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ABSTRACT 

Rapidly evolving IT infrastructures bring beneficial effects to society and promote 

information sharing and use. However, vulnerabilities create opportunities for hostile users 

to perform malicious activities and IT security has gradually turned into a critical research 

area for organizations and governments. Processes of decision making in large organizations 

are widely influenced by their capability of detecting malicious activities effectively, and by 

the correctness in analyzing suspicious phenomena, which can be observed by a number of 

security sensors deployed in such large networks. Several techniques are currently employed 

to detect incidents starting from captured security-related events within networks and 

computer systems. However, the large volume of observable events, the continuous 

sophistication and changes in attack strategies make it challenging to provide effective 

solutions to detect and reconstruct cyber-security incidents. In particular, advanced multi-

stage attacks tend to remain undiscovered because common security mechanisms can 

generally detect and flag harmful activity – sometimes with unsatisfactory false alert rates – 

but they are not able to draw a big picture of the incidents. Since such task is usually 

performed by security experts in full, it may be expensive and prone to errors. Therefore, it is 

essential to develop procedures for combining large heterogeneous datasets and system’s 

information in meaningful way, and for supplying detailed information to IT security 

management. By examining realistic multi-stage incidents, this thesis proposes the design of 

a model to correlate detectable suspicious events by combining complementary state of the 

art methods, which perform correlation along different axis. Thus, it aims at providing 

standard data formats, prioritizing and clustering data, increasing confidence about threats, 

finding relations of causality between suspicious events and eventually reconstructing multi-

stage incidents. In addition, reviewing the most influential scientific papers gives us the 

chance to categorize the techniques and suggest practices for further implementation. 

KEYWORDS: EVENT CORRELATION, IT SECURITY MANAGEMENT, MULTI-STAGE ATTACKS, MACHINE LEARNING, 

INTRUSION DETECTION, BIG DATA 
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MANAGEMENT SUMMARY 

Today’s world is interconnected. Individuals and organizations increasingly rely on IT to 

take advantage of this interconnection. A safe and resilient digital space is essential for 

economy and daily operations. Yet, risks posed by cyber-attacks are real and growing 

rapidly. 

Nowadays, advanced cyber-attacks are performed in several stages by malicious users. These 

often utilize extensive resources and advanced skills to attack the complex IT infrastructures 

of large organizations. Broadly speaking, many types of security devices and software are 

capable to detect malicious activity. However, skilled attackers may also be able to change 

strategies frequently and devise new methodologies to mislead the security operators, who 

monitor and respond to security incidents. Therefore, detecting an advanced attack and 

understanding the ‘big picture’ of an IT security incident are difficult assignments. 

We investigated the relation between incidents and events which are observable in an 

organization’s network. Intelligent analysis of monitored events allows effective detection of 

suspicious events. Our solution allows identifying meaningful events. Events which occur in 

large computer networks can be monitored from diverse perspective, depending on the 

location of the security mechanisms. Their logging capabilities are also quite different. 

Hence, we suggest providing a standardized format to enable analysis. 

Event correlation allows detecting advanced attacks and provides the ‘big picture’. In regard 

to this, we suggest a format for event data which supplies detailed information to IT security 

management, allowing them to change the level of view. For example, a cyber attack which 

occurs in multiple stages can be seen at the level of security alerts, or at the level of the 

stages which contribute to the attack. 

Researchers suggest the use of various and complementary techniques to correlate event-

related data. Our event correlation model is based on the employment of modern correlation 

techniques – based on statistical analysis, expert signatures, and machine learning – in a 

modular way. Each technique is recognized to address specific needs effectively. We suggest 

a modular approach which exploits the benefits of each correlation technique. In some 

scenarios, for example, it may be necessary to reduce the false alarm rate or the volume and 

redundancy of events to analyze.  

Continuous sophistication and persistent character of cyber-attacks make it urgent adopting 

flexible strategies to deal with them. One only needs to think of well-known attacks such as 

Stuxnet, Aurora or GhostNet, which have been widely reported by media. IT management of 
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large organizations needs to take adequate measures to protect their high-value assets against 

cyber-attacks and avoid late and inefficient incident response. Moreover, uncertainty around 

cyber security is driving the demand of new services and products despite the financial crisis. 

Security budgets are broadly expected to increase substantially in the next 3 years. In 

particular, revenues from security management tools are expected to grow. 

The uniqueness of our solution is due to the flexibility of creating customized incident 

detection systems – while utilizing methods which are the most influential in the scientific 

community. Such flexibility is obtained through decomposing the problem of detecting 

advanced attacks into sub-problems. These are individually addressed by complementary 

modules. These components basically combine heterogeneous events with one another or 

with data which is not strictly related to any incident. For example, information about 

network topology, vulnerabilities and security policies may also be helpful for incident 

detection. Furthermore, our correlation model can be employed comprehensively or partially, 

according to the detection scope as well as an organization’s business requirements. For this 

purpose, this research project presents design alternatives and some technical considerations. 

These are intended to provide direction to software developers and security analysts for 

deploying tailored solutions. 
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1. INTRODUCTION 

Progress in Information Technology is the drive to productivity gains in our society [1]. 

Nevertheless, uncertainties surrounding technology makes IT infrastructures a target of 

security threats, leading organizations to face several security issues [2]. Nowadays, cyber-

crime, cyber-warfare, cyber-terrorism are peremptorily emerging with a widespread belief 

that their impact will increase. Results from a survey show that the failure of critical 

infrastructures – e.g., electricity, water, gas, ICT, transport – is considered a matter of the 

utmost importance in the technological sector, with relatively low likelihood but high 

impact. Incidentally, respondents recognize cyber-attacks as the most relevant risk [3]. 

According to the results of a survey conducted by PricewaterhouseCoopers [4], cybercrime 

is one of the top four economic crimes. Despite that, most of the respondents do not have a 

cyber-crisis response plan or they are not aware of having one. 

Most businesses have recognized the great importance of securing information systems from 

cyber-attacks, and information security has been a research area for a long time [5]. Security 

issues have become more and more frequent with the development of the Internet, leading to 

the pursuit of new techniques to detect malicious attacks. In this context, Intrusion Detection 

Systems (IDSs), which are hardware or computer programs designed to detect attacks on 

network and information systems, generally provide network administrators and operators 

with sufficient information about their health and the current threats against them, in order to 

handle security breach attempts [6]. Also, the continuous development of new reliable 

analysis techniques makes intrusion detection systems more efficient [7]. 

According to Gartner, worldwide spending on IT security products and service market is 

expected to reach $86 billion in 2016, growing with a compound annual growth rate 

(CAGR)
1
 of 9%. The 2012 annual CIO survey shows an overall prioritization on security 

budgets, in spite of the extended financial crisis, which have had a small impact on IT 

security spending of emerging countries such as China, India, and Brazil. Nonetheless, 

recent market analyses forecast market for Security and Vulnerability Management tools to 

exceed revenues of $5.7 billion by the end of 2015, with a CAGR of 11.3%. 

Demand of IT security services and products will be driven by the increasing sophistication 

of attack patterns and the persistent threat landscape [8]; 

                                                      
1
 Compound Annual Growth rate (CAGR) is a measure of the annual growth rate of an 

investment, as it grows linearly over the considered period of time. 
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The key to success in the security management domain 

will be “the ability to provide proactive security protection 

and the knowledge and intelligence to provide 

comprehensive security assessment data” [9]. 

Operating system, application and service logs can be used for incident detection and 

analysis by correlating information about occurring events. Firewalls and routers provide 

logs of blocked connection attempts that can be used for incident detection when correlating 

events originated by other devices. Routers may also provide network flow information that 

can be used to detect anomalies within the network caused by malicious activity. Antivirus 

and anti-spam software may also indicate attack attempts if malware or other malicious 

contents are detected; this is possible only if signatures of malware are kept updated. 

Changes in relevant files (i.e., system files) and databases may also be detected by integrity 

checking software and used as attack evidence. IDS products detect suspicious events and 

record related data such as date and time of the detection, type of attack, IP source and 

destination, and so forth. 

1.1. MOTIVATION 

Cyber-attackers often change their behaviors and methods in order to conceal malicious 

activities, and they tend to use novel attack strategies as well as exploit new vulnerabilities in 

the targeted systems [10]. Moreover, it is largely accepted that most advanced attacks are 

made up of multiple stages; each step represents an individual attack scenario. Thus, 

identifying the scenarios belonging to a multi-stage attack can lead to identify attackers’ 

actual strategies. It is therefore challenging to understand attacker’s behavior, attack 

strategies and employed attack vectors. As a matter of fact, each attack can be usually 

represented by many IDS alerts. This makes it difficult to analyze intrusions because it is 

necessary to reconstruct attacks starting from IDS output; it may include persistent false 

alerts which potentially cause considerable financial losses to organizations. 

