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Summary 

An investigation into energy optimization techniques for buildings was initiated that led to the 

development of a Toolbox with several functions for analysis, optimization and prediction techniques for 

thermal energy demand of a school building. The HHS, or The Hague University of Applied Sciences in 

Delft, was the most sustainable building for the years 2011-2012. Naturally, the building also incorporated 

features and capabilities which can help an engineer to study methods of making a smart building, better.  

Using sensor driven data from stored databases in the building, optimization and analysis tools have 

been developed for the building, at the room level. These analyses are automated into the toolbox for any 

given room of the building, with minor changes. The goal is to help an expert analyze the room in a quick 

and efficient manner.  

Using the indoor/outdoor climate data, occupancy related profiles, and internal heat loads, the 

model can also generate predictive patterns and determine the explanatory power of each of these variables 

on the thermal energy demand of a room. To do this, the Toolbox is designed with two predictive modeling 

techniques, unique in their own ways. The first being a Multivariate Linear Regression model, that allows 

for estimation of thermal demean based on a linear thermal balance equation of the room. This is followed 

by the use of Artificial Neural Networks, to dive deep into the intricacies of the complex data of a room, 

especially in the case of a highly controlled indoor climate of a room. The goal here was to understand the 

predictive capacity of these techniques over a) real time data, and b) over the data belonging to a room and 

not the entire building.  

Finally, looking outwards to optimizing energy demands of buildings, this Toolbox, aims at 

estimating quick wins that can be gathered from a smart building, to reduce energy demand further and tend 

the building towards nearly zero energy in the future.  
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1.Introduction 

 

1.1 The Current Scenario. 

The rapid increase in human population over the last decade, has led to some major discoveries, 

most of which were aimed at making human life a better, fulfilled life – however, this was done at the cost 

of the health of our ecosystem. There has been an exponential rise in energy productions and consumption 

for almost every single attribute, associated with mankind, depleting the resources of this world, plundering 

it to intolerable levels. Large amounts of fossils used for the production of typically, energy, has led to an 

increase in Greenhouse Gases (GHGs). Buildings, both residential and commercial (Offices and 

Universities alike) are currently one of the largest energy consuming sectors, accounting for over one-third 

of the total global energy consumption, and are equally responsible for heavy rates of CO2 emissions in the 

world 1 . 

In 2015 the Paris Climate Conference, or also called the COP 21, was the official event started from 

RIO in 1992, aiming at bringing together over 190 countries to achieve a legally binding and universal 

agreement on climate. This agreement aimed at keeping global warming below 2°C 2. This achievement 

would require an estimated 77% reduction in total CO2 emissions in the buildings sector by 2050 compared 

to today’s level 1.  

 

 

 

Figure 1a – Distribution of consumption levels of energy in different sections in buildings as of 2015 

(IEA, 2015).  
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Figure 1b – A graph of the results obtained on improving different sections of energy use in buildings 

to reduce the overall temperature warming to 2oC (2DS in the graph), by 2050. (IEA, 2015). 

 

From the figure above (Figure 2), is obtained from the IEA statistics of 2015, which states that an 

improvement in consumption of energy related to HVAC of buildings, that is, space heating, cooling and 

ventilation, along with lighting and appliances itself, could be a major factor in reducing CO2 consumption. 

The desired pattern of energy demand is highlighted in the trend shown above. This could also help achieve 

the 2DS (2 Degree Warming) margin. It is abundantly clear that despite the production of high volumes of 

energy from renewable sources, there needs to be a conscious decrease in the consumption through efficient 

methods of energy use and monitoring, especially of space and water heating and cooling. This research 

aims at the demand side reduction and efficient use of energy within the built environment. 

 

1.2 Sustaining the Built Environment 

Urban regions of the world are rapidly increasing in size, and structure. Whilst they are consuming 

a large share of the produced energy, they also provide the concentrated opportunities to save energy 3. The 

urbanization over the past decade, has led to a massive rise in structures, for housing, commercial and 

industrial purposes. The European initiative towards energy efficiency in the built environment has been 

chiefly monitored and propagated by the EPBD or the European guideline energy performance of buildings4.  
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European countries have always prioritized the thermal comfort and living conditions of the indoor 

environment. In the Netherlands, the Energy Performance Coefficient (EPC) of buildings has become a 

mandatory policy towards maintaining a standard for newly constructed commercial buildings. It has been 

sharpened over the last five years from 0.8 to 0.6 for office and other commercial buildings 5. This has led 

to massive improvements in the quality of equipment for installations and thermally efficient materials for 

construction. Buildings with sensor driven database appear to enhance the HVAC and lighting automation, 

making the building sustainable and smart. However, with the implementation of such measures, the need 

for monitoring and analysis is vital for the continued service and development of much smarter systems. 

The main objective of such monitoring is to understand the true energy efficiency of  smart buildings, give 

possibilities to improve this energy efficiency level during operation, and to estimate the overall usage and 

Demand Response (DR) to offset non-essential peak energy use 3.  

Energy Research Centre of the Netherlands (ECN) presented a report in 2015 that strongly 

correlates space heating with total energy consumption of a building 6. It shows that improvements in energy 

efficiency of space heating are mainly responsible for improvements in overall energy efficiency. Figure 2 

shows the consumption of primary energy and specific energy for space heating, appliances and building 

systems (mainly ventilation, water heating and lighting) in both residential and nonresidential buildings of 

Netherlands 6 .The specific energy consumption for space heating is much higher for nonresidential 

buildings than residential.  

 

Figure 2 Consumption levels of primary energy and specific electrical energy for space heating, 

appliances and building systems in both residential and nonresidential buildings of Netherlands 

(2010) 6. 

Considering the current scenario in The Netherlands, great importance must be given to 

improvements in demand of energy for space heating and cooling of existing buildings. This thesis deals 
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with office and in particular University/School buildings. Each building tends to exhibit unique energy 

signatures from each room, based on its specific use or function. There have been several studies at the 

entire building level, however, this thesis also looks into indoor climate and comfort control. This comfort 

control may be better studied at the room level. For example, in the case of a school building each classroom, 

or staff room, differs in occupancy levels, lighting levels, energy demand levels, etc., and thus have different 

set points for a comfortable indoor climate. Moreover, these rooms are individually powered, and monitored 

in today’s smarter buildings via the Building Management Systems (BMS) using sensors. However, a more 

refined and coarse methodology is needed to understand the actual patterns exhibited by each room, so as 

to find ways of reducing energy demand especially during peak hours. This can be achieved through 

understanding the demand and supply of every room in terms of energy, especially heating and cooling 

energies. Working at the room level calls for a atomized tool, so as to analyze multiple rooms of an entire 

building with swiftness and accuracy.  

What follows is an overview of how the current scenario of building-side energy demand stemmed 

the motivation for this research. This is followed by a brief about the Installaties2020 project, under which 

part of this research was conducted, along with the aim and objectives that have been dealt with this research.  

 

1.3 Background & Motivation 

1.3.1 The Installaties2020 Project 

The motivation for this research results from the need for automated tools for determining energy 

reduction potentials in the built environment, whilst maintaining a high order of indoor climate comfort. 

Trying to find the balance between high comfort and lowered energy consumption is a complex task. HVAC 

lighting and sensor installations, need to be highly controlled and fine-tuned to the building characteristics, 

in order to be efficient. This process is difficult, time consuming, as it is never the same for any two given 

commercial buildings, let alone two separate rooms. Several initiatives have been brought into light over 

the past decade – projects from the EU governments, research institutes, etc.  A group of corporate 

companies in the Netherlands, along with certain research institutes, began a project titled the 

Installaties2020 1.  

The purpose of this project is to develop diagnostic models and find optimal functioning and 

controls of building services to achieve targeted goals of energy and CO2 reductions as well as better indoor 

comfort level. A part of this project was based out of a building of the HHS, or The Hague University of 

Applied Sciences, in Delft, a city in south Netherlands.  

                                                      

 

1 Refer to the website of “www.installaties2020.weebly.com”, for further information.  
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1.3.2 The HHS – Building in Delft 

The case-study building is a University building located in Delft. The proposed research framework 

is built around the data and information gathered from The Hague University of Applied Sciences, as this 

building is seen as being quite representative of the way future building with controlled HVAC equipment 

will be designed – highly energy efficiency complex installation with a sensor rich environment. The 

building is fairly new - it was built in the year 2009, and has been one of the most sustainable buildings of 

Netherlands (2010-2011). The building has been used for research due to its complex HVAC systems, 

including an Aquifer Thermal Energy Storage (underground heat and cold storage ATES), and sensor rich 

rooms with advanced control and data monitoring and storage capability. The rooms of the HHS are heated 

via a floor heating system and by ceiling panels in which water is circulated. The building consists of a 

majority of classrooms and a few offices for lecturers.  

In terms of sensors, the building has a central Building Management System (BMS) which relays 

information from sensors placed in each room. These are the PIR (presence) sensors, CO2, temperature 

(both air and wall surface) humidity, ventilation, electrical plug and lighting sensors. Alongside these, there 

are sensors for obtaining valve position data, which gives a good estimate if the floor heating or cooling 

circuits in the rooms are open or closed (see the appendix A.1.1). It is important to note that the data of this 

building has been stored in a database and is managed by a software named Octalix and Priva which also 

helps in monitoring and analyzing data.  
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Figures 3 a and b - floor plan of the ATES and the Heat pump system, along with the supply of 

thermal energy to the rooms facing the south side of the building on the 1st floor – a shows the heating 

demand whereas b shows the cooling demand and the corresponding flows of water. 

 

The floor heating and cooling system at the HHS is provided using thin water pipes divulging out of a main 

pipeline which supplies warm or cold water based on the demand of a given section of the building. The 

ATES system is used to supply most of the heating and cooling demands of the building. However, in the 

case of high heating demands, extra electrical heat pump is available. An important aspect of this system is 

that there must be a balance in the thermal energy stored in the ATES through the year to allow for smooth 

functioning of the ATES system. A detail on the functioning of the floor heating system is provided in the 

Appendix A1.1. 

Certain images of the room 1075, and the placement of sensors have been placed in appendix A1.2. 

 

1.3.3 Energy Improvements in Smart Buildings 

Smart buildings with a highly optimized Building Energy Management Systems (BEMSs) are developing 

all across Netherlands, and other parts of the world. BEMS are integrated with the active systems of the 

building such as the HVAC, lighting, and operational times 7. A majority of these systems are based upon 

highly advanced computational and information technology.  
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 With the availability of intrinsic and widespread data, from sensor rich environments within the 

buildings, research into the possibilities of strengthening BMESs and developing more automated tools for 

a user can become the first steps towards developing true smart buildings. Analysis and deep learning can 

help develop techniques for increasing the robustness and reliability of such system. By doing so, more 

paths of energy reduction methods can be drawn up within existing, smart buildings. The idea behind this 

research is to investigate the means by which automated tools could help understand the functioning of a 

building in coherence with its BMES and find points where improvements can be made.  

 

1.3.4 Thesis Layout 

What follows after this introduction is the research outline and objectives of this study. Chapter 3 describes 

the literature and the state-of-the-art of existing methods and techniques, related to this research. A literature 

study on the most necessary topics is undertaken, both theoretical and practical in relation to the built 

environment and energy simulations of buildings. This chapter helps the reader to understand the 

knowledge gap present in lieu with the objectives of this thesis.  

Based on the findings of chapter 3, the most apt methodologies needed to develop this research are described 

in chapter 4. This chapter explains in brief the types of models which shall be developed, in order to find 

answers related to the research questions.  

 

Chapter 5 describes the data being used in this research, and the processes involved in order to mine and 

organize this data. This is important since the project is based on real-time data recorded over an entire year 

at the HHS rooms.  

 

Following this are the ‘step-toolboxes’ developed for the automated Toolbox of this thesis spread across 

individual chapters. Chapter 6 regarding the graphical analysis step-toolbox, chapter 7 based on the 

correlations and its importance in building energy estimations, chapter 8 on the Multivariate Linear 

Regression and Prediction models, and chapter 9 on the Artificial Neural Networks models.  

 

Finally, chapter 10 concludes this research and its findings, by answering certain important research 

questions based on the findings of the previous chapters. The recommendations arising from this research 

are placed in chapter 11.  
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2. Research Outline 

2.1 Problem Definition 

The use of smart systems such as those incorporated via the Building Energy Management Systems 

(BEMS) in buildings alongside complex HVAC installations demands for more automation and increase in 

accuracy of demand and supply of energy predictions. As mentioned above, the HHS building is a sensor 

rich building. The control responses of such buildings are fine tuned to the sensors placed at the room level. 

However, even today there are several causes of concern regarding the complete automation of building 

operations due to the complexity involved in such systems. Some of these have been labelled below:  

1. Challenging and Highly complex data 

The data obtained for this research and other buildings included, are highly complex to 

organize, monitor and analyze in relation to the complex HVAC and lighting system in 

place, especially when it comes to high frequency data (hours and minutes). 

2. Errors and inaccurate data 

The reliability on the data obtained from BEMS systems is a cause for concern. According 

to Arie Taal 8, assessing the reliability of data regarding energy systems is quite challenging. 

There needs to be a simple and fast method to monitor and assess the data, and make sure 

it is comparable to the data from other sources either through normalization, etc. 

3. Need for understanding influential parameters for different rooms 

The complexity of models being used today lack simple information such as the effects of 

parameters on the energy demand.  

4. Disparity amongst the energy demand prediction and actual values. 

Even with the increase in control methodologies, there seems to be differences in the 

predicted vs. actual energy consumption. 

5. Present of faults in the system 

It is often understood that there needs to be automated monitoring systems for better 

understanding of errors and detection of faults within sensors and HVAC systems 8.  

6. Need for continuous commissioning 

In the field of BMES the need for continuous optimization of the control systems is an 

important task to keep improvising on the performance of the building. Therefore, 

continuous commissioning and repairing of degraded HVAC systems and sensors is 

needed. 
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7. Expert Analysts Needed 

In order to program, and operate a BEMS automated system, for energy monitoring there 

needs to be expertise involved. This model aims towards introducing a more user-friendly 

tool.  

2.2 Research Objectives  

 

This research aims at running parallel to the visions and goals of the Installaties2020 project and 

develop fast automated and statistical data-driven models for individual room levels. This research 

investigates various possibilities of using the BMS data for energy performance optimizations and deals 

with the following. 

 

a) Develop a model inclusive of all steps, from identification and cleaning of data from a 

sensor rich environment, up to the detailed analysis and prediction control of thermal 

energy in a room. 

b) Establishing a generic automated model to provide detailed graphics with regression 

analyses of the functioning of the room and the building. 

c) Providing a methodology involving the use of correlation coefficients to understand the 

most probable and effective parameters influencing the heating and cooling demands at 

room level. This helps determine the most prominent losses and gains of thermal energy in 

classrooms.  

d) Utilization of the established parameters to perform multivariate regression analyses. 

These could be used in turn to train models for prediction of thermal energy demand. 

e) Utilization of ANN techniques to improvise on the prediction demand of energy.  
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3. LITERATURE 

This chapter aims at giving a directive towards the design and mathematical models which have 

been studied and implemented in this research so as to satisfy the explained research objectives.  

 

Firstly, a brief introduction into the principles of heat transfer is presented. This is important as the major 

losses and gains of thermal energy in a room is dependent on several factors. A basic understanding of the 

mechanisms of heat transfer and the direction of flow of thermal energy is thus explained, along with the 

implications on its overall balance at the building and/or room level. 

 

Secondly, upon understanding the fundamentals of heat transfer in buildings, and the factors through which 

the balance of thermal energy of a room is disturbed, a literature study is described relating to the 

methodology of correlation coefficients developed during this thesis. This is done in order to understand 

the degree of effect each variable has on a room’s thermal demand. It gives an immediate insight of the 

physical and operational characteristic of the room and the systems in play to maintain thermal comfort 

within the room. 

 

Lastly, the state-of-the-art of different prediction models used for thermal energy data, are studied, to help 

the reader gain a brief insight into the comparative analysis of the complexity and accuracy of each model 

with regards to room-level thermal energy prediction.   

 

3.1 Heat Transfer in Buildings. 

Heat transfer within buildings is determined by the interaction of heat flows through the three main 

modes of conduction, convection and radiation, between a building and its surroundings. This section will 

explain the basics of heat transfer within buildings and the relevant mathematical formulae which define 

the phenomena numerically.  

Figure 4 shown below is a diagrammatic representation of the basic heat transport components in 

a room with floor heating/cooling water controlled system. The difference in temperatures between the 

indoor and the outdoor air temperatures is the main driving force behind heat transfer in buildings. with 

four different temperature points; the ambient temperature (Te), the indoor air temperature (Ta), the wall 

surface temperature (Tw) and the floor surface temperature (Tf). The floor is heated or cooled based on the 

set point temperature of the indoor air (Ta). The indoor temperature balance of a room is constantly affected 

by several parameters such as the side room temperatures (Ta1 and Ta2), causing conduction of heat through 

walls. Occupancy, lighting and appliances lead to increased internal heat gains Qinternal. The sources of heat 
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energy supplied to the room are Qsolar (solar radiation through either 1. walls or 2. windows) Qfloor (radiation 

from the floor heating system). Qfloor (can also be negative indicating cooling mode), Qventilation is the 

mechanical heat or cooling supplied via air through the HVAC systems and Qinternal, the heat produced by 

lighting, appliances and people.For detailed explanation see section 8.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Description of the distinct modes of heat transfer in a room with a floor heating/cooling 

system.  

 

The distinct variables have a direct or indirect effect on the total energy demand of each room to 

maintain a constant indoor temperature. In order to carry forward with a predictive model for thermal energy 

demand, it is important to recognize the magnitude of effect of these variables on the thermal energy 

demand of a room9. Not just for predictive control, but such studies also help in understanding the 

characteristics of the room and the systems installed.  

 

3.2 Correlation Coefficient 

In this research, there are several parameters which have been recorded and used as input data 

towards understanding thermal energy demands at the room level. Each parameter is,  

1. affected by another parameter individually and  

2. together in correlation they affect the thermal energy demand  

Some important mathematical terms used in order to explain Correlation are defined as follows; 
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1. Covariance – is the descriptive measure of a linear relationship between two variables (Eq. 3.1). It 

does not provide the strength of this relationship, but the direction. A positive direction means 

directly proportional, and a negative direction equals inversely proportional variables. 

For two variables x and y and N samples in total, the population covariance is given by, 

𝜎𝑥𝑦 =  
𝛴ⅈ(𝑥ⅈ − 𝑋𝑁

̅̅ ̅̅ )(𝑦ⅈ − 𝑌𝑁
̅̅ ̅)

𝑁
 

Where 𝑋𝑁
̅̅ ̅̅  and 𝑌𝑁

̅̅ ̅ are the population means of the data x and y.  

The population covariance is used since covariance is being performed on the entire data set and 

not a sample size alone 10 11.   

2. Simple Correlation -  Since covariance best answers the direction of a linear relationship, 

correlation values estimate the direction and strength (Eq.3.2). Whilst covariance has no upper or 

lower boundary, correlations (r) are scaled from -1 to +1, that is, these values are standardized.  

𝑟𝑥𝑦 =
𝑐𝑜𝑣(𝑥, 𝑦)

𝑠𝑥𝑠𝑦
 

Where, 𝑠𝑥 and 𝑠𝑦 are the standard deviations of the data x and y 10.  

However, with more than two variables, the simple correlation is replaced by multiple correlations 

explained ahead.    

3.2.1 Multiple Correlation - An overview 

As pointed out previously, before considering modelling techniques for predictive control of 

thermal energy, there is a necessity to understand the degree to which factors/disturbances affect this 

thermal demand. The indoor temperature varies with the energy flows interacting with the building, e.g. 

heat gain from solar radiation, occupants, heating system, along with the thermal properties of the building 

envelope12. This section will give a descriptive understanding of multiple correlation coefficient between 

diverse factors, based on literature. 

Researchers have been developing models based on factor analysis methods to understand the effects of 

parameters on energy consumption. Li Yuana et. al.13, utilized Pearson’s correlation in order to estimate the 

correlation between influencing factors effecting energy demand and the total energy consumption. This 

was performed for large public buildings and involved the estimation of electrical energy.  Alongside this, 

an F-Statistics testing was also performed for determining the significance of the correlation coefficient.  

The p-value is the measure of the significance of the null hypothesis 14 15. The significant level 

generally chosen for the null hypothesis is 5%, or (p-value < 0.05). This means that there is a confidence 

level of 95% that the coefficient is a correct value for the correlation between the dependent and the 

independent variable. See appendix A.2 for more details regarding statistical significance.  

   

Eq-3.1 

Eq-3.2 
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Other researchers such as D. Bing et. al. 16, studied the effects of outdoor climate on the energy consumption 

of commercial buildings by  estimating the goodness of fit. This was done by using the Pearson’s correlation 

coefficient as described above.  The outcome of this research was that the outdoor variables, typically the 

dry bulb temperature, was heavily correlated to the energy demand for the building. Similar research by 

Xiaoquing Wei et.al.17 was performed on occupancy and energy use of a building, showing heavy 

correlations between the two. Detailed information regarding Multiple correlations has been jot down in 

the appendix section A2, and chapter 7. 

 

This research deals with combining the correlation effects of outdoor parameters, building characteristic 

HVAC parameters, and occupancy related parameters to the thermal energy demand. There is not much 

work done on the degree of influence these parameters have on heating demand of floor heating systems, 

at room levels 18.  

 

3.2.2 Partial Correlation Coefficients Matrix for Building Energy Models 

The underlying principle of Partial Correlation Coefficients Matrix (PCCM) method is to be able 

to identify the direct relationship between variables, by eliminating the causal effect from indirect pathways 

19. This helps to eliminate any interdependency that may exist between two or more multiple variables, 

effecting the overall correlation. For example, the outdoor variable such as solar radiation may have a 

certain effect on the outdoor temperature. Jointly these two have an indirect effect and a direct effect on the 

building energy demand. The goal of PCCM is to capture only the direct effects, and ignore the indirect 

correlations which may exist. Thus, partial correlations help in establishing a degree of sensitivity of a  

independent variable towards the dependent variable 19. 

The use of partial correlations has been missing from the literature pointed out above 12 13 14. This 

research shall thus adopt Partial correlations as a secondary correlation methodology to find the individual 

effects of parameters on the net thermal demand of a classroom, and make a comparative study of the use 

of Multiple vs Partial correlations.   

 

3.3 Predictive Control Modelling - An Overview 

3.3.1 Model-based approach 

Model based calculations help in answering several questions about the building, in this case, a 

given room’s actual performance and efficiency.  Energy models for buildings started with analytical 

models in the 1940s by Bruckmayer18 which dealt with conduction through a single element of the building. 

Several researchers have used a model based approach for developing predictive models for building related 

energy demand; refer to 9 15 18 20 21. According to Giorgio Mustafaraj et. al. 22, the estimation of energy can 
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be tackled using two different classes of modelling techniques. Physical or white box modelling, and the 

black box modelling. Based on the level of available information and prediction accuracy the researcher 

can choose his/her prediction model 21. In between, grey box models are found, which are a combination of 

physical and data-driven models. Almost all model techniques are categorized into these three main types.  

• White Box Models (also called law-driven models): are the transparent models, based on 

mathematical equations along with a high dependency on building’s characteristic data 21. Several 

models which already exist include those based on the ASHRAE (American Society of Heating, 

Refrigerating and Air-Conditioning Engineers) standards, such as Energy+, TRNSYS, ECOTECT, 

DOE-2, etc. which are efficient detailed energy simulation techniques. Their disadvantage is the 

difficulties in calibration procedure, and certainly time consuming, or each building to be modelled 

due to extensive user based inputs 12 23. 

• Black Box Models – are best suited for detailed energy simulations of a specific building due to 

their convenience and quick modelling. These do not require any theoretical knowledge of the 

building, but simply rely on statistical methods of relating input to output parameters. Typical 

modelling techniques involved are Artificial Neural Networks (ANN), Genetic Algorithms Multiple 

Linear Regression 12 18 15. These networks do not need physical knowledge about a building or room. 

This is advantageous in the case of existing buildings, with smart meters, and sensor rich 

environments. Analysis by using such models and can give a lot of information on load and demand 

of energy, but no data regarding the building itself is needed 12.   

• Grey Box Models – are a combination of both white and black box models. These models use a mix 

of building parametrical data and statistical methodologies. Basic examples of this models are the 

RC network models 15 21 23, that can be used in order to recover building characteristic data using 

inverse modelling techniques as performed by Parab 23 (section 3.3.2.2 ahead).   

 

Furthermore, building energy models can be classified into two categories, static or dynamic 23. A steady 

state model is used for long intervals (weekly, monthly, yearly) measurement data and cannot be thus used 

for short term transient states in indoor temperature or building properties. A dynamic model on the other 

hand, is able to capture transient measurements and are mostly used on hourly, or sub hourly levels. 

Dynamic state models are best fit for solving mathematical and statistical models.   

What follows is a descriptive comparison of the models used by several authors till date, to perform 

prediction and training of datasets. This would allow the reader to understand the basic necessities that must 

be taken into consideration to choose a suitable model for prediction.  
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3.3.2 A comparative study of Predictive Models in Use 

The categorization of models in white, grey and black box models do not all incorporate features 

of predictive modeling. In view of the research objective, the literature survey shall focus on comparing the 

models used by several authors till date and thereby choosing an appropriate building energy predictive 

model. 

 

3.3.2.1 White-box Models 

White box models are state-of-the-art detailed physics based models. These are effective in 

designing whole-buildings and are highly dependent on the input data of the building parameters and energy 

systems. Thus, the accuracy of such a system depends very much on the knowledge and prowess possessed 

by the user. In existing buildings, it becomes even more difficult to arrange for information about the 

physical building structure, its RC values and this leads to decrease in accuracy of the building simulations. 

Although one may understand that the results from such a tool are quite good, and to the point, it comes at 

a great cost of time consumption as it increases with increase in the complexity of the designed model.  

 

3.3.2.2 Grey-box Models 

For smart buildings, Model Predictive Control (MPC) has gained a lot of attention, and is a method 

that can be used to enhance the functioning of Building Management Systems 24. Jan Sirosky 20 in his 

research explain that MPC is a set of control strategies used in order to minimize the objective function – 

the energy use in buildings. This method incorporates the use of inputs and operating conditions tuned 

towards the overall reduction in objective function 20 24.  

Inverse modelling is another concept, which is used to calibrate simplified models. Here, the model 

parameters can be determined by matching the output of the model as close as possible to measurement 

data 12 23.These simplified models are less complex, with a lower number of variables to optimize. This 

reduces the computation time considerably, however need a higher number of initial parameter estimations. 

