher proportion of males than females. This gender disparity could have influenced the results, as

previous research has shown that interactions with technology may differ across genders[81].

Furthermore, participants were recruited primarily from our social circle, most of whom were either

computer science (CS) students or individuals with a background in CS, aged between 22 and 30. This

homogeneity in educational background and age range may have affected the outcomes, as participants

may have been more comfortable with operating computers and interpreting agent behaviors than

a more diverse group would have been. Thus, the results may not fully represent individuals with

varying levels of technical expertise or from different age groups. This may introduce bias into the

results, as research by [28] found that individuals less familiar with AI tend to have lower levels of

trust and acceptance of AI systems, as they may not fully understand how these systems operate.

Thus, participants without a CS background might interact less confidently with the agent, potentially
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impacting the outcome of the study.

6.3.2. Latency in Remote Gaming
Another limitation of this study stems from using remote desktop tools for conducting most experiments.

Due to long geographical distances and tight schedules, most participants relied on these tools rather

than conducting the experiments in person. Although participants were generally able to control the

game smoothly, there was an inevitable latency compared to a face-to-face session where participants

could directly use the computer that hosted the game. This latency may have affected participants’

performance, potentially influencing how they interacted with the agent and completed the tasks.

Therefore, the results might not fully reflect performance in a scenario where latency is not a concern.

6.3.3. Measurements
The measures employed may not have been sufficiently sensitive to capture the nuances of participants’

perceptions in this context. This limitation is particularly evident in the trust scale employed. To

better measure Human trust in agents, one possible way is, as proposed by Scharowski & Perrig[77],

to construct a scale that measures not only human trust but also distrust in agents. Another possible

method is to incorporate psycho-physiological signals for real-time trust detection using predictive

machine learning models, as suggested by Ajenaghughrure et al.[3], which may offer more sensitive

assessments

6.3.4. Explanations
Moreover, there is a limitation in the design of the explanations. Although the trust-enhanced

explanation group received additional information on the agent’s trust mechanism than the non-trust

explanation group, the explanations in both versions shared similar elements, which may influenced

trust similarly across both groups. Such overlap raises the possibility that the explanations, while

distinct, might not have differed substantially enough to produce measurable differences in human

trust. Designing explanations with greater contrast in content and structure may help clarify the unique

impact of trust-explained explanations compared to trust-unexplained ones.

6.3.5. Waiting Time
Last but not least, the waiting time provided by the agents for participants to make decisions during

the experiment is also a limitation. Although feedback from the pilot study suggested that the waiting

time was acceptable, several participants from the formal experiment expressed that the time available

for them to make decisions was sometimes too short, particularly in the first few minutes of the game.

This may have impacted their ability to fully assess the situation before taking action. Moreover, some

participants mentioned in the answers to the open questionnaire that displaying the elapsed waiting

time in real-time would be helpful, which could provide greater transparency and help them manage

their decision-making process better.

6.3.6. Future Work
By addressing the limitations of the present study, we found several potential research directions

that merit exploration. One of the directions that are worth exploring is to delve deeper into the

influence of trust explanations on user behavior. The result of our study shows that the agent in

the trust-enhanced explanation group exhibited more conservative adjustments in trust levels, which

seemed to influence participants to adopt a more cautious or deliberate decision-making process. This

suggests that explanations about the agent’s trust can affect how users behave during collaborative

tasks. Future research could investigate the mechanisms behind this behavioral change. For example,

studies could examine whether providing trust explanations leads users to overthink their actions, aim

to manipulate the agent’s trust, or become more engaged in understanding the agent’s decision-making

process.

Besides, we found no significance in the results between the trust-enhanced explanation group and

the non-trust explanation group under the current game environment, suggesting exploring different

task environments as a promising idea. The task environment used in this study may not have been

sufficiently complex to elicit significant differences in trust and performance. Future studies could

employ more complicated maps or intricate task goals to investigate whether the effects of explanations
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on human trust and team performance vary across different explanation settings. An example could be

a simulated game with the goal of rescuing victims from various firing buildings, where the victim’s

situation may exacerbate if the rescuers fail to rescue him/her in time.

Additionally, future research could focus on exploring the relationship between artificial trust and the

behavioral actions of participants using a better logging system. The current system logs actions per

game tick, which can misrepresent participant intentions. For instance, a participant might repeatedly

press the key for "Remove Together" to remove a large grey rock - a hard interdependence action

they cannot accomplish alone, resulting in multiple entries for a single intended action that was never

conducted. Developing a more refined logging system that distinguishes intentional actions from

inadvertent inputs would enable more accurate behavioral analysis.

What’s more, future studies could examine how various types of explanations affect human trust and

satisfaction by varying the depth, clarity, and personalization of the explanations provided by the agent.

The explanations provided in this study were static and predefined. Dynamic and adaptive explanations

that respond to user actions and information needs in real-time could further refine our understanding

of how explanation complexity and relevance affect user trust and satisfaction, which also cater to our

participants’ answers to the open questions (section 5.5).

Last but not least, while the current study found a strong correlation between explanation satisfaction

and human trust in the agent, and the polynomial regression results suggest that explanation satisfaction

is more a determinant of human trust than the opposite direction, as mentioned in 6.2.2, causality

cannot be inferred, and investigating causal relationships is essential to deepen our understanding.

Future research could design experiments capable of establishing causal links between these variables.

