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Abstract: With increased awareness of anthropogenic emissions, industries and sectors worldwide are changing
rapidly. One of those sectors is the transport sector which has seen immense change with the increase of electric
vehicles in recent years. Although these electric vehicles reduce emissions and are a welcoming sign of change,
they greatly increase electrical demand, especially on the residential distribution grids. Case studies and research
on demand response with EVs has been increasing over the last years to try and reduce this load impact. This thesis
aims to explore how the charging load of a large EV fleet impacts the distribution grid in Iceland and how it can
be minimised with demand response strategies. A load model was created for the distribution grid in the capital
region of Iceland and the results indicate that large-scale EV penetration can have a huge impact. Furthermore, the
results showed that demand response strategies can greatly reduce that impact and offer significant peak reductions.
However, based on a bottom-up approach, the lower levels of the distribution grid seem to be worst affected. Future
research should be focused on mapping these local grid effects and conducting more in-depth analyses on that level.
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1. Introduction
With rising levels of anthropogenic emissions and their
effects on the warming of the planet and subsequent
change of climate, industries and sectors are in a tran-
sition towards more sustainable use of energy. There
is a global push for renewable energy sources (RES),
especially for electricity production, with wind and so-
lar being implemented on a large scale. Worldwide,
countries are working hard towards their environmen-
tal goals, decarbonising their energy production and
decreasing greenhouse gas emissions (GHG).

One of the sectors that has seen immense change
is road transport, with the increase of electric vehi-
cles (EV). They can effectively reduce emissions, but
do also largely increase residential electricity demand.
Additionally, electrification is happening in other sec-
tors as well as households, with heating and cooking
being replaced with electricity on a large scale, instead
of relying on gas. To react to this heightened electric-
ity demand there are two options, reduce the demand
or increase the supply. With the current energy transi-
tion, coal and gas are being phased out and replaced
with RES and other more sustainable sources, but this
conversion is costly and slow.

The optimisation of the generation side, that has
been going on for the last decades, has thus become
much harder as there is a global consensus that these
conventional generation sources cannot be sustained
and continued to be used. Affecting the demand side
of the equation can therefore be very beneficial and
has gathered immense interest of researchers and in-
dustry players in recent years. This act of affecting the
demand is most often referred to as demand-side man-
agement (DSM). It can be categorized into two sub-

groups, energy efficiency (EE) and demand response
(DR) [1]. The latter is namely something that can be
done with EVs, by shifting the charging of EVs to more
favourable hours for the grid. This both increases grid
utilisation and the utilisation of the energy produced.
Increasing the share of the passenger fleet that is elec-
tric is one of the biggest things countries can do to
take a major step towards reducing their carbon foot-
print. However, that EV fleet can increase the residen-
tial electrical demand significantly and congest the dis-
tribution grid. Therefore, coordinating the charging of
a large EV fleet is vital to increase EVs without com-
promising grid integrity.

In this paper, Iceland is chosen as a case study, as
it has very high EV penetration levels and because of
its unique energy market characteristics, electrifying
road transport is vital for the country to achieve its
environmental targets and international agreements,
most prominently its GHG emission reductions for the
Paris Agreement. The goal of the research is to ex-
plore the load impact of EVs and research different DR
strategies to minimise that load impact and ultimately
facilitate large-scale EV penetration in Iceland.

Iceland is one of the fastest growing EV markets in
the world. In 2019, 27.5% of new car sales were EVs
[2]. Worldwide, only Norway has a higher share of
EVs sold [3]. Iceland is a member of the European
Union Emissions Trading System (EU ETS), which ap-
plies mostly to the aviation and the heavy industry sec-
tor [4]. Road transport is responsible for about 20% of
the country’s total GHG emissions [4] that fall outside
of the ETS system and its energy transition is thus very
important for the country’s commitments towards cli-
mate change. The energy market and circumstances
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in Iceland also heighten the EV load impact, as there
is only one city, where roughly 65% of the country’s
population lives [5]. That is where the research is fo-
cused on, as the distribution grid in this capital region
is where EV charging has the most impact and where
the large majority of the EVs are situated. However,
the distribution grid is already congested in terms of
additional power delivery to it [6] and with the in-
crease of EVs this will be an even bigger problem. This
leads to the research question: How can demand re-
sponse strategies be used to coordinate the charging of
a large EV-fleet to reduce the load impact on Iceland’s
capital distribution grid?

2. Background
Much has been written on this topic in recent years;
the load impact of EV charging on distribution grids
and DR strategies with EVs. This increased load can
indeed have a bad impact on the distribution grid
and create grid congestion. Most notably, these neg-
ative impacts are overloading of lines and transform-
ers [7, 8, 9], increased system losses [10, 11] and de-
creased power quality [12], often resulting in the need
for costly reinforcements of the network [10, 8]. As
explained in the subsection before, EV charging load is
proportionally very large compared to regular house-
hold loads and therefore puts major stress on the dis-
tribution grid in various places and levels. High levels
of EV penetration will increase the system peak sub-
stantially if there is no coordination of this load. How-
ever, scheduled charging, through DR strategies, can
reduce these peaks drastically [13] and in some sce-
narios be reduced to a level where it has no contribu-
tion to the peak demand [14].

A structured literature review was conducted in or-
der to gather the required background knowledge for
the research and to compare different types of demand
response. The results of this review made it possible to
select different DR strategies to research. An overview
of the selected literature can be seen in table 1. One
of these papers was the highly cited paper of [15],
where two types of demand response programs are
identified: incentive based programs (IBP) and price
based programs (PBP). These two distinct programs
have been steadily used as a standard when discussing
demand response. In figure 1, an overview of these
two programs and the different strategies within them
can be seen.

