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ABSTRACT

Acquiring engineering data is frequently expensive, resulting in sparse data that may lead to a lack of
knowledge for design and analysis. Thus, it is not always feasible to precisely determine the probability
density functions (PDFs) of uncertain model parameters. Under such circumstances that involve simultaneous
aleatory and epistemic uncertainties, repeated uncertainty propagation (UP) analysis is generally required.
In this paper, a novel approach for hybrid UP is proposed by integrating B-spline chaos and augmented
change of probability measure (aCOM) for meeting different goals. The B-spline chaos is adopted to represent
the complicated computational model as a function of an arbitrary input random variable, while the aCOM
is employed to reconstruct the PDF of the model output when the input PDF is changed due to epistemic
uncertainty. In the case of small epistemic uncertainty, hybrid UP can be achieved directly by changing the
assigned probabilities of existing sample results. While in the case of large epistemic uncertainty, additional
samples from an augmenting PDF are generated. The proposed method is compatible with both cases. The
numerical algorithm of the proposed method is presented and illustrated by four benchmark problems. Further,
the accuracy and efficiency of the proposed method are substantiated by four numerical examples compared
with analytical solutions or Monte Carlo simulations. An attempt to enhance the proposed method with the aid
of active subspace methods to handle high-dimensional problems is also discussed in this work. The limitations
and potential improvements of the proposed approach are outlined as well.

1. Introduction

1.1. Context of the paper

approach [7]. Specially, if only the statistical aspect is considered, epis-
temic uncertainty can also be described in a probabilistic framework,
e.g., by adopting imprecise probability models [8]. Particularly, it is
possible for both of the aforementioned forms of uncertainties to coexist

The utilization of computational models to aid in the development
of practical engineering methods has emerged as a critical approach for
addressing engineering challenges across various fields. Nevertheless,
as a result of the intricate nature of real-world issues, the predictive
analytical outcomes of most computational models may still exhibit
significant uncertainty, which can be classified into two overarching
categories [1-4]: (1) aleatory uncertainty (due to natural variation) and
(2) epistemic uncertainty (due to lack of knowledge).

In general, the aleatory uncertainty can be characterized by pre-
cisely specifying the probability density functions (PDFs) of input
random variables, while the epistemic uncertainty can be quantified
through non-probabilistic ways such as interval analysis [5], aug-
mented first-order reliability method [6], and operator norm-based
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concurrently. Therefore, a more comprehensive approach is to consider
them as hybrid uncertainty or polymorphic uncertainty [9].

In a study of engineering decision-making problems under the two
types of uncertainties, Faber [10] has pointed out that the combina-
tion of simple physical models and hybrid uncertainty may be more
suitable for describing uncertainty phenomena than applying complex
physical models with a large number of parameters. Besides, research
by Der Kiureghian and Ditlevsen [2] also indicated that if various
types of uncertainties are not distinguished or even misjudged, the
structural failure probability may be significantly overestimated or
underestimated, and even deviate by several orders of magnitude in
some cases.
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To this end, in the present paper, the primary focus is on hybrid
uncertainty, with particular attention given to the challenging problem
of hybrid uncertainty propagation. One specific engineering practice
is that the probabilistic models of input random variables cannot be
perfectly obtained by engineers at the initial stage of design. For this
engineering scenario, it is typically required to reevaluate the design
if these probabilistic models are updated (possibly more than once),
incurring massive computational costs. To solve this issue, a wide range
of methodologies have been developed, such as sparse polynomial
chaos expansion [11], resampling Monte Carlo simulation [12], prob-
ability density evolution method integrated with change of probability
measure [4] and its improvements [13], and more can be found in [14].

Despite variations in fundamental theories, almost all of these meth-
ods share a similar characteristic, viz., hybrid uncertainty propagation
relies on two key aspects: (i) an accurate method for aleatory uncer-
tainty propagation and (ii) an effective technique to reuse existing
analysis results as many as possible. Correspondingly, there are at least
two challenging issues involved: (1) how to accurately cope with high-
dimensional random variables, and (2) how to efficiently deal with
limited information. Although the former seems more challenging, this
work aims to provide new insights on the latter.

1.2. Novelty of the paper

A novel approach is proposed for hybrid uncertainty propagation
according to the above two aspects. The implementation of the pro-
posed method is based on two state-of-the-art methods, i.e., the B-spline
chaos [15] developed by Eckert et al. and Rahman [16] independently
(to the best of authors’ knowledge), for the first aspect, and the aug-
mented change of probability measure (aCOM) [13] by the authors for
the second one. It should be emphasized that B-spline chaos may not
be the only option in this work, but it is found to cooperate well with
the aCOM, especially in convenience of numerical analysis. Besides, the
study in [15] indicates that B-spline chaos generalizes the Legendre
multi-element chaos [17], and low-order B-spline chaos may yield more
accurate results than a high-order polynomial chaos expansion for non-
smooth functions [16]. All these specific advantages of B-spline chaos
show the potential of the current work.

The proposed method is advantageous in three aspects: (1) compu-
tational cost for hybrid uncertainty quantification can be pre-estimated;
(2) no assumptions are made about the linearity of computational
models or the degree of epistemic uncertainty involved; and (3) the two
adopted methods are not coupled, thus any individual improvements to
the B-spline chaos and aCOM may promote the proposed approach.

1.3. Organization of the paper

In Section 2 the newly developed B-spline chaos is first revisited. An
efficient method for constructing the B-spline chaos is also proposed in
this section. The change of probability measure and its improvement
called as aCOM are briefly discussed in Section 3. The proposed method
is illustrated subsequently in Section 4 from theoretical aspect and is
verified by four benchmark problems. Four applications are studied
to further evaluate the proposed method in Section 5 and concluding
remarks are outlined in Section 6.

2. Propagation of aleatory uncertainty via B-spline chaos
2.1. Basic concepts and formulation

In this section, the basic concepts and formulation of B-spline chaos
proposed by Eckert C., Beer M. and Spanos P.D. [15] are first revisited.
Define the triple (£2,.%#,P) be the probability space, where @ is the
sample space, .7 is the event space (c-algebra) and P is the probability
measure. Let © be an arbitrary random variable on (€2, .%#,P) and define
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by L,(£2,.Z,P) the Hilbert space. Without loss of generality, consider a
parametric model with the random parameter 6, i.e.,

X =g(0), @

where X is the quantity of interest (QoI) and the mapping g() : R!
R! is defined to be square-integrable. Note that g(-) is deterministic and
measurable, and can be either explicit (e.g., via analytical formulation)
or implicit (e.g., via finite element method).

If the distribution of O is precisely known, e.g., the probability den-
sity function (PDF) pg(6) is clearly defined, it is known that calculating
the PDF of X defined by py(x) becomes a typical issue of propaga-
tion of aleatory uncertainty. Among various methods for propagation
of aleatory uncertainty as mentioned in Section 1, we introduce the
B-spline chaos [15] to represent Eq. (1), i.e.,

n
X = X,,=) bB w0, @)
i=1
where B, ,(u) is the ith B-spline basis function of order p defined
with u € [0,1] for i = 1,...,n, n is the number of B-spline basis
functions and b; is the ith B-spline coefficient. Herein u(-) should be
a bijective function that uniquely maps © on the parametric space
[0, 1]. As suggested in [15], a natural choice is to adopt the cumulative
distribution function (CDF) of 6, i.e., u() = Py(0) = /_900 po(r)dr.