For example, the inverse modelling technique could be used to determine building parameters such as RC 

values, ventilation rate, etc.  

V. Parab in her research thesis 23, describes a mathematical model using lumped capacitance models, 

to retrieve building characteristic informations (overall RC values) by studying the inputs, (outdoor 

environmental conditions, indoor temperature and presence estimates), and the output (energy demands) 

using inverse modelling based on the Maximum Likelihood Method. This was however, mainly pertaining 

to neither office/school buildings, nor room level data, but the entire house. A main disadvantage of this 

method however is that it lacks a clear relation to the physical parameters (the overall RC value includes 

RC values of the walls, floor, roof and specific heat loses due to the ventilation flow rates), thus leading to 
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a difficulty in identifying how correct the determined values are 21. The work of Parab referred to other 

works, some of which are cited here 25 26 27.  

 Rowan de Nijs 28 in his research utilized the inverse modelling technique coupled with RC networks 

as well, to find the optimum resolution of the RC network needed for thermal energy demand forecasting. 

His conclusions dealt with an extensive RC model, including 9 parameters with 4 capacitances and 4 

resistances in the network and 1 variables to describe the window area. This grey-box model although built 

on office buildings with floor heating systems, (close to this research case building at hand) it was not built 

on sensor driven data, but on an emulator, wherein the data was created using a white box model, for which 

a lot of physical information about the building itself. The work of Rowan referred to other works, some of 

which are cited here 18 25 29 . 

 

3.3.2.3 Black-box models 

Several researchers have also developed Black box predictive models. Statistical methods, using 

linear and nonlinear methods have been adopted to find the effect of several parameters on building energy, 

thus being able to predict the building energy demand. Kristopher et al 9. Lopez 15, and many others (See 

references 8-14) use Linear Regression (LR) and Multivariate Linear Regression (MLR) models to estimate 

the thermal energy demand. These models are dependent on data related to outdoor factors (weather related), 

building parameters (indoor air and surface temperatures and ventilation rates) and consist of one 

independent variable. Lopez made use of a function, namely ‘stepwise fit’, on MATLAB 2017 30 which is 

a MLR model. The models work on a simple linear formula wherein coefficients for each parameter are 

estimated. The functional form of this approach is represented as follows: 

                              

              𝑄ℎ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + ∑ 𝐶ⅈ . 𝑋ⅈ
𝑛
ⅈ=1                            (Eq. 3.3) 

 Wherein, 𝑄ℎ  is the hourly thermal energy demand in Watt-hour (Wh), 𝐶ⅈ  is the coefficient 

estimated for the ith parameter Xi. It should be noted here that the model developed by Lopez belongs more 

to the category of grey-box models than to the category of black-box models, as the Xi parameters were 

chosen in accordance to a simple model describing the thermal balance of a one-zone building. 

The accuracy of these models is measured by ‘goodness of fit’ or R2 value, Mean Squared Error (MSE), 

which shows how closely data could be trained, thus giving an estimation of the goodness of predicted 

values too. More explanation on the goodness of fit can be found in chapter 8 section 3 (8.3).  

Mustafaraj et al. 22  in his research pointed out several advantages of MLR. 

• These models are relatively simple with a lower number of model parameters. 
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• They have a set of simple equations and the results have a higher physical meaning and 

are easier to deal with than results obtained by other machine learning techniques (see 

below) 

• The model can incorporate real time data with ease.  

One disadvantage of this methodology is that the effective non-linear parameters are not accounted for. 

This leads to a reduction in the goodness of fit on utilizing “real-time” data 18 31.   

 

Researchers have shown that the use of non-linear MPC models can enhance the functioning of HVAC 

systems by anywhere around 7% and reduce energy and cost consumptions by half 14 19. Some of these 

models are listed below; 

1. Artificial Neural Networks – Seginer et al., in their research showed that these are non-linear 

models incorporating forward or backward learning algorithms with highly non-linear solutions 14 

29. They are simple to use and take less time for calculations. ANN-MPC have been developed for 

school/University, Office, Airports and other commercial buildings including residential 

buildings32. However, a room level analysis of Machine learning has been missing, which is one 

of the main objective of this research. Alongside this, neural networks can also be adaptive and 

self-learning 22.  ANN is a data-driven modelling technique and serves as a huge potential in case 

of unknown building parameters. (see references 12,17-18 & 23-24).  However, their efficiencies 

are not the best of all non-linear black box models 28.  

2. Artificial Neuro-Fuzzy Inference System (ANFIS) – these models are highly complex and make 

the use of both fuzzy logic and ANN networks 28.  

3. Genetic Algorithms – These models can be used conjunctively with ANN or with ANFIS and have 

proven to be of higher efficiency that a standalone ANN network. However, they demand for a 

more complicated set of networks, making it difficult to automate the models, a major objective 

of this research 28 30. For more details regarding these models see references 28 and 30.  

 

According to Trcka and Hensen, each method has a certain modeling complexity after which the predictive 

uncertainty will start to increase, leading to a reduction in model accuracy. “There is no sense in going 

beyond this complexity, as the overall error in the model uncertainty will not decrease” 27.  

The choice of using a black, grey or white box model stems from the availability of certain major attributes 

namely use, difficulty level, training data requirement, calculations time period and accuracy 23 21. A 

combined summary was established based on the summarization by Zinghwei 19 and Parab 21. Parab 

summarizes the ASHRAE handbook of 2013, and these help in analyzing the most important models useful 

for this research.  
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Table 1 Comparative benchmark by Zinghwei and V.Parab (Adopted from ASHRAE handbook 

2013) with a few commonly known modelling techniques for building energy systems 21 23.  

 

Method Use2 Time 

Period3 

Difficulty 

Level 

Calibration 

effort 

Calculation 

Time 

Accuracy 

Simple Linear Regression ES S,H,D Simple Low Very Fast Low 

Multiple Linear 

Regression 

D,ES,C S,H,D Simple Low Fast Medium 

BIN method (ASHRAE) ES H Moderate Low Fast Medium 

Bayesian Belief Network D,ES,C S,H,,D Moderate Medium Medium High 

RC Thermal Network 

ARMA Models 

Artificial Neural 

Networks 

D,ES,C 

D,ES,C 

D,ES,C 

S,H 

S,H,,D 

S,H,,D 

Moderate 

Moderate 

Complex 

Medium 

Medium 

Medium 

Fast 

Fast 

Fast 

High 

High 

High 

Generic Algorithms D,ES,C H,D Very complex High Slow High 

Detailed Energy 

Simulation 

Computer Simulations 

D,ES,DE 

D,ES,DE 

S,H 

H 

Very Complex 

Very Complex 

High 

High 

Slow 

  Very Slow 

Medium 

 Medium 

 

 

The decision to utilize Artificial neural networks and MLR becomes increasingly clear by looking at table 

1 above. The Use column is checked for modelling methods that align with the research objectives. There 

are four main uses which are derived out of energy models namely, diagnostics (D), energy saving 

calculations (ES), design (DE) and control (C). As stated the main objective is to develop thermal energy 

prediction models for energy saving measures, which classify as, energy saving calculations (ES) and 

Control (C). We also wish to understand the modes through which the thermal energy balance is disturbed 

which falls under Diagnostics (D).  Thus, we can shortlist the above table based on Use factor of a method, 

with lower complexity and higher accuracy. Table 2 below describes the chosen approaches.  

 

 

 

 

                                                      

 

2 Uses include diagnostics (D), energy saving calculations (ES), design (DE) and control (C) 
3 Times scales shown are hourly (H), daily (D) and sub-hourly (S) 
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Table 2 Arrangement of shortlisted data-driven models which can better suit the objectives of this 

research. 

 

 

It should be noted now, that these tables are adapted by authors from different sources and has been 

cumulatively arranged under this research. Thus, although this may have certain discrepancies, it has been 

chosen as a basis to form first hand assumptions for selecting the modelling procedure. Upon analyzing the 

time period and accuracy of the methods above, it was concluded that the model should have high accuracy, 

and bare calculations which involve hourly, sub hourly, and day-wise timescales of data. Because of a high 

speed of performance of calculations, The Artificial Neural Networks and Multiple Linear Regression 

models were chosen to be studied further. This would help in establishing a comparative analysis between 

Machine learning and Linear Equations, for room level thermal energy prediction of floor heating systems.  

 

The following chapter shall introduce the major research questions supported by the research objectives of 

this thesis. These research questions aim at filling the knowledge gap found within literature above. 

Following this, the chapter will describe a method adopted in this research so as to perform the most 

appropriate models for carrying forward the objectives of this research.  

 

 

 

 

 

 

 

 

Method Use Time 

Period 

Difficulty 

Level 

Calibration 

effort 

Calculation 

Time 

Accuracy 

Multiple Linear 

Regression 

D,ES,C S,H,D Simple Low Fast Medium 

Bayesian Belief Network D,ES,C S,H,D Moderate Medium Medium High 

RC Thermal Network 

ARMA Models 

Artificial Neural Networks 

D,ES,C 

D,ES,C 

D,ES,C 

S,H 

S,H,D 

S,H,D 

Moderate 

Moderate 

Moderate 

Medium 

Medium 

Medium 

Fast 

Fast 

Fast 

High 

High 

High 
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4. Research Methodology - A Novel 

Combination 

4.1 The Research Questions 

Following from the research objectives stated in chapter 2, this research investigates various 

possibilities of using BMS data for energy prediction optimization. The following main research question 

is formulated -  

 

Can an automated generic toolbox be setup for real-time data analysis of office and school rooms, to predict 

their thermal energy demand with a small number of input variables, high accuracy and a physical meaning 

in order to optimize energy performances? 

 

This research question is structured based on the main objective of this research. 

Objective a) Develop a model inclusive of all steps, from identification and cleaning of data from a sensor 

rich environment, up to the detailed analysis and prediction control of thermal energy in a room.  

Following this, the research question is further divided into some very important sub-questions, also based 

on the objectives, which shall help structure the entire research into different phases  

 

Objective b) Establishing a generic automated model to provide detailed graphics with regression 

analyses of the functioning of the room and the building. 

 

1. What type of mathematical tools or other statistical methodologies are needed to arrange, clean and 

organize big data sets for building energy simulations? 

2. What are the major type of graphical analyses that help determine the functioning of a room in a 

school building? 

3. What types of sub-datasets are most useful to analyze the functioning of an office or school room and 

what type of analyses can be extracted from each? 

 

 

Objective c) Providing a methodology involving the use of correlation coefficients to understand the most 

probable and effective parameters influencing the heating and cooling demands at room level. This helps 

determine the most prominent losses and gains of thermal energy in classrooms.  
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1. Can automated methods quantify the affect different parameters have on the overall thermal demand 

of a room? 

2. How useful are mathematical & statistical tools such as correlation and partial correlations in 

defining thermal energy balance of a commercial room? 

 

Objective d) Utilization of the established parameters to perform multivariate regression analyses. These 

could be used in turn to train models for prediction of thermal energy demand. 

 

1. What are the major difference between backwards (FITLM) and forward(STEPWISEFIT) 

propagation algorithms in Multilinear Regression Models? 

2. How well can MLR models train and predict the energy consumption of the HVAC systems, and what 

generic validation techniques can be used for the same? 

3. What is the significance of using various timesteps of data, and what are the issues if any, faced by 

training models with both heating and cooling demand?  

4. What are the major challenges faced by MLR models for training and predicting data? 

5. Can past year input vector data replace the present year predictor variables, for predicting thermal 

energy demand? 

 

Objective e) Utilization of ANN techniques to improvise on the prediction demand of energy.  

 

1. Can Artificial Neural Networks be developed for room level thermal energy prediction? 

2. How well can these ANN networks answer for the non-linear component present in the input 

parameters? 

3. What are the advantages and disadvantages of the ANN network vs and MLR network 

  

What follows is the unique adapted methodology for this research, incorporating models of different types, 

based on the functional objectives listed out before.  

 

 

4.1 Adapted Modelling Approach 

The selection of the most appropriate model seems to be a rather cumbersome task. Each model has its own 

pros and cons. The HHS building as already mentioned is a smart building with a sensor rich environment 

focused towards controlled energy use. This includes controlled heating and cooling, ventilation and 

lighting demand controlled by occupancy rate, etc. The Control Systems also called the Building Energy 
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Management Systems (BEMSs) acts as a through way for the mechanical and electrical equipment of the 

building to interact with these sensors. Alongside this, since the major research is concerned with prediction 

models for thermal energy on an hourly level, the model must be dynamic.  

 

A methodology will be developed based on a funnel topology (from rough to fine) of methods from simple 

graphical and analytical solutions to statistical models which are based on either simple linear and 

multivariate regression or ANN. The model will be divided into sections, running parallel to the literature 

survey done before. This would be a unique blend of different modelling techniques aimed at achieving the 

aforementioned objectives. 

 

4.1.1 Energy Profiling and Monitoring  

 A chief technique in evaluating the performance of a building, is to study its energy 

consumption profiles, against the backdrop of certain parameters. This helps in explaining the functionality 

and effectiveness of the building systems. The Building EQ report of 2010 33 claims that a monitoring and 

evaluative system for building energy demands, can help in performance enhancements for faulty systems, 

and render energy savings possible. Benchmarking building performances against that of other buildings 

helps in a comparative analysis.  

Following the trends used in the Building EQ report, energy profiling and monitoring will be the first step 

of this thesis. It will use the data recorded from the sensors in the rooms, and deliver visual representations. 

This box will also be able to showcase seasonal, and occupancy related (Working and non-working hours) 

energy use.   

 

4.1.2 Attributes Effecting the Thermal Balance 

 Once a grasp is developed on the energy patterns and HVAC functioning patterns of the room(s), 

a clear guideline can be established towards understanding the key parameters which affect the thermal 

balance of the specific room. This is done using multiple and partial correlation plots. All recorded variables 

selected by the user shall be analyzed to find dependencies and interdependencies amongst them and the 

thermal energy. A research towards this would deal with answers relating to major causes for energy 

demands in a specific building, quick fixes to reduce these demands, faults, goodness of the thermal 

building structure, etc. 

 

4.1.3 Prediction Models – a Comparative Study 

 The last stage of this research toolbox will be to incorporate the attributes found above to apply 

them for predictive models. The use of MLR and Machine learning (Artificial Neural Networks) were the 



24 

 

two important models chosen for this purpose making the adapted approach as a ‘data-driven approach with 

a dynamic black-box model’. A research towards this would result in answers related to possibilities of 

prediction and its accuracy at the room level of office/school buildings. Using two models would also help 

to throw light on comparative answers related to the effectiveness and disadvantages of both. Further 

explanation shall be provided in the chapters 8-9. 

 

4.1.4 Flow Scheme 

Below (figure 5) a descriptive flow chart has been portrayed, which is a description of the entire 

flow-process adopted in this research.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Flow-chart of the Toolbox structure developed during this research. 
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5.Data Description and Preparation 

This section explains the methodology in which data is retrieved, cleaned, organized and formatted 

to be utilized in the three experimental models. The information provided in this section is vital in terms of 

explaining to the reader the most important data-types and methods of pruning the data to best fit the set of 

models developed in this research.  

5.1 Data Sources 

The entire HHS building’s HVAC is centrally controlled with the help of a sensor rich environment 

in each room. The controls and flows to and from the rooms, and the indoor climatic state of the room are 

all measured, every 6 minutes, by these sensors. This data is stored in the BMS. As stated previously, the 

basic data set obtained from the Octalix, and PRIVA BMS system of the HHS University building, is 

carefully pruned and cleaned to be used on analytical models. The data set at the room level, contains the 

following information, see table 3. 

Table 3 obtained sensor data from the room 1075 of the HHS for 2015.  
Appliance 
Electrical 
Energy (J) 

Lighting 
Electrical 
Energy (J) 

Heating 
Energy (J) 

Cooling 
Energy (J) 

Wall 
Temperature 
(0C) 

Air 
Temperature 
(0C)  

Co2 level (PPM) Air flow (m3/hr) 

 

 

Air Flow 
Temperature (0C) 

Floor Water Supply 
Temperatures (0C) 

Floor Water 
Return 
Temperatures (0C) 

Side Room 
Temperatures 
(0C) 

Valve Position for 
Floor water supply 
[open/closed] 

 

Another important source of data for this research was the continuously monitored hourly data, available 

for the outdoor climate, from KNMI (Royal Dutch Meteorological Institute) website of corresponding 

Rotterdam Station 4– an open source platform by the Dutch government. The outdoor temperature, solar 

radiation and wind speed are selected for this research. Rotterdam was selected as the nearest weather 

station for our research building, the HHS, which is in Delft, see table 4. 

Table 4 The variables adopted from the KNMI outdoor weather monitoring tool, along with their 

individual unit. 

 

Average hourly Temperature 0C 

Average Hourly wind speed m/s 

Average hourly Solar Radiation W/m2 

Timestamp hourly [-] 

                                                      

 

4 http://projects.knmi.nl/klimatologie/uurgegevens/selectie.cgi 
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Apart from these two major sources, other sources are the horizontal solar radiation measuring 

equipment present on the roof of the HHS building.  

5.2 Data Cleaning and Organization 

MATLAB R-2017 software  30 has been used to automate a generic model with 4 steps to clean and 

prune , and organize the data for the purpose of this research. This model can be applied to any of the rooms 

of the building. The data files undergo treatment in the following manner –  

1. First, the missing data cells need to be accounted for - Like every system, the data retrieved have 

missing values. It was important to find the NaNs (missing values), which may lead to inaccurate calculation 

or abruptions during the functioning of the modelling period.  

Using running average, the data can be estimated, as the method has been fruitful in similar researches 

by V.Parab 23. This is done by substituting the missing value with the average of the value above and below 

the missing value, However, there are instances when the values were not recorded for more than two (up 

to days) consecutive time stamps. Under such circumstances, the particular day is removed from the data 

set under consideration. This is done in order to have a uniform number of hours, representative of the 

number of days in the data sheet. It should be noted that only 5-10 days were removed at the utmost. Thus, 

for a dataset of 1 year, this is perhaps no more that 2.7%. 

 

2. Conversion to Hourly Timestamp-  Once the missing values have been removed, the timestamp of 

the data is brought to a common hourly timestamp. This helps obtaining 1 value for every 10 data points of 

6 minutes. It should be noted however, that indoor climatic conditions have a much smaller time constant. 

One may observer energy patterns changing over a 10 or 15-minute time interval. Thus, a research on 6-

minute intervals is suggested to be more advantageous, (see chapters on conclusion and recommendations). 

The available outdoor climatic data is at an hourly timestamp, thus limiting the scope of this research as 

well.  

The averaging of the data can be done in two ways, either, by achieving hourly data from a subset of 

the 6-minute interval, i.e. averaging the data over an hour, or by simply picking a value of an hour period 

(in this case 10 readings of 6-minute intervals), as the average, which is less accurate. The temperatures 

were all averaged using the general method of subset averaging. Values like the thermal heat or cold demand, 

or electrical demand, were integrated over the 6-minute intervals to obtain hourly (Wh) energy use.   

 

3. Conversion to standard units - The Energy recorded by the sensors is in Joules. So, the value is 

converted in Watt-hour (Wh). This is done in order to maintain uniformity between different variables.   
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4. Removing Outliers - The only remaining task for pruning the data is to remove outliers. Outliers 

are points in a data range which are invalid, and have no significant meaning with respect to other data 

points of the same category. This is due to auto-resetting of the sensors, or due to a malfunction. An example 

would be a recorded value of 10 MJ of heating energy in 6 minutes, which is practically not consumed 

whilst the average value is 1 KJ. These outliers are removed by the simple and common method of Mean 

Absolute Deviation (MAD). First for each value of a given vector, the median is calculated of a window 

composed of the value and it’s six neighboring values. The standard deviation of each value is then 

calculated about its window median range. For values above a standard deviation of ± 3 are considered to 

be outliers, which correspond to not more than 1.2% of the data. This method has been used mainly because 

there are very few points in the data which form obnoxious values, as they lie extremely far in the 

distribution range. They were replaced by the median values. 

 

In conclusion, the processing of data (especially real-time data) is an important task towards atomized 

model development. This chapter has shown and given answers for the sub research question –  

 

“What type of mathematical tools or other statistical methodologies are needed to arrange, clean 

and organize big data sets for building energy simulations?”  

 

• Using mathematical techniques such as Weighted Running average, the missing data can be 

substituted with appropriate, high probability data.  

• Using methods such as Mean Absolute Deviation (MAD), the outliers of a data can be kept in check.  

• Statistical tools can help look into to the normality of a dataset, and whether the data is normally 

distributed or not. 

 

Once the data is organized, pruned and ready to be used, models can be developed to begin with the analysis 

phase. What follows is a study of the first step-toolbox developed under this research, the graphical analysis.  
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6.Graphical Analysis 

6.1 An overview 

This chapter deals with the first applicable model of this toolbox - a graphical analysis of the data 

recorded from the sensors. The energy demand in a room of an office or a school/University building 

depends strongly upon (i) Outdoor Climatic conditions, (ii) The Indoor climate (iii) The Occupant-related 

Energy use 34 35. The use of energy for maintaining a comfortable indoor climate has been known to account 

for more than half the energy consumption in School and Office buildings 35. To be able to understand the 

building (room) and its energy performance, it is important to assess these three parameters.  

 

Figure 6 Flow scheme of the graphical analysis step-toolbox.  

 

As mentioned before, in a sensor, rich environment such as the HHS rooms, the conditions of the indoor 

microclimate and the parameters affecting its stability (outdoor climatic conditions and occupancy) are 

recorded for analysis. Using this data, the functions and controls of the systems in play at the room and 

building level can be assessed. Figure 6 shows that the indoor microclimate control is dependent on the 

outdoor climatic conditions and occupancy related energy use 34 36. Monitoring control schemes related to 

energy use are important especially in commercial buildings, such as the HHS, where the occupancy plays 

an important role in the overall energy consumption. Today there are several models available for experts, 

which help detail out analysis of a room’s and/or building’s energy demand, see for instance the Building 

EQ reports 33 or the Dutch RVO 37. The motive of this chapter is to find methods of automating the most 

important analyses which could help understand the dynamic functioning of the room.  
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For example,  

1. the rooms are not always in use, and this brings in the question of working vs non-working hours 

and the energy patterns associated under these two categories of hours in the room,  

2. or even the seasonal pattern of energy use in certain buildings, wherein summers experience a 

different pattern of ventilation and cooling as compared to winter.  

An automated model helps to analyze the most important patterns and parameters affecting the 

Indoor microclimate and help an expert investigate ways in which the building systems could optimize 

energy use.  

 Thus, the first most important objective of this model is to help the reader form certain first hand 

qualitative and quantitative results about the room by a robust visualization of data. This will help the user 

(an expert) analyze the room’s indoor climate, energy use, and thus the effectiveness of the controlled 

HVAC systems. 

The second objective of this model is to investigate the most important type of analyses which 

should be automated, and therefore the most important sensors needed to assess a room’s performance.   

Thirdly, the maintenance of proper indoor climate, especially in rooms with high occupancy rate, 

demands for both thermal and electrical energy. However, buildings, including highly controlled buildings, 

tend to develop faults in the systems, which bleed energy whilst trying to maintain thermal and physical 

comfort in a room. This study would thus also help in quickly identifying faults which have a negative 

influence on the indoor air quality (IAQ) balance at the room level.    

As explained in chapter 1, the research uses a typical classroom, number 1075, of the HHS as a case-study 

(see to section1.3.2).  

Qualitatively, the only information available beforehand regarding this room, is that it; 

• has certain occupant related HVAC settings (sensor-based controlled environment) 

• has a south facing wall, with large portions of window (refer to images in the appendix A2.1 for 

approximations) 

• has three internally facing walls, including the roof and floor 

• is functioning as a classroom 

6.2 Indoor climate 

According to the Rafsanjani 34 and other authors 29, 30  the indoor microclimate is connected to four main 

parameters which determine the effective health and living conditions of people in buildings. 

1. The Indoor Thermal Environment 

2. Indoor Air Quality 

3. Indoor Lighting Levels 

4. Indoor Noise Levels 
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Indoor climate needs to be highly stable in rooms against varying seasonal, climatic and occupancy levels. 

The analysis of control measures for such operation helps determine the functioning of the room and also 

shows a strong link of the economy of energy use of the room 36 38.  

6.2.1 Indoor Temperature 

Data analyzing has been done using linear regression tools on MATLAB 30 and the graphical results 

have been placed in this section along with detailed explanations of the findings. The indoor thermal 

environment is judged by the combination of elements, or factors, such as temperature, humidity, heat 

radiation and air movement 36. Temperature of the air inside the room is one of the major factors influencing 

a comfortable indoor climate, so plotting the indoor temperature against several parameters like outdoor 

temperature, hour of the day, solar radiation or wind speed will give a first visual idea about how responsive 

is the indoor climate to occupancy and outdoor parameters. 

 In the case study of room 1075, looking into the thermal state of the room, we can observe as 

follows (see figure 7 below) - A constant temperature can be seen being maintained throughout the day, 

and the wall temperature, measured towards the inside, is only slightly lower than the indoor air temperature. 

 

 

Figure 7 Indoor air, Wall surface and Outdoor air temperatures for the entire year of 2015  

for room 1075. 

 

Using the graph plotted above (figure 7) an expert can gather certain first-hand conclusions immediately.  

a. The indoor temperature is highly stable and maintained so throughout the year. This means that 

the room has a set point temperature of 21-23 0C. 
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b. The indoor temperature is not altered with regards to the outdoor temperatures, which have a 

range from -5 to almost 30 during summer. This also means that the room has a very good 

thermal envelop, or a very poor thermal envelope with a highly efficient HVAC control system. 

 

Point ‘a’ above can be further verified by the figures 8 and 9 plotted below.  

 

 

 

 

 

 

 

 

 

 

 

Figure 8 Indoor temperature plotted against outdoor solar radiation. The slope of the linear 

regression line is almost 0 (m=0.002) with an intercept at 21.05 0C. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 Indoor temperature plotted against outdoor wind-speed. The slope of the linear regression 

line is almost 0 (m=-0.015) with an intercept at 21.4 0C. 
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These two figures depict the sensitivity of the indoor air dry-bulb temperature with that of the outdoor solar 

radiation and wind speed. These lines were developed by using a simple linear regression analysis on 

MATLAB 30,using the least square fit function 39.  

