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Ice, present on lakes and canals, can lead to social and economic consequences.
For example inland shipping can be hindered due to ice or, more favourable, sport
events can be held like ice skating. Predicting ice thickness can therefore be quite
useful. Existing ice prediction models are already integrated into meteorological
institutes across the world. The goal of this study is to understand the physics of
ice growth, and to assess how ice growth is affected by various meteorological fac-
tors, like local temperature, radiation and wind velocity. The understanding of the
physics behind these meteorological factors can be used to improve existing and
future models.

The following meteorological factors and their effects on ice growth are investi-
gated: temperature, atmospheric heat resistance, radiation, precipitation, wind ve-
locity and atmospheric stability. With atmospheric stability we refer to the fact that
the temperature stratification has an effect on the effectiveness of heat exchange in
the lower atmosphere. The factors are implemented into an ice prediction model,
building up complexity. The prediction models are run using idealised weather data
(focusing on a single meteorological parameter), giving an insight to the effects of
the meteorological factors concerning the ice growth. Also the prediction models
are compared to observed ice data applying contemporary weather data in the area
around the observations.

It appears to be rather difficult to asses the quality of the prediction, due to the
fact that the observed ice data has a relatively large spread. Nevertheless, it can be
concluded that the final model’s estimates are quite reasonable, as the prediction
lays within the bounds of the spread (in all the data sets). The effects of the various
meteorological forcing factors are quite clearly visible. To initiate the ice growth the
atmospheric temperature needs to be below 0◦C, hence the temperature is of vital
importance. The effect of atmospheric stability on vertical heat exchange needs to
be incorporated into the models to prevent overestimation of the ice growth. When
an initial ice layer is present, higher wind velocities causes the ice to grow more
rapidly and vice versa. Radiation can influence the ice growth rate both positively
and negatively, depending on the cloud coverage and the solar radiation. The radia-
tion (coherent with cloud coverage) also creates an asymmetry between the growing
and the melting rate of ice. Snowfall slows down ice growth (melt) rate considerably,
due to its isolating properties.
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It is recommended to look further into the effects of snowfall, as there possibly
could be an asymmetry of its effect on ice growth between the melting and growing
stage of ice, due to variations of thermal conductivity and albedo between ’fresh’
snow layers and melting snow layers. The stability conditions can not be imple-
mented directly into the model, because determining the stability (at a given time)
requires the use of iterative methods, which in turn requires more computational
time. It is recommended to further investigate how to simulate these conditions,
possibly by varying the roughness lengths (height from the surface where the tem-
perature gradient can be assumed zero) of ice. Altogether, this study offers a good
insight into the effects and physics of the investigated meteorological factors (apart
from atmospheric stability) to ice growth.
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Chapter 1

Introduction

Ice layers entail various consequences, for example inland shipping can be obstructed
due to ice. This can lead to unwanted economical consequences in the shipping in-
dustry. On a positive note, the ice can bring a lot of recreational activity and sport
events, like the ice skating contest, ’de Elfstedentocht’, in the Netherlands. A rather
large amount of money and endeavour is involved in the realisation of a national
event of this magnitude. Last-minute cancelling of the tournament due to insuffi-
ciently large ice thicknesses could therefore be disastrous. These are a few of the
many reasons why prediction of ice growth is important.

Existing prediction models are already used by official authorities worldwide.
For example, the Royal Netherlands Meteorological Institute (KNMI) predicts ice
growth on lakes and canals based on a model of De Bruin and Wessel from 1998,
henceforth called BW88. The operational KNMI model is a one-layer model in which
the entire water column is described by a single value of temperature, predicting the
water temperature, ice and snow thickness (De Bruijn, Bosveld, & Van Der Plas,
2014). Another model with comparable predictive power to the operational KNMI
model has been supplied by the Leibniz Institute of Freshwater Ecology (FLake).
This model is based on the self-similarity of the thermal structure of the water col-
umn (De Bruijn et al., 2014).

Apart from the permanent layers of ice at the Earth’s poles, the growth of ice in
lakes and canals is a recurring seasonal phenomenon across the globe. The growth
of ice depends on a large range of meteorological and physical parameters. The
challenge in predicting ice growth lies in determining the importance of these pa-
rameters, and to construct a mathematical model that is both effective and simple.
Simplicity makes it easily accessible and fast computationally.

This study mainly focuses on the effect of several meteorological factors on ice
growth, the physical reasons why these factors effect ice growth and how this can
be translated into a model. After getting a proper understanding, ice growth is pre-
dicted for a few cases to test the validity of this model. We stress that this (short) pre-
liminary study is primarily for interpretation purposes. The goal is not the replace
operational models. That being said, understanding the effects of a wide spectrum
of meteorological parameters can be useful to improve future models.

This report is built up as follows: In chapter 2 the physical background of vari-
ous meteorological factors is introduced, with a focus on how these factors influence
ice growth. The simple ice growth model is presented in chapter 3, with complex-
ity built up through subsequent inclusion of the various meteorological parameters.
In chapter 4 the models are validated using historical weather data, and observed
ice thicknesses across the Netherlands. Also, to better understand the effects of the
meteorological parameters, the models are assessed for idealised input data, spe-
cific, individual parameters varied. The results of the models are analysed in chap-
ter 5, discussing the validity of the models and assumptions. Finally, in chapter 6,
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conclusions are made about the effects of the tested parameters on the ice growth.
Recommendations are made about how to implement certain parameters into future
models.
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Chapter 2

Theoretical background

Various physical processes such as convection and radiation have an important role
when it comes to ice growth. The theoretical and physical reasons as to why and,
to some degree, how these processes influence the ice growth, are explained in this
chapter. The equations describing these phenomena and how they are implemented
in the ice model will be discussed in Chapter 3

2.1 Heat transfer

In order for a liquid to solidify, the temperature of the liquid needs to drop below
its melting point. The melting point of water is henceforth called the freezing point.
To change the phase of water, thermal energy needs to either be added or removed
from the water. In order for thermal energy to move, three basic processes take place:
conduction, convection and radiation (Haberman, 2014).

2.1.1 Conductive heat transfer

Due to the colliding of neighbouring molecules, kinetic energy of vibration of one
molecule is transferred to its nearest neighbour (Haberman, 2014). This process
is called conduction. During conductive heat transfer, thermal energy is therefore
spread, even though the molecules themselves don’t move their location apprecia-
bly (Haberman, 2014). Because of the latter, within the (solid) ice layer heat transfer
is mainly conductive.