The B-spline basis functions are defined by the Cox—de Boor recur-
sion formula starting with piecewise constants for p =0, i.e., B;o(u) = 1
if u € [£;,&;,1), otherwise B, 3(u) =0, and for p = 1,2, ..., there is

u-—24¢ Eipe1 — U
B, W)= ——=B, , )+ ————— B,y ,_ (W), 3
’ Sup—& 7 ! Sivprt —&iv1 ol
where ¢ € R! is the ith knot belonging to the knot vector £ =
{&1,805 - Epypyr} fOr & < &y and i = 1,2,...,n + p + 1. Note

that the form 0/0 is defined to be zero [18]. In general, the knot
vector is defined to be open and normalized, namely, its first and
last knots are repeated for p + 1 times and & € [0,1], eg., & =
{0,0,0,0.2,0.4,0.6,0.8,1,1,1} (p=2and n=7), £ = {0,0,0,0,0,0.5, 1,1,
1,1,1} (p = 4 and n = 6), etc. The B-spline basis functions for the above
two knot vectors are drawn in Figs. 1(a) and 1(b), respectively.
According to the proof in [15], X’n’p defined in Eq. (2) can be the

weak B-spline chaos approximation of X if the B-spline coefficient

vector b = [by, ..., b,]T results from the L, projection Bb = x, in which
def
B, ; = E[B; ,(u(©))B; ,(uw(0))] @
and
def
x; = E[g(0)B; ,(u(0))] 5)

fori,j = 1,...,n, where B, ; locates in the ith-row-jth-column of B, X;
is the jth entry of x, and E[-] is the expectation operator. Then the

B-spline coefficients can be calculated via b = B~'x.

Remark 1. Note that B is a symmetric and band matrix in which
B,;, =0for |i-j| >p+1andij=12,..,n In other words, it is
convenient to only calculate entries of B for 0 < i — j < p + 1. Besides,
since B is only dependent on the utilization of B-spline basis functions
and the PDF of O, one can resolve B effortlessly when p and » are
increased in order to achieve the convergence of B-spline chaos.

2.2. Computation of B-spline coefficients via partition of probability-
assigned space

The two integrals in Egs. (4) and (5) can be computed numerically
via Monte Carlo simulation (MCS), i.e.,

B,; = E[B, ,(u(©))B; ,(u(©))]

/ B, ,(u(6))B; ,(u(6))po(6)d6
Q

(6)

Q

N
- 2‘1 B, ,(u(6,))B, ,u(0,))
<
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Fig. 1. B-spline basis functions of orders p =2 and p =4 with n=7 and n = 6, respectively.

and
x; = E[g(©)B; ,(u(0))]

= /Q §(0)B; ,(u(0))pe(6)do -

N
~ - X 0,)B,,w0,),
q=1

where {Bq}{f;’= | ~ Po(6) are MCS samples of size N.

In general, to ensure the accuracy of MCS, N should be large enough
such as 10° or even 10°. This is totally fine for calculating Eq. (6) since
calculating B; , needs almost no computational cost. Nevertheless, it is
challenging to do the same for Eq. (7) due to the complexity of g(-) in
mostly real engineering practices.

To this end, we introduce the GF-discrepancy minimization strat-
egy [19] for determining a representative point set {0,} ;"= | ~ Po(0) with
Pq=/!2 Pe®)d0, g=1,2,...,N, )

q

the assigned probabilities { P, } which are defined by

where {Q,} (’;’: | is a partition of the distribution domain 2 of @, satis-
fying that U[’;’:]Qq =Qand 2,nQ, =@ forVp#gandp,g=1,2,....N.
Note that it is obvious that Z‘I;]: , P, =1and P, € [0, 1]. One convenient

choice to define the representative volume €, is the Voronoi cell [20]:

Qq“ﬁf{eekls‘e—eq)g‘e—ej‘ forj=1,2,,..,N}. ©

To do so, the numerical approximation of B, ; and x; becomes

B, = /Q B, ,u(0))B; ,(u(6))pe(6)d6
N
=y /Q B,,,(u(0))B, ,((0))po(6)d0 10)
q=1 q
N

~ Y B, ,(®,)B; )P,
q=1

and

x, = /Q 5(0)B; ,(u(0))po(0)d0
N
-y /Q EO)8;, o 00 an

gq=1
N

~ ) 8(0,)B; B )P,.
gq=1

The numerical algorithm of the GF-discrepancy minimization strategy
is summarized in Appendix A.

The benefits of Eqs. (10) and (11) are twofold: (1) Compared to MCS
sample points, the representative point set has a lower GF-discrepancy
for the same sample size N. See detailed discussions in [21,22], and
the error analysis in the next section; (2) This provides convenience
for extending the scope of B-spline chaos in uncertainty propagation
from aleatory aspects to epistemic ones via change of probability
measure [4,13]. We will prove it in Section 3.

2.3. Error analysis of calculation of B-spline chaos via GF-discrepancy
minimization strategy

In [15], it has been proved that )?,,,p converges in probability and
in distribution, and both [15,16] have studied the error of B-spline
chaos approximation in terms of the number and order of B-spline
basis functions. This section provides the error analysis of calculation
of B-spline chaos via GF-discrepancy minimization strategy, which is
important but has not been mentioned in the literature as yet.

As discussed above, if the number and order of B-spline basis
functions are determined to be large enough, the numerical error of
)N(,,’p can be assumed to originate from the B-spline coefficient vector
b, which is calculated from the L, projection Bb = x. Note that the
accuracy of B can be well satisfied by considering Eq. (6) with a large
N, since B; , is explicitly known. For this reason, the error estimate is
focused on x, or equivalently, its component x; as defined in Eq. (11).

Recall the numerical approximation X; of x; given in Eq. (11):

N
X = Z 86,)B; ,(6,))F,. >
g=1

Then, the numerical error of estimating x; can be defined by
def

€ = % —f‘/‘
N 13)
= / £100pe(0)d0 = Y £, (0,)P,|,
Q g=1
where f; ,(0) wf g(0)B; ,(u(®)). Further, the worst error defined in

Eq. (13) can be estimated by the extended Koksma-Hlawka inequal-
ity [19,21], i.e.,

N
/ £15@po(0)d0 =Y £, ,(8,)P,| < 3.635TV(f; ) Dgr(M). (14)
Q |

where TV(f; ) is the total variation of f; ,, measuring the irregular-
ity of f;, in terms of its arguments, and Dgp(M) € [0.1] is the
GF-discrepancy [19] of the point set M = {6,} {’;’= y

From Eq. (14), it is now clear that, if we can generate a point set M
that has a small GF-discrepancy, then the numerical error of x; can be
small as well. In other words, by taking the GF-discrepancy of the point
set as a quantitative index, it is convenient to determine the number of
sampling points needed for constructing the B-spline chaos. And on the
contrary, if the sample size is fixed, the accuracy of B-spline chaos can
be improved by design of these points to minimize the GF-discrepancy
as well.

3. Propagation of epistemic uncertainty via change of probability
measure

In this section, we consider a common situation that may happen in
most engineering analysis — the PDF of © is imprecise rather than being
precisely unknown, which belongs to the case of epistemic uncertainty
in statistical aspect. For the sake of simplicity, let pg>(0) be a prior PDF
of ® and pg)(e) be an updated one, e.g., via Bayesian updating with



Z. Wan et al.

0.4 : : 0.12
n _17%)(9)
== =29 0)|{0.10
0.3 e —s B
i — P” 1008
1 1l
8oz § {0.06
o .
1 n
DRz n o | 10.04
% N
01} ) N
! 10.02
0.0 af R 0.00
-10 5 0 5 10
9

(a) PDF and assigned probabilities

Assigned probability

Structural Safety 111 (2024) 102524

CDF

10

Fig. 2. A simple case for the change of probability measure using N = 25 samples.

newly collected engineering data, and denote the PDF of X with respect

to pg)(g) as P():) (;)(x). Certainly,

the B-spline chaos can be established individually for pg)(a) and pg>(0),
but the number of samples will double from N to 2N simultaneously.
To solve this issue, the change of probability measure (COM) [4] will

be employed hereinafter.