With regards to solar radiation – There is a 2oC window in indoor air temperature variation with 

respect to the solar radiation. This room has a wall facing the south side with ~50% windows. With 

extremely sunny hours (>600W/m2, see figure 8) an increase of almost 1-2oC suggests that the rooms are 

provided with shutters/blinds, to avoid massive fluctuations in the indoor thermal balance.  

With regards to the wind speed – The wind speeds were measured in bins by the KNMI, and thus 

these bins can be seen in the plot figure 9 above. The wind speed also seems to have little to no effect on 

the indoor temperature, suggesting lower infiltration from windows or creeks, and controlled temperatures 

of ventilation airflows.  

This suggests that the building and the room indeed have very good HVAC system and/or insulation.  

 

6.2.2 Indoor Heating and Cooling  

The next step in the graphical analysis is to plot the heating and cooling energy against various 

variables. The thermal energy demand of the rooms is met by water-based floor heating/cooling pipelines. 

The energy used is estimated by the sensors based on the flow rate and temperature difference of the input 

and output water flow of the pipes supplying to a room. This is calculated each six minutes in Joules, which 

is converted to watt over an hour by aggregating the total supple over 10 intervals. The values have been 

plotted below in figure 10.  

As mentioned the ATES, is responsible for almost all the heating and cooling of the building. What 

is interesting to note from this graphical analysis is that the number of hours of heating and cooling for the 

entire year for this classroom, is limited to only 486 and 710 hours respectively, out of the 8327 hours of 

data from the year. This leads towards two possible conclusions about the room and the building in general; 

a. It seems that the thermal insulation of the room is good leading to little heat and cooling hour, 

see table 5, while the indoor temperature remains stable 

b. There may be the possibility of a secondary source of thermal energy supply. 

 

Table 5 -  Thermal energy demand from floor heating/cooling system by the room 1075 for the year 

2015.  

 

Parameters Total Number of 

Hours 

 Number of Heating 

Hours 

 Number of Cooling 

Hours 

 Number of Hours with no 

Thermal Energy 

         Value 8327 470 701 7156 

 Percentage 100% 5.64% 8.41% 85.93% 
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Figure 10 The thermal energy of the floor heating/cooling during the entire year - 8327 hours. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 a and b - Sensitivity of Floor heating and cooling demand to the outdoor temperature. The 

slopes of the linear are -0.37 and 55 respectively.  
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The heating energy supplied solely by the floor to the room is almost independent of the outdoor 

temperature variations over the entire period of heating energy demand (figures 11 a and b). The regression 

lions plotted via MATLAB using the least square fit function, indicate a slope of -0.3. According to Building 

EQ, this value of almost 0 slope indicates that building has a fairly good thermal insulation with a very 

good HVAC system.  

The cooling energy on the other hand, is quite dependent on the outdoor temperature changes, with a slope 

of m=55. This indicates a quite linear relationship between the cooling energy demand and the outdoor 

temperature.  

 

With a good insulation and/or good HVAC control system in place, the indoor climate is less vulnerable to 

the outdoor climatic conditions 35 36, as can be seen from the low temperature and thermal energy supply 

variations with regards to solar and wind speed (figures 8, 9 ,11 a and b). However, the indoor climate under 

such circumstances (office and school rooms) is most affected by occupants, processes and activities 

occurring inside the room 40. A proper HVAC installation is vital for a balance in indoor temperature. The 

ventilation in buildings with such automated BEMSs are controlled in order to 40; 

 

• Distribute adequate quantities of air through the room, to satisfy the need of the occupants 

• Remove odors, and contaminants by flushing out the air within the room through a mechanical 

exhaust system. 

• Provide thermal comfort to occupants – Although this is not the main aim of ventilation in 

European buildings, air may be heated or cooled in an Air Handling Unit (AHU) before injection 

into the room to contribute towards the thermal comfort levels.  

 

In the building of the HHS, Delft, rooms are supplied with air from an AHU after it has been treated to 

maintain thermal comfort within the rooms (see section 6.3). This variable tends to add to the overall 

thermal energy of a room in the building, when there is ventilation. Moreover, since the data is recorded 

every six minutes, upon aggregation over an hour, there are instances wherein the room may experience 

both heating and cooling in the same hour (either from floor systems and/or the conditioned air). Thus, a 

term, net thermal energy demand is used in this research to represent the overall thermal input to a room in 

a given hour. A positive value means net heating and negative value would indicate net cooling.  
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6.2.2.1 Net Thermal Energy at Room Level 

One of the more important variables which will be used ahead in the predictive models is the net-

thermal energy demand. Two main sources accounted for calculating this net demand are thermal energy; 

From ATES and Heat pumps -The heating and cooling energy supplied by these two sources are 

transmitted via a floor water-based system in this classroom. This is recorded as the primary source of 

thermal energy as explained above, see figure 10. 

From Ventilation supply air -When the BMES spends extra energy in cooling or heating the supply 

air flow to the room, it adds to the net thermal energy demand.  

Therefore; 

Net thermal energy supplied from HVAC = 𝑄𝑡𝑟𝑎𝑛𝑠𝑚ⅈ𝑠𝑠ⅈ𝑜𝑛 𝑓𝑙𝑜𝑜𝑟 + 𝑄𝑉𝑒𝑛𝑡ⅈ𝑙𝑎𝑡ⅈ𝑜𝑛  [W] 

Wherein,  

𝑄𝑡𝑟𝑎𝑛𝑠𝑚ⅈ𝑠𝑠ⅈ𝑜𝑛 𝑓𝑙𝑜𝑜𝑟 = 𝐻𝑒𝑎𝑡𝑖𝑛𝑔 + (−𝐶𝑜𝑜𝑙𝑖𝑛𝑔)[W] 

𝑄𝑉𝑒𝑛𝑡ⅈ𝑙𝑎𝑡ⅈ𝑜𝑛 =  �̇� × 𝜌𝑎ⅈ𝑟× 𝐶𝑝(𝑎ⅈ𝑟) ×(𝑇ⅈ𝑛𝑑𝑜𝑜𝑟 𝑎ⅈ𝑟 − 𝑇𝑎ⅈ𝑟 𝑠𝑢𝑝𝑝𝑙𝑦)[W] 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 Net thermal energy demand over the entire year at an hourly average for the room.  

 

The use of net thermal energy demand is imperative to this research in the correlation as well as 

the predictive models. This is the variable which needs to be predicted in order to estimate demands of 

thermal nature at room levels.  

Other yearly patterns generated by this step-toolbox have been placed in the appendix A3 such as 

a) The electrical demand through the year (both lighting and appliance) 

b) The change in indoor air temperature with altering levels of presence (in terms of CO2 

concentrations). 

c) Sensitivity of Thermal Energy demand towards Solar radiation. 

Eq-6.1 

Eq-6.2

 Eq-6.3
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6.3 Floor and Supply-Air Heating and Cooling. 

6.3.1Supply Air Temperature for Heating And Cooling 

The HHS building has two large Air Handling Units (AHUs). This air is conditioned, by filtering, heat 

recovery, heating or cooling, and humidifying or dehumidifying. Since the HHS rooms are designated 

classrooms, these interior spaces may need cooling to compensate for the heat generated by occupants, 

appliances and lighting. From graphical analysis, it is thus interesting to see the variation in supply air 

temperature against indoor and outdoor air temperature.  

 

Below three images have been generated from the model, which helps show the variation in the supply air 

temperature during different modes of operation within the room. In the figures below, only hours when 

the room was occupied have been plotted. The first image (figure 13-a) shows the supply air temperature 

variations whilst the floor system is on heating mode, figure 13-b showcases the temperature fluctuations 

during cooling hours and figure 13-c shows the temperature in the absence of any floor heating or cooling.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tvent air > Toutdoor 
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Figure 13 (a-c) Air temperatures of the indoor, outdoor and supply air, during ventilation and 

(a)floor heating, (b) floor cooling, (c) no floor heating or cooling hours.  

 

It is visible that the supply air temperature is always in between the indoor and outdoor air temperature.  

From image 13 a, representing the floor heating mode, it is visible that the supply air temperature is mostly 

lower than the indoor air temperature. This is the energy from wither exchanging heat (via a heat exchanger) 

with the fresh air, or heating the air in the AHU. However, there are times when the air is heated up more 

than the indoor air temperature (marked in green). Under such circumstances, the additional heat is added 

to the thermal energy of the room, leading to a higher net thermal energy demand. Another important 

analysis in this model is fault detection. If in any case, the supply air temperature is lesser than the outdoor 

temperature, or is quite low, it would suggest a fault with the heat exchanger or the fact that the AHU is not 

functioning appropriately. Although, this is not seen in the case of this room the model can however, show 

such faults (if existing) for other rooms.  

 

During the warmer months, but also seen in winter, there is a certain cooling demand. The supply air 

temperature is lower than the indoor air temperature, see figure 13 b, however almost always greater than 

the outdoor air temperature.  

In any scenario, a basic amount of fresh air is needed to maintain air quality inside the room. Instead of 

supplying outdoor air directly and leaving the thermal balance entirely up to the floor heating systems, there 

are two basic options for the AHU; 

During cooling – The air is cooled by the AHU or heat exchanged with the cooler inside air. Thus 

leading to a lesser floor cooling demand. 

During heating – The air is heated in the AHU, or heat exchange with the warmer indoor air. Thus, 

leading to a lesser floor heating demand.  
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Under this situation two faults would emerge; 

a) When there is floor cooling, but the air supplied is heated/or heat exchanged with warmer indoor 

air in the AHU. 

b) When there is floor heating, but the air supplied is cooled/or heat exchanged with the cooler indoor 

air in the AHU. 

Table 6 Fault conditions detected due to supply temperature mismatch, in the ventilation units, 

during the heating and cooling mode of the room. 

 

Mode of Operation Fault Conditions 

Cooling mode Tsupply > Toutdoor 

Heating mode Tsupply < Toutdoor 

 

Thus, during the cooling mode, there is a major fault within the AHU systems, wherein the outdoor air is 

being heated to higher temperatures in the AHU. This leads to energy wastage as the supply air is being 

heated and then cooled inside the room. However, this may fault may not be an anomaly in the control 

system, but a digression used in order to maintain the balance between the cooling and heating of the ATES.  

 

Lastly, from the diagram c, with hours of no floor heating or cooling but ventilation only, it can be noted 

that the supply temperature of air always lies between the indoor and outdoor air temperatures. Despite lack 

of heating or cooling, the indoor temperature is fluctuating within a 2-3oC gap, 24-21oC. The input air of 

approximately 19-21oC, obtained either by heat exchange, heating or cooling in the AHU. This supplied 

thermal energy is enough to compensate for the need for heating or cooling at the room level. 

 

6.3.2 Floor temperatures for heating and cooling  

The floor heating and cooling system at the HHS is provided using thin water pipes divulging out 

of a main pipeline which supplies warm or cold water based on the demand of a given section of the building. 

For example, consider a scenario in which a section has 5 rooms out of 8 demanding for hot water, while 

the other 3 rooms do not need any thermal energy. The control for these three rooms shut the water supply 

valves supplying to the room. However, the drawback of this system is that, if incase one of the 3 rooms 

needs cooling energy due to, let us say, high occupancy then this one room shall not be supplied with cold 

water, as majority of the rooms demand for heating. Thus, the main pipeline can carry only hot water with 

it or cold water but not both. This is an important information regarding the functioning of the heat and cold 

supply system of the building. An explanatory figure has been placed in the appendix A1.1 to further 

describe this mechanism. 
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Figure 14 Supply water temperature for the floor heating/cooling system and the calculated floor 

temperature for the same room, for a given week in May. 

 

In the HHS building, larger rooms are provided with 3-4 pipes depending upon the size of the room. The 

minimum being two pipes for very small offices. The room 1075 has 3 pipes in the floor, through which 

water is circulated in a single direction. This information is derived from the temperature sensors present 

on both ends of the pipe, just before the pipes diverge from or into the main pipeline. These pipes run 

parallel to each.  

The floor temperature is an important parameter that is not measured at the HHS building. It was thus 

calculated using this graphical analysis step-toolbox by taking the hourly arithmetic mean 5 of the difference 

in all pipeline’s input and exit temperatures. The values have been shown in the graph above over a period 

of 1 week (figure 14). Also, the losses for the heat transfer between the pipes and the floor are set at an 

assumed value of 20% for the entire year. This is because there is a slight air gap between the pipes and the 

floor. Also, the possibility of thermal energy travelling downwards and heating or cooling the ceiling of the 

level beneath has been taken into consideration, as the concrete has not been insulated to take advantage of 

the thermal mass. The 20% is an approximation made after consulting with the building designers.  

 

                                                      

 

5  The Arithmetic mean was used instead of the logarithmic mean. The flow in the pipes are 

unidirectional and the temperatures of one pipe does not affect the temperature in another pipe. They are 

from the same source and since the temperatures are measured at the entrance and exit of the pipes to the 

room, the arithmetic mean between these two points is accurate enough represent the temperature of the 

floor. However, having said this, both means can be used for the purpose. 
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6.4 Functioning of the room and Operating Characteristics 

It is important to realize that by taking different time steps of data, the results of the operation of 

the building begins to differ. For instance, taking an entire year of hourly averaged data for a room in a 

University building, yields patterns of energy demands based on the season (heating for colder months, and 

cooling for the warmer months). However, monthly or weekly patterns show us detailed occupancy and 

ventilation patterns and their effect on indoor climate.   

6.4.1 Monthly Plots 

After visualization of the yearly patterns, the graphical step-toolbox has been designed for 

visualization of data on smaller, zoomed in time intervals as well. This is important to see the exact variation 

of certain vital parameters which give a picture of the physical and climatic functioning of the room during 

a period of the user’s interest. This section will help the reader get an insight into the functioning of the 

room with regards to occupancy levels, electrical utilization, ventilation etc., by viewing the data over a 

period of 1 month of October 2015 (figure 15).  
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Figure 15 - Higher resolution of the data set by selecting a given month of data (October 2015).  

 

Deductions made from such a plot are as follows; 

1. It can be understood from the air temperatures, CO2 concentrations and the ventilation flow rates 

that there is a clear division between working hours and non-working hours. There seems to be 

weekly use (Monday to Friday) of the classrooms.  

2. Hours 400-600 of the month showcase something unusual – firstly there is an almost constant 

indoor temperature. There is lack of cooling during this week, however, at some moments, there is 

a high ventilation rate, which might have also regulated the indoor temperature. These high 

ventilation rates correspond to some small CO2 increases. 

Weekends Fewer 

Students 
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3. The lack of CO2 6 present in the room during this week, could be representing the Autumn break 

wherein there were no students. However, they may have been cleaning schedules or small 

meetings held by faculty members representing a slight rise in the CO2 concentrations.  

 

 

6.4.2 Working and Non-Working Conditions 

To analyze the working and non-working condition of the rooms the graphical analysis step box 

allows for the user to input the working hours of a day. In the present case, Sundays and hours from 00 – 

06 in the morning, and hours from 17:00 – 24:00 in the night were considered as non-working. This was 

based on questionnaire results from the HHS building. All other hours fall under working category. 

 

It should be noted that the graphics of figure 16 and 17 are based on non-consecutive hours, as they 

incorporate only working and only non-working hours of the month. The hours represent the functioning 

hours of the entire building itself. The entire building’s hours were taken into account since the BMES 

functions on these hours and not the hours of each individual room.  

 

 

 

 

 

 

 

 

 

                                                      

 

6 Presence has been characterized by the CO2 concentrations because the presence sensors were not 

optimally functional. They detect motion only, and thus even with students seated inside the classroom, the 

presence sensor has the tendency of showing a lack of presence. Thus, concentrations above 480ppm 

(approximately) have been reported to reflect the presence within rooms. 
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Figure 16 Data recorded only over the working hours of the room for the month of October 2015  

Similarly, for the non-working hours, the following graphs were obtained, again for the month of 

October.  
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Figure 17 shows the description of several graphs based on sensor measurement, for the non-working 

hours of the chosen month from the entire dataset (October 2015) 

 

As it can be seen from the two plots (16 and 17), a spike of CO2 above 480ppm leads to 

proportionately controlled ventilation demand. One must note that 450-480ppm is the default ppm of CO2 

recorded each 6-minute by the sensors. Despite the controlled ventilation, we can observe that the level of 
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CO2 is well above 1000ppm for several hours through the year. Table 7 summarizes the number of hours 

of presence and ventilation.  

Table 7 Total number of hours of presence and total hours of ventilation for an entire year. 

 

 

 

 

 

 

 

 

Thus, from the count generated by the analytical model, it can be quite clear, that the ventilation does indeed 

work coherently with the occupancy level of the room.  

During non-working hours, with the elimination of ventilation and occupancy related thermal demand, we 

can see the response of indoor air temperatures to the solar radiations. This was dealt with in depth further 

 

6.4.3 Day-wise plots 

A step further – shorter timestamps, of one day have been also plotted by the analytical model. For 

this case study, October 10th 2015 was chosen as the day of analysis. See appendix 4, A.4.1 for these plots. 

 

One important analysis was the lag in indoor temperature response to the increasing solar radiation. 

A normalized plot (-1 to +1) of indoor air temperature, the wall temperature and solar radiation can be 

plotted (see figure 18). 

 

1. The solar radiation peek occurs at t-1 hours before the indoor air temperature peaked.  

2. The wall temperatures peak corresponds with the solar radiation peak.  

 

The work of Lopez 15 also found similar results with a larger delay in the temperature response of the room. 

On an average, it was seen that there is a lag of almost 1-2 hours in temperature response, and almost no 

lag in the response of the wall temperature. According to Lopez’s result, this delayed response has a slight 

influence on the thermal energy predictive model. Thus, this delay was taken into account while improving 

the MLR models (see chapter 8.6). 

Category Hours 

Total number of hours 8327 

Total number of hours with Presence 1797 

Total number of hours with Ventilation 1730 

Total number of hours of Floor Heating with Ventilation  199 

Total number of hours of Floor Cooling with Ventilation  421 
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Figure 18 A normalized plot indicating the lag in indoor air temperature response with regards to 

the increasing solar radiation.  

 

6.5 Seasonal Analysis 

In addition to the analyses mentioned above and the ones placed in the appendix 4 (A.4.2), the 

seasonal analysis of data has proven to be quite useful in some cases. Especially with BEMS supported 

buildings, there are distinct set points in play during different seasons. The aim of this analysis is to provide 

automated tools for analyzing a room’s energy demand seasonally, and observe and mark any anomalies 

that one may find in the working of the room and building. The entire year’s data can be easily divided into 

three main seasons, namely midseason, summer, and winter. A few variables were plotted on an hourly 

average basis as shown below.  

The figure below (figure19) is that for the summer period. We can notice; 

• The variation of 15oC of outdoor temperature against the 3-4oC variation in indoor temperature. These 

variations are lower with no cooling, suggesting the possibility of a high thermal mass and insulation 

as mentioned before. Since there is no ventilation flow rate during these hours (1100-1500 for example) 

the possibility of cooling via the AHU is also eliminated.   

• Once again hours of both occupied and vacant room are witnessed (Summer holidays). However, we 

do not see a change in set point temperatures.  

• Thus, thermal floor cooling is prevalent even during the long holiday, with the absence of students. 

Once again, although this may seem like a wastage of energy, it may be due to the energy needed to 
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balance the ATES. A conclusion by an expert could be that the balancing strategy of the ATES must be 

studied and revised.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19 shows the various graphs explaining the readings of presence (CO2 PPM,) Ventilation air 

flow rate, Temperatures, and the thermal energy utilization of the class room during the summer 

period (Note – These are consecutive hours belonging to months May-August 2015) 

 

The graphs for the other seasons, winter and spring, have been placed in the appendix A.4.2.  

 

An interesting point of observation is that, there is no variation in indoor climatic condition with regards to 

changing seasons. However, it was also mentioned that the building of the HHS is highly controlled and 

has an almost constant indoor set point through the year. Thus, seasonal analysis may fair well for a building 
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which do have different indoor set points for distinct seasons. 

 

What follows ahead is a conclusion of the graphical analysis. The reader shall be given an overview 

of the findings and research questions which have been answered herein.  

6.6 Conclusions 

The main results of the research reported in this chapter is a toolbox and an understanding into the 

graphical models developed for the toolbox. It shows the important defining features of a room’s operation 

based on energy use, presence and occupancy rates, ventilation, etc. The following major conclusions and 

remarks are made.  

 

Regarding the automation of graphical analysis methods: 

1. Quick and useful observations of a building/ room’s functioning can be made with an easy to use 

automated graphical models. Although results are shown for one room, with the automation, one 

can generate such qualitative and quantitative results for most sensor-rich room.   

2. Sensor rich environments can provide for a good basis for such a data-driven model. 

3. The graphical analysis can be used by experts, and need only data obtained from sensor database.  

4. The need for extensive knowledge about the building itself, as in the case of white box models, is 

not a necessity. However, with more information regarding the building and the HVAC systems, 

the higher the accuracy.  

5.  

With regards to the types of analysis of the control systems and efficiency in fault detections.  

 

1. It is clear that the ventilation work only in the case of presence being detected. -This control 

strategy can be deduced by the graphs (and is in accordance with the HHS building information). 

2. Room occupancy has an important effect on the overall energy demand, since the HVAC systems 

are highly controlled by occupancy levels in this building.  

3. The heating and cooling however, are operational, even in the absence of occupants, in order to 

maintain a quite constant indoor temperature. This may be done for good reasons: the floor 

heating/cooling systems are a low temperature based system, and due to the high time constant of 

the floors. Thus, turning it off during non-working hours might cause issues during working hours. 

Also, the balance in the ATES system needs to be maintained with appropriate heating and cooling 

cycles, else an additional heating. Cooling energy might be needed. These observations could 

nonetheless point towards more thorough analysis and optimization of the control system.  
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4. It is observed that some faults in heating and cooling, temperatures of air supply, and lighting can 

be easily detected with the model.  

 

Regarding the type and size of datasets. 

1. It is seen that the size of the data (yearly, monthly, weekly or even daily) is chosen based on the 

kind of qualitative or quantitative questions which need to be answered. Whilst yearlong data gives 

a good estimate of the functioning of the HVAC systems with regards to other parameters, a 

zoomed in analysis of a month or week, helps understand the functioning of the room and set points 

such as those of presence and temperatures, etc.  

2. Using working and non-working hours, leads to analyzing the room under different operational 

conditions. Public buildings are largely dependent on occupancy, and thus an analysis of such kind 

can yield a good quality of information about the functioning of the room.  

3. Seasonal analyses are fruitful in the case of public buildings, only if the room has set conditions 

which alter with every season. It was seen that since the room 1075 of the HHS and perhaps the 

entire building maintains their set points almost a constant through the year – however, the seasonal 

analysis does give an insight into the response of indoor variables (air temperature, wall 

temperatures) to the outdoor parameters (solar radiation and temperatures). 

 

Overall this chapter investigated the first most important step towards energy optimization in 

buildings, or building rooms – the graphical analysis. The most important aspect witnessed is that almost 

every parameter is responsible in some degree towards the increment or decrement of energy demand, 

typically thermal energy. The important question which follows is, “whether automated methods can 

quantify the affect different parameters have on the overall thermal demand of a room?”. What follows is 

a chapter on the newly developed methodology for obtaining correlation coefficients to quantify this affect.  
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7.Correlation Analysis 

This chapter describes the methodology developed during this research regarding coefficient of 

correlations. As pointed out earlier in this research, with building systems there are large dependencies of 

several parameters on the energy demand. The aim of this chapter is to introduce a methodology which 

allows for precise quantitative measurement of the effect different parameters have, on the thermal energy 

demand of a room. The study is also a gateway towards analyses on thermal energy prediction, as it first 

points to the most important factors influencing the thermal demand.   

The first section is a small recap on the literature mentioned in chapter 3 (see section 3.2). It also 

describes the two main types of models (multiple and partial correlation) developed under this step-toolbox. 

The second and third section discuss results through graphical means, along with a conclusion about the 

developed model.  

7.1 Multiple and Partial Correlations 

This research uses Multiple correlation and Partial correlation as a tool to quantify the effect of 

certain parameters on the overall thermal energy demand of a room. Both correlations are highly generic 

and therefor are extremely flexible with data analytic systems 33. This section shall show the correlation 

plots obtained by using such a mathematical tool. Correlation plots help in identifying the major parameters 

which have an effect on the dependent variable, and eliminate disturbances that have no impact at all – for 

example, outdoor wind speed, has almost no correlation with a room’s thermal demand, if the room is 

completely airtight.  

Table 8 List of dependent and effective parameters used in the correlation analysis. 

 

 

 

 

 

 

 

 

 

                                                      

 

7 These variables are called “effective variables” and not independent because there exists some 

amount of interdependency amongst them. Thus, although these parameters influence the thermal demand, 

they also influence each other, and thus are termed ‘effective variables’ through this research. 

Dependent Variable Effective Parameters/Disturbances
7
 

Net Thermal Demand Indoor Air Temperature 

Or Heating Demand Outdoor Air Temperature 

Or Cooling Demand Floor surface Temperature 

 Wall Temperature 

 Solar Radiation 

 Internal Heat 

 Wind Speed 

 Presence in CO2 

 Ventilation 

 Supply Air Temperature 
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Table 8 show the various independent parameters (later on also called effective parameters 7) which 

will be used during the correlation analysis. Almost all variables available from the sensor-rich environment 

have been used. However, the inlet and outlet temperatures of the floor heating/cooling pipes have not been 

used individually, but in the form of floor surface temperature, the calculation technique for which has been 

described before (see section 6.3). The floor surface temperature has been known to be an effective 

parameter as per the calculations and recommendations of Lopez 15. The internal heat load has been 

calculated by summing up the hourly lighting, and appliance based electrical energy demand. It should be 

noted that the research does not take into consideration human occupancy levels as an addition to internal 

heat loads, as the presence (in CO2) itself is a variable being studied. Moreover, the sensor data did not have 

a count of individual personnel but only total CO2 concentrations, making it difficult to approximate the 

heat generated from occupancy. 

 A short recap on the mathematics involved in calculating the three correlations has been shown 

ahead; 

Simple correlation – is the strength of a linear relationship of one “effective parameter” on the 

dependent variable. This value ranges from −1 <  𝑟 < 1 as it is standardized. Refer to chapter 3.2 and 

appendix A2 for more details and formula to calculate the simple correlation r. Simple correlation is not the 

optimum type of correlation method in the case of more than two variables 14 33 

Multiple correlation is used when there are 2 or more variables jointly affecting the dependent 

variable. Multiple correlation, denoted by ‘R’, also ranges between -1 and +1. Refer to appendix A.2 for 

more details. Multiple correlation is different from Multiple regression (see chapter 8) in the way that it is 

not able to predict one variable from another, or explain the changes in one variable with regards to another. 