2.1.2 Convective heat transfer

In (Haberman, 2014) it is stated that if an ’air package’, with vibrating, moving
molecules within it i.e, carrying thermal energy - moves from one region to another
(by fluid motion), it takes its thermal energy with it. This type of movement of ther-
mal energy is called convection. When water or air travels in any direction, their
thermal energy travels with them. Therefore, phenomena which can cause these
currents in the air or water (such as transport by wind) are looked into.

2.1.3 Heat transfer due to radiation

According to (Howell, Siegel, & Mengüç, 2010) practically all matter emits electro-
magnetic radiation. Thermal radiation transfer that takes place between two distant
bodies depends on the difference between the fourth power of their absolute tem-
peratures, according to Boltzmann’s law (Howell et al., 2010). Solar radiation is an
example of thermal radiation which is included in our ice model. Even at times
when the solar radiation is negligible, thermal radiation still plays a role within the
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model. For example the thermal radiation between the surface layer and the atmo-
sphere remains non-negligible.

2.2 Effect of weather on ice growth

The weather conditions greatly influence which type of heat transfer dominates and
which one becomes suppressed in the model. Consequently, other weather condi-
tions besides outside temperature can influence ice growth. Hence, weather con-
ditions which significantly affect the heat transfer should be accounted for in the
model.

2.2.1 Precipitation

Precipitation may affect the conductive heat transfer. In this model, mainly the effect
of snowfall will be investigated. A snow layer upon an ice layer ’separates’ the ice
layer from the atmosphere, effectively insulating the ice surface. Within the snow
layer movement of air is restricted and therefore convective heat transfer is sup-
pressed. Furthermore, the porous nature of snow results in a relatively low thermal
conductivity within the snow layer (compared to the ice layer). The combination of
suppressed convective and conductive heat transfer decrease the effect of the atmo-
spheric temperature on the ice layer. Consequently, the ice layer’s growth rate will
decline.

2.2.2 Solar radiation

According to (Moene & van Dam, 2014) radiative fluxes as they are relevant to the ice
model can be split on basis of their origin. Short-, and longwave radiation. They note
that shortwave radiation is emitted from the sun, with a wavelength of 0.15-3 µm,
and can be either direct or indirect after interaction with the atmosphere. Longwave
radiation, on the other hand, is emitted by cooler objects (such as the Earth’s surface
and atmosphere), with a wavelength range of approximately 3-100 µm. The Earth’s
atmosphere plays an important role in determining the amount of radiation that
reaches the surface, cloud coverage and the type of clouds are the most important
causes of variation (Moene & van Dam, 2014). For this reason cloud coverage and
solar radiation are investigated during the modelling phase.

2.2.3 Stability

Ice growth requires heat to flow out of the ice layer. In the case of a one dimensional
ice layer, the heat can either flow into the water or into the atmosphere. In gen-
eral, the water can’t attain a lower temperature than the ice layer, or else the water
would be ice itself. Also, heat flowing from the ice into the water would warm the
water, which in turn would negate the ice growth. Consequently, the heat can only
be released into the atmosphere. The air in the atmosphere has very poor conduc-
tive properties. The main way to transport heat within the atmosphere is through
convection. The two driving forces behind the convection are wind and buoyancy.

Higher air temperatures correspond to a lower air density, hence a vertical tem-
perature gradient of the air creates an airflow in the vertical direction. From now on
heat flowing from the Earth’s surface into the atmosphere will be addressed as the
sensible heat flux (upwards positive). Initially, when the sensible heat flux is zero
(and there is no wind velocity), layers of air are ’stacked’ upon each other. Every
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FIGURE 2.1: Relation between vertical air motion, temperature gradi-
ent and sensible heat flux (H) (Moene & van Dam, 2014)

layer with a different temperature and density. When heat is released from the ice
layer into the air near the surface, the air starts to flow upwards, mixing the different
air layers. On the other hand when, the sensible heat flux is either negative or very
small, the initial ’stacked’ layers return into the air due to density stratification; i.e.,
warm air will spontaneously rise and the cold air is relatively heavy and will stratify.
In this case, the temperature measured at some height in the atmosphere can’t reach
the Earth’s surface due to ’blockage’ by underlying air layers, driven by buoyant
forces. The freedom of the vertical air motion is addressed by the term ’stability’.
Motion of air suppressed by buoyancy is defined as a stable condition, whereas free
vertical motion is defined as an unstable (convective) condition (Moene & van Dam,
2014).

Due to solar radiation the temperature of the Earth surface rises. For surfaces like
the Earth’s soil, the rise of temperature creates a positive sensible heat flux. Along
the same lines, during the night the sensible heat flux is usually negative, due to
lack of solar radiation. By land, this mechanism causes variations between stabil-
ity conditions during the diurnal cycle, being stable during the night and unstable
during the day. Contrarily, when it comes to ice/water surfaces, the stability con-
ditions don’t follow the same pattern. When air temperatures are below zero, the
temperature of the ice (being close to zero) is higher than the atmosphere’s, caus-
ing a positive heat flux. During the day, the solar radiation either diminishes the
positive surface heat flux or, in the case of ice melt, causes a negative surface heat
flux. As a result, unstable conditions will likely appear during the night and near
neutral/stable conditions generally appear during the day (over ice, over land it is
reverse). The ’blockage’ caused by the stably stratified conditions during ice melt,
reduces the rate at which the ice melts, which may create an interesting asymmetry
between the growing and melting stage of ice. This effect will be discussed in more
detail later.
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Chapter 3

Modelling ice growth

This chapter presents the ice growth model. The heat equation dictates, in the broad-
est sense, all the models. Therefore, a brief explanation of this equation is given. On
the basis of the heat equation, several important assumptions (used for all the mod-
els) are established. Next, the base model is presented. Further complexity is then
added through adopting various assumptions about physical factors involved.

3.1 The heat equation

The temperature profile over time within the ice is described by the solution of the
classic heat equation:

∂T
∂t

= −α∇2T + Q(x, y, z, t) (3.1)

T represents the temperature of the ice (in K), α is the thermal diffusivity of ice
and Q an internal source term. The thermal diffusivity can be written as:

α =
ki

ρici
(3.2)

In which the thermal conductivity of ice is denoted as ki (W/mK), the ice’s den-
sity as ρi (kg/m3) and it’s heat capacity as ci (kJ/kgK). Given any lake or canal,
sources interacting with the system, like the atmospheric and water temperature,
are assumed to be uniformly distributed along the horizontal plane. As a result, the
horizontal temperature gradient in the ice layer is negligible compared to the vertical
temperature gradient. This assumption simplifies the heat equation into:

ρicp
∂T
∂t

= −ki
∂2T
∂z2 + q(z, t) (3.3)

Given any source, boundary conditions and an initial condition, equation (3.3) can
be solved (both analytically and numerically).

