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Abstract

In the past decades, offshore wind energy has emerged as one of the most promis-
ing renewable alternatives to the traditional fossil sources of energy. Although
the ocean has a vast potential, with higher wind speeds and lower turbulence
levels than onshore, the required marine foundations make the realization of an
offshore wind farm expensive. Partly, the high cost of a foundation is caused
by the safety factor that is used to compensate for uncertainties in modeling the
forces acting on the offshore wind turbine.

One way to reduce the safety factor, is to use a more accurate kinematic model
for irregular waves. In order to simulate the fatigue life of an offshore wind
turbine, traditional linear wave theory by Airy with Wheeler stretching is used
to generate a large amount of stochastic irregular wave records. This method is
accurate in deep water, but in the shallow water where offshore wind farms are
sited, nonlinear interactions cause the waves to be sharp crested and flatter in the
troughs. These nonlinear effects are expected to result in higher wave forces than
what is currently modeled with linear wave theory, which is now compensated
for by the safety factor. To be able to reduce the safety factor, the influence of
using nonlinear rather than linear irregular waves on fatigue damage should be
quantified.

This thesis project thus aims at quantifying the impact of a higher fidelity
model for irregular wave kinematics, on the fatigue damage accumulation of a
monopile supported offshore wind turbine. This requires a full set of load cases,
comprising the entire range of sea states that can be expected during its lifetime,
to be simulated by a dynamic response simulator. A hydrodynamic load calcula-
tion program was therefore developed, in which both the traditional linear wave
theory and a 2nd-order nonlinear model were implemented. It was assumed that
the additional spectral power from the 2nd-order model is small and hence does
not need to be accounted for. The Morison equation with MacCamy-Fuchs correc-
tion for diffraction was used to obtain the hydrodynamic force on the monopile
from the predicted wave kinematics. In order to make the research as realistic
as possible, a recent wind farm in the German Bight with a water depth of 25
m. was chosen. The dynamic response simulations of the Siemens turbines and
supporting structure was carried out by the aero-servo-elastic code BHawC.

The dynamic response simulations showed that the equivalent fatigue load in-
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creases by maximally 4 to 6% when the 2nd-order wave model is used instead of
the linear wave model. This load increase represents the additional fatigue dam-
age that is accumulated during the entire lifetime of the offshore wind turbine.
The maximum absolute equivalent fatigue load is achieved in the foundation,
just below the seabed. The highest relative increase in fatigue load however, was
observed in the vincinity of the mean sea level. It was found that the influence of
nonlinear wave modeling is limited to the tower and the foundation, the blades
and the nacelle did not show a significant difference in fatigue damage.

A closer inspection of the results reveiled that with nonlinear waves, a signif-
icantly larger portion of the fatigue damage due to fore-aft bending is accumu-
lated when the turbine is idling. The reason for this increase is twofold. First,
when the turbine is idling, aerodynamic damping is absent, which results in a
poorly attenuated response. Second, some part of the idling time is spent in high
wind speeds, which is accompanied by high waves. This results in a high degree
of nonlinearity, and thus a significant load increase.

Furthermore, a sensitivity study was carried out. It was found that the choice
for the wave spectrum has a large influence on the fatigue damage. Using stan-
dard linear wave theory, the maximum equivalent fatigue load due to fore-aft
bending was found to increase by 10% if the Pierson-Moskowitz spectrum is
used instead of a JONSWAP spectrum with peakedness of γ = 3.3. A value of
γ = 7 on the other hand resulted in a 8% fatigue load reduction. The difference
is contributed to the change in the amount of energy in the tail of the spectrum,
in which the natural frequency of the support structure is situated. In both cases,
the choice of the wave spectrum did not significantly influence the additional
fatigue damage due to nonlinear wave modeling.

Also the influence of using different assumptions to account for a steady cur-
rent was investigated. Instead of a current always co-flowing with the waves,
the direction was alternated and a Doppler shift was accounted for rather than
ignored. This did not result in significant differences in fatigue damage, neither
due to linear nor from nonlinear waves. Furthermore, the effect of either one of
the assumptions could not be isolated.

As expected, the 2nd-order model for irregular waves hence proved to result
in higher fatigue loads. However, for the given wind farm the design would not
be affected, since not fatigue life but ultimate loads from extreme waves were
design driving. On the other hand, on a site in which the design is fatigue driven,
a reconsideration of the safety factor is strongly advised when this model is used.
Furthermore, this research shows that a proper wave spectrum selection, based
on site-specific data, is important for a realistic fatigue damage estimation.

It was experienced that using the frequency-domain approach described in
this report, the 2nd-order wave model performs very acceptably. Typical calcula-
tion times are only a small multiple of the time required for a linear wave calcu-
lation. In this light, the argument that this model would be too computationally
demanding, is invalid. Henceforth, this method is a promising alternative for
traditional linear wave theory.
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ŨC weighted depth-averaged current velocity m/s

UC,tide tidal current velocity m/s

UC,wind wind-driven current velocity m/s

Ur Ursell number -



xvi NOMENCLATURE

vci cut-in wind velocity m/s

vco cut-out wind velocity m/s

V ′b body volume per unit cylinder length m2

x, y, z cartesian coordinates m
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1
Introduction

1.1 Research motivation and objective

Offshore wind power is a rapidly growing industry, with hundreds of megawatts
being installed at sea every year to accelerate the transition from the traditional
fossil energy to clean renewables. Although wind turbines installed offshore ben-
efit from the higher and steadier winds at sea, the marine foundations required
to support the turbines still make offshore wind power more expensive than their
onshore counterparts [1]. As the sea has a high potential for large scale wind
energy projects, reducing the cost of the support structures is of fundamental
importance to be able to realize offshore wind farms that can compete with tra-
ditional energy sources.

Currently, offshore wind farms are typically sited in coastal areas with water
depths around or less than 30 m [2]. For these water depths, the monopile foun-
dation type is by far the most popular. Due to the limited water depth, nonlinear
effects cause the waves to become more sharp-crested while the troughs are flat-
tened. Besides that, the magnitude of particle velocities and accelerations below
the waves are higher due to the increased steepness of the wave. This in turn
leads to higher hydrodynamic loads on the wind turbine support structure.

When designing an offshore wind turbine and its supporting structure, a dis-
tinction is usually made between ultimate loads due to extreme events and the
accumulation of fatigue damage caused by cyclic loading of a lower magnitude.
Design loads are estimated by an aero-servo-elastic simulation of the dynamic
response in the time-domain, which uses hydrodynamic loads due to waves and
currents as input. These hydrodynamic loads are usually estimated from wave
kinematics using the Morison equation [3]. For the prediction of wave kinemat-
ics, several approaches are available. Again, a distinction between the simulation
of fatigue and ultimate events is made. Ultimate load simulations are performed
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2 CHAPTER 1. INTRODUCTION

using a regular wave of a single frequency, while fatigue simulations employ ir-
regular wave records with many frequency components of random amplitude and
phase.

In the kinematic wave models used in offshore engineering, irregular waves
are usually approximated with classical linear (Airy) wave theory [4]. Since
this method only describes wave kinematics up to the mean sea level, Wheeler
stretching [5] is often applied to redistribute the velocity and acceleration pro-
files up to the actual sea surface. This traditional approach, based on deep water
experience from the oil and gas industry is accurate enough when the wave am-
plitude is small with respect to water depth, but in shallow water kinematics
magnitudes are likely to be underestimated.

In order to be able to account for strong nonlinear effects in the highest waves
that may occur during the lifetime of an offshore structure, a nonlinear regular
wave model is commonly employed to model extreme events [6]. Such a deter-
ministic extreme wave is calculated separately and then glued into a stochastic
irregular wave record. By doing this, already some dynamics are already present
in the wind turbine and the support structure when the deterministic wave passes
by, which makes this empirical approach slightly more realistic.

Whereas in extreme wave events nonlinear effects are thus accounted for, a
nonlinear model for random irregular waves is uncommon in engineering prac-
tice. To compensate for the lack of accuracy of linear wave theory in shallow
water, a safety factor is therefore applied to obviate an underestimation of wave
loads. Using a more accurate irregular wave model, the amount of uncertainty
in fatigue load estimation could be lowered, which may lay the ground for a dis-
cussion on the safety factor that is used. Altough nonlinear irregular waves are
expected to yield higher wave loads, the possible safety factor reduction might
still result in a lower structural mass and hence reduced cost.

This potential cost reduction motivates the main objective of this thesis project:
To quantify the influence of using nonlinear irregular wave models on the dy-
namic response of an offshore wind turbine. By analyzing the dynamic response
loads, a prediction can be made on how nonlinearity in irregular waves will in-
fluence the fatigue loads.

1.2 Project approach
The project is started with a literature study on the hydrodynamics of wind tur-
bines to classify different approaches to obtain wave kinematics and to compute
the hydrodynamic force on the support structure. For this project, only monopile
support structures will be considered. A round-up of the state-of-the-art of wave
kinematics and kinetics shall be made, as well as an overview of more sophisti-
cated nonlinear wave models that are available, from which the best candidate
should be identified by a trade-off.

A hydrodynamic load calculation program for offshore monopile support struc-
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1.3. STRUCTURE OF THE REPORT 3

tures is to be developed. The linear model for irregular wave kinematics, which
is the current industry standard, should be realized to serve as a reference model.
Besides that, the nonlinear model selected in the literature shall be developed.
The reference wave model is to be verified by comparing the output of the model
with certified wave loads created for an existing offshore wind farm.

To assess the influence of using nonlinear irregular wave models on fatigue
life, the dynamic response of the wind turbine should be simulated. This re-
quires a large number of simulations in the time-domain. These simulations will
be performed by BHawC (Bonus Horizontal axis wind turbine Code), the aeroe-
lastic simulation tool that has been developed in-house by Siemens to simulate
dynamic response. A Siemens Wind Power turbine will be used for the dynamic
response simulations. The sets of wave load files that are created with the hydro-
dynamic load model will be used as input for the BHawC simulations. Besides
the comparison of offshore wind turbine fatigue life between linear and nonlin-
ear wave models, a sensitivity study on variation of the input parameters is to be
performed.

The research shall be concluded with an analysis of the results generated
by the comparison and sensitivity study. Also, recommendations on the use and
regions of validity of both linear and nonlinear wave models are to be given. Fur-
thermore, a recommendation shall be made for future work and possible follow-
up on this thesis project.

1.3 Structure of the report
In Chapter 2 an introduction to the theoretical aspects of the project is given.
First, the theory of wave kinematics is treated and several methods of varying
sophistication are discussed that are used to obtain the velocity field under a
given sea surface elevation record. Second, the interaction of wave motion with
a monopile support structure is studied and models are presented to compute
the force acting on the structure. Furthermore, since ultimately the effects on
the response of the offshore wind turbine need to be assessed, an introduction to
structural response and dynamics is given. Finally, the calculation methods and
procedures advised by design standards are discussed and a trade-off is made
to identify the kinematic and kinetic models that are both accurate and have an
acceptable computational load, such that plenty of simulation scenarios can be
run and compared.

The selected methods are implemented in a computer program that is capable
of simulating wave motion in linear and nonlinear irregular waves, and subse-
quently computes the hydrodynamic force due to the wave velocity. Chapter 3
describes the workflow of the code, the mathematical formulations used and de-
tails about the implementation. A method is proposed such that the Doppler shift
due to a steady current can be accounted for, while using the efficient Inverse Fast
Fourier Transform to perform the calculations in the frequency domain.
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4 CHAPTER 1. INTRODUCTION

Chapter 4 describes the verification of the hydrodynamic load calculation pro-
gram. First, the kinematic models are tested both qualitatively and quantitatively.
Attention is also paid to the Doppler-shifted frequency-domain method proposed
in Chapter 3. Second, the verification of an entire set of wave loads for a wide
range of sea conditions is described. This verification has been performed us-
ing a Siemens wind farm project for which the hydrodynamic loads have been
prepared by a third party foundation contractor.

The actual comparison between linear and nonlinear irregular wave modeling
on offshore wind turbine fatigue life is described in Chapter 5. The required dy-
namic response simulations will be performed in BHawC, where the same input
parameters will be used as for the verification project, in order to make a real-
istic comparison. Additionally, a sensitivity study is performed to investigate the
influence of variation in the input parameters on wave nonlinearity and hence
fatigue life.

The report finishes with a chapter on the conclusions that can be drawn from
the results of the simulations. Also, recommendations for further development
of the program and follow-up research are given. The chapter is concluded with
a list of lessons learned during the project.
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2
Theoretical background

2.1 Introduction

Challenged by the extreme environments in which offshore structures have to
perform, engineers and scientists have developed various methods to deal with
the prediction of the hydrodynamic forces that are created by the interaction of
the structure with ocean waves. The problem can be divided into two branches
of fluid mechanics: wave kinematics and kinetics. The way the water below the
free surface interface is set into motion by a disturbance is the subject of study in
wave kinematics, whereas in kinetics the hydrodynamic forces due to interaction
of the fluid with the structure are considered.

A large variety of kinematic wave models and approaches to derive the force
acting on the structure from the fluid motion is in use, depending on the required
accuracy of the methods, the available computer time and of course the time
available to implement the method. In order to understand the limitations of
the methods, good knowledge of the physical principles and the impact of the
assumptions that are made is essential. This chapter therefore introduces the
basic theory behind wave kinematics and kinetics with the final aim to give an
overview of the available methods and to discuss in which situations they can be
applied, rather than going into the details of the methods itself.

The chapter is started with a treatment of wave kinematics in Section 2.2. The
most important type of waves is identified and a statistical representation of the
sea surface elevation is given. A very basic wave model based on linear theory is
presented, together with a procedure to create an irregular random sea surface
from standardized wave statistics. Next, various nonlinear methods for regular
and irregular waves are discussed, including an introduction to the state-of-the-
art methods based on Navier-Stokes solvers. Finally, the effects of a current and
coastal features on the wave characteristics are presented.
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6 CHAPTER 2. THEORETICAL BACKGROUND

The next section is devoted to kinetics, the study of hydrodynamic forces
that result from the interaction of an object subject with fluid motion. As flow
behavior is strongly dependent of the geometrical shape of the structure, this sec-
tion is focussed on the most common type of offshore wind turbine foundation,
the monopile support structure. To illustrate some fundamental features of the
flow around a monopile, the section first treats a simple two-dimensional circu-
lar cylinder in a steady and unsteady, oscillating flow. The Morison equation is
presented as a simple, yet popular empirical formula to estimate the in-line re-
sistive force in an unsteady flow. Furthermore, attention is paid to factors that
complicate the estimation of the time-dependent forces, such as vortex shedding
and marine growth.

As the objective of this thesis is to quantify the influence of alternative wave
models on the dynamic response of the offshore wind turbine, Section 2.4 provides
a global introduction to general response dynamics. An overview is given of
three characteristic types of responses due to harmonic loading, and important
wind turbine specific excitations and natural frequencies of the components are
discussed. Also, the influence of structural stiffness on the support structure
design envelope and damping effects are treated.

In Section 2.5, the standards for the design of offshore wind turbines are
discussed, with a distinct focus on the aspects that influence the hydrodynamic
load on the support structure. Finally, in Section 2.6 the kinematic and kinetic
models are compared and a trade-off is performed to determine which models
are suitable to achieve the objective of this project.

2.2 Wave kinematics
One only has to shoot a glance at the ocean, to realize that the surface consists
of many waves crossing their paths to create a chaotic, intriguing pattern. While
most of the waves we observe by eye are generated by wind, ocean waves oc-
cur in many different forms. This is shown in Figure 2.1, where the energy of
several classes of waves is shown as a function of their frequency and period.
For the practical application of determining wave forces on an offshore structure,
it is important to assess which classes of waves contribute significantly to the
kinematics that are to be taken into account in the hydrodynamic model.

The wind-generated wave class is certainly the most important [8], as a high
amount of energy is present in the frequency range in the order of 0.03-1 Hz,
which coincides with the eigenfrequency of the monopile support structure (≈
0.3 Hz). If a series of waves happens to be in phase with one of the eigen-
frequency modes of the support structure, the response may be amplified, thus
increasing the structural loads severely.

Wind-generated waves can be further categorized into three types. A wind sea
is created by the force exerted by wind on the sea surface, which is characterized
by its random appearance. The small amplitude waves that are formed initially,
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2.2. WAVE KINEMATICS 7

Figure 2.1: Wave energy as a function of frequency and period. [7]

called capillary waves, have a high frequency (> 4 Hz) and are dominated by
surface tension. As this type of wind-generated wave does not contain much
energy, its effect on an offshore structure is minimal compared to longer wind-
generated waves, and can therefore be ignored. Wind waves that have left the
generation area create a smooth swell, which typically have a dominating long
wave length. Furthermore, groups of wind-generated waves can form periodical
infra-gravity waves, but their effect on a practical scale is negligible.

On the other end of the spectrum, tides are created by the gravitational force
exerted by the moon and the sun, and the rotation of the earth. Depending on the
geographical location, this low frequency wave may create strong tidal currents,
which can be very significant compared to the kinematics of wind waves. Besides
the tidal current, the change in sea level may have a noticeable effect on the
resulting bending moment acting on the support structure. In this respect, storm
surges need to be considered as well, as the local sea level rise due to a severe
storm can be significant.

Whereas the waves described above are created by well predictable phenom-
ena as the weather and tide, the remaining wave types in Figure 2.1 are harder
or even impossible to predict, for various reasons. Besides, the effects are less
pronounced as for the previously described waves. It is therefore a reasonable
assumption that for this study, only wind-generated waves and tides need to be
considered, where a storm surge is accounted for as an extreme load case.
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8 CHAPTER 2. THEORETICAL BACKGROUND

2.2.1 Describing the sea surface
When considering wave loads on an offshore structure, a time record of the sea
surface elevation is required such that for each moment in time the wave kine-
matics can be derived at the locations relevant for determining the wave forces.
As information about tidal currents and water levels is usually available in rea-
sonable detail, the problem reduces to finding the kinematics of wind-generated
waves.

The most simplified way to describe a wave is by assuming it is a regular
harmonic wave. This idealized wave can be made more realistic by creating an
irregular sea surface through the addition of many independent harmonic waves
of varying amplitude and phase, yielding the random-phase/amplitude model. An
even more realistic model is created by giving each harmonic wave a propagation
direction. An example of the sea state that is obtained from this superposition is
shown in Figure 2.2.

Figure 2.2: The superposition of many regular waves with varying amplitude,
phase, frequency and propagation direction creates an irregular sea surface. [9]

2.2.2 Regular waves
Before moving on to a statistical description that can be used in a wave theory
to create a sea surface, it is convenient to introduce some definitions. First, we
assume a regular unidirectional sea, such that the surface elevation as a function
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2.2. WAVE KINEMATICS 9

of time, η(t), can be modeled by a simple harmonic wave:

η(t) = a cos(2πft+ φ) (2.1)

This simple wave has an amplitude a, a frequency f and a phase φ. The wave
height H is defined as the difference in elevation between the wave crest and
trough, and is twice the amplitude of the wave. A snapshot of such a regular
harmonic wave and its definitions in the space domain is shown in Figure 2.3.
A right-handed coordinate system is defined such that the wave propagates in
the x-direction and the z-axis points toward the sky. Assuming the waves are
unidirectional, the y-axis is fully parallel to the wave crests.

η

a

L

H

d

z

y x

trough

crest

MSL

Seabed

Figure 2.3: Definitions of a regular wave and the coordinate system in the space
domain.

The wave period TZ(= 1/f) is commonly defined as the time passed between
two consecutive up- or downward zero-crossings of the Mean Sea Level (MSL),
which may be assumed constant in case the measurement period is small enough
to neglect the influence of tides (typically 15-30 minutes) [7]. Alternatively, the
wave period can be obtained from the wave length L and the wave speed or
celerity c, using the relation TZ = L/c.

It is quite obvious that by assuming a simple unidirectional regular wave, one
will not create a realistic sea surface. Although the simplicity imposes certain
limitations on the applicability of the regular wave model, it is also one of its
major strengths, as will be shown in section 2.2.4. The regular wave model,
combined with linear wave theory, can provide simple but powerful relations to
describe the wave kinematics at any point.

2.2.3 Irregular waves
The first step towards a more accurate description of the sea surface is to consider
an irregular wave model that is created by the summation of a large number of
harmonic waves: the random-phase/amplitude model. The key assumption in
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10 CHAPTER 2. THEORETICAL BACKGROUND

this model is that the individual harmonic components are linear, such that they
can be considered independent of one another and can thus be added together by
superposition. The surface elevation for the irregular wave is now defined by:

η(t) =

N∑
i=1

a i cos(2πfit+ φ i) (2.2)

The index i represents a unique component of the discretized frequencies, which
range from index i = 1 to N . The underlines indicate that the amplitude and
phase of the wave are randomly drawn from the corresponding probability density
function (PDF). In the random-phase/amplitude model, the phase is uniformly
distributed, with a probability:

p(φi) =
1

2π
with: 0 < φi < 2π (2.3)

The amplitude on the other hand is characterized by a Rayleigh distribution with
a frequency dependent expected value µi = E{ai}, yielding the following proba-
bility:

p(ai) =
π

2

ai
µ2
i

exp

(
−πa

2
i

4µ2
i

)
with: ai ≥ 0 (2.4)

The expected values of the amplitude yield a unique Rayleigh distribution of the
amplitude for each frequency. If all expected amplitudes are plotted against the
frequency, the discrete amplitude spectrum is obtained (see Fig. 2.4). When a
sufficient amount of frequencies is chosen in the correct range, a random time
record of the sea surface elevation can be realized. It must be emphasized that
the resulting wave record is stationary, so the influence of tides is not taken
into account. Furthermore, it has been assumed that the harmonic components
are completely independent, which is a reasonable assumption if interactions
between the components are weak. In very shallow water or when waves are
steep, this may no longer be the case, so one should be cautious when using the
random-phase/amplitude model in coastal areas.

The wave energy spectrum
Although the amplitude spectrum can be employed to create a realistic irregular
sea surface, the variance density spectrum or the wave energy spectrum is pre-
ferred. Rather than the amplitude, the expected value of the variance E{ 1

2 a
2
i }

is used in this spectrum, for two reasons. First, the variance is a commonly
used statistical parameter, and second, the energy of a wave has been found to
be proportional to the variance. Besides that, the wave energy spectrum can be
made continuous rather than discrete by considering the limit case in which the
difference between two frequencies approaches zero. This is desirable, because
in nature all frequencies occur, rather than a finite number. The wave energy
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2.2. WAVE KINEMATICS 11

Figure 2.4: The discrete amplitude spectrum, constructed from many frequency
component each with its unique expected value. [7]

spectrum S(f) is now defined as:

S(f) = lim
∆f→0

1

∆f
E
{

1
2 a

2
}

(2.5)

The characteristics of the sea surface can be determined simply by drawing some
conclusions from the wave energy spectrum. The narrower the spectrum, ie. the
smaller the range of frequencies contributing to the variance, the more regular
the waves are. The limit case occurs when only one frequency is present; then
the spectrum consists of a single delta peak, and the wave is purely regular. On
the other hand, a wide spectrum without obvious peaks represents a confused
sea surface. The presence of a swell that has propagated from a distant storm
can often be identified as a separate narrow-banded peak in the low frequency
range.

Including the directional spreading
It must be noted that the wave energy spectrum described above, represents the
time evolution of the surface elevation at a fixed location. In order to include the
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12 CHAPTER 2. THEORETICAL BACKGROUND

propagation direction with respect to the x-axis, θ, the surface elevation function
has to be reformulated such that it includes the spatial coordinates x and y:

η(x, y, t) = a cos(
2π

L
x cos θ +

2π

L
y sin θ − 2π

TZ
t+ φ) (2.6)

With the definitions of the angular frequency ω (= 2π/TZ) and the wave number
k (= 2π/L), Eq. 2.6 can be reduced to:

η(x, y, t) = a cos(kx cos θ + ky sin θ − ωt+ φ) (2.7)

The random-phase/amplitude model including the directional parameter can
now be written as:

η(x, y, t) =

N∑
i=1

M∑
j=1

ai,j cos
(
kix cos θj + kiy sin θj − ωit+ φ

i,j

)
(2.8)

The wave number and angular frequency can be assumed to be related through
the so-called dispersion relation (see section 2.2.4), so they share the same index
value i. The index j represents the discretized propagation directions. The wave
spectrum can then be fully described by a two-dimensional frequency-direction
model, with its wave energy spectrum defined as:

S(f, θ) = lim
∆f→0

lim
∆θ→0

1

∆f ∆θ
E
{

1
2 a

2
}

(2.9)

Integration of Eq. 2.9 with respect to θ from 0 to 2π again yields Eq. 2.5, the
wave energy spectrum obtained earlier. In general, it makes sense to assume that
the wave direction is spread more or less around the direction of the wind at the
ocean surface, and do not travel against the wind. The shape of the directional
spreading distribution D(θ) is therefore mostly approximated with the following
cos2 θ model:

D(θ) =

{
2
π cos2 θ |θ| ≤ 90◦

0 |θ| > 90◦
(2.10)

The shape of the directional spreading has to be used with caution though, be-
cause the wave direction may vary substantially throughout the frequency range
for example due to swell coming from a distant storm. This difference is illus-
trated by an example of the frequency-direction spectrum for a scenario in the
North Sea, shown in Figure 2.5 on the top-right. The swell, besides having a
different direction than the wind sea, clearly has a very profound propagation
direction, whereas the wind sea has a much wider spreading. Integration of
the frequency-direction spectrum with respect to the direction yields the 1-D fre-
quency spectrum (bottom-right).
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2.2. WAVE KINEMATICS 13

Figure 2.5: A scenario in the North Sea off the Dutch coast with a wind sea and
an incoming swell. [7]

Significant wave height
As many harmonic waves with different phases and amplitudes are superposed
in the random-phase/amplitude model, the crests and troughs no longer occur
on the same elevation level. Also, the wave period is no longer a constant. It is
therefore convenient to define a mean wave height and a mean zero crossing wave
period, H and TZ respectively. These are simply the averages of the wave heights
and the time separations between consecutive downward zero-crossings:

H =
1

N

N∑
i=1

Hi (2.11)

TZ =
1

N

N∑
i=1

TZi (2.12)

In ocean engineering however, it is common practice to work with the significant
wave height, HS , which is defined as the mean of the highest one-third of waves:

HS =
1

N/3

N/3∑
j=1

Hj (2.13)

The reason that the significant wave height is very popular is twofold: first, it is in
much better agreement with visually estimated values of the mean wave height
made in observations, and second, it can be estimated from the wave energy
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14 CHAPTER 2. THEORETICAL BACKGROUND

spectrum. Given a certain wave energy spectrum S(f), the expression for the
estimated significant wave height Hm0

reads:

Hm0
≈ 4
√
m0 (2.14)

Here, m0 is the zeroth-order moment of the spectrum, which in turn is defined by:

mn =

∫ ∞
0

fnS(f) df (2.15)

As n = 0, the significant wave height is proportional to the area under the spectral
curve.

Generalized spectral shapes for idealized conditions
The fact that an irregular wave can be constructed from the wave energy spec-
trum using the random-phase/amplitude model, has encouraged scientists to cre-
ate generalized spectral shapes that can be tuned to match the desired conditions.
The starting point for these spectra is an idealized situation in which a constant
wind blows perpendicular off an infinitely long coastline, over infinitely deep
water. Furthermore, the velocity of the wind U10

1 is assumed to be constant
and free of turbulence. Hence, the only remaining parameters that determine
wave growth are the distance to the upwind coast, or fetch F , the duration t and
gravitational acceleration g.

It was found that in a young sea state waves have a high growth rate, but when
the celerity c approaches the wind speed, the development stops and the waves
are considered fully developed. Furthermore, the spectrum has a peak frequency at
which the wave energy is at its highest, Ω, which decreases as the waves develop.
In the 60’s, a general spectrum for fully developed wind seas was proposed:

SPM (f) = αPMg
2(2π)−4f−5 exp

[
−5

4

(
fp
f

)4
]

(2.16)

This spectrum is known as the Pierson-Moskowitz (PM) wave spectrum. In the
expression for the PM spectrum, the relations for the energy scale αPM and the
peak frequency fp can be expressed in terms of the significant wave height and
the mean zero-crossing period. The PM spectrum describes a fully developed
sea, but in reality, a change in wind velocity and direction is very likely along the
fetch that is required to attain the fully developed state. Therefore, a spectrum for
young sea states is desirable for many engineering cases. In the 70’s, the JOint
North Sea WAve Project (JONSWAP) took the shape of the PM spectrum and
sharpened the peak with a peak enhancement function. The resulting spectrum
has proven to be useful for both young seas and deep water influenced by storms

1The wind velocity at the surface is often expressed as U10, the time-averaged velocity at 10 m
above the surface.
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2.2. WAVE KINEMATICS 15

[7]. The expression of the JONSWAP spectrum reads:

SJS(f) = αJSg
2(2π)−4f−5 exp

[
−5

4

(
fp
f

)4
]
γ

exp

[
− (f−fp)2

2σ2f2p

]
(2.17)

Here, σ is a peak-width parameter and γ is a peak-enhancement factor, where
σ depends on de frequency and the value of γ creates the desired peakedness
of the spectrum. When the peak-enhancement factor is set to unity, the expres-
sion reduces to the PM spectrum (Eq. 2.16). The expressions for the PM and
JONSWAP spectra presented here are very general, a more detailed and slightly
different formulation of the spectra including the relations with respect to the
characteristic wave parameters HS and TZ can be found in Section 2.5.

