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Abstract

A method is presented to easily derive von Neumann stability conditions for a wide variety
of time discretization schemes for the convection-diffusion equation. Spatial discretization is
by the x-scheme or the fourth order central scheme. The use of the method is illustrated by
application to multistep, Runge-Kutta and implicit-explicit methods, such as are in current
use for flow computations, and for which, with few exceptions, no sufficient von Neumann
stability results were available.

1 Introduction

Stability criteria for the instationary comvection-diffusion equation often result immediately
in stability conditions for numerical methods to compute instationary incompressible flows,
if the widely used pressure-correction method ([3], [15]) is applied. This is because for the
velocity prediction step something very close to the convection-diffusion equation is solved,
and stability analysis boils down to stability analysis for the convection-diffusion equation,
which is the topic of this paper. Here, by stability we will mean stability in the sense of
von Neumann, i.e. non-growth of Fourier components in the frozen coefficients case on an
unbounded domain. Strictly speaking, an O(At) growth per time step could be allowed, but
this hardly affects the stability conditions that result.

We will present a method that is both simple and applicable to a wide variety of schemes and
that gives stability conditions that are easily evaluated and not too conservative. The method
has been outlined before in [18] for central discretization, using a second or a fourth order
scheme for the convection term. Here the s-scheme ([16]) will be used for the convection term.
Time discretizations will be considered that are often employed for instationary incompressible
flow computations, such as large-eddy or direct simulation of turbulence. No rigorous von
Neumann stability conditions seem to have been derived before for these schemes.

2 Fourier stability analysis

The convection-diffusion equation is given by
32

?2+L =0 chzi(u -—G——v-——)so (2.1)
gr T EEE = Y0z, 0z

with m the number of dimensions. For Fourier stability analysis, uy and v are taken constant,
and the domain is unbounded. With the s-scheme, the discretization of L on a uniform grid
with mesh-sizes hy, ..., i is given by Ly = Cp + D with

Ch= ;11— S ca{(1 = K)pjmteq — (5 = 36)Pj—ea + (3 = 38) + (1 + K)Pjoren } (2.2)
T
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and
Dy = 51; 5; do(=Pjmea + 205 — Pj-ea) (23)
where j = (j1, ..., Jm), €1 = (1,0,...,0), €2 = (0,1,0,...,0) etc., and
Co = UaT/he , do=2vT[R2 (2.4)

with 7 the time step. The dimensionless numbers ¢, and d,, called the Courant and diffusion
numbers, respectively, govern stability. In (2.2), u, > 0 has been assumed; the contrary case
may be treated by symmetry. For k = —1 we have the one-sided fully upwind scheme ([13]).
With k = 0 one obtains Fromm'’s zero average phase error scheme ([4]), if the terms quadratic
in the Courant number are neglected, which are meant to improve time accuracy; this scheme
results by optimizing, among 5-point schemes, for the propagation of a step function over one
time step in the absence of diffusion ([17]). For x = 1/3 the third order upwind biased scheme
([1]) results. For k = 1/2 we have the second order QUICK (quadratic upstream interpolation
for convective kinematics) scheme proposed in [7]. Finally, kK = 1 gives the central second
order scheme.

A fourth order central discretization of the convection term is given by

1
197

Ch Z ca((pj-zea - 890_1'_30 + 8(p.7'+5a - (pj+25a) (2‘5)

o

First order upwind discretization is included in the analysis that follows by taking x =1 and
redefining d, = do + |cal.

After spatial discretization we are left with the following system of ordinary differential equa-
tions:

dp/dt = —Lnyp; (2.6)
The symbol or Fourier transform Lx(6) of Ly is defined by Li(8) = e 98 Lyt with § =
(61, ...,0). One finds:
Cu(8) + Dr(6) (2.7)
11(0) +i72(8), Di(6) = 8(8)

Tizh(e)
7Ch(6)

For (2.2) we have
71(0) =2(1 - n)Z]calsi , 72(0) = an{(l ~ K)Sq + 1} sin b, (2.8)

where s, = sin? 26, whereas for (2.5)
1 . .
71(0) =0, T2(f)= i an(S sin 6, — sin 20,) (2.9)

Furthermore,
§(8) =2 dase (2.10)
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For Fourier (or von Neumann) stability analysis one substitutes o;(t) = y(¢)e#¢ in (2.6), and
obtains

dy/dt = —ih(e)y (2.11)
Sufficient for von Neumann stability is

S, CS, Sp={-rLn(6) e : V8} (2.12)

with 5 the stability domain of the time discretization method to be used.