3.1.1 Boundary conditions

Equation 3.3 requires two boundary conditions to solve. The boundaries are located
at the surface of the lake (the top of the ice layer) and at the bottom of the ice layer.
At the top layer heat needs to either escape or enter the ice in order for the ice layer
to expand or contract respectively. At the lower boundary the temperature is as-
sumed to be equal to the freezing point Tf (i.e 273.15 K or 0 Centigrade). The upper
boundary is set to be at z = 0, with z downwards positive. The location of the lower
boundary is not known, and is a distance s(t) > 0 (the ice thickness) away from the
upper boundary.
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FIGURE 3.1: Schematic diagram of temperature profile and bound-
ary conditions. Snowfall and heat flux coming from the water are

neglected

Applying Fourier’s Law to the upper boundary, the boundary conditions read:

ki
∂T
∂z

(0, t) = G(t) (3.4)

T(s(t), t) = Tf (3.5)

In which G(t) represents the heat flux of the ice layer. G(t) is taken positive when
heat enters the ice. At this time, the heat equation is not yet valid at the lower bound-
ary. Apart from the initial condition, an additional condition is required to find the
location of s over time. This additional condition is called the ’Stefan condition’,
named after the Slovenian physicist Josef Stefan. The Stefan condition evaluates the
ice growth rate, which depends on the amount of heat added or withdrawn from the
ice, divided by the latent heat of freezing and the ice’s density. The Stefan condition
thus reads:

∂s
∂t

= −G(t) + Qw(t)
ρiL f

(3.6)

Where L f (kJ/kg) represents the latent heat of freezing and Qw the heat flux
coming from the water (inwards the ice positive). Equation 3.6 lays the foundations
of all upcoming ice models, as its solution describes the ice thickness over time.

3.2 The basic model

A few assumptions are made to start with a relatively straightforward model. First of
all, the heat flux coming from the water (Qw) is neglected. This transforms equation
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3.6 into:
∂s
∂t

= −G(t)
ρiL f

(3.7)

The net heat flux at the surface of the ice layer (G) can be subdivided into two
components: the sensible heat flux (H) and the net radiative flux (Q).

G(t) = Q(t)− H(t) (3.8)

To preserve the conventions used in most literature, heat leaving the ice (heat
flow in negative z direction) is taken negative for Q and positive for H. The radia-
tion (Q) is assumed to be zero in the basic model, and will be implemented in later
models. This leads to the following equation governing the basic model:

∂s
∂t

=
H(t)
ρiL f

(3.9)

In the simplest case, our reference model, the surface temperature (Ts) is assumed
to be equal to the temperature measured in the atmosphere (Ta). Later this (rather
stringent) assumption is relaxed towards a more realistic assumption. Throughout
the study ’steady state’ conditions in the ice are considered; i.e., the temperature
profile within the ice is assumed to be linear. The latter will be assumed for all the
models. Implementing these assumptions into 3.4, 3.8 and 3.9 the ice growth rate is
described by:

ρiL f
∂s
∂t

= ki
(Tf − Ta(t))

s
(3.10)

Equation 3.10 is an ordinary differential equation which can be solved analyti-
cally for s. Given any initial ice thickness s0 at t0 and using the method of separation
of variables, the analytic solution reads:

s(t) =

√
s2

0 + 2
ki

ρiL f

∫ t

0
Tf − Ta(τ)dτ (3.11)

The values used for the physical variables can be found in table A.1. The density
(ρi) and thermal conductivity (ki) are slightly dependent on the temperature (see
Table A.2). The changes caused by the temperature are in this case neglected and ki
and ρi are assumed to have a fixed value (see table A.1). The solution describes the
thickness of the ice dependent on its initial state and the temperature in time. The
basic model is therefore defined by equation 3.11.

3.3 Atmosphere-surface coupling

The basic model above assumes that Ts = Ta. In reality, however, Ta is usually
measured at some level above the surface, with the air in between the surface and
measurement height having a certain degree of resistance against the heat transfer.
Therefore, as a first increase in model complexity, Ts is no longer assumed to be
equal to Ta, but instead some function of Ta taking the air resistance into account.
The heat resistance of the air depends on the local wind velocity and the stability of
the system. Moene & van Dam (2014) present two equations describing the relation
between the sensible heat flux, the temperature difference, the wind velocity and the
stability condition (see section 2.2.3). For unstable conditions the relation reads:
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H
ρacp

≈ −κ2∆T∆u

ln
(

z2
z1

)2 (1− 16Rib∗)
3
4 (3.12)

Where κ is the von Kármán constant (≈ 0.4), and z1 and z2 are the lower and
upper heights respectively, at which the temperature is measured. ∆T is defined as
T(z2)-T(z1) (in this case Ta-Ts) and ∆u is defined in a similar fashion. ρa and cp are
the density and heat capacity of the air. Rib∗ is an effective bulk-Richardson number
given by:

Rib∗ =
√

z2z1 ln
(

z2

z1

)
g

273.15
∆T
∆u2 (3.13)

The gravitational acceleration constant is denoted as g (9.81 m/s2).
In the stable case, equation 3.12 and 3.13 are no longer valid. In this case the

following relation is given by (Moene & van Dam, 2014):

H
ρacp

=

 −
κ2∆T∆u

ln
(

z2
z1

)2 (1− 5Rib)
2 if 0 < Rib < 0.2

0 if Rib > 0.2
(3.14)

With Rib given by:

Rib = (z2 − z1)
g

273.15
∆T
∆u2 (3.15)

To properly approximate the surface temperature, z1 needs to be close to the
surface; i.e., close to zero (at the same time, z1 can’t equal zero as otherwise dividing
by zero would occur). As z1 approaches zero, the difference between the surface
temperature and the observed temperature will approach zero as well. (Moene &
van Dam, 2014) provide several heights z0, depending on the surface composition,
that meet the requirement T(z0) ≈ Ts. These heights are called the aerodynamic
roughness lengths. In this study, a homogeneous surface is assumed. In reality, the
roughness length can vary due to, for example, local vegetation.