It is simply a measure of the strength of linear relationship between 2 or more variables on the dependent 

variable 10 11. Multiple Correlation Coefficients are not a factor of causation but only a degree of association 

between the effective parameters and the dependent variable.  

 

𝑅𝑧,𝑥𝑦 =  √
𝑟𝑥𝑧

2 𝑟𝑦𝑧
2 − 2𝑟𝑦𝑧𝑟𝑥𝑧𝑟𝑥𝑦

1 − 𝑟𝑥𝑦
2  

 

The multiple correlation coefficient is calculated using the Eq. 7.1 above. For three variables, x and y being 

the independent variable and z being the dependent variable, the R value is calculated, where, rxy, rxz etc., 

(see section3.2, Eq. 3.1 for simple correlations) are the simple correlations between the respective variables.  

As can be seen from the table 8 above, we can judge that the effective parameters are not completely 

independent either. For example, the solar radiation may have an influence on the outdoor temperature over 

Eq-7.1 
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a given day. This leads to believe that there exists a certain degree of interdependency between the effective 

parameters.  

 

 

 

 

 

 

Figure 20 – β and r8 (simple correlations) between two effective parameters X1 and X2 and dependent 

parameter Y for two given scenarios. 

 

As can be seen from the figure 20 above, if the effective parameters are independent (completely 

uncorrelated to each other) then each separate variable makes a unique contribution (β8) to explain Y 

(dependent variable). However as mentioned, most of the effective parameters are correlated. 

Therefore, a secondary tool, called partial correlation is established (see section 3.2 and appendix A2 for 

more details). Using partial correlations this model can check for two important factors; 

 

a) The individual association between an effective parameter and the dependent variable without 

accounting for the remaining effective parameter – Under this method the correlation between 

the dependent and the effective variable is calculated by keeping the other variables constant, 

thus nullifying any effect they may have. 

A partially correlated value however, is not significant in reality. Although they denote the individual affect 

one parameter might have over the dependent variable, it does not give the true effect since in reality the 

parameter is interrelated with other effective parameters and does not change individually without the other 

parameters being altered. Thus, multiple correlation coefficients will always reflect the real relationships 

between the parameters, and the dependent variable. Having said this, the research looks into finding partial  

correlations to provide for a tool to understand the individual relationships a parameter has with the overall 

thermal demand of a room.  

                                                      

 

8In multiple correlations, the β values are standardized and are a measure of how strongly each effective 

parameter influences the criterion (dependent) variable. Thus, higher a β value, the greater the impact of 

the effective variable on the criterion variable. Example a β value of -0.91 is stronger than a β value of +0.8. 

These values are the standardized values of B, or weights which are calculated in the regression models in 

the following chapter, by using standardize effective variables. It is important to standardize the correlations 

coefficients because different parameters have different units (W/m2, Wh, m/s, oC). With standardized 

values we can compare different effective parameters and their linear relationship strength with the criterion 

variable10.  

Independent variables Co-dependent variables 
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b) The individual association amongst effective parameters (co-dependency) – The partial 

correlations method is also used to calculate the values of co-dependency that may exist 

amongst two effective parameters. Sine the partial correlation (r) values are much lower in 

strength than the multiple correlation values between two variables, a significant relationship 

is guaranteed even with rpartial=±0.1.  For calculating the partial correlation between z and x, 

keeping y constant, the following formula is used, where r and ŕ are the respective simple and 

partial correlations; 

𝑟′𝑧𝑥,𝑦 (𝑝𝑎𝑟𝑡ⅈ𝑎𝑙) =
𝑟𝑧𝑥 − 𝑟𝑥𝑦𝑟𝑦𝑧

√1 − 𝑟𝑦𝑧
2 √1 − 𝑟𝑥𝑦

2

 

 

Using this formula (Eq. 7.2), the partial correlation between all effective parameters was calculated. The 

simple correlation between the effective parameters was also estimated. Significant values, that is with p-

value<0.5 were placed in the table 9 shown below. 

 

Table 9 Combinations of interdependent parameters, which were singled out based on their r-value 

above or below ±0.1 and P-value<0.05 (95% confidence). The table also shows the simple correlation 

coefficients for the same set of parameters for comparative purposes. 

 

Interdependency of Parameters Partial Correlation Simple Correlation 

Internal heat and presence 0.37 0.69 

Wall Temperature  & Indoor Air Temperature  0.93 0.96 

Indoor Air Temperature & Supply Air Temperature 0.37 -0.07 

Floor Temperature  & Supply Air Temperature 0.15 0.24 

Supply Air Temperature & Presence -0.11 -0.42 

Presence  & Outdoor Air Temperature -0.18 0.00 

Wind Speed  & Outdoor Air Temperature 0.20 0.07 

Outdoor Temeprature  & Solar Radiation 0.20 0.49 

 

 

To explain partial correlations better, let us consider three variables namely, ‘Presence’, ‘Supply air 

temperature’ and ‘Internal Heating’. A partial correlation between Presence and Supply air temperature 

(variable X1 and X2) would be performed after the third variable (Internal Heating) (X3) is “switched off”. 

Switched off means, that the relationship between one variable (X1) and the switched off variable (X3) is 

calculated and the residuals from such a regression is used to find the partial correlation between X1 and 

X2. That is, to find the partial correlation between presence and supply air temperature, first the correlation 

of presence with internal heating would be performed. The presence can answer for this correlation but not 

perfectly, leaving behind a residual. The partial correlation is the relationship supply air temperature has 

Eq-7.2 
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with the residuals of presence. In this case the simple correlation between presence and supply air 

temperature is -0.42 and this is without switching off variables such as internal heating (lighting and 

appliances) and other variables as mentioned. However, the correlation between supply air temperature and 

presence only, keeping aside the effect of other parameters is much lower but still a negative -0.11. 

Sometime the reverse is also possible, as seen with wind speed and outdoor air temperature, wherein, the 

values are lower (almost 0) for a simple correlation, however, individually, these two are correlated weakly 

at 0.2. Thus, for any two variables there will always be some form of relationship, be it weak (closer to 0) 

or strong (closer to +1 or -1) but never 0 33.  

 

The significance of calculating partial correlations is that by analyzing these values we can develop a second 

opinion regarding a given effective parameter. If this parameter has a significant partial correlation 

coefficient as compared to its multiple correlation coefficient, it would suggest that the parameter, 

1. has a good linear relationship with the dependent parameter (as all correlation are based only 

on linearity in data), since it shows a significant relationship under partial and therefore also 

on multiple correlations. 

2. is an important factor in analyzing the dependent variable response in terms of a predictive 

model 33. 
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Figure 21 Methodology developed for the correlation coefficient estimation during this research.  

 

An automated methodology (figure 21) has been developed during this research, to help find the 

multiple and partial correlations of any kind of thermal demand, with respect to the effective parameters 

recorded from the room. Once again, the interface for this step-toolbox is such that the types and number 

of parameters can be changed and chosen based on the objectives of the user.  

 

What follows is a description of the correlation toolbox and the interface developed for automating the 

process. Thereafter the correlation plots and the results for the same are described for the room 1075 as 

shown in the flowchart above.  
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7.2 Automated Correlation Step-toolbox 

Using MATLAB an automated model has been developed. As pointed out during the literature 

survey, it was found that there is a lack of understanding of the affect, different parameters have on the 

thermal demand of a building, in this case a room. Thus, a generic algorithm is used to find these 

correlations, of both multiple and partial nature.  

 

Herein the command menu asks the user to input the type of thermal energy which should be set as 

the dependent variable. Thereafter, the Pearson’s correlation is calculated, leading to the following type of 

result.  

Figure 22 Multiple and Partial correlations of net thermal demand with the effective variables for a 

period of 1 year. Naturally the most correlated is the floor temperature as it is the main source of 

thermal energy 

 

The figure 22 above is a graphical plot of the multiple and partial correlation coefficients, the exact values 

of which have been placed in the table 10 below. The bars represent the strength of the relationship between 

the effective variables and the dependent variable chosen (in this case the net thermal energy demand). 

Please note that this image does not incorporate any values of interdependency that may exist between the 

effective parameters.  
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Table 10 shows the obtained Multiple and Partial correlation coefficient (R-Value) and the P-values 

for the various parameters as stated. 

  

Parameters Internal 
Heat 

Wall 
Temperature 

Indoor Air 
Temperature 

Floor Surface 
Temperature 

Supply Air 
Temperature 

Presence Ventila
tion 

Wind 
Speed 

Outdoor Air 
Temperature 

Solar 
Radiation 

Multiple 
Correlation 
Coefficient (R) 

 
-

-0.34 

 
  

-0.469 

 
      

    -0.503 

 
 

0.719 

 
 

0.374 

 
-

-0.37 

 
-

-0.47 

 
0

.019 

 
       

-0.362 

 
-

-0.425 
 

P-Value 
 
 

0.0 

 
 

0.0 

 
 

            0.0 

 
 

0.0 

 
 

0.0 

 
 

0 .0 

 
 

0.0 

 
 

0.090 

 
  

0.0 

 
 

0 .0 
Partial 
Correlation 
Coefficients 
(rpartial) 

 
0

.074 

 
 

0.08 

 
      

    -0.176 

 
  

0.720 

 
 

0.04 

 
-

-0.097 

 
-

-0.30 

 
-

-0.03 

 
 

0.205 

  
-

-0.132 

 
P-Value 

 
 

0.0 

 
 

0.0 

 
      

       0.0 

 
  

0.0 

 
 

0.0 
 

 
 

0.0 

 
 

0.0 

 
 

0.01 

 
    

0.0 

 
 

0.0 

 

 

The R2 values describe the percentage of variance in the values of the dependent variable explained by the 

independent variable(s) (see chapters 8 and 9 for detailed explanation on R2 values). The R2 value is simply 

calculated by squaring the R values estimated by a simple or a partial correlation – these have been shown 

above in table 10. However, the R2 for a multiple correlation needs a linear model to calculate the overall 

R2 value. The total R2 value of the Multiple Correlation Coefficients estimated was 74.2%. 

The overall R2 value is obtained by placing the effective parameter/variables into a linear model (FITLM 

or Stepwise fit, see chapter 8 for detailed information). The model trains itself on this input matrix, and 

develops an equation to define the value of the dependent variable (net thermal energy demand -NTD). 

Thus, based on the values obtained above, the equation for each variable with the partial coefficient would 

be as follows (Eqs. 7.3-7.5);  

 

𝑁𝑇𝐷ⅈ = 𝐶ⅈ𝑛𝑡𝑒𝑟𝑛𝑎𝑙ℎ𝑒𝑎𝑡+0.074 ∗ 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐻𝑒𝑎𝑡ⅈ  →  𝑅2 = 1% 

𝑁𝑇𝐷ⅈ = 𝐶𝑤𝑎𝑙𝑙𝑡𝑒𝑚𝑝𝑒𝑎𝑟𝑡𝑢𝑟𝑒+0.08 ∗ 𝑊𝑎𝑙𝑙𝑇𝑒𝑚𝑝ⅈ  →  𝑅2 = 1% 

𝑁𝑇𝐷ⅈ = 𝐶𝑓𝑙𝑜𝑜𝑟𝑡𝑒𝑚𝑝𝑒𝑎𝑟𝑡𝑢𝑟𝑒+0.72 ∗ 𝐹𝑙𝑜𝑜𝑟𝑇𝑒𝑚𝑝ⅈ  →  𝑅2 = 54% 

And so on, where i represents a given hour. It is seen that only the floor temperature has a high enough 

partial correlation with the net thermal energy demand. However, other variables are not able to partially 

answer for their relationship with the thermal demand, and have a very low R2 value. This is once again 

Parameters Internal 
Heat 

Wall 
Temperature 

Indoor Air 
Temperature 

Floor Surface 
Temperature 

Supply Air 
Temperature 

Presence Ventila
tion 

Wind 
Speed 

Outdoor Air 
Temperature 

Solar 
Radiation 

Partial 
Correlation     
R2 Values 

0
1% 

0
1% 

 
3% 

 
52% 

 
0.00 

0
1% 

0
0 

0
0 

 
4% 

0
2% 

Eq-7.3 

Eq-7.4 

Eq-7.5 
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because, in reality these variables are not partially related to thermal demand, but are interrelated as seen 

from the high R2 value of multiple regression equation (Eq. 7.6) obtained from FITLM. 

 

𝑁𝑇𝐷ⅈ = 𝐶 − 0.34𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐻𝑒𝑎𝑡ⅈ − 0.047𝑤𝑎𝑙𝑙𝑡𝑒𝑚𝑝ⅈ − 0.50𝑖𝑛𝑑𝑜𝑜𝑟𝑡𝑒𝑚𝑝ⅈ + 0.72𝑓𝑙𝑜𝑜𝑟𝑡𝑒𝑚𝑝ⅈ

− 0.37𝑃𝑟𝑠𝑒𝑛𝑐𝑒ⅈ − 0.47𝑣𝑒𝑛𝑡𝑖𝑎𝑡𝑙𝑖𝑜𝑛ⅈ − 0.36𝑜𝑢𝑡𝑑𝑜𝑜𝑟𝑡𝑒𝑚𝑝ⅈ − 0.425𝑠𝑜𝑙𝑎𝑟𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛ⅈ

→  𝑅2 = ~75% 

 

Thus, the first step towards obtaining multiple regression equations is to understand the strength and 

weaknesses of each of the predictor or effect parameters being used. This shall be explained further in the 

chapter on Multiple Linear Regression – chapter 8.  

 

7.3 Analysis of the results for the case study 

In this discussion, we shall first analyze the results of the multiple correlation followed by those of 

the partial correlation coefficients.  

 

The dependent variable chosen for this case study is the net thermal demand of the room, and for a period 

of 1 year. Please note that the net thermal demand can be a positive or negative value, as shown in figure 

12 in chapter 6. This positive (heating energy demand) or negative (cooling energy demand) could lead to 

certain explanation of the analyses provided ahead. The variables/parameters affecting this thermal demand 

are listed in table 8 above.  

 

1. With regards to temperatures – the net thermal demand of a room is inversely proportional to both 

indoor and outdoor temperatures. This seems to make sense, as the thermal demand rises or falls 

with decreasing and increasing temperatures respectively. Contradictory to this, with a high floor 

temperature, there shall be a higher amount of heating, which implies a higher thermal demand. A 

low floor temperature would mean a higher demand in cooling and therefore a more negative 

thermal demand.  

 

2. With regards to outdoor wind speed - A very low correlation of thermal demand with wind speed 

suggests that the building perhaps and in this case this specific classroom is immune to large 

infiltrations. By looking at the high P-value for wind speed in the table xx below, we can conclude 

that the correlation coefficient did not pass the null hypothesis test, and thus this variable has no 

effective correlation with the thermal energy demand of the room.  

Eq-7.6 
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3. Regarding occupancy, internal heating and ventilation – The ventilation is coupled highly to the 

occupancy, at almost 0.69. Internal heat is also coupled to the occupancy at 0.37 (see table 9). With 

regards to a multiple correlation we see an inverse relationship between these three variables and 

the net thermal demand. This is natural as increase in any of these variables leads to an increase in 

the internal room temperature, leading to a negative demand (cooling demand) in thermal energy.  

 

Other graphs, based on only heating or only cooling hours have been placed in appendix A5. These graphs 

are accompanied by their tabulated values and the set of interdependent effective variables in their case. 

 

7.4 Conclusion 

The use of such a model is essential in generating quick analysis regarding the most effective parameters 

on the thermal demand of a room. The chapter shows the use of multiple and partial correlations on building 

energy demands. It should be kept in mind that these coefficients are just a measure of effect, or degree of 

effect and not the strength of causality.  

The chapter also introduces the strengths and weaknesses of these two correlation methods with regards to 

building energy, occupancy and outdoor climatic parameters.  

1. Regarding Effectiveness of multiple correlations - Multiple correlations although includes 

interdependent parameters, it is still able to supply significant results, with a certain degree of error. 

These results hold true as in reality, variables are interrelated and without multiple correlations, the 

overall effect of a variable would not be understood.  

2. Regarding effectiveness of partial correlations – The use of partial correlations helps tighten the 

number of significant parameters effecting the thermal demand. However, one major disadvantage 

in using partial correlations with so many parameters is that the reliability of the results begins to 

diminish as can be seen above and was also seen in the book of  J. Cohen 10. So therefore, under 

partial correlations, certain parameters cannot be “switched off”, as the results then tend to become 

insignificant. Multiple correlations thus need to be used to get a quantitative measure of the 

relationship between effect and dependent parameters.  

 

The next chapter shall finally move into the predictive models developed during this research based on the 

findings of chapters 6 and 7. These chapters were important to analyze the building, which shall now be 

followed with energy predictions.  
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8.Multivariate Regression & Predictive 

Modelling 

This chapter describes the developed predictive models based on Multivariate Linear Regression. 

From the findings of the previous chapters it has become clear that the thermal energy of a room depends 

on a lot of factors, and the strength of each of these factors varies non-linearly. Using this knowledge, the 

types of data and variables for the predictive model will be selected. This model shall focus on prediction 

of heating and cooling demands of the case room 1075 and developing an automated model that can be 

applied to other rooms and buildings as well.  

In order to provide a wholesome explanation of this 3rd step-toolbox, the section shall be divided 

in the following manner. The first subsection shall explain the thermal energy balance prevalent in 

buildings/rooms (related to Heat Transfer Fundamentals section 3.1) and the corresponding set of 

parameters involved in defining Multivariate Liner Regression (MLR) equations. The second section 

includes a detailed brief on model development, continuing the literature survey in chapter 3 (see section 

3.3). Once the predicted model is setup with the appropriate equations, it is followed by a description of the 

statistical methods used for validation of the predicted values and coefficients. An explanation of the 

significance of the coefficients will be provided. Using the results of both FITLM 41, and STEPWISEFIT 

42, two MATLAB functions - multivariate linear modelling, shall be showcased, along with a descriptive 

and comparative analysis.  

 

8.1 The Principle of Thermal Energy Balance  

This section shall expand upon the literature of heat transfer in the built environment, and explain 

the most important mechanisms through which thermal energy balance is affected. This is vital, to 

understand the set of equations which should be associated with the predictive modelling through multiple 

linear regressions in the next subsection. 

The thermal maintenance of a room is a chief factor for a comfortable indoor microclimate. 

However as pointed out in the literature section there are several fluxes of heat being transferred in and out 

of the room which influences the balance of thermal energy. The five main categories of heat flux are: 

internal heat gains (Qinternal), envelop losses/gains (Qfloor+Qenvelope(s)), ventilation (Qventilation), solar (Qsolar), 

and infiltrations(Qinfiltratinon). There is a sixth term which is responsible for both gains and losses of thermal 

energy, and is associated with the thermal mass of a building/room (Qthermal mass). This thermal mass absorbs 

the solar radiation, and internal heat gains. The thermal energy balance can thus be written as a simple 

linear equation shown below; 
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(Qthermal demand) [W] = (Qinternal) + (Qfloor+Qenvelope(s)) + (Qventilation) + (Qsolar) + (Qinfiltratinon) + (Qthermal mass) 

 Eq-8.1 

Here the Qthermal demand is the overall thermal demand of a room (the net thermal demand). The Qinternal 

is the thermal energy introduced to the room via occupants, appliances and lighting. Qfloor, Qground and 

Qenvelope are heat transmissions through the envelope of the building, and are driven by the difference in 

temperatures between the indoor and the outdoor. The Qventilation and Qinfiltration are the thermal energy 

transmittance through air ventilation and infiltration respectively. Qsolar is the solar heat gains of a room 

through solar radiation. Lopez 15 summarizes a table of the physical description and the parameters 

associated with each of the heat fluxes. A modified summary corresponding to this research has been shown 

in the table 11 below.  

Table 11 Physical description of distinct heat fluxes affecting the thermal demand of a room together 

with the parameters associated with each physical attribute. 
Heat Flux Physical Description Parameters Associated 

Qinternal Qinternal = npeople . Qbody + Qlighting  +Qappliances npeople is the number of people 

Qbody, Qlighting and Qappliances corresponds to 

the heat gain per person, total heat gain 

from lighting and appliances, respectively 

[W] 

Qfloor Qfloor = Ufloor . Afloor . (Tfloor – Ti) Ufloor is the convective and radiative heat 

transfer coefficient of the floor at the indoor 

side [W/m2K] 

Afloor  Area of the floor [m2] 

Tfloor hourly floor temperature [K] 

Ti  indoor air temperature [K] 

 

Qenvelope(s) Qenvelope = ∑ 𝑼𝒊
𝒊 . 𝑨𝒊 . (𝑻𝒐 − 𝑻𝒊) i is the number of façades of the room 

including roof, excluding floor  

Ui the overall heat transfer coefficient for 

this envelope [W/m2K] 

Ai the area of the facades [m2] 

To the outdoor temperature [K] 

Qventilation Qventilation = Mvent . Cp air .( ToutAHU – Ti) Cp air heating capacity of air (J/kg.K) 

Mvent mass flow rate of the ventilation air 

(kg/s). 

ToutAHU Temperature of the ventilation air 

coming into the room [K] 
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Qsolar Qsolar = Qsol direct + Q sol diff. + Qreflective The diffused and direct solar radiation are 

calculated from the obtained global 

horizontal solar radiation obtained from the 

KNIM source9.  Qreflective is neglected.  

Qinfiltrations Qinfiltrations  = (mopenings +mcracks). Cp air (To – Ti) 
mcracks = 𝑉𝑟𝑜𝑜𝑚. 0.15. (

𝑉𝑤𝑖𝑛𝑑
2

𝑉𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
2 )

2
3⁄

[Kg/s][Lopez 

15, ,NEN-EN 12207] 

mopenings = Vopenings . ρair [Kg/s] 

Vreference = 5 [m/s] 

Vroom = volume of the room [m3] 

ρair = density of air 1.225 [Kg/m3] 

Qthermal mass Qthermal mass = 𝜶𝒊 . 𝑨𝒊𝒏𝒅𝒐𝒐𝒓 𝒔𝒖𝒓𝒇𝒂𝒄𝒆𝒔 . (𝑻𝒘 − 𝑻𝒊) Aindoor surfaces = total area of all the facades in 

contact with indoor air [m2] 

αi   = the indoor combined heat transfer 

coefficient for convection and radiation 

Tw = wall temperature [K] 

 

It is important to note that not all these heat fluxes are applicable in this research. From the previous 

chapter we found for example, that the wind speed has almost no effect on the thermal demand of this case 

room 1075. The P-value for the extremely low correlation coefficient was high indicating that the 

coefficient did not pass the null-hypothesis. This means that Qinfiltrations will have no effect on the thermal 

energy balance for this specific room.  

 

From such a table, it is evident that to utilize the thermal energy balance equation 8.1 as stated above, we 

need to estimate or know a lot of the building’s physical parameters such as dimensions and building 

properties such as U values. This becomes a bigger issue with already existing buildings where such 

information is difficult to retrieve. However, making a regression analysis using independent variables Tw, 

Ti, To, Tfloor, ToutAHU, Qsolar and Qinternal should allow to develop a predictive model with physical meaning. 

The equation used here is the same as developed by Lopez15 , who already demonstrated the potential of 

this method. However, she had no actual data at her disposal and made the demonstration based on data 

produced by an emulator (a white box model), which produced a surrogate for the actual data. Furthermore, 

in her study, there was no floor heating or cooling, and the floor temperature was approximated by using 

indoor temperature, internal heat load and solar radiations at the hours before. 

                                                      

 

9 The use of solar radiation at t-1 hours (as seen in the graphical analysis chapter 6 section 6.3.3) 

shall also  be taken into consideration at a later stage in this chapter (see section xx).  
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In the present research, we can test the approach on actual data and, we can validate that the black box 

model of Multivariate Linear Regression has a good fit with the thermal demand of the rooms. 

Ahead a detailed description of the MLR has been given followed by the major first results of the predictive 

model.  

 

8.2 Multivariate Linear Regression – An overview 

The literature on MLR has already shown the approach of using a mathematical black box model. 

This model consists of a linear equation with one dependent variable (prediction term) and other 

independent variables (predictor terms). The general expression which defines such a linear relationship is 

as shown; 

𝑄ℎ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + ∑ 𝐶ⅈ . 𝑋ⅈ

𝑛

ⅈ=1

 

 Wherein, 𝑄ℎ is the hourly thermal energy demand in Watt (W), 𝐶ⅈ is the coefficient estimated for 

the ith parameter Xi. The equation can also be rewritten in the matrix form as 11 

𝑄 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝑋×𝐶 

Where  

1. 𝑄 is the matrix of the prediction term (net thermal demand) which in this case is hourly (n 

hours) making it n by 1column matrix 

2. 𝐶 is the matrix of coefficients of the predictor variables (m variables) (these differ for 

differing combination of predictor variables), a m by 1 matrix 

3. X is the multi columned matrix (n by m) which denotes one column for each predictor 

variable used for this predictive model. Example, indoor temperature, outdoor temperature, 

solar radiation, etc.  

The n is the number of hours, and m the number of predictor variables. Thus, for one entire 

year of 8760 hours, the matrix would be represented as shown; 

  [
𝑄1

⋮
𝑄8760

] =  [
1
⋮
1

   

𝑋1,1 ⋯ 𝑋1,𝑚

⋮ ⋱ ⋮
𝑋8760,1 ⋯ 𝑋8760,𝑚

] [
𝐶0

⋮
𝐶𝑚

] 

  Where, 

C0 is the constant obtained of the entire MLR equation.   

 

The matrix set of equations are solved by estimating the constants through training and fitting the 

model with historical data, explained ahead.  

Eq-8.2 

Eq-8.3 
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8.2.1 Regression and Fitting 

Using equation 8.4 shown below, the model can calibrate the constants of the equation to match the actual 

values of a historical dataset of the dependent variable, in this case the thermal demand.  

𝑄1  =  𝐶0 + 𝐶1. 𝑋1,1 + ⋯ + 𝐶𝑚. 𝑋1,𝑚 

𝑄8760  =  𝐶0 + 𝐶1. 𝑋8760,1 + ⋯ + 𝐶𝑚. 𝑋8760,𝑚 

 

The coefficient values obtained represent the numeric contribution of each parameter (X) on the overall 

thermal demand (Q) 43 11. These when normalized (-1 to +1) are similar to the correlation coefficients 

estimated before in chapter 7. This is a type of inverse modelling; wherein statistically valid coefficients 

are estimated to fit each parameter into the linear equation 8.2. Once the fit is made (or training of the model 

is complete) the Left-Hand Side of the equation can be estimated for future values of X.  