3 Some useful theorems

For the derivation of sufficient stability conditions, the following theorems, which form the

substance of our method, are useful. But first some preliminaries. The x-scheme (2.2), (2.3)

will be called scheme 1 and (2.3), (2.5) will be called scheme 2. Define éo = (1 — &)|ca] for

scheme 1 and &, = 0 for scheme 2. Let d,, = dy + &, and d= D dy. Schwarz’s inequality will
o

be used frequently. For schemes 1 and 2 we have

(6+71)% = 43 dasa +Eas2)? <A{Y dasa}? <4dY dush (3.1)
o (4 [

Furthermore, for scheme 1,

va < 4Zc§/da2dasa(l — 8)(Rsq + 1)* (3.2)

where & = 1 — k, whereas for scheme 2 we find that (3.2) holds with £ = 1/3. From (3.2) it
follows that

3 <a2 k)Y Elda Y dasa(l~ sa) (3.3)
Similarly, for scheme 1,
7 < D d O eal P (s + 1)l sina ]} »
< 16{2(63/‘101)1/3}3 L da(Rso + 1)4s2(1 ~ Sar)?

which also holds for scheme 2 with x = 1/3. For arbitrary a > 0 we have for schemes 1 and 2

1 ~ 4 .
(_____6 T 12<1+ ég Zdasi — = (dasa + Eash) (3.5)
a a o a o
If d < a this gives .
EET 1P <14 =3 dalel = 50) (36)
a o



Theorem 3.1 If

d<a and Zci/du <(2-k)"%/a 3.7
then for scheme 1 S, is contained in theaellipse

(vfa+12 +(w/b)’ =1, v+iw==z (3.8)
The first condition is necessary.

Proof
Necessity of the first condition follows by taking s, = 1, @ = 1,...,m. It remains to show
that {(6 +v1)/a — 1}? + (v2/8)? < 1. Using (3.3), (3.6) and (3.7) we have

6+71 2 Y2 \2 4
(—— - +(3) _1+a§a;do,sa(1 sa)(=14+1)<1

and the proof is completed.

For k = 1 necessity of both conditions is shown in [18]. The conditions (3.7) are equivalent
to

2
7 < min{a/ ;(21/11;2 + (1 = 8)|ualhzt), 2v(2 - n)'z%/ Ea:ug,} (3.9)
Theorem 3.2 If B
d<a (3.10)
and one or both of the following two conditions hold:
Z(ai/da)lﬁ' < q(b*/a)'® or > eal £ gb/a (3.11)

where
1 -5/3 4/3 1/3 1/3
@ = Z(S—4n) (15 = 5k — )35k = 3+ 1) /(9 = T + 1) 17,

ro= (25&% - 54k +33)Y7,
@ = (1-rP%8J5—4k/5)%?, ~1< k< 3/4,
g2 = (1-k)/2,8/4<k<1

then for scheme 1 S, is contained in the oval given by
(vfa+ 1?2+ (w/b)*=1, v+iw==z (3.12)
Condition (3.10) is necessary.

Proof
Necessity of (3.10) follows by taking s, = 1, @ = 1,..., m. Next, assume that (3.10) and the
first condition of (3.11) hold. Using (3.4) and (3.6),

§ 4
(CE2 1 () <142 3 dalsa = M1+ 46 (Rse + Disa(1 = 50)) (3.13)
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We have
max{(Rs + 1)*s(1 —5): 0<s <1} =1/4¢}
Hence, no term in the sum in (3.13) is positive, so that
6+
(R 1y (Bt <1 (3.14)
Next, assume that (3.10) and the second condition of (3.11) hold. Because of (3.10),0 <
6 +v1 < 2a, hence