(x) and the one in terms of pg)(e) by p

3.1. Small epistemic uncertainty

We first consider the case of small epistemic uncertainty. Specifi-

cally, if pg>(0) is absolutely continuous with respect to pg)(o), namely,

the support of p(@“(e) completely covers the support of pgke), then the
Radon-Nikodym theorem holds such that [23]

PP () = Tanopy (x), (15)

where o denotes the action of an operator on a function, and Tyy
is a measurable function (operator), the so-called Radon-Nikodym
derivative of pg)(ﬁ) with respect to pg)(e). This means, one can directly
obtain p()?)(x) by forcing the operator 7z on p()i) (x).

The Radon-Nikodym derivative Ty can be calculated via change of
probability measure [4] as follows:

Step 1.1. For © ~ pg)(ﬁ), select the point set denoted by M) =

{0;'); P;l) }fl\; , via the GF-discrepancy minimization strategy in Appendix A.

Step 1.2. For 6 ~ p‘;)(e), define a new point set M®
= {9(2>; P{;Z) }{’;': | with the same realizations of © in Step 1.1, i.e., 9;2) =
Hfll) for ¢ =1,..., N, but recompute the assigned probabilities by

%”=A;ngM&q=LZN”N, 16)
q

(1)}N .
q Jg=1

A simple case considering pg>(e) = N(0,3) and pg>(0) = N(0,1) is
drawn in Fig. 2, where N'(a, b) stands for the PDF of a normal random
variable with mean value a and standard deviation b. From Fig. 2 it
can be seen that the empirical CDF of © denoted by Fg)(e) via COM
fits well with the exact one.

where le) is the gth representative volume determined by {6

3.2. Large epistemic uncertainty

What if the support of pg>(9) does not sufficiently cover the one
of pg)(e)? It should be emphasized that the “cover” herein should
be understood as in numerical aspect rather than in mathematical

aspect. For instance, considering pg)(e) = MN(0,1) and pg)(e) =N, 1),

it is clear that although their mathematical supports are the same,
i.e., (—o0,+w), the effective supports of the two PDFs having values
far greater than zero are almost non-overlapping. A more practical
example appears in life cycle assessment of structures considering the
degradation of materials [24,25], in which the deteriorating elastic
modulus is characterized by E(f) = (1-0.007 1*%)E,. This means the
mean value of elastic modulus may be decreased by 19.46% at the 50th
year compared to the initial design stage, resulting in a large shift of
the PDF of elastic modulus.

For such case of large epistemic uncertainty, the accuracy of COM
may decrease sharply. The reason is intuitive: the lager the region
where pg)(e) and pg)(e) do not overlap, the more representative points
corresponding to the region will be equipped with P,}z) of 0 on the
definition of Eq. (16). Rigorously, this is because the Radon-Nikodym
theorem cannot be strictly applied due to the lack of absolute continu-
ity.

To solve this issue, an augmenting approach [13] was proposed
recently to promote the accuracy of COM throughout a relatively low
computational cost. The basic idea is to add some extra points to the
original representative point set, such that the new point set conforms
to the new distribution pg>(9).

The numerical algorithm of the augmented COM (aCOM) [13] is
summarized as follows:

Step 2.1. Define () and 2@ be the supports of pg)(e) and pg)(b?),
respectively, and 2 = Q) U Q® be the total support. Compute _Qg) =
{6; 01(0.025) < 8 < 01(0.975),0 € 2} where QV() is the quantile
function with respect to p{})(8). Let 2, = {6:p2(0) > p5)(0).6 € @},
Qqug = 2 +\Q%), and compute

2= [ pyldo and 2P = / p5do. a7
aug aug
Step 2.2. Generate the augmenting distribution pg‘“g)(e) by
(2) (1)
P (0) —py’(6)
pgug)(e) =@ "6 Qaug- (18)

”1(12> _ ”‘(11)

Naug
gq=1
from the augmenting distribution pg’“g)(e), where Az = 7?— V. Define

Step 2.3. Generate N,,, = [4z - N| samples denoted by {ngg}

N+N,

the new representative points {9;2)}‘1;' "% satisfying that
00 for g=1,...,N,

=) Ja N

(19)
¢ {0;‘“% for g=N+1,....N + Ny



Z. Wan et al.

1.0 T T
o5 —e=9® ,
’ x RPs for pg)(é’)
— — - B-spline chaos for pg>(9)
0.0 ' ‘
1.0 1.5 2.0 25

o  Extra RPs from pgug)(é')

B-spline chaos for pg)(ﬁ)

0.0 ' '
1.0 1.5 2.0 25
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Fig. 3. Illustration of prediction results via B-spline chaos. RPs: representative points. Calculation setup parameters: N =25, N,

Step 2.4. Calculate the changed assigned probabilities by

2 2
PR = /Qm pO©)d0, g =1,2,....N + Ny, (20
q

(2)

N+Nyyg
p .

q=1
N+N, .

8 via
g=1

aCOM follows the distribution pg>(0) is given in Appendix B.

where Q.7 is the gqth representative volume determined by {0;2)}

For the sake of lengthiness, the proof that the point set {9((,2)}

Remark 2. If Qg = ¥ (e.g., the two PDFs in Fig. 2(a)), then ngl) =
7 =0and Nayg = 0, which means there is no need to add extra points.
This situation degenerates into the case of small epistemic uncertainty
in Section 3.1, i.e., aCOM — COM. On the contrary, if Qaug = 2., viz.,
there is no overlapped region between pg)(e) and pg)(e), then ngl) =0,
nf,z) = 1, and N,,, = N, which means one should repeat a complete
analysis of aleatory uncertainty propagation, i.e., a specific situation
of large epistemic uncertainty. To this end, the pre-estimated index
Az € [0,1] can be adopted to judge whether small or large epistemic
uncertainty is present. In conclusion, the aCOM is available in both
cases of small and large epistemic uncertainties. Therefore, only the
aCOM is employed in the following analysis.

4. The proposed method for hybrid uncertainty propagation
4.1. Theoretical illustration

The proposed method for hybrid uncertainty propagation is based
on the aforementioned B-spline chaos and aCOM. Assume @) ~ pg) ®)
and 69 ~ pg)(e) where the CDFs of O and ©@ are denoted by

Pg)(e) and Pg>(0), respectively. Recall that the mapping g(-) in Eq. (1)
is unchanged but the PDF of ® may be imprecise. Then, two B-spline

chaos approximations can be generated by
n

X0 2 X0 =Y 5B, (). 0 =00 ~ 1)), 1a)
i=1
n

XD~ X2 =Y 578, (P0©®). 0=67~50), (21b)

i=1

where we assume n and p are the same for the two B-spline chaos.
It should be emphasized that it is not necessary to fix the order and
the number of B-spline basis functions in the two B-spline chaos. The
purpose of doing this herein is just to facilitate the explanation of the
proposed method.
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wg =13, p=35, and n=10.