In case a significant swell component is present in the sea state, the single-
peaked PM and JONSWAP spectra is not be the best representation of the spectral
density of the sea surface elevation. A two-peaked spectrum as the Torsethaugen
spectrum [10], taking into account both wind sea and swell, may in this case
provide a better representation. The formulation of the Torsethaugen spectrum
is less compact than the previously discussed spectra, therefore the reader is
referred to for example DNV Recommended Practice [11] for more details.

Figure 2.6: Creating a wave record by superposition of waves with varying fre-
quencies and random phases. Although the generated record looks totally different
from the measured record, the statistical properties are similar. NB: Spectral den-
sity, amplitude and phase are represented by the symbols S, ζ and ε respectively.
[9]

Given a certain wave spectrum, a number of waves with discrete frequencies
can be created by dividing the spectrum in frequency bins, where the amplitude
depends on the spectral density of each frequency component, and the wave
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16 CHAPTER 2. THEORETICAL BACKGROUND

phases are uniformly distributed. The transformation from frequency domain
(wave spectrum) to time domain (wave record) and the relation between both is
shown in Figure 2.6.

2.2.4 Linear wave theory
In the previous section, methods were presented to create a wave record from
generalized frequency spectra. With the sea surface elevation described as a
function of time and space, the next step is to derive the kinematics that will
ultimately be used to determine the forces acting on the wind turbine support
structure. In this section, the linear wave theory, also known as Airy theory, is
presented as a simple method to realize this step.

Equations of motion
To derive the kinematic relations, we start off with the basic equations of motion
for a fluid, also known as the Navier-Stokes equations. The Cartesian coordinate
system presented in Figure 2.3 is used, with the x-axis in the direction of the
wave propagation, the y-axis pointing into the paper parallel to the wave crests,
and the z-axis pointing upwards. The velocity field is described by the velocity
components (u, v, w), or in vectorial notation u = u(x, y, z, t).

Assuming the fluid is incompressible, the water density ρ is constant, such that
conservation of mass in a volume is described by the continuity equation:

∇ · u = 0 (2.18)

With the differential operator ∇ = ( ∂
∂x ,

∂
∂y ,

∂
∂z ), the continuity equation thus

states that the divergence of the velocity field is zero. A momentum balance is
achieved in the momentum equation, in which the change in fluid momentum
ρu of a volume is required to be balanced by the body forces, pressure field
and viscous forces acting on the fluid. The pressure field is described by the
scalar field p = p(x, y, z, t) and body forces are included in the vector F . The
momentum equation thus reads:

Du

Dt
= F − ∇p

ρ
+ ν∇2u (2.19)

Here, the diffusive viscous term contains the Laplace operator∇2 = ∇·∇u, which
is the divergence of the gradient of the velocity field. The term is preceded by the
kinematic viscosity ν. Furthermore Du

Dt is the substantial derivative, containing
the time derivative of the velocity field and a (nonlinear) advection term:

Du

Dt
=
∂u

∂t
+ (u · ∇)u (2.20)

CONFIDENTIAL



2.2. WAVE KINEMATICS 17

Together, the system of conservation equations in Eqs. 2.18 and 2.19 are called
the Navier-Stokes equations. A more detailed review of the Navier-Stokes equa-
tions and its simplified versions will be presented in the discussion of Computa-
tional Fluid Dynamics methods in Section 2.2.6. Analytical solutions for these
equations exist only for very simple cases, so some idealizations are necessary to
simplify the problem. First, the fluid is assumed to be inviscid, so the viscous term
ν∇2u disappears from the right hand side (RHS) of Eq. 2.19. This assumption is
valid as the wave lengths are long enough such that internal forces by viscosity
can be neglected. Sea bottom friction due to viscosity can be ignored as well be-
cause the effects are limited to the boundary layer over the sea bed, which only
has a very local effect on the water motion.

Second, the only external body force exerted on the fluid is assumed to come
from the gravity potential, which acts in the vertical direction, such that F =
g(z). Hence, the gravitational force only appears in the momentum equation in
z-direction. Surface tension and the Coriolis force can be ignored if the wave
lengths are in a range between a few centimeters to a few kilometers [7]. The
momentum equation is thus simplified to:

Du

Dt
= F − ∇p

ρ
(2.21)

For convenience, the equation is left in vectorial form for now, with the simplified
body force vector F = g(z). Although the momentum equation has been simpli-
fied, it remains nonlinear. However, this is not a direct problem, as the boundary
conditions that constrain the equation can be determined in nonlinear form as
well, which is done later in this section. The advantage is that the nonlinearity
of the equation and its boundary remains transparant as long as possible, up to
the point when linearization is actually required in order to be able to solve the
equations.

The continuity equation be rewritten in a convenient, alternative form. To
achieve this, we assume the fluid to be free of vorticity, or irrotational:

∇× u = 0 (2.22)

As vorticity is produced by viscous effects, the assuming irrotational flow is as
reasonable as neglecting viscosity and its associated friction effects near the sea
bed. The assumption is convenient, because it allows the velocity to be expressed
in terms of a velocity potential Φ = Φ(x, y, z, t), such that:

u = ∇Φ (2.23)

In other words, if a velocity potential function is found, the velocity components
can be determined simply by taking the gradient of that function. Using the
definition in Eq. 2.23, the continuity equation (2.18) can be rewritten in terms
of the velocity potential:

∇2Φ = 0 (2.24)

The velocity potential thus satisfies the Laplace equation (2.24).
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18 CHAPTER 2. THEORETICAL BACKGROUND

Boundary conditions
To constrain the problem, boundary conditions need to be imposed to the prob-
lem. First, kinematic boundary conditions are considered, which will ensure that
the fluid motions satisfy the physical constraints. At the sea bottom the verti-
cal velocity w = ∂Φ/∂z should be equal to zero, as the bottom is impermeable.
This implies that at a the sea bottom (z = −d) the following condition should be
satisfied:

∂Φ

∂z
= 0 at z = −d (2.25)

A second kinematic condition is imposed on the sea surface, the kinematic free
surface boundary condition (KFSBC). Fluid particles should not leave the surface,
hence the fluid velocity should be equal to the velocity of the sea surface:

∂Φ

∂z
=
∂η

∂t
+
∂Φ

∂x

∂η

∂x
at z = η (2.26)

The third dimension, a variation in the y-direction can be included easily, but is
discarded here for the sake of clarity. Besides the kinematic boundary conditions,
a dynamic free surface boundary condition (DFSBC) is required, such that the
wave is an unforced gravity wave. It follows from a derivation of the momentum
equation 2.21 that the Bernouilli equation should be satisfied:

∂Φ

∂t
+

1

2
|∇Φ|2 +

p

ρ
+ gη = 0 at z = η (2.27)

For a detailed derivation of the boundary conditions, see Appendix A.

Linearization of the boundary conditions
Two of the three boundary conditions presented above contain nonlinear terms,
for which obtaining an exact solution is only possible in some special cases. The
trick therefore is to linearize the conditions by making assumptions such that
the nonlinear terms can be neglected. By assuming the wave amplitude is small
with respect to the wave length, the wave steepness H/L will also be small.
The consequence is that a vector normal to the sea surface can be assumed to
point purely in the z-direction. Besides, as the amplitude is small, the boundary
condition has to be imposed at MSL, z = 0, rather than at the instantaneous level
η. Boundary condition 2.26 can thus be linearized to:

∂Φ

∂z
=
∂η

∂t
at z = 0 (2.28)

The kinematic boundary condition at the bottom (2.25) remains unchanged, but
is repeated here for the sake of completeness:

∂Φ

∂z
= 0 at z = −d
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2.2. WAVE KINEMATICS 19

The dynamic surface boundary condition, Eq. 2.27, contains a nonlinear velocity
term, which with the small amplitude approximation can be neglected. Further-
more, the pressure in Eq. 2.27 should be equal to the atmospheric pressure, to
satisfy the free surface condition. In this case we take p = 0. The boundary
condition then reduces to:

∂Φ

∂t
+ gη = 0 at z = 0 (2.29)

Solution of the Laplace equation
As shown above, wave motion can be described by a velocity potential, which is
gouverned by the Laplace equation 2.24 and satisfies the dynamic (2.29) and the
two kinematic (2.25,2.28) boundary conditions. Through separation of variables
(see for example [12]), one of the solutions that can be derived is that of a
propagating wave:

Φ =
ag

ω

cosh k(z + d)

cosh kd
sin(kx− ωt+ φ) (2.30)

Substitution of the velocity potential in the dynamic surface boundary condition
(2.29) yields the surface elevation for a propagating harmonic wave:

η(x, t) = a cos(kx− ωt+ φ) (2.31)

The fluid particle velocity components can now be found from the gradient of the
velocity potential:

u =
agk

ω

cosh k(z + d)

cosh kd
cos(kx− ωt+ φ) (2.32)

w =
agk

ω

sinh k(z + d)

cosh kd
sin(kx− ωt+ φ) (2.33)

Differentiation of the velocity components with respect to time gives the acceler-
ation of the fluid particles:

u̇ = agk
cosh k(z + d)

cosh kd
sin(kx− ωt+ φ) (2.34)

ẇ = −agk sinh k(z + d)

cosh kd
cos(kx− ωt+ φ) (2.35)

In deep water where d/L > 1/2, the fluid particles follow a circular path
with a velocity that decays exponentially for increasing depth. In shallow waters
where d/L < 1/20, the particle paths are much more restricted to horizontal
motion, and the velocity experiences less variation magnitude with depth. In the
intermediate regime, 1/20 ≤ d/L ≤ 1/2, the particles follow an elliptic path [13].
An illustration of the particle paths and the corresponding velocities is given in
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20 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.7: Particle paths (left) and
velocities (right) in a linear har-
monic wave, for different depths.
[13]

Figure 2.7. Furthermore, it can be concluded that the particle accelerations have
a 90◦ phase lead compared to the velocities.

Another useful property that can be derived is the dispersion relation, which
is obtained when the velocity potential is substituted in the Laplace equation, Eq.
2.24:

ω2 = gk tanh kd (2.36)

The wave celerity can be expressed in terms of the wave number, using c =
L/TZ = ω/k and the dispersion relation:

c =

√
g

k
tanh kd (2.37)

In deep water, where tanh kd → 1, this expression shows that the celerity is
related to the wave number as c =

√
g
k . In other words, waves with a large wave

length (low k) will travel faster than shorter waves. As depth decreases, the
dispersion relation shows that the constant frequency forces the wave number to
increase. Finally, in very shallow water, the linear approximation tanh kd ≈ kd is
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allowed, such that the wave celerity no longer depends on the wave number or
frequency but solely on the water depth: c =

√
gd [13].

Extending the velocity profile
In order to linearize the boundary conditions, the amplitude of the wave was as-
sumed small. This implies, that the velocities at the surface are actually described
on MSL, without any variation in elevation. On the actual surface level however,
measured kinematics have shown to deviate from linear theory predictions sig-
nificantly, particularly near the wave crest and trough. Furthermore, when the
interaction of waves with a structure is considered, the error in the hydrody-
namic force distribution that is made by using the kinematics on a fixed sea level
may be significant if the wave height is substantial compared to the height of the
structure. These two aspects illustrate the need for a modification of the linear
wave theory such that the prediction provides a better match with measurements
and describe the velocities at the actual elevation level.

A collection of popular velocity extension methods is presented below. As the
sea surface happens to be the region where both the uncertainty of the predic-
tions and the magnitude of the kinematics are at its highest, the absolute error
is likely to be significant. It should therefore be stressed that although the mod-
ified predictions are more accurate than linear theory, neither of the methods
discussed here are capable of describing the kinematics fully accurate.

• Constant extension
This method is also referred to as vertical stretching. It simply assumes
that the velocity at any point above MSL is equal to the velocity at MSL,
and below MSL linear theory is applied without change:

u(x, z, t) =

{
u(x, z, t) z ≤ 0,

u(x, 0, t) 0 ≤ z ≤ η.
(2.38)

Due to the simplicity of the method, this approximation is quite popular in
the offshore industry, despite the large errors that have been observed in
comparison with experiments [14].

• Linear extrapolation
The linear extrapolation method assumes that the velocity profile above
MSL can be approximated by using the velocity gradient ∂u

∂z at MSL for a
linear extension of the profile. Below MSL, the velocities predicted by linear
theory are used:

u(x, z, t) =

{
u(x, z, t) z ≤ 0,

u(x, 0, t) + z
(
∂u
∂z

)
z=0

0 ≤ z ≤ η.
(2.39)

In comparisons with measurements, the linear extrapolation method has
shown to severely overpredict the wave kinematics near the crest and to
slightly underpredict the velocity near the trough [14].
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• Wheeler stretching
A very popular method for velocity profile stretching has been developed
by Wheeler [5], based on measurements on wave elevation time series.
Instead of extending the velocity profile like the methods presented above,
the velocity at an elevation z is replaced by the velocity at a computational,
stretched coordinate zc:

u(x, z, t) = u(x, zc, t) 0 ≤ z ≤ η (2.40)

where

zc =
d(z − η)

d+ η
(2.41)

The results that are achieved with the Wheeler stretching method are more
accurate than the extension methods presented above, although the method
has a tendency to underestimate the kinematics, particulary close to MSL
[15]. Despite this imperfection, the straightforward implementation and
use of the method has lead to wide acceptance of Wheeler stretching in the
offshore industry. An example of Wheeler stretching, compared with linear
and constant extension is presented in Figure 2.8.

• Delta stretching
The Delta stretching method [16] was devised as an alternative to reduce
the excessive overpredictions of linear extrapolation, and is basically an
empirical average of a Wheeler stretching and a linear extrapolation. Al-
though an improvement is achieved over the extension method, the results
are less satisfactory than using Wheeler stretching.

• Gudmestad stretching
This method is a second-order expansion of a stretching method that was
proposed by Chakrabarti [17], first derived by Gudmestad and Connor for
regular waves [18] and later extended to irregular waves by Gudmestad
[19]. The reader is referred to the respective literature for details about the
approach and the equations involved. For regular waves, the Gudmestad
approach performance is very well comparable to the Wheeler stretching
method, whereas for irregular waves the second-order stretching method
yields slightly better results [14]. The method however requires more effort
to implement than the straightforward Wheeler stretching method.

The Wheeler method is generally conceived to be the preferable method, due
to its robustness and the acceptable accuracy of the results [15]. In irregular
linear wave theory, Wheeler stretching is less accurate and Gudmestad stretching
may improve the solution slightly. For a comparison of several velocity extension
methods with measurements, the reader is referred to the detailed discussion by
Gudmestad [14].
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Although irregular waves can be modeled conveniently using linear theory
with a stretching technique, the solution suffers from high frequency contamina-
tion, oscillations in the kinematics near the wave crest due to the contribution of
high frequency components in the hyperbolic terms of the velocity expressions
[20]. This effect can be attenuated to some extent by introducing a low-pass fil-
ter which blocks higher frequencies that contaminate the solution, but it should
be stressed that the stretching methods are engineering approximations that are
not based on hydrodynamic theory.

Figure 2.8: Example of some kinematic stretching techniques applied to linear
theory. Constant extension (�) and linear extrapolation (◦) only extend the velocity
profile from MSL to surface level, whereas Wheeler stretching (/) redistributes the
velocities from linear theory on a stretched coordinate. [9]

Wave description using a Lagrangian coordinate system
So far, the methods to determine kinematics from linear irregular waves em-
ployed an Eulerian description of the flow field, which means that the motion is
observed from a coordinate system that is fixed in space. Alternatively, the flow
field can be considered from a Lagrangian perspective, where the coordinate sys-
tem moves and deforms with the fluid and as such, the free surface is fixed.
Whereas the Eulerian description provides the kinematic properties at known
and fixed locations, the position of the Lagrangian solution has to be derived,
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which fairly complicates the method.
Although retreiving the kinematics to an Eulerian coordinate system is a chal-

lenge, the Lagrangian description is attractive because the stretching techniques
that are required in linear irregular wave theory to obtain a solution at finite
amplitude and the high frequency contamination of the solution can be avoided.
Gjøsund [21] derived a linear Lagrangian wave model for irregular waves, that
is correct to first order in wave amplitude at any surface elevation. The method
is based on a linearization of the inviscid Euler equations, which contrary to the
potential flow equations used in linear wave theory are rotational. To obtain the
solution in an Eulerian frame of reference, Gjøsund suggests an iterative scheme.

In experiments, the kinematics obtained by the Lagrangian method are in
good agreement with measurements, and the method seems to outperform irreg-
ular linear wave theory with Wheeler stretching [21].

2.2.5 Nonlinear wave methods for regular waves
Currently, offshore wind farms are mostly sited in coastal areas with water depths
smaller than 30 meters, with only a few exceptions [2]. In deep water and when
the wave steepness H/L is small, a wave can be described by the linear theory
presented above with reasonable accuracy, whereas in the relatively shallow wa-
ter where offshore wind farms are located waves tend to become more sharp
crested with flatter troughs and slightly higher crests, violating the small am-
plitude and steepness assumption of linear wave theory. Shallow water waves
therefore are no longer harmonic but periodic, where the sea surface spends
most of its time below the MSL, with short but sharp upward excursions. Be-
sides the change in shape, the fluid particles no longer travel on closed ellipsoid
orbits like in linear theory, but they gradually drift in the direction of the wave
propagation. This phenomenom is known as Stokes drift.

The main difficulty with gravity waves is found at the free surface interface,
where nonlinear kinematic and dynamic boundary conditions (Eqs. 2.26 and
2.27) have to be satisfied. Hence the exact solution is unknown, which causes a
certain degree of uncertaincy exists towards the free surface, which is especially
inconvenient considering the fact that the wave kinematics reach their maximum
values near the surface.

For regular nonlinear waves, several wave theories have been developed that
can be used for various types of waves when linear wave theory is of insufficient
accuracy. Better fidelity can be achieved by applying higher order corrections to
the wave profile, which is the basic idea behind the Stokes and cnoidal theory. A
more recent attempt to describe nonlinear regular waves is a numerical Fourier
approximation method, which was developed with the objective to find a more
generally applicable method, avoiding the regions of uncertainty of the Stokes
and cnoidal theories.

In contrast to linear theory, which because of the simplifications is easy to
grasp and implement in engineering practice, nonlinear wave theories are far
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less transparent. Often, this is due to the confusing amount of coefficients and
equations involved, and the variety in mathematical formulation and definition
of reference frames, dimensionless variables and perturbation parameters that
exist in literature. After the Stokes and cnoidal theories had been extended to
fifth order more accurate results were obtained, leading to more consistent for-
mulation of the methods, as described in literature by Fenton and Goodwin et al.
[22, 23].

In the discussion of nonlinear theories for regular waves, a steady wave train
is considered, which means that the shape of the wave does not evolve in time.
This means that any high frequency waves that are superposed as higher-order
corrections are locked onto the profile of the ’primary’ wave and propagate with
the same wave speed. Below, a brief description of the three nonlinear regular
wave methods is given.

Stokes theory
In order to create a periodic wave profile that features a sharp crest and a flat
trough rather than a purely harmonic shape, Stokes (1847) proposed adding
a perturbation correction of second-order to a harmonic regular wave, with a
frequency and wave number twice that of the original wave. Fenton [24] further
extended the method to fifth-order such that the solution remains of acceptable
accuracy towards the wave breaking limit. The expression for the sea surface
elevation expanded to Nth-order is given as follows:

kη(x, t) = kd+

N∑
i=1

εi
i∑

j=1

Bij cos j(kx− ωt) +O(εN+1) (2.42)

In this approximation, ε = kH/2 is a small parameter based on the nondimen-
sional amplitude of the wave and Bij are amplitude coefficients, for which the
expressions can be found in literature [24]. Like for linear wave theory, a velocity
potential can be derived, which will yield the velocity components by taking the
gradient of the function. For an Nth-order Stokes theory, the velocity potential in
the (x, z)−plane reads:

φ(x, z, t) = UCx+ C0

( g
k3

)1/2 N∑
i=1

εi
i∑

j=1

Aij cosh jkz sin j(kx− ωt) +O(εN+1)

(2.43)
In the above formulation, Aij and C0 are coefficients and UC represents the
current velocity. The coefficients can be calculated using the water depth d, the
wave height and wave length. In general, the wave number k is not known
and has to be found numerically or by an approximation provided that the wave
period and height, depth and current velocity are known. With the wave number
known, the value of the expansion parameter ε can be calculated, after which
the surface elevation and velocity potential can be found. As the collection of
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coefficients and equations is quite extensive, they will not be stated here, but the
reader is referred to [24] or [22] instead.

It must be noted that for the shallow water limit (kd → 0), the coefficients
of the higher order terms behave as (kd)−3, which means that these terms will
dominate the solution. Because of this inconvenient complication, the effective
expansion parameter of the higher order terms has been found to be ε/(kd)−3

rather than ε [24]. Therefore, in shallow water the Stokes method tends to be-
come inaccurate and one should carefully monitor both ε and the effective expan-
sion parameter to make sure that both remain small. The range of applicability
of the Stokes wave is therefore limited by the shallowness of the water and the
breaking limit of the wave, as shown in Figure 2.9.

Figure 2.9: Range of applicability for regular wave theories. [7]

The Stokes correction to second-order is visualized in Figure 2.10. A regu-
lar harmonic wave is corrected with a wave that has twice the frequency of the
primary wave, and has an amplitude that is substantially smaller than that of
the primary wave. Provided the expansion parameter is small, higher-order cor-
rections will have progressively smaller amplitudes and thus only have a small
contribution to the final shape of the wave.
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Figure 2.10: Adding a perturbation correction of twice the frequency of the pri-
mary linear regular wave yields the second-order Stokes wave. [7]

Cnoidal theory
The second regular nonlinear wave theory that is considered here is cnoidal the-
ory, developed by Korteweg and De Vries in 1895. The Jacobian elliptic func-
tion cn(z|m) is the basis for the expressions of the wave characteristics, hence
the name cnoidal theory, where z is the argument and m the magnitude of the
cn-function. Fenton [25] showed that the effective expansion parameter in his
fifth-order cnoidal theory is H/hm, in which h is the height of the water column
below the trough. In the limit m → 1, the wave throughs become infinitely long
and the wave solution corresponds to the solitary wave. The short wave limit on
the other hand introduces problems, as the effective expansion parameter can be
shown to be proportional to (d/L)2 [22], due to which especially in deep water
the higher order terms will dominate the solution, leading to errors in the ap-
proximation. In this case, Stokes theory yields better results and therefore is the
preferred method in the short wave limit.

As the equations involved in cnoidal theory are littered with a large amount
of coefficients, stating the equations may lead to confusion rather than better
understanding of the method. Hence for more details, the reader is referred to
Fenton [22], where the most up-to-date modifications to the cnoidal theory are
presented. More information about Jacobian elliptic functions can be found in
[26].

Fourier approximation method (stream function)
Both the Stokes and cnoidal theories described above use coefficients that are
obtained by analytical approximations. Although these theories yield good re-
sults in their range of applicability, the two methods lack a uniform validity and
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thus have to be used as complementary methods in order to be able to describe
most types of weakly nonlinear waves. A numerical alternative that has a larger
range of applicability, is a collection of methods that use Fourier approximation
techniques. Similar to the Stokes theory approach a Fourier series expansion is
used to correct the sea surface profile, but rather than deriving analytical ap-
proximations for the Fourier coefficients, they are approximated numerically by
substitution of the series expansion in the nonlinear boundary conditions.

Whereas Chappelear [27] used the familiar velocity potential function in his
Fourier approximation method, Dean [28] derived a simpler set of equations
by using the stream function ψ(x, z) instead, which is valid if the flow is two-
dimensional and incompressible. The velocity components can be found by tak-
ing the curl of the stream function:

u = ∇× ψ (2.44)

The original equations of motion and the boundary conditions (Eqs. 2.24-2.27
only change slightly using the stream function. If the fluid is assumed irrota-
tional, like in potential flow the Laplace equation has to be satisfied:

∇2ψ = 0 (2.45)

The kinematic boundary conditions become:

∂ψ

∂x
= 0 at z = −d (2.46)

∂ψ

∂x
=
∂η

∂t
+
∂ψ

∂z

∂η

∂x
at z = η (2.47)

And the dynamic boundary condition reads:

∂ψ

∂t
+

1

2
|∇ψ|2 +

p

ρ
+ gη = 0 at z = η (2.48)

For consistency throughout this discussion, the equations are considered in a
stationary frame of reference, whereas in literature a moving frame of reference
that is locked to the wave is sometimes used, which allows the unsteady time
derivative in 2.48 to be omitted. An example of a stream function representation
of the equations of motion considered from a moving reference frame can be
found in [29].

As Fourier series are very capable of approximating period quantities, a series
expansion of the stream function is introduced to obtain a higher-order solution.
Rienecker and Fenton [29] approached the problem by approximating the solu-
tion of the nonlinear equations using Newton’s method, for which the numerous
equations will not be shown here to keep the discussion concise. A more simple
approach including a Fortran computer program is presented in [30]. Recently,
this numerical Fourier approximation method has been implemented in C++ by
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Fenton [31]. Due to the use of a stream function rather than a velocity poten-
tial, the Fourier approximation method is often referred to as the stream function
method.

Results show that Fouries series approximations are capable of giving accurate
solution with 10-20 terms, although higher waves may converge to the wrong
solution. This inconvenience can be solved by using a sequence of wave height
steps to achieve the desired height [22]. Considering the computer power avail-
able nowadays and the large region in which the Fourier series approach can
be applied, the method is an attractive alternative to the analytical Stokes and
cnoidal theories.

Applicability of regular nonlinear wave methods
The range of applicability of each method depends on the wave steepness and
water depth, as is shown in Figure 2.9. For waves that are short relative to the
water depth Stokes theory is accurate, while in shallower water the method fails
and cnoidal theory gives better results. Towards the demarcation line that sep-
arates the cnoidal and Stokes theory regimes both methods lose a small amount
of their accuracy [22] and converge more slowly. The Fourier approximation
method can be used in a wider range that overlaps both previous methods, only
in very shallow water cnoidal theory is to be used instead. As an aid to charac-
terize the wave, the Ursell number is often used:

Ur =
“Steepness”

“Relative depth”
=

H/d

(d/L)2
=
HL2

d3
(2.49)

Although the value of the Ursell number can give useful insight into the character
of the wave, the number itself does not give any warning that the wave breaking
criteria (Fig. 2.9) are exceeded. Therefore, the complete set of validity criteria
corresponding to each method should be carefully monitored.

2.2.6 Nonlinear wave methods for irregular waves

The most realistic description of the ocean surface and kinematics is realized if
the waves can be represented by an irregular model that accounts for nonlin-
ear interaction effects, most notably the sharper crests and flattened troughs.
Linear irregular wave theory provides a reasonable approximation, but the high
frequencies need to be omitted in order to limit the error. Unfortunately, the
extension to include nonlinearity is not straightforward and many different ap-
proaches are possible, which is the reason for the existence of a large variety of
methods. The second-order perturbation model is the most basic amongst them,
and is discussed here together with a few more sophisticated methods. Further-
more, state-of-the-art numerical wave tank approaches which employ the recent
advances in computational fluid dynamics are discussed.
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Second-order perturbation model
A nonlinear irregular wave model that has found wide acceptance is a second-
order perturbation extension of linear wave theory by Sharma and Dean [32],
still under the hypothesis of irrotational and inviscid flow. Although this method
has been derived for directional waves, the presentation here is limited to unidi-
rectional waves, to keep the expressions as concise as possible. The modified sea
surface elevation η is obtained by adding a second-order perturbation η(2) to the
first-order surface η(1):

η = η(1) + η(2) (2.50)

The first-order approximation of the sea surface level was presented in the dis-
cussion of linear irregular wave theory, and is repeated here in unidirectional
form:

η(1) =

N∑
i=1

ai cos(ψi) (2.51)

The term in the cosine has been abbreviated to ψi = kix − ωit + φi, not to be
confused with the stream function. Furthermore, the term to indicate that η is
a function of (x, t) and the underlines that was used earlier to indicate that the
amplitudes and phases are drawn from a PDF, have been omitted. The second-
order mode-coupled expansion of the wave surface reads:

η(2) =

N∑
n=1

N∑
m=1

anam
{
B−mn cos(ψn − ψm) +B+

mn cos(ψn + ψm)
}

(2.52)

where B+ and B− represent the positive and negative interaction kernels of
the sum- and difference contributions respectively, also referred to as super- and
subharmonics. Expressions for the velocity potential and kernels are omitted here
for the sake of clarity and can be found in literature, eg. [32] or [33].

The interactions can be understood by considering a sea state composed by
two wave components of almost identical frequencies. In this case, the positive
interaction term has a frequency approximately twice of the first-order wave,
and because the interaction travels with the primary wave, this results in the
well known sharper crests and flattened troughs. The negative interaction term
has a frequency of the difference of the two components, which produces a very
long wave also known as slow drift that tends to decrease the water level under
wave groups. The interaction effects become stronger in shallow water [33]. In
Figure 2.11, an irregular linear wave of 11.2 m significant wave height and a peak
period of 12 s is shown together with the second-order interaction components
it causes.

Other second-order methods and variations
Several attempts have been made to devise mode-coupled methods that are capa-
ble of modeling the nonlinear interaction between wave components. The most
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notable among these are the nonlinear Schrödinger method [34] and the Hybrid
Wave Model (HWM) [35].

The nonlinear Schrödinger method is attractive as the predictions show a bet-
ter match with measurements than linear theory with Wheeler stretching, while
the required computer power is minimal. Although the model predictions are
promising, the method has received little attention in literature.