According to Barry Hensley, director of the Counter Threat Unit/Research Group of Dell 

SecureWorks, industry leader in Information Security services:  

“The tools, procedures and other controls used to defend 

commodity security threats are often ineffective against 

targeted Advanced Persistent Threats (APTs); when actors 
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are focused on a specific target, they customize and adapt 

their tactics, techniques and procedures to predict and 

circumvent security controls and standard incident 

responses.” [11]. 

A traditional network often translates into a large volume of data produced by intrusion 

sensors, making it challenging to readily deal with intrusions; event-base data such as 

firewall and IDS alerts, log files, routing information and so forth, can be collected and used 

for security analysis. These data represent the activity at a certain moment and location, and 

attacks’ evidence can be extracted from the overall amount of events within a distributed 

system. However, the large amount of events makes it challenging to find relationships 

between suspicious events and extract attack attempts from them [10; 12]. 

Security data need to be correlated by security analysts to gain in-depth understanding of an 

attack (i.e., high-level view of the incidents occurring in the monitored information system); 

however it is generally unfeasible to manually deal with massive amount of data. Although 

techniques based on expert rules produce accurate results, experts may be limited in 

processing information and solving complex problems. 

Interviewing security experts showed that it is hitherto unfeasible to draw a complete picture 

of a high-sophisticated cyber-attack, even though it is possible to inspect the most relevant 

aspects. Many alerts are required to have an insight of the occurring incident despite a 

number of them might be not interesting – e.g., alerts raised by port scans may not be 

relevant for discovering some types of attack. Generally, alerts are useful to reconstruct an 

attack, but much other information, which does not come from IDSs, are required. 

Technological designs of advanced reliable correlation systems have been emerging in 

literature only in the last decade. We have identified a number of previous design efforts 

towards comprehensive correlation models and architectures, such as M2D2 [13], Valeur et 

al. [14], Salah et al. [15]. However, they focus on producing surveys and taxonomies of 

techniques, validating their own correlation methods, or may not provide any practical 

implementation of state-of-the-art techniques. 

Advanced techniques to detect intrusions focus on the use of multiple sources for supporting 

decision making. When considering data streams from heterogeneous sources, it is also 

necessary to take into account their high-frequency dynamics as well as their temporal 

nature: e.g., classifiers receive data streams asynchronously [16]. State of the art techniques 
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usually are based on statistical analysis, expert signatures, or make use of machine learning 

approaches to derive linkages among alerts. 

Finding all possible causal relationships among alerts may be a time-consuming and 

excessively slow activity for being considered viable, bearing in mind the imbalanced 

distributions of anomaly and normal data to examine [17] [13; 18; 19]. Methods based on 

automatic inference are capable to find novel alerts, even though they are not able to 

discover the whole set of causal relationships between alerts. Therefore, it may be 

convenient to bring together the advantages of approaches based on inference and expert 

knowledge [6]. 

With the help of relevant scientific literature and subsequent interviews, we cope with the 

following problems, which also represent our criteria for the solution design: 

 Current security mechanisms are not effective for detecting novel , stealth and multi-

stage attacks; 

 Advanced attack techniques and inadequate logging often make it impossible to 

identify actual attack complexity; 

 Large amount of security-related data makes it costly to examine information 

concerning security incidents and difficult to take adequate decisions; 

 Use of heterogeneous data sources leads to complex interpretation of the data; 

 High rate of false alerts (i.e., both positive and negative) makes it generally hard to 

reconstruct a security incidents with a reasonable degree of confidence; 

 Security operators often cope with lack of details in the available information. 

 Lack of procedures for correlating effectively alert messages from malicious events 

with other information, such as system or application logs, network topologies, and 

so on. 

 

1.2. RESEARCH GOALS 

The previous section summarizes the challenges that must be faced in order to realize a 

model for correlating events. Such model is essential for the extraction of relevant data from 

the available sources and transforming it into knowledge about advanced security threats, 

knowledge which in turn is employed by security officers in order to improve security 

incident management. The objective of this thesis research is formulated as follows: 
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To produce an event correlation model for detecting 

advanced multi-stage attacks. 

The scope is to detect security incidents which are caused by attacks performed in multiple 

steps. The agents initiating the attacks target IT infrastructures of large organizations, use 

advanced skills and extensive resources. 

In order to gain a deep knowledge about the objective of the research, the following 

questions are addressed: 

Q1. What is the domain in which advanced cyber-incidents occur? 

Q2. What are the characteristics of defense mechanisms against cyber threats in 

today’s organizations, in terms of scenarios? 

Q3. What approaches to data correlation are suggested in literature for detecting and 

analyzing advanced IT security incidents? 

Q4. What tasks should an event correlation model perform in order to detect multi-

stage attacks, in terms of scenarios? 

Q5. What are the considerations to take into account when developing a tailored 

approach to event correlation? 

1.3. RESEARCH METHODOLOGY 

The research will be conducted using the Design Science in Information Systems Research 

methodology [20]. Although the design of our correlation model plays an important role, a 

primary goal is to produce new knowledge and understanding that is inaccessible without 

designing a solution [21]. Design Science is “improvement research” using design as 

method, and focusing on its problem-solving and performance-improving nature [22]. 

The research is conducted in phases, each of which aims at answering the relative sub-

question, formulated in the previous section. The phases are the following: 

1. Problem conceptualization. This phase is based on investigation of the domain in 

which advanced computer security incidents occur. Describing such environment 

better frames the problem (i.e., “business needs”) which our model aims at solving. 

The problem domain is examined by taking into account modern incident trends and 

formulating three multi-stage attack scenario cases. 

 



8 

 

2. Problem analysis. This phase provides understanding of fundamental concepts 

which are related to detection and correlation of advanced cyber threats by analyzing 

data sources, attributes, structures. Thus, problem is better defined through the 

formalization of key principles and the requirements and functionalities – which are 

based on the identified issues – for the development of the desired model. 

 

3. Synthesis of current developments in the field. This phase summarizes the current 

state-of-art of solutions for the problem at stake. Literature review will be conducted 

by looking through collections of published scientific research, such as 

ScienceDirect, IEEE Xplore, Emerald Insight, ACM Digital Library, and so forth
2
. 

Relevant academic articles which are referenced on relevant journals are also 

reviewed. In order to consider the most authoritative studies in the field and rank 

them, we created a reputation index based on features such as average number of 

citations per year as well as citations in survey reports. 

 

4. Design. This stage is “an essentially creative step wherein new functionality is 

envisioned based on a novel configuration of either existing or new and existing 

elements” [23]. The solution of the problem is drawn from existing knowledge base 

and theories; acquired knowledge from the previous phases is combined with further 

literature research and review of prior development efforts, in order to provide a 

solution design which overcomes the research problem. Specifically, the model is 

designed by considering the real scenarios which are conceived in the problem 

conceptualization phase. The approach to implement the solution design may vary, 

depending on many factors: e.g., the preferences of organizations, economic and 

computational resources available, types of threats which are to be detected, and so 

on. Therefore, we also aim at providing a deeper insight into the state-of-the-art, 

trade-offs and suggestions for the real implementation of our model. 

The above phases lay the foundations for personal reflections and limitations, which may 

add requirements for future design phases. Subsequently, conclusion and future research are 

depicted. 

                                                      
2
 Keywords for search engines include combination of the following ones: alert correlation, 

fusion, aggregation, attack scenarios, intrusion detection, multi-stage, multi-step, feature 

selection, machine learning, inference, reasoning engine, computer security, cyber-security, 

computational intelligence, neural network, Bayesian network, data mining, hyper-alert, 

meta-alert, support vector machine, genetic algorithm, and so forth. 
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Generally, Design Science Research also takes into account an evaluation phase; however, 

few evaluation techniques for alert correlation systems have been proposed, and the lack of 

reliable benchmarking datasets raise a fundamental issue about the rigorousness of an 

evaluation method for this model. A desirable dataset for a quantitative evaluation involves 

labeled host- and network-based data, with the description of complex attack scenarios [24]. 

1.4. THESIS OUTLINE 

The outline of the thesis in Fig. 1 reflects the above mentioned research phases along with 

inputs and outputs for each phase. 

 

FIG. 1 THESIS OUTLINE 
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2. SCENARIOS OF ATTACKS ON CORPORATE NETWORKS 

In this chapter, after introducing the context under analysis in our research project, we 

discuss the issue of cyber-security incidents and the main attack vectors. Subsequently, we 

use findings of an authoritative study about incidents occurred in corporate networks in 2011 

– giving particular attention to the rising of multi-stage attacks targeting large organizations 

– to make up three significant scenario cases. These will be examined for the design process 

in the section 5.3. 