 

8.2.2 Model development 

A description of the types of data retrieved from the Octalix and Priva database has been provided 

before in chapter 5. A secondary table of the sample of available data has been placed in the appendix (A6) 

as well. This data set was measured data from sensors and lacked any informative data about the building, 

such as the building physical parameters, or the insulation U values, etc. In this research, the actual data of 

temperatures, electrical consumption and solar radiation, etc have been used to develop the major linear 

equation solved by MATLAB.  

 

Based on the knowledge of available data, we can relate the equation of thermal energy balance (eq. no. 

8.1), and the regression equation number (8.4) as follows; 

  

Qthermal demand [W] = C0 + C1. (Toutdoor -Tindoor) + C2.(Tfloor -Tindoor) + C3.( Twall – Tindoor)   + C4 .(Tout AHU 

-Tindoor) + C5 .Vwind.(Toutdoor – Tindoor) + C6 . Qsolar + C7. Qinternal 

 

This equation is a transformation of the general equation (8.2) of multivariate linear regression with 

eight constants (coefficients) and seven parameters written in the form of temperature differences [oC], 

solar radiation [W/m2], internal heat gains [W] and wind speed [m/s]. The overall result obtained is a total 

thermal power in the hour in Watts, which translates to the thermal energy demand of the hour in Wh.  

The values of the coefficients relate to an individual category of heat flux as mentioned in section 

8.1 of heat transfer above. The values C1, C2 and C3. relate to the room’s physical parameters, and are 

constant for a given room. C4 is dependent of the ventilation time frame, which in turn is dependent on the 

occupancy profiles. C5 is dependent on the infiltration rate in the room. C6 and C7 are the coefficients for 

 

Eq-8.4 

8.5 
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solar radiation and internal heat gain respectively. The physical significance of each of these coefficients 

have been summarized in the table below. 

Table 12 Physical significance of the coefficients estimated by using MLR models, with regards to the 

equation presented before (equation number 8.4). 

 

Coefficients Physical Significance Associated Variables  

C1 C1 ~  ∑ 𝑼𝒊
𝒊 . 𝑨𝒊 i is the number of façades of the room 

including roof, excluding floor  

Ui the overall heat transfer coefficient for this 

envelope [W/m2K] 

Ai the area of the facades [m2] 

C2 C2 ~ Ufloor . Afloor Ufloor is the convective heat transfer coefficient 

of the floor [W/m2K] 

Afloor  Area of the floor. [m2] 

C3 C3 ~ 𝜶𝒊 . 𝑨𝒊𝒏𝒅𝒐𝒐𝒓 𝒔𝒖𝒓𝒇𝒂𝒄𝒆𝒔 Aindoor surfaces = total area of all the facades in 

contact with indoor air [m2] 

αi   = the indoor combined heat transfer 

coefficient for convection and radiation. 

[W/m2K] 

C4 C4 ~ Mvent . Cp air Cp air heating capacity of air [J/kg.K] 

Mvent mass flow rate of the ventilation air [kg/s]. 

C5 C5 ~ (mopenings +mcracks). Cp air 
mcracks = 𝑉𝑟𝑜𝑜𝑚. 0.15. (

𝑉𝑤𝑖𝑛𝑑
2

𝑉𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
2 )

2
3⁄

[Kg/s] [Lopez 17, NEN-EN-

12207] 

mopenings = Vopenings . ρair [Kg/s] 

Vreference = 5[m/s] 

Vroom = volume of the room [m3] 

ρair = density of air 1.225 [Kg/m3] 

C6 C6 ~ effect of solar radiation on 

the thermal demand 

                _ 

C7 C7 ~ effect of total internal heat 

gains on the thermal demand. 

                _ 

 

The predictive accuracy of a model or set of equations depends upon the following two main factors: 

1. Type and number of parameters introduced as independent variables. 

2. The statistical significance of the obtained coefficients of each parameter 
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The significance of the coefficients estimated above are validated from the p-value and the t-statistics tests 

(explained ahead in section 8.3 in detail) performed by the models. Two main multiple regression functions 

were studied during this research namely, FITLM and STEPWISEFIT on the MATLAB 2017b 30  

8.2.1.1 FITLM 

FITLM 41 is a simple function in MATLAB used in order to develop and estimate values for a simple 

multivariate linear regression problem. The research focuses on comparing FITLM to the second more 

complex function namely, STEPWISE FIT 44. FITLM works on the principle of least-square fitting and 

uses the backward principle of estimating statistically valid coefficients and significant parameters for a 

predictive model. Herein, all the parameters are first placed in the MLR equation, and based on trial and 

error method, the less significant parameters are removed from the regression equation 11. During research, 

it was noted that the major disadvantage of this function is that all validation and insignificant parameter 

removal must be done manually. This is not optimum as the research calls for more automation.  

8.2.1.2 STEPWISE FIT 

Stepwise fit is a much more automated regression function in MATLAB. It is used to fit parameters onto a 

model, and does so with the forward principle. It uses an interface (see appendix A7.1) wherein, the 

parameters (predictor variables) are added one by one to the regression equation, chosen based on 

optimality 11. The effect on the overall models R2 value (goodness of fit) and the significance of each of the 

parameters can be judged instantly. This method allows for automated removal of parameters having no 

significant effect on the predictive accuracy.  

 

This research has made use of both the functions for predictive analysis of thermal demand at the room 

level. A short comparative study of these two methods regarding their use and accuracy has been missing 

from literature and thus, falls under an objective of this research. The detailed explanation of these two 

models and their user interface can be seen in the appendix (A7.3).   

 

The next subsection deals with the statistical validation of the results necessary to deem the model practical.  
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8.3 Statistical Validation 

With the use of inverse modelling using Multivariate Linear Regression the values obtained must 

be statistically sound. The Stepwise and FITLM functions use statistical significance in regression models 

to obtain the best fit for the dependent prediction variable. The statistical significance of the model can be 

checked using three main methods -  

1. Analyzing the residuals of the data – The residuals of the data can be verified statistically by 

analyzing their mean, variance and distribution profiles. The mean of the residual data set should 

be nearly zero. The variance should be approximately constant for all values of X and there should 

be a normal distribution associated with the values of X 11. 

2. Significance levels of the estimated coefficients – the individually obtained coefficients of the 

regression model must be statistically significant for the entire prediction to be significant. This is 

checked using the p-values and the t-statistics tests.  

a. The P-value as mentioned before, is to test the null hypothesis of the significance of the 

estimated values. This research uses a minimum p-value of 0.05. This means that a p-value 

>0.05 would result in the fact that the values of the particular coefficient estimated is not 

statistically significant, and thus might induce an error to the overall model prediction 11. The 

p-value and t-stats value change each time a new parameter is introduced into the equation. 

Variables with a p-value above 0.05 shall be removed from the equation, as there is less than 

5% chance of the values being significant.  

b. The t-statistics is a ratio measuring the difference in estimated and actual values to the standard 

error of the estimated value 11.  Thus, a lower value of t-statistics means that the variable has 

a lower error and a better contribution to the fit. The stepwise fit uses the t-stats value to add 

new variables into the regression equation. 

3. Significance of the entire model – The entire model as a whole needs to be statistically sound to 

be accepted as a valid prediction model. A large number of parameters can be added as predictor 

variables; however, a large number of parameters could lead to overfitting, which showcases 

random errors rather than addressing the relationship between dependent and independent 

variables 11 45. This would lead to poor-predictive performance of the entire model. By using the 

goodness of fit (R2) value and the RMSE the significance of the model is validated. 

a. R2 measures how close the data is to the fitted regression line. It is a measure of the total 

variation in data that can be explained by the model. It varies from 0 to 1, with 1 being a 

perfect fit. It is 1 minus the ratio of the sum of square of prediction errors and the sum of 

squared deviations from the mean 45. The Adjusted-R2 uses the variances instead of the 

variations, that is, it takes the sample size and the number of predictor variables into 



69 

 

considerations. The adj. R2 value should be used in case of comparing different sub-datasets10.  

The goodness of fit increases by increasing the number of significant parameters, but leads to 

a reduced value with adding random predictor input variables (see section xx). Also, there is 

a tight relationship of the R2 value with the RMSE.  

 

b. The RMSE is the square root of the mean variance of the residuals. It needs to be minimized. 

With increasing parameters there is a high chance of overfitting, leading to an increase in the 

RMSE 11. The RMSE hold the unit of the predicted and actual values (in this case Watt) and 

its value is proportional to the values of the actual data. The adjusted R2 is thus a modified 

version of R-squared adjusted for the number of parameters in the equation. The adjusted R2 

increases when a model is actually improved by a new parameter, rather than increasing due 

to probability 11.   

 

8.4 Data set selection 

Chapter 5 has shown the types of data retrieved from the sensors. Data regarding the room 1075 is 

available at an hourly timestamp (see appendix A.6). Based on the equations formed in the sections above, 

and the knowledge of correlation coefficients generated regarding the most influential parameters the 

appropriate predictor variables are selected. The important parameters of data selected for the models 

developed are; 

 

1. Temperatures of indoor air, walls/envelope and floor 

2. Outdoor Climatic data (solar radiation, wind speed 10and outdoor air temperature) 

3. Use and operation (Time of use, ventilation profiles etc.) 

 

The dataset for room 1075 is a total of 8327 hours our of 8730 hours of a year, due to some missing data in 

the Octalix and Priva databases. The sub-datasets sets were varied with each obtained result, which has 

been discussed ahead.  

The choice of the size and time period of data selected to form the sub-data set is extremely crucial towards 

a good training and fit, and this shall be explained ahead with the results from this research section. 

 

                                                      

 

10 Although it was proven for this dataset, that the windspeed is insignificant in forming a linear 

relationship with net-thermal demand, it was used nonetheless to show the functioning of FITLM and 

STEPWISE FIT with regards to removal of insignificant parameters.  
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What follows is a flow chart (figure 23)  summarizing the entire process of the automated MLR step-

toolbox, developed during this research.  

 

Figure 23 Descriptive flow chart of the steps followed in the entire methodology of the MLR step box, 

to obtain high comparative prediction model.  

 

 

 

 

 



71 

 

8.5 Results and Discussions 

This section describes the results obtained by using two functions, FITLM and STEPWISEFIT in 

MATLAB 2017b and their corresponding significance with relation to real-time data. The section is divided 

into two major parts showcasing the results of fitting and training models on different sub-data sets first, 

followed by a subsection on prediction of data. Thereafter, the conclusions of this chapter are accompanied 

by a brief comparative study. 

 

8.5.1 Fitting and Training the Models 

Using the FITLM and STEPWISEFIT the fitting profiled over an entire year’s data was analyzed. 

The adjusted R2 value of such large dataset was 64.7% and a RMSE of 399Wh for the FITLM while for the 

STEPWISEFIT, a similar adjusted R2 value of 64.9% with RMSE being 397Wh was obtained. This means 

that the regression models can explain 65% of the total variance in the data. The values for the correlation 

coefficients and the adjusted R2 value has been placed in the table 13 below. A graphical representation of 

the fitted data for the entire year can be seen in the figure 24.  

Table 13 Estimated coefficient values for the fit over an entire year11.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                      

 

11 Please note that there is not Prediction, but a mere fit of data with the yearly time period.  

FITLM STEPWISE FIT 

Constant Estimate P-value Estimate P-value 

Intercept (C0) 16.8 0.01 16.86 0 

C1  294.52 0 290.96 0 

C2 334.08 0 335.68 0 

C3 10.54 0 10.85 0 

C4 0.008 0.17 3.89 0.517 

C5 0.004 0.97 0 0.1 

C6 -0.20 0 -0.20 0 

C7 0.13 0 0.10 0 

Adjusted R-Squared 64.7% - 64.9% - 

RMSE 399 - 397            - 
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Figure 24 Graphical representation of the fitted net thermal demand over the entire year of 8372 

hours data size. The R2 value and RMSE of this fitting were similar for both functions.  

 

Observations 

1. The first most important observations are the p-values, which in this case showcase a poor test 

result for the coefficients related to ventilation (C4) and infiltration (C5). Since these are 

statistically insignificant, they are removed from the equation manually for the FITLM, whilst 

automatically from stepwise fit.  

2. The walls and the floor surface temperatures are playing an important role in determining the fit 

of the data for both functions. When the training was performed with just these two variables the 

model was able to fit up to approximately 64.1% of the data at almost the same RMSE (407).  

3. The values of net-thermal demand range up to a high of 3600Wh. An RMSE of 400Wh, states an 

approximate statistical error of a maximum of 11.1%. 

4. The residuals obtained were put to a normality test, wherein it was found that they were normally 

distributed. (See Appendix A.7.2 for explanations and graphical images) Also, the residuals had 

an extremely low value for mean, making it equivalent to 0. 

 

Inferences from the analysis of figure 24 

1. In general, the fit is quite poor (even though the adj. R2 of the fit was fairly high) and there is the 

lack of estimation of peak values. This is seen especially during the heating hours.  

2. This could be due to the following reasons: 

a. Type and size of dataset - The actual profiles of heating and cooling demand as mentioned 

before is only a total of 1250 hours out of the 8732 hours (see table 5). Of the entire dataset 
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used (8372 hours) a majority of these hours were without any thermal demand. Therefore, 

the fit on 1250 heating/cooling hours, whilst training on 7 times the data size could lead to 

such a poor fit. Out of this, the heating hours are a bare minimum of 411, making the 

training over 8732 hours even more difficult during the heating period. This could also 

explain why the fit on the cooling hours is slightly better than those on the heating hours.  

b. Interdependent predictor variables. As shown in chapter 6 and 7 (see table 9) there is a 

degree of linear and non-linear relationships between certain predictor variables. We 

already know that MLR equations needs the predictor variables to be as independent as 

possible. 

c. Non-linear relations between predictor and target variables – It is also known that the 

predictor variables must be linearly dependent on the target variable (net thermal demand). 

However, this is never the case in the real world, as can be seen from the plots in chapter 

6. In fact, non-linearity increases whilst using a sub-set data of both heating and cooling 

period. (Example the relationship between thermal demand and outdoor temperature varies 

during heating periods and cooling periods, and is not always linear) It would be better to 

fit a model over heating periods and cooling periods individually.  

 

This is the reason why the automated MLR step-toolbox created during this research makes the use of 

different sub-datasets.  

To understand the fitting abilities of the MLR functions the model takes the following ranges into 

account; 

• Datasets of a whole year (already tested) 

• Data set belonging to working hours (based on opening hours of the building) 

• Data set belonging to nonworking hours (based on closing hours of the building) 

 

 Based on operational use, i.e., working and non -working hours 

The working and non-working hours were defined based on the building operational time of use and not 

room occupancy (see figures in the appendix 7.2.2). Sundays were maintained as non-working and other 

days were maintained from 6am-7pm. Table 14 shows 1st estimation is for working hours and the second 

for non-working hours, with their respective p-values. The results obtained by using either of the two 

functions were yet again very similar, with slight improvements in STEPWISE FIT with regards to the 

overall RMSE of the model. See appendix section 7.2 for all the obtained results including those for FITLM. 
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Table 14 Estimated coefficients for working and non-working hours using the Stepwise Fit function 

only. 

 

 

 

 

 

 

 

 

 

 

 

 

Inference 

1. Higher R-squared value for working hours -There is an increase in R-squared value for fitting 

over the working hours (69.7%), as compared to the entire year (64%). The non-working hours 

experience very few hours of heating/cooling demand, (see the point made below). On 

removing these hours, the ratio of actual thermal hours to the total training hours has been 

increased unlike in the full year’s training set. Thus, a better fitting has been achieved by 

eliminating the non-working hours.   

2. Poor performance with non-working hours - Due to such low number of hours of thermal 

demand during the non-working set of hours through the entire year, the fitting of data was 

extremely difficult. From a total of 4155 hours of non-working (night hours and Sundays) in 

the year, there were a total 128 recordings of hourly thermal demand consumption. Thus, 

training data over 128 hours from a set of 4155 hours leads to extremely poor results, with 

excessive errors. Thus, the model is nullified.  

3. Smaller Timesteps for higher efficiency – An important inference is that a higher ratio of 

actual target values to the total number of training values, leads to a better training of the data. 

Further reducing the sub-dataset sizes to month, week or day might lead to even better R-

squared values and lowered RMSE for MLR models and better visualization of a fit. However, 

there may be issued of overfitting which must be taken into consideration. Overfitting occurs 

either when the model is too complex, and includes more than needed parameters for training 

the model. It leads to a highly efficient fit of the model on the dataset, however, the model 

 Working hours 

of the year 

 Non-working 

hours of the year 

 

Constant Estimate P -Value Estimate P-value 

Intercept (C0) -68.42 0.00 -7.07 0.00 

C1 143.45 0.00 133.08 0.00 

C2 382.38 0.00 201.39 0.00 

C3 13.57 0.00 4.48 0.00 

C4 -68.18 0.00 -6.27 0.00 

C5 0.00 1.00 0.00 1.00 

C6 -0.21 0.00 0.09 0.00 

C7 -0.06 0.07 0.02 0.66 

Adjusted R-Squared 69.7%  30.0%  

RMSE 507  192  
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reacts poorly to changing parameters whilst predicting future value (see xx for more 

information on overfitting)  

 

Since the results obtained from the two functions are comparable in nature, the research focusses on using 

STEPWISE FIT for further prediction of data. 

 

8.5.2 Predictive power of the MLR models using different sub-datasets. 

This section shall now look into predictive capabilities of the MLR model. Based on the findings above, it 

has become clear that proper visualization and higher accuracy of training could be obtained with smaller 

sub-datasets. A higher accuracy in training also could also lead to a higher accuracy in prediction of reliable 

data, except when there is overfitting. To understand the fitting as well as predictive abilities of the MLR 

functions the model takes the following smaller ranges into account based on user input; 

• Datasets belonging to month (May and June 2015) for fitting/training and thereafter 2 

months (July-August) for prediction. 

• Week-wise datasets – weeks 24 and 25 for training purpose, and week 26 for prediction.  

These are dates from 7th to 20th June 2015 for training and 21st to 28th June for prediction. 

• Single Day wise datasets from any month. This is followed by a day-ahead prediction. 

 

Monthly Data-sets 

Using the two months as training period for the MLR model, the prediction of thermal energy demand for 

the following month was made. During the research three different sets of data were chosen, see table 15 

below, and all three sets had a vast difference in the R-squared (or goodness of fit) of the data.   

Table 15 shows the varying timeframes chosen for training and predicting the data and the associated 

adjusted R-squared values obtained from the MLR. (addto appendix how r2 is calculated) 

 

Data 

Set 

Training 

Months 

Adj.R-Squared 

[%] 

RMSE 

Wh 

Prediction 

Month 

RMSE 

Wh 

 Adj.R-squared 

[%] 

1 March & April 32.0% 298 May 371  48.95% 

2 April & May 47.1% 283 June 614  50% 

3 June & July 80.5%  331 August 342  82.3% 
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Figures 25 a, b and c Training and data prediction of the monthly datasets used on the Stepwise fit 

MLR model. These three graphs showcase the three different sub-datasets considered during 

research and have varied adjusted R2 values.  
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Inferences 

1. Regarding the groups of months chosen – these months represent different periods of the data, 

during which the building performed in different modes to maintain the indoor comfort level. For 

example, during March it can be seen (figure 25 a) that there is a heating demand for half the month, 

followed by a cooling demand for the rest of the month, and for the whole of April. This is the 

trained model, applied to the following month of May, where there is only cooling demand. Thus, 

the predictive power is low. However, for the months of June and July, there is a prevailing constant 

cooling demand, and thus predictions of this trained data, over August, which have the same 

characteristic, is much accurate. Accuracy of such models decreases when training data deviates 

from testing data 32. Thus, the training should be fixed over either cooling or heating to reduce the 

non-linearity when using MLR. 

2. Regarding the significance of the model – the training models and the predicted data exhibit 

normally distributed residuals. The B values (weight of the effective parameters) and the 

corresponding p-values have been placed in the table 16 below.  

Table 16 estimated values of the coefficients and their corresponding p-values for the three groups of 

training over monthly data-subsets. The red markings are insignificant parameters.  

 

 

From the table, it becomes evident that the floor surface temperature, the indoor air temperature 

and the outdoor air temperature are the variables which have the most influence in training and therefore 

also on the prediction of the thermal energy demand. The linear equations thus developed are; 

Qthermal demand March-april [Wh] = -32.12 + 190.69(Tfloor -Tindoor) + 360.92( Twall – Tindoor)  

  March and April April and May June and July 

Constants Physical 

Significance 

B 
(coefficients) 

P-value B (coefficients) P-value B (coefficients) P-value 

C1 C1 ~ ∑ 𝑈ⅈ
ⅈ . 𝐴ⅈ  2.25 0.37 15.50 0.00 26.34 0.00 

C2 C2 ~ Ufloor .Afloor 190.69 0.00 229.01 0.00 406.97 0.00 

C3 C3~ 𝛼ⅈ . 𝐴ⅈ𝑛𝑑𝑜𝑜𝑟 𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑠 360.92 0.00 304.13 0.00 -26.67 0.57 

C4 C4 ~ Mvent .Cp air 2.25 0.37 0.00 1.00 0.00 1.00 

C5 C5 ~ (mopenings +mcracks). 

Cp air 
0.00 1.00 0.00 1.00 0.00 1.00 

C6 Solar radiation effect -0.06 0.13 -0.14 0.00 -0.20 0.00 

C7 Internal heating effect 0.04 0.45 -0.22 0.00 -0.26 0.00 

R2-fit [%] - 32% - 57% - 84% - 

R2-pred. 
[%] 

- 49% - 50% - 82% - 

RMSE fit 
[Wh] 

- 298.60 - 283.38 - 331.36 - 

RMSE 
pred. [Wh] 

- 371.41 - 614.41 - 342.62 - 

Eq-8.6 
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Qthermal demand april - may [Wh] = -21.12 +15.50(Toutdoor – Tindoor) +229.01(Tfloor -Tindoor) + 304.13( Twall – 

Tindoor) -0.14(Qsolar)-0.22 (Qinternal)  

Qthermal demand june-july [Wh] = -29.79+26.34(Toutdoor – Tindoor) +406.97(Tfloor -Tindoor) -0.20(Qsolar)                   

-0.26 (Qinternal)  

 

The coefficients vary for each group of sub-datasets as the correlation between variables differs 

over different periods of the year.  

The next step of this research is to eliminate trainings over simultaneous heating and cooling 

periods to check for the accuracy of the MLR models in predicting thermal energy demand. One method of 

doing this is by using weekly. The benefits of such a plot are that firstly the variation in outdoor climatic 

conditions are much lower over the span of a week. Secondly, a much sharper and defined visualization of 

the data can be made during a smaller plot over a week.  

 

Weekly Data-sets 

The MLR model was run on two periods of the year, one belonging to the summer month of June 2015, 

and one sub-dataset belonging to January 201512. The model was fitted onto the two sub-datasets, and 

thereafter, the following week for prediction. The significant coefficients obtained and the predictive values 

have been shown in the table 17 and graphs 26 a and b below.  

Table 17 estimated values of the coefficients and their corresponding p-values for the two groups of 

training over weekly data-subsets. 

 

 

 

 

 

 

 

 

 

 

 

 

                                                      

 

12 During the heating period, the week in January dated 7th -15th of Jan 2015, was chosen instead of two weeks for 

training, as the months of Jan -February have quite a few missing days in the data obtained from the room 1075. 

-  Summer  
(weeks 24-25) 

 
Winter 
(weeks 3-4) 

 

Constants Physical Significance B (coefficients) P-value B (coefficients) P-value 

C1 C1 ~ ∑ 𝑈ⅈ
ⅈ . 𝐴ⅈ  21.10 0.00 34.30 0.02 

C2 C2 ~ Ufloor .Afloor 410.66 0.00 436.73 0.00 

C3 C3~ 𝛼ⅈ . 𝐴ⅈ𝑛𝑑𝑜𝑜𝑟 𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑠 -158.01 0.10 -293.46 0.10 

C4 C4 ~ Mvent .Cp air 0.00 1.00 0.00 1.00 

C5 C5 ~ (mopenings +mcracks). 

Cp air 
0.00 1.00 0.00 1.00 

C6 Solar radiation effect -0.16 0.09 -0.28 0.28 

C7 Internal heating effect -0.54 0.00 1.95 0.00 

R2-fit [%] - 88% - 82% - 

R2-pred. [%] - 78% - 80% - 

RMSE fit [Wh] - 320.39 - 446.29 - 

RMSE pred. [Wh] - 423.98 - 353.54 - 

Eq-8.7 

Eq-8.8 
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From the table 17, it becomes evident that again the floor surface temperature, the indoor air 

temperature and the outdoor air temperature are the variables which have the most influence in training and 

therefore also on the prediction of the thermal energy demand. There is a slight influence of the internal 

heat since both the sub-datasets were accompanied by occupancy. The linear equations thus developed are 

Equations 8.8, and 8.9; 

Qthermal demand week 24-25 (summer)  [Wh] = -2.9 + 21.1.( Toutdoor – Tindoor) + 410.65(Tfloor -Tindoor) -0.54 Qinternal 

 

Qthermal demand week 3-4 (winter)  [Wh] = -21.9 + 34.3.( Toutdoor – Tindoor) + 436.73(Tfloor -Tindoor) + 1.95 Qinternal 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 26 a and b are the training (weeks 24-25 and 3 respectively)  and data prediction (weeks 26 

and 4 respectively)   of the weekly datasets used on the Stepwise fit MLR model. These two graphs 

showcase the two different sub-datasets considered during research and have varied adjusted R2 

values.  

 

Eq-8.8 

Eq-8.9 
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As expected, the adjusted R2 value for the training data is high (80-85%), with a prediction adjusted R2 

value of 78-80% 

Observations 

1. The weekly plots show a higher consistency in data. The model is able to train sharply for the 

weekends, as it can be seen that there are days with thermal demand corresponding to presence 

and weekdays (figure 26 a hours ~25-145), followed by two days of no thermal demand, 

belonging to a weekend (hours ~146-195). 

2. During the second week of training, the actual thermal demand is 0W compared to the trained 

dataset. However, a quick analysis of the room (see figures 27 b below) during that week shows 

that there was a certain degree of presence and internal heat load from lighting and appliances 

in the room leading to a small amount of thermal demand in the model. 