TABLE 3.1: Typical values for aerodynamic roughness lengths for nat-
ural surfaces (Moene & van Dam, 2014)

Surface Remark z0

Water Still-open 10−4 − 10−3

Ice Smooth sea ice 10−5

Ice Rough sea ice 10−3 − 10−2

Snow 10−4 − 10−3

Soil 0.002

Table 3.1 gives an indication of the order in which the roughness lengths typically
lie. Taking z1 = z0, H (in equations 3.12 and 3.14) will depend on Ts. Applying 3.4,
3.8, 3.12, 3.14 and the assumption that the temperature profile within the ice is linear,
an expression for Ts can be found by solving the following for Ts:
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ki
Tf − Ts

s
=


−ρacp

κ2(Ta−Ts)∆u

ln
(

z2
z1

)2 (1− 5Rib)
2 = f (Ts) for stable conditions

−ρacp
κ2(Ta−Ts)∆u

ln
(

z2
z1

)2 (1− 16Rib∗)
3
4 = g(Ts) for unstable conditions

(3.16)
In both the stable and the unstable case the (effective) bulk-Richardson num-

ber influences the validity of the equation 3.16. When the bulk-Richardson num-
ber grows too large, the right-hand side of equation 3.16 will either become zero or
contain imaginary values. The equations 3.12 - 3.15, are usually applied under the
condition that z2/z1 < 6. Because z1 → 0 (to approximate Ts), the condition won’t
be met in this case. Consequently, the magnitude of the (effective) bulk-Richardson
number will increase significantly, causing the Richardson number to become unre-
liable during calculations. To avoid this undesirable situation, both cases in equation
3.16 are linearised into a first degree Taylor polynomial centred at Ts = Ta:

ki
Tf − Ts

s
=


f (Ts) = f (Ta) +

f ′(Ta)
1! (Ts − Ta) = W(∆u)(Ts − Ta) (stable)

g(Ts) = g(Ta) +
g′(Ta)

1! (Ts − Ta) = W(∆u)(Ts − Ta) (unstable)
(3.17)

With W(∆u) being a coefficient depending on the wind velocity:

W(∆u) =
ρacpκ2∆u

ln
(

z2
z1

)2 (3.18)

When linearised around Ta, both cases in equation 3.16 lead to the same result.
The result does no longer meet the stability requirements, but describes the atmo-
spheric heat resistance in neutral conditions. Solving equation 3.17 for Ts results in:

Ts =
W(∆u)Tas + kiTf

W(∆u)s + ki
(3.19)

To finalise the solution, equation 3.19 is substituted into 3.10. The resulting dif-
ferential equation being dependent on Ta and the wind velocity ∆u. The equation
reads:

ρiL f
∂s
∂t

= ki
(Tf − Ta(t))

s + ki
W(u)

(3.20)

To solve 3.20 analytically, another condition is required: the wind velocity must
be constant during the entire time span; i.e., W(∆u) is a constant. The analytical
solution in that case becomes:

s(t) =

√
s2

0 + 2
ki

ρiL f

∫ t

0
Tf − Ta(τ)dτ +

(
ki

W(u)

)2

− ki

W(u)
(3.21)

The heat capacity and density of the atmosphere are dependent on the temper-
ature of the atmosphere (see Table A.3) In this model the density and heat capacity
are assumed to be constant and have a value of 1.22 (kg/m3) and 1.0 (kJ/kgK) re-
spectively.



Chapter 3. Modelling ice growth 11

To solve 3.20 considering fluctuating wind velocities (in time), numerical meth-
ods are required.

As stated before, the final equations containing atmospheric coupling (equation
3.20 and 3.21) do not include the effects of stability. To implement stability into the
model, a second degree Taylor expansion is required, combined with knowledge of
the stability conditions. The stability (at a given time) could be determined using
iterative methods. Those methods are purposely left out in this study, since iterative
processes require relatively high computational time. At first, neglecting the stability
altogether was not intended, as the initial idea was to implement stability directly
by using equations 3.12-3.15.

3.4 Radiation

Up to now, thermal radiation Q(t) has been neglected and assumed to be zero. Ther-
mal radiation is divided into two categories: longwave radiation (L) and shortwave
radiation (K). Since both types are expressed in W/m2, the energy balance at surface
reads:

Q = L+ − L− + K+ − K− (3.22)

The ’+’ sign indicates energy entering the system (downwards), whereas the ’−’
sign indicates energy leaving the system. In this model, solar radiation is assumed
to be the only source of incoming shortwave radiation (K+). During the diurnal
cycle, this means the incoming shortwave radiation is relatively high during the day
and (in general) negligible during the night. During the night the net radiation is
thus solely dependent on the longwave radiation leaving the ice and entering the
ice from the atmosphere. Depending on the surface properties, the incoming solar
radiation is partially reflected, resulting in outgoing shortwave radiation (K−). The
percentage of the solar radiation that gets reflected is called the surface’s albedo (α).

Longwave radiation is emitted from the ice into the atmosphere and vice versa.
The Stefan-Boltzmann law describes the energy radiated by an arbitrary body as
follows:

Lj = εjσT4
j (3.23)

The subscript ’j’ represents the different bodies, in this case the atmosphere and
the surface. The constant ε is called the emissivity, which is dependent on the prop-
erties of the body. σ (≈ 5.670× 10−8 Js−1m−2K−4) is the Stefan-Boltzmann constant,
a constant derived from other physical constants. It is important to note that the
temperature (T) is the thermodynamic temperature, given in Kelvin. In the previous
models, both the Kelvin and the Celcius temperature scale could be used, because
those models only dealt with temperature differences.

The emissivity of the atmosphere depends largely on the cloud coverage and wa-
ter vapour. In the case of a clear sky, the water vapour is the most active constituent.
The emissivity εa,clear is then approximated by the following equation (Moene & van
Dam, 2014):

εa,clear = c1 + c2
√

ea (3.24)

Where ea is the water vapour pressure (hPa), and c1 and c2 are empirical con-
stants with standard values of 0.52 and 0.065 hPa−

1
2 . Interpolating the clear sky
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emissivity and the emissivity of clouds (assuming a cloud to be black radiator with
emmisivity of 1), results in the atmospheric emissivity (Moene & van Dam, 2014):

εa = fcloud + (1− fcloud)εa,clear (3.25)

fcloud is the cloud fraction i.e. the percentage of cloud coverage. Assuming the
albedo and emissivity of the surface are given, all the necessary equations are now
available in order implement radiation into the model. Equation 3.22 now reads:

Q = εaσT4
a − εsσT4

s + (1− α)K+ (3.26)

εs is the emissivity of the surface, in this case the emissivity of ice. Since equation
3.26 contains Ts (which is unknown), equation 3.4 needs to be solved for Ts in terms
of Ta (in a similar fashion as in the case of atmosphere-surface coupling). To fur-
ther simplify the calculations, Ts is linearised into a first degree Taylor polynomial
centred at Ts = Ta. This results in the following equation describing Q:

Q = (εa − εs)σT4
a − 4εsσT3

a (Ts − Ta) + (1− α)K+ (3.27)

Ts can be solved for by combining equation 3.4, 3.8. Substituting for Ts into
equation 3.10 (including surface-atmosphere coupling) gives:

ρiL f
∂s
∂t

=
ki

s
(Tf −

s(εa + 2εs)σT4
a + sW(u)Ta + s(1− α)K+ + kiTf

3sεsσT3
a + sW(u) + ki

(3.28)

Supposing K+ is a given value in time, equation 3.28 can be solved numeri-
cally. The solution renders the ice thickness in time, including radiation and surface-
atmosphere coupling.