In Figure 2.11, the nonlinear interaction effects that occur between almost
identical frequency components in an irregular sea surface are shown. This type
of interaction is handled properly by a second-order perturbation model, but
when the frequencies are completely different, phase modulation occurs which
remains unaccounted for in the second-order model. The effect of phase mod-
ulation is depicted in Figure 2.12. A phase modulation method was developed,
amongst others, by Zhang and Melville [36], to model the interactions occuring
in the case of a short wave traveling a long wave. The HWM [37] has been
devised to combine the conventional second-order perturbation model with the
phase modulation model to account for both interactions. Despite combining
both models in a sophisticated way results in an accurate prediction of kine-
matics, according to comparisons with measurements (for example [38, 39], the
method has not been widely accepted due to the semi-empirical nature of the
model [40].

Many variations of the second-order method exist, each with its advantages
and limitations. A more detailed treatment and overview of second-order and
comparable irregular nonlinear wave models is presented by Forristal [41] and
Johannessen [42].

Boussinesq irregular waves
With the methods discussed up to this point, the error made for a certain wave
steepness depends on the order of the method. Using higher-order models, waves
with a higher degree of nonlinearity can be approximated, but all methods run
into problems when the wave steepness increases to the breaking criterion. A
more computationally demanding method that can handle waves up to the point
of breaking is the Boussinesq model, named after the Boussinesq wave equa-
tions. Besides the demands on computer power, the equations involved in this
method are fairly complex, which has prevented the method from being adopted
as an engineering method [44], although the accuracy of the predictions are very
promising. Details about the Boussinesq method are omitted here and can be
found in the publication by Madsen [45].

Computational Fluid Dynamics methods
In the case of an overturning wave, neither of the mentioned methods will pro-
duce acceptable predictions as rotational and viscous effects become increasingly
important. This has lead to the development of methods that numerically approx-
imate the solution of the governing equations by discretizing the flow field on a
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Figure 2.11: An example of the second-order interactions in an irregular wave.
The solid line represents the first-order linear wave, the contribution of the pos-
itive interaction terms ( ) cause sharpened crests and flatter troughs while
the negative interactions ( ) yield a setdown of the water level during the
passage of the high wave group. [33]

Figure 2.12: Phase modulation of a short wave riding on top of a long wave. The
amplitude and the frequency of the high frequency wave increase on the wave
crest, and decrease towards the trough. [43]

3-dimensional numerical grid. These Computational Fluid Dynamics (CFD) mod-
els applied to ocean surface waves are often referred to as Numerical Wave Tanks
(NWT). Many different realizations have been published, where lots of variation
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can be found in the simplifications of the Navier-Stokes equations and the way
the fluid, including the free surface are discretized. The main objective of this
discussion is to list the types of equations such that a global understanding is
achieved. A detailed round-up of state-of-the-art methods, including a discussion
of advanced surface tracking methods as the Volume of Fluid method that can
handle overturning and splashing waves can be found in publications by Fenton
or Gopala [6, 46].

As CFD methods employ various types of governing equations depending on
the required level of detail and characteristics of the flow, it might be confusing
what level of physical detail the models actually have. To give an overview, the
most elementary forms that can be derived from the Navier-Stokes (NS) equa-
tions are presented here. In its fully time-dependent form, the NS-equations can
be discretized on a 3-dimensional grid to represent all unsteady turbulent fea-
tures of the flow. This approach is called Direct Numerical Simulation (DNS),
which requires that the governing equations are approximated up to the very
smallest spatial and temporal scales of turbulence, known as Kolmogorov scales
[47]. The essential nondimensional parameter in these scales, is the Reynolds
number:

Re =
ux

ν
(2.53)

where u and x are a characteristic velocity and length scale, respectively. The
Reynolds number can be seen as the ratio between inertial and viscous forces in
the flow and therefore gives a qualitative indication of the flow characteristics.
The computational cost is proportional to the number of time steps times the
number of grid cells. Using the Kolmogorov scales, the cost for a 3-dimensional
DNS including all features of turbulence is proportional to the Reynolds number
of the large vortices or eddies, ReL = UL

ν , as follows:

cost ∝ (ReL)3 (2.54)

where U and L are typical velocity and length scales of the large eddies respec-
tively. This implies that the number of equations to be solved and hence the
computational burden of DNS is enormous, especially for practical problems on
a full scale. This limits the application of DNS to fundamental research with low
Reynolds numbers. A slightly less demanding simulation is obtained by using
a model for the smallest eddies while the large eddies are fully simulated; this
particulary method is referred to as Large Eddy Simulation (LES).

A method that abandons the direct simulation of turbulence is based on the
Reynolds-Averaged Navier-Stokes (RANS) equations, in which a turbulent pertur-
bation is added to the variables and the NS-equations are averaged. This yields
an additional unknown, the turbulent shear stress or Reynolds stress, due to which
the method needs an auxiliary equation to provide closure. Often, the Reynolds
stress term is modeled using an expression derived from the conservation of en-
ergy law or by expressing the term as a function of an eddy viscosity. A de-
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Figure 2.13: Overview of various degrees of simplification of the full time-
dependent Navier-Stokes equations (after Gerrtisma, [48]).

tailed treatment of turbulent flows and appropriate Reynolds stress models can
be found in the book of Pope [47].

Although the RANS-equations avoid the expensive direct simulation of turbu-
lence, the models are complex and solving the system of equations remains quite
computationally demanding. By neglecting the viscosity of the fluid, vorticity of
the fluid is preserved whereas internal fluid friction is ignored, which simplifies
the equations significantly. The inviscid form of the NS-equations is referred to
as the Euler equations. A further simplification is obtained if the fluid is assumed
to be irrotational, which gives the potential flow equations. As was shown in
the derivation of equations of motion for linear theory, Section 2.2.4, potential
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flow allows the continuity equation to be written as the Laplace equation with a
velocity potential. As the boundary equations contain nonlinear terms in case of
a sea surface wave, linearization was employed to arrive at the linearized poten-
tial flow equations, which ultimately yielded the simple expressions for the wave
kinematics. A graphical illustration of the various forms of the Navier-Stokes
equations including the simplifications is presented in Figure 2.13.

The high demands on computer power and the complexity of discretizing the
flow field and the governing equations has prevented CFD models from break-
ing through as engineering methods for predicting wave kinematics. However,
quite recently a 3-dimensional potential flow method has been developed using a
finite-difference scheme on a robust multigrid [49], which has shown good agree-
ment with measurements. A very interesting development, besides the increasing
sophistication of the methods itself, is the clever use of modern computer hard-
ware by parallelizing the computations and running them on multi-core central
processing units (CPU). A very recent study has shown that graphics processing
units (GPU) take computations to a whole new level, employing the many-core
architecture of the GPU to achieve a speedup of more than an order of magnitude
compared to a single-core CPU [50], which can be considered striking at least.

2.2.7 Interaction of waves with a current
Most of the kinematic models described above are based on the assumption that
a current is absent. In tidal waters however, a current can have a significant
contribution to the velocity and hence the hydrodynamic force experienced by
a structure. Consider a wave train traveling on a steady current that has a ve-
locity UC , where the current velocity is taken positive when the current flows
with the waves. As the waves are convected with the current, an observer in a
stationary reference frame notices a change in the wave frequency. This apparent
frequency ωA is related to the relative frequency of the waves ωr observed in a
moving reference frame as follows:

ωA = ωR + kŨC (2.55)

This frequency change is recognized as the Doppler shift. The term ŨC is the
weighted depth-averaged current [51], which for an arbitrary current UC is ex-
pressed as:

ŨC =
2km

sinh kmd

∫ 0

−d
UC(z) cosh 2km(z + d) dz (2.56)

In the hypothetical situation that the current in the observation area is equal
to the current in the area where the waves were created, the wave shape and
kinematics, as observed from the relative coordinate system traveling with the
current, remain unchanged from wave theory predictions. In many cases how-
ever, current conditions change as waves propragate into a different area, causing
interaction between the current and wave properties. As this effect is difficult to
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model, wave kinematics are often superimposed to a current profile, assuming
no interaction [52].

Different types of currents can be distinguished, which generally are added
together by linear superposition. Tidal currents are often dominant as they may
reach a maximum of 1 m/s at the surface, but higher magnitudes are not uncom-
mon. The tidal current velocity profile UC,tide is a function of the depth and the
surface current and generally follows a power law [53]:

UC,tide(z) =
(

1 +
z

d

)a
· UC,tide(0) (2.57)

where a is an empirical power law coefficient. The additional current due to
wind friction at the sea surface UC,wind is usually assumed to decrease linearly
with increasing depth:

UC,wind(z) =
(

1 +
z

d

)
· UC,wind(0) (2.58)

Other contributions to the total current are due to large scale ocean circulations,
local water density differences, longshore currents due to waves breaking at angle
on the shore and extreme events like tsunamis [11].

2.2.8 Coastal effects
Especially in coastal areas, interaction of waves with physical objects have a pro-
nounced effect on the characteristics of the waves. Three phenomena that are
important in coastal waters or are considered here.

• Shoaling
When a wave approaches the coast, the water depth decreases. The wave
retains its frequency, but as the dispersion relation (2.36) remains valid, the
wave length will decrease. Additionally, as energy has to be conserved in a
vertical plane parallel to the wave crests, it can be derived [7, 9] that the
ratio of the wave height near the coast, Hd, to the wave height at infinite
water depth, H∞, is equal to:

Hd

H∞
= Ksh =

√
1

tanh kd ·
(
1 + 2kd

sinh 2kd

) (2.59)

Here, Ksh represents the shoaling coefficient. With decreasing water depth,
the wave height first decreases slightly, and finally when the depth ap-
proaches zero, in theory the wave height goes to infinity. Of course, long
before this occurs, the wave will break. The above confirms that especially
if the water depth is small with respect to the wave length, shoaling may
affect the wave height and thus the assumptions made in linear theory may
be violated.
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• Refraction
When a wave approaches a straight coastline at an incidence angle, it can
be observed that the propagation direction changes slowly, such that the
wave turns towards the coast. This phenomenon is called refraction, and
can be explained by the dependance of wave celerity on the water depth.
In Section 2.2.4 the expression for the wave celerity was derived using the
dispersion relation, and is repeated here for completeness:

c =

√
g

k
tanh kd (2.60)

As the water depth varies in the direction parallel to the wave crests, this
relation shows that the part of the wave that is in relatively shallower water
is slowed down, which effectively turns the wave towards the coast.

• Diffraction
The phenomenon of diffraction can be shown by considering a unidirec-
tional wave train traveling through water with a uniform depth, approach-
ing a straight breakwater or headland that extends into the sea (see Figure
2.14). Diffraction causes the waves to enter the shadow zone behind the
headland in a circular pattern, and as the energy of the waves entering the
shadow zone is spread over a large region, the amplitude of the waves de-
cays quickly. The influence of diffraction on wave behaviour is not limited
to large scale land extensions, also near an offshore structure with a signif-
icant characteristic length compared to the wave length, the kinematics are
influenced by diffraction [13].

Figure 2.14: The phenomenon of diffraction around a headland. Waves propa-
gate into the shadow zone in an almost circular pattern, with a strongly decaying
amplitude. [7]
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2.3 Wave kinetics
The previous section dealt purely with the problem of obtaining expressions for
the velocity and acceleration of the water below a given sea surface profile, where
the interaction of the fluid with physical objects was completely ignored. In the
end, the objective of this research is to study the dynamic response of a wind
turbine due to wave loading using more sophisticated wave models, therefore
this section is devoted to obtaining the forces that are caused by the interaction
of the fluid with the monopile support structure. In current offshore engineering,
the two most widely used methods are the empirical Morison equation for slender
structures where viscous effects play an important role, and diffraction theory
based on potential flow for structures where diffraction effects dominate [54].

Except for diffraction dominated flows, the effect of fluid viscosity has a sig-
nificant effect on the characteristics of the flow around a monopile, and hence
on the exerted hydrodynamic force. The formation of an unsteady and turbulent
wake with large eddies makes any method that ignores fluid viscosity and rota-
tion inadequate. Hence, when considering flow problems that are not dominated
by diffraction, including viscous effects is of fundamental importance, which indi-
cates the desire to be able to perform a full approximation of the NS-equations by
DNS (see Section 2.2.6). However, the astronomical computational demands of
CFD solutions like DNS or even slightly simplified RANS methods make them
infeasible for large scale practical use. Although increasing computer power
will eventually make sophisticated solutions based on approximations of the NS-
equations feasible in the future, the main focus of the discussion of wave kinetics
will be put on the existing engineering methods and the concept of CFD is kept
in mind.

The discussion of wave kinetics is started with a simple steady 2-dimensional
flow around a cylinder, to illustrate important viscous flow effects like the bound-
ary layer, flow separation and vortex shedding. Then, the problem is extended to
an unsteady 2-dimensional flow, which introduces an additional inertia force due
to fluid accelerations. Also, the Morison equation is introduced as an empirical
method to estimate hydrodynamic forces due to drag and fluid inertia. Finally,
the full 3-dimensional problem of a monopile subject to wave motion is consid-
ered, in which the effects of marine growth and diffraction are addressed and
diffraction theory is presented. Finally, the range of applicability of the Morison
equation and diffraction theory is discussed.

2.3.1 Steady viscous flow around a 2-dimensional cylinder
The steady flow around a 2-dimensional cylindrical object is a classic problem in
the study of fluid dynamics, and although the object itself is straightforward, the
complexity of the governing Navier-Stokes (NS) equations (Eqs. 2.18 and 2.19)
has prevented the development of a simple but physically sound solution for the
force acting on the cylinder. In linear wave kinematics, the NS-equations were
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Figure 2.15: Lift and drag forces acting on a cylinder in a two-dimensional flow.

simplified to potential flow relations based on an (unphysical) idealized rotation-
free and inviscid fluid, which resulted in a simple solution with acceptable ac-
curacy in deep water. In a steady flow these fluid idealizations make absolutely
no sense, since ignoring fluid viscosity will result in a friction free flow, which
means that a drag force remains absent. This theoretical phenomenon is known
as D’Alembert’s paradox.

For the introduction to viscous fluid flow, consider a 2-dimensional circular
cylinder of a diameter D submerged in a fluid with a steady velocity U and a
kinematic viscosity ν, as illustrated in Figure 2.15. The resistive drag force per
unit cylinder length fD is defined in the direction of the flow, while the lift force
per unit length fL represents the force component acting perpendicular to the
flow. The ratio between inertia and viscous forces is represented by the Reynolds
number, which for a circular cylinder is given by:

Re =
UD

ν
(2.61)

The drag and lift force per unit cylinder length can be expressed as a function
of the empirical, dimensionless drag and lift coefficients Cd and Cl, times the
dynamic pressure q = 1

2ρu
2 and the frontal area D:

fD =
1

2
ρCdDu

2 and fL =
1

2
ρClDu

2 (2.62)

As the dimensionless coefficients are only dependent on the Reynolds number
and a vast amount of measurement data on cylinders is available in literature, the
drag force in a steady flow can be predicted rather well. A typical (Cd−Re)-curve
for a 2-dimensional cylinder steady flow is shown in Figure 2.16, where a large
variety in the value of Cd can be observed. To understand these large differences,
understanding of the development of instabilities in the thin boundary layer on
the upstream side of the cylinder and the related effects of flow separation are
elementary. Below, these viscous effects are addressed.
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Boundary layers and flow separation
When a fluid flows over a flat horizontal surface, it needs to satisfy the no-slip
condition, which requires the horizontal fluid velocity to be zero on the surface.
This condition yields a velocity gradient in a thin layer above the surface that is
dominated by shear forces due to viscosity, the boundary layer. The skin friction
experienced on the surface is proportional to the velocity gradient in the direction
normal to the surface. In the outer flow above the boundary layer, the viscous
effects are almost negligible. As the flow evolves in space, the boundary layer
grows in thickness and small instabilities appear on the surface. In an early stage
the boundary layer is laminar, which means that the instabilities are dampened
out. Further down, the instabilities will be amplified up to the point where larger
scale vortices appear throughout the boundary layer. This is the transition point,
after which the boundary layer rapidly grows thicker and the flow inside the
boundary layer is turbulent.

The development of the boundary layer over a flat plate in a flow with an
external flow velocity ue is shown in Figure 2.17. Here, the transition point is
marked as xtr. The position of the transition point is influenced by many vari-
ables, such as the Reynolds number, the pressure gradient, the level of turbulence
in the incoming flow and the roughness of the surface, amongst others. The exact
point of transition is hard to predict due to the many factors that play a role in
the onset of turbulence, although some methods exist to make an approximation
(see [55]).

When fluid flows over a convex surface rather than a flat plate, an adverse
pressure gradient can cause the flow to separate from the surface. This causes a

Figure 2.16: Drag coefficient of a cylinder in 2-dimensional steady flow as a func-
tion of the Reynolds number (after Sarpkaya, [13]). More details about the flow
characteristics in the different Reynolds number regions can be found in Table 2.1.
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Figure 2.17: The development of a boundary layer over a flat plate.

backflow at the surface downstream of the separation point and the formation of
a turbulent wake with large eddies behind the object. Although the skin friction
drag may even be negative locally due to backflow at the surface, the pressure
drag caused by the turbulent wake increases the total drag force on the object sig-
nificantly. The location of the separation point largely depends on the Reynolds
number, but also the state of the boundary layer has a massive impact on flow
separation.

To illustrate this, consider the cylinder in a 2-dimensional flow again, for
which the drag coefficient as a function of the Reynolds number is presented in
Figure 2.16. In the subcritical low Reynolds number flows range (Re < 1·105), the
boundary layer is laminar up to the point of flow separation. For a narrow critical
range of somewhat higher Reynolds numbers (1·105 < Re < 3.5·106), the flow still
undergoes laminar separation but shortly downstream of the separation point, the
boundary layer transitions to a turbulent state after which the flow will reattach
to the surface. This turbulent reattachment is made possible by the better mixing
characteristics of the turbulent boundary layer. The small region of separated
flow between laminar separation and turbulent reattachment is known as the
laminar separation bubble. Further downstream, the turbulent boundary layer
will eventually fail to follow the curvature of the cylinder, after which the flow
completely separates and a wake is formed. As turbulent reattachment reduces
the width of the wake, the drag coefficient drops significantly. This critical region
of reduced drag is also known as the drag crisis. In the supercritical range of
higher Reynolds numbers (Re > 3.5·106), the transition to a turbulent boundary
layer has moved upstream of the separation point, such that the flow undergoes
turbulent separation and the drag coefficient rises slightly. An overview of the
character of the flow for various Reynolds numbers is presented in Table 2.1.

Like the prediction of transition to turbulent flow inside a boundary layer, the
dependance of the onset of flow separation on the Reynolds number, turbulence
level of the flow, surface roughness and many more factors, the exact position of
the separation point is hard to predict.
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Vortex shedding
As can be observed in Table 2.1, for very low Reynolds numbers the wake behind
a cylinder is stable. For most practical situations however, Reynolds numbers
are much higher and the wake becomes unsteady. Even while the incoming flow
may be perfectly steady and laminar, separation creates vortices on the upper
and lower side of the cylinder, that move away from the cylinder in an alternating
pattern. This phenomenon, called vortex shedding, causes an unsteady assymetric
pressure distribution about the x-axis which in turn yields an oscillating lift force
acting on the cylinder.

Apart from the critical Reynolds number regime (105 < Re < 3.5 ·106), the
vortex shedding occurs at a preferred frequency which depends on the velocity of
the ambient flow and the cylinder diameter. The vortex shedding frequency of a
body at rest fst can be represented as a nondimensional number by the Strouhal
number:

St =
fstD

U
(2.63)

Like the drag coefficient, the Strouhal number depends on the Reynolds num-
ber, although the variation is less pronounced. A graph with the approximate
preffered Strouhal number as a function of the Reynolds number is shown in Fig-
ure 2.18. Although the Strouhal number is fairly well known outside the critical
Reynolds regime, the lift coefficient is very scattered, even for constant Reynolds
numbers. The variation is especially present in the high subcritical regime where
lift coefficients have shown to range from 0 to 1.4 in experiments, which is mainly

Figure 2.18: Strouhal number of a cylinder in 2-dimensional steady flow as a
function of the Reynolds number. [13]
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Table 2.1: The different flow characteristics of 2-dimensional cylinder flow for
various Reynolds numbers (after Schlichting, [56]).

Reynolds
number regime Flow regime Flow form Flow characteristics

Re→ 0 Creeping flow Steady, no wake

3-4 < Re < 30-40 Vortex pairs in
wake

Steady, symmetric
separation

30-40 < Re < 80-90
Onset of
Karman vortex
street

Laminar, unstable wake

80-90 < Re < 150-300 Pure Karman
vortex street Karman vortex street

150-300 < Re < 1 · 105 Subcritical
regime

Laminar, with vortex
street instabilities

1 · 105 < Re < 3.5 · 106 Critical regime

Laminar separation
Turbulent reattachment
Turbulent separation
Turbulent wake

Re > 3.5 · 106 Supercritical
regime Turbulent separation

caused by the strong dependance of separation behavior on the amount of free-
stream turbulence [13]. The large scatter makes a prediction of the oscillating
lift force by the use of a lift coefficient very prone to errors.

2.3.2 Unsteady viscous flow around a 2-dimensional cylinder
Although the vortex shedding described above clearly is an unsteady phenomenon,
it occurs even in a completely steady turbulence-free ambient flow. When we
consider an unsteady flow, for example an oscillatory flow due to wave motion,
wake formation due to separation and vortex shedding remain to occur, but as
the Reynolds number varies throughout the flow cycle, the behavior of separa-
tion and vortex shedding becomes increasingly difficult to predict. Furthermore,
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as the turbulent wake formed in the first stage of the cycle may be swept past
the cylinder again during the return stage, the history of the motion introduces
yet another complication which makes the prediction of a simple drag coefficient
something that is very likely to produce large errors.

Besides the effects of varying initial flow conditions and changing flow char-
acteristics during the cycle, an object in an unsteady flow experiences an addi-
tional force in the flow direction that is not experienced in steady flow, due to the
presence of accelerations in the fluid motion. Below, this acceleration force is ad-
dressed and an extension of the empirical drag relation (Eq. 2.62) that includes
this force, known as the Morison equation, is presented.

Added inertia and the Morison equation
The additional drag force due to fluid acceleration can be understood best if an
object in a stationary medium is considered. When the object is accelerated, one
experiences that the required force is higher than what would be expected based
on Newton’s second law and the instantaneous drag force due to the object mo-
tion. In other words, the object appears to have an added mass, but of course as
mass is conserved the actual mass of the object stays constant. What is experi-
enced here is a force required to accelerate the fluid surrounding the object, or
alternatively to achieve a change in fluid inertia or kinetic energy. As this change
can be negative as well, the term added inertia is more appropriate than added
mass.

The relative contribution of added inertia to the total force in flow direc-
tion depends on the magnitude and direction of the acceleration compared to
the viscous drag force. In the case of an oscillating flow around a stationary 2-
dimensional cylinder, the ratio between drag and inertial forces is expressed by
the dimensionless Keulegan-Carpenter number:

KC =
U0T

D
(2.64)

where T is the period of the oscillating flow and U0 the maximum fluid velocity
during the cycle. For a stationary body, the inertial force per unit cylinder length
fI can be expressed as the function of a dimensionless inertia coefficient Cm, the
fluid density ρ, the body volume per unit cylinder length (cross-sectional area)
V ′b and the fluid acceleration u̇ = ∂u

∂t :

fI = ρCmV
′
b u̇ = ρCm

πD2

4
u̇ (2.65)

For a body that moves with the oscillating flow, the expression becomes slightly
more complicated. This can be explained by splitting the inertia force fI into two
terms:

• Froude-Krylov force: Regardless whether or not a body is present in the
flow, a pressure gradient will exist in an oscillatory flow. A fluid acceleration
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changes the pressure distribution, which gives rise to the Froude-Krylov
force (ρπD

2

4 u̇).

• Hydrodynamic added mass force: The presence of a body modifies the
flow, which causes a hydrodynamic force. When besides the fluid, the body
itself undergoes an acceleration ẍ, this force is proportional to the relative
acceleration (ρCa πD

2

4 (u̇− ẍ))

Body motion thus only influences the added mass force, which is written in terms
of the added mass coefficient Ca. In case of a stationary body, the terms can be
combined, hence it is recognized that the inertia coefficient Cm is related to Ca
as:

Cm = 1 + Ca (2.66)

Using this definition, the total inertia force can be rearranged to the following
expression:

fI = ρ
πD2

4
[Cmu̇+ (1− Cm)ẍ] (2.67)

Recognizing the contributions of viscous and inertial forces to the total in-line
resistive force, Morison et al. [3] were able to devise a simple empirical relation
using the formulations drag and added inertia forces with dimensionless coeffi-
cients (Eqs. 2.62 and 2.65), which has become widely known as the Morison
equation. Using the

fMorison = fI + fD = ρCm
πD2

4
u̇+

1

2
ρCdD |u|u (2.68)

where the absolute sign in the drag term make sure that the direction of the force
is preserved and Cm and Cd are the cycle-averaged force coefficients. Besides
dependance on the Reynolds number, both force coefficients are also a function
of the Keulegan-Carpenter number. The representation of inertial and drag forces
by simple relations with empirical coefficients gives the suggestion that the two
are not related and thus they can be added together in a linear fashion, which is
the principle behind the Morison equation. However, it should be stressed that
both forces modify each other, as the state of the wake and viscosity influence
the inertial force and in turn fluid inertia affects the drag force [13]. Although
this linear addition of the two force components is physically incorrect, a better
formulation that satisfies hydrodynamic principles and is able to account for both
viscous and inertial forces has not been devised yet.

Because of the strong dependance of the inertia and drag coefficient on Re
and KC and on the roughness of the monopile, determination of cycle averaged
values for the coefficients is a difficult task, although measurements and the in-
troduction of the number β = Re

KC by Sarpkaya yielded some useful graphs to esti-
mate the values for flows up to the critical Reynolds regime (see [57] or [13]). In
practical applications however, Reynolds numbers are often higher, which means
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that coefficients from laboratory measurements are inadequate. Therefore, force
coefficients are often determined based on experience and design standards [58],
which are discussed in Section 2.5.

2.3.3 Flow around a 3-dimensional monopile due to wave mo-
tion

So far, merely steady and unsteady 2-dimensional flow around a circular cylinder
were considered in order to isolate fundamental phenomena that also occur in a
real 3-dimensional flow caused by wave motion around the monopile foundation
of an offshore wind turbine. As was observed in Section 2.2, the particle velocity
and acceleration below a wave is a function of depth and time. The result is
that the Reynolds number and hence separation behavior and vortex shedding
frequency are also a function of depth and time. As vortices are continuous in the
vertical direction, similar to a tornado that may occur in an unstable atmosphere,
this obviously creates highly complex 3-dimensional vortical structures that may
interact with each other and affect the flow in a way that simply can not be
expressed by an empirical relation like the Morison equation. Furthermore, as
fluid motion below a wave is morealess circular or ellipsoidal, the particle velocity
is far from purely horizontal which further complicates the problem.

The Morison equation fails to give a physically correct description of the flow,
but considering the fact that a more physical approach which is less complex and
computationally demanding than a typical CFD approximation does not exist,
using the Morison equation is the only feasible option in many situations. Using
the expressions from previous sections, the Morison equation can be modified
to include currents and structure movement. As discussed in Section 2.2.7, a
current is assumed to only cause a Doppler shift in the apparent wave period
while the kinematics of the waves remain unaffected. The current can therefore
simply be added to the wave velocity, whereas the local monopile velocity ẋ has
to be subtracted such that the effective relative water velocity is used to calculate
the drag force. The acceleration of the monopile ẍ can be taken into account
using the expression of the inertial force as presented in Section 2.3.2. Including
the current and the motion of the monopile yields the modified Morison equation
for the in-line force per unit length:

fMorison = ρ
πD2

4
[CM u̇+ (1− CM )ẍ] +

1

2
ρCDD |u+ UC − ẋ| (u+ UC − ẋ)

(2.69)
Although the current has been added to the total apparent velocity in a linear
fashion, the relative strength of the current with respect to the wave induced
velocity may have significant influence on the character of the flow. Suppose the
current velocity is comparable to the wave particle velocities, the flow will have
an intermittent rather than an oscillatory character. As the flow is moving in the
same direction for a longer sustained time and maximum velocities are higher,
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vortex shedding and wake development are promoted. This leads to a higher
importance of viscous drag effects and different values for the force coefficients,
which should thus be chosen with the effect of the current in mind.

Vortex shedding
The Morison equation provides an approximation for the in-line hydrodynamic
load, but as was shown above, vortex shedding introduces transverse forces as
well. Especially in situations in which a steady current dominates the flow or
when the wave period is large (high Keulegan-Carpenter number), vortex shed-
ding can yield significant lift forces which cause vortex induced vibrations (VIVs)
in the support structure. When the vortex shedding frequency corresponds to
a natural mode of the support structure, lock-on occurs, which means that res-
onance of the structure amplifies the VIVs. As the vortex shedding frequency
varies with depth and time, only a section of the monopile will undergo lock-on
for a certain amount of time, given that vortex shedding develops sufficiently and
reaches the lock-on frequency.

In Figure 2.19, the wave-induced velocity, development of the transverse lift
force and the vortex shedding response due to this force are shown as a function
of time, during the passage of a regular wave. It can be seen that the response
due to the vortex shedding induced lift force is mostly damped, only when lock-
on occurs the response is amplified. To estimate the lift force, an approximate
relation similar to the empirical lift equation 2.62 may be used, although the
dependance on the vortex shedding frequency makes the approximation fairly
difficult. The modeling of vortex shedding induced forces is considered to be
outside the scope of this thesis, the reader is referred to literature [59, 13] for a
more detailed discussion and a suitable modeling approach.