Inferences 

1. Higher accuracy in predictions – The predicted data is highly accurate with statistically valid 

coefficients as seen in table 17 above. This high accuracy (R2 84%) in fitting is due to 

consistency in data over the training period, unlike the monthly plots, (figure 26 a) wherein the 

discontinuity (sudden an abrupt changes) in the heating and cooling demand was observed due 

to a shift in the outdoor climatic conditions or the schedules of the room.  

2. Absence of cooling during high solar hours 13 – During hours –  245 to 260, there is a high 

amount of solar radiation and certain presence level which has led to almost 1000W of cooling 

demand by the model. However, the indoor temperature has been low enough for the floor 

systems to not perform cooling actions, thus actual thermal readings have been 0. This leads to 

believe that the model shrinks in accuracy with the addition of large variation in patterns of 

predictor variables, introducing non-linearity in them. 

3. Discrepancies in Fitting – Although for both monthly and weekly plots, the MRL model was 

able to account for the important parameters, there seems to be a variance of 20-25% in the 

data-sets which were not answered by the fitted model. This could either be pure noise, not 

being explained by the MLR input parameters, which may suggest to another parameter(s) 

missing in the dataset. 

 

                                                      

 

13 Another probable reason for not supplying cooling energy, as compared to the reason sated above 

in point two, could be because the floor heating and cooling systems is a slow system and does not react as 

immediately towards sudden excitations (See section 6.3) 
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Figures 27 (a, b and c) show the two training weeks followed by the prediction week and the associated 

thermal energy, air temperatures and solar radiation, and the occupancy levels.  
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Similarly, even smaller data-subsets involving day ahead prediction were developed in this MLR step-

toolbox.  

 

Daily Data-sets 

The stepwise fit function was used towards training a 24-hour model, to predict the following day. 

This resulted in an extremely good fit and prediction since in each week, the classroom faces much lesser 

discrepancies in values in terms of climatic conditions outdoor, or indoor temperature – 

Two separate groups of days were chosen prediction. 

• Training on a day with occupancy (8.6.2015) followed by prediction of the next day with 

occupancy.  (9.6.2015) 

• Training on a day with occupancy (12.6.2015) followed by prediction of the next day 

without occupancy (13.6.2015) 

 

The adj. R2 values for both the training plots were almost 93% and 96% respectively with a RMSE of 

approximately 300-400Wh.  The R2 values for the predicted data were 87% . The R2 for the secondary plot 

is infinity, as the squared sum of deviation of the data itself is 0, since the net thermal demand on this day 

was 0. Thus, the only way of measuring the efficiency in prediction for 13th June 2015, is by the help of the 

RMSE value of  278 Wh. Figures 28 a and b below show the two sets of training and prediction.  

  

 

 



83 

 

 

Figure 28 a and b show the day wise training and prediction using the Stepwise fit function. Figure a 

is for the first group of dates 8th and 9th October, whereas the figure b is for the second set of days, 

12th and 13th of October 2015.  

 

Table 18 estimated values of the coefficients and their corresponding p-values for the two groups of 

training over weekly data-subsets. 

 

 

 

 

 

 

 

 

 

 

 

 

Qthermal demand 8th-9th June 2015  [Wh] = -535.76 + 665.02(Tfloor -Tindoor) -1005.18(Toutdoor – Tindoor)  

 

Qthermal demand 12th-13th June 2015  [Wh] = 222.20 +44.5( Toutdoor – Tindoor) + 355.78(Tfloor -Tindoor) -1.32 Qsolar 

 

 8TH  9TH JUNE 2015 12TH AND 13TH OCT 2015  
B (coefficients) P-value B (coefficients) P-value 

C1 22.82 0.55 44.49 0.01 
C2 665.02 0.00 355.78 0.00 
C3 -1005.18 0.01 -59.18 0.80 
C4 22.82 0.55 0.00 1.00 
C5 0.00 1.00 0.00 1.00 
C6 0.02 0.97 -1.32 0.00 
C7 0.79 0.06 -0.28 0.47 
R2-FIT 0.95 

 
0.97 

 

R2-PRED 0.87 
 

- 
 

RMSE FIT 325.41 
 

234.45 
 

RMSEPRED 437.50 
 

278.14 
 

Eq-8.11 

Eq-8.10 
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1. It is inferred that the models are not overfitted while training.  

2. The models respond much better to abrupt changes in routines when trained over smaller time 

periods. However, this can vary if there is inconsistency in data between two days (for example 

using a sunny day in winter to predict during a cold cloudy day). 

 

An important aspect to account for is that the coefficients calculated by the model, for all the different sub-

datasets differ. However, these coefficients are relevant only when similar data is chosen as input predictor 

variables. Therefore, the efficiency and significance of the MLR toolbox is not dependent on the size of the 

sub-dataset, but on the type of sub-dataset. Using data from colder months to train a model, will not help in 

predicting periods belonging to the warmer months.  

 

The reason for choosing the periods of sub-datasets are as follows; 

1. The monthly sub-datasets are used to show the affects of discontinuity in data (March and April) 

over the pros of fitting a model on continuous and less abruptly varying data (June and July). 

2. The week-wise periods were chosen to show training and predictive capabilities over both heating 

and cooling demand – this was not done with the monthly sub-datasets as there are very little 

heating hours scattered over the entire year. It also proves that training over two continuous weeks 

is good enough to predict over the following week.  

3. The day-wise sub-datasets were chosen at random.   
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8.6 Improvements in MLR models 

The MLR models developed over the three different periods were further improved by adding and/or 

improving on certain parameters such as; 

1. Accounting for the delay in solar radiation – During chapter 6 (graphical analysis) it was seen 

that the indoor temperature peaks response is delayed by an hour to that of the solar radiation peaks 

(see section 6.3). This was also noted by Lopez 15, who was able to improvise on her model by 

taking into account this lag in response. Thus, a lag of 1 hour and 2 hours was introduced in the 

data with respect to solar radiation. 

 

2. Using the indoor air temperatures of the side rooms to evaluate their effect on the room in 

question – Since the heating and cooling of the rooms is done via a priority based system (see 

section 6.3 and Appendix A1) perhaps accounting for the adjacent rooms may help improvise the 

model. This would be taking into consideration if the side rooms need heating or cooling demand.  

 

Results and Discussions  

With regards to accounting for the delay in solar radiation  

The model was trained over June and July to predict for August, weeks 24 and 25 to predict for week 26, 

and over 8th June 2015, to predict for 9th June 2015.  

There was only a slight increase in the R2 value in prediction and fit and an improvement seen with regards 

to the RMSE values for the monthly sub-dataset. With regards to the weekly and day-wise sub datasets, no 

real increase in prediction could be noticed. However, the underlying relationship between the effective 

parameters ad the dependent variable was seen to alter slightly as shown in the table 19 below.  

 

The coefficient for solar radiation was slightly more significant by weight for the monthly and weekly sub-

datasets. However, almost no change is observed during the day-wise sub-dataset. The graphs for the 

training and prediction over these three sub datasets has been placed in the appendix A.7.5.  

 

The lack of improvement in the MLR models of this particular room could be due to the fact that the effect 

of solar radiation on the thermal demand, is only slightly significant, as can be seen from figure xx in the 

appendix. The coefficients estimated by the MLR for all models above also shows that solar radiation is 

has a very small significance in answering for the thermal energy demands.  
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Table 19 - estimated values of the MLR models, on accounting for the lag in solar radiation, as 

compared to the values estimated without accounting for the delay.  

  

The MLR equations obtained were as follows; 

Qthermal demand june-july [Wh] = -26.79+20.74(Toutdoor – Tindoor) +460.07(Tfloor -Tindoor) -113.95(Twall – Tindoor) 

+0.42(Qsolar) -0.37 (Qinternal)  

Qthermal demand week 24-25 (summer) [Wh] = -5.9 + 21.67( Toutdoor – Tindoor) + 468.44(Tfloor -Tindoor) -321.50(Twall – 

Tindoor) +0.49(Qsolar)  -0.56 Qinternal 

Qthermal demand 8th-9th June 2015  [Wh] = -515.76 + 665.02(Tfloor -Tindoor) -1005.18(Toutdoor – Tindoor)  

 

 

With regards to using the indoor air temperatures of the side rooms – It was seen that the model 

did not improve, but only became more complex leading to increased R2 and RMSE values for the weekly 

and monthly dub-datasets. Refer to Appendix A.7.5 for more details. 

 

 

 

 

 
 June and July June and July (with 

1-hour Delay in 
data) 

Summer 
week 24-26 
2015 

 
Summer week 24- 
26 2015 (with 1hour 
delay in data) 

8th -9th June 2015 8th – 9th June 2015 
(with 1-hour delay 
in data)  

Physical Significance B coefficients P-
value 

B coefficients P-
value 

B coefficients P-
value 

B coefficients P-
value 

B coefficients P-
value 

B coefficients P-
value 

C1 C1 ~ ∑ 𝑈ⅈ
ⅈ . 𝐴ⅈ  26.34 0.00 20.74 0.00 21.10 0.00 21.67 0.00 22.82 0.55 22.82 0.55 

C2 C2 ~ Ufloor .Afloor 406.97 0.00 460.07 0.00 410.66 0.00 468.44 0.00 665.02 0.00 665.02 0.00 

C3 C3~

 𝛼ⅈ . 𝐴ⅈ𝑛𝑑𝑜𝑜𝑟 𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑠 
-26.67 0.57 -113.95 0.01 -158.01 0.10 -321.50 0.00 -1005.18 0.01 -1005.18 0.01 

C4 C4 ~ Mvent .Cp air 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 22.82 0.55 22.82 0.55 

C5 C5 ~ (mopenings 

+mcracks). Cp air 
0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 

C6 Solar radiation 
effect 

-0.20 0.00 0.42 0.00 -0.16 0.09 0.49 0.00 0.02 0.97 0.20 0.76 

C7 Internal heating 
effect 

-0.26 0.00 -0.37 0.00 -0.54 0.00 -0.56 0.00 0.79 0.06 0.79 0.06 

R2-fit - 84% 
 

84% 
 

88% 
 

88% 
 

95% 
 

95% 
 

R2-pred - 82% 
 

83% 
 

78% 
 

78% 
 

87% 
 

87% 
 

RMSE fit 
[Wh] 

- 331.36 
 

329.00 
 

320.39 
 

326.6 
 

325.41 
 

325.41 
 

RMSE 
pred 
[Wh] 

- 342.62 
 

334.00 
 

423.98 
 

430.57 
 

437.50 
 

437.5 
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8.7 MLR Using Sub-Datasets from the Previous Year 

One of the major objectives of this research is to provide a thermal energy predictive model with 

physical and practical meaning. The models described in the former sections were done so with known, 

recorded parameters. The prediction too is based upon known future values of the very same parameters. 

Thus, though the research provides a detailed analysis of the predictive capability of the MLR models, it is 

important to understand the applicability of such models. 

8.7.1 Methodology and Data Selection 

This chapter focuses on another classroom of the HHS (1087) 14 with two years of data. A weekly timestep 

is chosen, and MLR models are trained with known parameters from the year 2015.  The trained model is 

then used to predict future thermal energy demand values of the following week with the help of  

1. Predictor variables from the same year – 2015 (as done before) 

2. Predictor variables from the past year – 2014 

 

The availability of input data (predictor variables) for prediction purposes is summarized below: 

1. Using forecasts from weather stations regarding outdoor temperature, and solar radiation. 

2. Using occupancy related patterns based on schedules of a classroom to predict Qinternal 

3. Using data from previous year as input predictor variables.  

 

The scope of this research limits to using previous year data. The use of forecasts from weather station and 

predicted patterns of ventilation and Qinternal, and other significant parameters has been discussed in the 

chapter 11 future recommendations.  

 

Keeping this in mind, the model is trained over two weeks (7th-20th June 2015), and the thermal energy 

demand for week number 26 (june 21st to 28th 2015) is predicted. The objective is to predict for week 26 

2015, by using the input parameters from week 26 of 2014.   

Comparing the two weeks of prediction in both years is important to witness any major differences in some 

important input parameters. We see (figure 29 below) that the input data for the predictive week in 2015 

(week 26), are varied in terms of values to those obtained from 2014 for the same week. There is a large 

difference in outdoor air temperatures for the first few days of the week. There is also a large difference in 

ventilation flow rate and solar radiations. 

 

                                                      

 

14 Data from 2014 for the room 1075 was not in order or complete. Thus, a new room is shown. 
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Figure 29 Graphical images comparing different recordings of room 1087 during the same week 

(week number 26) of two years 2014 and 2015. This week is used for prediction of thermal demand 

in 2015.  

 

8.7.2 Results and Discussions 

The obtained coefficients from training the data over week 24 and 25 (7th June 2015, to 20th June 2015) 

were significant only for the 4 thermal fluxes, namely, Qfloor, Qenvelope, Qventilation and Qinternal (see the equation 

8.12 below). The adjusted R2 value for this training was 81%. The predictive capability of this model was 

(R2 prediction - 71%) close to the actual demands of 2015, as can be seen from figure 30 a below. This was 

done by using the input parameters of week 26 from the year 2015. However, on using input parameters 

from the data of week number 26, 2014 the predictive capability -77%, indicating an extremely high amount 
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of error in thermal demand prediction as compared to the mean variation in the thermal demand of 2015 

week 26 itself (figure30 b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 30 a. Training over data from two weeks (7th to 20th June 2015), and prediction of the following 

week 21-28th June 2015 using input data from 2015 and b. shows the training over data from two 

weeks (7th to 20th June 2015), and prediction of the following week 21-28th June 2015 using input data 

from 2014.  

 

Qthermal demand week 26 [W] = 225.58 + 203.37.(Tfloor -Tindoor) + 4.80.( Toutdoor – Tindoor) + ( -32.52).(Tout AHU -Tindoor) + (-0.45). Qinternal 

 

It is important to note that according to the MLR equation, only a few parameters were major contributors 

towards the fit and prediction. Most important ones being (Tfloor, Tindoor and Tout AHU). Apart from the 

ventilation flow rates, the (Tfloor, Tindoor) are extremely comparable over the two years. This leads to believe 

Eq-8.12 
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that normalization of the input data might be able to predict better due to lowered distribution between 

certain parameters such as the ventilation or Qinternal. The normalization was carried out by using the  

‘Z score’ function on MATLAB 46, where the input and target values were normalized between [0 to 1]. 

 

The result of normalization was indeed better. The R2value for the fit was 83% and the predicted R2 value 

was now at 20%, on using data from week 26 from the year 2014 as the input variables (see figure 30 c 

below). The results for using 2015 as input predictors was the same as above.  

 

 

 

 

 

 

 

 

 

 

 

Figure 30 c training over normalized data from two weeks (7th to 20th June 2015), and prediction of 

the following week 21-28th June 2015 using input data from 2014.   

 

Inferences 

1. Poor prediction by using the input data from previous year. – The R2 value of 20% is extremely low, 

and could be due to the following reasons –  

a. Changes in occupancy profiles -  Especially for school buildings wherein the room schedules 

for the HHS Delft change quarterly. Thus, with occupancy, the ventilation flow rate and 

internal heat loads can vary.  

b. Variations in outdoor climate - Also, as noticed there is quite a lot of variation in the outdoor 

climatic data over the two years for the two same weeks.  

 

What follows is a conclusive brief study of the use, efficiency and results of the Multivariate Linear 

Regression models 
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8.8 Conclusion 

This chapter has shown the use of a MLR in thermal energy balance models, for training and prediction of 

thermal energy demands at the room level, using actual data. Major conclusive points are described below, 

answering to some of the major research questions and sub-questions. 

 

1. Regarding the most Important parameters – Through the entire chapter, it can be deduced that the 

most important parameters affecting the thermal energy training models are the floor surface, indoor, 

wall and outdoor air temperatures. This is related to the fact that the indoor thermal comfort is being 

maintained by floor heating and cooling systems, and the thermal demand is varying based on indoor 

air temperatures. This is similar to the results obtained in the chapter on correlation, chapter 6. 

However, it should also be noted that there could have been important parameters missing in the 

data sets which could explain for the variance not explained by the R2 values. 

2. Regarding discontinuity in data of predictor variables- It was found throughout the research, that 

the model efficiency is questionable whenever there is a high amount of discontinuity in the values 

of the predictor variables. This is the main reason why the R-squared value is not able to reach 90% 

predictive power. Especially over large datasets, like the yearly datasets, it is seen that the erratic 

behavior of the predictor variables leads to a poor fit with lowered R-square values. However, using 

yearly datasets makes it possible to identify heating and cooling periods, which is not possible when 

training data only on heating periods or cooling periods. 

3. Efficiency in training– The model efficiency, measured by the R2 value, is seen to grow with smaller 

datasets, at least for this particular highly efficient HHS building. The classrooms are scheduled 4 

times a year, deciding upon the occupancy and use-time. The datasets could be less erratic if chosen 

from amongst these scheduled months. This can be related to the point above, wherein there is less 

erratic behavior of predictor variables leading to slightly higher efficiency in training. Having said 

that, the models were developed on real-time data and achieved a high efficiency of up to 85%. This 

helps us use the model for real time applications as well, (see the next chapter 9). 

4. Efficiency in Prediction - The predictive efficiency, also measured by the R2 values, does not simply 

depend upon the efficiency of the trained model, but also on how similar the independent parameters 

are in the period to be predicted as compared to the training period. A training and prediction cannot 

be performed over two varied sets of data in terms of occupancy, and climatic conditions. The 

prediction of August is lower in error than those of May and June, due to the fact that the training 

months June and July belong to the same summer season, and witness similar profiles of outdoor 

climatic conditions and indoor temperatures.   
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5. Regarding significance of coefficients – The calculated coefficients are physically equivalent to the 

area times U value of the envelope (C1) or area times u value of the floor (C2) etc., when trained 

over data belonging to a similar timestep. The chosen period for training the model, must be similar 

in terms of input or target variables, to the period to be predicted, to deem the estimated coefficients 

significant for prediction.  

6. Regarding Use of Previous Year’s data – in this research, it can be concluded that for a building of 

school or office origin, the use of previous year’s data might not be the best option to produce a 

practical MLR prediction model, since not only the outdoor climatic condition, but also the 

occupancy profiles tend to change. Having said this, the past year data might work for certain office 

rooms, where the occupancy profile does not change much, and the room has no direct contact with 

the outdoor climate (room towards the inside of the building).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31 Summarizes the various sources of discontinuity in data seen in real-time data sets which 

lead to the reduced efficiencies of MLR models.  

 

The MLR is not able to achieve efficiencies of 100%, even with certain improvements, as there is 

a certain amount of noise which is not being accounted for by the Linear Equations. This could be purely 

due to a missing important parameter, and/or the presence of discontinuity in input data, and/or due to the 

portions of relationships between the input and target variables, which are non-linear in nature.  
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Thus, the research looks in the direction for another black box model – one which can account for 

complex discontinuous data. The next chapter is about Artificial Neural Networks, as a secondary predictive 

black-box modelling technique to find thermal demand predictions at the room level of a school/office 

building.  
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9.Artificial Neural Networks 

It has been shown by previous researchers that Artificial Neural Networks (ANNs) are now effectively 

being used to predict energy more reliably than traditional simulation models and regression techniques 47. 

This chapter deals with a comprehensive small scale Artificial Neural Network (ANN) model development, 

to estimate higher efficiency prediction of thermal energy demand at room level for the building of HHS. 

From the findings of the previous two chapters, it is evident that the non-linear relationships of the predictor 

variable with the dependent variables are a major cause for lowered efficiencies (maximum up to 85%). 

Since ANN are nonlinear in nature, the predictive model developed using ANN shall become a solution for 

the unaccounted efficiency gap 32. 

 The first section shall give a brief overview of the ANN and its use in predictive modelling for 

thermal energy at the room level. The second section discloses the model architecture developed for the 

purpose of this research. This is followed by results obtained and the statistical validation of ANN models. 

Finally, a conclusive section talks about the comparative analysis of ANN and MLR models with regards 

to the case study.  

 

9.1 Neural networks - An Overview 

Several researchers have applied ANN successfully to building energy models and discovered it to 

be a more reliable prediction then other traditional statistical methods due to the ability of ANN to model 

non-linear patters 32 47 48 49 . Recapping back to the literature on ANN (section 3.2), by definition, “A Neural 

Network is a  non-linear mapping of the space between an input data set and an output data set and consists 

of three parts - an input vector (independent variables), an output vector (dependent variables), and an 

algorithm that maps the input space to the output space” 47. The objective function of an ANN predictive 

model is to minimize the error between the actual and desired or predicted outputs of the network. 

9.1.1 Working Principle of ANN 

A typical neural network has been shown below. The figure 32 shows an input matrix, which is 

connected to 3 hidden layers which in turn is connected to an external output matrix (not shown). The 

number of layers can be chosen as per user discretion. ANN is a simulated connection of neurons. Similar 

to the function of a neuron in a human brain, these simulated neurons are used to receive and send input 

and output signals via their connections or synapse.  Each hidden layer is made up of n-1 neurons, where n 

is the number of input variables. The synapses connect the layers to the external layers using weights (W). 

These weights are at first chosen randomly by the neural network. Along with the weight the model also 

chooses a random bias (b1 -b3) for each layer. The product of the input variable and its corresponding weight 



96 

 

are added to the bias of the particular neuron (denoted by ∑). A sigmoid transfer function f is applied to 

each neuron in each layer enabling them to uniformly approximate any continuous function 47. The outputs 

of each neuron of a layer is the input for the corresponding neuron of the following layer 50. Using a 

backpropagation (see section 9.1.2) algorithm, the weights and biases are adjusted to minimize the error in 

the fitted values.  

The image 31 also shows the corresponding formula for each layer, wherein a1 is the output of the 

first hidden layer, or the input to the 2nd hidden layer. First the input to the 1st hidden layer is calculated 

(denoted by 𝑛1) 

Therefore,     𝑛1 = (𝛴𝑖𝑤1,1 × 𝑝) + 𝑏1   Eq-9.1 

Where 𝑖𝑤1,1 = the weight for the first input to the first neuron (1,1) in layer i. 

 p = the input (P1-PR) 

 b1 = the bias applied to all the neurons of the 1st layer.  

A logistic function is applied to this value 𝑛1 to obtain the output of the first neuron of the first 

hidden layer. 

     𝑎1 =  
1

1+𝑒−𝑛1      Eq-9.2 

𝑎1 is the sigmoid function (used in this research). However, there are several other functions to choose 

from.  

 For other training models and functions under ANN, refer to the book by Howard Demuth 50 

 

 

 

 

 

 

 

 

 

 

 

Figure 32 shows a diagrammatic explanation of a 3-layered Artificial Neural Network along with the 

input matrix and the corresponding formulas for the outputs of each layer 50. 

 

 9.1.2 Backpropagation Algorithm 

The training of data in this research is done by using a standardized back-propagation algorithm. The 

objective of backpropagation is to optimize the weights and biases so that the neural network can learn how 



97 

 

to correctly map the calculated outputs, to the target outputs 48. It corresponds to inverse modelling, wherein 

the weights are iteratively adjusted across the hidden layers in order to minimize the objective function. 

The model comes to a halt when the best fit has been achieved within limits of the overall error. This is 

done to ensure that there is no probability of overfitting the data (see section 9.2.2 ahead).  

The obtained weights and biases from each layer belong to specific neurons and not to the input 

parameters This means that the values calculated during the entire operation, is not significant in defining 

the underlying relationship between the input parameter and the target variable, rendering the ANN models 

less useful for model predictive control designs.  

 

The neural networks can be developed using n number of layers. However, an unnecessary addition to the 

number of layers adds to the model complexity of ANN. It also increases the chances of over-fitting training 

data, reduces the generalization capability of ANN and also increases the training error 32. Therefore, it is 

important to choose the number of hidden layer neurons appropriately. Once again, like linear regression 

models, ANN models can be judged by the overall RMSE and R-squared value of the achieved fit of the 

estimated values over the actual data (see section 8.3 for more details on these two terms). 

What follows is a detailed study of the model developed for this research and the methodology 

adopted towards making this model more automatic.  

 

9.2 ANN Architecture – Model Development 

There are two major categories of ANN models existing in literature 48. The first one being static in nature, 

wherein the prediction model uses historical data to train and then predict future demand. This training does 

not change over time when new information becomes available. The second is dynamic in nature, wherein 

the predicted data along with future information is added to the historical data, for retraining the model. 

Dynamic models are said to be useful for short term prediction 48.  

This research focuses on simplified static models, but automated in a way that the user can choose the period 

for training and prediction.  

 

9.2.1 Static Automated ANN Models 

 The earlier chapters have mentioned the type and form of data available for research from the HHS 

building. The objective function of the model is to minimize the error associated with the estimated values 

of thermal demand for the chosen timeframe of data. Also from previous chapters it has been established 

that the net thermal demand of a room is a function of certain variables, which shall be used as inputs to the 

ANN model to predict future demands. The table explained in thermal energy balance principle section 8.1 
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(table 11-12 ) above, shows the various input parameters being used in order to estimate the output 

parameter. 

As stated, from literature the backpropagation method was found to be most effective network for non-

linear solutions under complex set of variables 49. It was also found that the use of Levenberg-Marquart 

(LM) algorithm 48 is best suited for fast training of datasets in the case of a linear system of equations. The 

thermal balance principle section has already showcased the linear equation solved using Multivariate 

regression models.  The same set of linear equations has been used for the ANN.  

 

Thus, the model incorporates the backpropagation algorithm as the network type along with the use of 

Levenberg-Marquart (LM) algorithm as the training function.  

 

Below a figure (figure 33) has been shown which represents the 3-layered model developed for this 

research. It consists of an input layer pointing to the number of input variables (7) added to the ANN model 

(there were seven predefined predictor variables in the previous chapter). The output layer contains one 

neuron consisting of the predicted value. The hidden layer consists of 2n+1 neurons (15).  

 

 

 

 

 

 

Figure 33 Snapshot of the developed neural network during this research. It shows a set of 7 inputs 

used for training the data within the hidden layer. There were 15 neurons placed in the hidden layer 

of this neural network.  

 

9.2.2Overfitting 

An important issue which leads to poor predictive abilities of a model is overfitting. In this case the training 

set is well embedded into the model. The error of training and prediction is extremely low, however when 

new value is added to the model for prediction the model fails considerably. The network thus does not 

generalize well. This leads to an extremely high R-squared value, due to almost 0 error, however, a very 

high RMSE and low R-squared for when used in predicting future values.  