3.5 Precipitation

Precipitation can influence the ice growth in several ways. This study only looks
into the effects of snowfall. The porous nature of snow layers has an important
thermodynamic consequence: the snow layer’s thermal conductivity is relatively
low, compared to the ice’s conductivity. Consequently, a snow layer covering the
ice can significantly reduce the ice growth rate. The snow density varies in time
due to the snow’s own weight (which causes it to compress), and due to subsequent
freezing/thawing cycles which causes ice crystals to lose their ’open’ shape. Since
the density affects the thermal conductivity, the conductivity also is time dependent.
Another important factor influencing the ice growth rate, is the height of the snow
layer. Logically, the compression of the snow in time directly relates to the height of
the snow layer. The FLake model, an ice thickness model supplied by the Leibniz
Institute of Freshwater Ecology, provides an elegant empirical solution to the snow
conductivity (De Bruijn et al., 2014):

k = ksnow + (kice − ksnow)e−5h (3.29)

Where h represents the height of the snow layer. In the FLake model the snow
density is assumed to not vary in time, but being a constant ρsnow = 320kg/m3 in-
stead. As a result of the constant density, the conductivity of the snow, ksnow, remains
constant as well. The effective conductivity k of the snow and ice layer combined,
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can now be calculated using equation 3.29. By replacing ki for k in the previous
models, snow is now taken into account.

Apart from the low thermal conductivity, in some cases the higher surface albedo
of snow also plays a role in diminishing the ice growth rate. The surface albedo
varies along with the state of the ice and snow. For example, when ice melts the
albedo reduces. In order to maintain simplicity, even though variation in albedo can
significantly affect the ice growth, two fixed values are taken for the snow and ice
albedo.

3.6 Water temperature

Water temperature below the lower boundary (the bottom of the ice layer) is higher
or equal to the temperature of the lower boundary itself (Tf ). Similar to the atmo-
sphere, the water experiences a density gradient caused by temperature differences
within the water. Water has its highest density at approximately 4◦C (De Bruijn et al.,
2014). The temperature at the bottom of the lake Tb is therefore assumed to be equal
to 4◦C. The heat flux from the water, entering through the bottom of the ice layer, is
determined by applying Fourier’s Law. Assuming the temperature gradient of the
water is close to linear, the heat flux caused by water temperature (Qw) is estimated
by:

Qw = kw
Tb − Tf

D− s
(3.30)

With kw being the thermal conductivity of water and D the total water depth
(zbottom − zsur f ace). Because the movement of water is assumed to be non-turbulent,
kw is an absolute minimum. In reality this assumption will hold in most cases, since
generally little turbulent movement of water occurs in channels and lakes (except
when water structures like for example locks are present). Also, the water will be
stably stratified (which suppresses turbulence). The depth of the observed lakes
fluctuate around approximately 2 meters. The bottom temperature is assumed to be
4◦C, since the water has the highest density around this temperature (see Table A.4).
The thermal conductivity of water is assumed to be around 0.606 W/mK. The water
heat flux, can be implemented into the models using equation 3.6.
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Chapter 4

Results

In this chapter the effects of different weather conditions are investigated. First an
academic sensitivity study is performed. This means that different scenarios are
calculated in which the ice model is forced by artificial ice data (’what if’ scenar-
ios). Second, actually occurred cases will be studied. Here the model is forced with
historical weather data and ice growth is compared with actually observed growth
during those periods.

4.1 Model sensitivity analysis

In order to properly understand in which way all the parameters affect the model,
the ice thickness is predicted on the basis of an idealised data set. By controlling the
parameters in the data set, the effect of different parameters on the ice growth can
be visualised. This in turn gives a better understanding of the significance of certain
weather phenomena.

To properly see the effects between the growing and melting stage of ice, a sym-
metrically odd function describing the temperature profile is assumed, in this case
a negative sine wave (in order to start with ice growth, the initial temperature, and
therefore the sine, needs to be negative). The period is set to one hundred hours and
the amplitude to 10◦C. This temperature distribution is far from realistic, but the
large period combined with rather extreme amplitudes result in high freeze/thaw
rate, enlarging the effects of the investigated parameters. At last, to minimise the
numerical errors, an initial ice thickness is assumed (5cm). This temperature profile
and initial ice thickness is assumed in all the simulations.

In figure 4.1 the resulting ice thickness due to various wind velocities is plotted
using the surface-atmosphere model, visualising the effects of different wind veloc-
ities (neglecting radiation). The rather unrealistic maximum ice thicknesses are the
result of a relatively high amplitude and the long period of freezing (fifty hours of
uninterrupted subzero temperatures). Another way to influence the atmosphere-
surface coupling is to change the roughness length (z0). The effects of these changes
are represented in figure B.9. Increasing the wind velocity positively affects both the
growth and melt rate of the ice. A higher wind velocity results in a higher maxi-
mal ice thickness, yet the final ice thickness remains the same regardless of the wind
velocity. The symmetry was initially not expected, and is caused by the absence of
stability in the atmospheric coupling equations (3.20 and 3.21). Mathematically, an
infinite wind velocity would result in Ta to be equal to Ts, and result therefore into
the basic model equation (3.11).

To look into other parameters, the wind velocity is now fixed to 5 m/s. To inves-
tigate certain cases of radiation, the solar radiation is assumed to be zero for now.
As mentioned earlier, this is far from realistic, as hundred hours without sun is ex-
tremely unlikely. The emissivity of ice is a fixed value of 0.96. The absence of solar
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FIGURE 4.1: Ice thickness profile for various wind velocities and the
basic model.

radiation renders the albedo irrelevant at this point. Now, the effects of the atmo-
sphere’s emissivity can be visualised by alternating the amount of cloud coverage
(see figure 4.2).