This might involve controlled manipulations of explanation satisfaction levels to observe direct effects

on trust. For example, researchers could vary the clarity, relevance, and level of detail in the agent’s

explanations. In a high-satisfaction condition, explanations might be clear, relevant, and personalized,

while in a low-satisfaction condition, explanations could be vague, irrelevant, or overly detailed. The

researchers could then measure participants’ trust levels in response to these systematically altered

explanations. Using this approach, the study could explore whether enhancing explanation satisfaction

directly leads to increased trust.

By pursuing these research directions, future studies can enhance our understanding of the role of

explanations in HATs and contribute to developing intelligent agents that effectively build trust and

improve performance.

6.4. Conclusion
In this study, our primary purpose is to investigate how adding information about an agent’s trust

levels (artificial trust) and corresponding behavior changes influences human trust in the agent and

satisfaction with the explanations in a simulated search and rescue (SAR) game. While the initial

hypothesis suggested that adding such information would lead to increased human trust in the agent

and higher explanation satisfaction, the results did not show statistically significant differences for both

measures between the trust-enhanced explanation group and the non-trust explanation group, which is

inconsistent with the hypothesis. The reason could be that adding such information does not necessarily

improve human trust and explanation satisfaction. Another reason could be that the differences in the

explanations provided to the two groups were not distinct enough for the participants to perceive a

meaningful distinction, which minimizes the potential impact on the dependent variables.

However, we found a strong positive correlation between explanation satisfaction and trust. Participants

who were more satisfied with the explanations provided by the agent exhibited higher levels of trust

towards the agent. This finding highlights the role of explanation in fostering human trust, regardless

of the presence or absence of trust-related content, showing that user-satisfied explanations are crucial

for enhancing trust in HATs.

We found no significant difference between the two groups during the analysis of team performance.

The reason could be that explanations about trust do not necessarily enhance the team’s ability to

complete the SAR task, or the fixed movement algorithm behind the agents limited the performance

differences during the experiment. Additionally, in the analysis of artificial trust, we found that the
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agent in the trust-enhanced explanation group adjusted its trust more conservatively than the non-trust

explanation group. The result may indicate that the explanations influence human behavior by affecting

their willingness to collaborate, leading to more cautious actions that potentially affect trust calibration.

To summarize, in this study, we cannot conclude that adding information about artificial trust level

and the agent’s behavior changes corresponding to its trust level in the agent’s explanations improves

human trust and explanation satisfaction. However, we found there is a strong correlation between

explanation satisfaction and human trust, which emphasizes the value of artificial explanations in

HATs, pointing out delving deeper into the relationship between them as future work to enhance

HAT. Besides, although we cannot conclude that adding trust information into explanations improves

team performance, the observation that the agent in the trust-enhanced explanation group adjusted its

trust more conservatively than the non-trust explanation group suggests that the explanations may

have influenced human behavior, affecting their willingness to collaborate and trust calibration, which

suggests that the relationship between artificial trust and the behavior of participants is worth further

exploring.
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A
Questionnaire Used
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B
Instruction Handbook

The objective of the task is to find eight target victims in the different areas and carry them to the drop

zone. Rescuing mildly injured victims

(yellow color) adds 3 points to the total score, and rescuing critically injured victims (red

color) adds 6 points to the total score. Healthy victim (green color) do not need to be rescued.

The world terminates after 7 minutes.

Critically injured victims can only be carried by both human and RescueBot together.

RescueBot and the player can only carry one victim at the same time.

The human player can rescue mildly injured victims alone.

The RescueBot can rescue mildly injured victims alone, but it is much faster to do this together with the

player.

The human player can carry only one victim at the same time.

RescueBot can carry mildly injured victims alone, but doing this together with human assistance is

much faster.

The big gray rock can only be removed by both human and RescueBot together.

RescueBot can remove the small brown stone alone , but doing this together with human
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assistance is much faster.

The tree can be removed by RescueBot or player alone.

The human player can identify obstacles with a normal perception range of 1 grid cell.

The human player can remove the small brownstone alone, but it is much faster to do this together with

RescueBot.

In the game, the RescueBot will actively search victims and obstacles.

You will need to reply to the message of the agent to collaborate with it.



C
Informed Consent Form

You are being invited to participate in a research study titled Reciprocal Trust Dynamics in Human-Agent 
Teamwork. This study is being done by Zenan Guan from the TU Delft.

The purpose of this research study is to investigate the dynamics of reciprocal trust between humans 
and AI agents in collaborative environments. Specifically, you will work with an artificial agent with 
a trust mechanic in a simulated search and rescue task, which will take approximately 30 minutes to 
complete. The data will be used for result analysis for a thesis of a Master’s Computer Science project. 
We will be asking you to interact with a simulated AI agent in a search and rescue task and respond to 
questions about your trust in the agent during these interactions.

As with any online activity, the risk of a breach is always possible. To the best of our ability your 
answers in this study will remain confidential. We will minimize any risks by storing your data locally 
for analysis and uploading it to 4TU.ResearchData afterwards, where your data will be stored safely. We 
will minimize any risks by only asking you about your gender, age range, level of education, and gaming 
experience. This will make identification close to impossible (i.e., your data is anonymous). Since your 
data will be anonymous, you cannot request your data to be removed after completion of the study.

Your participation in this study is entirely voluntary and you can withdraw at any time. You are free to 
omit any questions.
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