 

It has been found from literature that network generalizations, or overfitting can be prevented by choosing 

an algorithm that is just large enough to provide the best fit. An extremely large network leads to more 

complexity and increase in power to overfit 50. This model makes use of  Bayesian automated regularization 
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method to prevent overfitting of data 50 51.  In this method, the weights are first chosen at random with 

specified distribution. The network parameters, (weights and biases) are related to the unknow variances 

related to the distributions and can be found using statistical methods 50. An explanation of this method 

along with Levenberg-Marquardt training, can be found in Foresee’s paper 51. In MATLAB, this algorithm 

is embedded in the function ‘trainbr’ 52. Using this function, the number of network parameters can be 

judged efficiently, giving an idea of the appropriate size of network needed.  

 

9.2.3 Data selection 

The model uses the exact same data as used during the regression analysis. As pointed out, the 

static model shall be utilizing the Levenberg-Marquart (LM) algorithm to solve a linear system of equations, 

in this case the thermal energy balance equation (Equations 8.1-8.4). The important parameters of data 

needed are; 

 

1. Temperatures of indoor air, walls/envelope and floor 

2. Outdoor Climatic data (solar radiation, wind speed and outdoor air temperature 

3. Use and operation (Time of use, ventilation profiles etc.) 

 

One important aspect related to ANN is to normalize the input and output parameters before being used in 

the model. The numerical range of the input parameters are highly varied. It is therefore advised to 

normalize the input and output variables to prevent any sort of severe numerical roundoffs which might 

affect the overall training efficiencies 53. Also by doing this, the variables have zero mean and unity standard 

deviation 50. The model standardizes the values of the inputs and the predictor variable between [-1 to 1]. 

This was done by using a function called mapminimax and for normalizing and de-normalizing the data 54. 

 

The toolbox carries out three experiments under the static ANN model, in order to predict the net thermal 

energy demand at time (t). Similar to the linear regression models from the previous chapter, a set of four-

time periods were chosen. The first being a yearly time frame. The model was trained over the data from 

2015.  This is followed by a monthly time frame, wherein the training is performed over two months to be 

able to predict data over the next month. Further the data trains over a period of two weeks to predict over 

the following week and finally, a day timeperiod is used to predict the next day.   

Ahead the results obtained over monthly, and weekly plots shall be discussed along with the variation in 

input variables that were used.  
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9.3 Results and Discussions 

9.3.1 Results using Real-time data over ANN models 

The backpropagation network model was trained and built for predicting the net thermal demand 

of the room. The model operational parameters were set to stop training once its MSE has reduced below 

10-3   or if the training has occurred for 500 epochs (iterations). Based on the RMSE and the R-squared 

value, the models’ effectiveness can be judged. A figure showing the screenshot of the network in operation 

has been placed in the appendix A8 from MATLAB. 

This section shall showcase the results of the ANN model and make a comparative study against 

the results of the Linear Regression models. For this, the same months of data were chosen for training and 

prediction during the monthly, weekly and day-wise time periods.   

 

The model developed over the yearly data was much better fitted than the fit experienced in MLR. This 

model has an R2 value of 75% with a RMSE of 334, compared to the R2 value of 64% and RMSE of 397Wh 

under the MLR models. The image for ANN fit (figure 34) is shown below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34 Estimated model fit over the entire year’s data of 8372 hours using ANN.   

 

9.3.2 Monthly Training and Prediction 

The monthly time period models are high in efficiency with an R2 value of up to 95%. The same monthly 

time periods have been used under ANN to compare the results with those of the linear regression models. 

The results have been validated using the R-squared and RMSE values obtained from the fits. Table 20 

shows these results.  
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Figures 35 a, b and c Training and data prediction of the monthly datasets used on the ANN model. 

These three graphs showcase the three different data sets considered during research and have varied 

R2 values.  
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Inferences 

1. Similar to the fitting and predictive capabilities of the MLR models, the ANN models seem 

to fit and predict better with lesser discontinuity in data.  

2. The ANN models have lesser noise around the 0-thermal energy mark, as compared to the 

MLR models. 

Table 20 RMSE and R-squared values of the ANN and MLR models compared over monthly sub-

datasets. 
 

 

Week-wise training and Prediction 

 Similar to MLR models shown in chapter 8, two sub-datasets were chosen from the summer period 

(weeks 24 and 25) and from the winter period (week 3) for analyzing the ANN potential over weekly time 

periods. There was a higher R2 value obtained for the ANN as compared to the MLR models.  

Table 21 RMSE and R-squared values of the ANN and MLR models compared over weekly-sub-

datasets.  

 

 

 

The figures 36 a and b below show the two plots of the ANN model training over the two sub-

datasets.  

The data obtained for the sub-datasets over a 24-hour period (again similar to the days chosen in the MLR 

models) have been placed in the appendix, A8.2, figure 60.  

 

 

 

 

 

 

Training Months Adj. R2 

MLR 

RMSE 

MLR [Wh] 

Adj. R2 

ANN 

RMSE 

ANN [Wh] 

Prediction 

Month 

Adj. R2 

MLR 

RMSE 

MLR [Wh] 

Adj. R2 

ANN 

RMSE 

ANN [Wh] 

March & April 32% 298.60 70% 197.99 May 49% 371.41 61% 325.52 

April & May 57% 283.38 91% 194.63 June 50% 614.41 68% 390 

June & July 84% 331.36 97% 253 August 82% 342.62 85.6% 309 

Training Weeks Adj. R2 

MLR 

RMSE 

MLR [Wh] 

Adj. R2 

ANN 

RMSE 

ANN [Wh] 

Prediction 

Month 

Adj. R2 

MLR 

RMSE 

MLR [Wh] 

Adj. R2 

ANN 

RMSE 

ANN [Wh] 

3rd week 2015  82% 446.29 95% 229 4th week 80% 353.54 87% 321 

24th -25th Week 

2015 

  88% 320.39 97.1% 154 26th week 78% 423.98 81.2% 486 
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Figure 36 a and b Fitted and predicted values of the ANN models over weekly timestamps. The fit 

and prediction are extremely good, in comparison to the MLR models.  

 

Inferences 

1. With regards to the chosen period – It is seen that for month ahead or week ahead predictions, the 

ANN network fits extremely efficiently. Similar to the MLR models, a reduced period, leads to a 

better training and prediction of the model. However, the models must belong to a range of similar 

data, with either thermal heating or cooling, to prevent unnecessary increments in model error 

(figure 35 a).  

2. With regards to discrepancy in target variable data – When both heating and cooling hours are 

placed over a training period, there is a certain degree of noise generated in the fit and prediction. 
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Thus, ANN networks are most effective in prediction when there are lesser variations in the type 

of thermal demand.  

 

9.4 Comparative Analysis – MLR and ANN models 

This chapter involves a research on the use of Artificial Neural Networks on prediction of thermal 

demand of a school room. This section shall focus on concluding the results obtained from ANN networks 

and compare them to the results of the MLR models.  

Table 22 is a descriptive comparison table between the MLR and ANN training models based on the 

findings of this research.  
 

Category MLR ANN 

Flexibility in Training 

Models 

MLR models although train well with 

shorter timeframes, they are not able to 

address the discontinuity in predictor 

variables and their non-linear 

relationships with the target variable.  

ANN models can address the continuity 

better and being more complex in nature, 

can address the existing non-linear 

relationships between the predictor and 

target variable. 

RMSE efficiency MLR training models witnessed the 

lowest RMSE at 283 to a maximum of 

450 Wh and the lowest prediction 

RMSE at 342 up to 500 Wh 

The training under ANN networks for the 

same months/weeks experienced RMSE 

values of a minimum of 154 to a max of 

250Wh, whilst prediction models ranged 

from 250-250Wh.    

Adj. R2 Efficiency The MLR models have R2 values up to a 

mx of 88% in fitting the model, and 

82% in prediction.  

The ANN models can account for 

complexities in the input data, and are 

slight but significantly higher with 97% 

R2 values over fitted models and 87% for 

prediction.   

Ease of Use Both Fitlm and Stepwise have been 

developed into automated algorithms, 

with easier to use interfaces for 

stepwise models.  

Needs calibration of data, normalization 

and then de-normalization for plots. 

Difficult to make an appropriate network 

of nodes with the right model functioning 

parameters.  

Physical Significance of 

estimated coefficients and 

weights 

The estimated coefficients of the MLR 

model are dependent on the size of the 

data (timestep chosen) and the period 

of data chosen. However, these values 

are physically significant for a given 

model.  

The ANN models calculate weights for 

each neuron, and this weight depends 

upon a lot of factors in addition to MLR. 

Thus, ANN models are able to account for 

non-linear nature in the data up to a 

certain degree. Also, the weights obtained 

are for each neuron, and not assigned to 

any specific input. Thu,s these weights are 
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not physically significant as the 

coefficients estimated in MLR models.  

Based on the objective of 

the models 

The MLR models are reliable in 

bringing out the underlying 

relationships between various 

parameters and a target variable.  

The ANN models are more reliable for 

prediction purposes, and providing high 

accuracy while doing so.  

 

To conclude, ANN are a fitting model concept in predicting thermal energy demands of a room. They 

exhibit a high efficiency in training and prediction of data, and can be used for practical purposes in 

determining month ahead or week-ahead thermal demands.  However, as mentioned in the last point of the 

table the parameters on which this thermal demand can be tuned (like TAHU or Tfloor) are hidden, which 

makes the use of ANN difficult for Model Predictive Control.  

 

The models were not developed based on past-year data as that was beyond the scope of this research. It 

was limited to understanding the simplistic use of ANN on predictive models and comparing them with 

MLR techniques. In turn, the ANN could answer for the error gap seen during MLR predictions.  
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10. Research Conclusions 

10.1 Research Highlights 

 

✓ An automated graphical tool for analyzing and visualizing data based on room level sensors of a 

school building 

✓ Multiple and Partial Correlation Coefficients is a reliable methodology to gather quantitative and 

qualitative information on the most influential parameters affecting a room’s thermal energy 

demand. 

✓ Multilinear Regression Models (MLRs) are an efficient method in training and predicting 

datasets of monthly, weekly, and daily time-steps.  

✓ MLR models are much better at defining the underlying relationship 

✓ Using Stepwise Fit function is much more automated, simple, and efficient (in some models) 

than the FITLM function of MATLAB.  

✓ A dynamic automated tool can be used for prediction of data based on forecasting of weather, 

occupancy schedules, and simulated data of the temperatures of a room.  

✓ Using Past year data is not the most optimal type of data for prediction of thermal energy in the 

present year – however similar periods between two years might lead to better results. 

✓ Artificial Neural Networks can be used to provide higher efficiency energy predictions and 

training than MLR networks. ANN can take into account the non-linear aspects of input variables 

and thus lead to higher efficiencies.  

✓ All these step boxes described above, can be summed into one major toolbox for automated and 

effective room level analysis of a school building with the right sensor-based environment.  
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Figure 37 – The adopted methodology in a Flow chart representing the entire Toolbox. 

 

10.2 Research Conclusions 

Amongst this research work, there were several major and minor conclusions and results obtained. The 

investigations carried out during this research have been vital towards the development of an analysis and 

energy diagnostics automated tool. The use of 4 different step-toolboxes have been explained over the last 

5 chapters. The use of each step-toolbox has been of practical importance for the research. The toolbox 

itself can be used in practice.   

 

This chapter shall present the most important conclusions in coherence with the main research questions 

which have being addressed in section 4.2. The layout of this conclusion is scheduled chapter wise, 

addressing the important questions answered from each of them.  
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The graphical Analysis 

In the first phase of the research, automated graphical analysis tools were developed to analyze a room’s 

functioning with the help of sensor-based data. The objective of this research with regards to this phase was 

Objective b) Establishing a generic automated model to provide detailed graphics with regression 

analyses of the functioning of the room and the building. 

 

✓ With regards to the type of graphical analyses that help determine the functioning of a room in a 

school building – Several techniques were developed on different periods of data. This allows for 

monitoring the function of a building/room even in the absence of a large dataset. Graphical analysis 

of a room gives a quantitative measure of the varying effects of outdoor climate on the indoor climate. 

Analysis of the ventilation and airflow temperature explains the functioning of the HVAC system, and 

shows some faults in the HVAC or in the sensor system. 

 

✓ With regards to types and periods of data and their need for building analyses – It was seen that 

segregating the data into working and non-working hours, helps to explain the functioning of the HVAC 

and also spot faults If any in the system. It is important to see how the building functions with and 

without occupancy as occupancy related energy demands play a big role in commercial buildings.  

 

By using smaller periods of data, such as monthly plots, the functioning of a room with regards to presence, 

and ventilation can be explained more in detail. The case study helps in drawing conclusions that this 

building room is very well controlled, except that there is room for improvement with regards to the supply 

air temperature during the cooling periods (see chapter 6.3) 

The most important aspect witnessed was that almost every parameter is responsible in some degree towards 

the increment or decrement of energy demand, typically thermal energy. 

 

Correlation Coefficients 

The second phase of the research was to quantify the effect parameters have over the thermal demand of a 

room. The objective associated with this phase was, 

Objective c) Providing a methodology involving the use of correlation coefficients to understand the most 

probable and effective parameters influencing the heating and cooling demands at room level. This helps 

determine the most prominent losses and gains of thermal energy in classrooms.  

 

A new methodology has been developed in this research, which incorporates a Multiple and Partial 

correlation model, to determine the percentile effect of one variable on the thermal demand. 
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✓ With regards to the effectiveness of mathematical tools such as Multiple and Partial correlations in 

determining the affect different parameters- Almost every parameter in a building or room is affected 

by several other parameters. A methodology to quantify this effect has given a broader opinion about 

a building and its properties. For example, insignificant values of wind speed correlation with thermal 

demand, suggests that the building is quite unaffected by infiltration losses. It is seen from this research 

that the Multiple and partial correlations explain the dependent nature of thermal demand on other 

factors.  This section of the research also explained; 

• Interdependency of parameters 

• Partial correlations 

Using Multiple correlations, the true underlying relationship between dependent and independent 

parameters was calculated. This was also the first step towards explaining the factors which determine the 

thermal balance equations in the Multilinear Regression Models.  

 

✓ Concerning the most important parameters needed for such a toolbox -From this chapter, it was seen 

that not all parameters used have a significant effect on thermal demand – thus concluding that certain 

parameters are not required to be measured by the room or building, in order to make predictive models. 

In this case study, the wind speed seemed to have no significant contribution towards the multiple 

correlations or the Regression models ahead.  

 

 

Multiple Regression Predictive Modelling 

Objective d) Utilization of the established parameters to perform multivariate regression analyses. These 

could be used in turn to train models for prediction of thermal energy demand. 

 

This research has focused on determining the predictive capabilities of MLR functions on real-time room 

level data. The purpose of this research was to develop suitable models over distinct sub-datasets of 

year,month, week and day and understand the pros and cons of choosing different sub-datasets, towards 

training and prediction of thermal energy demand of a room.  

 

✓ With regards to the overall efficiency of MLR – Linear Regression models, running on the thermal 

energy balance principle equation were exhibiting good training and predictive responses. However, 

due to discontinuity in datasets, it was seen that the predictive ability of the model would drop. 
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✓ With reg4ads to major difference between backwards (FITLM) and forward(STEPWISEFIT) 

propagation algorithms in Multilinear Regression Models - It was also found that stepwise fit, (a 

forward propagation algorithm function) is an efficient and faster function on MATLAB, for MLR 

training of models that the backwards propagation algorithm based FITLM function. The stepwise fit 

function also provides a user interface, to eliminate certain parameters, and understand the varying R2 

and RMSE values during operation.   

 

✓ With regards to the discontinuity and the complex nature of data - Knowing that a room has a 

complex network of thermal energy balance, and is always altering based on several factors, the 

predictive power of the model would decrease. The MLR models can best account for the linear 

components of the input variables. When the input parameters are highly non-linear to the dependent 

parameter, or in the presence discontinuity in data, the model begins to crumble in efficiency as it 

begins to adopt towards more error in training and thus higher errors in predictions. It was also seen 

that heating and cooling periods of the year cannot be simultaneously trained by using MLR models,  

 

✓ With regards to prediction using past year data as input variables for predicting in the present year 

– It was seen that the past years data are not the most optimum methodology to deliver predictive 

results regarding the present year. The outdoor climatic conditions, and the occupancy profiles tend 

to change, thus making it difficult to predict data at the room level for a school building.  Having said 

this, the past year data might work for certain office rooms, where the occupancy profile does not 

change much, and the room has no direct contact with the outdoor climate (room towards the inside 

of the building). Also, since the results only ventured upon a particular group of weeks, it might be 

better to use the model on similar period between the two years of data, to give more accurate results. 

 

✓ Estimation of Input variables – The tight relationships between Tindoor, Tout, Twall, etc., can help 

estimate the room data beforehand for prediction purposes. This way a Model Predictive Control 

(MPC) could be developed which would be able to estimate Tfloor and TAHU, which are two major 

sources of thermal energy supply to the room, and are controllable with the parameters which can be 

actuated by the HVAC. Thus, in a real way the energy demand can be optimized, and the peaks 

reduced.  

 

✓ With regards to the significance of estimated constants – the MLR models though not as efficient 

in predicting as the ANN models, were able to provide significant relationships between the various 

input parameters and the dependent parameter. Also with efficient training, the model is able to show 

significant estimations of the constants of the thermal balance equation.  
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Artificial Neural Networks  

This phase dealt with the last objective of the research 

Objective e) Utilization of ANN techniques to improvise on the prediction demand of energy.  

 

The use of ANN models on real-time room level data was performed to investigate their use and efficiencies 

in prediction of thermal demand at the room level. The investigations yielded the following results 

 

✓ With regards to the efficiency of ANN in training over complex sub-datasets - ANNs are much 

better at training over complex, sub-datasets. However, they do have the tendency to fall into the pit 

of overfitting. This leads to high training efficiencies but poorer predictive capability. Accounting for 

overfitting lead to certain reductions in overall model efficiencies however, also gave much better 

results in terms of predictions.  

 

It was seen that the model works better but not the best in predicting for months with both heating and 

cooling demand.  

 

✓ Regards to the overall use of ANN in this toolbox and for predictive model development for a 

room’s thermal energy demand – By using the ANN it was found that the training of sub-datasets is 

much better as compared to the MLR models. Although, the ANN models have predictive prowess, 

they lack the ability to provide significance the coefficients, or any linear equation.   
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11. Future Research and 

Recommendations 

 

This research was a combination of several mathematical and statistical operations towards optimizing 

energy performance at the room level of a school building, The HHS – Delft. The resulting objective was 

an automated Toolbox, inclusive of several other step-toolboxes, each with a unique operation. 

 

The research found several methods of improvement, some were undertaken whilst others have been left 

for future purposes. The major recommendations for this research are pointed out below. 

 

1. With regards to the Graphical Analysis 

a) Using Working and Non-working hours of the rooms – Although this building functioned with 

working and non-working hours of the entire building, the model might be able to show some graphical 

results of interesting nature, if the hours of presence and absence from the rooms, were considered as 

working and non-working hours.  

b) Developing Pattern Recognition for Fault Analysis –The graphical Analysis step-toolbox, 

could also include pattern recognition algorithms, such as The Gaussian Cluster, to find certain important 

patterns yet not visible regression graphs developed in this step-toolbox.  

 

2. With regards to the Multiple Regression Predictive Models 

a) With regards to predicting input variables for practical applicability – It was seen during the 

MLR step-toolbox, that there are methods in which certain input parameters can be estimated 

for predicting thermal demand. For example, the indoor air temperature could be a set point 

temperature. Seen a close relationship between the indoor air temperature and wall temperature, 

the latter could be estimated with high efficiency. The occupancy profiles can be known 

beforehand (schedules for the classroom) with which ventilation flow rates can be estimated. 

With the help of the weather forecasts a prediction can be made.  

b) With regards to initial MLR analysis – It was also found that an initial MRL model can be 

developed over the entire year. This would help in segregating the data into heating, cooling 

and noon-heating-cooling hours. The MLR models could then be trained solely on the heating 

and cooling hours to understand their predictive capabilities. This would also prevent training 

or predicting data over heating and cooling hours simultaneously.   
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c) With regards to optimizing the physical parameters estimated by the MLR models – the 

coefficients estimated by the MLR models tend to vary with variations in the period of data 

chosen However, these parameters, with the help of iterations, converge to a constant for 

certain specific periods of the year. Once estimated, the constants might be efficient when 

applied on data from similar rooms (in size and functions), for predictive purposes 

 

3. With regards to the ANN models  

a)   With regards to using different functions - The ANN model developed was a simple on over 

the available room level dataset. IT is highly recommended to fit models with other algorithms, 

and activation functions with the help of MATLAB or other programming languages. 

b) With regards to the estimated weights – it is recommended to use the weights calculated by 

the ANN models, and link it to the input variables of the model. Also changing these weight is 

a possibility on the ANN toolbox of MATLAB, Perhaps, doing this improves the predictive 

capacity of the model.  

 

.  

 



115 

 

BIBLIOGRAPHY 

 

1. International Energy Agency. Transition to Sustainable Buildings - Strategies and Opportunities to 

2050. OECD/IEA 1, 37 (2013). 

2. Jos G.J. Olivier , Greet Janssens-Maenhout , Marilena Muntean, J. A. H. W. P. Trends in global CO 

2 emissions 2015. PBL Netherlands Environ. Assess. Agency 12 (2015). 

3. Magpantay, P. et al. Energy Monitoring in Smart Buildings Using Wireless Sensor Networks. 78–

81 (2014). 

4. Pohl, W. Energy Performance of Buildings Directive. Energy Performance of Buildings (2016). 

doi:10.1007/978-3-319-20831-2 

5. Rijksoverheid. Plan of Action Energy Saving in Built Environment. Pg 8 (2011). 

6. Opstelten, I., Bakker, E., Kester, J., Borsboom, W. & Elkhuizen, B. Bringing an energy neutral built 

environment in the Netherlands under control. 

7. Doukas, H., Patlitzianas, K. D., Iatropoulos, K. & Psarras, J. Intelligent building energy management 

system using rule sets. Build. Environ. 42, 3562–3569 (2007). 

8. Taal, A.; Itard, L.; Zeiler, W. . Z. Automatic detection and diagnosis of faults in sensors used in 

EMS. (CLIMA 2016) 1–10 (2016). 

9. Williams, K. T. & Gomez, J. D. Predicting future monthly residential energy consumption using 

building characteristics and climate data: A statistical learning approach. Energy Build. 128, 1–11 

(2016). 

10. Cohen, J. & Cohen, P. Applied Multiple Regression / Correlation Analysis for the Behavioral 

Sciences Third Edition. (Routledge 2002-08-01, 1983). 

11. Sa, J. P. M. de. Applied Statistics - Using SPSS, STATSISTICA, MATLAB and R. (SPRINGER, 2007). 

12. Sandels, C. Modeling and Simulation of Electricity Consumption Profiles in the Northern European 

Building Stock. (2016). 

13. Yuan, L., Ruan, Y., Yang, G., Feng, F. & Li, Z. Analysis of Factors Influencing the Energy 

Consumption of Government Office Buildings in Qingdao. Energy Procedia 104, 263–268 (2016). 

14. Zou, K. H., Tuncali, K. & Silverman, S. G. Correlation and Simple Linear Regression. Radiology 

617–622 (2003). 

15. Lopez, C. J. Data-driven Predictive Control for Heating Demand in Buildings. (Technical University 

of Delft, 2017). 

16. Dong, B., Dong, B., Lee, S. E. & Sapar, M. H. A holistic utility bill analysis method for baselining 

whole commercial building energy consumption in Singapore A holistic utility bill analysis method 



116 

 

for baselining whole commercial building energy consumption in Singapore. (2005). 

doi:10.1016/j.enbuild.2004.06.011 

17. Wei, X., Li, N. & Zhang, W. Statistical Analyses of Energy Consumption Data in Urban Office 

Buildings of Changsha , China. Procedia Eng. 121, 1158–1163 (2015). 

18. Kramer, R., van Schijndel, J. & Schellen, H. Simplified thermal and hygric building models: A 

literature review. Front. Archit. Res. 1, 318–325 (2012). 

19. Rao, K. R. & Lakshminarayanan, S. Partial correlation based variable selection approach for 

multivariate data classification methods. 86, 68–81 (2007). 

20. Široký, J., Oldewurtel, F., Cigler, J. & Prívara, S. Experimental analysis of model predictive control 

for an energy efficient building heating system. Appl. Energy 88, 3079–3087 (2011). 

21. Li, Z., Han, Y. & Xu, P. Methods for benchmarking building energy consumption against its past 

or intended performance : An overview. Appl. Energy 124, 325–334 (2014). 

22. G. Mustafaraj, G.Lowry, J.Chen. Prediction of room temperature and relative humidity by 

autoregressive linear and nonlinear neural network models for an ... (2011). 

doi:10.1016/j.enbuild.2011.02.007 

23. Parab, V. Thermal Modelling of Existing Residential Buildings in North-Western Europe. Msc. 

Thesis (TU Delft, 2016). 

24. Carbonari, A., Vaccarini, M. & Giretti, A. Bayesian Networks for Supporting Model Based 

Predictive Control of Smart Buildings. (2014). 

25. Bacher, P. & Madsen, H. Identifying suitable models for the heat dynamics of buildings. Energy 

Build. 43, 1511–1522 (2011). 

26. Jiménez, M. J., Madsen, H. & Andersen, K. K. Identification of the main thermal characteristics of 

building components using MATLAB. Build. Environ. 43, 170–180 (2008). 

27. Trčka, Jan L.M. Hensen, M. Overview of HVAC system simulation. Autom. Constr. 93–99 (2010). 

28. de, Nijs, J. M. Inverse modeling of buildings with floor heating and cooling systems for 

benchmarking operational energy use. (Eindhoven University of Technology, 2016). 

29. Jiménez, M. J. & Madsen, H. Models for describing the thermal characteristics of building 

components. Build. Environ. 43, 152–162 (2008). 

30. MATLAB - MathWorks. Available at: https://nl.mathworks.com/products/matlab.html. (Accessed: 

10th December 2017) 

31. Jr, M. P. M. & Ã, G. A. B. Neurocomputing Long-term time series prediction with the NARX 

network : An empirical evaluation. 71, 3335–3343 (2008). 

32. Afram Abdul,Farrokh Janabi-Sharifia, Alan S. Funga, Kaamran Raahemifar. Artificial Neural 

Network ( ANN ) based Model Predictive Control ( MPC ) and Optimization of HVAC Systems : 

A State of the ... Energy Build. 141, 96–113 (2017). 