For each of these programs, the circumstances of the
energy market can affect their performance and even
limit their implementation. For some programs, spe-
cialised infrastructure is needed and for others, certain
market characteristics are needed. Therefore it was
desired to summarise these programs in order to se-
lect the ones that are most viable and realistically im-
plemented for the case study of this research project.

Figure 1: The two demand response programs and
their classifications. Original diagram from [15]
p.1990.

In table 1, the main features of the reviewed liter-
ature are presented. For the two classifications of the
programs, PBP were much more prevalent. A large
share of the articles focus on real time pricing (RTP).
This strategy revolves around changing prices hourly
or more frequently, based on the wholesale price of
electricity [32]. This strategy is found to incentivise
consumers to more efficient electricity consumption
[11] and make demand and supply more connected
[23]. However, [10] find that RTP is too dynamic for
EVs and [7] finds that RTP can contribute to the cre-
ation of a second peak. The bottom line is however,
that for RTP to work efficiently there needs to be spe-
cialised infrastructure; a smart metering communica-
tion system [11].

Based on the shortcomings of RTP, a number of ar-
ticles suggested TOU as a feasible alternative. Articles
[22] and [16] implemented TOU in a game-theoretical
based way. The latter article found that the game is
solved when both the retailer’s profits and the cus-
tomer’s utility function is maximised [16], whereas pa-
per [22] finds that increased competition with multi-
ple utility companies can accompany higher penetra-
tion of EVs. From this it seems that with more retail
energy players (REP) in the market TOU can indeed be
beneficial. As a DR strategy, TOU is also beneficial for
its simplicity, as opposed to RTP. It essentially divides
up the day into different blocks based on prices, most
often based on peak or off-peak hours. This structure
easily allows residential EV owners to optimize energy
use [30]. Similar to RTP, TOU can also create a second
peak and even in a more drastic way, when charging
load of EVs shifts to the off-peak hours [10].

However, TOU can also be made more complicated
and its weaknesses possibly mitigated. Article [31]
proposes a TOU strategy with multiple tariffs, where
customers are grouped and each group gets a differ-
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Paper DRP DR strategy Main features

[16] PB, IB Time of use (TOU), Direct control - Stackelberg game-model - Maximisation of both REP and consumer
[15] - - - DR overview paper
[13] IB Curtailment - Residential decentralised DR - EVs considered as shiftable load
[17] IB Curtailment - Modelling under network uncertainties - Whether to perform DR or expand the grid
[18] IB Direct control - Effects of DR programs on chargeability of EVs based on SOC - EVs modelled as interruptible load
[9] IB Direct control, Curtailable load - Consumers set load priority or convenience preference
[19] IB Direct control, Curtailable load - User identification for DR
[7] PB Dynamic tariffs (DT), Daily power based network tariffs (DPT) - Consumption and EVs based on a HEMS - DR coordinated by REP
[20] IB Limit order bids (Demand bidding) - REP as an EV aggregator - Both a centralised and a decentralised approach
[21] IB Multiple - Congestion management optimisation - Aggregator’s behaviour based on price signals
[22] PB Multiple - Stackelberg game-model - Both multiple and a single utility company - Consumer behaviour implemented
[23] PB Multiple - Multi agent system modelling with HEMS as an agent - Loads organised based on shiftability
[24] PB, IB Multiple - HEMS which reacts to DR programs, both PBDR and IBDR
[25] PB, IB Multiple - EV travel behaviour - Both single EV and an EVA - Multiple DR strategies modelled
[26] - Multiple - Assesses charging behaviour and the potential for DR
[27] - Multiple - Focus on DR customers and integrating EV into DR
[11] PB Real time pricing (RTP) - Willingness to charge and participation in DR researched
[28] PB Real time pricing (RTP) - Particle swarm optimisation algorithm
[29] PB Real time pricing (RTP) - Loading algorithm used to determine EV load
[25] PB Real time pricing (RTP) - Peak load shaving and valley filling with RTP - SOC used as demand level indication
[12] PB Real time pricing (RTP) - Automated decentralised DR
[8] PB, IB Real time pricing (RTP) - Decentralised EVA approach to DR - Combination of RTP and in
[14] PB Real time pricing (RTP) - Optimally scheduled charging can reduce peak contribution to zero
[10] PB Time of use (TOU) - EV aggregator facilitating DR
[30] PB Time of use (TOU) - Explores necessary financial incentives for DR participation
[31] PB Time of use (TOU) - Multiple TOU tariffs for different customer groups
[32] PB Time of use (TOU) - Different levels of EV penetration are considered
[33] PB Time of use (TOU), Real time pricing (RTP) - Decentralised DR based on HEMS system

Table 1: An overview of the review literature findings

ent tariff. Their results show that this method achieves
lower energy prices for consumers than a single TOU
tariff, as well as a better distribution of the load. Lastly,
the three others PBPs, mostly evolve around the same
principle. Critical peak pricing (CPP) is a combination
of TOU and RTP, where hours where demand is abnor-
mally high have much higher tariffs [32]. Extreme day
CPP and extreme day pricing both use time-dependant
pricing scheme, but seem to be less popular than CPP,
which is still quite absent from the literature.

Going over to the other group of DR programs, it
is evident that incentive-based DR (IB DR) is often
carried out with an autonomous system. According
to [32], a home energy management system (HEMS)
can control EV charging to minimise the electricity
cost. In [24], a load priority method is used to
determine how the consumption changes under a DR
event. Article [18] examines similar things and finds
that EVs can be interrupted as they are considered a
quite flexible load. Similar to RTP, these strategies
still need smart infrastructure to minimise disruption
to consumers and let them best choose their own
priority preferences. The control of the different
demand response strategies can also be implemented
differently, both centralised and decentralised [8].
This type of IB DR are quite different to the PBPs.