§+m 9 6 6+m1 m T 9
(— D = = +;—2)+(;—1)

a
§ M, My
< (-9l 42
< C-92e@pey
d V. 2, 4 ~. —. 4
< (2";—2—EZCQ)EZCasg,'*-EzCQanSi-l—l
o o (<3 o
4é .
S ].—-—Z-ZCQ(S%(—S‘;)
a o

where & = Y &,. Furthermore, similar to (3.4),
o
Y3 < 16{}:(62/50,)1/3}325&(@3& +1)*s5(1 - sa)”
21 o

%{E leal)® Y GalRsa + 1)*s2(1 = 5a)”

i

Hence
2

- 4 .
BT ap g (B <14 T s (s + D) =0 =)

Observing that

max{(ks + 1)*(1 - 9): 0<s<1,0<R<2) =R /403
we see that each term in the preceding sum is non-positive, hence (3.14) holds, and the proof
is completed. :

Note that the first condition of (3.11) is not useful in the hyperbolic case (v = 0, i.e. dy = 0),
whereas the second condition is not useful for k = 1; the two conditions complement each

other.
Conditions (3.10) and (3.11) are equivalent to
r < o/ Sk +(1- K)|ualhy') and
r < mada (R DA, S Thalha)

(3.15)



Theorem 3.3 If

= _a 2d 5 P
d< 5 and —b—z—Zci/da <(2- k)21 +1/1 - 4d?/a?) (3.16)

then for scheme 1 S1 is contained in the ellipse given by

(v/a)? + (w/b)} =1, vi+iw=2z (3.17)
The first condition is necessary.

Proof

Necessity of the first condition follows by taking s = 1, @ = 1,...,m. Using (3.1, (3.3) and
(3.16) we have

6+ d — ~
(Tl)z + (1})2)2 =g ) dasafsat p(1- sa)}

where p = (a2/2ci2)(1 +4/1- 432/a2).' Since p > 2, max{s(s + p(1 - s): 0<s< 1} =
2%/ {4(p - 1)} = a*/(4d%), so that

(6+71

a

PRyl
and the proof is completed.

The conditions (3.16) are equivalent to
r < min[-;—a/ S (kg + (1 - R)lualha), (3.18)
[¢4
b(2 - k)Y ua D (2wh’ + (1~ W)lualhz)} AL+ V1 - 4d2/a?)'/?)

This inequality is implicit, because d depends on 7. However, checking the admissibility of a
given T is straightforward, whereas generation of a suitable T is easily done by some iterative

process.
Theorem 3.4 If
S cifda < gab® (3.19)

where ]
¢ = 1/2 if 1281, (3.20)
3 = 25(1—ﬁ)/(2—~)3 if —1<k<1/2

then for scheme 1 51 18 contained in the parabola given by

vt (wft)} =0, viiw=2 (3.21)



Proof
We have to show that —6 — 4, + (72/8)? < 0. Using (3.2) we have

=+ (/0 <23 dasa{~1 + 2g3(1 ~ 5,)(Rs + 1)} (3.22)

Observing that
max{(1—s)(Rs + 1)*: 0< s <1} = 1/2gs (3.23)
the proof is completed.

The condition (3.19) is equivalent to

T< 2vq3b2/§:(ua|2 (3.24)

For scheme 2 we havey; = Qand k = 1 /3. It is easy to see that theorems 3.1, 3.4 and 3.4 hold
with d and d, replaced by d = E dy and dy, and & = 1/3, whereas instead of theorem 3.2 we

have

Theorem 3.5 [f
d<a and z:(c‘é/dol)lj3 < qa(b*/a)/? (3.25)

with g4 = 5(\/—— )5/3(—"'35)1/ 3 then for scheme 2 Si, is contained in the oval given by
(3.12). The first condition of (3.25)is necessary.

Proof

Necessity of the first part of (3.25) follows by taking s, = 1, @ = 1,...,m. The remainder
of the proof is the same as the proof that (3.10) and the first part of (3.11) are sufficient, by
substituting v; = 0 and x = 1/3.