117 

 

33. Neumann, C. & Jacob, D. Results of the project Building EQ Tools and methods for linking EPBD 

and continuous commissioning. Solar Energy (2010). 

34. Rafsanjani, H. N., Ahn, C. R. & Alahmad, M. A Review of Approaches for Sensing, Understanding, 

and Improving Occupancy-Related Energy-Use Behaviors in Commercial Buildings. (2015). 

doi:10.3390/en81010996 

35. Pe, L. A review on buildings energy consumption information ´. 40, 394–398 (2008). 

36. World Health Organisation. Indoor Environment: Health Aspects of Air Quality, Thermal 

Environment, Light and Noise. (1991). 

37. Agentschap NL. Gebouwmonitoring met Energieprofielen. Agentschap NL ENergyie en Klimaat 

(2015). 

38. Jones, P. & Salleh, E. Evidence base prioritisation of indoor comfort perceptions in Malaysian 

typical multi-storey hostels. Build. Environ. 44, 2158–2165 (2009). 

39. Least-Squares Fitting - MATLAB &amp; Simulink - MathWorks Benelux. Available at: 

https://nl.mathworks.com/help/curvefit/least-squares-fitting.html. (Accessed: 10th January 2017) 

40. Center for Disease Contorl and Prevention - NIOSH. Chapter 2. in CDC - Factors Affecting Indoor 

Air Quality 5–12 

41. Create linear regression model - MATLAB fitlm - MathWorks Benelux. Available at: 

http://nl.mathworks.com/help/stats/fitlm.html. (Accessed: 5th January 2017) 

42. Stepwise regression - MATLAB stepwisefit - MathWorks Benelux. Available at: 

https://nl.mathworks.com/help/stats/stepwisefit.html. (Accessed: 12th January 2017) 

43. Xu, G. HVAC system study : a data-driven approach. (2012). 

44. Stepwise regression - MATLAB stepwisefit - MathWorks Benelux. Available at: 

https://nl.mathworks.com/help/stats/stepwisefit.html. (Accessed: 5th January 2017) 

45. Hawkins, D. M. The Problem of Overfitting. J. Cheminstry Inf. Comput. Sci. 44, 1–12 (2004). 

46. Standardized z-scores - MATLAB zscore - MathWorks Benelux. Available at: 

https://nl.mathworks.com/help/stats/zscore.html. (Accessed: 11th July 2017) 

47. Datta and S. A. Tassou, D. Application of Neural Networks for the Prediction of the Energy 

Consumption in a Supermarket. ASHRAE Trans. 99 505–517 (1993). 

48. Yang, Hugues Rivard, Radu Zmeureanu, J. BUILDING ENERGY PREDICTION WITH 

ADAPTIVE ARTIFICIAL NEURAL NETWORKS Department of Building , Civil and Envr . 

Engineering , Concordia University , Department of Construction Engineering , ETS , 1100 Notre-

Dame Street West , COMPUTATIONAL EXPERIMENTS. in Ninth International IBPSA 

Conference 1401–1408 (2005). 

49. Ekici, B. B. & Aksoy, U. T. Prediction of building energy consumption by using artificial neural 

networks. Adv. Eng. Softw. 40, 356–362 (2013). 



118 

 

50. Demuth, H. Neural Network Toolbox - User’s Guide Version 4. (The MathWorks, Inc, 2001). 

51. Foresee, F. D. & Hagan, M. T. GAUSS-NEWTON APPROXIMATION TO BAYESIAN 

LEARNING ** School of Electrical and Computer Engineering. Network 1930–1935 (1930). 

52. Bayesian regularization backpropagation - MATLAB trainbr - MathWorks Benelux. Available at: 

http://nl.mathworks.com/help/nnet/ref/trainbr.html. (Accessed: 6th May 2017) 

53. Yang, J., Rivard, H. & Zmeureanu, R. On-line building energy prediction using adaptive artificial 

neural networks. 37, 1250–1259 (2005). 

54. Process matrices by mapping row minimum and maximum values to [-1 1] - MATLAB mapminmax 

- MathWorks Benelux. Available at: http://nl.mathworks.com/help/nnet/ref/mapminmax.html. 

(Accessed: 23rd May 2017) 

 



1 

 

Appendix 

Appendix 1 – Images of the HHS and the case study room 1075. 

A.1.1 – Floor Heating Mechanism of the BMES at the HHS 

 

Figure 38 shows the mechanism of priority based heating or cooling system adopted in the HHS.  

 

Here it can be seen that the room 1085, needs cooling. However, due to the other rooms having a 

heating demand, the room 1085, shall not be cooled.  This would lead to a training deficiency in models 

(see section 8.5.2 – weekly datasets) wherein, even during the need for thermal cooling, the model is forced 

to train with no thermal demand. Having said this, it should be noted that since this is a school building and 

is heavily maintained in terms of the indoor climate being constant, this occurrence of such a scenario is 

not quite often. 
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A1.2 – Images of the Case room 

Figures 39 a and b – Classroom 1075 and the adjoining corridor respectively. The Classroom has a 

south facing wall (with windows seen on the left of figure a). 
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Appendix 2 Correlation Coefficients and the literature associated 

with it. 

The research focuses on multiple and partial correlation (explained ahead). Both techniques give a much 

broader understanding of the individual effect the parameters on the overall thermal energy demand. 

Correlation coefficient as mentioned is used to measure and interpret the strength of a linear or non-linear 

relationship between two continuous variables. This research focuses on the Pearson Correlation, and 

Partial Correlations. The formula adapted to compute the simple Pearson Correlation Coefficient ‘r’ for a 

given set of Xi and Yi values (i = 1…n) where n is the number of samples is, 

 

𝑅 =  
∑ (𝑥𝑖−�̅�) (𝑦𝑖−�̅�)𝑛

𝑖=1

√∑ (𝑥𝑖−�̅�)2 ∑ (𝑦𝑖−�̅�)2𝑛
𝑖=1

𝑛
𝑖=1

 ;                           

where �̅� and �̅� are the sample means of the 𝑥ⅈand 𝑦ⅈvalues, respectively.  

 

 

 

 

 

Figure 40 shows four scatterplots with the Pearson Correlation Coefficients (from left to right):             

r = 0 (uncorrelated data), r = 0.8 (strongly positively correlated), r = 1.0 (perfectly positively 

correlated), and r=1 (perfectly negatively correlated) 14. 

 

An important test required for validating the correlation coefficient value is the statistical hypothesis tests. 

The p-value is the measure of the significance of the null hypothesis 14 15. The significant level generally 

chosen for the null hypothesis is 5%, or (p-value < 0.05). This means that there is a confidence level of 95% 

that the coefficient is a correct value for the correlation between the dependent and the independent variable.  

The statistical Hypothesis Tests for Correlation coefficients check for null hypothesis. This hypothesis 

states that “the underlying linear correlations has a hypothesized value, po.” 15. The alternative hypothesis 

is that the underlying value is greater or lesser than the po. Using a z-test the statistic value   

 (p − value)  = (𝑟 − 𝑝𝑜)/𝑠𝑟 is calculated, where 𝑠𝑟 is the standard error of the calculated value.  

 𝑠𝑟 = (1 − 𝑟2)/√𝑛          EqA.2.2 

where n is the sample size. 

If this p-value is <0.05 the null hypothesis is rejected and the correlation coefficient is deemed significant 

15 11. 

 

Eq-A2.1 
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Table 23 shows the interpretation of correlation coefficients. The sign signifies the direction of the 

relationship. The absolute value is the indication of the strength 14. 

 

Correlation Coefficient Value Direction and Strength of 

Correlation 

 

-1.0 

-0.8 

-0.5 

-0.2 

0 

+0.2 

+0.5 

+0.8 

+1.0 

 

Perfectly Negative 

Strongly Negative 

Moderately Negative 

Weakley Negative 

No association 

Weakly Positive 

Moderately Positive 

Strongly Positive 

Perfectly Positive 
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Appendix 3 – Yearly Plots from Graphical Analysis 

Figure 41 Graphical image of the electrical demands for the entire year. The electrical demand from 

lighting is the highest and almost constant, representing different weeks of the year. A gap in August 

(4500-5500 can be seen which represents the break period of the school.  

 

 

Figure 42 Sensitivity of the indoor air temperature with rising carbon dioxide. It is seen that the 

indoor air temperature does not vary much with increment in occupancy of students. This shows that 

the room is extremely well ventilated to nullify the heating effect due to occupant behavior.  
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Figure 43 Sensitivity of Thermal Energy demand with the solar radiation.  
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Appendix 4 –  Miscellaneous Figures from the Graphical Analysis 

A.4.1 – Daily Plots  

The graphical analysis was done on the 1st of October 2015, for discovering plots of similar kinds 

as seen regarding the months and the working and non-working hours. These have been presented below. 

Figure 44 Graphical analysis plots of October 1st 2015.  
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A.4.2 – Seasonal Plots 

The seasonal plots for spring and winter have been shown below. 

 

Figure 45 shows the various graphs explaining the readings of presence (CO2 PPM,) Ventilation air 

flow rate, and the thermal energy utilization of the class room during the winter period. 
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Figure 46 shows the various graphs explaining the readings of presence (CO2 PPM,) Ventilation air 

flow rate, and the thermal energy utilization of the class room during the spring period 
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Appendix 5 – Correlation Coefficients 

A.5.1 – Regarding Multiple and Partial Correlation Coefficients for only heating and only 

cooling Hours. 

The model is automated for the user to choose from Net thermal energy demand (result shown in 

section 7.3), only heating hours and only cooling hours. The graphs and tabulated results for heating and 

cooling have been shown below.  

Heating Only 

Table 24 shows the obtained Multiple and Partial correlation coefficient (R-Value) and the P-values 

for the various parameters as stated when correlated against only Heating Hours. 

 

Category Internal 
Heat 

Wall 
Temperature 

Indoor Air 
Temperature 

Floor 
Surface 

Temperature 

Presence Ventilation Wind 
Speed 

Outdoor Air 
Temperature 

Solar 
Radiation 

Multiple 
Correlation 
Coefficient 

0.158 -0.050 -0.081 0.353 0.089 0.145 0.153 -0.168 -0.056 

P-Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Partial 
Correlation 
Coefficients 

0.04 0.05 -0.07 0.29 -0.02 0.09 0.10 -0.01 0.03 

P-Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The figure 47 shows the Multiple and Partial correlations of net thermal demand with the dynamic 

variables for a period of all hours with a heating demand. Naturally the most correlated is the floor 

temperature as it is the main source of thermal energy. 
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Cooling Hours only 

 

Table 25 shows the obtained Multiple and Partial correlation coefficient (R-Value) and the P-values 

for the various parameters as stated when correlated against only Cooling Hours. 

 

Category Internal 
Heat 

Wall 
Temperature 

Indoor Air 
Temperature 

Floor Surface 
Temperature 

Presence Ventilation Wind 

Speed 
Outdoor Air 

Temperature 
Solar 
Radiation 

Multiple 
Correlation 
Coefficient 

0.215 0.393 0.432 -0.708 0.221 0.289 0.012 0.360 0.430 

P-Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Partial 
Correlation 
Coefficients 

0.008 -0.055 0.145 -0.668 -0.002 0.099 0.103 -0.192 0.189 

P-Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

The figure 48 shows the Multiple and Partial correlations of net thermal demand with the dynamic 

variables for a period of all hours with a cooling demand. Naturally the most correlated is the floor 

temperature as it is the main source of thermal energy. 

 

 

 

 

Appendix 6 – Sample Dataset  

Below table xx shows a sample of dataset after organizing and cleaning that was used for the MLR 

and Neural Network models developed during this research. The data is for one day, 1.1.2015, and shows 

values over an hourly average. 

Table 26 shows the values obtained from hourly averages of sensor recordings from the room 1075. 

The data belongs to 1.1.2015. 
Timestam
p 

Applianc
e 
electrical 
average J 

Lighting 
electrical 
average J 

Heating 
average J 

Cooling 
average 
J 

Wall 
temperatur
e average 
[C] 

Air 
temperatur
e average 

Supply Air 
temperatur
e average 

Co2 
average 

Airflow 
averag
e 

Pipe1in 
average 
temperatur
e 

Pipe1out 
average 
temperatur
e 

Pipe2in 
average 
temperatur
e 

Pipe2out 
average 
temperatur
e 

Pipe3in 
average 
temperatur
e 

Pipe3out 
temperatur
e average 

1/1 
0:00 

18170 65780 81928 9426 20.866 21.372 22.515 422.9 0 22.5807 22.52665 22.6653 22.61275 22.53425 22.56565 

1/1 1:00 18975 65665 0 12803
8 

20.733 21.301 22.4919 423 0 22.30035 22.38935 22.3897 22.432 22.40915 22.5024 

1/1 2:00 18860 64860 2705565 36015 20.649 21.221 22.4678 422.85 0 24.26565 22.81715 24.20015 22.93365 22.39275 22.4502 

1/1 
3:00 

18975 64630 1794037 32578 20.589 21.162 22.4435 422.5 0 23.6402 22.78655 23.6305 22.87765 22.42235 22.4123 

1/1 4:00 19205 65665 4425503 0 20.595 21.153 22.4269 424 0 25.80805 23.4152 25.875 23.50245 22.44985 22.42455 

1/1 
5:00 

19205 64630 5724921 0 20.697 21.173 22.4149 423.75 0 27.11735 23.97555 27.16625 24.04405 22.81015 22.52615 

1/1 
6:00 

19320 62905 5439934 0 20.785 21.184 22.40875 423.9 0 27.2334 24.1683 27.26425 24.25735 23.0259 22.6231 

1/1 
7:00 

19320 65435 5468523 0 20.867 21.228 22.4111 424.95 0 27.1721 24.26025 27.19995 24.35365 23.0229 22.68695 

1/1 
8:00 

19780 64917.5 5338584 0 20.895 21.241 22.4187 425.9 0 27.16505 24.3309 27.2552 24.42615 23.06055 22.711 

1/1 
9:00 

19550 63537.5 4426713 0 20.928 21.26 22.4298 426.3 0 26.90085 24.3535 26.94465 24.4476 23.05305 22.74005 
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Timestam
p 

Applianc
e 
electrical 
average J 

Lighting 
electrical 
average J 

Heating 
average J 

Cooling 
average 
J 

Wall 
temperatur
e average 
[C] 

Air 
temperatur
e average 

Supply Air 
temperatur
e average 

Co2 
average 

Airflow 
averag
e 

Pipe1in 
average 
temperatur
e 

Pipe1out 
average 
temperatur
e 

Pipe2in 
average 
temperatur
e 

Pipe2out 
average 
temperatur
e 

Pipe3in 
average 
temperatur
e 

Pipe3out 
temperatur
e average 

1/1 
10:00 

19780 66470 3807074 0 20.963 21.293 22.4488 425.85 0 26.2062 24.1167 26.3966 24.18635 22.9416 22.7367 

1/1 
11:00 

19665 64975 4834788 0 21.009 21.325 22.47035 426.45 0 27.09945 24.34565 27.16655 24.45035 22.9968 22.7551 

1/1 
12:00 

19895 64975 4490496 0 21.131 21.384 22.5013 426.8 0 26.7839 24.40535 26.7691 24.5099 23.0516 22.796 

1/1 
13:00 

19780 66585 2650348 0 21.161 21.452 22.5371 426.2 0 25.4743 23.9114 25.56975 24.0001 22.9788 22.8083 

1/1 
14:00 

19665 66930 5844 29841
2 

21.094 21.476 22.5657 425.9 0 22.97335 23.10255 23.0258 23.1952 22.87215 22.7744 

1/1 
15:00 

19665 65550 1445406 23556
7 

20.999 21.45 22.5826 425.45 0 23.37145 22.9837 23.5521 23.02555 22.74595 22.71625 

1/1 
16:00 

19780 66700 1275388 20924
1 

20.922 21.384 22.5852 423.97
5 

0 24.21025 23.47755 24.33345 23.5148 22.77995 22.67975 

1/1 
     17:00 

19780 66930 656312 13760
2 

20.81 21.333 22.58845 422.5 0 23.1546 22.92345 23.08675 22.9859 22.5238 22.6198 

1/1 
18:00 

19550 65090 4797290 0 20.713 21.271 22.58 421.2 0 26.13055 23.646 26.13475 23.73205 22.51165 22.59185 

1/1 
19:00 

20010 66815 4939354 0 20.779 21.257 22.5755 421.5 0 26.979 24.14725 26.98375 24.22845 22.9172 22.699 

1/1 
20:00 

20010 66815 4800428 0 20.856 21.274 22.5807 422.5 0 26.94065 24.2466 26.97385 24.33285 23.02485 22.77055 

1/1 
21:00 

20125 63825 2821662 0 20.882 21.276 22.58235 422.5 0 25.54725 24.0082 25.66425 24.0917 23.0094 22.8006 

1/1 
22:00 

19895 66700 1322771 30726 20.804 21.272 22.5865 422.6 0 24.10935 23.4252 24.1809 23.47925 22.7093 22.7382 

1/1 
23:00 

884005 321770
0 

20328141
0 

69893
1 

20.727 21.239 22.58565 421.4 0 25.67225 23.3731 25.9149 23.4669 22.73145 22.7109 
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Appendix 7 – Multivariate Linear Regression Model 

Appendix 7.1 – User Interface of the Stepwise fit model developed for an entire year of data.  

The screenshot of the user interface of a stepwise fit model has been shown below. Here the varying 

p-value and r-squared values can be seen as the model adds or removes certain input parameters. The RMSE 

drops with increasing number of statistically valid parameters which can be seen from the curve beneath. 

One important aspect of this tool is that the user can choose to allow a certain parameter from entering or 

leaving the MLR equation, thus witnessing the effect of changing RMSE or R2 by the said parameter.  

 

Figure 49 shows the screenshot of a stepwise fit user interface. The values of RMSE and R-squared 

can be seen along with the coefficients estimated for each input variable. The X6 – which is infiltration 

by wind can be seen to be removed, due to an excessive P-value.  
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Appendix 7.2 – Results from Stepwise and FITLM Functions. 

 Appendix 7.2.1 – Regarding the Statistical Validations of MLR models. 

1.FITLM Residuals and their normal distribution 

The training is performed over three timesteps, full year’s data, working hours and non-working 

hours of the year. The residuals have a normal distribution with 95% probability as can be seen by the 

images xx a, b and c below. 

 

Figure 50 a, b and c show the normally distributed residuals obtained from the FITLM function for 

datasets belonging to the full year (a) working hours (b) and nonworking hours(c). 
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2.Stepwise Residuals and their normal distribution 

 

Figure 51 a, b and c show the normally distributed residuals obtained from the Stepwise fit function 

for datasets belonging to the full year (a) working hours (b) and nonworking hours(c). 
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Appendix 7.2.2 – Regarding the working and non-working hour graphs. 

 

The fitted data has been graphed over the working and non-working hours as shown below.  

1. FITLM 

• Working hours graph 

 

 

 

 

 

 

 

• Non-working hours graph 

 

 

 

 

 

 

 

Figure 53 shows the fitted graphical representation of the net thermal demand over the working and 

nonworking hours of the year using FITLM.  

 

2. Stepwise fit 

• Working hours graph 
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• Non-working hours graph 

 

Figure 54 shows the fitted graphical representation of the net thermal demand over the working and 

nonworking hours of the year using Stepwise fit.  

 

 

Appendix 7.3 – Comparative Analysis of FITLM and Stepwise Fit functions 

The two main functions adopted from MATLAB for the development of MLR models were the 

FITLM and stepwise fit functions. Both these functions have shown similar results and consumed 

approximately the same amount of time for training. However, the most important distinctions of the models 

have been summarized below.  

With regards to efficiency – It was seen from the results that the overall efficiencies of MLR 

models using Stepwise fit were much higher than the ones used FITLM. The stepwise fit uses a feed forward 

method, wherein the parameters are added one by one to the model, in order to improve the fit. This way 

parameters having a slightly negative effect on the RMSE or R-squared value can be immediately removed. 

This is probably the main reason for a higher efficiency in stepwise fit models.  

With regards to ease of use – The stepwise fit function has a built-in user interface wherein each 

parameter can be added or removed from the MLR equation. The effect of each of these parameters on the 

overall R2 value and RMSE of the model can be observed and taken into consideration. On the other hand, 

the FITLM function has a backlog wherein, the model runs and presents the results of the fit and prediction. 

The removal or addition of parameters from the MLR equation must be done manually and the model must 

be run each time to notice a change in the efficiencies.  

With regards to automation – The models developed under stepwise fit are more automated in 

addition or removal of parameters. It is simpler to use as compared to the FITLM, with higher efficiency 

and allows for a user based control over the interface.  
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Appendix 7.4 – Weekly Coefficient estimations using Stepwise Fit. 

Figure 55 shows the obtained stepwise fit training over 2 weeks of data, 24tha and 25th week in the 

year.  

 

During a weekly timestep, the most effective and statistically valid parameters contributing to the training 

are the flux due to internal heating Qinternal heating , Qfloor , Qenvelope. These three parameters provide for 84% of the 

training with an RMSE of 364. With smaller timesteps, the number of parameters effectively contributing towards 

training has been seen to decrease.  
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Appendix 7.5- MLR Model Improvements 

 Accounting for the delay in solar radiation – The graphs obtained for the three sub-datasets with a  

delay of 1 hour in the data have been shown in figure 56 a, b, and c. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 56 a, b and c – Graphical Images representing the fitted and predicted data over the monthly, 

weekly and daily sub-datasets, on accounting for the lag in solar radiation.  

 



20 

 

Using the indoor air temperatures of the side rooms to evaluate their effect on the room in question – 

Since the heating and cooling of the rooms is done via a priority based system (see section 6.2.4) Perhaps 

accounting for the adjacent rooms may help improvise the model. This would be taking into consideration 

if the side rooms need heating or cooling demand, thus enabling a better fit.  

 

In general, models developed on data at the building level, incorporate the use of outdoor climatic 

conditions, as they impact the thermal demand. This is seen at the room level too. However, an individual 

room unlike is surrounded by other rooms and the indoor climatic condition of these rooms may or may not 

influence the thermal demand of the principal room.  

 

 

 

 

 

 

 

 

 

Figure 57 - descriptive diagram of the room 107 and the rooms around it, including the gallery, and 

the outdoor. 

 

This was added as another heat flux under the thermal flux to the room from the side walls as follows; 

Since this building is heavily temperature controlled, and due to lack of information on the temperature in 

the gallery (see figure xx above) an average temperature of the side rooms has been considered as the 

secondary outdoor air temperature.  

Qenvelope (outdoor) = ∑ 𝑼𝒊 𝒐

𝒊
. 𝑨𝒐

𝒊  . (𝑻
𝒐

− 𝑻𝒊) − 𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝐹𝑙𝑢𝑥 

Qenvelope (side rooms) = ∑ 𝑼𝒊 𝒊𝒏𝒅𝒐𝒐𝒓

𝒊
. 𝑨𝒊𝒏𝒅𝒐𝒐𝒓

𝒊  . (�̅�
𝒔

− 𝑻𝒊) – Addition Flux 

Where 𝑼𝒊𝒏𝒅𝒐𝒐𝒓
𝒊  – The Heat capacitance (W/m2K) of walls facing the gallery and side rooms and, 

𝑨𝒊𝒏𝒅𝒐𝒐𝒓
𝒊  – The area of the walls facing the gallery and side rooms. 

�̅�𝒔 – Combined average indoor air temperature of the side rooms 

The same months and weeks were chosen once again for the MLR model, with an additional variable in 

terms of (�̅�
𝒔

− 𝑻𝒊).  

 

It was seen that there was a degradation in the overall predictive power of the model for the principal room 1075. This 

could suggest that the side-room temperatures do not play a major role in determining the thermal energy demand at 
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the room level, and form an unnecessary increment in the complexity of the model, leading to a poor predictive 

capacity. See the annex A.7.xx for graphical representation of the data.  

Table 27 Obtained values of R2 and RMSE for the monthly, and weekly estimates of the room, both 

with and without the side room temperature. 

 

 

Below the figures obtained from the training and predictive models have been placed.  

 

 
Monthly Sub-dataset (Training June and July 
Prediction Aug) 

Weekly sub datasets- (Week No. 24-26 2015) 

 Without ((�̅�𝑠 − 𝑇ⅈ) With (�̅�𝑠 − 𝑇ⅈ) Without ((�̅�𝑠 − 𝑇ⅈ) With (�̅�𝑠 − 𝑇ⅈ) 

R2-fit [%] 84% 80.80% 88% 73% 

R2-pred [%] 82% 78.20% 78% 69.4% 

RMSE fit Wh 331.36 362 320.39 364 

RMSE pred. Wh 342.62 362.5 423.98 380 
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Figures 58 a and b Effect of introducing the side room temperatures in the MLR equations over fitted 

and predicted data.  
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Appendix 8 – Artificial Neural Networks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 59 shows the screenshot of the Neural Network toolbox on MATLAB, on completion of a 

certain model training. It can be seen that the model was trained in 11 seconds, with 748 iterations.  
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Appendix 8.2- Day-wise ANN models  

 

Figure 60 – estimated fitted and predicted data over the day-wise ANN models.  
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Table 28 Estimated RMSE and R2 values in thermal energy demand predictions over day-wise sub-

datasets for both MLR and ANN models.  

 

 

 

Table 29 Estimated error in thermal energy demand predictions over the various time-periods chosen 

in this research for both MLR and ANN models.  

 

Stepwise 
     

 
May June Aug Week Day 

Actual Demand -226180 -247550 246150 -70724 -22618 

Predicted Demand -120970 -189210 263280 -81342 -27214 

Error % -47% -24% 7% 15% 20% 

R2 pred 49% 50% 82% 78% 87% 
      

      

      

ANN 
     

 
May June Aug Week Day 

Actual Demand -

22618 

-

24755 

24615 -

70724 

-

22618 

Predicted 

Demand 

-

18231 

-

21275 

24912 -

72213 

-

29214 

Error % 19% 14% -1% -2% 23% 

R2 pred 60% 58% 86% 81% 82% 

 

 

 

 

 

Training Day Adj. R2 

MLR 

RMSE 

MLR [Wh] 

Adj. R2 

ANN 

RMSE 

ANN [Wh] 

Prediction 

Day 

Adj. R2 

MLR 

RMSE 

MLR [Wh] 

Adj. R2 

ANN 

RMSE 

ANN [Wh] 

8th June 2015  95% 325.41 98% 229 9th June 

2015 

87% 437.5 82% 692 

12th June 2015 97% 234.45 97.1% 186 13th June 

2015 

- 278.14 - 122 
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