2.1. INFORMATION SYSTEMS OF TODAY 

Nowadays, IT systems are crucial to conduct business. Information systems are employed by 

firms to improve productivity and speed up processes, allowing new service and product 

development, thus new business models. Exploiting their capabilities of support in the 

decision making process and help managing relationships with suppliers and customers 

efficiently provides a potential competitive advantage. Moreover, as Critical Infrastructures 

increasingly rely on IT, information security is playing a key role on nations’ health, 

economy and public security. 

Most businesses have recognized the great importance of securing information systems from 

cyber-attacks, and information security has been a research area for a long time [5]. Security 

issues have become more and more frequent with the development of the Internet, leading to 

the pursuit of new techniques to detect malicious attacks. In this context, intrusion detection 

systems (IDSs), which are hardware or computer programs designed to detect attacks on 

network and information systems, generally provide network administrators and operators 

with sufficient information about their health and the current threats against them, in order to 

handle security breach attempts [6]. 

Let us consider the computer network of a large organization. For clarity, an example of the 

network architecture and of the Intrusion Detection System deployment is illustrated in Fig. 

2. In a corporate network, a central site contains resources such as Mail servers, Web servers, 

DNS servers, and so forth, which deliver services and information to both internal and 

external users. Given that the hosts that provide such key resources are vulnerable to attacks 

from outside the local area network (LAN), they are placed into a sub-network known as 

DMZ
3
. The aim of DMZ is to protect the rest of the internal corporate network if attacks are 

performed on it. Servers in the DMZ provide services to both internal and external networks. 

                                                      
3
 Demilitarized zone. 



12 

 

The perimeter firewall/router provides NAT
4
 services and allows access to a reduced set of 

ports only – e.g., TCP port 80 on the Web server, TCP port 25 on the Mail server, TCP and 

UDP ports 53 on the DNS server, TCP ports 20/21 on the FTP server – on each host in the 

DMZ sub-network. The internal firewall works as proxy for web traffic, thus blocking direct 

connections from the internal LAN to the Internet while allowing only some connections to 

the DMZ. 

 

FIG. 2 EXAMPLE OF NETWORK CONFIGURATION; ADAPTED FROM [25]. 

Network-based IDS sensors – such as Snort
5
 – monitor DMZ, external and internal sub-

networks, and warn about possible threats that are not caught by the firewall. For best 

protection, host-based IDS software is also installed on each server located in the DMZ. 

2.2. CYBER-SECURITY INCIDENTS AND ATTACK SCENARIO CASES 

In this section, the nature of a security incident will be discussed. First, we provide an insight 

into the general trend for the means used by attackers and the key characteristics of 

documented breaches, focusing on incidents occurred in large organizations in the last few 

years. Finally, we adapt some attack stages extracted from real breaches targeting high-value 

organizations – i.e., hospitals, digital certificate authorities (CAs), governments, news media, 

                                                      
4
 Network Address Translation modifies IP address information in IP packet. 

5
 Open source network intrusion prevention and detection system - http://www.snort.org 
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NGOs, defense contractors, international organizations, and other industries – to produce 

three attack scenario cases, which will be further examined in chapter 5. 

There are many definitions of computer security incident; here, we limit to quote a formal 

definition contained in a special publication by NIST
6
: 

“A violation or imminent threat of violation of computer 

security policies, acceptable use policies, or standard 

security practices” [26]. 

Imminent threats refer to having evidence for believing that certain incidents will occur. For 

example, we could think of sensitive information exposed through file sharing services, an 

attempt of extorting money by threatening the public release of sensitive information, a 

botnet
7
 which is commanded with the intention to cause a web server’s crash, a PDF 

document which is actually a malware
8
 that infects a computer and establishes connections 

to an external host on the Internet. It is considered relevant to keep fairly low the amount of 

incidents through sufficient security controls in order to avoid adverse business impact [26]. 

There are innumerable ways for incidents to occur and organizations should be prepared to 

handle them, especially when common methods of attacks are utilized. According to NIST, 

usual attack vectors can be classified as follows [26]: 

 Removable media (e.g., infected USB flash drive) 

 Attrition (e.g., brute-force attack for password discovery; DDoS
9
 to deny 

access to a service) 

 Web (e.g., redirect to a website that exploits a vulnerability of the browser to 

install malware) 

 Email (e.g., email message with a link to a malicious website; attached 

document containing malware) 

 Impersonation (e.g., SQL injection
10

; spoofing
11

; MITM
12

 attack) 

                                                      
6
 National Institute of Standards and Technology is an agency of the U.S. Department of 

Commerce which promotes innovation and industrial competitiveness. 
7
 A botnet is a network of computers controlled without the owners’ knowledge. 

8
 Broad term which is used to refer to malicious software of any sort. 

9
 Distributed Denial of Service (DDoS) is network traffic flooding by multiple systems 

which aims at saturating the resources of targeted web servers, thus causing service 

breakdown. 
10

 SQL injection is a technique to exploit vulnerability in a database by injecting invalid SQL 

commands. 



14 

 

 Improper usage (e.g., users perform illicit activities or install file sharing 

software incurring in the loss of sensitive data) 

 Loss or theft of equipment (e.g., organization’s laptop, mobile phone, 

authentication token) 

 Other than previous categories 

In order to give an insight into our problem space, some representative cyber-intrusion 

scenarios are depicted in this section. The choice of such cases is strictly related with the 

characteristics of the domain under discussion. Thereby, we relied on a study recently 

conducted by Verizon RISK Team in collaboration with Australian Federal Police, Dutch 

National High Tech Crime Unit, Irish Reporting and Information Security Service, Police 

Central e-Crime Unit, and United States Secret Service [27], as it takes into consideration 

855 incidents occurred in corporate networks in 2011, involving more than 170 million 

compromised records. Such large amount of compromised data is almost entirely composed 

by all kinds of personal details – i.e., names, addresses, and so on – despite it only accounted 

for about 30 incidents in the data sample. While most of the incidents aim at stealing 

authentication credentials, payment card information and bank data, also misappropriation of 

sensitive organizational data, system information, trade secrets, and so forth, considerably 

affect large organizations
13

. 

It is relevant to note that – in 79% of the reported incidents – victims are selected based on 

opportunity, as they are found to have exploitable vulnerabilities, rather than on choice. It 

can be seen as a way to simplify business processes: targeting the weakest and unsuspecting 

link, and then reproducing it on a large scale. However, 50% of the reported attacks against 

large organizations are targeted. 

Besides those facts, 96% of the overall intrusions are not very complex, often showing 

highly sophisticated
14

 techniques only in later stages. It implies that preventing early 

unauthorized access by malicious users is the most desirable situation to avoid more severe 

incidents – e.g., unauthorized release of data. However, for almost half of the compromised 

data examined in the report, the attack complexity is unknown, due to inadequate logging 

                                                                                                                                                      
11

 Spoofing is the use of false source IP address to masquerade the real source of Internet 

Protocol (IP) packets. 
12

 Man-in-the-middle (MITM) attack occurs when an attacker is able to read, interpolate, and 

modify communication between two unaware parties. 
13

 By ‘large’ the study refers to firms having at least 1000 employees. 
14

 The authors consider high the degree of sophistication if advanced skills and 

customization, as well as extensive resources are required. 
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and unclear attack techniques. Also, the collected data shows that cybercriminals may put at 

risk large organizations with no need to deeply amend their techniques. 

Nearly all the reported security incidents are caused by agents which are outside the 

concerned organization, such as criminal organizations, unknown hackers, as well as former 

employees and government entities, which mainly look for financial or personal gain; 

although it has been recorded an increasing number of ‘hacktivists’ threatening large 

organizations, mostly driven by political disagreement. 

Multi-stage cyber-attacks 

In 2011, incidents are primarily caused by hacking
15

 and malware, often combined: they 

have been leveraged in 9 out of 10 multi-stage attacks. Most of the incidents involve the use 

of login credentials which are stolen through hacking, captured from user activity by 

malware such as key-loggers, or guessed – it usually occurs when default passwords are 

used. Other recurrent threat actions are brute force attacks, installation and exploitation of 

backdoors which allow access (and control) of remote machines, and data transfer to external 

entities. The latter may occur either automatically driven by malware or, with growing 

frequency, keeping footholds on internal system through backdoors. 

In the last few years, it has been noted the upward trend in the use of remote installation of 

malware or injection by exploiting web application vulnerabilities. These facts, which 

represent almost the entirety of malware infection vectors, occur in scenarios in which 

intruders are able to get unauthorized access to remote systems. However, for some large 

organizations, intruders may find it easier to send malware via email, auto-executed web 

code, and malicious URLs, rather than gaining remote access. It is noteworthy to mention 

that the infection vector remains unknown in 3% of all the incidents involving malware. That 

may occur for many reasons such as the lack of logs, use of anti-forensics techniques by 

attackers, and so forth. 