The cloud coverage dampens the ice growth in general and increases the melt
rate. Interestingly, including radiation into the model removes the symmetry be-
tween the ice growth and melt, decreasing the influence of the atmospheric temper-
ature during the melting stage.

FIGURE 4.2: Ice thickness profile for various cloud coverage percent-
ages with a fixed wind velocity of 5 m/s.

This results contradicts the expectation that adding radiation to the system would
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lead to an increased melt rate (in all cases). The net longwave radiation leaving the
ice’s surface will, in fact, increase ice growth. It should be noted that this case is un-
realistic as well: In reality high percentages of cloud coverage would suppress the
(in this case relatively high) temperature amplitude.

The surface temperature depends on the net radiation, regardless of the source
(whether it’s longwave or shortwave). For that reason solar radiation has basically
the same effects as cloud coverage, because both influence the net radiation. Re-
gardless of the similar effects, the solar radiation is looked at independently, such
that the effects of certain quantities of solar radiation can be expressed. The solar
radiation unit is set to J/cm2, the same unit used in the weather data sets provided
by the KNMI. To investigate which amounts of solar radiation affect the ice growth
significantly, the cloud coverage is now fixed at 40%. Varying the albedo or the solar
radiation itself has the same effects as they are inversely proportional. In this case
the albedo is given a fixed value of 80% and the solar radiation is varied along differ-
ent plots (see figure 4.3). The differences are already visible at 20 J/cm2, and become
more significant as the amount of radiation increases.

FIGURE 4.3: Ice thickness profiles with varying intensity of solar ra-
diation.

Finally, the consequences of snowfall are visualised. All previous variable pa-
rameters are fixed, in this case is the solar radiation set at 80 J/cm2. The effects
of snowfall are divided into two cases: snowfall during the ice growth stage and
snowfall during the melting stage. The two different cases are plotted with different
snow depths. During the ice growth stage, the snowfall is assumed to fall between
the 15th and 35th hour, whereas during the melting stage the snow falls between the
65th and 85th hour. The thermal conductivity of (dry) snow lies between 0.05 and
0.25 W/mK (Engineering ToolBox, 2003a). In this case the conductivity is fixed at
0.25 w/mK. The surface albedo of (dry) snow is estimated to be around 0.95. Figure
4.4 visualises the response of the model to snowfall during ice growth.

The snow layer reduces the ice growth significantly. Increasing the height of the
snow layers results in a decrease of the growth rate. During the melting stage the
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FIGURE 4.4: Ice thickness profiles with varying snowfall during the
ice growth stage. The dashed lines indicate the range in which snow

was present.

snow layer affects the model as is presented in figure 4.5. The snow layer reduces
the melt rate as well. Similarly to snow layers during the growth stage, the melt
rate decreases with an increase of the snow layer’s height. The fact that the ice
experiences any growth or melt at all when covered by a 50cm snow layer, can be
explained by the extreme temperature amplitude and freezing time-period.

From this paragraph, studying modelling sensitivity for a (rather extreme) case,
it can be concluded that all the investigated meteorological parameters influence
the ice growth. Wind improves the atmospheric heat transport, radiation can both
positively and negatively influence ice growth and snow layers decrease the ice
growth/melt rate. In the next paragraph, model outcomes will be compared to more
realistic cases.
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FIGURE 4.5: Ice thickness profiles with varying snowfall during the
ice melting stage. The dashed lines indicate the range in which snow

was present.

4.2 Comparison to historical weather data

Three different data sets are used to study ice growth under realistic conditions. Two
of those provide the observed ice thickness in several lakes in the province Friesland
(The Netherlands), in the years 2010 and 2012. The third data set presents the wa-
ter temperature at several depths of a lake/ditch in the region near Cabauw (The
Netherlands) in 1997. The ice thickness of the models forced with contemporary
weather data provided by The Royal Netherlands Meteorological Institute (KNMI)
is compared to the ice thickness of the observed data sets for that period. In the case
of the data sets regarding the province of Friesland, weather data measured in the
city Leeuwarden is used. The observed ice thicknesses of the Friesland data sets are
paired with the geographic coordinates of the measurement’s place. Using reverse
geocoding the data sets are distinguished into different lakes, each with its own ice
thickness.

As can be seen in figure 4.6, the observed ice thicknesses at fixed times varies
with location within Friesland, especially in 2010. The variation is likely caused
by different weather- and environmental conditions between locations, e.g. differ-
ence in microclimate. By using only weather data originating from Leeuwarden,
the difference in microclimate throughout Friesland can not be accounted for. For
that reason, the focus of the comparison between the Friesland data in 2010 and the
models will primarily be on their shape and whether or not the model lies within
the data spread. The relatively minimal spread in 2012 can be explained by a higher
consistency regarding the observed locations, compared to the 2010 data.

For the Cabauw data set, the water temperatures measured at several depths
needs to be translated into ice thickness. A linear approximation of the water tem-
perature along the depth is made, with the use of the known water temperatures at
several depths. The depth at which the linearly approximated temperature reaches
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(a) Friesland 2010 (b) Friesland 2012

FIGURE 4.6: Ice thickness: all observation and a few examples of spe-
cific lakes in Friesland during 2010 (a) and all observations in Fries-

land during 2012 (b).

the freezing point, is taken as the ice thickness. During the melting of ice, convective
processes cause stably stratified water layers to mix. Assuming a linear tempera-
ture profile in the water does no longer hold in that case, causing the method of
(linearly) approximating the ice thickness to not be viable during the melting of ice.
Therefore, during the melting stage a large part of the data is left out. The estimated
ice thickness is visualised in figure 4.7 (b).

(a) Cabauw water temperature (b) Cabauw ice thickness

FIGURE 4.7: The water temperature measured at several depths in a
lake in cabauw (a) and its estimated ice thickness (b)

The available ice thickness data is now compared with the ice prediction model.
The reason these results aren’t presented at the start of this chapter, is because this
concerns the primary modelling phase (further improvement is required in subse-
quent studies). The visualisation of the models in detail can be found in Appendix B.
The basic model is solved analytically using equation 3.11. The blue lines in figures
4.8, 4.9, and 4.10 represent the basic model. In all cases the basic model (equation
3.11) overestimates the ice thickness. As mentioned in section 3.2, this overestima-
tion can be explained by the assumption that Ta = Ts. The error and correlation
between the prediction and observations are calculated using the daily mean of the
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observations and predictions. This way, further complications due to different sam-
ple sizes is prevented. Henceforth, when mentioning errors and correlations, the
actual errors and correlations relate to the mean of contemporary data. The error
is determined using the Root Mean Squared Error (RMSE). In the case of the basic
model, the error ranges from 10.45cm to 12.59 cm. The correlation is calculated us-
ing the Pearson correlation coefficient. The correlation coefficient of the basic model
ranges from 0.82 to 0.93, indicating a strong positive correlation. So with the most
basic model (equation 3.11) a strong correlation but also a strong bias is found, indi-
cating that the model is incomplete.