Influence of marine growth on the hydrodynamic force
On the surface of an offshore support structure various forms of marine excres-
cences can grow during its lifetime, which significantly roughen the surface of
the structure. The geographic location of the site is important, as different ocean
climates have different types of marine growth, ranging from hard mussels to
soft seaweeds that may sweep back and forth with the waves.

Marine growth has a few influences on the loading on an offshore structure.
First, the effective diameter of the structure increases, which causes a higher
drag and inertial force due to the larger frontal area and displaced fluid vol-
ume. Second, the increased roughness causes a higher drag coefficient in the
supercritical Reynolds regime, due to early transition to a turbulent boundary
layer and higher profile drag of the surface itself. Third, separation behavior is
strongly influenced by local roughness effects and the early transition to turbu-
lent flow, hence the vortex strength, time-dependent lift force and the structure
of the wake are different [60]. Fourth, the mass added by the marine growth
and the increased effective diameter cause a reduction of the natural frequency

CONFIDENTIAL



48 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.19: The development of the lift force and structural response due to vor-
tex shedding during the passage of a regular wave. Top: wave-induced velocity.
Middle: lift force due to vortex shedding. Bottom: response, showing amplifica-
tion (lock-on) when the forcing frequency corresponds to a natural mode of the
structure. [11]

of the support structure [61, 13]. Finally, considering the difference between soft
and hard growth, a cylinder covered in long seaweed has shown to experience
significantly higher forces, because the motion of the weed with the flow has an
additional inertial effect on the loading [13].

Simply accounting for marine growth by using force coefficient values from
measurements on cylinders in a steady flow would be inappropriate, as an oscil-
latory flow has shown to have a different effect of roughness on hydrodynamic
loading [62]. The influence of roughness on the coefficients CD and CM is of-
ten presented in graphs where for different values of the relative roughness the
coefficient is plotted against the Reynolds number. The relative roughness e is
defined as the typical roughness height of the marine excrescence k divided by
the cylinder diameter D:

e =
k

D
(2.70)

Typical graphs for both coefficients can be found in [13]. An overview of the dif-
ferent types of marine growth and a typical growth profile as a function of depth
for a foundation in the North Sea is presented in [63]. Good knowledge of the
type and amount of marine growth and the appropriate force coefficients is im-
portant as the highest amount of growth is found near the sea surface, where the
wave kinematics reach their peak values and hence the influence on the loading
is the most significant.
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Diffraction effects and diffraction theory

Especially for structures that are relatively large with respect to the wave length,
diffraction effects significantly alter the form of the wave field in its vincinity.
As a rule of thumb, diffraction effects should be taken into account when the
diffraction parameter (πD/L) is larger than 0.5 [58]. A slightly different defini-
tion of the diffraction parameter in which π is omitted, is sometimes found in
literature as well [53]. It can also be concluded that for diffraction dominated
flows, the Keulegan-Carpenter number is small, and hence viscous effects are less
significant, which raises the question whether a different kinetic model than the
Morison equation would be more appropriate. Diffraction theory is a method
which exploits the insignificance of turbulence in diffraction dominated flows
and focusses on the inertial forces due to accelerations in the flow.

If the viscous effects and fluid vorticity are assumed to be completely negligi-
ble, the interaction of waves with the structure can be modeled with a simplified
potential flow, where a velocity potential satisfies the Laplace equation ∇2Φ = 0.
The surface of the structure is replaced by a finite number of panels that each
carry a source, hence the method is often referred to as the panel method, or in
offshore engineering as the Boundary Element Method (BEM). The sources on
the individual panels are of such strength that the impermeability condition of
the body is satisfied:

∂Φ

∂n
= 0 at body surface (2.71)

where ∂
∂n represents the gradient normal to the surface panel. The simplest solu-

tion is obtained when linear diffraction is assumed, in which the boundary condi-
tions from linear wave theory (Section 2.2.4) and the additional impermeability
condition at the body surface define the problem. The procedure then is to write
the velocity potential Φ as the linear sum of an “incident-wave” potential Φw and
a “scattered-wave” potential Φs, which both satisfy the boundary conditions.

Force components can be found from the pressure distribution, which is de-
rived from the linearized Bernouilli equation and is a function of the time-derivative
of the velocity potential and the hydrostatic fluid pressure. It must be emphasized
once more that because the force only includes inertial contributions, as viscous
drag forces due to friction and wake formation are ignored, the method is only
applicable in the diffraction dominated regime. Solutions for diffraction theory
applied to a circular cylinder and higher-order diffraction methods are presented
in Sarpkaya [13].

In order to account for linear diffraction effects in the Morison equation, the
empirical MacCamy-Fuchs correction [64] can be applied to the inertia force.
This correction comprises a modification of the inertia coefficient CM and a
phase-lag on the inertia force. This modified force coefficient Ĉm and phase-lag
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φMCF are a function of the diffraction parameter (kD/2) and are given as:

ĈM =
4

π(kD/2)2

√
[J ′1(kD/2)]

2
+ [Y ′1(kD/2)]

2
(2.72)

φMCF = arctan
J ′1(kD/2)

Y ′1(kD/2)
(2.73)

where J ′1 and Y ′1 are the derivatives of the first order Bessel function of the first
and second kind, respectively. In Figure 2.20, Ĉm and φMCF are shown as a func-
tion of the diffraction parameter (kD/2). The modified inertia coefficient ĈM is
calculated for the theoretical value of CM in potential flow, CM = 2 [13]. It can
be observed that the modification to the inertia coefficient effectively works as a
low-pass filter on the inertia force.
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Figure 2.20: The MacCamy-Fuchs diffraction correction for the inertia coefficient
CM (a) and phase lag φMCF (b) as a function of the diffraction parameter (kD/2).

Range of validity of the Morison and diffraction methods
The above mentioned value of the diffraction parameter that separates the regime
of validity of the Morison equation and diffraction theory (πD/L = 0.5) is not
hard. In fact, a somewhat different definition is used in literature as well, sug-
gesting a demarcation line at (D/L) = 0.2 [53]. For the individual methods,
several regimes can be identified to indicate the dominant features in the flow, as
is shown in Figure 2.21. The lower right part of the graph indicates that diffrac-
tion theory should be used, while left of the demarcation line at (πD/L) = 0.5
the Morison equation is more appropriate. For low wave heights with respect
to the structure diameter, drag forces are small or even negligible, while for high
wave heights inertia becomes less significant. Identifying the regime in which the
Morison equation is used is helpful to determine which coefficient is dominant
and should thus be chosen with care.
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Figure 2.21: Regimes of dominant forces in hydrodynamic wave loading. Here,
the wave length is represented by λ. [11]

2.4 Offshore wind turbine response dynamics
The final objective of this thesis is to quantify the influence of using more so-
phisticated wave models and the relative motion of the support structure on the
dynamic response of the offshore wind turbine system. In order to be able to
critically assess this influence, fundamental knowledge of structural modeling
and response dynamics is required. This section therefore serves as a very global
introduction to these topics. First, a simple structural model is introduced and ba-
sic response characteristics are discussed and typical excitation frequencies and
natural frequencies of the wind turbine system are presented. Second, the fre-
quencies are compared to illustrate the options for the support structure stiffness
in the design space and damping forces that attenuate the response are discussed.

2.4.1 Support structure dynamics
A simple way to model the support structure of an offshore wind turbine is to
consider it as a clamped pile on which the rotor and nacelle are represented by
a point mass M , as depicted in Figure 2.22a. The pile has a certain Young’s
modulus E, moment of inertia I and a mass per unit length µ. The structure sup-
porting the mass can alternatively be modeled as a large number of coupled mass
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elements that are connected to a fixed wall by a spring and a viscous damper. To
introduce response dynamics, a single spring-mass-damper system is considered,
where the motion of the mass is restricted to translation in line with the spring
and the damper. This simple system is therefore referred to as a single degree-of-
freedom (DOF) system. An example of such a spring-mass-damper system, loaded
by a time-dependent force f(t), is shown in Figure 2.22b. The response of this

M

µ
EI

(a) (b)

Figure 2.22: Simple structural model of an offshore wind turbine (a) and an ele-
ment of the support structure modeled as a mass connected to a wall by a spring
and a damper (b). [66]

simple single DOF system is governed by the following equation of motion:

Mẍ+ Cẋ+Kx = f (2.74)

Here, x represents the relative position of the mass with respect to its position in
rest, C is the damping coefficient and K denotes the spring stiffness. To illustrate
the different types of forced response behavior that this mass-spring-damper sys-
tem can show, a simple harmonic force f(t) is applied to the mass, which results
in a harmonic excitation x(t). As shown in Figure 2.23, responses characteristics
can be divided into three categories:

a) Quasi-static
For a harmonic force lower than the natural frequency of the system, the
mass responds with an excitation that is similar to the response due to a
static load. The mass follows the time-dependent force almost instantly,
without significant phase lag.

b) Resonance
When the force is applied with a frequency close to the system’s natural
frequency, the inertia and spring force almost cancel. The excitation is
therefore significantly larger than in the quasi-static case, and the amplifi-
cation of the response is only limited by the amount of damping present in
the system. The phase lag of the resonating system compared to the force
is around 90 degrees in this narrow regime.

c) Inertia dominated
For a force with a higher frequency than the natural frequency of the sys-
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tem, the system inertia prevents large excitations as the mass cannot follow
the force anymore. The amplitude of the excitation is therefore very limited
and almost in counter-phase with the force.
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2.7 Dynamics of offshore wind turbines 

2.7.1 The basics of dynamics 

The importance of proper modelling of the structural dynamics can be most 
conveniently illustrated by considering a single degree of freedom mass-spring-damper 
system as shown in Figure 2.41.  A complete offshore wind turbine system can be 
thought of as being constructed of a number of coupled multi degree-of-freedom mass-
spring-damper systems [32]. 

 
 
 
 
 
 
 
 

Figure 2.41 Single degree of freedom mass-spring-damper system 

 
When a harmonic excitation F(t) is applied to the mass, the magnitude and phase of 

the resulting displacement x strongly depend on the frequency of excitation f. Three 
steady state response regions can be distinguished as shown in Figure 2.42: 

a) Quasi-static 
b) Resonance 
c) Inertia dominated. 
 
 
 
 
 
 
 
 
 

Figure 2.42 a) Quasi-static b) resonant and c) inertia dominated response 
Solid blue line: excitation, dashed red line: displacement 

 
For frequencies of excitation well below the natural frequency of the system, the 

response is quasi-static, as illustrated in Figure 2.42a: the displacement of the mass 
follows the time varying force almost instantaneously, as if it was excited by a static 
load. Figure 2.42b shows a typical response for frequencies of excitation within a 
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Figure 2.23: Response types of the forced mass-spring-damper system from Figure
2.22b. The blue lines represent the applied harmonic force, while the red lines
show the excitation of the mass. Response types that can be distinguished are: a)
Quasi-static b) Resonance c) Inertia dominated. [67]

The amplification and phase lag of the response of the single DOF system can
alternatively be shown in the frequency domain. In Figure 2.24 the dynamic
amplification factor (DAF) and the phase lag are plotted against the excitation
frequency, which is normalized with the system’s natural frequency. The DAF
indicates the amplification of the dynamic response with respect to the response
to a static load of the same magnitude. Clearly visible in these graphs are the
sharp amplification peak and the sudden change in phase lag when the frequency
of the force is close to the natural frequency of the system. Although adequate
damping can prevent excessive amplification of the excitation, time-varying loads
need to be assessed carefully, especially if the frequency is close to the natural
frequency of the system. This can result in an extreme load cases or even failure,
but perhaps even more important is the impact on fatigue life of the structure
when high cycle fatigue loads operate in the critical frequency range.

Rotor and blade dynamics
Besides the dynamics of the tower, the response of an offshore wind turbine is
also influenced by the rotor. The first excitation frequency of the rotor is the
rotation frequency, often referred to as 1P. This excitation can be experienced if
there is a mass unbalance in the rotor, which introduces an oscillating loading in
the rotation plane. A second important excitation frequency is the blade-passage
frequency or NbP, where Nb is the number of rotor blades. This excitation mode
represents the response when a blade passes a disturbance in the flow, for ex-
ample the tower or a local turbulence or wind shear field, which temporarily
changes the load on the blade. Higher frequency modes are due to flapping and
lead-lag bending of the rotor blades, the latter referring to the elastic back and
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narrow region around the system’s natural frequency. In this region the spring force and 
the inertia force (almost) cancel, producing a response that is a number of times larger 
than it would be statically. The resulting amplitude is governed by the damping present 
in the system. For frequencies of excitation well above the natural frequency, the mass 
cannot “follow” the excitation any more. Consequently, the response level is low and 
almost in counter-phase, as illustrated in Figure 2.42c. In this case the inertia of the 
system dominates the response. 

 
Figure 2.42 illustrates the general fact that, in steady state, a sinusoidal input applied to 

a linear system generates a sinusoidal output at the same frequency, which differs in 
magnitude and phase.  

The magnitude and phase modifying property of linear systems can be summarized by 
a plot of the dynamic amplification factor (DAF) and the related phase lag. The DAF 
depicts the ratio between the dynamic response magnitude and the static response 
magnitude due to the same magnitude of loading. Figure 2.43 shows the DAF and phase 
lag plot of the single degree of freedom system depicted in Figure 2.41.  
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Figure 2.43 Upper figure: dynamic amplification factor per normalised frequency 

lower figure: phase lag versus normalised frequency 

 
The peak in Figure 2.43 corresponds to the system’s natural frequency. The height of 

the peak is determined by damping. Therefore any resonant problem can be 
counteracted with adequate damping. In dynamics, the frequency of excitation is at least 
as important as its magnitude. Resonant behaviour can cause severe load cases, even 
failure, but is most feared because of potential fatigue problems. For structures where 

Figure 2.24: The dynamic amplification factor (top figure) and the phase lag (bot-
tom figure) of the excitation versus the normalized frequency. [67]

forth motion of the blade in the rotation direction.
In case the rotational speed of the rotor is constant and does not depend on

the wind speed, the 1P and NbP frequencies are constant, but when the rotor
speed is variable the frequencies are proportional to the wind velocity, which
makes the design envelope slightly more complex. In order to compare the exci-
tations with the natural frequencies of wind turbine components, the Campbell
diagram (Figure 2.25) is used to depict the frequencies as a function of the wind
velocity. As a wind turbine is only producing energy and hence the rotor is only
operational in the wind regime between the cut-in and cut-out wind velocity, vci
and vco respectively, the 1P and NbP frequencies are only relevant inside this
regime.

2.4.2 Support structure stiffness and damping
To avoid resonance of the support structure with the 1P and NbP frequencies,
the support structure should be designed such that its stiffness does not result
in a natural frequency that is close to the 1P and NbP frequencies. The stiffness
depends on the elastic modulus of the material E, the moment of inertia of the
cross section I and the length of the structure L.

Three approaches for the tower stiffness are available to avoid coinciding
frequencies. First, a very stiff structure can be used, with a natural frequency well
above the 1P andNbP frequencies. To achieve this stiff-stiff design, a high support
structure diameter is required, which makes the procurement of the structure
more difficult and causes higher wave loads. A soft-stiff design with a natural
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vci vco

Figure 2.25: The Campbell diagram, showing the natural and excitation frequen-
cies of an offshore wind turbine as a function of the wind velocity. After Nijssen,
[68]

frequency that lies between the 1P and NbP frequencies will result in a more
slender structure, but especially when the rotor speed is variable, the frequency
interval may be small or even absent. In theory this would render a design in this
region infeasible, however, by tuning the rotor controller such that the natural
frequencies are skipped, a soft-stiff design can be realized after all. Finally, a
soft-soft structure has a natural frequency lower than the 1P and NbP frequencies
and therefore is more sensitive to resonance due to wave loads, as these typically
have a low frequency.

Attenuation of the response
Except for excitations in the resonance regime, several factors will damp the re-
sponse of the support structure. Even if no external damping forces act on the
structure, an unforced oscillation will decay due to energy losses in the elastic
deformation of the structure. External forces that attenuate the structural re-
sponse include hydrodynamic damping of the submerged section of the support
structure, damping of the foundation due to interaction of the structure with the
soil and aerodynamic damping from the rotor.

When excitations of the support structure are in line with the wind direction,
the motion is slightly damped by a temporal change in the aerodynamic force.
Assuming the rotor blades instantly follow the motion of the support structure,
the motion of the blade introduces a change in the angle of attack of the incom-
ing flow, which results in a different aerodynamic force. As the angle of attack
increases when the blade translates towards the wind, the aerodynamic force in-
creases, which effectively opposes the direction of motion of the structure. Vice

CONFIDENTIAL



56 CHAPTER 2. THEORETICAL BACKGROUND

versa, a motion in the direction of the wind results in a decrease of the aero-
dynamic force. Hence, the change in aerodynamic force due to structural mo-
tion acts as a convenient damping force if the motion is aligned with the wind.
When the motion is strongly misaligned with the wind direction, aerodynamic
damping is absent and the structural response can be significantly more severe.
Misalignment occurs when wave loads are dominated by a swell that propagates
perpendicularly to the wind direction.

Except for the wind-wave misalignment case, aerodynamic damping domi-
nates the attenuation of the wind turbine response. The influence of structural,
hydrodynamic and soil damping are assumed to be comparable and small [69],
although recent research suggests that the soil has a larger effect on damping
than is assumed in the industry today [70].

2.5 Standards for offshore wind turbine design
As was shown in the previous sections, there are several approaches available
to model the wave kinematics and kinetics. Besides that, a significant amount
of empirical relations are used in practice, where the determination of charac-
teristic coefficiens and variables often involves a combination of results from
measurements and engineering experience. Prior to performing a trade-off to
decide which models are appropriate, it is therefore convenient to inspect the
engineering standards that have been developed over the years. For this study,
two wind turbine design standards were considered: the International Standards
(IEC 61400-3) by Danish Standards [71] and the Offshore Standards (DNV-OS-
J101) by Det Norske Veritas [72]. Throughout this thesis, these will be referred
to as IEC standards and DNV standards respectively. Furthermore, reference is
made to DNV Recommended Practice (DNV-RP-C205), [11].

2.5.1 Wave energy spectrum formulations
In Section 2.2.3, the Pierson-Moskowitz (PM) and JONSWAP wave spectra were
introduced, which can be used with a directional distribution to create a 3-
D sea surface. In general, as wave propagation direction is hard to measure,
unidirectional sea states should be used, especially in shallow water. The PM-
spectrum is to be used in case the sea is fully developed, while in coastal waters
and fetch-limited situations the JONSWAP spectrum is more appropriate. For a
wind sea where swell components are significant, DNV suggests considering the
two-peaked Torsethaugen spectrum (see DNV Recommended Practice [11]). The
following formulations of the PM and JONSWAP spectra are prescribed by IEC
standards:

SPM (f) = 0.3125 ·H2
S · f4

p · f−5 · exp

[
−5

4

(
fp
f

)4
]

(2.75)
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SJS(f) = C(γ) · SPM (f) · γ
exp

[
− (f−fp)2

2σ2f2p

]
(2.76)

The peak-width parameter σ depends on whether the frequency is smaller or
larger than the peak frequency fp. The following empirical values are to be used:

σ =

{
0.07 for f ≤ fp
0.09 for f > fp

(2.77)

The peak-enhancement factor γ in the JONSWAP-spectrum depends on the peak
period TP and the significant wave height HS:

γ =


5 for TP√

HS
≤ 3.6

exp
(

5.75− 1.15 TP√
HS

)
for 3.6 ≤ TP√

HS
≤ 5

1 for TP√
HS

> 5

(2.78)

The normalizing factor C(γ) is defined as follows:

C(γ) = 1− 0.287 ln γ (2.79)

In case γ = 1, the normalizing factor is unity and the PM spectrum is recov-
ered. Rearranging and collecting terms, the JONSWAP spectrum expression can
be written as:

SJS(f) = 0.3125 ·H2
S · TP ·

(
f

fp

)−5

· exp

[
−5

4

(
f

fp

)−4
]
. . .

· (1− 0.287 ln γ) · γ
exp

[
− (f−fp)2

2σ2f2p

] (2.80)

The peak period TP is related to the mean zero-crossing period TZ using the
following approximate relationship:

TP = TZ

√
11 + γ

5 + γ
(2.81)

2.5.2 Wave kinematics model
Various options are available to obtain wave kinematics from a certain sea sur-
face elevation profile, as was shown in Section 2.2. The required wave model
mainly depends on the type of load case that is to be investigated and the degree
of nonlinearity of the waves. For ultimate load cases due to the passage of an
extreme, deterministic wave, a nonlinear regular wave model such as the Fourier
approximation method is often used. For fatigue load analysis, a stochastic series
of irregular waves is used corresponding to the wave spectrum that follows from
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the significant wave heights and wave periods from metocean data. To simulate
the full effects of an extreme wave however, the deterministic nonlinear regular
wave is usually smoothly pasted into a linear irregular wave record of a normal
sea state, such that the turbine dynamics are already present in the simulation at
the time that the extreme wave passes by.

For regular waves, both IEC and DNV standards advise to use the regimes
of applicability as presented in the discussion of nonlinear regular wave theories
(Figure 2.9) as a guideline to select the appropriate wave model. In contrast with
regular waves, none of the standards advises the use of a nonlinear wave theory
to model irregular waves. In IEC standards the Boussinesq model is considered,
but due to the slow convergence and long simulation time, only the linear ir-
regular wave model with Wheeler stretching is advised as a viable option. In
DNV Recommended Practice however, the second-order irregular wave model
discussed in Section 2.2.6 is recommended as an appropriate model to account
for nonlinear effects in irregular waves.

2.5.3 Currents and still water level
Unless detailed field data is available, the current can be modeled as described
in Section 2.2.7, by superposition of a current due to tide and a wind-induced
current. The velocity profile of the tidal current as a function of depth is described
by a power law, with a power law coefficient of 1/7. The variation of the wind-
induced current with depth is approximated by a linear relationship. This results
in the following current model:

UC(z) =UC,tide(z) + UC,wind(z) (2.82)

=
(

1 +
z

d

)1/7

· UC,tide(0) +
(

1 +
z

d

)
· UC,wind(0) (2.83)

The tidal current at z = 0 is usually known, and unless indicated otherwise, the
wind-induced current at the surface may be estimated from the wind velocity at
10 m altitude U10 using the following expression:

UC,wind(0) = kU10 (2.84)

where k is an empirical constant in the range 0.015 ≤ k ≤ 0.03.
As discussed at the beginning of this chapter, the water level is influenced

by astronomical tides and storm surges. Tides fluctuate between the lowest and
highest astronomical tide (LAT and HAT respectively) and storm surges can either
have a negative or a positive contribution. The extremes of the still water level
that may occur when tides and storm surges combine are shown Figure 2.26. Ac-
cording to standards, these levels shall be determined from site-specific metocean
data, where correlation techniques may be necessary to derive the contribution
of storm surges.
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Figure 2.26: Definition of water levels. After DNV, [72]

2.5.4 Wave kinetics model
Unless hydrodynamic loading is dominated by wave diffraction (D/L > 0.2),
the Morison equation is considered to be the only feasible option to approximate
wave kinetics. The main problem with the Morison equation is the selection
of the values of the drag and inertia coefficients, CD and CM , which strongly
depend on the Reynolds number, Keulegan-Carpenter number, surface rough-
ness and the relative influence of the current. The force coefficients are often
assumed constant, where the appropriate values are selected for two types of
surface roughness, smooth and rough. Sections affected by marine growth are
classified as rough, whereas the remaining sections are assumed to be smooth.

For the inertia coefficient, the MacCamy-Fuchs correction for diffraction ef-
fects as described in Section 2.3.3 is applied. Typical values for the inertia co-
efficient are CM = 2.0 for smooth sections and CM = 1.7 for rough sections.
For the drag coefficient, individual values of the support structure components
and appurtenances are specified, as tabulated in Table 2.2. As the position of the
appurtenances with respect to the support structure influences the drag contri-
bution of that component, an equivalent drag coefficient that replaces CD in the
Morison equation (Eq. 2.69) can be used to account for the additional component
drag:

CD,eq = CD,0 +

N∑
l=1

CD,l
Dl

D0

[(
1 +

R2
0

R2
l

)
sinβl

]2

(2.85)

Here, subscript (0) refers to the primary structure and subscript (l) to the appur-
tenance. R0 and Rl denote the radius of the primary structure and the distance
between the center lines of the appurtenance and primary structure, respectively.
The angle between the fictitious line Rl and the incoming flow is represented by
βl. It can be observed that an appurtenance that is in-line with the flow and the
primary structure is assumed not to contribute to the drag.

The straightforward coefficient selection procedure described above is fre-
quently used by foundation designers and complies with IEC standards, however,
more detailed empirical relations are available to take into account the influ-
ence of the Keulegan-Carpenter number, Reynolds number, VIVs and variation in
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Table 2.2: Base values for the drag coefficient CD of support structure components

Monopile
Transition

Piece
Fender Ladder

CD

rough 1.1 1.1 1.1 1.2

smooth 0.7 0.7 0.7 1.2

the degree of surface roughness. These expressions are described in DNV Rec-
ommended Practice [11], but due to the approximate nature and complexity of
these relations, implemenation is considered outside the scope of this thesis.

2.6 Trade-off for model selection
In the previous sections, various methods to obtain wave kinematics and hydro-
dynamic forces from the wave motion were presented. With the project objective
in mind, in this section a trade-off between the available kinematic and kinetic
approaches will be made to select the appropriate methods for this thesis project.
The selection procedure for a kinetic method does not require a formal trade-
off. It was already shown in the previous sections that the Morison equation
is the only viable and recommended option for monopiles, as the influence of
diffraction effects is often small and can be accounted for by the MacCamy-Fuchs
correction, and CFD methods based on the approximation of the Navier-Stokes
equations are too computationally demanding due to the dominance of turbulent
features in the flow.

2.6.1 Kinematic wave model trade-off
What remains, is a trade-off to select an appropriate kinematic wave model. As
one of the objectives of this thesis is to quantify the influence of using alternative
(nonlinear) wave models, the linear Airy wave model will be used for compar-
ison, since it is straightforward to implement and has been widely used in the
offshore industry and scientific research. Wheeler stretching will be applied to
stretch the velocity profile up to the actual surface, as this is the most commonly
used and one of the best performing methods available. The methods that will
be used should satisfy a number of demands:

• High accuracy

• Flexible

• Computationally inexpensive
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• Straightforward implementation

For this thesis, only non-breaking waves will be considered. Within this regime, a
wave model is to be used that has acceptable accuracy up to the breaking point.
Furthermore, the method should be flexible, such that it is valid in both shallow
and deeper water. Computational efficiency is rather important for this study
for two reasons. First, the assessment of fatigue life requires a large number of
simulations to capture all the contributions of individual load cases to fatigue
damage. Second, the wave model is to be tested on sensitivity to changes in
its input variables. Finally, since the emphasis of this thesis project should be on
investigating the impact of using more sophisticated wave models rather than the
implementation, the feasibility of realizing a model in the available time needs
to be assessed.

Reformulating the demands leads to four criteria which can be evaluated in
a trade-off table; Accuracy, flexibility, performance and complexity. Each criteria
can then be given a score using the formulation in Table 2.3, after which the
highest total score will indicate what method is the most appropriate for this
thesis.

Table 2.3: Trade-off evaluation scores

Evaluation −− − +/− + ++

Score −2 −1 0 1 2

Nonlinear regular wave model trade-off
For nonlinear regular waves, three models were presented in Section 2.2.5. The
analytical methods (Stokes and cnoidal theory) have been extended to 5th-order,
while the numerical Fourier approximation method can be used with any desired
order. In Table 2.4, the evaluation of the three kinematic methods for nonlinear
regular waves is shown.

The accuracy of the analytical methods is comparable, at least in the range
in which they are valid. The Fourier method performs slightly better in the re-
gion where both Stokes and cnoidal theory lose some of their accuracy. As the
analytical methods are complementary to each other, they receive a lower score
than the Fourier method, which is more globally applicable except for the very
shallow water limit. Considering the computer power available nowadays, the
performance penalty when using the numerical Fourier method is almost negli-
gible, so no distinction is made here. Finally, in terms of ease of implementation,
cnoidal theory is clearly more complex than Stokes’ method. The Fourier method
is not as straightforward as Stokes method either, but the availability of an open-
source C++ code by Fenton, based on his Fortran program described in [30], re-
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Table 2.4: Trade-off table for nonlinear regular wave models

Nonlinear regular wave model

Stokes 5th-order Cnoidal theory Fourier approx.

Accuracy +/− +/− +

Flexibility − − +

Performance +/− +/− +/−

Complexity +/− − +/−

Final score −1 −2 2

duces the required amount of programming considerably. As shown in Table 2.4,
the Fourier method is the most appropriate method for nonlinear regular waves.

Nonlinear irregular wave model trade-off
By far the most frequently mentioned nonlinear irregular wave model in liter-
ature is the 2nd-order perturbation model presented in Section 2.2.6. Different
methods that have received moderate attention are the Hybrid wave and Boussi-
nesq model, and various CFD approaches. Many alternatives exist, but since they
are only seldomly referred to by researchers these methods are omitted in the
trade-off. The CFD approach that is considered here, is the full-potential method
[49] mentioned in Section 2.2.6, which has recently emerged as a relatively fast
yet accurate method. The trade-off between the four selected methods is shown
in Table 2.5.