Known anti-forensics approaches – e.g., timestomping
16

, packing
17

, encryption – show up in 

about one third of the records and may vary, but they all aim at altering or hiding digital 

evidence. 

                                                      
15

 In the report DBIR 2012, it refers to “all the attempts to intentionally access or harm 

information assets without authorization or in excess of authorization by thwarting logical 

security mechanisms” [27]. 
16

 Timestomp is a tool which allows changing time attributes of computer files: ‘create’, 

‘access’, ‘modify’, ‘entry modified’. 
17

 File packing is a technique to rebuild and alter the aspect of executable files. 
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As regards vectors for hacking activities, intruders prefer exploiting remote access services, 

such as RDP
18

 and VNC
19

. Typically, opportunity targets are discovered by using malicious 

scripts which look among known remote access service ports, and then compromised thanks 

to the exploitation of default vendor credentials. Whereas, more than 90% of the reported 

record losses involves the installation of backdoors at some point during the attack. 

Another substantial fraction of intrusions targets web applications as they are often required 

to be publicly accessible through the Internet, so as to be potentially used as point of entry to 

large organizations’ data, which increasingly rely on web servers. Web and database servers 

are also the most compromised corporate assets in nearly all the security incidents involving 

large amount of data. 

Regarding time measures, malicious users are generally able to start compromising the 

victim’s assets some minutes, or only seconds, after the initial attack attempt; the bright spot 

is that, the period between the initial compromise and the information extraction is often on 

the order of days or months for large organization; thus making incident detection feasible 

within a reasonable time span. 

It is also worthy to mention that 98% of the cases in which malware was used to extract 

information, it was paired with key-loggers, representing over 250 incidents; in almost each 

of them, stolen user  credentials were used too. Moreover, 57% of the times when default or 

guessed credentials were exploited, a key-logger was founded, and in 47% of the above case, 

a backdoor was present too. These facts all exhibit the versatility of current malware. 

As for the impacts of the incidents, it is not possible to provide an overall estimation of the 

economic loss caused by security breaches. For guidance, it is reported that fraud-related 

breaches have led to individual losses that have exceeded 70 million Euros. It is relevant to 

bear in mind that the impacts may also be suffered by third-party organizations; for instance, 

breaches involving payment cards do not only affect customers, but also the banks which 

issue payment cards. In addition, most of the reported security incidents showed no 

considerable long-run impacts on reputation, loss of competitive advantage, or market value.  

The following sections of this chapter present three attack scenarios, which are derived from 

the above trends and include attack stages from real breaches targeting high-value 

                                                      
18

 Remote Desktop Protocol (RDP) is a Microsoft proprietary protocol which provides a 

graphical interface to a remote computer running RDP server software. 
19

 Virtual Network Computing (VNC) utilizes remote frame buffer protocol to provide 

remote access through a graphical interface. 
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organizations. The cases will be further analyzed in chapter 5 in order to design a solution to 

our problem. 

2.2.1. SCENARIO 1: GAINING UNAUTHORIZED ACCESS AND DISCLOSURE OF 

SENSITIVE DATA 

In this section, we present the case of a malicious user who tries to gain unauthorized access 

to an account on a local machine. The above depicted corporate network holds a server 

connected to the Internet. As previously discussed, it is located in the DMZ. The server at 

issue runs a Web service and a vulnerable FTP service. FTP services are usually utilized in 

Web servers for accessing files remotely. An instance of NIDS (e.g., Snort) is running on the 

perimeter firewall with default configuration. FTP (File Transfer Protocol) is extensively 

used in business due to its ease of use and relatively little cost. However, file exchanges 

through FTP expose to major risk of security breach. In order to ponder on the potential 

impacts of such intrusion, it is noteworthy to mention the breach discovered in 2012 which 

targeted a large Dutch hospital, the Groene Hart Ziekenhuis. An ‘ethical hacker’ has shown 

that the hospital, which relied on FTP provided by third-party, has been keeping sensitive 

data of about 500,000 patients such as letters, x-ray, laboratory results, diagnoses, and other 

personal information unprotected – or rather, not adequately protected – for over 4 years. 

Recent investigation has pointed out that medical records of at least 50 patients were actually 

stolen. 

ATTACK STEPS 

1. The attacker performs a port scan with Nmap (Network Mapper security scanning 

tool) on externally visible IP addresses in order to find open ports in the targeted 

organization’s computer systems. 

2. The attacker scans the servers’ public IP address from the Internet by using a 

vulnerability scanning tool. 

3. The tool identifies vulnerability in the FTP server, whose port has resulted open. The 

attacker is able to exploit it, and launches a remote-to-local (R2L) attack to the FTP 

server, using a different IP address than the one used in steps 1 and 2. 

4. The attacker downloads a large database file from the FTP server. 

 

2.2.2. SCENARIO 2: DATA EXFILTRATION 

The scenario in this section is loosely taken from the security breach which DigiNotar 

suffered in mid-2011. To sum up, DigiNotar B.V. was a Dutch certificate authority which 

provided worldwide-trusted digital certificates for various purposes, from securing websites 
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to e-Government services. The attack has consequently led to issuing over 500 rogue 

certificates and the fraudulent certificates had been used in a large-scale man-in-the-middle 

(MITM) attack. Due to the latter, network traffic directed to Google sub-domains of about 

300,000 Iranian users was intercepted and credentials were stolen. Subsequently, Fox-IT 

B.V. had been asked to investigate the incident [28]. 

A vulnerable Web service located in DMZ has been compromised by an attacker, who has 

used it to extend his foothold, and compromised an important database server in a back-end 

network enclave, which contains highly confidential data. However, the firewall is 

configured in such a way that the intruder is not able to exfiltrate data from the database to 

the Internet directly. 

ATTACK STEPS 

1. The attacker utilizes a remote access service (e.g., RDP) toolkit to create a network 

tunnel between the database in the internal network and the Web server in the DMZ. 

2. The attacker utilizes both the Web server in the DMZ and the internal SMTP
20

 server 

as a stepping stone to transfer files between the critical system and arbitrary systems 

on the Internet. 

3. The attacker erases a number of server access logs. 

 

2.2.3. SCENARIO 3: SOCIAL ENGINEERING, ZERO-DAY EXPLOIT, BACKDOOR, 

C&C EXPLOITATION 

This scenario is inspired by Shady RAT and Gh0stNet, two large-scale cyber-attacks 

reported in 2011 and 2009 respectively, reasonably associated with Advanced Persistent 

Threats (APTs). Operation Shady RAT [29] started in 2006, targeting over 70 large firms, 

NGOs, and governments worldwide in about 5 years. Petabytes
21

 of data were stolen “by one 

specific actor” and, even though it is still not possible to know how it has been used, we are 

able to state that the losses harmed the national security of the involved countries, and whole 

industries within today’s complex global economic landscape. Gh0stNet [30] operations led 

to the infection of about 1,300 computer systems, of which almost 30% are considered high-

value target. The infected systems had been steered to download a trojan (i.e., gh0st RAT) 

that gave real-time complete control to the attackers, located in People’s Republic of China. 

                                                      
20

 Simple Mail Transfer Protocol is a standard for transmission of e-mail over Internet 

Protocol (IP). 
21

 1 PB = 10
15

 Bytes ( = 1 million gigabytes) 
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A malicious user utilizes social engineering techniques to craft an e-mail that is most likely 

to be opened by the CFO of the company. However, the name of the sender and the mail 

address do not match (i.e., spelling errors in the e-mail address). Moreover, the e-mail 

originates from a free webmail address (e.g., Yahoo! Mail). The e-mail includes a Microsoft 

Excel file with a zero-day exploit. As the CFO opens the attachment, a vulnerability is 

exploited. 

ATTACK STEPS 

1. The attacker sends a socially engineered e-mail containing a zero-day exploit to the 

CFO. 

2. The CFO launches the attachment; the exploit automatically connects to a Dynamic 

DNS domain (e.g., DynDNS) and downloads a malware which disables the antivirus 

scanner (and its automatic updates) on the CFO’s laptop; 

3. A Trojan horse is downloaded on the laptop, giving the attacker complete control 

over it and connects to a command and control (C&C) server on the Internet, whose 

domain name was recently registered. The malware checks for net commands at 

random time intervals. 

 

2.3. SUMMARY 

In this chapter, we have depicted the problem domain starting from the brief description of a 

corporate network and the deployment of key security elements, such as network and host 

intrusion detection systems, and firewalls. We provided, then, a broad definition of computer 

security incident, as it is formally intended by U.S. Department of Homeland Security, which 

takes into account violating – even partially – standard security practices as well as 

individual organizations’ security policies. Subsequently, we have listed the main vectors of 

attack, i.e., removable media, attrition, web, e-mail, impersonation, improper usage, loss or 

theft of equipment. 