Now we consider the L, projection results of the B-spline chaos
coefficients of Egs. (21a) and (21b) via partition of probability-assigned
space introduced in Section 2.2.

(1) For XU in terms of O ~ pg)(e), we have BObM) = x| where

B = / B, (Pg)(e)) B, (Pg)(e)) P 0)d0
Q

N (22)
~ (1 (1 1)
~ Z Bip <P@ (‘92 ))) By, <P@ (9‘(1 ))> P;
gq=1
and
X\ = / 2B, (Pg)(e)) pD0)do
Q
N (23)
© a0, (00) P
q=1
for i,j = 1,...,n, where the representative point set is selected as
N
(657 PVY ) ~ P (0).

(2) Similarly, for X® in terms of 6@ ~ pg)(e), define B@p®@ = x@
and for i,j =1,...,n, we have

B® = / B, <Pé2)(0)> B, (Péz)(0)> P2 0)d0
Q

N, 24)
~ (2) (2)
~ Y B, (P (ej]”)) By, (7S (9}1”)) PO
q=1
and
@ _ @ )
x? = /!2 £©B;, (PS©)) v )30
(25)

Ny
~ (2) (2)p(2) (2)
~ Zlg(eq B, (PO02)) P2,
e

P

Let N, = N, = N be sufficient large to ensure the accuracy of the
two B-spline chaos. From Egs. (23) and (25), it is known that a total
number of 2N runs of g(-) is generally required to form the two B-spline
chaos. However, if we adopt the aCOM introduced in Section 3, the
computational cost decreases to N + Ny, < 2N since 0 < Ny < N.
In other words, the efficiency of hybrid uncertainty propagation by the
original B-spline chaos method can be improved by a maximum factor
of 2.

where the representative point set is defined as {6{”); P,;z)}(]lvzz1 ~ p§>(9).

Remark 3. Can we regard the B-spline chaos in Eq. (21a) as the
metamodel (a.k.a. surrogate model) of x = g() in Eq. (1)? If we
can, perhaps the easiest way to obtain pg)(x) is to conduct the MCS



Z. Wan et al.

using samples from pg)(e). The answer depends on the specific forms
of pg)(e) and pg)(f)), and is generally no, especially in the case of large
epistemic uncertainty. A specific case is shown in Fig. 3, where we take
x = 6> -046%, pJ)6) = 17(1.0,2.0) and p3’(9) = U(1.5,2.5), where
V'(a, b) means the PDF of an uniform random variable in [a, b]. From
Fig. 3(a), it can be seen that the B-spline chaos for pg>(0) can only
work accurately in [1.0,2.0], while it fails outside of this region. Hence,
for pg)(e) that has a different support of [1.5,2.5] the B-spline chaos
needs to be reconstructed, e.g., via the proposed method. Notice that
there is no information available for x = g(0) with 6 € [2.0,2.5], thus
extra points of @ should be analyzed. In other words, although B-spline
chaos may work well for the problem that x = g(6) with 6 € [1.0,2.0],
it may fail (without any change of the method) for another problem,
see x = g(f) with & € [2.0,2.5]. This phenomenon has been deeply
discussed in [26] by using the no-free-lunch (NFL) theorem, where it
states that “if an algorithm performs well on a certain class of problems,
then, according to NFL, it necessarily will perform poorly on the set of
all remaining problems”. For this toy example, the PDF results via the
proposed method are consistent with the MCS using 10° samples and
kernel density estimation (KDE), as shown in Fig. 3(b). However, we
want to stress that the proposed method may also not work efficiently
for some situations according to NFL. This will be discussed in detail
in the following section.

4.2. Numerical illustration

The numerical algorithm of the proposed approach is outlined in
form of pseudo codes in Algorithm 1. Note that for high-dimensional
cases, e.g., @ € R* where s > 2, one can adopt the active subspace
method [27] to first detect a one-dimensional active subspace (see
Appendix C). Then, the proposed algorithm can still be valid and
operated in this one-dimensional active subspace.

In this section, the versatility of the proposed approach is veri-
fied by considering four specific examples, in which the first two are
commonly-used benchmark problems, the third shows how to apply
the proposed method with the aid of dimension reduction techniques,
and the last is designed to illustrate to the reader when the accuracy
of the proposed method may deteriorate. More general and practical
applications will be demonstrated in Section 5. During the following
analysis, if no special parameters are determined, we set N = 200,
p=10 and n = 30.

4.2.1. Basic distributions

The first specific example considers X = 0, thus X has the same PDF
as O. Specifically, we consider 10 different cases, where the first 5 cases
study the change of mean value and standard deviation in the Normal
distribution, while the last 5 cases consider changes among different
configurations of distribution.

For the Case 1 to Case 5, let pg)(e) = N(0.0,1.0) be the prior PDF
of ©, while the new PDF pg>(9) is:

« Case 1: A small shift in mean value — pg)(e) = N(0.2,1.0),

« Case 2: A large shift in mean value — pg)(e) = N(1.2,1.0),

« Case 3: Narrowed standard deviation — pg>(6’) = N'(0.0,0.5),
« Case 4: Enlarged standard deviation — pg)(e) = N(0.0,2.5),

« Case 5: A large shift in mean value with enlarged standard

deviation - p%'(6) = N'(1.2,2.5).

The results of Case 1 to Case 5 are presented in Fig. 4, where the
tilde-hatted PDFs are calculated via the proposed method. The required
augmenting sample sizes are Nayg = 3,40,0,77,87 corresponding to
Case 1 to Case 5 in order. The GF-discrepancies of the first 5 cases are
0.0039 (0.0048), 0.0092 (0.0497), 0.0048 (0.0056), 0.0048 (0.1245),
0.0050 (0.2494), where the value outside of the bracket is by aCOM
while the one in the bracket stands for the result by direct COM.
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Algorithm 1 The proposed approach for hybrid uncertainty propaga-
tion.
Require:
The prior and new PDFs of @ in order, pg>(6’) and pg)(e)
Number of partitions of assigned-probability space, N € N*
Order of B-spline chaos and number of B-spline basis functions,
peN*t and n e N*
Ensure:
The PDFs of X with respect to p};(9) and p$;’(8) in order, p{’(x) and

2
)

v Generate the initial point set via partition of assigned-probability space
1 MD < (o P;”}(’IV:1 ~ 03 > Appendix A
v Generate the augmenting point set via aCOM:
2: Estimate the augmenting sample size, Ny, < Kﬂff) - ngl)) -N W
> by Eq. (17)

3: if Ny = 0 then
. (2)\N (N

R R R

5: else

6: Construct the augmenting PDF, pg“g)(e) > by Eq. (18)

N

7:  Generate augmenting points, {efla“g)}q:;‘g - p(@a“g)(e) > by
inverse—tlj‘\?}}}%form method N

a: {0512)}1,:1 aug {9‘(11)}‘11\/:1 U {e(gaug)}q:;lg > by Eq. (19)

9: end if NAN

. 2 (). p(2) au, (2) (2)

10: M@ « {6;7; P, bomt ¢~ pg 6 > P,” by Eq. (20)
v Deterministic analysis:

11: for q = Lo N + Ny do

12: xéz) —g (0,(]2)> > by Eq. (1)

13: xﬁll) <—x512) >forg=1,---,N

14: end for
v Construction of B-spline chaos via partition of assigned-probability
space

15: For pg)(e), solve BWb() = x( using {6,(]'),x;1),P[§”}f;’=l > by Egs.
(22) and (23)

16: For pg)(G), solve B@b@ = x@ using {67, x, P;z)};\:Na“g > by

Egs. (24) and (25)
v Estimate PDFs of X via B-spline chaos and MCS-KDE:

17: p(;)(x) via MCS-KDE 1> using 10® MCS samples from B-spline chaos
constructed by bV

18: p(;)(x) via MCS-KDE 1> using 10® MCS samples from B-spline chaos
constructed by b®

It can be seen that the new point set via aCOM can have a smaller
GF-discrepancy than the one by COM.