Contrary to the nonlinear regular wave models, comparison between irregular
nonlinear wave models in literature is scarce which makes the evaluation of the
trade-off criteria more ambiguous. The accuracy of the hybrid wave model has
been reported to be higher than the 2nd-order model, although since it is a semi-
empirical interpretation of the latter, scientists doubt the physical correctness of
the method [40] and hence they score equally. Boussinesq and CFD method
score higher, as these are able to accurately describe nonlinear waves up to the
point of breaking. In terms of flexibility, these methods therefore also receive a
higher score. Considering the computational performance no direct comparison
has been found, although it is generally accepted that Boussinesq methods are
very expensive and hence no engineering application is known to this date. The
full-potential method is reasonably fast compared to more expensive CFD meth-
ods, but still more expensive than the hybrid and 2nd-order method. Although
tweaking is required [44], the 2nd-order model is the least complex to implement,
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Table 2.5: Trade-off table for nonlinear irregular wave models

Nonlinear irregular wave model

2nd-order Hybrid wave Boussinesq
CFD

full-potential

Accuracy +/− +/− + +

Flexibility +/− +/− + +

Performance +/− +/− −− −

Complexity + +/− −− −

Final score 1 0 −2 0

followed by the hybrid wave model, which requires slightly more effort. The CFD
method is considered complex, although the required discretization techniques
are a well covered subject in literature, which is less valid for the at least equiv-
alently complex Boussinesq method. It follows from the scores in the trade-off
table that the 2nd-order model is the preferable method to use for nonlinear ir-
regular waves.

2.6.2 Final remarks on the model selection
In this chapter, the basic theory of wave kinematics and kinetics was presented,
together with an overview of the available and most commonly used computa-
tional models and a discussion of design standards. A trade-off was performed
to identify the most appropriate methods. Considering the limited time available
in this thesis project for both implementation and running simulations and the
requirement to be able to test a large amount of load cases, the selection pro-
cedure has been such that the emphasis of this thesis can be put on testing and
analyzing various scenarios rather than the realization of a cutting-edge model
for hydrodynamic loads.

Besides the nonlinear methods that were selected, the linear Airy wave model
with Wheeler stretching will be implemented to be able to make comparisons
with the traditional linear calculation procedure. As the use of nonlinear regular
wave methods is already widely used in the industry, this thesis will mainly focus
on the influence of a nonlinear wave model in irregular waves. An overview of
the selected methods is presented in Table 2.6.
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Table 2.6: Selected models based on the trade-off

Wave kinematics Wave kinetics

Irregular waves
(stochastic)

2nd-order +
Wheeler stretching Morison equation

+ MacCamy-Fuchs
correctionRegular waves

(deterministic)
Fourier

approximation
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3
Model Formulation and Implementation

3.1 Introduction

In the previous chapter, an overview of the traditional and state-of-the-art meth-
ods to predict wave kinematics and hydrodynamic forces on an offshore support
structure was presented. A trade-off was performed to select the most appropri-
ate models to answer the research questions of this thesis. This resulted in the
choice for a 2nd-order kinematic model, combined with the Morison equation to
predict the hydrodynamic force. In order to be able to make a comparison with
the traditional prediction techniques, the 1st-order linear model (Airy) is imple-
mented to serve as a reference. The implementation of the methods results in a
computer program which is able to produce wave load time series for a given set
of input data. These wave load time series can subsequently be used as input for
the aeroelastic wind turbine simulation tool BHawC, which is able to simulate
the dynamic response of the complete wind turbine system.

This chapter describes in detail how the models have been implemented in
a digital computing environment. The scientific environment Matlab R©was used
to realize the program, using object oriented programming. In Section 3.2 the
structure of the program and its components is illustrated with flowcharts. De-
tails about the implementation of the program components are given in Section
3.3. In that section, the efficient Inverse Fast Fourier Transform (IFFT) is intro-
duced to increase computational performance, by performing the calculations in
the frequency-domain. A Doppler shift due to a steady current however prohibits
the direct use of the frequency-domain method. Therefore a method is proposed
to account for the Doppler shift in the frequency discretization, such that the IFFT
can be used.
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3.2 Wave load calculation program structure
In this section, the basic structure of the program that has been realized will be
shown. As was introduced in Chapter 2, the prediction of wave loads for a given
sea condition can be divided into two main processes. For convenience, this sep-
aration between wave kinematics and kinetics is maintained in the structure of
the wave load program, as shown in the flowchart in Figure 3.1. The most fun-
damental input parameters are those defining the sea conditions and structural
geometry. Many more variables need to be specified, but for brevity these are
omitted in this discussion. The typical output of the program is a wave load time
series, containing the force per unit length acting on a number of vertical coor-
dinates. This wave load file will subsequently serve as an external load input for
the time-domain response simulations of the wind turbine generator in BHawC.

Start

Calculate
Wave

Kinematics

Calculate
Hydrodynamic

Loads

End

Figure 3.1: Flowchart of the wave load calculation program.

Besides being convenient from a programming point of view, the sharp divi-
sion between the calculation of wave kinematics and hydrodynamic load is bene-
ficial in terms of computational performance. One can assume that the presence
of a support structure does not modify the particle velocities and accelerations
that are to be used in the Morison equation in the kinetic module. In this case,
kinematics for a given sea state only need to be calculated once, even if iterative
hydrodynamic load calculations are to be carried out in a structural optimization
routine. Since calculations on the wave kinematics are by far the most com-
putationally expensive of the two modules, structural optimization can thus be
performed without a high performance penalty.

As will be shown in Section 3.2.1, the structural diameter actually does enter
the calculation of wave kinematics when the MacCamy-Fuchs diffraction cor-
rection on acceleration terms is applied. This in fact implies a violation of the
assumption made above, but this is not severe for two reasons. First, the change
of the diameter during structural optimization will often be relatively small com-
pared to its initial design value. Second, for the currently common monopile
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diameters, the MacCamy-Fuchs correction mainly affects the higher frequency
waves, which have a relatively low spectral density and hence have a small con-
tribution to the total particle acceleration. Therefore, it is safe to assume that the
changes in structural diameter during optimization do not modify wave kinemat-
ics.

3.2.1 Wave kinematics module structure

The first module in the wave load calculation program is the prediction of wave
kinematics. In Figure 3.2, an global overview of the steps that are taken is pre-
sented in a flow chart. The most important input parameters are those that define
the sea state, which are the significant wave height and the peak period of the
wave spectrum. Also, the current is a significant input parameter, as this will
influence both the fluid velocities and the frequency of encounter as experienced
by the monopile. The output of the kinematics module is a time series of the
horizontal flow velocities and accelerations, for a predefined number of vertical
coordinates.

Following the flowchart, first a discrete range of N frequencies is defined. It
is generally advised to use at least N = 200 frequency components to ensure
the randomness of the wave simulation [58]. By introducing a maximum or
cut-off frequency, the frequency range is limited and hence a denser frequency
discretization can be achieved with the same amount of frequencies. Typically, a
safe cut-off frequency is four times the peak frequency of the wave spectrum [33].
Although some energy from the wave spectrum is lost, the effect on the wave
record realization is minimal since the energy of these high frequency waves is
minimal and its contribution to the sea surface elevation is insignificant.

The summation of both linear 1st-order and the nonlinear 2nd-order model
wave components to a time series is performed by the efficient Inverse Fast
Fourier Transform (IFFT). All calculations required for the wave kinematics are
therefore done in the frequency domain. The working principle of the IFFT and
the model formulation in both time- and frequency-domain are discussed in Sec-
tion 3.3. In that section it is also shown how the MacCamy-Fuchs diffraction
correction can be applied to the kinematics.

In the flowchart, a decision model is included to decide whether an extreme
deterministic wave is to be smoothly inserted into the stochastic wave record.
Although the corresponding regular wave model and the insertion of the deter-
ministic wave is not a subject of this thesis, it is included in the wave load model
since the realization of an engineering tool is one of the goals of this project.
The nonlinear regular wave model that is involved is discussed in Appendix B.
Also, an insertion algorithm is proposed, since it has been experienced that wave
load files from external parties often contain badly inserted extreme waves. This
leads to strong jumps in the wave load distribution, which may have undesirable
effects on the wind turbine response behavior.
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Start

- Input -
Sea state, current

Random seed
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Create irregular 
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time series (IFFT) 

End

Insert 
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wave?

Store wave
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- Input -
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correction to

acceleration coeffs.

Figure 3.2: Flowchart of the wave kinematics module.

3.2.2 Hydrodynamic load module structure

The hydrodynamic load module is the second and final part in the wave load cal-
culation program. The flowchart of this module is presented in Figure 3.2. This
module calculates the distributed wave load time series from the wave kinemat-
ics, using the Morison equation (Eq. 2.69), and presents the output in a wave
load file that can be processed by BHawC.

If structural motion is to be taken into account, the wave load of each time
step is modified by the structural response. Since the wave load depends on the
output from the response simulation in BHawC, the program should loop trough
each time step and update the wave load file accordingly. In this thesis however,
the wave load is assumed not to be coupled to the wind turbine response, so it is
sufficient to generate the wave load file directly.
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Figure 3.3: Flowchart of the wave kinetics module.

3.3 Model implementation

In this section, the realization of the wave load model is discussed. This starts
with an overview of the analytical formulations of the 1st- and 2nd-order kine-
matic models. Since computational efficiency is strived for, the Inverse Fast
Fourier Transform is introduced as an efficient way to perform summations in
the frequency domain. As stated in the introduction of this chapter, the IFFT
can not be used directly if the Doppler shift due to a steady current is to be taken
into account. Therefore, a workaround is proposed which prepares the frequency
components in a way that the IFFT can be used. Two possible sources of error
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which may affect the accuracy of the 1st- and 2nd-order simulations when using
this method are identified.

3.3.1 Kinematic model formulations
As mentioned in the introduction of this chapter, the kinematic model comprises
the linear Airy wave model with an additional second-order perturbation correc-
tion. As such, the second-order accurate surface elevation η(x, t) is given by:

η(x, t) = η(1)(x, t) + η(2)(x, t) (3.1)

where η(1) is the 1st-order accurate elevation from linear wave theory and η(2) is
the 2nd-order contribution, which consists of a sum and a difference contribution.
Analogous to the surface elevation, the velocity potentials corresponding to the
surface elevation can be

Φ(x, z, t) = Φ(1)(x, z, t) + Φ(2)(x, z, t) (3.2)

For a monopile support structure the wave properties can be assumed to be inde-
pendent of the spatial coordinate x, therefore x can be set to zero. The surface
elevations and velocity potentials are therefore simply written as η(t) and Φ(z, t),
respectively. Below, the analytical expressions for the first- and second-order sur-
face elevation and velocity potential are given. For convenience, the arguments
in all trigonometric functions are given radians. It is assumed that a current has
to be taken into account, and therefore a distinction is made between apparent
and relative frequencies.

First-order linear wave model expressions
The 1st-order surface elevation can be expressed as follows:

η(1)(t) =

N∑
m=1

am cos(ωA,mt− kmx− φm) (3.3)

Although x = 0 in the case of a monopile support structure, the x-dependent
term is left in the expression for completeness, since the related velocity potential
needs to be derived with respect to x to obtain an expression for the velocity. The
wave number km is related to the relative frequency ωR,m through the dispersion
relation:

ω2
R,m = gkm tanh(kmd) (3.4)

A unique solution for km > 0 can be found numerically, for example with New-
ton’s method [73]. To accelerate convergence of the algorithm, an accurate initial
estimate of the wave number is [30]:

(km)init =
1

d

α+ β2 sech2 β

tanhβ + β sech2 β
with:


β = α

√
cothα

α =
ω2

R,md

g

(3.5)
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In Eq. 3.3, the phase angles φm are uniformly distributed between 0 and 2π. The
amplitudes am follow from the Rayleigh distributed amplitude variances, where
the expected value is obtained from the wave spectrum:

E( 1
2a

2
m) = S(fR,m)∆fR (3.6)

The spectral density S(fR,m) and frequency bin widths ∆fR,m, are usually pro-
vided in the relative frame of reference, and are in Hz rather than radians per
second here for convenience. This is done since the definition of the wave spectra
in Chapter 2 is in Hz, which can be interpreted more intuitively than the angular
frequency. The conversion is straightforward, since ∆fR,m = ∆ωR,m/(2π).

The 1st-order velocity potential that corresponds to the surface elevation given
in Eq. 3.3 reads:

Φ(1)(z, t) = −
N∑
m=1

bm
cosh km(z + d)

cosh kmd
sin(ωR,mt− kmx− φm) (3.7)

where

bm =
amg

ωR,m
(3.8)

This velocity potential differs from the textbook example in Eq. 2.30. The ar-
gument of the sine of Eq. 2.30 has been multiplied by −1, and since sin(x) =
−sin(−x), this results in the velocity potential as displayed in Eq. 3.7. The rea-
son for this manipulation is to make the reformulation required for the use in
a Inverse Fast Fourier Transform, which is treated in Section 3.3.2, more trans-
parent. Expressions for the 1st-order wave particle kinematics are obtained by
deriving the velocity potential:

u(1)(z, t) =
∂Φ(1)

∂x
=

N∑
m=1

bm
cosh km(z + d)

cosh kmd
km cos(ωA,mt− kmx− φm) (3.9)

u̇(1)(z, t) =
∂u(1)

∂t
= −

N∑
m=1

bm
cosh km(z + d)

cosh kmd
kmωR,m sin(ωA,mt− kmx− φm)

(3.10)

Note that formally, when deriving Eq. 3.9, the apparent frequency should be
present in the amplitude of the acceleration terms (Eq. 3.10). However, since
it is assumed that all expressions for the kinematics are to be calculated in the
relative frame of reference, the apparent frequency only enters the arguments of
the trigonometric functions afterwards.
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Second-order perturbation expressions
The sum- and difference components of the 2nd-order perturbation to the surface
elevation are given by:

η(2)(t) =

N∑
m=1

N∑
n=1

[
aman

{
B−mn cos(ψA,m−ψA,n)+B+

mn cos(ψA,m+ψA,n)
}]

(3.11)

where η(2) = η(2−) + η(2+) and ψA,m and ψA,n are short notations of the same
cosine argument as in Eq. 3.3:

ψA,m = ωA,mt− kmx− φm (3.12)

The variablesB−mn andB+
mn, being transfer functions for the 2nd-order amplitude,

depend on the wave properties traveling with the current in the relative frame of
reference, and are expressed as follows:

B−mn =
1

4

[
D−mn − (kmkn +RmRn)√

RmRn
+ (Rm +Rn)

]
(3.13)

B+
mn =

1

4

[
D+
mn − (kmkn −RmRn)√

RmRn
+ (Rm +Rn)

]
(3.14)

where

D−mn =

(√
Rm −

√
Rn
) {√

Rn(k2
m −R2

m)−
√
Rm(k2

n −R2
n)
}(√

Rm −
√
Rn
)2 − k−mn tanh k−mnd

+ 2

(√
Rm −

√
Rn
)2

(kmkn +RmRn)(√
Rm −

√
Rn
)2 − k−mn tanh k−mnd

(3.15)

D+
mn =

(√
Rm +

√
Rn
) {√

Rn(k2
m −R2

m) +
√
Rm(k2

n −R2
n)
}(√

Rm +
√
Rn
)2 − k+

mn tanh k+
mnd

+ 2

(√
Rm +

√
Rn
)2

(kmkn −RmRn)(√
Rm +

√
Rn
)2 − k+

mn tanh k+
mnd

(3.16)

The variables Rm, Rn, and the difference- and sum wave numbers k−mn, k+
mn are

given by:

Rm =
ω2

R,m

g
(3.17)

k−mn = |km − kn| (3.18)

k+
mn = km + kn (3.19)
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The 2nd-order difference- and sum velocity potentials that correspond to the sur-
face elevation perturbations read:

Φ(2)(z, t) = −1

4

N∑
m=1

N∑
n=1

[
bmbn

cosh k±mn(z + d)

cosh k±mnd

D±mn
(ωR,m ± ωR,n)

sin(ψR,m ± ψR,n)

]
(3.20)

From the 2nd-order velocity potentials, the expressions for the difference- and
sum kinematics can be derived:

u(2)(z, t) =
∂Φ(2)

∂x
=

N∑
m=1

N∑
n=1

Z±mn cos(ψA,m ± ψA,n) (3.21)

u̇(2)(z, t) =
∂u(2)

∂t
= −

N∑
m=1

N∑
n=1

Z±mn(ωR,m ± ωR,n) sin(ψA,m ± ψA,n) (3.22)

where the amplitude terms have been gathered in the variable Z±mn:

Z±mn =
1

4
bmbn

cosh k±mn(z + d)

cosh k±mn

D±mn
(ωR,m ± ωR,n)

k±mn (3.23)

3.3.2 The Inverse Fast Fourier Transform (IFFT)
The linear and second-order nonlinear irregular wave models in Section 3.3.1
are formulated in the time-domain. As a large number of waves is to be superim-
posed, especially the double-summations in the second-order model will be time
consuming. To avoid the numerical inefficiency of performing summations in the
time-domain, a better approach is to carry out the calculations in the frequency-
domain and subsequently use the Inverse Fast Fourier Transform (IFFT) to realize
a time series. The IFFT is an efficient digital implementation of the Fourier Trans-
form, which is a technique to convert a signal in the time-domain to a spectrum
in the frequency-domain, and vice versa. This relation is shown in Figure 3.4.

|Y
(f

)|

Frequency [Hz]

y
(t
)

Time [s]

Inverse

Fourier

Transform

Fourier

Transform

Figure 3.4: An illustration showing the conversion from a time series of a signal to
a spectrum in the frequency-domain, and vice versa, using the Fourier Transform.

To show how the IFFT can be used, we consider the 1st-order surface ele-
vation (Eq. 3.3). In a digital time-domain realization with a duration T , the
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continuous time t has to be discretized by creating a time vector tp = p∆t, where
p = 1, 2, . . . , N and the time step ∆t = T/N . Similarly, an angular frequency
vector can be defined such that ωm = m∆ω, with m = 1, 2, . . . , N . The discrete
representation of the surface elevation then reads:

η(1)(tp) =

N∑
m=1

am cos(ωA,mtp − φm) (3.24)

Using Euler’s complex exponential function, exp(iφ) = cos(φ) + i sin(φ), Eq. 3.24
can be rewritten to:

η(1)(tp) = <

{
N∑
m=1

am exp(−iφm) exp
(
i(m∆ωA)(p∆t)

)}
(3.25)

It can be shown [74] that the product of the terms ∆ωA and ∆t in the second
exponential is equal to ∆ωA∆t = 2π/N , such that:

η(1)(tp) = <

{
N∑
m=1

X(1)
η (ωR,m) exp

(
i
2πm

N
p

)}
(3.26)

Here we have gathered the amplitude and the first exponential in Eq 3.25 in a
Fourier coefficient for the 1st-order surface elevation, X(1)

η :

X(1)
η (ωR,m) = am exp(−iφm) (3.27)

The summation in 3.26 can be recognized as the inverse of the Discrete Fourier
Transform (DFT) of X(1)

η . This transform can be efficiently calculated using the
IFFT algorithm [75], which has been widely established in many fields of science.
Hence, the 1st-order surface elevation can be rewritten as:

η(1)(tp) = <
{

IFFT
[
X(1)
η (ωR,m)

]}
(3.28)

As shown in Eq. 3.26, the IFFT algorithm requires a frequency vector which
is discretized in a number of equally sized bins with a width of ∆ω. In case the
waves travel on a steady current, a Doppler shift needs to be taken into account,
which will cause problems with the implementation of the IFFT. In Section 3.3.3,
the nature of this problem will be addressed and a workaround is presented.

Cut-off frequency and aliasing
When the FFT is used to convert a discrete time series back to a spectrum in the
frequency-domain, the frequency range of the output spectrum should be chosen
carefully to avoid high frequency aliases of the original wave in the signal. This
can be illustrated by the example in Figure 3.5. The original 1 Hz wave, sampled
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at time intervals of 1/6 s will hence result in additional spectral peaks at 5 Hz
and its higher frequency aliases.

To avoid this aliasing effect, a cut-off frequency should be used above which
no frequencies will be taken into account. According to the Nyquist sampling
theorem, this cut-off or Nyquist frequency is defined as fN = 1

2∆t . Conversely,
when simulating waves the cut-off frequency of the wave spectrum should be
chosen in accordance with the time step that shall be used. In case the 2nd-
order interactions are taken into account in the simulation, one needs to realize
that the sum-interactions will double the highest frequency that is present in the
wave record realization, which implies that the time step may need to be reduced
accordingly.

An everyday example of the aliasing effect can be observed on television.
Rotating objects, such as spoked wheels on a wagon, can be perceived to rotate
in the opposite direction due to the refresh rate of the television.
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Figure 3.5: Illustration of the aliasing effect. If a 1 Hz wave is sampled at intervals
of 1/6 s, an FFT to the frequency-domain can also fit its 5 Hz alias to the sampling
points.

3.3.3 Using the IFFT with a Doppler shift due to a current
For waves traveling on an arbitrary steady current UC , the apparent frequencies
as experienced by the monopile are related to the relative frequencies in the
moving frame of reference and the Doppler shift ωD, according to:

ωA = ωR + ωD , with: ωD = kŨC (3.29)

where ŨC is the weighted mean current, given by:

ŨC =
2km

sinh kmd

∫ 0

−d
UC(z) cosh 2km(z + d) dz (3.30)
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It can already be observed from Eq. 3.29 and 3.30 that the Doppler shift is a
function of the wave number km and hence of the relative wave frequency. The
relation between relative and apparent frequency is illustrated in Figure 3.6, in
which three cases are distinguished for different current magnitudes. The relative
frequencies are evenly distributed and range from 0 to 1 Hz and the water depth
is 20 m. For cases (a), (b) and (c) the current magnitudes are UC = 0.15,−0.10
and −0.20 m/s, respectively.

In the first case, the current is positive and hence in the wave propagation
direction. The example shows that the Doppler shift ωD mainly affects the higher
frequencies. In cases (b) and (c) the current is negative and thus opposes the
waves, where in (b) the current is relatively weak and in (c) relatively strong.
An interesting observation is that if the opposing current is strong enough, the
apparent frequency ωA becomes double-valued, which means that two different
relative frequencies can lead to the same apparent frequency.
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Figure 3.6: The Doppler shift ωD due to three different current magnitudes UC ,
calculated from the relative frequency ωR = m∆ωR with m = 1, 2, . . . , 100 and
∆ωR = 2π/100 rad/s. The apparent frequency ωA = ωR + ωD is not linearly related
to m and therefore unsuited for a discrete IFFT. It can be observed that for strong
opposing currents, UC � 0, the apparent frequency becomes double-valued.

As shown in Section 3.3.2, the use of the efficient IFFT to realize a wave
record requires a discrete frequency space which is evenly spaced. If the Doppler
shift due to a current was to be ignored, one could directly discretize the relative
frequencies and use the IFFT algorithm. However, modeling the incoming waves
using their apparent frequency as experienced by the support structure is more
realistic and is therefore prefered. This does complicate the implementation in
the frequency-domain approach, since in this case it is required that the appar-
ent frequencies have equally wide bins, rather than the relative frequencies. In
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Figure 3.7, it is shown that a suitable apparent frequency discretization can not
be achieved if the relative frequencies are evenly spaced.
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Figure 3.7: An illustration of the discretization of the relative frequencies ωR =
m∆ωR. The relative frequency bins have a constant width of ∆ωR, while the width
of the apparent frequency bins ∆ωA depends on the index m. To use a discrete
IFFT, evenly spaced apparent frequencies are required instead.

To overcome this inconvenience, first an apparent frequency space should be
created such that ωA = m∆ωA. The corresponding relative frequencies can then
be calculated using the following approximate Doppler shifted dispersion relation
[52]: (

ωA − kŨC
)2

= gk tanh kd (3.31)

Equation 3.31 can be solved for k numerically using for example Newton’s algo-
rithm. The apparent frequency range should be well chosen, such that the full
wave spectrum in the relative frame of reference is present in the wave record
realization, up to the predefined cut-off frequency. Furthermore, double-valued
apparent frequencies should be dealt with, if these occur. Therefore, one should
first Doppler-shift the desired relative frequency range to identify the maximum
apparent frequency and a potential range of double-valued frequencies. In Figure
3.8, the same current magnitudes as in Figure 3.6 are used, but now the apparent
frequencies are evenly spaced.

The problem of having double-valued apparent frequencies can be overcome
by splitting the respective range in two parts, as is shown in Figure 3.8c. A proper
choice for the initial estimate of k drives the solver of Eq. 3.31 to either of the
solutions. A safe initial value of k to find a solution for the increasing part of the
apparent frequency range is a small number, for example 1e-5. For the second
solution, the wave number corresponding to the cut-off frequency could be used
as an estimate.
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As can be observed in Figure 3.8, the apparent frequency vector is now a
linear function of m, and is therefore suited for the IFFT. The wave amplitudes
of each apparent frequency component can be found from the spectral density
and bin width of the corresponding relative frequency. The relative frequency
bin widths ∆ωR are now frequency dependent.

It must be remarked that especially if the apparent frequency is not mono-
tonic, such as in Figure 3.8c, the relative frequencies are thin spread near the
apparent frequency maximum. This is undesirable, because the wave description
around this frequency will be less detailed. Fortunately, if double-valued appar-
ent frequencies occur, this will mostly affect only the highest frequencies, which
contain little energy. Nevertheless, it is recommended to use a denser frequency
discretization in this case in order to ensure that a sufficient level of detail is
present near the maximum apparent frequency.
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Figure 3.8: For the same scenarios as in Fig. 3.6, an approach in which the appar-
ent frequency ωA is a linear function of m and therefore suited for a discrete IFFT.
The required relative frequencies ωR, are calculated using the Doppler shifted dis-
persion relation, Eq. 3.31. The double-valued apparent frequencies for UC � 0
are dealt with by splitting the apparent frequency domain in two parts.

3.3.4 Fourier coefficients

In order to be able to use the efficient IFFT, the kinematic models first needs to
be reformulated in the frequency-domain rather than the time-domain. In this
section the Fourier coefficients for both the first- and second order wave models
are provided.

CONFIDENTIAL



3.3. MODEL IMPLEMENTATION 79

First-order wave model coefficients
Using the definition of the IFFT as described in Section 3.3.2, the Fourier coeffi-
cient of the 1st-order surface elevation X(1)

η,m(ωR,m) is repeated for completeness:

X(1)
η,m = am exp(−iφm) (3.32)

For the sake of clarity X(1)
η,m(ωm) is simply written as X(1)

η,m. In a similar way, the
1st-order horizontal velocity u(1) and acceleration u̇(1) can be calculated using an
IFFT:

u(1)(z, tp) = <
{

IFFT
[
X(1)
u,m

]}
(3.33)

u̇(1)(z, tp) = =
{

IFFT
[
X

(1)
u̇,m

]}
(3.34)

The corresponding Fourier coefficients read:

X(1)
u,m =

gkm
ωR,m

cosh km(z + d)

cosh kmd
X(1)
η,m (3.35)

X
(1)
u̇,m = −ωR,mX

(1)
u,m (3.36)

Second-order wave model coefficients
The 2nd-order surface elevation components η(2), as defined by Eq. 3.11, can be
discretized and rewritten to:

η(2)(tp) = <

{
N∑
m=1

N∑
n=1

X(2)
η,mn exp

(
i
2π(m± n)

N
p

)}
(3.37)

Here, n = 1, 2, . . . , N and the difference- and sum Fourier coefficients are given
by:

X(2)
η,mn = amanB

±
mn exp(−i(φm ± φn)) (3.38)

To reduce the amount of computations, according to Agarwal [74] the double
summation in Eq. 3.37 can be reformulated to a single summation with a re-
placement Fourier coefficients Y (2)

η,j , such that:

η(2)(tq) = <

{
M∑
j=1

Y
(2)
η,j exp

(
i
2πj

M
q

)}
(3.39)

which is in the correct format to calculate the 2nd-order surface elevation with an
IFFT:

η(2)(tq) = <
{

IFFT
[
Y

(2)
η,j

]}
(3.40)
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To make sure that the highest sum-frequencies will be represented, the number of
samples has been doubled to M = 2N , and the index vector p has been replaced
by q = 1, 2, . . . ,M . Accordingly, the time vector is now defined as tq = q∆t.

The single summation Fourier coefficients Y (2)
η,j are obtained by collecting the

original Fourier coefficients X(2)
η,mn for every possible combination of index pairs

ofm and n, for each value of j. For example, the index pairs that contribute to the
sum interactions of j = 4, are (m,n) = (1, 3), (3, 1) and (2, 2). Similarly, also for
the difference indices multiple combinations are possible. Since the IDFT formu-
lation of the 2nd-order surface (Eq. 3.39) requires positive values of j, we define
j = |m − n|. For the surface elevation, this is completely valid and no further
manipulation is required, since cos(x) = cos(−x). This means that for example
the double-summation coefficients X(2)

η,mn with (m,n) = (1, 2) and (2, 1), both
contribute to its single-summation counterpart Y (2−)

η,j with j = 1. Summarizing,
the single-summation Fourier coefficients for the 2nd-order surface elevation can
be collected as follows:

Y
(2+)
η,j =


0 j < 2,∑∑
︸ ︷︷ ︸
m+n=j

X
(2+)
η,mn 2 ≤ j ≤M. (3.41)

Y
(2−)
η,j =


∑∑
︸ ︷︷ ︸
|m−n|=j

X
(2−)
η,mn 1 ≤ j ≤ (N − 1),

0 j > (N − 1).