In price based DR (PB DR), the distribution system
operator (DSO) changes the price hoping that the
consumers will react and change their consumption.
However, with IB DR, consumers enter an agreement
with the DSO, EV aggregator (EVA) or another oper-
ator, to allow the change of their consumption under
certain circumstances. Direct load control has been
offered to consumers before as [30] state, where

consumers allow the utility company to remotely shut
off air conditioning in high demand hours. This type
of DR gives the DSO much more control and thus
more chance to optimise the load profiles. Article [24]
states that direct load is the most frequently used DR
program since the 1960s, to quickly react to system
load changes. According to [7], the regulations in
liberalised energy markets make it hard for DSOs to
enter such contracts. This DR strategy, along with
curtailment were by far the most frequent types of
IBPs in the reviewed literature.

The other classical IB DR method, curtailment, is
quite widespread and evolves around reducing or
stopping charging when the system is overloaded. As
EV charging is viewed as a shiftable load, as stated
before, curtailment with EVs is a good option. The
paper [18] studies the impact of interruptions by
curtailment on the chargeability of EVs and found that
a temporary interruption will have minimum impact
on the chargeability. For the other types of IBPs, the
market-based strategies, their footprint was smaller
in the literature findings as seen in the overview in
table 1. Demand bidding was one of those strategies.
It functions very much like the spot electricity market.
Bidding is usually day-ahead and has both a demand
and a price component [20]. Another popular strat-
egy in this category is the ancillary services market,
where EVs participate in maintaining the power grid’s
reliability [20].

3. Methodology
The chosen methodology of the research project is
based on the type of research problem. From the con-
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ducted literature review, a knowledge gap emerged,
which is grounded both in academics and practical-
ity. From the literature it is clear that the DR strate-
gies used depend both on the user group and neces-
sary technology and infrastructure to achieve it. Price-
based DR programs (PBDR) seem to dominate the lit-
erature and its studied cases. Furthermore, how the
effect of different DR strategies are modelled and eval-
uated matters immensely to properly measure the im-
pact on the distribution grid. As [13] states, such anal-
yses must be done over a full year of data.

This knowledge gap comes from the missing knowl-
edge on which DR strategies should be implemented
and how. As stated earlier, the evaluation of the per-
formance of different strategies is very important and
has up to this point been very challenging due to lim-
ited data and information on charging behaviour of
Icelandic EV users. However, this research project,
uses a novel EV study dataset and is the first academic
project to do so. The research question as put forth
earlier, is based on this knowledge gap. If this question
is dissected, it becomes clear that is has two main com-
ponents. First, it is understanding how a large EV-fleet
impacts the distribution grid. Secondly, it is to anal-
yse the effects of different demand response programs
based on EV charging and distribution grid properties.

The methodology of the research thus has to be able
to measure the behaviour of this system and explore its
performance under these different charging scenarios.
For this reason, the research approach is chosen to be a
modelling approach, and more specifically; modelling
and simulation. This can both be considered a method
and a tool [34]. The energy system and distribution
grid will be modelled and demand response programs
will then be simulated in that model.

The modelling process is essentially a three part pro-
cess, centered around the first part, which is a concep-
tual model. In that model, the problem situation as
mentioned before is described and constrained, and
the intended outputs of the model specified. This con-
ceptualisation process is vital as it reveals all of the
necessary steps that have to be taken to answer the
research question. Assumptions and simplifications
shape this process and have to be reflected upon to
fully quantify the results of the modelling. This con-
ceptual model is then implemented technically, using
the programming language Python. The middle step,
between the conceptualisation and the technical im-
plementation is based on the data and inputs that are
available for the modelling. In the following subsec-
tions, these parts will be explained.

3.1. Conceptual model
The process of formulating what is to be modelled is
done with a conceptual model. Conceptual modelling
is used in many fields; software development, product
design, ecological system mapping and many more.

But for modelling and simulation, conceptual mod-
elling serves a specific purpose. According to Robinson
et. al’s influential book on the subject: ”...conceptual
modelling is not about how to implement, or code, a
model on a computer, but it is about how to decide what
to include in a model and what to exclude from that
model” [35, p. vii]. In the book, Robinson proposes a
framework for developing a conceptual model, which
will be used to guide the formulation process for this
research project. This framework is essentially a se-
quence of activities to be carried out and together for-
mulate a conceptual model.

However, these activities can be carried out non-
sequentially as this process is an iterative one. These
activities are identifying the scope and problem situ-
ation, determining the modelling objectives, identify-
ing the model outputs and inputs and determining the
model content and identifying assumptions and sim-
plifications [35, p.75]. An overview of these activities,
formulated for this research project, can be seen in fig-
ure 3. They will be further explained in this section.

Problem situation
The problem situation starts with identifying and scop-
ing the system of interest, which is the system to be
modelled. This system is the capital region distribu-
tion grid in Reykjavik, Iceland’s capital and only city.
More specifically, the system of interest, is the part
of the distribution grid that is operated by the DSO
Veitur. The physical boundary of this system are five
municipalities where Veitur is active in. Over these
municipalities, the combined population is 196,120
(2020 Q2), or 53% of the country’s population [5].
Car ownership is also very high in these municipali-
ties, as half of the country’s passenger cars are located
there. Additionally, EV penetration is very high, with
two of the municipalities having nearly 10% EV pen-
etration. Combined, these municipalities have over
65% of all of the EVs in Iceland [36]. Apart from this
physical boundary, the building blocks of the system
can be seen in figure 2, where the infrastructure of
Veitur is clearly specified.