Conditions (3.25) are equivalent to the following restrictions on the time step 7:

r < min{gn/ SR ol i ) (3.26)

4 Von Neumann stability conditions for various time discretiza-
tions

All that remains to be done is to choose suitable unions or intersections of the sets consid-
ered in theorems 3.1-3.5 (ellipses, oval, parabola) inside the stability domain S of the time
discretization method, and useful (i.e. not too conservative and easy to evaluate) sufficient
conditions for von Neumann stability tumble like ripe apples. It appears that until now only
in rare cases sufficient von Neumann stability conditions have been published for the explicit
or implicit-explicit (IMEX: diffusion implicit, convection explicit) schemes currently used for
time-dependent incompressible flow computations. In some cases necessary but not sufficient
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Figure 4.1: Stability domain of second order Adams-Bashforth scheme (—-) with oval (- - -)
and ellipse (- - -)

conditions are known for the Courant numbers ¢,. Fully implicit schemes are usually easily
seen to be unconditionally stable. The techniques used to derive the preceding theorems can
also be used to obtain stability conditions for cases where the ellipses, oval and /or parabola.
do not fit nicely in §; an example will be given. Applications will be given to schemes of
current or historical interest.

Explicit Euler The stability domain 5 is the disk |2+ 1] £ 1. With a = b = 1, theorem 3.1
immediately gives sufficient stability conditions. In the case kK = 1 (second order central
scheme) these conditions are shown to be also necessary in [18], and identical to those ob-
tained in [6], [9], [5].

Adams-Bashforth The second order Adams-Bashforth scheme has the following characteristic
polynomial:

3 1
£-t+ 2(55-5) (4.1)

with z = 6 4+ 71 + #y2. The boundary 85 of the stability domain § is found by substituting
€ =€ 0 < p< 2r and solving for —z; the result is shown in Figure 4.1. Ounly the upper
half of § is shown; all stability domains to be encountered are symmetric with respect to the
real axis. Near z = 0 we have [u| < 1, and on 8§ we have w & £(~4v)/%, v +iw = 2. On
the oval (3.12) we have w & +¢(~2v/g)Y% a =1/2and b= 2~1/4 result in the oval shown in
Figure 4.1. Near # = —1 we have = 7+¢, |¢] € 1,and on 85 : 2= —1+vtiw, w = 3,/v/5.
On the ellipse (3.17) with a = 1 we have z % —1+v+iw with w = bv/2v. Choosing b = 1/2/3
results in the ellipse shown in Figure 4.1. Useful sufficient stability conditions are obtained
by requiring —'rf,h(ﬂ) C ellipse N oval.

Combination of theorems 3.2 and 3.3 results in the following sufficient conditions for von

Neumann stability for scheme 1:

d<1/2 and 34 c2/dy < (2—K)2(1+ /1 - 4d?)

a (4.2)
and {(ct/d )P <q or Zo;lcal < 2v/2}
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Figure 4.2: Stability domain of third order Adams-Bashforth scheme (—-) with osculating
ellipse (- - -)
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Figure 4.3: Stability domain of RK24 scheme (—-) and ellipse (- - -)

The corresponding restrictions on 7 are easily found from (3.15) and (3.18) by substitution
of the relevant values for ¢ and b. Similar conditions can be obtained for scheme 2 by
using theorem 3.5 instead of theorem 3.2. The third order Adams-Bashforth scheme has the
following characteristic polynomial:

-4 -1-152(2352 ~ 16¢ + 5) (4.3)

The stability domain is given in Figure 4.2. It is covered to a satisfactory extent by the ellipse

2 o~

(3.17) that osculates in z = —6/11; its parameters are found to be a = 6/11, b = %%\/—2—3—5 =
0.6038. Theorem 3.3 immediately results in sufficient Neumann stability conditions.

Runge-Kutta To show the versatility of the method, we also apply it to a Runge-Kutta
method. For a four-stage method, the amplification factor is given by

P(z) = 1+ 2(1 + asz(l + az(l + o12))) (4.4)



In [12] a Runge-Kutta method is presented that is especially designed for convection-diffusion
problems, with coefficients oy = 1/4, az = 1/3, az = 1. For von Neumann stability we must

have
|P(2)| €1 for —z€ 5L (4.5)

The stability domain follows from solving |P(—2 + re*#)| = 1 for r, while varying u, and
is given in Figure 4.3. It is covered to a satisfactory extent by the ellipse (3.17) with a =
2.7853, b = 2.55. Stability conditions follow from theorem 3.3. It seems that stability
conditions for Runge-Kutta schemes applied to the convection-diffusion equation have been
given in special cases only, such as for d = 0 and k = 1.