For Case 1 in Fig. 4(b), since a very small shift in mean value is ap-
plied, it is only required to augment 3 additional samples to reconstruct
p()?)(x). Interestingly, for Case 3 in Fig. 4(d) that shows a large change
in standard deviation, no extra points are needed via the proposed
method. This is reasonable because the support of pg)(e) completely
covers the region of pg’(e) in a numerical sense. Consequently, both
accuracy and efficiency are well achieved via the proposed method for
the first 5 cases.

The last 5 cases of hybrid uncertainty propagation take into account
three typical distributions, i.e., Normal distribution (with an infinite
support), Beta distribution (with a bounded support), and Lognormal
distribution (with a semi-infinite support):

« Case 6: Bounded to Infinite — p};)(§) = 5(1.275,2.975) to p3 () =
N'(0.3,0.2),

« Case 7: Bounded to Semi-infinite — p{}(8) = B(1.275,2.975) to
p3(6) = LN (~1.388,0.606),

« Case 8: Semi-infinite to Bounded - p{)(6) = LN (~1.388,0.606)
to p))(8) = B(1.275,2.975),



Z. Wan et al.

Structural Safety 111 (2024) 102524

PDF

PD:.

0.8 0.8
——N(0.0,1.0)
N(0.2,1.0)
06 N(12,1.0) 06
— N(0.0,0.5)
N(0.0,2.5)
04 N(1.2,2.5) & o4
0.2 0.2

0.0 b 0.0
-10 5 0 5 10 -10 5
9

0.8
1 1
— @ — @)
~(1 ~(1
iy @) Ry @)
— @) 06 @
—Y (@) Y (@)
<3
2 0.4
=
0.2
0.0
5 10 -10 5 5 10

T

PDF
PD

0.8 0.8

— @)

~(1

-y @)
0.6 717% () 0.6

iy (@)

=

0.4 0.4
0.2 0.2
0.0 0.0

(d) Case 3: N(0.0,1.0) — N(0.0,0.5)

0

z

(e) Case 4: N(0.0,1.0) — N(0.0,2.5)

0.8
1 1
—pg(m — (@)
~(1 ~(1
iy @) Ry @)
—p_%z)(z) 06 —p{g(m)
Y (@) ——pY (2)
=
Q04
[=™
0.2
0.0
5 10 -10 -5 0 5 10

T

(f) Case 5: N(0.0,1.0) — N(1.2,2.5)

Fig. 4. Verification of the proposed method for approximation of basic random variables (Case 1 to Case 5).

« Case 9: Semi-infinite to Infinite —
pP(6) = N'(0.3,0.2),

« Case 10: Infinite to Semi-infinite — p<”(0) = WN(0.3,02) to
p3(O) = LN (~1.388,0.606),

p)(8) = LN (~1.388,0.606) to

a—1 bh—1
where B(a, b) stands for the Beta distribution whose PDF is %

where B(a, b) = L@r® ang r (- ) is the Gamma function; LN (a, b) is the

T(a+b)
Lognormal distribution, i.e., o CXP ( @) It is emphasized that
the three distributions have the same mean value 0.3 and the standard
deviation 0.2, resulting in an coefficient of variation of 66.7% that is
practical for most real engineering problems.

The results of the last 5 cases are shown in Fig. 5, where a consistent
accuracy is achieved from Figs. 5(b) to 5(f), but the required number of
augmenting samples is different, i.e., from Case 6 to Case 10 in order
that Ng,g = 14,4,21,22,5. The GF-discrepancies of the last 5 cases are
0.0034 (0.0674), 0.0058 (0.0176), 0.0045 (0.0649), 0.0048 (0.0992),
0.0053 (0.0191), which again shows a small GF-discrepancy via aCOM.

Note that though Case 7 and Case 8 both consider the same Beta and
Lognormal distributions, the required augmenting samples are quite
different, i.e., Ny, = 4 for Case 7 while N,,, = 21 for Case 8. One
can see a similar result for Case 9 and Case 10 that consider the same
Lognormal and Normal distributions but N,,, = 22 for Case 9 and
Nayg = 5 for Case 10. The above results indicate that information
asymmetry may exist in the propagation of hybrid uncertainty.

4.2.2. Ishigami function
The second specific example takes the classical Ishigami function in
a simplified univariate form [28]:

X =sin(®) + 7sin%(0) + 0.10" sin(0), (26)

where © is a uniform random variable whose PDF is taken from
Fig. 6(a).

The results for pl)(6) = U'(-x.7) to p0(6) = U(-n/2,1/2) are
shown in Fig. 6(b), where py (x) is calculated via MCS. Since the support
of pg)(e) is fully covered by the one of pg)(é), no augmenting samples

are needed. However, for the case that p<”(0) = U(-zn/2,x/2) to

§§>(9) U'(—x/2,r) in Fig. 6(c), a number of 67 augmenting samples
are required. Although the studied Ishigami function exhibits a strong
nonlinearity, the accuracy of results via the proposed method can still
be satisfied.

4.2.3. Series system with four branches and two independent or dependent
random variables

For the case of high-dimensional inputs, one direct way to enhance
the proposed method is to first introduce a specific dimension reduction
technique to decrease the dimension of high-dimensional inputs. For
instance, consider a series system with four branches and two input
random variables [29,30], which reads:

X, =30+40.1(0, — 0, +(0, - 0,)/V2.

X, 2304010, -0, +(6, - 0,)/V2.
X = min @7
X5 = (0, - 0,)+3.0V2,
X, =(0,-0,)+30V2,

where ©, and O, are independent uniform random variables for the
independent case, and ©, and 0, are multivariate normal variables for
the dependent case. The epistemic uncertainty is considered as follows:

(1) Independent case: From 6, x 6, = [-2,0] X [0,2] to 6, x 0, =

[-1,01x [0, 1];
_ 1/3 025
- ([53] fos 3] e

(2) Dependent case: From ﬂlle
0'04] >, where (u, D) stands for the mean

1/12
(k2 D2) = <[ ][0.04 1/12

vector u and covariance matrix D of @ = (0,,0,)", respectively.

The active subspace method (ASM) [27] is first utilized for the
dimension reduction (see Appendix C), which results in § = W70 € R!,
where W = [-1/ \/5 1/ \/EJT. Then, the B-spline chaos is constructed
in the 6 — x space. The results of dimension reduction are shown in
Figs. 7(a) and 7(b) for the independent case, and in Figs. 7(c) and
7(d) for the dependent case. The PDFs and CDFs of X for the hybrid
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Fig. 5. Verification of the proposed method for approximation of basic random variables (Case 6 to Case 10).
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Fig. 7. One-dimensional active subspace of the series system with four branches.
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Fig. 8. Verification of the proposed method for the series system with four branches (independent case).
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Fig. 9. Verification of the proposed method for the series system with four branches (dependent case).

uncertainty propagation are presented in Fig. 8 for the independent
case and in Fig. 9 for the dependent case. From the results of both cases,
it can be seen that the proposed method could still provide relatively
good accuracy.