We have examined a major report about worldwide cyber incidents in 2011, looking for 

interesting trends in data; results have been utilized to compose three multi-stage attack cases 

to be further analyzed in the following chapters; i.e., (a) unauthorized access and disclosure 

of sensitive data, (b) data exfiltration, (c) social engineering, zero-day exploit, backdoor, 

C&C exploitation. 

Our cases share with real scenarios some attack stages, hence, we have reduced to some 

degree the complexity of highly sophisticated attacks. However, the real cases and the 
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findings in Verizon’s report confirm the socio-economic relevance, and the criticality of 

detecting these “simplified” scenario cases. 
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3. COLLECTING DATA FOR INCIDENT DETECTION 

After the description of the context in which detection of advanced threats takes place, in this 

chapter we introduce effective security incident detection based on monitoring and 

intelligent analysis. We intend to show the nature of the relationship between information 

security incident and events that occur in computer networks and the related computer 

systems. In section 3.1, we give a deeper insight into the common tools which allow 

detection of suspicious events in a corporate network; the importance of utilizing such tools 

adequately lies in the need of providing proper incident response, within a reasonable time. 

With respect to these mechanisms, we discuss the logging capabilities and the characteristics 

of security-related data. Finally, we state the key definition of event correlation. 

3.1. SECURITY INCIDENT DETECTION 

In this section, we intend to outline security mechanisms – i.e., devices and software – which 

have been previously introduced in 2.1. As a matter of fact, the portrayed domain 

implements the security systems which we are going to discuss. Moreover, such systems are 

widely utilized to identify the suspicious events which characterize computer security 

incidents.  

3.1.1. INTRUSION DETECTION SYSTEMS 

The goal of an IDS is to identify signs for potential incidents by analyzing monitored events 

occurring in a computer system or network, becoming an imperative for every organization’s 

security infrastructure [31]. IDSs are classified as either host- or network-based. Host-based 

IDSs (HIDS) detect misuse at the computer system level, whereas network-based IDSs 

(NIDS) detect misuse at the network level. For example, the NIDS which monitor our DMZ 

network in Fig. 2 may be able to detect an attack against a web server while monitoring data 

flows in the network, instead the HIDS installed on the web server may detect the attack as 

soon as it reaches the host. Generally, the analysis of an HIDS is more detailed than the one 

of NIDSs, as the former is able to observe both attempt and outcome of an incident, while 

the latter may not know whether the incident actually occurred [32]. 

3.1.2. ANTIVIRUS 

Antivirus software is deployed on each computer system in order to mitigate malware threat, 

including viruses, worms, Trojan horses, blended threats, attacker tools (e.g., backdoors, 

keystroke loggers). This type of technology looks for signs of malware in file systems, 

applications, and critical components of operating systems through heuristic and signature 

detection. When files containing malware are detected, antivirus software try to disinfect or 
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quarantine them. Usually, they complement IDSs, as antivirus software can detect less 

common malware than IDSs. However, antiviruses often are not able to recognize new 

threats until updates with new signatures are released by vendors and then installed [31]. 

3.1.3. FIREWALLS/ROUTERS 

Firewalls rely on source and destination IP addresses, transport layer protocol, and basic 

protocol information for filtering network traffic. Their purpose is to block unauthorized 

access attempts and they can also be reconfigured by some IDSs to block particular threat. 

Some models of router (e.g., Cisco, Huawei, and many others) can also monitor network 

traffic behavior and supply flow data – data containing header and statistics information of a 

set of packets with similar characteristics – which can be utilized to detect unusual flows – 

e.g., distributed denial of service (DDoS), worms, backdoors, and so on. Examples of 

standard formats for flow data are NetFlow
22

, IPFIX
23

, and sFlow
24

 [31]. 

3.1.4. LOG MONITORING TOOLS 

To deal with detection and response of IT security incidents is necessary to monitor events 

from different systems in the network, such as operating systems, applications, network 

devices, and so forth. It results into the collection of a huge amount of logs which is, 

however, very valuable when correlated with other security-related data. Such tools may also 

be able to detect the occurrence of any misuse or anomalies in the logs, and raise warning 

messages. 

3.1.5. VULNERABILITY SCANNERS 

In this category is included software which aims at investigating weaknesses in computer 

systems, networks and applications for IT Security Assessment. Likewise, such tools are 

most likely to be used by malicious users to perform the so-called “reconnaissance”; in other 

words, attackers may use them to gain information about vulnerability to be further exploited 

and gain unauthorized access to a system. Therefore, it is crucial using scanners for defense 

purpose. 

3.2. LOGGING CAPABILITIES OF SENSORS 

In this section, logging capabilities of sensors yielding security data will be analyzed. 

Collecting data at various locations increases the chances to detect sophisticated cyber-

attacks, such as espionage activities and advanced persistent threats (APT). Diverse probes 

                                                      
22

 http://www.cisco.com/en/US/products/ps6601/products_ios_protocol_group_home.html 
23

 http://tools.ietf.org/wg/ipfix 
24

 http://www.sflow.org 
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are deployed in the network segments for gathering data in the form of physical appliances 

or software [33]. The use of different probes provides complementary advantages, for 

instance by detecting events that another local security element is not capable to detect 

accurately. Behavior analysis and signature detection are performed locally, thus shaping a 

distributed system with no single point of failure, and preserving the performance of the 

protected hosts. Events that are logged by the security probes need to be correlated and 

analyzed to detect the most sophisticated attacks [33; 31].  

Table 1 – derived from a special publication by NIST [31] – compares to a considerable 

extent the primary technologies which we have discussed above. 

TYPE TYPE OF ACTIVITY 

DETECTED 

SCOPE STRENGTH 

NIDS Network, transport, and 

application TCP/IP layer 

Multiple sub-

network and 

groups of hosts 

Able to analyze the widest 

range of application 

protocols; 

HIDS Host application and OS 

activity; network, transport, 

and application 

TCP/IP layer 

Individual host Able to analyze activity that 

was transferred in end-to-

end encrypted 

communications 

Firewall/Routers Network, transport, and 

application TCP/IP layer 

activity that causes 

anomalous flows 

Multiple sub-

network and 

groups of hosts 

Very effective in 

identifying reconnaissance 

scanning and DoS attacks, 

and at reconstructing major 

malware infections 

TABLE 1. COMPARISON OF PRIMARY SOURCES OF SECURITY ALERT 

 

Generally, a Security Information and Event Management (SIEM
25

) system should gather 

data from logs and correlate events among them, including those generated by IDSs, 

firewalls, antivirus, operating system, application servers, and other security devices. 

Initially, collected data is normalized by converting the logs into standard fields that allow 

them to be analyzed. Then, SIEM software generates global alerts based on the data analysis, 

being capable to detect events that individual probes cannot as well as to verify the accuracy 

of the alerts. However, the presence of a central analysis element might introduce a delay in 

performing analysis, as the logs have to be transferred from the local detection systems for 

correlation. 

                                                      
25

 SIEM denotes a broad class of commercial solutions for managing security-related logs. 
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3.2.1. IDS 

Usually, IDSs and other security technologies log extensive data related to observable 

events, which can be used for correlating events among all the logging sources. 

3.2.1.1. NIDS 

Widely used data attributes logged by NIDS include: 

 Session ID 

 Timestamp (i.e., date and time) 

 Event type 

 Importance rating (e.g., impact, priority, confidence) 

 Application, transport, and network layer protocols 

 Source and destination IP address 

 Source and destination TCP or UDP ports, or ICMP types and codes
26

 

 Number of transmitted bytes 

 Decoded payload data (e.g., application requests and responses) 

 State-related information (e.g., authenticated username) 

In addition, NIDS may log data related to packet capture as soon as an alert occurs [31]. 

3.2.1.2. HIDS 

Common attributes that are logged by HIDS include [31]: 

 Timestamp 

 Event type 

 Importance rating 

 Source IP address 

 Port 

 Application information, filenames and paths 

 User ID  

3.2.2. ANTIVIRUS 

Antivirus software typically logs the following information: 

 Timestamp 

 Event type 

                                                      
26

 Transmission Control Protocol, User Datagram Protocol, and Internet Control Message 

Protocol, respectively, are core protocols used for the Internet. 
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 Threat name 

 Threat type 

 Filename and path 

 User ID 

3.2.3. FIREWALLS AND ROUTERS 

Usually, firewalls and routers record basic attributes of blocked connection attempts only, 

including the following [31]: 

 Timestamp 

 Source and destination IP addresses 

 Transport layer protocol 

 Source and destination TCP or UDP ports, or ICMP types and codes 

 NAT
27

 IP addresses 

Latest routers may also log the following attributes: 

 Event type 

 Importance rating 

 Application, and network layer protocols 

 Number of bytes and packets transmitted by source and destination 

 Other packet header fields 

 

3.3. CHARACTERISTICS OF SECURITY DATA 

In this section we introduce the structural characteristics of the data which contribute to 

incident detection. First, we can distinguish between event-data and meta-data. The former 

refers to attack-related data which is required for detecting IT security incidents; the latter 

represent the additional data not directly related to incidents, which, however, can reveal 

useful information for the detection. For example, knowledge of network topologies, 

vulnerabilities, security policies, users, and so on, is considered meta-data. Generally, meta-

data can be generated passively – i.e., manually or in time intervals – or actively after the 

occurrence of a given event [34]. We can classify event data in: 

                                                      
27

 Network address translation is the process of mapping private LAN addresses to public IP 

addresses. 
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 Alert: warning message which shows the occurrence of a suspicious event in 

monitored systems (i.e., through analysis of raw data such as logs, packet 

payloads, flow data, and so on). 