The problem situation is positioned within this sys-
tem of interest and is based on the identified knowl-
edge gap as established earlier. This problem situation
is that it is not known how large-scale EV charging af-
fects the distribution grid and more specifically; at what
levels in the grid, with varying EV penetration and un-
der different demand response strategies. The concep-
tual model is thus developed to obtain insight into the
the performance of the distribution grid, the system of
interest, under these unknown circumstances.

Modelling objectives and constraints
To identify and define the objectives and constraints
of the conceptual model, the nature of the system
of interest must be acknowledged. This system is
both a physical system in terms of the distribution
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Figure 2: An overview of the distribution grid and its
different voltage levels. The infrastructure of the DSO
Veitur is clearly specified.

grid infrastructure, but also a market, where supply
and demand must match at all times. With changing
behaviour of consumers - in this case increased
consumption based on EV charging - the supply side
must match this rising demand instantaneously and at
all times. The energy producers, TSO and DSO must
all act to do this. The delivery of this power supply
through different levels of the system, mainly three
levels, as illustrated in figure 2.

These levels are based on voltage, where with each
level the voltage decreases, starting at 132 KV at
the very top level where the TSO delivers the power
from power stations to the TSO, and going all the
way down to the household voltage level of 230 V,
where the majority of the EV charging takes place.
The power supply thus has to traverse through these
different levels to match this demand. Congestion
of this power delivery can happen on any of these
levels in the system. Based on this explanation of the
system of interest, the main modelling objectives can

be elicited. They are listed below.

1. To determine the primary load in the capital
region over a full year on a 15-minute basis

2. To determine the charging load of a scaleable
EV-fleet over a full year on a 15-minute basis

3. To determine the capacity limits of the distri-
bution grid on the three voltage levels

4. To calculate at what size of EV-fleet the system
capacity is exceeded under different charging
scenarios

5. To determine how system load can be min-
imised under different charging scenarios

6. To determine the required consumer participa-
tion in different DR strategies

These objectives reflect the problem situation and
guide the modelling process towards solving it. The
first two include the scope of the modelling, which
is to be done over a full year on a 15-minute basis.
This is to truly see the effects of the load in the most
realistic way. As was mentioned earlier, a full year
of data is deemed necessary to accurately evaluate
modelled DR strategies. It is desired to have the
primary load - which is the base electricity demand of
the capital region without any EV charging - and the
charging load separate in the model. This is why these
load elements have two objectives. The next two state
that the power capacity of the distribution grid must
be found and then used to evaluate the maximum
EVs that can be allowed onto the grid under different
charging scenarios, based on different DR strategies.
The last two guide the exploration of the settings of
the DR strategies that are to be modelled, by finding
how to minimise the load with their use and how
much participation is required of consumers.

The modelling process is also guided by constraints,
that limit how the objectives can be achieved. The
objectives guide the formulation and functioning of
the model and define what it should do, whereas the
constraints create boundaries for it. In the list below,
these constraints can be found.

1. Model must run over a full calendar year
2. The primary load and charging load has to be

based on actual values, i.e. historical data
3. The variability and heterogeneity of charging

behaviour of EV consumers must be taken into
account and validated

4. The annual total charging load of a given EV-
fleet must be equal under any charging sce-
nario

5. Existing charging preferences of EV consumers
cannot be broken

These constraints can be roughly classified into two
types; the external modelling constraints and imple-
mentation modelling constraints. The first type are the
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constraints that apply to the scope, inputs and other
external factors affecting the conceptual model. These
are the first three constraints. They ensure that the
modelling will be accurate, based on actual histori-
cal values and over a full year. The third constraint
puts a necessary validation process on the charging be-
havioural dataset, to ensure that it can represent the
large EV fleet that it is supposed to represent. The
two last constraints apply to the DR strategies that
are to be modelled and creates a boundary to which
the charging behaviour of EV users can be affected.
This makes sure that the charging scenarios, based on
different strategies can then be compared on an even
ground.

Model content
At this point, the model content, centered around the
two different DR strategy implementations, must be
explained. In figure 3, the model formulation process
can be seen, where the model content, as well as
the objectives and the constraints are derived from
the problem situation. In general, the main model
content is a time-series based load model. This model
is a representation of the system and is done on the
three different levels of the system. Different charging
scenarios are represented in this model, but they
are derived from two DR strategies and the current
state of the system. This current state, is defined as
uncoordinated charging, as there is no implemented
strategy in place to distribute or affect this load on
behalf of the DSO. These three different settings of
the system, uncoordinated and based on the two DR
strategies can thus be seen as the three main load
scenarios, as they represent the load of an EV fleet in
the system. The first load scenario, the uncoordinated
charging does not need much explanation as it is sim-
ply unaffected charging load based on the available
charging behaviour input as will be explained later.
However, the two DR strategies that are modelled
were selected and implemented in a certain way. The
explanation of that process will be thus be described.

In choosing the two strategies, many things came
into play. Many of those fall under the applicability of
the strategy in the system of interest, as well as stake-
holder interest and ease of modelling implementation
and analysis. The number of DR strategies that were
chosen, two, was based on the limited timeframe of
the research project. Furthermore, it was desired to
choose one strategy from each of the two different
DRP types; price-based and incentive-based.

The first demand response strategy to be incor-
porated was time of use (TOU). This was largely
supported by the literature findings, as this was
one of the more prominent strategies found in the
literature and is much simpler than the other popular
price-based strategy, real time pricing (RTP). For RTP
to work effectively, specialised infrastructure has to

be in place which is lacking in Iceland, as well as a
dynamic marketplace for the consumer side of the
electricity market which is also not entirely the case in
Iceland. TOU as a strategy has been widely deployed
and is easy to implement as there only needs to be a
time-dependent electricity metering system, which is
being rolled out in Iceland in coming years.