FIGURE 4.8: Predicted ice thickness in Friesland 2010 including the
meteorological parameters: atmospheric coupling and radiation

The correlation coefficient and RMSE are given for all cases in table 4.1.

TABLE 4.1: The RMSE and correlation of the models compared to the
observed data

Friesland 2010 Friesland 2012 Cabauw 1997

RMSE (cm)1 Corr. RMSE (cm) Corr. RMSE(cm) Corr.

Basic model 10.42 0.82 12.59 0.93 10.45 0.83
Including atmospheric coupling 2.02 0.82 3.12 0.98 5.01 0.82
Including radiation 2.19 0.83 6.15 0.98 - -

Next, the exchange between the atmosphere and the surface is (partially) ac-
counted for. Due to the implementation of realistic atmospheric coupling, Ts is ex-
pected to increase compared to the reference model (Ts = Ta, equation 3.11). This
should lead to a decrease of the temperature gradient in the ice layer. Using the
governing equation 3.20, and the wind velocities given by the data sets, the model
can be solved numerically. Numerical solutions are provided by using the forward
Euler method combined with time steps of one hour. These numerical solutions are
presented in the figures 4.8, 4.9, and 4.10 as the black lines. This time, the model

1The spread of 2010 data is too large to draw quantifiable conclusions in terms of RMSE.
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no longer overestimates the ice growth and the results appear to lie within the data
spread instead. This also explains the significant decline of the RMSE, compared to
the basic model. As shown in table 4.1, the RMSE ranges from 2.02 cm to 5.01 cm,
whilst the data remains strongly correlated.

FIGURE 4.9: Predicted ice thickness in Friesland 2012 including the
meteorological parameters: atmospheric coupling and radiation

The Friesland data sets only measure whether or not snowfall took place, not
the amount of snow that has fallen. Therefore precipitation is not included in this
model. That leaves radiation and the water temperature as the remaining parame-
ters which can be implemented into the model. The radiation can be implemented
using equation 3.28. The water’s negative effect on ice growth, is inserted into the
model using equation 3.6. Similar to the wind velocity, the (hourly) incoming global
radiation and the cloud coverage is given by the data sets. The model is solved nu-
merically, resulting green lines in figures 4.8 and 4.9. An increase of ice thick growth
compared to atmospheric coupling model is found. Physically, this would mean that
the net radiation at the ice’s surface generally turned out to be negative (heat leav-
ing the ice). This implies either that the cloud coverage or the solar radiation was
relatively low during the time period. This would physically make sense, because a
low cloud coverage would result in little atmospheric longwave radiation entering
the ice, decreasing the net radiation at the surface. The RMSE increases compared to
the case without radiation and the correlations remains nearly the same. The model
still estimates the ice thickness rather accurately.

Even though the model is physically more accurate, the result is less accurate.
The reason why the model’s accuracy decreases, should be investigated further. The
absence of stability in the models could explain the overestimation of the radiation
models (green lines in figure 4.8 and 4.9), yet also the underestimation of the atmo-
spheric coupling model (black line) in figure 4.10.
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FIGURE 4.10: Predicted ice thickness in Cabauw 1997 including the
meteorological parameter: atmospheric coupling

Including water sources to the model result in the same green lines in figures
4.8 and 4.9, rendering the water source negligible. The Cabauw data can not be
modelled with inclusion of radiation, as the data from 1997 does not contain cloud
coverage at all.
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Chapter 5

Discussion

This chapter discusses the results obtained from the models. First, the effects of
different weather conditions are reviewed. Afterwards, the validity of the historical
weather data models are discussed.

5.1 Sensivity analysis

The idealised weather conditions (figure 4.1-4.5) give an insight of the effects of sev-
eral meteorological parameters. Increasing wind velocities and roughness lengths
clearly stimulate the ice growth/melt rate of the ice layer. This can be explained by
the fact that the wind increases the ’effectiveness’ of the heat transport across the
atmosphere. When the wind velocity approaches infinity, the model converges to
the basic model. Constant wind velocity does not create any asymmetry across the
melting and growing stage of ice. The rippling of the water surface, caused by the
wind, would increase the ice growth (z0 increases). This is not taken into account in
the models.

Solar radiation and cloud coverage impact the net radiation at the surface. This
change in net radiation across the surface causes an asymmetry between the grow-
ing and the melting stage of ice. The ice melt rate decreases while the growth rate
increases. Both the cloud coverage and solar radiation negatively influence this pro-
cess; i.e, an increase of either cloud coverage or solar radiation increases the melt
rate and decreases the growth rate compared to the case where the sky is clear and
no solar radiation reaches the surface. The effects of solar radiation are already vis-
ible at an hourly intensity of 20 J/cm2, and become more significant as the amount
of radiation increases.

Snow layers isolate the ice layers from the atmosphere. The low thermal conduc-
tivity of the snow layers cause the ice growth/melt rate to decrease. Large amount of
snowfall can even halt the ice growth completely. Difference between ice growth and
melt is not apparent in this model. This does not imply there are no differences, as
in reality the physical properties of the snow layer (for example the albedo) changes
between melting and fresh snow.

5.2 modelling the historical weather data

Due to the spread of the observed ice thickness data, the validity of the models can’t
be determined precisely. Even though the accuracy of the models can’t be deter-
mined exactly, several results still stand out. The basic model (fig 4.8-4.10) overes-
timates the ice thickness for all the data sets. This physically explained by the fact
that Ta is assumed to be equal to Ts. This also explains the relatively high RMSE
(table 4.1). The high correlation suggests that the shape of the base model curve is
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very similar to the (mean) observed ice thickness curve. The similarity, in absence of
other meteorological parameters apart from temperature, suggests that the temper-
ature indeed plays a dominant role in forming the prediction curve’s shape.

By inclusion of a more realistic description of heat transfer within the atmo-
sphere, the models approach the observed ice thicknesses (figure 4.8-4.10). The cor-
relation remains nearly the same (compared to the correlation with the basic model),
suggesting that the atmospheric heat resistance doesn’t influence the curve’s shape.
This model approximates the observed ice thickness fairly well, as indicated by the
low RMSE (table 4.1).