 

 Intrusion Alert: alert with higher likelihood of being malicious. 

 

 Meta-Alert: global warning message obtained by grouping more alerts together. 

 

 Event Report: message warning about the occurrence of a cyber-attack; it 

shows the causal relationships among suspicious events. 

 

 Incident Report: message containing the reconstruction of a multi-stage cyber-

attack. The message is produced by identifying the correlation among the 

security threats enclosed in the event reports. 

 

3.4. EVENT CORRELATION 

In the previous section, we stated that attack-related data is needed to detect incidents; this 

data can be seen as a subset of the entire dataset, which consists of observable events in a 

network (and underlying computer systems).  A user who sends an email, a server that 

receives a request for a webpage, a firewall that blocks a connection attempt are only few 

examples. 

We define event: 

Any observable phenomenon from which it is possible to 

extract features for the detection of computer security 

incidents. 

 

The term “event” abstracts generic input data – e.g., TCP connections, log entries, IDS alerts 

– for any type of detection engine. Such mechanisms monitor and examine events, and 

produce alert messages when suspicious events are observed. 

Each event is specifiable by a set of attributes. For example, an alert may be specified by 

sensor ID, timestamp, source IP, destination IP, port(s), user name, process name, attack 
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class, and so forth. An example of standardized data format for alerts is the Intrusion 

Detection Message Exchange Format (IDMEF) [35], which is discussed in the following 

chapters. 

Again, it is worthy to set apart meta-data information from events. The former is made up of 

additional information that is useful to understand and evaluate an event – e.g., linking 

disconnected events – although it does not take part either in the event itself or other events. 

Usually, the degree of incident detectability may vary and deep expert knowledge is strongly 

required for analyzing efficiently the signs of a potential incident. Cichonski et al. [26] 

define precursor the sign of a potential incident in the future, whereas indicator is a sign 

that an incident has occurred or may be occurring.  

Examples of indicators are: alerts from a network intrusion detection sensor when an attempt 

of buffer overflow occurs against a DB server; alerts from antivirus when the system is 

infected; filenames with strange characters; multiple failed login attempts in application logs; 

rare network traffic flow. Precursors are, for instance: log entries containing evidence of the 

use of a vulnerability scanner; a verbal threat from a group of hackers. However, from a 

target’s point of view (i.e., the system under attack), precursors are not always detectable. 

The most common precursors and indicators are extracted from software alerts, logs, people 

and public available information. 

Large amount of event-base data such as firewall and IDS alerts, log files, routing 

information and so forth, can be collected and used for security analysis, since these data 

represent the network activity at a certain moment and location. Attack evidence can be 

extracted from the overall amount of event logs within a distributed system [26]. However, 

the large amount of heterogeneous data, which are distributed over time and locations, make 

it challenging to find relationships between events and extract attack attempt from them [10; 

12]. 

We provide the following definition of event correlation: 

A set of techniques to investigate event patterns, combine 

suspicious events into meaningful entities and help 

detecting attack strategies. 

Event correlation can be seen as the cognitive process of human brain linking information 

from sensory organs, assessing situations, making decisions, and regulating actions [36]. By 
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identifying significant events within a large set of logged events, one is able to get a 

complete picture of an occurring incident. Event correlation should be able to work 

regardless of the type of sensor or system; IDS sensors and other security sources are 

intended to be functional components which may run individually. Also, it should be 

possible to correlate events in diverse scenarios [34].  

Since heterogeneous security sensors are capable of observing events from multiple 

perspectives, it is necessary to analyze suspicious events and identify which event patterns 

refer to an identical incident. The use of multiple technologies is essential to detect security 

incidents as it allows gathering more extensive information than using a single technology or 

detection method; they provide various output data which specify different viewpoints of the 

same incident. 

Given the large volume of possible suspicious events, correlation system also faces the 

challenge of decreasing the rate of false positives and false negatives, in order to detect 

advanced attack strategies with satisfying accuracy [18; 13]. In order to reduce the rate of 

false negatives, Morin et al. [13] also suggests the make use of heterogeneous analyzers and 

log resources to get many views of the attacks. Different log resources which utilize different 

analysis methods may reinforce each other and increase the degree of confidence about the 

occurrence of an incident [37]. 

However, many sensors may also trigger multiple alerts which are cause of the same event. 

Hence, one goal of a correlation system is to decrease alert redundancy in an effective way.  

Nonetheless, each sensor provides a large volume of suspicious events thus – at individual 

sensor level – correlation focuses on decreasing the number of alerts [37; 13; 19] [18].  

Heterogeneous sensors also lead to a problematic interpretation of the data [18; 19]; another 

goal is therefore to provide similar data formats to each event, which even allow for the 

transmission of detailed information to security operators [38; 13]. 

3.5. SUMMARY 

In this chapter, characteristics (and requirements) of modern organizations’ defense 

mechanisms against cyber-threats are discussed. First, we discussed the sources and the 

common data attributes that are available for detecting computer security incidents. Second, 

we introduced the various types of structure of event data, i.e., alert, intrusion alert, meta-

alert, event report, incident report; these are attack-related messages required for cyber-

security incident detection. Third, we defined “event” as any observable phenomenon from 

which it is possible to extract features for the detection of computer security incidents. Alert 
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messages are particular events which are assessed as being suspicious by the relative 

detection engines. Events can be divided in precursors and indicators, depending whether 

they are related to potential or already occurred incidents respectively. Then, we defined 

“event correlation” as a set of techniques to investigate event patterns, combine suspicious 

events into meaningful entities and help detecting attack strategies. Based on previous 

considerations and challenges identified in literature (see page 6), we are finally able to 

summarize the goals of event correlation as follows: 

 identifying significant suspicious events; 

 identifying event patterns in heterogeneous datasets which refer to the same 

incident; 

 providing similar data format to each event; 

 decreasing false alert rates; 

 reducing data redundancy; 

 reducing data volume; 

 supplying detailed information to security operators; 

 providing a complete picture of an occurring incident. 
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4. STATE OF THE ART 

According to several researchers, there is no consensus in literature about how the 

correlation process should be implemented and evaluated [14]; hence many models have 

been proposed in the last years. Some of the correlation techniques presented in literature are 

introduced in this section. 

In literature, the term alert correlation suggests a method that matches event information 

from multiple sensors, allows to group different alerts into attack scenarios and helps 

network administrators to analyze attack patterns [39; 26]. It is sometimes utilized in 

literature as equivalent of aggregation, clustering, or fusion; yet these terms limit to describe 

the capability of grouping alert messages together. 

Several correlation methods have been proposed with the goal of cutting down the 

overwhelming amount of alerts and to give an overview of the security status of IT assets 

within organizations. Correlation systems are hitherto based on either machine learning or 

other techniques such as statistical analysis, logical rules or graph algorithms. These methods 

depend upon the creation of a system and its regular maintenance by security experts, as 

attack scenarios mutate very frequently [39] [36]. 

A broad classification of correlation techniques in literature is provided by Ren et al. (2010): 

 methods based on classification and clustering of similar alerts; 

 methods to enhance detection accuracy based on filtering of false positive 

and low-interest alerts; 

 methods that aim at regulating alerts’ priority based on their harshness; 

 methods based on alert causality analysis. 

4.1. ANOMALY AND SIGNATURE DETECTION 

The emergence of event correlation for the detection of security incidents is supported by the 

introduction of the basic elements which allow an early classification of event correlation 

methods. We already discussed the characteristics of security data and formats in 3.3. In 

terms of correlation techniques, an essential distinction is between signature- and anomaly-

based techniques. 

Attackers target vulnerabilities of computer systems and perform distinct sequences of 

activities per each attack, which are also known as attack patterns. Techniques of signature 
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(or misuse) detection focus on analyzing patterns in data to identify and stop an attack when 

a known misuse occurs. That is made possible by measuring the similarity between events 

and signatures of known attacks [17]. Therefore, a signature works as a filter for incoming 

events: their matching enables the notification of higher layers of an incident management 

system [34]. 