For the second demand response strategy, which is
supposed to be an incentive-based strategy, roughly
the same steps were taken to choose the best fitting
strategy. Therefore, much of the rationale for choosing
TOU can also be applied to the second chosen strategy.
For incentive-based strategies, there are two cate-
gories; the classical strategies and the market-based
ones, as described before. The market-based ones
seemed to be far less viable in application in Iceland.
These types of IBP strategies were very absent in the
literature and seem to be less applicable to EVs, as
they require a well functioning electricity market and
EVs often exhibit more volatile and random behaviour
than conventional DR resources. The existing settings
in the system of interest also make these types of
strategies unlikely to be practical in application, as
there needs to be a fairly complex electricity market
with wholesale future markets as well as ancillary
services or other grid services markets. For the capital
region in Iceland this is not the case, as that energy
market is fairly small and simple. The other category
however, classical IBP strategies, has only two types
of strategies that are similar in many ways; direct
load control and curtailment. Out of these two, direct
load control (DLC) was chosen, which essentially
gives the DSO control over the load of a consumer
according to an agreement between the two parties.

Inputs & outputs
For this part of the conceptual model formulation
process, it is vital to first focus on the intended outputs
of the model. From there, the required inputs can
be determined. As said before, the model will run
over an entire year, on a 15 minute basis. Over this
period, time-dependent values of both charging load
and primary load are used to model the effects on the
distribution grid. The main output of the conceptual
model, and the one output which most of the other
outputs are derived from, is therefore a time-series
load model, with primary load and charging load
values separated, over the entire model date range.
This output of the model will be different for every
charging scenario, as the charging load part of the
output will be different, based on varying consumer
behaviour under these scenarios. Therefore, for every
scenario, the output will be a full charging profile
over the entire model date range.

From this main output, a multitude of outputs can
be derived which will be used to measure the effects
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Figure 3: A visual representation of the conceptual model.

on the distribution grid on its three different levels.
This main output serves as an overall indicator of the
performance of each DR strategy scenario and is used
to quantify the effects on the top level of the distribu-
tion grid, the high voltage substations. That is done
by comparing the yearly load profiles to the capacity
limits of the grid. Additional to this main output and
its derived outputs, modelling KPIs are formulated
that ultimately translate the raw numerical outputs
of the time-series model into results. These will be
presented in the Results section itself.

For the inputs, the majority is based on datasets
that were acquired for this research project. Those
inputs are the primary load, charging load and ca-
pacity limits as seen in figure 3, and will be explored
later on. Additional to those, there are two input
parameters used for the modelling, to create the
different charging scenarios. First, the EV fleet size
which is the number of EVs which is modelled. The
second one is the DR consumer participation, which
depicts how many of the EV owners actually respond
to the price changes in the TOU DR strategy or enter
an agreement for the DLC DR strategy. These two
input parameters are both formatted as a percentage
number. EV penetration is the share of the passenger
vehicle fleet that is electric while the DR participation
is the share of consumers that participate in the DR
strategies.

Now that the inputs and outputs have been de-
scribed, as well as the model content, a summary of
the modelling process can be provided. To explain the
sequential steps of the conceptual model, it starts with
the inputs as described earlier. These inputs are used
in the central modelling process, which is essentially
two steps; first modelling the combined load profile
of the charging and primary load, based on the input
parameters. Then this load profile is quantified in
terms of the capacity limits of the grid, first on the
top level and then the medium and lowest level, in

separate steps. From this process, the outputs are
derived, and from them the results of the model use
can be analysed and ultimately be used to compare
performance of different charging scenarios. As can
be seen in the visualisation of the conceptual model,
the problem situation is the direct influence on the
central modelling process, where the modelling objec-
tives and constraints are used to guide the modelling
process. But what is also an important factor in this
process is the model scope and simplifications. The
scope of the model has been explained shortly before,
with the constraint of it having to run over a full
year. The simplifications however have an even bigger
impact on the conceptual model.

Model simplifications & assumptions
The system of interest is based on the modellers per-
spective on the real-world system, which is the distri-
bution grid. Taking this system of interest and identi-
fying the problem situation within it and subsequently
formulating the conceptual model is essentially built
on assumptions and simplifications. They can also be
viewed as the necessary design choices of the model;
what to include and what not to. These simplifica-
tions and assumptions have an effect on all of the con-
ceptual model components mentioned before and thus
shape the conceptual model in a sense. They can be
classified into two categories.

The first category is based on how the distribution
grid system is represented in the model. The primary
load data, as mentioned before, was not available on
all the voltage level of the grid as illustrated in figure
2. Only for the top level, was the primary load fully
available. On the lower levels, primary load data was
only available for one distribution substation. There-
fore, a simplification was made; to represent the dis-
tribution grid as a combination of the complete overall
grid level and a snapshot of the lowest levels based on
a distribution substation. Furthermore, to fully rep-
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resent these lower levels of the grid, the individual
buildings behind this substation were allocated pri-
mary load values based on proportional population
numbers. Data on the electrical infrastructure in each
building this subgrid, based on this station, as well as
the inhabitants in each house were available online.
Based on those numbers, EV numbers per building
could be assumed and both charging load and primary
load allocated to these buildings.