(3.42)

The expressions for the 2nd-order kinematics, given in Eqs. (3.21) and (3.22),
can be discretized to:

u(2)(z, tp) = <

{
N∑
m=1

N∑
n=1

X(2)
u,mn exp

(
i
2π(m± n)

N
p

)}
(3.43)

u̇(2)(z, tp) = =

{
N∑
m=1

N∑
n=1

X
(2)
u̇,mn exp

(
i
2π(m± n)

N
p

)}
(3.44)

with the double-summation Fourier coefficients

X(2)
u,mn = Z±mn exp

(
− i(φm ± φn) sgn(m± n)

)
(3.45)

X
(2)
u̇,mn = −(ωR,m ± ωR,n)X(2)

u,mn (3.46)
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In Eq. 3.45, sgn(x) is the signum function, which is an odd function such that:

sgn(x) =


−1 if x < 0,

0 if x = 0,

1 if x > 0.

(3.47)

Using the procedure as described above for the 2nd-order surface elevation, the
expressions for the kinematics can be rewritten to a single-summation format.
The velocities and acceleration perturbations can then be calculated by calculat-
ing the IFFT of the corresponding single-summation Fourier coefficients Y (2)

u,j and

Y
(2)
u̇,j .

u(2)(z, tp) = <
{

IFFT
[
Y

(2)
u,j

]}
(3.48)

u̇(2)(z, tp) = =
{

IFFT
[
Y

(2)
u̇,j

]}
(3.49)

The Fourier coefficients for the kinematics can be collected in a similar fashion as
was shown above for the surface elevation.

As addressed in Section 3.3.3, the Doppler shift due to a current is frequency
dependent, or in other words, the relative frequencies are not linearly related to
index m. Therefore, strictly spoken, the apparent frequency of sum-interaction
pair ωR,m + ωR,n is not equal to the discretized apparent frequency ωA,j=(m+n).
However, one should bear in mind that the 2nd-order perturbation works as a
correction to the 1st-order wave, and as such it has to travel locked to the 1st-order
waves in order to keep the correct phase during the entire simulation. Therefore
it is justified to use the apparent frequencies as discretized by ωA = j∆ωA in the
arguments of the 2nd-order expressions presented in this section.

The procedure to gather sum- and difference contributions with an equal fre-
quency into single-summation Fourier coefficients, as described above, does how-
ever have a complication when a Doppler shift is to be accounted for. This can be
explained by investigating the formulation of the 2nd-order surface surface eleva-
tion, Eq. 3.11. Although the frequencies of the perturbations are linearly spaced
for the IFFT, the amplitudes on the other hand are a function of the relative
frequencies and hence are not exactly linearly related to the integer frequency
indices m and n. Without a current causing a Doppler shift, the amplitudes are
a linear function of the frequency indices, and therefore the collection of equal
frequencies described above is fully exact.

In case this method is used with a Doppler shift, the amplitudes may not be
collected into the single-summation Fourier coefficients correctly, which means
that the proposed method is physically incorrect. It is expected however, that
in many cases either the Doppler shift or 2nd-order effects are relatively weak,
and therefore the error is likely to be small. To test this hypothesis, in Chapter
4 the Doppler shifted frequency-domain approach proposed in this section will
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therefore be compared with the time-domain results, which are assumed to be
exact.

3.3.5 MacCamy-Fuchs correction for diffraction
In Section 2.3.3, the MacCamy-Fuchs correction was introduced to account for
linear diffraction effects in the Morison equation. As was shown in the flowchart
for the wave kinematics module (Figure 3.2), the MacCamy-Fuchs diffraction cor-
rection is applied to the acceleration Fourier coefficients in the frequency-domain.
The phase lag correction φMCF (Eq. 2.73) can easily be applied to the acceleration
terms, but the modified inertia coefficient Ĉm requires some rewriting in order
to be accounted for in the wave kinematics. To show how this is done, we first
inspect the inertia force fI in the Morison equation, fMorison = fI + fD, in its
form without structural motion:

fI = ρ
πD2

4
Ĉmu̇ (3.50)

where Ĉm is given by Eq 3.51 as

Ĉm =
4

π(kD/2)2

√
[J ′1(kD/2)]

2
+ [Y ′1(kD/2)]

2
(3.51)

Since this corrected inertia coefficient has been derived for a cylinder in irrota-
tional flow, the theoretical value of CM = 2 [13]. Eq. 3.51 can therefore be
reformulated as

Ĉm = KMCFCM (3.52)

where an inertia coefficient gain KMCF has been defined such that:

KMCF =
2

π(kD/2)2

√
[J ′1(kD/2)]

2
+ [Y ′1(kD/2)]

2
(3.53)

The inertia force component (Eq. 3.50) can therefore be rewritten to:

fI = ρ
πD2

4
KMCFCM u̇ (3.54)

Since the gain KMCF is a linear operator in the inertia force term, it can be applied
to the acceleration amplitudes in an early stage. For example, we consider the
Fourier coefficient for the 1st-order acceleration, Eq. 3.36. This coefficient can be
worked out to:

X
(1)
u̇,m = −gkm

cosh km(z + d)

cosh kmd

[
am exp(−iφm)

]
(3.55)
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Defining the MacCamy-Fuchs modified amplitudes and phase shifts, âm and φ̂m
respectively, as follows:

âm = amKMCF,m (3.56)

φ̂m = φm + φMCF,m (3.57)

the diffraction corrected 1st-order acceleration Fourier coefficients X̂(1)
u̇,m are:

X̂
(1)
u̇,m = −gkm

cosh km(z + d)

cosh kmd

[
âm exp(−iφ̂m)

]
(3.58)

This expression for the modified Fourier coefficients can be simplified to:

X̂
(1)
u̇,m = XMCF,mX

(1)
u̇,m (3.59)

Here, a convenient Fourier coefficient for the MacCamy-Fuchs correction has
been introduced, which can be defined as:

XMCF,m = KMCF,m exp(−iφMCF,m) (3.60)

This is convenient, since the correction has now been completely applied in the
kinematics module of the wave load model. For reasonably small changes in the
structural diameter D, the difference in effect on the acceleration is negligible,
and the kinematics can therefore be assumed independent of the monopile di-
mensions during structural optimization. Another advantage of the formulation
used above, is that the inertia coefficient CM is still present in the diffraction
corrected Morison equation, since

f̂I = ρ
πD2

4
CM ˆ̇u (3.61)

The effect of changes in the design value of CM due to for example a different
monopile surface roughness, can therefore be evaluated quickly with the Mori-
son equation, without the need to recalculate the wave kinematics. Since the
MacCamy-Fuchs correction is valid for linear diffraction effects only, the modifi-
cation is only applied to accelerations of the 1st-order wave model. A follow-up
research on the implementation of a similar correction for diffraction in 2nd-order
waves is recommended.
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4
Verification

4.1 Introduction

In the previous chapter, an overview was presented of the setup of the hydrody-
namic load calculation program, the mathematical formulations of the irregular
wave models used and the most important details about the implementation of
these models. In this chapter, the results of the 1st-order reference wave model
and the 2nd-order nonlinear model are analyzed to confirm that the program
behaves as expected. In Section 4.2, several cases are studied to assess the sim-
ulation results of the sea surface elevation and hydrodynamic loads, both quali-
tatively and quantitatively. In order to make the comparisons as transparent as
possible, the monopile is assumed clean with a constant diameter of D = 6 m
and force coefficients CM = 2 and CD = 1. Extra attention is paid to the per-
formance of the frequency-domain method in combination with a Doppler shift.
This method has been devised in Chapter 3, but since some remarks were made
on the accuracy due to the assumptions, comparisons with time-domain results
are required to investigate whether the error is acceptable.

In Section 4.3, the verification of the wave models with wave load data of
a wind farm in the German Bight is discussed. For this project, certified hydro-
dynamic loads were provided by a third party foundation contractor. Since the
input parameters of both the wave model and the support structure geometry are
well documented, a full set of wave load files could be reproduced to be checked
against the results from the foundation contractor. The modeled structure rep-
resents a realistic monopile, which features secondary steel, marine growth and
force coefficients that depend on both the vertical coordinate and the incoming
wave direction. It must be emphasized that the primary goal of this verifica-
tion is to confirm the correct implementation of the 1st-order reference wave
model. A validation of the 2nd-order wave model results with measurement data
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from a full-scale offshore monopile foundation was anticipated, but has been can-
celled eventually. The reason for not using these measurements was the lack of
correlation between sea surface elevation measurements and strain data, which
is caused by the large distance between the wave measurement buoy and the
monopile.

To analyze results as a function of the frequency, a spectral representation of
data is frequently used in this chapter. For the surface elevation, the wave energy
or variance-density spectrum is convenient, since the wave spectrum is also an
input parameter of the wave models. In order to compare hydrodynamic loads,
the overturning bending moment My of the support structure at seabed level is
considered, since this is proportional to the normal stress due to bending in the
structure. In this case, the Power Spectral Density (PSD) and spectral power of
the bending moment are used as a measure of energy per frequency bin and total
energy that is transferred to the support structure, respectively [76].

Besides a verification of the wave loads themselves, the bending moments
from dynamic response simulations in BHawC are compared to verify that the
output is comparable. This is done by inspecting the equivalent fatigue loads.
An equivalent fatigue load is not a primary design parameter, but it provides a
simplified indication of the fatigue damage accumulated during the lifetime of a
structure. This representation of fatigue damage in a single parameter allows a
straightforward and quantifiable comparison of the dynamic response loads due
to different wave load input. In this comparison, the equivalent fatigue loads
due to bending moments in the tower and monopile are considered. Although
in design different Wöhler slopes are used for each wind turbine component, a
constant Wöhler slope of m = 5 was assumed for both the tower and monopile,
such that a direct comparison of the entire supporting structure is possible.

4.2 Analysis of wave simulation results
In this section, the realized wave models are tested for various cases to inves-
tigate whether the output is sound. First, the variance-density spectra of both
the 1st- and 2nd-order wave model sea surfaces are compared with a theoretical
JONSWAP wave spectrum, and the influence of the wave model on the bending
moment PSD is shown. Besides that, also the time-series of the 2nd-order wave
model is inspected for a regular and an irregular wave, to analyze the behavior
of the 2nd-order corrections in a qualitative way.

Second, the frequency-domain approach in which the Doppler shift is ac-
counted for, as devised in Chapter 3, is compared to the time-domain results.
Two possible sources of error have been identified in using this approach. In
strong opposing currents, the relative frequencies locally suffer from a course
discretization. The effect is investigated with the 1st-order wave model. Further-
more, a Doppler shift may cause the amplitudes of the 2nd-order wave model
perturbations to be incorrectly collected in the single-summation Fourier coef-
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ficients. To assess whether this error limits the usability of the Doppler-shifted
frequency-domain approach for 2nd-order wave modeling, different sea states are
tested to quantify the error.

4.2.1 Qualitative analysis of wave model output
The variance-density spectrum of the 1st-order sea surface elevation should result
in the same spectrum as the input spectrum that was used to obtain the wave
amplitudes. As the amplitude variance is Rayleigh distributed, a large number of
simulations is required to assure that the simulation is random enough and that
average spectral density is smooth. Therefore, 500 simulations of 600 seconds
have been performed, of which the average spectral density for each frequency is
compared to the corresponding theoretical JONSWAP spectrum in Figure 4.1(a).
The spectrum represents a sea state with a significant wave height of 8.1 m and
a peak period of 13.1 s, where the JONSWAP peak-enhancement factor γ has a
common value of 3.3. Besides that, the PSD of the bending moment at seabed
level is shown in Figure 4.1(b), for a monopile with constant diameter ofD = 6 m
and force coefficients CM = 2 and CD = 1. Note that this bending moment PSD
only represents the action of the Morison force on the monopile, and not the
bending moment due to dynamic response loads.
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Figure 4.1: Comparison between the average spectral density of 500 sea surface
simulations and a theoretical JONSWAP wave spectrum (a) with γ = 3.3, repre-
senting a sea state of HS = 8.1 m and TP = 13.1 s with a water depth of d = 20 m.
Figure (b) shows the PSD of the bending moment at seabed level.

It can be observed from Figure 4.1 that the average of the 1st-order simula-
tions has almost converged to the JONSWAP spectrum, apart from some small
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ripples near the peak. From the spectral density of the 2nd-order surface ele-
vation we can conclude that the spectral power of that model is higher than
the theoretical and 1st-order model. The low frequency energy is added by the
difference-interactions, while a second addition near 0.15 Hz follows from the
sum-interactions, which as expected peaks at approximately twice the peak fre-
quency. Although the 2nd-order model results in a higher spectral power than the
theoretical JONSWAP shape, for this research it is assumed that the effect on the
significant wave height is negligible. In the bending moment PSD, the influence
of the sum-frequencies is clearly seen, as the spectral density due to the 2nd-order
wave model is significantly higher around 0.15 Hz. The difference frequencies
on the other hand hardly influence the bending moment PSD.

The wave spectrum shown in Figure 4.1 confirms that the 1st-order surface
elevation is simulated as expected, and also the 2nd-order model appears to pro-
duce valid results, based on the spectra. In order to further assess whether the
2nd-order model performs as expected on a qualitative basis, the time series of
the surface elevation are inspected. In Figure 4.2 two snapshots of a surface ele-
vation time series are shown, the top figure (a) representing a regular wave and
the bottom figure (b) an irregular wave. To illustrate the how the difference- and
sum terms contribute to the 2nd-order wave, these are shown separately.
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Figure 4.2: The 1st- and 2nd-order surface elevation for a regular (a) and an ir-
regular wave (b). In the regular wave, only the sum interactions contribute to the
2nd-order wave perturbation, while in the irregular wave the difference interactions
also play a role. Sea state: HS = 8.1 m, TP = 13.1 s, γ = 3.3 with d = 20 m.

The regular wave, which is obtained by using a Delta spectrum with one
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frequency as input, shows that the 2nd-order wave features the sharpened crests
and flattened troughs that are typical for nonlinear regular waves. Since only
one frequency is present, the difference terms do not contribute to the nonlinear
wave and the sum interactions have exactly twice the frequency of the 1st-order
wave. Hence in this case, the 2nd-order wave model works in the same way as
the 2nd-order Stokes method for regular waves (Section 2.2.5).

Contrary to the regular wave, the difference terms do contribute to the 2nd-
order wave in the irregular sea surface. It can be observed that as predicted, the
difference interactions produce a long wave that causes a setdown of the water
level below high wave groups and a slight water level rise in the calmer parts of
the sea surface. The sum interactions are again responsible for sharper crests and
flattened troughs, which results in steeper waves that are common in relatively
shallow water.

4.2.2 Doppler-shifted frequency-domain method accuracy
In Section 3.3.3, a method is devised to allow the use of an IFFT in combination
with a current, which causes a Doppler-shifted apparent frequency. Two sources
of error were identified. First, for strong opposing currents, the relative frequency
discretization will be coarse around the point at which the apparent frequency
decreases with the wave number (see Figure 3.8c). This may lead to a local
loss of accuracy. Second, it was concluded in Section 3.3.4 that the perturbation
correction amplitudes of the 2nd-order wave model may be erroneous, since these
may be related to incorrect relative frequencies. Below these two problems are
addressed and the errors quantified.

Influence of coarse frequency discretization in strong opposing currents
To quantify the impact of the locally poor relative frequency density, the Doppler-
shifted frequency-domain approach from Section 3.3.3 is compared with its time-
domain equivalent for the 1st-order wave model. The time-domain approach
serves as a benchmark, since in that case the relative frequencies are equally
spaced.

Since the Doppler shift is most prevalent in high frequency wave components,
a calm sea state is required to make sure that the maximum apparent frequency is
in the part of the wave spectrum that contains significant wave energy. Therefore,
this case study is performed on a low wind speed scenario from the verification
project, where a strong current with a 50-year return period is applied in a di-
rection opposing the wave propagation. In Figure 4.3, the averaged wave energy
spectra and bending moment PSDs of 500 simulations in the frequency- and time-
domain are shown. Besides that, the averaged results of 500 simulations without
a Doppler shift are displayed, to show the impact of ignoring the Doppler shift in
a calm sea.

It is observed that when taking the Doppler shift into account, the surface
elevation spectrum is Doppler-shifted as well, which results in a lower apparent
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Figure 4.3: Comparison of different calculation approaches of the 1st-order wave
model with a 0.69 m/s strong opposing current. Shown are the average wave
energy spectrum (a) and bending moment PSD (b) of 500 simulations. Sea state:
HS = 0.25 m, TP = 4.05 s and γ = 3.3.

peak frequency. Furthermore, it can be seen that at the maximum apparent fre-
quency, which is approximately 0.33 Hz, a second peak is present. This can be
explained from the fact that a wide range of relative frequencies is close to the
maximum apparent frequency (see Figure 3.6c). The peak in the bending mo-
ment PSD near f = 0 Hz can be explained by considering that the steady current
velocity causes a constant drag force on the monopile, which results in an offset
of the average bending moment.

From both the surface elevation spectrum and the bending moment PSD, it
appears that the frequency-domain approach delivers results that are close to the
time-domain. This conclusion is further confirmed when the average spectral
power of the bending moment is compared. In Table 4.1 the bending moment
spectral powers have been normalized with the Doppler-shifted time-domain re-
sult. Compared to the time-domain results the frequency domain approach shows
a slightly lower spectral power, with a difference of 2.3% . It must be noted here
that for this case study, the MacCamy-Fuchs correction was switched off to em-
phasize the wave action by higher frequencies. When this diffraction correction
is used in the simulations, the difference between both approaches will be lower
due to the attenuation of high frequency inertia forces.

Finally, an interesting observation is that in a calm sea state with a relatively
strong current, the Doppler shift has a significant influence on the frequency at
which the support structure is excited. Neglecting the Doppler shift of hydrody-
namic loads, which has been done by the foundation contractor of the verification
project, may thus have an impact on the dynamic response and hence on fatigue
life of the support structure.
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Table 4.1: Normalized bending moment spectral power of the different modeling
approaches of the 1st-order wave model, as shown in Figure 4.3. The Doppler-
shifted time-domain result is set to 100 %.

Modeling approach
Bending moment
Spectral power

[%]

No Doppler shift 97.12

Time-domain + Doppler 100

Freq.-domain + Doppler 97.70

Error in 2nd-order wave model perturbation amplitudes
The second possible source of error is due to incorrect amplitudes in the 2nd-order
wave model when the Doppler-shifted frequency-domain approach is used (see
Section 3.3.4). Below, the method is tested against results from time-domain
simulations. Since the latter method is rather computationally expensive, the
number of frequencies has been lowered to 200 and the number of simulations
in the time-domain is reduced to 75.

The first sea state represents a case in which 2nd-order interactions are pre-
sumed to be significant. Therefore, a rough sea state of the verification project,
with a significant wave height of HS = 8.5 m and a peak period of TP = 12.87 s
is selected. Acurrent of 0.69 m/s is assumed to be co-flowing with the waves.
In Figure 4.4 the resulting wave energy spectrum and bending moment PSD are
shown of both the 1st-order wave model and the 2nd-order model in time- and
Doppler-shifted frequency domain. It appears that in this case the spectra of
Doppler-shifted frequency-domain approach do not deviate much from the time-
domain results. This is confirmed by the total bending moment spectral power
shown in Table 4.2, since the difference between both approaches is smaller than
1%.

The second sea state that is investigated, is a case in which both the Doppler
shift and 2nd-order interactions are significant. To achieve this, the sea state and
water depth are changed to HS = 2.25 m, TP = 6.0 s and d = 6 m, while the
same current as in the previous example is maintained. This yields the results
shown in Figure 4.5. It is observed that although the sea surface elevation ob-
tained with the Doppler-shifted frequency-domain approach shows a good match
with the time-domain results, the bending moment PSD in general is consider-
ably lower. The normalized bending moment spectral power, shown in Table 4.2,
only confirms this observation.

It is obvious that in this case, the 2nd-order results from the Doppler-shifted
frequency-domain method proposed in Section 3.3.3 fails to accurately repro-
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Figure 4.4: Comparison between 2nd-order modeling approaches in moderately
deep water with a 0.69 m/s strong co-flowing current (Sea state 1). Shown are
the average wave energy spectrum (a) and bending moment PSD (b). Sea state:
HS = 8.5 m, TP = 12.87 s, γ = 3.3, with d = 20 m.

duce the 2nd-order time-domain results. However, it should be mentioned that
although the results from this approach are less accurate, still the spectral power
is higher than what would be achieved with a 1st-order simulation. Nevertheless,
in cases in which both the Doppler shift and 2nd-order effects are significant, the
time-domain approach is preferred. Since the time-domain approach is signifi-
cantly slower, an assessment of the difference between the two approaches for a
full load case simulation is strongly advised.

4.3 Verification with an existing project

The final objective of this thesis is to establish the influence of nonlinear irregular
wave modeling on dynamic response, using the results of a full simulation where
all the design load cases (DLC) required by IEC Standards [71] are included. A
summary of the DLCs that are defined by a unique sea environment is provided
in Appendix C. These DLCs form the basis of the wave load files that are created,
which in turn are used as input for the BHawC dynamic response simulations. In
this section, the results from simulations with input generated by the developed
wave models are compared with previously obtained simulation results for an
existing wind farm. These simulations were run with certified wave loads from a
third-party foundation contractor.
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Figure 4.5: Comparison between 2nd-order modeling approaches in very shallow
water with a 0.69 m/s strong co-flowing current (Sea state 2). Shown are the
average wave energy spectrum (a) and bending moment PSD (b). Sea state: HS =
2.25 m, TP = 6.0 s, γ = 3.3, with d = 6 m.

4.3.1 Description of the verification project
The wind farm chosen for the verification is situated in the German Bight in the
North Sea, where the water depth is approximately 25 m. For this project, full
documentation of the input parameters was available, which allowed a complete
reconstruction of the sea environment and structural geometry. This comprises
the significant wave heights, peak periods, currents, water levels and determin-
istic wave characteristics used in every DLC, further specified in Appendix C. The
monopile is defined by a discretization of the structural diameter and force coeffi-
cients in the axial direction, in all of which marine growth and appurtenances are
accounted for. Furthermore, the equivalent drag coefficient (see Section 2.5.4 is
calculated for 12 wave direction sectors, since the orientation of appurtenances
with respect to the incoming flow influences the drag coefficient. Due to the con-
fidential nature of these data, the input parameters used in the hydrodynamic
load model are not provided in this report.

4.3.2 Comparison of Normal Sea State wave loads
To assure that the wave characteristics and hydrodynamic loads of the stochastic
time series are correct, the output of the developed wave models is compared
to the information extracted from the certified wave load files by the foundation
designer. The comparisons here are made for DLC 1.2, which is used for fatigue
analysis and comprises 108 wave load files per wind speed. In Figure 4.6, the
significant wave height and significant wave period TS , obtained from the sea
surface signals, are compared. The significant wave period is used here for a
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Table 4.2: Comparison of the normalized bending moment spectral powers of
the Doppler-shifted 2nd-order wave model using different modeling approaches,
corresponding to the sea states shown in Figures 4.4 and 4.5. The 1st-order time-
domain solution is set to 100 %.

Modeling Approach
Bending moment

spectral power [%]

Sea state 1 Sea state 2

1st-order (time-domain) 100 100

2nd-order (time-domain) 128.72 139.03

2nd-order (freq.-domain) 127.89 109.47

better period comparison of the energy-containing waves. It is observed that the
results show a good match with the certified sea surface elevation parameters.
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Figure 4.6: Verification of the significant wave height HS (a) and period TS (b)
with results from certified simulations. Shown are the averages of 108 NSS simu-
lations per wind speed (DLC 1.2).

Prior to performing the dynamic response simulations, the overturning bend-
ing moment and the corresponding equivalent fatigue load can be compared,
based purely on the wave load input. These results are shown in Figure 4.7. The
overturning bending moment, which provides an indirect check of the calculated
wave kinematics, reveil that especially in the high wind scenarios the bending
moment is structurally lower than for the certified case. This is suspicious since
the surface elevation did show a good match. A close inspection of the certified
wave loads reveiled that in those files no correlation between surface elevation
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Figure 4.7: Verification of the overturning bending moment at seabed level: Max-
imum values My,MAX (a) and equivalent fatigue loads My,EQ (b). Bending moments
are obtained from wave load input only, and are normalized by the average certi-
fied value for a 25 m/s wind speed. Shown are the averages of 108 NSS simulations
per wind speed (DLC 1.2).

and bending moment exists, which is peculiar at least. One explanation for this
difference could be a phase shift between the surface elevation and wave kine-
matics. If that is the case, the Wheeler stretching technique may be redistributing
the velocity and acceleration profiles to a set of vertical coordinates belonging to
an incorrect surface elevation. Since no details about the implementation tech-
niques applied by the foundation designer are available, no conclusive evidence
exists to prove this statement. Besides this, it is observed that the 2nd-order wave
model yields slightly higher bending moments, as expected.

4.3.3 Comparison of Severe Sea State wave loads
Similarly as for the Normal Sea State, the implementation of the deterministic
waves is verified. This is done using the Severe Sea State (SSS) design load case,
DLC 1.6. In this load case for ultimate strength analysis, 6 SSS simulations are
performed per wind speed, since only one wave sector (worst) is used. In Figure
4.8, the maximum wave height HMAX and the maximum overturning bending
moment My,MAX are shown.

It is observed that the maximum wave height matches well with the certified
waves. Only in some wind speed cases, the maximum wave height was found
to be slightly higher than the deterministic wave height. An inspection of the
wave elevation time records reveiled that for some wave seeds, the wave height
in a group of high irregular waves was actually higher than the deterministic
regular wave that was inserted. Although this did not lead to a higher wave load,
since the highest loads were still caused by the deterministic wave, more realistic
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Figure 4.8: Verification of the deterministic wave simulations: Maximum wave
heightHMAX (a) and normalized maximum overturning momentMy,MAX (b). Shown
are the averages of 6 SSS simulations per wind speed (DLC 1.6).

results may be achieved when the deterministic wave is inserted at the exact spot
of the highest wave in the stochastic record.

The bending moments of the SSS wave records show a difference which in-
creases slightly with the height of the deterministic waves. A number of reasons
for this difference can be identified, both due to presumed mistakes in the cer-
tified deterministic waves and due to uncertainties in the implementation of the
deterministic wave model used in the developed model. These possible mistakes
and uncertainties are further addressed in Section B.2 in Appendix B.

4.3.4 Comparison of dynamic response loads
Up to this point, the verification against certified simulations was performed
purely on the simulated wave loads that serve as input for the BHawC simu-
lations. This section therefore discusses the results of the dynamic response sim-
ulations, which comprises a full set of design load cases. Due to the focus of this
thesis on irregular wave modeling, and the uncertainty about the correctness of
the deterministic wave modeling observed above, the comparison is limited to
the analysis of equivalent fatigue loads due to bending moments.

In the previous comparisons the overturning bending moment was consid-
ered to quantify the resultant hydrodynamic load. This overturning moment was
taken about the axis parallel to the wave crests. In the dynamic response simula-
tions performed by BHawC, a different coordinate system is used, as displayed in
Figure 4.9. This coordinate system is defined with respect to the wind direction,
rather than wave propagation direction. The bending moments of interest from
the BHawC simulations are Mx and My, which represent the moments about the
axes perpendicular and parallel to the wind direction, respectively. These bend-
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Figure 4.9: The coordinate system used in BHawC.

ing motions are also referred to as fore-aft and side-side bending, respectively.
For the verification of wave input by an analysis of dynamic response loads,

the BHawC simulations with 1st-order waves are compared with existing results
from simulations with the certified wave loads. In this comparison, the equiva-
lent fatigue loads of the bending moments Mx and My in both the tower and the
monopile are considered. To give an impression of the variation with height, the
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Figure 4.10: Impression of the equivalent fatigue load distribution throughout the
supporting structure, from response simulations with certified wave loads. Nor-
malized by the maximum value.
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equivalent fatigue loads from the certified simulations are depicted as a function
of the distance from the tower top in Figure 4.10. On each of these nodal loca-
tions, the equivalent fatigue load is normalized by the maximum value, which
occurs in Mx at the node below the sea bed.

It can be observed from Figure 4.10 that the highest fatigue damage is caused
by the fore-aft bending moment, Mx. In both Mx and My, the node below the
seabed is the most sensitive to fatigue accumulation. Furthermore, it is observed
that the monopile, which roughly comprises the bottom section of the supporting
structure below MSL, is affected more by fatigue than the tower.
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Figure 4.11: Verification of the equivalent fatigue loads from response simulations
with 1st-order wave model loads. The graph shows the relative difference with
respect to the certified simulations on each node (Figure 4.10).

The comparison between simulations with 1st-order and certified wave loads
is shown in Figure 4.11. In this figure, the difference between the equivalent fa-
tigue loads of both response simulations is shown as a percentage of the absolute
values of the certified simulation, shown in Figure 4.10. It can be observed that
the fore-aft bending moment leads to significantly lower equivalent fatigue loads
in the submerged section, especially below the seabed. This is expected, since
in the previous section it appeared that the equivalent fatigue loads at seabed
level, purely based on wave action, was slightly lower for the 1st-order model
wave loads than for the certified loads (see Figure 4.7b). The side-side equiv-
alent fatigue loads show the same pattern as the fore-aft loads, though with a
slight offset to a positive difference.
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In general, the 1st-order wave model developed for this project shows results
that are relatively comparable to the certified wave model. The differences no-
ticed in the equivalent fatigue loads of the bending moments, both purely due
to wave action and due to the dynamic response, may be explained by the lack
of correlation between surface elevation and wave loading in the certified wave
load calculations. This has probably led to the application of Wheeler stretch-
ing of velocity and acceleration profiles to an incorrect surface elevation, which
results in slightly different wave loads.
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5
Results and Analysis

5.1 Introduction

In the previous chapters, the linear and nonlinear wave models were presented
and a verification was performed. Since the wind farm that was used for verifi-
cation is situated in shallow water, where nonlinear wave effects are expected to
be significant, this project is suitable to form the basis for the main comparison
between the wave model simulations and some additional case studies. Also the
fact that the input settings that are used for this project represent a realistic sup-
port structure, including appurtenances and marine growth, supports the choice
to use this wind farm.