A more practical application with higher-dimensional inputs is il-
lustrated in the following Example 4, where the first step is to detect
a one-dimensional active subspace as the same as this example. How-
ever, it should be emphasized that not all problems may exist such a
one-dimensional active subspace.

4.2.4. Special non-smooth function

The last example is adopted from [16] to illustrate to the reader in
which cases one should carefully consider the potential deterioration
of accuracy of the proposed method.

For illustration, consider a one-dimensional function that

X = exp(=3|0)), (28)

where the PDF of O is changed from 1/(-1.0,0.0) (Problem 1) to
U°(—0.5,0.5) (Problem 2). From Fig. 10(a), one can see that x = g() for
6 € [-1.0,0.0] is of class C', while it is of C” in the region § € [-0.5,0.5].

Let us first consider Problem 1 as a perfect problem, namely, the
information that g for 8 € [-1.0,0.0] is of C! is known based on
the expertness of analyst. Therefore, one may be confident that it is
accurate enough to set N =20, p =2 and n = 10 to estimate p(;)(x) via
the proposed method, as shown in Fig. 10(b).

Now it comes to Problem 2, which is regarded as a gray-box prob-
lem, viz., g for 6 € [-0.5,0.0] is known to be of C!, but we have no
prior knowledge that g is of C° for # € [-0.5,0.5]. Then, the proposed
method is employed again, and the convergence analysis is conducted
by increasing parameters in B-spline chaos, e.g., n, the number of B-
spline basis functions. Noticing that for Problem 1 we set N = 20, which
means the maximum value of » is 20, otherwise numerical singularity
would occur. The convergence analysis gives the final estimated [)‘()?)(x)
as shown in Figs. 10(b) and 10(c) with respect to n = 10 and n = 20.
Compared with the exact p(;)(x), it is obvious that one needs to keep
enlarging n. Nonetheless, misled by the parameters determined for
Problem 1, we have limited ourselves to n = 20 for solving Problem 2.

In short, we want to emphasize that the proposed method with
parameters N = 200, p = 10 and n = 30 determined for solving
all other examples in this work, is not a one-size-fits-all solution.
For real engineering practices involved with hybrid uncertainties, the
significance of the analyst should also be highlighted [26].

4.3. Remarks on efficiency, limitations, and potential improvements of the
proposed method

Efficiency. The efficiency of the proposed method can be more
pronounced if © (due to epistemic uncertainty) may obey more than
two PDFs defined by p{)’(@).....p5" (), where M € N > 3. For
the sake of simplicity, assume for each certain pg(6) a total number
of N model evaluations are required and let the time cost for one
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Fig. 10. The situation that the accuracy of the proposed method may deteriorate.

deterministic analysis be 7,. Then, in general, the total computational
time for dealing with such hybrid uncertainty propagation issue is
Tyg = N XM Xty =(N+ Zﬁz N) x t;. However, from the preceding
numerical illustrations, the total time cost for the proposed method
becomes TUECOM =N +3Y N;’Jg) Xty + (M — 1) X t,com, Where
0< N;ﬂg < N is the augmenting sample size with respect to pg>(0),
and 7,cop is the time cost for implementing the aCOM. Note that 7,com
is extremely smaller than ¢, — the former takes only seconds while the
latter may range from minutes to hours or even days, depending on the

complexity of the engineering model. Therefore, we have

" _
ngo _ (N + Z,Zz Nz(lﬁg) Xto+ (M —1) Xtacom
Tyo (N+3M Nyxt,
N+YM NG
v — B e/, (29)
N+, N

which means the computational cost via the proposed method can be
reduced by a maximum factor of M.

Limitations. At present, our proposed method presents high accu-
racy as well as efficiency for the issue of hybrid uncertainty propagation
that involves only one input random variable. This limitation is due to
the introduced B-spline chaos in [15] that only adopts one-dimensional
B-spline basis functions. Similar to other framework studies, although
this limitation is relatively strict, it is meaningful to understanding the
basic idea of the proposed framework for hybrid uncertainty propaga-
tion based on B-spline chaos and aCOM, especially for most engineers
who are not familiar with these two advancing UQ techniques.

Potential improvements. Any improvements to the B-spline chaos
and aCOM may contribute to the proposed method. For instance, for
high-dimensional cases, multivariate B-spline chaos [16] could be an
alternative, but the computational cost may increase exponentially due
to the tensor-product structure. This issue could be alleviated by B-
splines on sparse grids [31] or spline dimensional decomposition [32].
Besides, multivariate COM [4] has been investigated in corporation
with probability density evolution method, but currently it is only
suitable for cases of small epistemic uncertainty. Moreover, adopting
dimension reduction techniques, such as active subspace method [27]
(as illustrated above), probabilistic learning on manifolds [33], etc.,
could possibly improve the proposed method as well. But certainly,
introducing an extra module for dimension reduction may, more or less,
increase the computational cost for hybrid uncertainty propagation.

5. Numerical examples
5.1. Example 1: Three classical oscillators

This example studies three classical oscillators that are commonly
used as benchmarks to uncertainty propagation analysis [13,22,34-36],

including: (1) a linear undamped equation, (2) a Van der Pol equation,
and (3) a Riccati equation, respectively.

5.1.1. Linear undamped equation
The motion of the first oscillator is governed by the following linear
undamped equation written by

¥+6°x=0, x(0)=1, x(0)=0, (30)

where X%, x, and x stand for the acceleration, velocity, and displacement
in terms of the time, respectively.
Let ¢ be a uniform random variable whose PDF is defined by pg(6) =
1

— for 6 € [a, b], otherwise pg(0) = 0. Knowing the formal solution of

Eq. (30) that
x = xg cos(01), (31)

the analytical PDF of X can be derived by [37]

-1 0
/—t ZP@ <9=—2Lﬂ”+2”—lcos’1 <i>>
xé _x2 /=0 t t XO

20 1 1 x
="+ - - 32
+p9< ; +tcos <x0>> (32)

for |x| < |x,|, otherwise py(x,1) = 0.

Let pU)(6) = U'(5/4x,7/4n) and p)(6) = U'(z,27) be the input
PDFs of O due to the epistemic uncertainty. With the proposed method,
the probabilistic information of Eq. (30) is depicted in Fig. 11. The
evolution of PDFs of X att = 1.0sand 7 = 2.4 s are shown in Figs. 11(a)
and 11(b), respectively. One can see that the PDF of X is varying
with time, and is remarkably different from the uniform distribution.
It is noted that the calculated PDF of X will be smoothed via KDE for
those jump points in the realizations of X as illustrated in Fig. 11(c),
which is the main source of error that leads to a slight discrepancy in
Fig. 11(b). Except for this, the proposed method accords perfectly with
the analytical solution.

px(x,1) =

5.1.2. Van der Pol equation
Consider the Van der Pol equation written by

¥4 0xx> +x=0, x(0) =1, %(0) =0. (33)

We assume that the damping coefficient 6 in Eq. (33) has a small value
(e.g., 0 < 6 < 1) and follows the Beta distribution B(a, b). Specifically,
let p{)(6) = B(3.3) and p3'(6) = B(2,6) as shown in Fig. 12(a). By doing
this, an approximate solution of Eq. (33) can be given by [38]

X & COSt — %10 cos’t + %6‘ sin’ 1, 34)
and its analytical PDF can be derived by [13]

px(x,t;a,b) = pg <6‘ = M'a,b>/|é sind 1 — %tcos% . (35

sin’r —tcos3t

The results are shown in Fig. 12(b) for the time instant + = 3
s and Fig. 12(c) for + = 6 s. It is seen that due to the epistemic
uncertainty of O, there is a distinct variation in the PDF configuration
of X at various time instants. Besides, according to the error of PDF
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Fig. 11. PDF evolution of linear undamped equation (Example 1).
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of X shown in Fig. 13, i.e., the difference between the exact PDF and
the estimated PDF, it can be seen that the proposed method exhibits
well accuracy and good efficiency that only requires to augment 50

additional samples.