The other category is based on how the charging
load input is used and handled to formulate the three
main load scenarios. In the dataset that makes up this
input, the charging load profile is made up of individ-
ual charging values from the EV study as explained
before. How to handle this input is an important step
of the conceptual modelling process. This handling
does not only apply to the base modelling, i.e. the un-
coordinated load, but also the DR strategy implemen-
tation as they use these charging profiles and affect
them by distributing or changing the load according to
the strategies. A simplification was made in order to
manipulate this input as little as possible for the most
accurate depiction of the data behind it. This simplifi-
cation is that only certain parts of the charging session
properties can be affected.

The charging power, duration and the total charg-
ing load of the session cannot be altered. The indi-
vidual intervals of the session can be shifted in time
and rearranged, but the charging power as well as
the duration and inclusion of every interval in the ses-
sion must be completed. This still makes it possible to
see the effects of the different DR strategies, but does
so on an even ground, as the strategies still have to
take into account realistic real-life charging behaviour.
This simplification does also have effects on the mod-
elling process and outputs. This essentially does pro-
vide a limited view of the performance of the different
DR strategies, as when people shift their charging or
change their behaviour, the charging settings as ex-
plained before; duration, power and other parameters
can indeed be different than if the charging was un-
coordinated. This of course impacts the results, as it
might make the performance of the DR strategies less
effective, as the sessions as they appeared in the EV
study must be used in the same way.

3.2. Data
The acquired data for this research project plays a ma-
jor role, as the data used in this project, to model the
charging behaviour of consumers in Iceland, has never
before been used. Additional to this dataset, data on
the primary load and the capacity of the distribution
grid was acquired.

The charging dataset comes from a study conducted
in 2018 and 2019 on behalf of Samorka, the associ-
ation of the electricity industry, district heating, wa-
terworks and sewage utilities in Iceland, founded in

1995. All district heating and electric providers and
utilities in the country are members as well as most
sewage and waterwork utilities [37]. The study was
in carried out in cooperation with these member com-
panies, intended to gather insights into EV charging
behaviour for future decision-making on the grid and
charging infrastructure. The study itself was con-
ducted by using a tracking device in the vehicles which
measured and collected various performance and be-
haviour metrics [38]. For every trip the vehicles made
over the study period, various metrics were collected
such as; distance, driving time and start and end state
of charge (SOC). For charging specific metrics, data
was collected in data-slices, which were recorded in 15
minute timeslots over the timestamp hour, only when
the EVs were actually charging. The study period was
an entire year, from December 1st 2018 to November
30th 2019. In total, 194 vehicles participated, clas-
sified by thirteen different subgroups. These groups
are based on the type of EV, EV location and residency
type.

For the primary load data, the main data that was
used was from the highest level of the distribution
grid. This data, provided by Veitur, is time-series data
from all of high voltage substations in the capital re-
gion and combined represents the entire load on the
area. The dataset spans a few years back in time and
is in 5 minute time intervals. It is thus possible to find
the primary load in the same period as the EV study
dataset, December 1st 2018 to November 30th 2019.
Additional to this primary load data from the high
voltage substations, load data from one distribution
substation could be accessed. That data will be used
together with the local grid capacity data and provides
a better insight into consumption data of households
at the lower voltage levels. However, as it is only avail-
able from one station, this data cannot serve as the
primary load data for the whole capital region. These
two load datasets are on different voltage levels and
serve different purposes. This lower-level, more de-
tailed data will act as an exploration tool for the local
parts of the grid and to measure the load impact of EV
charging on those levels.

To be able to synthesise the results of the charging
and primary load data when put into a model, data on
the capacity of the distribution grid must also be ac-
quired. This was acquired for all of the high voltage
substations on the top level of the grid, as well as the
distribution substation for the lower levels. This data
is simply the size of the transformers in these stations.
As said before, additional data was acquired to rep-
resent the electrical infrastructure in the subgrid be-
hind the distribution substation. This subgrid is essen-
tially all of the houses that are connected to this par-
ticular substation, as illustrated in figure 2. This data
was available online from [39], and has cable types of
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all the electrical connections in the subgrid and from
that the individual cable capacities can be determined.
With the modelling methodology of assigning primary
load and charging load to each building in the grid,
the capacities of each building can thus also be used
to quantify this load based on different charging sce-
narios.

3.3. Technical model implementation
The technical model implementation, was guided by
the conceptual model. Therefore its methodology and
modelling steps are based solely on the formulated
part of the conceptual model. The assumptions and
simplifications earlier described, shape this process as
well as the constraints and objectives. The technical
model consists of three main parts; the base modelling
- based on the uncoordinated charging, the DR strat-
egy implementation and the grid impact modelling. As
the methodology of those parts comes directly from
the conceptual model and in fact the data, which have
both been explained in detail, this technical method-
ology will be shortly summarised.

The base methodology was mainly based on the
handling of the EV study dataset. From the dataset,
only the EVs situated in the capital region - the system
of interest - were used, which resulted in 121 EVs.
As described before, whenever charging these EVs
generate 15-minute intervals of data. This data was
matched to the corrent intervals over an entire year -
based on the study period - and the charging values
of every single car was put into a column. With this,
a simple time-series load model was formulated, with
each EV in its own column. Based on the type of EV,
BEV or PHEV, these 121 cars were then aggregated
into a yearly BEV profile and yearly PHEV profile.
For the base modelling, this was simply scaled up
to represent the desired amount of EVs, keeping the
ratio between BEVs and PHEVs equal. This charging
load of the modelled EV fleet was then combined at
the correct timestamps with the primary load to get
an overall load profile. Based on that, the grid impact
could be determined.

For both of the DR strategies’ modelling, the
methodology was similar. First it was taking the out-
put of the base modelling, which is the uncoordinated
time-series load model and using it as a starting point.
Next, all sessions were identified and iterated over.
Based on the rules earlier described, in the objectives
and constraints, the sessions were then either shifted
for the TOU or distributed over a certain time period
for the DLC. This was only done for participating EVs.
In the end, another time-series model was outputted,
with shifted sessions and thus a different overall
profile. This too, could then be scaled up as the
uncoordinated load.