Leapfrog-Euler This is an example of a mixed scheme, in which different time discretizations
are used for the convection and diffusion terms. Leapfrog is applied to the convection term,
and explicit Euler to the diffusion term. The stability polynomial is given by

€2+ 29(0)¢ + 26(6) — 1 (4.6)

with 4 = 1 + ¢y,. For mixed methods, the coeflicients of the stability polynomial and hence
the location of its roots do not depend on a single complex parameter z (z = 7+ § in the
preceding cases), so that the stability domain S is no longer a subset of the complex plane.
In the case of (4.7), where § happens to be real, the roots depend on three parameters y1,72
and 4, and S is a subset of JR®. It would not be difficult to re-interpret our theorems in this
three-dimensional setting, but a visual check whether the sets of the theorems are contained
in S is much less straightforward in three than in two dimensions. We will not do this here,
and restrict ourselves for mixed schemes to the case y; = 0, i.e. central second order (k = 1)
or fourth order (scheme 2) discretization of the convection term. Hence, the roots of the
stability polynomial depend only on two parameters, § and -y,, and we can continue to work
in the complex z-plane, with z = —§ — iv,.

Substitution of £ = e, 0 < p < 27, in (4.7), equating the stability polynomial to zero and
solving for z = —6 — iy, as a function of u gives the boundary of stability domain §, the
upper half of which is shown in Figure 4.4. The ellipses, oval and parabola fit badly, and we
proceed directly. For von Neumann stability it is necessary and sufficient that § + |y,| < 1,

or, for k = 1,
Z{da(l —c080,) + |casinby|} <1, 0< 6, <27 (4.7)
(¢}

Since 6y,...,6,, are independent, the maximum is obtained by maximizing each term in-
dividually. Defining f() = d(1 — cos8) + |c|sinf, 0 < § < 7, we have f'(§) = 0 for

6 =m—~n, tany = |o|/d, 0 < v < 7/2, resulting in max{f(8): 0<0 <7} =d++/c2+d>%
This gives us the following necesary and sufficient stability condition:

S {de+ Jd2+ 2} < 1 (4.8)

The one-dimensional version of this result has appeared in [2], with a less elementary proof
(using Schur-Cohn theory). On heuristic grounds, the following stability condition, generally
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used in practice, was put forward in [11] and proved in [10] (using Schur-Cohn theory):

d{2da+tleal} <1 (4.9)

(43

We see that this condition is sufficient but not necessary. Because of trouble with spurious
modes (necessitating application of the so-called Asselin filter), this scheme now seems to be
less favored than Adams-Bashforth for large-eddy and direct simulation of turbulence.

For fourth order central discretization (2.5) (scheme 2) we must have:

Z{da(l —cosfy) + —é|ca| [Bsinf, —sin26,|} <1, 0< 6, <27 (4.10)

Since [8sin 6, — sin 26, < 10| sin b, ] it is sufficient if
S {da(1 - cos 6 ) + -g—)[ca sinfaf} <1, 0< 0, <2 (4.11)
[¢3
Proceeding as before we find the following sufficient condition:
24 20,
> {da +4/d2 + Sy sl (4.12)
[44

Adams-Bashforth-Crank-Nicolson This is an example of a mixed scheme of IMEX (implicit-
explicit) type. Second order Adams-Bashforth is applied to the convection term and Crank-
Nicolson to the diffusion term. The stability polynomial is given by

{1+ 2600} + E(36(6) + 37(9) ~ 1} = 37(9) (4.13)

with ¥ = 77 + 492, Again, this being a mixed scheme, the roots are not a function of
z = 0§ + -, but our approach still works if ¥; = 0, in a similar way as in the preceding case.
The stability domain S in the z-plane, z = —§ — i7,, is plotted in Figure 4.5, together with
the parabola (3.21) with b = 2/+/3 and the oval (3.12) with @ = 1/2, b = (3/4)}/4. We have