5.1.3. Riccati equation

(a) Error of PDFs of X at t = 3 sec

(b) Error of PDFs of X at t = 6 sec

Fig. 13. Error of PDF evolution of Van der Pol equation (Example 1).

_ e'xg
T 0t = Dxg+ 1

With the analytical solution of Eq. (36) given by [38]

the PDFs of X in terms of pG)(G) and p@)(e) can be derived as

X o . Oy ¢

Consider the following Riccati equation: Py (X) \/ﬂxz(e 1

%+ 60x2 —x =0, x(0) = xg, (36)
and

and assume that ¢ is a random variable following the standard Normal ® e'x,
distribution pg)(e) = N'(0,1) and the standard Lognormal distribution Py (x) = \/_—t
pg)(o) = LN'(0,1). Let x;, = 0.1 be a deterministic initial condition, thus 2rx(elxy = x)
the initial velocity becomes a random variable x, — ng. respectively.

11

e

e'xy—x

/)
B}

x(e'xy — xg)

e'xg—x

exp <—% {ln

x(e'xg — xg)

37

(38)

(39
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Fig. 14. PDF evolution of Riccati equation (Example 1).
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Fig. 15. PDF evolution of Riccati equation via the proposed method and PDEM-aCOM (Example 1).

The PDF results of X are shown in Fig. 14(b) for + = 0.5 s and
Fig. 14(c) for t = 1.0 s, from which it can be observed that the PDF of X
exhibits a rapid fall with increasing time. In addition, the nonlinearity
of the Riccati equation allows for the non-Gaussian nature of the PDF
of X, even when the input PDF follows a Gaussian distribution. Once
more, the accuracy of the proposed method is granted with only 46
augmenting samples. Fig. 15 compares the accuracy of the proposed
method and the probability density evolution method (PDEM) inte-
grated with the aCOM (shorted as “PDEM-aCOM” [13]). Although the
results via the two methods, on the whole, are both consistent with the
analytical solutions, the proposed method has higher accuracy on local
PDFs.

5.2. Example 2: A jet engine turbine blade model

Fig. 16(a) illustrates a finite element model of a turbine blade in a
jet engine [13], utilizing a tetrahedral mesh. The turbine blade consists
of a radial arrangement of blades, commonly composed of nickel alloys
such as NI-MONIC 90. These blades operate in environments character-
ized by pressure loading and elevated temperatures. The computational
cost associated with this model is notably higher compared to Example
1, however comparatively lower than that of the subsequent Example
3. Therefore, we take the MCS results of 10000 model evaluations as
reference solutions.

A total of six significant model parameters are considered in previ-
ous UQ studies [39,40], including the Young’s modulus E, coefficient
of thermal expansion «, Poisson’s ratio v, thermal conductivity «, and
two external loads, i.e., pressure loads P, and Py, on the pressure
and suction sides of the blade, respectively. According to the sensitivity

12

analysis in [39,40], the coefficient of thermal expansion is the dom-
inant parameter that is most sensitive to the maximum deformation
(denoted by x) of the turbine blade. For this reason, consider « = @
be a random variable following pg)(e) = N(12.7,1.27) and pg>(9) =
N(10.0,1.50) (unit in 10~® 1/K), as shown in Fig. 16(b), and the values
of other parameters are taken as E = 227 GPa, v = 0.27, x = 11.5
W/m/K, Py = 800 kPa, and Py, = 600 kPa.

The PDFs of X are shown in Fig. 16(c), where the required number
of augmenting samples is 107. Again, a good agreement is achieved by
the proposed method compared to the MCS solutions. The accuracy of
the proposed method can also be observed in Fig. 17, from which the
estimated failure probability can reach an accuracy of ©(10~3). Overall,
the leftward PDF of X indicates that as the coefficient of thermal
expansion decreases, the maximum deformation will be reduced as
well. Interestingly, although pg)(e) has a larger standard deviation than
pg)(ﬂ), the PDFs of X present almost the same standard deviation.
This result shows that although the coefficient of thermal expansion
is sensitive to the maximum deformation, the standard deviation of
the coefficient of thermal expansion may not be the same, which is
consistent with the study in [40].

5.3. Example 3: A wind turbine tower model of two dry-joined circular ring
segments

This example studies the uncertainty of interface friction coefficient
u = O on the torsion capacity Mt = X of a wind turbine tower model,
which is simplified by two dry-joined circular ring segments as shown
in Fig. 18(a) The geometric information, external loads, and material
properties of concrete in the model are referred to [41], as listed in
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Table 1

Model parameters in Example 3.

(b) Input PDFs

(c) PDFs of the maximum deformation

Hybrid uncertainty propagation of a jet engine turbine blade model (Example 2).
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)6) and p$(6) (Example 2).

Geometric information

External load

Height Outer radius Thickness Axial force Bending moment
05m x 2 0.3 m 0.05 m 300.4 kN 45.5 kN m
Material property

Compressive strength Modulus of elasticity Density Poisson’s ratio Friction coefficient
83 MPa 37000 MPa 2400 kg/m? 0.2 ©]

Table 1. The friction coefficient is considered to be a random variable
with PDFs p{)(6) = 1°(0.3,0.8) and p{)(6) = 1/(0.4,0.7). Note that the
two PDFs have the same mean value of 0.55 that is according to the
model experiment in [41].

The model is made of plain concrete materials and the influence
of material nonlinearity is not considered, but the contact nonlinearity
and the geometric nonlinearity are both taken into account. As a result,
a total of 45696 hexahedral elements with 60113 nodes are developed
(Fig. 18(b)), amounting to 175854 degrees of freedom. Loads are
applied sequentially in the order of axial force, bending moment, and
torsion. The first two are applied by force method, while the last is
applied via displacement method. The torsion capacity is determined
by the stable torsion value of the torque-angle curve as illustrated in
Fig. 19(a).

The PDFs of the torsion capacity are shown in Fig. 19(b), from
which it can be seen that a significant reduction in the distribution
region of torsion capacity as the distribution of friction coefficient
becomes narrower. Note that this result is computed via the proposed

13

method with no additional model evaluations, since the region of pg)(e)
fully covers the one of pg)(ﬂ).

5.4. Example 4: Golinski’s speed reducer design issue

The last example tests the well-known standard problem in the
NASA Langley MDO Test Suite [42]. The system response is formulated
mathematically by
X = 0.7854@195(3.33336@ +14.93340; — 43.0934)

2 2 3 3 2 2 (40)
— 1.50796,(6; + 07) + 7477(0, + 03) + 0.7854(0,46; + O507),

where 65 is a deterministic integer in [17,28], while other parameters
are taken as independent and uniform random variables. The hybrid
uncertainty propagation is considered from Problem 1 as per [42] to
Problem 2 as follows:

(1) Problem 1: 6, € [2.6,3.6], 6, € [0.7,0.8], 6, € [7.3,8.3], 65 €
[7.3,8.3], 6, € [2.9,3.9], 6; € [5.0,5.5].
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Fig. 18. Model of a wind turbine tower simplified by two dry-joined circular ring
segments (Example 3).