The last step was then to to determine the grid im-

pact on the two levels; overall system level and sub-
grid level. The overall level was simply to compare
the combined load peaks of primary load and scaled
charging profiles based on the different DR strategies
or the uncoordinated load. For the lower levels how-
ever, the unscaled time-series models were used and
allocated to individual buildings in the subgrid based
on EV penetration in each scenario. From the acquired
data on the subgrid level, population numbers in the
subgrid were accessed for each house. With that in-
formation, primary load from the substation level was
allocated proportionally to each building. In the same
way, number of cars were estimated based inhabitants
in each house and car ownership in Iceland, which is
0.75 [40] per inhabitant. Paired with the EV pene-
tration value, the EVs in each building could be ap-
proached. The capacity data for the different cables in
the grid was then used to measure the load impact in
the same way as was done for the top level.

4. Results
The results of the three main load scenarios can be
presented together, which makes the comparison even
clearer. Starting with setting the benchmark, without
any EV charging, i.e. only primary load, the peak
load over the modelling period was 217.3 MW. For
the overall grid level, system capacity was defined as
261.3 MW. Therefore at the beginning point of the dis-
tribution grid without any charging, there is only room
for a peak increase of 44 MW.

The two input parameters that were used to gener-
ate these scenarios were picked in incremental values.
The EV penetration values and the corresponding EVs
can be seen below. These are based on the total num-
ber of EVs in the system of interest [36].

EV penetration 25 % 50 % 75 % 100 %
Number of EVs 32,740 65,480 98,220 130,960

Table 2: Overview of the chosen EV penetration val-
ues for the simulations

For the DR participation input, incremental values
from 10% to 100% were simulated, in 10% increments
but another scenario was defined; the most likely sce-
nario. Based on prices for peak and off-peak elec-
tricity use, cost savings of consumers were calculated
for both DR strategies, by calculating energy used
when sessions where affected and when they were not.
These savings can be seen below.

These prices were based on the Icelandic energy
price [41] and savings based on historical prices which
utilised time of use [42, 43, 44]. The same price differ-
ence was assumed for DLC and TOU. Based on these
savings, as seen in table 4, the most likely DR partici-
pation could be estimated. That was based on a Nor-
wegian study on the topic [26, p.3]. Based on that,
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25 % EV penetration 50 % EV penetration 75 % EV penetration 100 % EV penetration

Uncoordinated load System peak load 239.6 269.3 298.9 334.1

TOU DR peak reduction Best performing scenario 5.3 % 9.9 % 10.8 % 12.2%

Most likely scenario 2.0 % 3.6 % 3.2 % 4.6 %

DLC DR peak reduction Best performing scenario 6.2 % 11.4 % 12.8 % 14.7%

Most likely scenario 3.6 % 5.7 % 5.7 % 7.8 %

Table 3: Overview of peak reduction for DLC and TOU

the most likely participation was estimated to be 25%
for TOU and 30% for DLC.

30 % difference 40 % difference 50 % difference

TOU DR 12.9 % savings 18.6 % savings 24.3 % savings
DLC DR 20.6 % savings 27.5 % savings 34.4 % savings

Table 4: An overview of the savings between uncoor-
dinated charging and DR strategy charging based on
different price reductions based on varying price dif-
ference

With these input parameters, the results of the dif-
ferent load scenarios can be compared. This can be
seen in table 3. The first row shows the load peaks for
the uncoordinated load. It can be seen that with only
50% EV penetration it goes over the system capacity;
261.3 MW. The two DR strategies however can offer
a a significant peak reduction compared to the unco-
ordinated charging. These reductions are both shown
for the optimal scenario for each strategy as well as
the scenario based on the most likely DR participation
as defined earlier.

The benefit is reduced with the most likely scenario,
but still offers improvement offer the uncoordinated
charging load. The DLC strategy outperforms TOU
quite substantially and also seems to increase its per-
formance with an increase EV fleet size. This is not
the case with the TOU, which achieves its best perfor-
mance for 50% EV penetration but then reduces with
a bigger EV fleet.

Uncoordinated TOU DLC

Best performing scenario 56,626 91,124 99,276
Most likely scenario - 67,558 73,362

Table 5: An overview of the maximum number of EVs
allowed into the system without exceedin overall sys-
tem capacity.

Another result which can be used to compare the
performance of the scenarios efficiently is the maxi-
mum number of EVs that can be allowed into the sys-
tem without exceeding the system’s capacity, based on
the top level of the system. This again was done based
on the best performing scenario and the most likely
one. This can be seen in table 5. Again the DLC
strategy performs the best, almost allowing twice as
many EVs to the enter the system as the uncoordinated
charging does. The TOU DR strategy sits in between.

For the most likely scenarios, the increase in EV num-
bers is fairly minimal for both strategies.

The effects of the load on the lowest level of the
grid were measured in a similar way, based on the EV
penetration. These results might however need some
additional explanation. In this subgrid, as explained
before, there are three levels; the individual buildings,
the electricity streetboxes that connect them and the
distribution substation itself. Based on the capacities
of these components, the maximum EV penetration for
each of them can be determined. This can be seen in
table 6 below.