The signatures are constantly developed by public and private research teams. Hence, 

through misuse detection, known attacks are detectable rapidly and with a low rate of false 

positives, while novel attacks will not be identified [17], as they represent a new form of 

misuse. The latter might remain unknown even for months, until the corresponding signature 

will be discovered and embedded in the detection system [32]. 

Hence, the reliability of event correlation depends on detection rules, which may strongly 

affect correlation algorithms when inadequately defined. Moreover, large sets of signatures 

bear on the computational performance of a correlation system [34].  

Signature-based detection takes into account features of well-known incidents to detect new 

ones; thus, producing a Black List of the characteristics of known attacks, it will be possible 

to detect new instances. Blacklists are generally obtained by gathering two types of 

knowledge: 

 Reactive knowledge includes attacks detected by others (e.g., complaining 

customers), watching live attacks, luring attackers (e.g., honey pot), and so 

on. 

 Proactive knowledge includes human intelligence intrusion techniques, 

trying the intrusion oneself (e.g., slight modifications of known instances, 

completion of new attack instances based on inside knowledge, black-box 

testing), and so on. 

The gained knowledge is analyzed and used to extract rules, select raw data and data features 

on which intrusion detection will be subsequently performed. 

Intrusive events also represent anomalous activity, which can be detected in two ways: by 

comparing observed behavior with a predefined range of parameters, or by using data mining 

techniques in which the correlation algorithms are trained with normal behaviors and then 

occurring events are monitored. The pattern in data which is not consistent with the built 

baseline is considered – and reported as – anomalous behavior [17; 34] 
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Hence, through anomaly detection, new and unusual attacks can be identified but the built 

profile should be adaptive in order to remain accurate and keep a low rate of false positives. 

It should be taken into consideration when developing a correlation system [34]. As a matter 

of fact, the rate of false tends to be raised because of a general imbalanced distribution of 

normal and anomaly data. It is also hard to define the detection sensitivity and the 

boundaries between the two types of behavior, which widely vary. In addition, given large 

volume of high-dimensional-feature data are difficult to be monitored and analyzed, it 

demands efficient data processing and pattern learning algorithms [17]. 

Anomaly-based detection considers well-known ‘good’ behavior – so a White List is 

utilized – to detect any deviant conduct which suggests the occurrence of a security incident. 

Applied to anomaly detection, knowledge is extracted by mining and analyzing normal 

behavior from a sample data set. Profiles are built statistically (e.g., monitoring statistical 

distribution of activities), using data mining methods to find meaningful activities and 

features (e.g., clustering and outlier detection, associate rule discovery), or using machine 

learning methods (e.g., system call sequence analysis, hidden Markov model) [40]. Gained 

knowledge is used to select raw data/probes, data features, algorithms and related 

parameters. However, the above mentioned process of selection relies on availability of data, 

system architecture, network layout, Operating System and application settings, corporate 

security policies, and so forth. 

4.2. CORRELATION LAYERS 

Event correlation can be considered as running in a layered security architecture and 

correlation techniques can be applied in every layer; Limmer and Dressler [34] are able to 

distinguish among raw data layer, event layer, and report layer. In the raw data layer, data 

from sensors is collected, processed and sent to the event layer, where IDSs and correlators 

classify, prioritize and discard non-relevant data. Then, obtained data is sent to the report 

layer, where it is post-processed. In the raw data layer, correlation methods mainly focus on 

aggregating the large amount of data which is produced by each sensor, extracting data 

features and detect simple incidents, such as port scans. 

In the event layer, events that originate from lower layers – where traffic data analysis is 

performed – are processed, mainly aiming to aggregate alerts into meta-alerts, and gather as 

much information as possible to identify the event which causes the incident. 

Meta-alerts (or hyper-alerts) are generally created by aggregating alerts with similar features 

caused by different sensors, in order to obtain high quality resulting information, minimize 
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redundancy, and reduce the volume of alerts. For example, alerts originating from the same 

source and having the same target IP address [18], alerts caused by the same event, alerts 

referring to the same vulnerability, alerts caused by events belonging to the same TCP/IP 

session, alerts that are related on a temporal basis, might be considered similar alerts and be 

grouped together [13]. Measuring and assessing similarities of attributes in alerts is the core 

of probabilistic reasoning methods [41]. 

A meta-alert can be seen as an intrusion report at a high-level of abstraction and its content is 

a function of the attributes of the merged alerts and contains references to them. Further 

alerts can also be merged with meta-alerts, thus creating a hierarchical structure. It can be 

represented as a tree in which the latest meta-alert is the root, sensor alerts are leaves, and 

references are followed to identify successor nodes [14]. Aggregation of alerts is possible if 

they have in common at least one causal event, by which is meant the event causing an alert. 

The association among causal events is heavily dependent on their timestamps that may 

diverge from the timestamps of the alerts which is raised by the detection systems [13]. 

In order to detect a security incident, causal connections between events must be identified at 

the event layer. According to Zhai et al. [42], Zhu and Ghorbani [10], and Ren et al. [6], it is 

also possible to classify correlation techniques into the following four categories, with 

respect to causality: 

 Similarity-based approaches correlate events based on the similarity 

between data features. Alert messages are compared if they have similar 

attributes or features. Generally, the feature similarity between two events is 

computed by a function and the result is associated to their relation. This 

score will determine if two generic events can be correlated. If a high degree 

of similarity among features is identified, alerts are correlated [41]. Hence, 

similar alerts are shown to be clustered efficiently by techniques based on 

similarity. In other words, coarse-grained alert messages (e.g., meta-alerts) 

are created and the amount of alerts is considerably reduced. On the other 

hand, the main weakness of these techniques is that they are generally 

unable to discover causality between time-related events. 

 

 Scenario-based techniques are based on known attack scenarios, which are 

specified by languages such as STATL [43] or LAMBDA [44], or learned 

from training datasets. Nonetheless, it can be used only to discover the 

causal relationship of alerts among known pre-specified situations. Attack 
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scenarios are either specified by experts or learned from a training dataset, 

although a database with this knowledge may be expensive to build and 

maintain. Therefore, significant expert knowledge is required to carry out 

the costly and fallible process of developing attack scenarios in advance. 

This set of techniques is generally very effective to detect well-known 

cyber-attack attempts, but incapable for the detection of novel and more 

sophisticated attack techniques. 

 

 Multi-stage-based techniques correlate events utilizing well-known 

prerequisites and consequences of multistage attacks. They are based on the 

assumption that suspicious events are usually related to different steps of a 

multi-stage attack. Predefined rules based on pre-requisites and 

consequences of attack stages allow identifying related alerts. Despite this 

approach have the potential to discover unknown attack patterns, it is 

difficult to define all attack prerequisites and possible consequences 

beforehand (even for known attacks) [10]. These techniques aim at 

reconstructing attack scenarios by looking for individual steps that belong to 

the same attack attempt and linking them. The detection accuracy of these 

approaches strongly relies on the false alarm rate of each raw data stream 

which contributes to the correlation. This is due to the fact that most of the 

methods in this category focus only on events that can be correlated, while 

discarding all the others. It is relevant to consider that building a 

comprehensive knowledgebase which considers all the variations of incident 

steps may be an expensive process, as a large (and increasing) quantity of 

diverse incident types occurs.  

 

 Statistical-based: relationships among alerts occurring within a certain time 

period is analyzed statistically and it may be independent of prior 

knowledge. Correlation engines based on Bayesian networks are presented 

in literature to discover dependency among alerts [45; 6].  

Many approaches that rely on predefined knowledge of attacks – e.g., using modeling 

language or attacks’ pre- and post-conditions – are not able to identify the correlation in case 

of novel attacks, similarly to misuse detection techniques. As a matter of fact, one cannot 

have an a priori knowledge of the possible matching conditions between attacks, as intruders 

always look for unexpected sequence of attack to be unpredictable. Therefore, it is preferable 
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to bring together the advantages of approaches based on inference and expert knowledge [6]. 

Knowledge of underlying networks (i.e., a type of meta-data) and relative flaws are also 

requirements for several event correlation techniques [45]. 

In the report layer, a final analysis allows the output of the lower layers to be abstracted, 

displayed and post-processed. It leads to a verification of incidents and a detailed view of the 

detected threats. 

It is relevant to mention that such hierarchical structure – i.e., the three above mentioned 

layers – ensures that each correlation component may be seen both as analyzer and 

correlation engine, depending on the place from which they are viewed; from the top they 

are just general event analyzers (or detection engines), while downstream they look like 

event correlation engines [34]. 