(2) Problem 2: 9, € [2.8,3.4], 6, € [0.7,0.8], 6, € [7.6,8.0], 65 €
[7.6,8.0], 64 € [2.9,3.9], 0; € [5.0,5.5].

The active subspace method in Appendix C is first applied to reduce
the original input space of & € R into the active input space of §
R!. Then, the proposed method is adopted for the hybrid uncertainty
propagation problem. Figs. 20(a) and 20(b) show the results of cross-
validation by using N = 500 samples, and the CDFs of X via the
proposed method with p = 1 and n = 15 for Problem 1 (P)((”(x))
and Problem 2 (P)((z)(x)) are illustrated in Fig. 20(c). Compared with
the above three one-dimensional examples, though the accuracy of the
proposed method is somewhat reduced, its potential in dealing with
high-dimensional problems has also been observed.

6. Concluding remarks

In this paper, a novel approach for hybrid uncertainty propagation
is proposed by integrating B-spline chaos with augmented change
of probability measure (aCOM). Specifically, the considered issue of
hybrid uncertainty propagation is compatible for both small and large
epistemic uncertainties that characterize the uncertainty in the PDF of
input random variables. To ensure the trade-off between efficacy and
accuracy, the computation of B-spline chaos is conducted by partition of
assigned-probability space throughout a GF-discrepancy minimization
strategy. Main concluding remarks include:

(1) The versatility and flexibility of the proposed method is first
illustrated by four benchmark problems. The accuracy and ef-
ficiency is further demonstrated by four numerical examples,
taking analytical expressions or MCS results as reference solu-
tions. The results indicate that the proposed method performs
well for both linear and nonlinear models.

The computational cost of the proposed method is dependent on
the degree of epistemic uncertainty. Specifically, if the support
of the original PDF fully covers the one of the updated PDF, no
additional model evaluations are required. While if there is no
overlap between the two PDFs, no improvement in efficiency can
be achieved by the proposed method. This is referred to as a no
free lunch situation.

(2

—
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(3) All the examined instances demonstrate that uncertainty in the
input distribution may result in substantial uncertainty in the
output distribution, in terms of shape and/or magnitude.

While most engineering practices are involved with high-dimensional
random variables, the current method that deals with one-dimensional
cases can be further improved at least by (1) adopting dimension
reduction techniques, such as active subspace methods (adopted in
this work), principal component analysis, sensitivity analysis, etc.; (2)
developing multivariate B-spline chaos; (3) decoupling the original
model into sub-models, e.g., high-dimensional model representation.
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Appendix A. The GF-discrepancy minimization strategy for point
selection

The GF-discrepancy minimization strategy mainly includes three
steps [19]:

Step A.1. Generate an initial point set. The initial point set can be
obtained from the Sobol’ sequence as suggested in [19] or via other
methods. Let the Sobol’ sequence be S = {t4q}fl\’= . where u, €10,1], then
the initial point set of ® denoted as MM = {9("1“1} [’]‘7:
by

eini —
q

, can be calculated

Pyl(u,). g=1,...,N. (A1)

Step A.2. Rearrange each point from M = {0;“‘}5’: , by using the
empirical CDF:

N
re _ p-1 1 ini ini 1 1 _
o = Py <;N-I(0k <6} )+§'N>’ g=1,..,N,

where I(A) = 1 if A holds true, otherwise I(A) = 0.
Step A.3. Rearrange each point from M™ = {025} {i": , by using the
assigned probabilities:

N
— p-! re re 1 =
6, = P, <kz=‘1pq.1(0k <9q)+§~Pq>,q_1,...,N,

where the assigned probability P, is based on the definition in Eq. (8).
Strictly speaking, the above Step A.3 should be performed multiple
times (updating the assigned probabilities each time) to minimize the
GF-discrepancy, but in general, relatively satisfactory results can be ob-
tained after conducting Step A.3 only once. The final optimal point set
isM={6,} ;V: . As for dependent random variables, the GF-discrepancy
minimization-based point selection can be found in [43].

(A.2)

(A.3)
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Fig. 19. Uncertainty quantification of a wind turbine tower model of two dry-joined circular ring segments (Example 3).
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Fig. 20. Hybrid uncertainty propagation of the Golinski’s speed reducer (Example 4).

Appendix B. Proof on the augmented change of probability mea-
sure

The proof that { 9(2) }N+Naug (2)(0) via aCOM is given based on the

composmon method for generation of random variables [44]. Define
)(0) and p(z)(é') be expressed as mixture distributions, i.e.,

PS)W) =) @)+ p0)0). 0 € Q. (B.12)
P20 =22 o2 0+ 2P - 53, 0). 0 € 2, (B.1b)
where
|
Pon®) = =55 P (6). 0 € Ly, (B.2a)
a
1 1
Py = O] P (). 0 € A\ Ly, (B.2b)
b
1
pg,)a(e) =0 Pg)(g)’ 0 € Qayg; (B.20)
a
1
Py(6) = ) -pg(0), 0 € O\ Ly, (B.2d)
b
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(1)

where 7, (l)de n(l) p(l)dH 72

= fgaug

p3de.

= D49, and
f.qaug Pg 9Y,

h oo
T, = /Q\Qaug

Meanwhile, the augmenting PDF in Eq. (18) can be rewritten by
(2) (0]

@ (0 el O (g)+ Zo T joumg (B.3)
o(0) = (2) (0 + Ne ). .
ﬂ
From Eq. (B.1a), a number of N, samples from {6‘(,1)}‘1;’= . located in

2, follow p(l) (#). Since additional samples {0;2)}::;‘5 are drawn from
(aug)(e), according to Eq. (B.3), there are N, + Naug samples follow

(2) ,(0). Note that from { f,])}f]‘;l there are N, = N — N, samples
st111 remained in Q\£2,,,, waiting to be equipped with new assigned
probabilities, namely, N, samples from {Gfll)}N will follow p6 (0) via
aCOM. Due to the fact that Q = Q,,, U 2\, and from Eq. (B.1b), it

NAN
is now clear that the new representative point set {9(2)} _, % on the
O

definition of Eq. (19) via aCOM follow the distribution p(z)(e).
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Appendix C. Active subspace method for dimension reduction

Consider Eq. (1) with @ € R* where s > 2. Then, the uncentered
covariance C can be computed by

Cc= / (Vog) (Vog) " pe(0)d0 € RS, €1
Q¢

T
where pg(0) is the joint PDF of @, and Vyg = [:Tg, . ;Tg] € RS is the
1 s

gradient of g. Further, the eigenvalue decomposition of C gives that
C=WAW, (C.2)

in which W € R¥“ and A € R** are eigenvector matrix and eigenvalue
matrix with diagonal eigenvalues {4, ..., A,} satisfying that A, > 4, >
-+ > A, > 0, respectively.

If |4, — 4,| is far greater than the absolute difference between any
other two adjoint eigenvalues, i.e., |4 — 4| > [4;—4;]| for j €
{2,...,s} (consider A,,; = 0), one can find a one-dimensional active
subspace defined by [27]

6=WToeR!, (C.3)

where W is the first column of W. Let the approximation of g(6) by
Z(6). It has been proved that [27]

E [(g(e) - g@))z] <LY A, (C.4)
i=2

where L is the Lipschitz constant. In this work, we take advantage of
the ASM to deal with high-dimensional cases. Moreover, the gradient-
free algorithm [45,46] is adopted to calculate the uncentered matrix

C.
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