Distribution
substation

Electricity
streetboxes

Buildings’
cables

Substation
peak

Uncoordinated charging 43 % 18 % 119 % 1.36 MW
TOU DR 43 % 18 % 108 % 1.37 MW
DLC DR 60 % 18 % 108 % 1.07 MW

Table 6: A comparison of the maximum EV penetra-
tion values for the different components in the subgrid
based on the three load scenarios

A visualisation of this subgrid can be seen in figure
4, where all of these different components are illus-
trated. The numbers in the table represent the max-
imum number of EVs that ensures that none of the
components of the same type exceeds their capacity.
That map illustration also acts as a result as it shows
the effects of the load on this subgrid. This result did
not change between the scenarios and thus shows the
effects of all scenarios compared. The different colors
of the cables represent different loading values and is
explained in the legend in the figure.

The effect of the load based on the TOU DR strategy
was actually worse than the uncoordinated load with
the best performing scenario for these lower levels of
the system. However, when another TOU scenario is
used, which relies on less DR participation and with a
price-change time closer to midnight, similar results to
the uncoordinated can be generated. However, for the
DLC, the impact on the subgrid based on its best sce-
nario are much better than the uncoordinated load.
The substation load is what is mostly lowered, but
the performance of the other components are equal
or marginally better than what is achieved with the
uncoordinated load. In itself, the very low threshold
of the most important connections in the subgrids, the
station itself and the series connected streetboxes, is

10



an interesting and concerning result. This will be dis-
cussed in the next section.

5. Discussion
The discussion is mainly focused on the findings of the
literature review and the findings from the modelling
results. However, this section will also reflect on the
main limitations of the methodology of this research.

From the literature review it became clear that not
all DR strategies are relevant or applicable in Ice-
land. Some require specialised infrastructure while
others require well functioning and complex spot en-
ergy markets where intra-day prices and even others
use EVs to participate in the ancillary services market.
Based on this, many of the strategies are not viable to
implement in Iceland. That being said, the price-based
programs could almost all be implemented, the excep-
tion being RTP, which often needs specialised infras-
tructure and is often times too dynamic for residential
consumer. Most of the incentive-based DR strategies
however would be challenging, especially the market-
based ones, while the two classical ones; curtailment
and DLC, are a little bit less complicated. Those too
need some infrastructure, smart metering and 2-way
communication between consumer and DSO, but were
deemed to be the most applicable and practical after
TOU and the other price-based ones, which is the rea-
son that DLC and TOU were chosen in the end.

For the modelling findings, the utilisation of the
electrical infrastructure on the top system level can be
greatly improved with the two DR strategies, as they
reduce the peaks significantly compared to the unco-
ordinated load. The DLC strategy out- performed the
TOU, which was expected, as it gives the DSO greater
control over the load. However, the most important
finding were the effects on the subgrid. First, for all of
three different load scenarios, the effect was similar,
in the way that the series connected electricity street-
boxes could only handle 18% EV penetration with-
out exceeding their capacity. Additionally, the allowed
load on the distribution sub- station itself was also rel-
atively low and allowed 43% - 51% EV penetration.
This is concerning as it is very different to the num-
bers that were measured on the top level of the grid.
Secondly, the best performing scenario for the TOU DR
strategy on the top level of the grid was not the best
one for these lower levels. This finding makes it chal-
lenging to implement TOU in reality as the approach
has to be taken with all of the grid levels in mind. De-
termining the best overall scenario must therefore be
done both from a bottom-up and top-down approach.
For the DLC, this was not the case, as the best perform-
ing strategy of the DLC based on the overall system
level, still hade some improvements over the uncoor-
dinated charging on the lower levels of the grid. It is
therefore clear that the biggest bottleneck in the dis-

tribution grid is the subgrid level, especially the elec-
tricity streetboxes.

The two main simplifications, which are based on
how the distribution grid is represented in the model
and then how the DR strategies are implemented, can
be seen as the two biggest implementation choices.
The first one is that the grid is presented in a two-
step process. First on the upper level, where the data
is quite sufficient and then on the lower levels, where
the data is extremely limited and thus these lower lev-
els are based on only one substation out of roughly
900. This simplification was made to be able to mea-
sure the impact on these lower levels in some way,
and this was seen as the best way to do so. However,
this means that the results on this subgrid level are
very limited and must be taken caution. The sensitiv-
ity of this factor in the modelling the results is thus
very high, as if any other subgrid had been taken, the
results would be completely different. That being said,
this limitation can be reduced if the results are used
only to compare the three main load scenarios, as was
done in the summary of the results in section 7.5.

For the second main simplification, which states that
the characteristics of charging sessions that were af-
fected by the two modelled DR strategies cannot be
changed or manipulated, there are also some con-
sequences for the results. In reality, these two DR
strategies would exhibit different charging sessions
than uncoordinated charging, probably with higher
charging power and longer duration when the price
is more favourable for the consumer and shorter ses-
sions when it is not. The predicted impact that this has
on the modelling outputs is thus that it might make
the DR strategies undervalued when it comes to their
performance in shifting the load.

6. Conclusion
The findings of the research demonstrated that large-
scale EV charging is a lurking problem, which will af-
fect the distribution grid heavily when the EV fleet in-
creases in size. The grid is most constrained on its
lower levels and without any coordination of charg-
ing, the desired EV penetration which Iceland hopes
for will be hard to realise. Demand response can cer-
tainly reduce the load impact and allow for better util-
isation of the infrastructure, but in the end reinforce-
ments of the grid seem to be necessary.

Future research should focus on mapping out the
distribution grid better to more accurately measure
the load impact on the lower levels. Limited data
made this challenging to quantify in this project. This
is necessary as this is the part of the system where the
bottleneck lies. Different variations of the modelled
demand response strategies should also be explored,
as that could offer improved performance and lowered
peaks.
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Figure 4: The map illustration of the subgrid based on
a 100% EV penetration for all of the scenarios
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