This chapter first gives an overview of the simulation cases that were devised
to carry out the comparison, a sensitivity study and two case studies on deter-
ministic waves. These simulation cases are then discussed and analyzed in detail
in the sections following the overview.

5.2 Overview of simulation cases

For this thesis project, several simulation cases were devised, which are summa-
rized in Table 5.1. The verification and comparison simulations use the default
input of the wind farm in question, specified in the third-party documentation of
the wave load calculations. The simulation with the certified wave loads, which
was used for the verification, is included in the simulation table for completeness
with identifier A0. Except for the case studies on deterministic waves, a full set
of design load cases (DLC) is simulated in BHawC for every scenario.

Besides the comparison between linear and nonlinear waves, which are named
A1 and A2 respectively, a second category of simulation cases has been devised.
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Table 5.1: An overview of the simulation cases, which are performed on the wind
farm also used for verification.

Case study Sim.
ID

Wave
Kinematics

Details

Verification A0 Certified
Default input& A1 1st-order

Comparison A2 2nd-order

Influence of
wave spectrum
shape

B1 1st-order
γ = 1 (PM spectrum)

B2 2nd-order

B3 1st-order
γ = 7

B4 2nd-order

Influence of C1 1st-order With Doppler shift
Doppler shift C2 2nd-order

Discontinuity D1 - Original (D1) vs.
determ. wave D2 modified (D2)1

Negative accel.
determ. wave

E1 u̇ = −u̇ DLC 6.1 (ESS),
one modified seed

1 Limited to two wave load files from a third-party (D1). In the modi-
fied files (D2), the discontinuity in wave force at the insertion point is
smoothed.

This category comprises a set of scenarios for a sensitivity study on the impact
of changes in the input parameters and the modeling approach. For simulations
B1 to B4, the shape of the JONSWAP spectrum is changed, by modifying the
peakedness-parameter from the default value of γ = 3.3 to either γ = 1 or γ = 7.
For γ = 1, the shape effectively becomes a PM-spectrum, which embodies a fully
developed sea state. The high value of γ is considered to be the upper limit
of this parameter, which basically represents a very young sea state. The input
spectrum is expected to have some influence of the degree of nonlinearity of
the waves [77], which motivates a detailed investigation. An illustration of the
resulting spectral shapes is given in Figure 5.1.

In simulations C1 and C2, the impact of a different approach to model the
current is investigated. In the default case, the current is assumed to always
act in the direction of the waves, and the Doppler shift is ignored. Especially
the former assumption is conservative, since at many sites currents reverse every
half-period of tidal motion. In this case study, the current direction is therefore
alternated between co-flowing and opposing for each wave seed. Contrary to
the default setup, also the Doppler shift is accounted for. This is done using the
Doppler-shifted frequency-domain method described in Chapter 3.
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Figure 5.1: The JONSWAP wave spectra that are used in the sensitivity study.
Examples are shown for a sea state with HS = 2.35 m and TP = 5.44 s.

The third group of simulations consists of two case studies on deterministic
waves. As described in more detail in Appendix B, it was found that the foun-
dation designer responsible for the certified wave loads used in the verification
took the acceleration terms with a negative sign. The negative acceleration may
not influence the magnitude of the maximum hydrodynamic load compared to
a correctly modeled wave, but the different phasing might have an influence on
the dynamic response behavior and loads. This is investigated for one wave seed
of DLC 6.1, by a comparison between BHawC results from two wave load files.
These wave load files are created from the same stochastic wave record, with
the only difference that below the inserted deterministic wave the sign of the ac-
celeration terms is exactly opposed. This way, it is possible to purely isolate the
difference in response due to a different sign in the fluid acceleration.

Furthermore, discontinuities in the distributed wave load were observed fre-
quently at the insertion points of the deterministic waves, as shown in Appendix
B. Two wave load files with a significant discontinuity were therefore chosen, and
modified such that the distributed load is smooth in time around the insertion
point. The aim of the comparison is then to establish whether the discontinuity
leads to transients in the response that may increase the maximum load in any
component of the wind turbine.

5.3 Results of dynamic response simulations
This section presents the results of the dynamic response simulations with the
hydrodynamic loads due to 1st-order linear and 2nd-order nonlinear waves as
input, respectively. For the comparison, the equivalent fatigue loads due to the
fore-aft and side-side bending moment, Mx and My respectively, are considered
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over the entire length of the support structure. To simplify the comparison of
foundation and tower fatigue, a constant Wöhler slope of m = 5 is assumed.
Also the sensitivity study is discussed.

5.3.1 Comparison of linear and nonlinear waves
The comparison of the dynamic response simulation results from cases A1 and
A2, due to linear and nonlinear waves respectively, is shown in Figure 5.2. In this
figure, the difference in equivalent fatigue load is shown, where the difference
is normalized by the 1st-order simulation result at each structural node. It can
be observed that the 2nd-order waves result in higher fatigue damage across the
entire length of the support structure. The equivalent fatigue load increases most
near MSL, and it can be seen that the damage increase due to side-side bending
is significantly higher than due to fore-aft motion.
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Figure 5.2: Influence of 2nd-order waves on equivalent fatigue loads. Difference is
normalized by the values due to 1st-order waves on each structural node.

Since multiple load cases are simulated, the accumulation of fatigue damage
can be further specified for each operation mode of the wind turbine. In Fig-
ure 5.3, a comparison of the fatigue accumulation by 1st- and 2nd-order waves is
shown for both Mx and My at two vertical coordinates. The pie charts shown in
this figure, represent the relative fatigue damage contribution of various opera-
tion modes of the wind turbine.
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For the production, a number is shown to indicate the misalignment angle be-
tween the wind and wave propagation direction. The affixes (p) and (n) indicate
whether the misalignment is positive or negative. The idling mode represents all
load cases in which the turbine is not producing electricity. The fronts contribu-
tion is due to an additional load case, that is included by Siemens to account for
weather fronts.

It can be observed that both at seabed and foundation/tower interface level,
using 2nd-order waves yields a higher relative contribution of the idling mode to
the fatigue damage accumulated due to fore-aft bending. For side-side bending,
hardly any difference can be observed. Furthermore, it can be concluded at
seabed level fatigue damage is dominated by the power production mode, while
at the interface turbine startup and shutdown have a more pronounced role.

5.3.2 Sensitivity study
The primary purpose of the sensitivity study is to identify the effect of changing
assumptions in the wave simulation input on the influence of 2nd-order wave
modeling. Since the 2nd-order wave simulations are compared with 1st-order
results using the same input assumptions, an additional comparison between
several 1st-order simulations is possible. Therefore, in both study cases, the 1st-
order results will also be compared to the reference simulations with the 1st-order
waves from A1.

Peakedness of the JONSWAP wave spectrum
First, the simulations with 1st-order waves using different values for the JON-
SWAP peakedness parameters, B1 and B3, will be compared to the reference
simulations, A1. In Figure 5.4, the difference in equivalent fatigue loads are
shown for a value of γ = 1 (a) and γ = 7 (b). Again, the difference is normalized
by the 1st-order simulation result from A1 at each structural node.

It is illustrated by this comparison that the shape of the input wave spectrum
has a tremendous impact on the fatigue damage that is accumulated. Figure
5.4(a) shows that when the peakedness parameter is chosen such that the shape
of the Pierson-Moskowitz spectrum is obtained (γ = 1), over the entire length
of the support structure the equivalent fatigue load increases. A young sea state
on the other hand results in lower fatigue damage, as can be seen in Figure
5.4(b). Similar to the comparison between 1st- and 2nd-order waves in Section
5.3.1, the side-side bending moment gives rise to the highest relative change in
equivalent fatigue load in both cases. When the absolute values of equivalent
fatigue loads due to Mx and My are inspected, it appears that still the fore-aft
bending moment yields the highest amount of damage. The latter is consistent
with the observations made earlier in Figure 4.10 in Chapter 4.

The impact of the wave spectrum on the additional fatigue damage caused
by using 2nd-order waves (B2 and B4) instead of 1st-order waves (B1 and B3)
is much smaller, as is shown in Figure 5.5. An interesting observation is that in
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Figure 5.4: Comparison of equivalent fatigue loads due to 1st-order waves from
a different input spectrum shape, with the default 1st-order waves where γ = 3.3
(A1). Difference is normalized by the values due to these reference 1st-order waves
on each structural node.

both cases the fatigue damage due to fore-aft motion is affected the most by the
nonlinearity of the waves. This contradicts the results from the standard spec-
trum discussed in Section 5.3.1, where the side-side moment caused the largest
increase in equivalent fatigue loads. Both figures do show that the dependency
of the equivalent fatigue due to Mx and My on the distance from tower top is
similar to what is observed in the comparison with the default wave spectrum
(Figure 5.2).

Modified current direction and Doppler shift
When the current direction is alternated rather than always co-flowing and a
Doppler shift is applied, the effect on equivalent fatigue loads due to 1st-order
waves is minimal, as is shown in Figure 5.6(a). The largest relative change in
fatigue damage is found below the water level and is most pronounced in side-
side bending.

In Figure 5.6(b), the comparison between 1st- and 2nd-order waves is shown
for the simulations with the modified current and Doppler shift. It is observed
that the increase in equivalent fatigue loads shows very similar values and vari-
ation with height as the previously discussed cases. Again, as was also seen in
the sensitivity study on the change in wave spectrum shape, the fore-aft bending
moment leads to the highest relative increase in fatigue damage.
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Figure 5.5: Influence of a different input spectrum on the increase of fatigue dam-
age due to 2nd-order waves (B2 and B4). Difference is normalized by the values
due to 1st-order waves from the same spectrum (B1 and B3).
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Figure 5.6: Influence of different assumptions in the current modeling, shown
for 1st-order waves (a) and 2nd-order waves (b). Normalized by the values from
1st-order simulations A1 and C1, respectively.
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5.3.3 Case studies on deterministic waves
In this section, the case studies that were performed to investigate the impact
of the quality of deterministic wave modeling on the dynamic response are dis-
cussed. The influence of discontinuities at the insertion point and of acceleration
terms with a different sign is shown by both time- and frequency-domain graphs
of bending moments in the support structure and the blades.

Discontinuity at insertion point
To investigate the influence of a wave load discontinuity at the insertion point of
a deterministic wave, two wave seeds from the third-party foundation designer
are taken. The first wave seed is taken from DLC 16, since this particular seed
contains the relatively largest jump in the hydrodynamic force. Since this wave
seed is in a power production load case, a second wave seed was selected from
DLC 6.1, to observe the effect on an idling turbine. The modified wave load files
have been smoothed, such that the distributed force is continuous in time. Both
the original and modified wave load files are then used as input for the BHawC
simulations.
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Figure 5.7: Effect of a discontinuity in the hydrodynamic force at the deterministic
wave insertion point on the dynamic response. Bending moments are normalized
by the absolute value of the maximum moment.

In Figure 5.7, the surface elevation (a) and fore-aft bending moment at foun-
dation/tower interface level (b) are shown for the DLC 1.6 wave seed. Also the
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Figure 5.8: PSD of the fore-aft bending moment shown in Figure 5.7(b). Normal-
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edgewise bending moment of the first rotor blade is shown in Figure 5.7(c). It is
observed that the jump, which occurs at the insertion points in the deterministic
wave troughs, introduces a quite severe high frequency transient in the fore-aft
bending moment. This high frequency oscillation in the response is also detected
in the PSD of this bending moment, shown in Figure 5.8.
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Figure 5.9: Effect of a discontinuity in the hydrodynamic force at the deterministic
wave insertion point on the dynamic response. Bending moments are normalized
by the absolute value of the maximum moment.
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Although the maximum fore-aft bending moment due to the original wave
only differs a few percent from the smoothed wave, it is disturbing that the max-
imum is achieved just after the insertion point, rather than during the passage
of the wave crest. In the blade edgewise bending moment, the high-frequency
oscillation is observed as well, albeit in smaller magnitude.

The second wave seed from DLC 6.1 contains a much smaller discontinuity.
Hence, the effect on the fore-aft bending moment is significantly less severe, as
can be observed from Figure 5.9. The influence on the edgewise bending moment
of the first blade however, is much more pronounced. Since the magnitude of the
bending moment in the blade in DLC 6.1 is comparable to the values that occur
in power production, the additional oscillations that are excited by the jump are
significant.

Negative acceleration below deterministic waves
The influence of using a deterministic wave with an incorrect fluid acceleration
sign is illustrated with a wave seed from DLC 6.1. Two wave load files are used in
the comparison, where the differentiation is made in the sign of the acceleration
terms below the deterministic wave. In order to have identical dynamic response
characteristics upon the arrival of the determinstic wave, the stochastic wave
record was simulated with the correct sign.
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In Figure 5.10, the surface elevation (a) and the fore-aft bending moment at
two levels (b,c) are shown. Clearly, the phase shift due to the changed sign of
the acceleration can be observed. Although the maximum fore-aft bending mo-
ment purely due to wave loading is equal for both wave load files, the maximum
response load shows a striking difference of 23% at seabed level. Another in-
teresting observation can be made in a frequency-domain representation, of the
fore-aft bending moment at interface level, depicted in Figure 5.11. A zoom-
in on the natural frequency of the support structure reveils that the two wave
simulations result in a slightly different peak frequency of the power spectrum.
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5.10(b). Normalized by the value at the peak near 0.3 Hz.

5.4 Analysis of simulation results

In the previous section, the results of the various simulation cases listed in Table
5.1 were discussed. Based on the observations that were made, an analysis of the
results is presented in this section.

5.4.1 Influence of nonlinear irregular waves on fatigue
It was shown in the comparisons between the results due to linear and nonlinear
waves that the 2nd-order wave model results in higher equivalent fatigue loads.
Side-side bending was found to cause a higher relative increase in fatigue damage
than fore-aft bending. A possible explanation for this observation is the reduced
effectivity of aerodynamic damping of the rotor when wave propagation is mis-
aligned with the wind direction. This reduction of response attenuation results
in a larger amount of load cycles of a higher magnitude, which in turn causes
a higher fatigue damage. Hence, an increase in wave loading has a more direct
effect on the equivalent fatigue load if aerodynamic damping is small.
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From the relative contribution from each operation mode, in the fore-aft
bending direction the most notable observation was that significantly more fa-
tigue damage was accumulated during the idling of the turbine. This can be
explained by two considerations. First, when the turbine is in idling mode, aero-
dynamic damping from the rotor is absent. Second, since in some cases the rea-
son of the idling is the occurrence of strong winds above the cut-out wind speed,
the significant wave height is high. In a high sea, the water depth is relatively
small, which causes nonlinear effects to be more pronounced. Hence, the com-
bination of relatively strong nonlinear effects and the absence of aerodynamic
damping is likely to cause a significant increase in fatigue damage.

5.4.2 Sensitivity to wave modeling assumptions

The sensitivity study on the peakedness of the JONSWAP spectrum showed that
a fully developed sea state (PM spectrum) yields to more than 20 % increase
in fatigue loads. This can be explained by distribution of wave energy over the
frequencies. Whereas the JONSWAP spectrum has a very defined peak frequency,
in the PM spectrum the wave energy is more spread out over the rest of the
frequencies. As can be observed in Figure 5.1, this results in a higher amount of
energy near the natural frequency of the support structure. It was demonstrated
in Chapter 2 that this can lead to a poorly damped response, which leads to
an increase in fatigue damage, as is observed in the simulation results. On the
contrary, a high peakedness results in lower fatigue damage due to the reduced
amount of energy near the natural frequency.

The predicted effect of the spectrum on the influence of nonlinearity was not
observed, since the comparisons between 1st- and 2nd-order waves did not differ
significantly in magnitude from the comparison with the standard spectrum. A
remarkable observation however, was that instead of the side-side bending mo-
ment, the fore-aft bending appeared to result in the highest relative increase in
equivalent fatigue loads. This was also observed in the linear versus nonlinear
waves comparison with the different assumptions for the current. An explanation
for this observation was not found.

Assuming an alternating current direction and a Doppler shift did not result in
significantly different results, neither between 1st-order waves or on the influence
of 2nd-order waves. Since two assumptions were changed for this case study, it is
not possible to isolate the influence of either the Doppler shift or alternating the
direction of the current. Therefore, it may as well be the case that the effect of
one assumption compensates the influence of the other.

Besides this, it can be deduced from the results that despite the introduced
modeling errors in the Doppler-shifted frequency domain method with 2nd-order
waves (see Section 4.2.2), reliable results are obtained. Thus, for the given sea
environment, the modeling errors appear to be of an acceptable level.
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5.4.3 Impact of low-quality deterministic wave modeling
It was shown that a discontinuity at the insertion point of a deterministic wave
has a severe effect on the fore-aft bending moment in the support structure. In
the most severe case, the maximum fore-aft bending moment was achieved just
after the discontinuity, rather than after the passage of the wave crest. Since the
bending moment due to the stochastic wave record was already high when the
jump in hydrodynamic load occurred, the transient response due to the jump was
severe enough that a maximum was achieved.

Besides that, the edgewise bending moment of the blades appeared to be
influenced significantly by the discontinuity. In power production (DLC 1.6), the
effect is noticeable but limited, since the aerodynamic forces on the blade are able
to suppress the response quite effectively. In idling (DLC 6.1) however, the blade
excitations due to the jump are more severe due to the absence of aerodynamic
damping.

From the simulations with a negative acceleration below deterministic waves,
a significant difference was found between the maximum fore-aft bending mo-
ments at seabed level. On the interface level, this difference however appeared
to be far less pronounced. The reason for this remarkable observation was not
found.

Furthermore, a difference in the peak frequency of the fore-aft bending mo-
ment PSD was found. As can be observed in the time series of the bending
moment, the transients caused by the deterministic wave take considerable time
to damp out. Since the stochastic record is simulated with the correct accelera-
tions, the phase shift introduced by the deterministic wave is eventually corrected
again, as wave action of the stochastic record takes over the dominant response.
This explains the difference in spectral power peak frequency.
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6
Conclusion and Recommendations

6.1 Introduction

The primary goal of this thesis is to quantify the influence of using a nonlinear ir-
regular wave model on the predicted fatigue damage of an offshore wind turbine.
The prediction of how much fatigue damage is accumulated, is done by a large
amount of dynamic response simulations of an entire set of design load cases,
which should represent the entire lifetime of the wind turbine. The simulations
are carried out in the time-domain using the aero-servo-elastic wind turbine code
BHawC.

In order to carry out a comparison with the traditional linear wave model with
Wheeler stretching, both the linear 1st-order and a 2nd-order nonlinear irregular
wave model were implemented. These provide the wave kinematics, after which
the Morison equation is used to calculate the hydrodynamic load on the support
structure. The resulting output from this hydrodynamic load calculation program
is then used as input for the dynamic response simulations in BHawC. In the
previous chapters, the theory behind the wave models and the details of the
implementation were given. The output of the hydrodynamic load program was
verified using an existing wind farm project in the German Bight, of which the
input parameters were fully documented.

In Chapter 5, the comparison between simulation results due to linear and
nonlinear waves was described and analyzed. Additionally, a sensitivity study
was performed. This comprises a number of full sets of simulations, where the
input settings for the wave simulations were changed. Subject to investigation
were the effect of changes in the shape of the JONSWAP wave spectrum and the
assumptions used to model the current. Besides that, two additional case studies
were performed on the quality of deterministic wave modeling. This was done
to investigate the impact of modeling errors, which were observed in third-party
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wave simulations, on the dynamic response.
In this chapter, the final conclusions are drawn based on the observations and

analyses that were made in the previous chapters. Additionally, recommenda-
tions for future work are given. Finally, the work is reflected upon in a section
that contains the lessons learned during this project.

6.2 Conclusion
This section presents the conclusions from the analysis of the linear versus nonlin-
ear waves comparison, sensitivity study and case study performed in Chapter 5.
Also, the Doppler-shifted frequency-domain method that was devised to be able
to account for a Doppler shift due to a steady current is reflected upon. Finally,
the impact of using nonlinear irregular waves on fatigue design is assessed.

6.2.1 Influence of nonlinear irregular waves on fatigue damage
The comparison between the dynamic response simulations run with linear and
2nd-order irregular waves reveiled that, as expected, the nonlinear waves yield
higher equivalent fatigue loads. The increased hydrodynamic load due to the
nonlinearity of the waves has the largest impact on the support structure, near
the mean sea level. It was found that the effect on other components than the
tower and foundation, for example the blades and nacelle, is insignificant.

Regardless of which wave model is used to prepare the hydrodynamic loads,
the dynamic response loads due to fore-aft bending of the support structure are
responsible for the largest portion of the fatigue damage accumulation. The
highest equivalent fatigue load is achieved just below the seabed, and decreases
gradually towards the tower top. Using the 2nd-order wave model than tradi-
tional linear wave theory, the response loads due to side-side bending result in
the largest relative increase in equivalent fatigue loads. The highest increase was
found to be 5% from the original load due to linear waves. In fore-aft bending
direction, the maximum relative increase was found to be slightly lower with 4%.
The higher increase in fatigue damage in the side-side bending was contributed
to the absence of aerodynamic damping of response motion by the rotor, when
wave action is misaligned with the wind direction. Due to this smaller response
damping, a higher wave load thus has a more pronounced impact on side-side
than on fore-aft bending.

The contribution of several turbine operation modes to the accumulation
of fatigue damage was also investigated. The most significant difference be-
tween linear and nonlinear waves was found in the relative amount of fatigue
damage due to fore-aft bending when the turbine is idling. Measured at the
foundation/tower-interface, 23% of the fatigue damage due to fore-aft bending
was accumulated during idling using nonlinear waves, whereas with linear waves
this proved to be only 15%. Again, since the rotor is inactive in the idling mode,
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the lack of aerodynamic damping was brought up as one of the reasons for this
significant increase. Besides that, in some of the scenarios when the turbine is
idling, wind speeds are high and hence the sea is in an agitated state. This means
that the wave height is large with respect to the water depth, which results in a
high degree of nonlinearity. Both factors explain the increase of fatigue damage
in the idling mode. Contrary to the fore-aft bending, no significant difference
between wave models was found in the contribution of operation modes to side-
side fatigue damage accumulation.

6.2.2 Sensitivity to wave modeling assumptions
A sensitivity study was carried out to test the sensitivity of fatigue damage estima-
tion to the assumptions used for the wave model. First, the wave spectrum used
to obtain the amplitude of each frequency component in the wave record was
changed. Since a JONSWAP spectrum was used with a value of the peakedness-
parameter of γ = 3.3, this value was changed to γ = 1 and γ = 7 to investigate
the effect on both dynamic response simulations with linear and 2nd-order waves.
The assumed values represent a fully developed and very young sea state, respec-
tively.

It was shown that the input spectrum has a very significant influence on the
equivalent fatigue loads. Using linear waves in the dynamic response simulation,
the fully developed sea state assumption led to approximately 10% higher equiv-
alent fatigue loads due to fore-aft bending. The fatigue damage due to side-side
bending increased up to 22%, but since the absolute values of the equivalent
loads in this direction is lower, this is considered less important. The increase
in fatigue damage was explained by the higher amount of energy in the tail of
the wave spectrum, in which the natural frequency of the support structure is
situated. The young sea state with γ = 7 on the other hand, led to a equivalent
fatigue load reduction of up to 8% in fore-aft bending. In side-side bending, this
reduction amounts to up to 13%.

For the two different spectra, the influence of 2nd-order waves with respect to
linear waves remained of comparable magnitude as observed in the comparison
with the default spectrum. It was found however, that the relative increase in
fore-aft bending fatigue damage is slightly higher than with the default spectrum.
Also, the side-side fatigue damage was limited to an increase of approximately
2% in both cases, whereas this was 5% in the default scenario. An explanation
for these observations was not found.

Besides the spectrum, the influence of changing the assumptions with respect
to a steady current was investigated. Rather than assuming that the current is
co-flowing with the waves, the direction was alternated to simulate a tide. Fur-
thermore, the Doppler shift was taken into account rather than ignored. Both
assumptions only led to a small change (< 2%) in the fatigue damage with the
traditional linear wave theory. It was concluded that by changing two assump-
tions at the same time, the effect of the individual settings is hard to isolate.
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The 2nd-order Doppler shifted waves showed a very similar equivalent fatigue
load increase as the study cases with the different wave spectra. This suggests
that the 2nd-order wave model with the Doppler-shifted frequency-domain ap-
proach, devised in Chapter 3, yields very acceptable results given the sea and
current environment of the test farm.

6.2.3 Impact of poor deterministic wave modeling

Two case studies were conducted to investigate the effect of modeling inaccura-
cies on the dynamic response loads. First, discontinuities at the insertion point
of a deterministic wave were inspected. When a deterministic wave is glued into
a stochastic record, the distributed hydrodynamic load should be continuous at
the insertion point to avoid undesired response behavior. With two third-party
examples containing a jump, by a comparison with a smoothed insertion it was
shown that a jump in the wave load can lead to severe transients in the dynamic
response of the offshore wind turbine. These transients caused significant differ-
ences in the bending moments in the support structure and rotor blades.

The worst case, which occurred in a power production load case (DLC 1.6),
showed that the maximum fore-aft bending moment was achieved after the dis-
continuity rather than after the wave crest. In an idling case with an extreme sea
state, also the blades were excited quite severely, leading to significant edgewise
bending moments just after the discontinuity. Even though the discontinuity was
by far not as severe as the worst case, the effect was very visible in the blade
response loads. This confirms that the insertion of a deterministic wave requires
careful attention.

A second case study was performed with a negative acceleration below the
deterministic wave. This was done to show that this unphysical implementation
of acceleration terms, which was done by a third-party foundation designer, has
a noticeable impact on dynamic response behavior. An idling case with an ex-
treme sea state (DLC 6.1) showed a completely different behavior of the fore-aft
bending moment at seabed level, compared to the smooth version of the same
wave record. This resulted in a 23% lower maximum fore-aft bending moment
at seabed level when the fluid acceleration is physically correct rather than neg-
ative. On the foundation/tower-interface this difference was smaller with 6%.
This case study shows that this incorrect way of modeling has a severe impact on
the dynamic response loads.

For the wind farm used for simulations in this thesis, the load case investi-
gated in the above case appeared to be design driving. Considering the fact that
this wind farm was designed using wave loads with a negative acceleration and
with discontinuities at the insertion point, it is very likely that significant errors
have been made in the design.
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6.2.4 Effect of nonlinear irregular waves on design
As mentioned above, ultimate loads in extreme wave conditions turned out to be
design driving for the support structure of the wind farm used in this research.
Hence, the increase in fatigue damage due to using nonlinear irregular waves
instead of linear waves would not change the dimensions of the support structure
in this case. This may be different in another environment, where the support
structure design is fatigue driven rather than ultimate load driven.

For the given water depth of 25 m. and the given sea environment and sup-
port structure, it may be concluded that the maximum equivalent fatigue damage
due to fore-aft bending increases between 4 and 6%. This maximum increase is
found near the mean sea level. It has to be emphasized that this figure depends
on the degree of nonlinearity of the waves, which in turn is related to the relative
water depth compared to the wave height. This, of course, is very site specific.

The calculation time of a single wave record of 10 minutes with 500 wave
frequencies and a vertical coordinate on every meter, turned out to be approxi-
mately 5 seconds on an ordinary laptop. Using the frequency-domain approach
described in this report, the argument that the required calculations would be
too demanding, is no longer valid. Therefore, if this method is implemented
carefully, it is a good candidate to replace the traditional linear wave model in
the industry standard.

6.3 Recommendations for future work
Based on the conclusions and the experience that was gained by developing and
testing the hydrodynamic load model, recommendations for future work can be
given. These recommendations concern both work on the developed tool and
possible follow-up research projects. Five recommendations are listed below.

• Reconsideration of safety factor on fatigue loads
As described in the conclusion, nonlinear irregular waves results in a roughly
5% higher fatigue damage. In the current standard of modeling wave kine-
matics, using linear wave theory with Wheeler stretching, this difference is
accounted for with a safety factor on the dynamic response loads. Since
employing a more accurate model should always be preferred above using
an empirical safety factor, the value of the latter is subject to discussion to
avoid overdimensioning of the support structure. Hence, if one intends to
use the 2nd-order irregular wave model described in this thesis, the safety
factor on loads should be reconsidered carefully. It should be mentioned
that since the nonlinearity of the waves strongly depends on the relative
water depth, each site has its unique wave characteristics and therefore
requires specific consideration.

• Correcting the added power by downscaling the input wave spectrum
As mentioned in Chapter 4, by using the 2nd-order wave model power is
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added to the wave energy spectrum. This results in a slight increase of the
significant wave height of the output wave record. For this research this
increase was assumed to be small enough to be ignored. A more realistic
approach would be to correct the input wave spectrum for the added power
due to the 2nd-order contributions. However, since downscaling the input
spectrum in turn affects the magnitude of the 2nd-order components, an
iterative procedure may be required.

• Using more site-specific wave spectra and directional irregular waves
The sensitivity study that was performed, showed that the choice of which
wave spectrum is used has a significant impact on the fatigue damage that
is accumulated in the dynamic response simulations. Since wave condi-
tions are very site specific, the common assumption to just use a JON-
SWAP spectrum with a peakedness-parameter of γ = 3.3 almost seems ill-
considered. Especially if a swell, which is less dependent of the local wind
conditions, occurs frequently, the JONSWAP spectrum might be inappropri-
ate. Therefore, a double-peaked Torsethaugen spectrum should perhaps be
considered instead. Given the impact of the chosen wave spectrum on the
modeled fatigue damage, the spectrum should thus be chosen with care.
Furthermore, evidence exists that including directional spreading in wave
modeling results in a significant fatigue damage reduction [78]. Therefore,
investigating the influence of using directional waves on fatigue damage
would be a logical next step in irregular wave modeling for offshore wind
turbines.