B

-1

Figure 4.4: Stability domain of Leapfrog-Euler.
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Figure 4.5: Stability domain of Adams-Bashforth-Crank-Nicolson (—-) with oval (- - -) and
parabola (- - )

{parabola U oval} C §, so that for x = 1 (convection second order central) theorems 3.2 and
3.4 give the following sufficient stability conditions:

{d<1/2 and S (ch/da)? < (8/DY?) or S E/da < 2/3 (4.14)

whereas for scheme 2 theorems 3.4 and 3.5 give

{d<1/2 and Z(ci/al(,,)l/3 < q4(3/2)Y%} or > /do < 3%/5° (4.15)

Using Schur-Cohn theory, in [14] the following sufficient condition is derived for the one-
dimensional case and & = 1: ¢?/d; < 1/6, which is significantly more restrictive than (4.14);
a symptom of the unwieldiness of the Schur-Cohn conditions.

Adams-Bashforth-Fuler Like Adams-Bashforth, this is another scheme that tends to replace
leapfrog-Euler. The convection term is treated with second order Adams-Bashforth and the
diffusion term with explicit Euler. The stability polynomial is given by

1
€ — €+ 8(0)¢ + 57(0)(36 — 1) (4.16)
with ¥ = 71 + 472, and again our method works only if 73 = 0. The stability domain S in
the z-plane, z = § + 47, is plotted in Figure 4.6. For comparison, the stability domain of
second order Adams-Bashforth is also shown. The ellipse (3.17) that osculates in 2 = —2 has

parameters a = 2, b = 1/4/3. The oval in Figure 4.6 has parameters @ = b = 1. We have
{ellipse N oval} C 5, so that for x = 1 theorems 3.2 and 3.3 give

d<1 and S(c/d )P <1 and 43 /dy < éu FVIZE)  (a17)
o1 o
whereas for scheme 2 theorems 3.2 and 3.3 give, with k = 1/3 and &, = 0

12
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Figure 4.6: Stability domains of Adams-Bashforth-Euler (—) and second order Adams-
Bashforth (~« — - —. ), with oval (- - -) and osculating ellipse (- - -)

d<1 and ) (ci/da)®*<q and dY cl/d, < g%(l +V1-d?) (4.18)

with
1.5+/10
¢= g(_il_Q___)l/B(mo ~1)°/% 2 0.6360.

5 Concluding remarks

Von Neumann stability analysis for the convection-diffusion equation involves deriving condi-
tions for the roots of the characteristic polynomial of the multistep time discretization method
employed to be in the unit disk. Schur-Cohn theory, as described in [8], gives necessary and
sufficient conditions on the coefficients. However, deriving stability restrictions on the time
step from these conditions is usually an arduous task, that has to be undertaken anew for
each scheme that one wishes to consider, and gets rapidly out of hand as the order of the
multistep method increases. Hence, it is not surprising that few results have been published.
Furthermore, Schur-Cohn theory is not applicable to Runge-Kutta methods, for which not
the absolute value of the roots but of the characteristic polynomial itself is not to exceed 1.
In the foregoing we have presented an alternative approach. Based on theorems 3.1-3.5, sta-
bility conditions are easy to find. Our approach does not get more complicated as the order
of multistep methods increases, and applies equally to Runge-Kutta methods. Although not
its principle, its ease of use in practice is affected if the characteristic polynomial depends on
more than two parameters, so that the classical stability diagram of the time discretization
method does not apply. This may happen if the terms in the partial differential equation un-
der consideration are not all discretized in time by the same scheme, i.e. with hybrid schemes,
of which IMEX schemes are a subclass. Nevertheless, for such schemes the method may still
work, for example, when central space discretization is applied to first order terms.

The principle of the method is applicable to general initial-boundary value problems in any
number of dimensions, but theorems 3.1-3.5 have been derived for the convection-diffusion

13



equation, witl} the k-scheme or the fourth order central scheme used for space discretization
of the c'onvectlon term. To illustrate the use of the method, von Neumann stability conditions
are derived for a number of schemes. In most cases, sufficient conditions seem not to have
been available before.
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