Including radiation, the models’ results lie within the observed data spread, up-
holding approximately the same shape in time as the previously discussed cases, as
shown in figure 4.8-4.10. The RMSE increases compared to the model with only at-
mospheric heat resistance included. In this case the inclusion of radiation has there-
fore a negative (unwanted) effect on the predictive power of the model. Logically,
this makes no sense, as the model grows in physical accuracy. This may imply that
compensating errors have been made in the modelling process, and hence further
research concerning this aspect is required.

The difference of ice thickness between lakes within the same data set can be
caused by spatial variations between meteorological parameters. For example, lo-
cal temperature differences influences the local ice’s growth/melt rate. Also, other
circumstances can play an important role, like, for example, local vegetation within
and around the lakes, human/animal interaction with the lake and the initial flow
velocity of the lake. These parameters are not taken into account in the models.

The models are constructed under the assumption that only vertical components
affect the ice thickness whilst in reality the environment can influence the ice thick-
ness from all directions. This contributes to the error of the models as well.
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Chapter 6

Conclusions and recommendations

6.1 Conclusions

The effects of a variety of meteorological parameters have been investigated. This
study focused on the following parameters: temperature, air resistance to heat, pre-
cipitation, radiation and stability. The latter is a phenomena causing ’blockage’ of
the heat transfer from the atmosphere to the surface due to stratification of the air.
The study yields the following results:

1. The difference between the measured temperatures at 1.5m and the surface is
non-negligible. The air’s heat resistance reduces the ice growth rate.

2. Assuming an initial ice layer, high wind velocities above the ice layer increase
the ice growth rate. The wind increases the effectiveness of heat transport
between the surface and the atmosphere.

3. While solar radiation decreases ice growth (due to warmer temperatures), the
net effect of including radiation in the ice growth model can be both positive
or negative, depending on the sign and magnitude of the longwave radiation.
The inclusion of radiation also creates an asymmetry between the melting and
growing of ice (ice grows faster and melts slower).

4. Cloud coverage, though coherent with radiation, can impact the ice growth
significantly: large coverage percentages decrease the ice growth and increase
the ice melt.

5. Realistic values of solar radiation dampen the effects caused by cloud cover-
age; i.e., the magnitude of the net radiation at the surface drops.

6. Accumulation of a snow layer reduces the ice growth rate, both in the melting
and the growing stage.

7. Heat coming from the water is negligible, and does not significantly delay the
growth of ice.

6.2 Recommendations

The (primary) models gave an encouraging estimation of the ice thickness. In the
future, it is advised to look further into the effects of the meteorological factors, in
order to find out why inclusion of radiation lead to unwanted effects. Also, more
data sets are required to check whether or not the model can be applied universally.
This study is aimed at retaining a low complexity compared to increasing the accu-
racy at the cost of a high complexity.
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To further improve future models, including all parameters mentioned above
(temperature, air resistance to heat, precipitation, radiation and stability) is recom-
mended. Better understanding of the relative impact of these meteorological param-
eters, could explain the reason radiation impacts the predictive power negatively in
this study, possibly as a consequence of compensating errors by other meteorolog-
ical parameters. Also, the difference of snowfall during the melting and growing
stage, should be looked into further.
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Appendix A

Various physical properties

TABLE A.1: The values used for the variables in the model

Variable Value Unit Description

D 2 m Water depth
cp 1.0 kJ/kgK Heat capacity air
g 9.81 m/s2 Gravitational acceleration
ki 2.22 W/mK Thermal conductivity ice
ks 0.25 W/mK Thermal conductivity snow
kw 0.606 W/mK Thermal conductivity water
L f 334 kJ/kg Latent heat of freezing
Ta - K Temperature atmosphere
Tb 277.15 K Temperature bottom of lake
Tf 273.15 K Freezing point
Ts - K Temperature surface
u - m/s Wind velocity
z0 10−3 m Roughness length
z1 10−3 m Lower measuring height
z2 1.5 m Upper measuring height
αi 0.6 - Albedo ice
αs 0.95 - Albedo snow
εa - - Emissivity air
εs 0.96 - Emissivity ice
κ 0.4 - von Kármán constant
ρa 1.22 kg/m3 Density air
ρi 916.2 kg/m3 Density ice
σ 5.670× 10−8 Js−1m−2K−4 Stefan-Boltzmann constant
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TABLE A.2: Density and thermal conductivity of ice (Engineering
ToolBox, 2004)

Temperature (◦C) Density (kg/m3) conductivity (W/mK)

0 916.2 2.22
-5 917.5 2.25
-10 918.9 2.30
-15 919.4 2.34
-20 919.4 2.39
-25 919.6 2.45
-30 920.0 2.50
-35 920.4 2.57
-40 920.8 2.63
-50 921.6 2.76
-60 922.4 2.90
-70 923.3 3.05
-80 924.1 3.19
-90 924.9 3.34
-100 925.7 3.48

TABLE A.3: Density and heat capacity of air (Engineering ToolBox,
2005)

Temperature (K) heat capacity (kJ/kgK) Density (kg/m3)

225 1.0027 1.569
250 1.0031 1.412
275 1.0038 1.284
300 1.0049 1.177
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TABLE A.4: Density of water (Engineering ToolBox, 2003b)

Temperature (◦C) Density (kg/m3)

0.1 999.85
1 999.90
4 999.97
10 999.70
15 999.10
20 998.21
25 997.05
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Appendix B

Detailed results

FIGURE B.1: Ice thickness in Friesland 2010 predicted with the the
basic model.

FIGURE B.2: Ice thickness in Friesland 2012 predicted with the the
basic model.
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FIGURE B.3: Ice thickness in Cabauw 1996/1997 predicted with the
basic model, compared with the interpolated ice thickness data.

FIGURE B.4: Ice thickness predicted in Friesland 2010 including
surface-atmosphere coupling.
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FIGURE B.5: Ice thickness predicted in Friesland 2012 including
surface-atmosphere coupling.

FIGURE B.6: Ice thickness predicted in Cabauw 1996/1997 including
surface-atmosphere coupling.
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FIGURE B.7: Ice thickness predicted in Friesland 2010 including radi-
ation, cloud coverage, water sources and atmospheric coupling.

FIGURE B.8: Ice thickness predicted in Friesland 2012 including radi-
ation, cloud coverage, water sources and atmospheric coupling.
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FIGURE B.9: Ice thickness predicted in simulated conditions, with
varying roughness lengths.
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