• Assessment of sensitivity on assumptions in modeling currents
A sensitivity study was performed on the impact of using different assump-
tions in the modeling of a steady current. Due to a shortage of time, this
case study was limited to one change of parameters, which did not result
in a useful conclusion. Therefore, a sensitivity study is suggested to iso-
late the effect of using a Doppler shift, and the influence of the assumed
current direction. If the Doppler shift does have a significant impact, the
devised Doppler-shifted frequency-domain approach may need to be im-
proved when used with 2nd-order waves, or if possible a different approach
should be considered. A research on a case in which both the current and
nonlinear effects are strong would be useful to test the accuracy of the de-
vised method.

• Verification of the Fourier method implemented for deterministic waves
In Appendix B, the implementation of the Fourier approximation model for
nonlinear regular waves is discussed. This method, which is used to model
deterministic extreme waves, was found to be quite sensitive to the assump-
tions that were made with respect to the current. Within the time available
for this project, it was not possible to verify whether the assumptions that
have been used are fully correct. Therefore, additional work is required to
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make sure the Fourier approximation model yields physically sound results.

• Feasibility of more advanced modeling of near-breaking extreme waves
Besides the implementation issues, some of the extreme waves that needed
to be modeled are on the verge or even beyond the theoretical breaking
limit. In those cases, it was hard to find a combination of input settings
that resulted in a converging solution. This definitely illustrates the limi-
tation of the perturbation approach that is used in the Fourier method and
similar models, which is and has been the standard for many years. In or-
der to be able to model extreme waves close to the breaking limit properly,
for example a full-potential flow method could be an option. Hence, the
feasibility of implementing such a model of higher fidelity for engineering
purposes should be investigated.

6.4 Lessons learned during this project
Besides the conclusions that are drawn and the recommendations that are given
for future research, finalizing the project has given insight in the lessons that
were learned. The three most important are listed below.

• Implementation challenges should not be solved at all cost
In Chapter 3, a method was devised to be able to account for a Doppler
shift due to a current in the frequency domain. This proved to be challeng-
ing, due to which a considerable amount of time was spent to analyze and
solve the problem at hand. In retrospect, it would have been wiser to first
analyze the impact of changing the assumptions in current modeling on
the fatigue damage, using the straight-forward time-domain formulation of
linear wave theory. This way, the conclusion may have been drawn that the
time spent overcoming the challenge of implementing the Doppler shift in
the frequency domain would not justify the gain in modeling accuracy.

• Define the framework of the simulations as early as possible
Quite some time passed in this project before the simulation project was
defined. Together with the requirement by Siemens to deliver a complete
hydrodynamic load simulation toolbox, this led to a pursuit of flexibility in
realizing the wave load calculation program. Had the simulation project
been chosen earlier, the more defined scenario would have lowered the
amount of options that the program should be able to handle. Besides that
this results in less implementation work, the challenge mentioned in the
previous point could have been avoided. On the contrary, the requirement
of realizing a versatile model has resulted in a more structured approach to
build the program.

• Certification of hydrodynamic loads does not guarantee quality
As was discovered during the verification of the developed wave models
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against the results from a third-party foundation designer, the fact that the
wave loads had been certified did not prevent errors in the results. Hence,
certification is not sanctifying and wave loads that are provided by third-
parties should always be inspected carefully on their physical correctness.
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A
Linear wave theory derivations

In Chapter 2, the gouverning equations and boundary conditions of a free sur-
face gravity wave were briefly stated. In this appendix, the derivation of those
equations from the full Navier-Stokes equations, and the linearization of the non-
linear surface boundary conditions will be shown in detail. Good understanding
of these equations and the limitations imposed on its applicability by the assump-
tions made during the linearizations, are of fundamental importance.

A.1 Equations of motion

We will start with the basic equations of motion, assuming that the fluid is in-
compressible, such that the density is constant in time and space. These are the
Navier-Stokes equations, which in Chapter 2 were stated in vector form (Eqs.
2.18 and 2.19), here they are written out in each direction.

continuity:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (A.1)
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momentum:

x-dir→ ∂u

∂t
+
∂(uu)

∂x
+
∂(uv)

∂y
+
∂(uw)

∂z
=− 1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
(A.2)

y-dir→ ∂v

∂t
+
∂(uv)

∂x
+
∂(vv)

∂y
+
∂(vw)

∂z
=− 1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
(A.3)

z-dir→ ∂w

∂t
+
∂(uw)

∂x
+
∂(vw)

∂y
+
∂(ww)

∂z
=− 1

ρ

∂p

∂z
+ ν

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
(A.4)

Considering only the momentum equation in the x-direction, the chain rule can
be applied on the terms on the left hand side (LHS) and neglecting the viscous
terms on the right hand side (RHS) the Euler equation in x-direction is obtained:

∂u

∂t
+ u

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂p

∂x
(A.5)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂p

∂x
(A.6)

In Eq. A.5 the term in brackets can be omitted, as follows from the continuity
equation, Eq. A.1. Assuming irrotational flow, the continuity equation can be
expressed in terms of the velocity potential u = ∇Φ:

∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
= 0 (A.7)

Irrotational flow requires the curl of the flow to be zero, or: Ω = ∇×u = 0. This
gives:

Ωx =
∂w

∂y
− ∂v

∂z
= 0 → ∂v

∂z
=
∂w

∂y
(A.8)

Ωy =
∂u

∂z
− ∂w

∂x
= 0 → ∂u

∂z
=
∂w

∂x
(A.9)

Ωz =
∂v

∂x
− ∂u

∂y
= 0 → ∂u

∂y
=
∂v

∂x
(A.10)

Substitution in the x-momentum equation, Eq. A.6 gives:

∂u

∂t
+ u

∂u

∂x
+ v

∂v

∂x
+ w

∂w

∂x
= −1

ρ

∂p

∂x
(A.11)

The spatial derivatives on the LHS can be gathered in one term, and subsequently
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the velocity potential can be substituted:

∂u

∂t
+

∂

∂x

(
1

2
u2 +

1

2
v2 +

1

2
w2

)
= −1

ρ

∂p

∂x
(A.12)

∂

∂t

(
∂Φ

∂x

)
+

∂

∂x

{
1

2

[(
∂Φ

∂x

)2

+

(
∂Φ

∂y

)2

+

(
∂Φ

∂z

)2
]}

= −1

ρ

∂p

∂x
(A.13)

Regrouping the spatial derivatives again:

∂

∂x

{
∂Φ

∂t
+

1

2

[(
∂Φ

∂x

)2

+

(
∂Φ

∂y

)2

+

(
∂Φ

∂z

)2
]

+
p

ρ

}
+ gz = 0 (A.14)

where the gravity term gz has been added for completeness. As this term is not
a function of x, the equation can be set equal to a function that depends solely
on time. In its simplest form this function is zero, f(t) = 0, so we can put the
equation in a more general vector form:

∂Φ

∂t
+

1

2
|∇Φ|2 +

p

ρ
+ gz = 0 (A.15)

This is the nonlinear Bernoulli equation for unsteady motion, derived with the
assumption of irrotational, inviscid (potential) flow.

A.2 Boundary conditions
For an ocean wave, three boundary conditions need to be taken into account: the
kinematic boundary conditions at the bottom and the free surface and a dynamic
boundary condition at the surface.

• Kinematic boundary condition at the sea bed
This boundary condition simply requires that the bottom is impermeable.
To achieve this, the velocity component normal to the sea bed should be
zero, which in case of a flat bottom is:

w =
∂Φ

∂z
= 0 at z = −d (A.16)

• Kinematic Free Surface Boundary Condition (KFSBC)
On the surface, fluid particles are assumed not to be able to leave the sur-
face, so velocity components normal to the surface should be zero. In Fig-
ure A.1, this is illustrated with the displacement of a fluid particle riding the
surface on the left and the evolution of the surface on the right. This yields
the following kinematic relation for the 2D case shown in the illustration:

w cosα− u sinα =
∂η

∂t
cosα at z = η (A.17)
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Rewriting Eq. A.17 gives:

w =
∂η

∂t
+ u tanα =

∂η

∂t
+ u

∂η

∂x
at z = η (A.18)

After substitution of the velocity potential the KFSBC reads:

∂Φ

∂z
=
∂η

∂t
+
∂Φ

∂x

∂η

∂x
at z = η (A.19)

The last term in this expression contains a nonlinear term, as the velocity
potential appears both on the LHS and the RHS. Assuming a small pertur-
bation and wave steepness, such that α → 0, this nonlinear term can be
neglected and the relation becomes linear:

∂Φ

∂z
=
∂η

∂t
at z = 0 (A.20)

w

w

Figure A.1: Visualization of the KFSBC, with particle displacement on the left and
surface displacement on the right [7].

• Dynamic Free Surface Boundary Condition (DFSBC)
The DFSBC requires that the pressure at the surface is equal to the ambient
pressure of the air on top of the wave. Taking the Bernoulli equation, Eq.
A.15 and setting p = 0 at z = η gives an expression for the DFSBC:

∂Φ

∂t
+

1

2
|∇Φ|2 + gη = 0 at z = η (A.21)

As the quadratic term is nonlinear, removing the term will linearize the
DFSBC, assuming again a small perturbation and small wave steepness.
The DFSBC then reads:

∂Φ

∂t
+ gη = 0 at z = 0 (A.22)
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B
Deterministic extreme waves

In Section 2.2.5, several wave models were presented for regular waves. Al-
though these models are not within the scope of this thesis project about non-
linear irregular waves, its insertion and use in stochastic records are discussed
in this appendix nonetheless. The reason is that for a full load case simulation,
deterministic waves shall be included. Besides that, during this research it was
found that in practice the insertion of deterministic extreme waves is often of
poor quality and sometimes the physical correctness of the wave itself is doubt-
ful. This appendix therefore presents some observations on an example wave
from a third party, delivered to Siemens to use as input in dynamic response sim-
ulations. Furthermore, an insertion method is proposed, which provides a robust
way to smoothly glue a deterministic wave into a stochastic record.

B.1 Analysis of a low quality deterministic wave

To illustrate the problems that were observed in deterministic waves, an example
of a deterministic wave inserted in a stochastic wave record is shown in Figure
B.1. This example wave record has been supplied to Siemens by a third party
foundation designer, as an input wave load file for the same project that was used
for verification (Chapter 4). The figure shows two graphs; the surface elevation
and the resultant shear force at seabed level acting in the propagation direction
of the waves. The specific example shown here is a nonlinear regular wave of
height H = 16.4 m and wave period T = 9.8 s, with a water depth below mean
sea level of d = 26.8 m.

From Figure B.1 several observations can be made. First, a jump in the shear
force can be seen on the transition points from stochastic to regular wave and
vice versa, which take place at approximately 92.5 and 103 seconds respectively.
Although the surface elevation is completely smooth, the force time series is not,
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Figure B.1: An everyday example of a poorly inserted deterministic wave. While
the surface elevation η (top) is smooth, the shear force at seabed level Fx (bottom,
normalized by maximum) contains a significant jump.

which indicates that the kinematics have not been smoothed properly after inser-
tion of the regular wave. Such a discontinuity in wave loading is very undesir-
able, since it may lead to an unphysical extreme response of one or more of the
wind turbine components.

Second, it can be observed that small oscillations are present in the sea surface
elevation of the regular wave. This is likely to be caused by a high amplitude of
one of the perturbation frequencies in the nonlinear wave model, which is typical
when the breaking limits are approached or exceeded. This assessment proves
to be true when the breaking limits of a wave are investigated more closely.
Theoretically, the highest wave with nondimensional height HMAX/d, according
to Fenton’s approximation [22] to research performed by Williams [79], is:

HMAX

d
=

0.0077829
(
L
d

)3
+ 0.0095721

(
L
d

)2
+ 0.141063

(
L
d

)
0.0093407

(
L
d

)3
+ 0.0317567

(
L
d

)2
+ 0.078834

(
L
d

)
+ 1

(B.1)

Besides this theoretical breaking limit, which depends on the wave length to
water depth ratio L/d, experiments by Nelson [80] have shown that waves in
practice break already at HMAX/d = 0.55. This lower practical breaking limit
is supported by other research [81] as well. When the breaking limits of Fen-
ton/Wilson and Nelson are plotted together with the wave height of the example
wave shown above, one can only conclude from the resulting figure (B.2) that
waves of this height is very likely to break. Hence, waves in this region actually
require a higher fidelity wave model in which breaking of the sea surface can be
tracked.

A final observation on the regular wave in Figure B.1 reveals that the shear
force peaks slightly later than the surface elevation. This is unexpected, since the
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Figure B.2: Diagram showing the breaking limits of regular waves, according to
the theoretical approximation by Fenton and experiments by Nelson. The regular
deterministic wave from Figure B.1 just exceeds the breaking limit. The blue dot-
ted line indicates the demarcation line between the traditional cnoidal and Stokes
theory (see Chapter 2).

acceleration terms in the Morison equation have a 90 degrees phase lead over
the velocity terms. When the wave approaches, the horizontal velocities increase
until they achieve their maximum at the wave crest, hence the acceleration is
positive. The peak of the shear force is therefore expected slightly before the
wave crest. This leads to the conclusion that in this wave the acceleration terms
have the wrong sign.

B.1.1 Influence of the MacCamy-Fuchs diffraction correction
Although the wrong phase of the acceleration does not significantly influence
the magnitude of the maximum bending moment, it does influence the dynamic
response of the offshore wind turbine, as shown in Chapter 5. Besides the ob-
servations made here, it was shown in Chapter 4 that the wave loads due to the
third party waves differ significantly from the loads calculated with the methods
used for this thesis. Considering the 180◦phase shift in the acceleration terms, an
incorrect implementation of the phase lag due to the MacCamy-Fuchs correction
for diffraction (Section 2.3.3) may be plausible.

For the monopile geometry and deterministic waves used for this project, the
diffraction parameter (kD/2) varies between 0.1 and 0.4, approximately. This
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Figure B.3: Influence of MacCamy-Fuchs correction on wave loads due to a de-
terministic wave. Shown are the inertia and drag contributions to the resultant
hydrodynamic force at seabed level, with and without MacCamy-Fuchs correction.
Diffraction parameter (kD/2) ≈ 0.4.

results in a maximum phase lag of the inertia term in the Morison equation of
about 7◦, which is shown in Figure B.3 for (k/D) ≈ 0.4. It can be observed that
the phase shift of the inertia term has a small influence on the magnitude and the
time stamp of the maximum resultant force. Even when the phase lag has been
implemented incorrectly by the foundation designer, this does not fully explain
the large difference observed in Chapter 4.

A final note has to be made on the MacCamy-Fuchs correction. Since the
higher-order corrections are bound waves that are phase-locked on to the primary
regular wave, the phase lag that is applied with the MacCamy-Fuchs correction
should be based on the primary wave and should be the same for all higher-order
Fourier components.

B.2 Nonlinear wave model: Fourier approximation

The wave model that is used to calculate deterministic wave properties is the
Fourier approximation method by Fenton [6], which is a nonlinear model for reg-
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ular waves. As was discussed in Section 2.2.5, the principle behind this method
is to add higher-order perturbations to a linear harmonic wave, where the am-
plitude coefficients of the perturbations are solved numerically. This model is
available as an open-source program developed in C++ by Fenton, and therefore
only requires a small amount of work to implement. An instruction manual is
provided, which aids in setting up the input files and extracting the relevant
variables from the output. The formulations of the expressions for the surface
elevation and kinematics can be found in the instruction manual [31].

It was observed that the results of the wave loads due to nonlinear regular
waves are quite sensitive to the choices made with respect to modeling a steady
current. The Fourier method is able to anticipate the Doppler shift due to a steady
depth-averaged current. This is convenient when one wants to reproduce a wave
of which the wave period was measured in the stationary frame of reference. The
Fourier method then corrects the wave length and wave celerity such that in the
relative frame of reference, moving with the wave, the kinematics are modeled
correctly. The requirement, however, is that the specified wave period represents
the apparent period as measured from a stationary position.

For this project, deterministic wave periods are obtained from Metocean data,
and this requirement may not be satisfied due to the ambiguity of what wave pe-
riod is actually specified in the Metocean data. Since the wave length is modified
when a current is specified upfront, a wave with a different steepness and hence
different kinematics is created than what one would expect based on the proper-
ties from Metocean data. Therefore, in this thesis it is assumed that the Metocean
data represents the wave properties in the relative frame of reference. As such,
the Fourier program will calculate a wave independent of the current, which can
be added later vectorially. The Doppler shift can simply be accounted for by
modifying the frequency of the wave.

Since specifying a current in the input of the Fourier program has a quite sig-
nificant influence on the wave steepness and kinematics, this may be an expla-
nation for the large difference with the verified wave loads due to deterministic
waves found in Chapter 4. Whether this difference is due to mistakes by the
foundation designer, or due to an incorrect implementation of the Fourier pro-
gram in the developed hydrodynamic load model, is unclear. A more detailed
check of the correctness of the implementation and the chosen approach to deal
with currents in the Fourier program is therefore recommended.

B.3 Insertion method
As discussed above, the empirical insertion of a deterministic wave into a stochas-
tic wave record needs to be performed carefully to avoid discontinuities in the
distributed wave load in time. Therefore, an algorithm was devised to find the
best insertion point in a wave record, and to smoothen the transition between
stochastic and deterministic wave kinematics. The algorithm consists of three
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steps:

1. Find best insertion point

2. Create replacement surface elevation

3. Create replacement wave kinematics

In order to create a smooth transition, first a regular cosine wave with phase
−2π ≤ φ ≤ 2π is created with the Fourier model, hereafter referred to as the
Fourier wave. The phase range between the troughs, from −π to π, represents
the passage of the deterministic wave, while the half-periods prior to and after
the Fourier wave troughs are used for smoothing. Below, the individual steps are
described in more detail. It must be mentioned that the method devised here is
not based on any physical theory, but provides a more robust way to apply the
engineering method of glueing a deterministic wave in a stochastic wave record
without user intervention.

B.3.1 Identification of the optimal insertion point
To find the best point in a stochastic wave record to insert the Fourier wave,
an objective function is created. A minimization will then return the optimal
insertion point. This objective function finsertion comprises two criteria that can
be considered as penalty functions, which are evaluated for each local pair of
adjacent troughs in the original wave record. This gives:

finsertion = f∆elev + f∆period (B.2)

The function f∆elev represents the normalized difference between the elevations
of the local trough pairs and the Fourier wave. With the trough elevation from
MSL defined as h = −ztrough, the function is defined as:

f∆elev =
1

2

(
|h1 + h2 − 2hF |

hF

)
K1 (B.3)

where h1 and h2 are the elevations of the local pairs of first and second trough,
and hF is the elevation of the Fourier wave trough. The gain K1 was set to 1.
The penalty function for the nondimensional period difference is given as:

f∆period =
(t2 − t1)− TF

TF
K2 (B.4)

where t1 and t2 are the time stamps of the local trough pairs and TF is the Fourier
wave period. For the gain K2, the value of K2 = 2 was found appropriate to yield
a good balance between both contributions in the objective function, Eq. B.2.
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B.3.2 Replacement surface elevation
With the insertion point determined, a surface elevation can be created that re-
places the original surface elevation between −2π and 2π. Since the period be-
tween the local trough pair hardly ever is exactly the same as the Fourier wave
period, the original surface elevations in the transition ranges −2π ≤ φ ≤ −π
and π ≤ φ ≤ 2π are stretched in time. This way, the troughs in the stochastic
record have the same time stamp as the Fourier wave troughs.

Next, a linear scaling is applied to the stochastic surface elevation ηS , such
that it smoothly adapts to the Fourier wave elevation ηF . The replacement sur-
face elevation ηR, including the insertion of the Fourier wave, is given by:

ηR = ηSKS + ηFKF (B.5)

where the gains KS and KF are defined as:

KS =


1− 1

π (φ+ π) · hFh1
−2π ≤ φ < −π

0 −π ≤ φ ≤ π
1 + 1

π (φ− π) · hFh2
π < φ ≤ 2π

(B.6)

KF =

{
1 −π ≤ φ ≤ π
0 otherwise

(B.7)

Here, the ratios hF /h1 and hF /h2 take care of the appropriate scaling of the orig-
inal trough elevation to the Fourier wave trough. An example of a deterministic
wave inserted in a stochastic record using this method is shown for the surface
elevation in Figure B.4.

B.3.3 Replacement wave kinematics
Less straightforward than the replacement of the surface elevation is a smooth
transition of the wave kinematics. In the Fourier wave troughs, the velocity pro-
file is maximally negative and the acceleration is zero. To adapt the velocity
profile below the replacement surface in the transition regions −2π ≤ φ < −π
and π < φ ≤ 2π to the velocity profile below the Fourier trough, the following
modification is applied to the Fourier wave velocity distribution:

uF (z, φ) =


uF (zc,−π) · −ηR(φ)

hF
−2π ≤ φ < −π

uF (z, φ) −π ≤ φ ≤ π
uF (zc, π) · −ηR(φ)

hF
π < φ ≤ 2π

(B.8)

This means that in the transition region, the same velocity profile as below the
Fourier trough is used, of which the magnitude is scaled with the local surface
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Figure B.4: Insertion of a deterministic wave in a stochastic record. Shown are
the surface elevation of the stochastic record ηS , the deterministic Fourier wave ηF
and the resulting replacement wave ηR.

elevation of the replacement wave record. The same principle as applied in
Wheeler’s stretching technique is used to redistribute the velocities on coordi-
nates zc across the local vertical coordinates z, up to the actual surface. A similar
procedure can be applied to the acceleration profile, using the ratio of the gra-
dients of the replacement and Fourier surface elevations instead to account for
the 90◦ phase lead of the acceleration term. If the MacCamy-Fuchs correction is
used, this should also be taken into account in the phase.

Next, the modified Fourier kinematics can be blended with the original stochas-
tic wave kinematics, using the following linear crossfade relation for the resultant
velocity:

uR = uSKS + uFKF (B.9)

where the gains KS and KF are defined as:

KS =


− 1
π (φ+ π) −2π ≤ φ < −π

0 −π ≤ φ ≤ π
1
π (φ− π) π < φ ≤ 2π

(B.10)

KF = 1−KS (B.11)

Since at certain points in time the elevation difference between stochastic and
Fourier wave can be significant, the velocity profiles may need to be extended to
the local maximum of both surface elevations. This way, a reduced replacement
magnitude near the surface coordinates due to a different amount of submerged
z-coordinates, is avoided. The crossfade procedure described here for the veloci-
ties, is used for the acceleration terms in the same fashion.
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C
Design Load Cases for Response

Simulations

In Chapter 4 and 5, the full dynamic response simulation of an offshore wind
turbine is discussed. This appendix provides additional detail on the Design Load
Cases (DLC) that are used to define (amonst others) the sea environment. These
DLCs are described in full detail in the IEC-61400-3 Design Standards [71]. Since
a complete overview of all DLCs is far outside the scope of this thesis, only the
DLCs that are relevant with respect to the sea enviroment are treated here. As
far as the assumptions for determining parameters and models are concerned,
the IEC Standards leave some room for judgement by the foundation designer.
Since the simulations in this thesis are performed on the wind farm that was
used for verification of the reference wave model, the same assumptions and DLC
definitions that the foundation designer for this project has used are employed.

C.1 Definition of the Design Load Cases

The response loads that are simulated for each DLC are either analyzed with
ultimate or fatigue strength criteria. Each DLC uses a distinct combination of a
predefined design situation, wind condition and sea environment. The wave load
calculations that are used as input in the BHawC simulations are either uniquely
generated for that DLC, or the wave loads of another DLC are used instead. The
different DLCs and the corresponding sea environments are tabulated in Table
C.1.
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C.1.1 Number of wave load files per DLC
In Table C.1, seven distinct DLCs are defined. The design situation describes the
operational condition of the wind turbine of each DLC, with the identifier of the
DLC specified in the second column. Within a DLC, the number of wind speeds,
wave directions and seeds define the number of unique wave load files that is to
be created for the DLC. If more than one wind speed is simulated, the range of
wind speeds is discretized with steps of 1 or 2 m/s. For DLCs 1.x and 2.1, the
wind speed is stepped through the wind speed range in which the wind turbine
is allowed to produce power. In the parked load cases 6.x, either an extreme or
a stepped range of high wind speeds is used.

Due to the secondary steel that is added to the monopile (boat landings, lad-
ders), the support structure is not axisymmetric. This results in a dependency
of the Morison force coefficients on wave direction, and hence on the calculated
equivalent force coefficients (see Section 2.5.4). In the simulations carried out
for this research, the wave directions have been discretized with a 30◦stepping,
which results in 12 wave sectors. The worst wave direction then refers to the
wave sector with the highest force coefficients, which will result in the highest
hydrodynamic loads. Out of conservatism, this worst wave sector is usually taken
in ultimate load analysis.

To ensure a certain amount of randomness in the simulations, several wave
load files called seeds are created for each unique combination of wind speeds
and wave directions. In every seed, the significant wave height and peak period
are varied within the range of the expected values for the sea state that is applied.
With the number of wind speeds, wave directions and seeds given in Table C,
in total 2988 wave load files have to be created for a full dynamic response
simulation.

C.1.2 Definition of the sea environment
With respect to the sea state, the significant wave height and peak period are
related to the wind speed. In the Normal Sea State (NSS), the sea state is based
on the long term joint probability distribution of these three parameters, which is
usually obtained from site-specific metocean data. The Severe Sea State (SSS) is
an extrapolation of the metocean data, such that every combination of significant
wave heights and wind speeds has a recurrence period of 50 years. The Extreme
Sea State (ESS) is defined by the significant wave height with a recurrence period
of 1 year (DLC 6.3) and 50 years (DLC 6.1), where an appropriate peak period is
determined accordingly.

The current models that are applied in the simulations are differentiated by
their magnitude. The normal current is based on a depth-averaged velocity with a
recurrence period of 1 year, while the extreme current has a recurrence period of
50 years. Both models use the same assumptions; the velocity profile is described
by a power-law (see Section 2.2.7), the current is in the same direction as the
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C.1. DEFINITION OF THE DESIGN LOAD CASES 137

wave propagation and the Doppler shift is ignored. Below deterministic waves, a
uniform velocity profile is assumed. Furthermore, DLC 6.4 is simulated without
a current.

The water levels that are applied follow the definitions of Section 2.5.3. The
properties of the deterministic wave that is inserted, depends on the load case.
In DLC 1.6, the severe wave height HSWH is chosen such that the combination of
deterministic wave height and mean wind speed has a recurrence period of 50
years. For the deterministic waves in the ESS load cases, the extreme wave height
HEWH is used. In DLC 6.1 this means using the wave height with a recurrence
period of 50 years, H50, whereas in DLC 6.3 the wave height with a 1 year return
period, H1, shall be inserted.
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Definitions

Airy / Linear wave theory: Classic analytical method to find expressions for the
wave kinematics below a given sea surface, up to mean sea level. Assumes
that frequency components do not interact, and that the wave steepness
and amplitude are small. Therefore, stretching techniques are required to
obtain wave kinematics up to the actual surface.

Apparent frequency: Wave frequency observed in the stationary frame of ref-
erence, as experienced by a support structure when a wave travels on a
steady current.

Crest: The local maximum of a wave. If the sea surface is highly irregular, wave
crests may occur below the mean sea level as well.

Deterministic wave: An extreme wave with a prescribed wave height and pe-
riod, which is modeled by a separate (regular) wave model.

Doppler shift: Wave frequency shift between relative and apparent frame of ref-
erence, when a wave is traveling on a steady current.

Fatigue damage: Degradation of a material due to long-term cyclic loading,
which may eventually lead to failure.

Irregular wave: Periodic wave that consists of many frequency components with
unique amplitudes and phases. Since the amplitudes and phases are drawn
from frequency dependent probability distributions, the wave irregular record
is stochastic.

Nonlinear effects: Interaction effects between wave frequency components due
to a relatively small water depth. This results in a nonharmonic wave
shape. In this case, the assumptions in linear wave theory are not valid
and lead to errors.

Peak period (TP ): Period at which the peak of the wave spectrum is located.

Regular wave: Periodic (harmonic) wave with a unique frequency.
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Relative / Intrinsic frequency: Wave frequency in the relative frame of refer-
ence, as experienced by an observer traveling on a steady current. In this
frame of reference, linear wave theory is applied.

Significant wave height (HS): The mean of the highest one-third of waves oc-
curing in a wave record. The significant wave height corresponds well to
the estimation of the mean wave height by a human observer.

Trough: Local minimum of a wave. Similarly as for crests, wave troughs may
locally occur above the mean sea level if the sea surface is highly irregular.

Variance density / Wave spectrum: A statistical representation of ocean waves,
also known as the wave energy spectrum. The variance of the wave am-
plitude is plotted as a function of the wave frequency. As the variance is
proportional to the wave energy, the variance density spectrum can be used
to determine which wave frequencies are the most significant.

Wave height: Local elevation difference between two consecutive down- or up-
ward crossings of the mean sea level.

Wheeler stretching: Technique to redistribute the wave kinematics from linear
wave theory over the actual water column below the sea surface, at each
time step.

Zero-crossing wave period (TZ): The time passed between two consecutive down-
or upcrossings of the mean sea level by the sea surface elevation.
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