4.3. LIMITATIONS 

Several techniques have been proposed in the past years to correlate security data for 

different purposes, such as filtering data, finding causality, clustering, and so on. Correlation 

techniques based on misuse are generally not able to discover previously unknown attacks, 

for which relative signatures has not been produced yet.  Moreover, inadequate and 

incomprehensive signatures may compromise the quality of correlation, whereas use of a 

large collection of signatures usually requires extensive labeling work, large storage and 

intense computing power. Techniques based on anomalies overcome the problem of 

detecting novel attacks but it may be generally difficult to determine detection sensitivity and 

criteria for differentiating between normal and anomalous behaviors. Also, pattern learning 

and adequate processing power are demanded for monitoring and analyzing the large sets of 

features of security data. 

Each of the four methods which allow finding causal relationships between events present 

some limitations. In general, by looking at feature similarity it is impossible to discover 

causality between two events which exhibit temporal connections. Techniques based on 

predefined attack scenarios require extensive knowledge about possible attack patterns, thus 

introducing all the limitations that have been above discussed for signature-based techniques. 

Techniques based on pre- and post-conditions present the same weaknesses of scenario-

based and – broadly speaking – signature-based techniques, although they potentially allow 

identifying previously unknown attack patterns. The detection accuracy of multi-stage 

correlation approaches strongly relies on the false alarm rate of each raw data stream which 

contributes to the correlation; this is due to the fact that most of the techniques in this 
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category focus only on events that can be correlated, while discarding all the others. It is 

relevant to consider that building a comprehensive knowledgebase which considers all the 

variations of attack steps is unattainable in reality, as well as being an expensive process as a 

large (and increasing) quantity of diverse incident types occurs. Many approaches that rely 

on predefined knowledge of attacks – e.g., using modeling language or attacks’ pre- and 

post-conditions – are not able to identify the correlation in case of novel attacks, similarly to 

misuse detection techniques. As a matter of fact, one cannot have an a priori knowledge of 

the possible matching conditions between attacks, as intruders always look for unexpected 

sequence of attack to be unpredictable. Finally, techniques based on statistics usually do not 

require prior knowledge about threats to detect causality between events but they are more 

time consuming than the other methods as well as extremely sensitive to noise and time 

delays. Therefore, it is preferable to bring together the advantages of complementary 

approaches based on inference and expert knowledge [6]. Knowledge of underlying 

networks (i.e., a type of meta-data) and relative flaws are also requirements for several event 

correlation techniques [45]. 

Although a number of scientific papers proposed correlation approaches and taxonomies, 

comparative studies are not feasible. First of all, the scientific community blames the lack of 

public evaluative datasets, specific for testing alert correlation methods. As a matter of fact, 

the examined state-of-the-art techniques are evaluated by the respective authors using a large 

variety of datasets such as customized private datasets, DARPA, DEFCON, and so on. 

Publicly available datasets are not specifically designed for event correlators, rather they 

were conceived for evaluating intrusion detection systems (IDSs); besides some of them are 

largely considered obsolete or unrealistic. Moreover, each dataset implies the use of diverse 

background network traffic and threats, both for learning and testing, as well as different 

network topologies. 

The lack of a common scientific vocabulary related to alert correlation, makes it complex to 

bring techniques into comparison. Therefore, it is generally accepted that the performance of 

every approach depends on specific situations; that is because each of them present strengths 

and weaknesses which cannot be assessed without an empirical analysis. 

4.4. SUMMARY 

A broad classification of correlation techniques depicted in literature allows differentiating 

among methods which group similar alerts together, improve detection accuracy, regulate 

event priority, and analyze event intercausality. Another distinction is between signature-

based detection and anomaly-based; the former considers instances of known threats to 
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identify novel ones, while the latter detects behavior which deviates from a baseline of well-

known ‘good’ behaviors. 

Event correlation can also be divided into three layers: raw data layer, event layer, report 

layer. In the raw data layer, data from sensors is collected, processed and sent to the event 

layer, where IDSs and correlators classify, prioritize and discard non-relevant data. Then, 

obtained data is sent to the report layer, where it is post-processed. In particular, messages 

are aggregated and causality between events is identified within the event layer. 

With respect to causality, correlation techniques can be classified as follows: similarity-

based, scenario-based, pre/post conditions-based and statistical-based. Techniques based on 

similarity, predefined scenarios, and pre/post conditions require extensive expert knowledge 

to find correlation among events, whereas statistical methods are able to infer relationships 

among events by using statistical or machine learning analysis. Generally, methods based on 

expert knowledge produce accurate results but experts may be limited in solving complex 

problems and in processing information. Finding all possible causal relationships among 

alerts may be a time-consuming and excessively slow activity for being considered viable. 

Methods based on automatic inference are capable to find novel alerts, but they are not 

completely able to discover causal relationships between alerts though. 
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5. SOLUTION DESIGN 

In this chapter, the aim is to design an innovative model for the detection of advanced 

security incidents by examining contemporary attack scenario cases. The first section 

introduces a generic tiered architecture which is usually employed to detect security 

incidents. In the second section, event correlation, which is broadly defined in literature, is 

explained through the identified essential components that participate in the correlation 

process. The final section shows how detection takes place for the cases introduced in 

chapter 2, which range from common low-sophisticated threats, such as port scan, to more 

complex and multi-stage attacks, such as cyber-espionage activities. 

5.1. DETECTION CHAIN 

The term ‘detection chain’ represents the sequence of tasks that are commonly performed 

during the process of incident detection. Generally, raw data, gathered from a detection 

probe, is preprocessed for the extraction of data features which are fed to a detection engine; 

the latter generates alerts which are then investigated – possible false alerts are useful to tune 

up the detection engine as well as to improve detection signatures. Then, intrusion alerts – 

i.e., alerts which are accepted as true positives – are reported and incident response may take 

place. Given that only one analysis engine identifies suspicious events, we call it (1-tier) 

detection chain (see Fig. 3 Example of 1-tier detection chain). 

 

FIG. 3 EXAMPLE OF 1-TIER DETECTION CHAIN 

In a 2-tier detection chain, raw data, gathered from a detection probe, is preprocessed; the 

detection engine checks the relevant data features against intrusion rules (or looks for 

anomalies) and raises alerts. Then, alerts are further examined by a subsequent detection 

engine, in order to create more accurate and informative alerts. Again, investigation will set 

apart false alerts which in turn will help to tune up the detection rules. Positive alarms are 

reported and response may take place. Fig. 4 Example of 2-tier detection chain shows an 

example of 2-tier detection chain with sequential detection engines. In general, however, 

engines can also be deployed in parallel. 
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FIG. 4 EXAMPLE OF 2-TIER DETECTION CHAIN 

In general terms, we refer to n-tier detection chain when each raw data stream, gathered 

from multiple information sources, is separately preprocessed. Features are obtained 

separately and checked against detection rules to trigger alerts. A subsequent detection 

engine will jointly inspect and correlate the separate alert streams, in order to create incident 

reports.  

 

FIG. 5 EXAMPLE OF 3-TIER DETECTION CHAIN 

 

5.2. THE 6 ‘COMPONENTS’ OF CORRELATION 

Each technique presented in literature emphasizes on one or more aspects of the broad 

concept of ‘event correlation’, and their relative goals (see chapter 4). Our project is 

grounded on the previous research efforts made by Cuppens [46], Valeur et al. [14], Qin 

[45], and Sadoddin and Ghorbani [47]; in essence, they identified six components which 

characterize an exhaustive correlation system: normalization, aggregation, correlation, false 

alert reduction, prioritization, and intrusion strategy analysis. These aspects can be 

categorized with respect to their input data, their goal as well as the location in the detection 

chain. 

5.2.1. NORMALIZATION 

It has been said throughout this document that heterogeneous security data sources supply 

different data formats, and it is necessary to standardize the inputs for correlating events, 

ensuring interoperability between security components. 
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Besides, normalization supplies incomplete or missing data attributes that may be relevant 

for correlation, thus augmenting events with further information. In that regard, the data 

content is reported, which – according to the IETF RFC4766 memorandum [48] – is the 

minimum requirement for the information exchange within computer security incident 

management systems, regardless of the information source: 

 Detected data: the monitored event should be described in unambiguous 

way. 

 Event identity: global categories should be created and used to classify 

events. 

 Background information: meta-data such as system configuration, 

topology, sensor information, and so forth, is necessary to assess events 

adequately. 

 Event information (source and target identities): information about the 

source of the event and the attack’s target (i.e., IP address or domain). 

 Event impact and degree of confidence: importance of an event. 

Knowledge of the event source affects the correlation.  

 Automatic response: proposals for countermeasures to be adopted by the 

analyzer after an occurred event. 

 Time Synchronization: common time basis is relevant for the deployment 

of a distributed architecture. 

This component may not provide any tangible improvement such as reduction of the number 

of alerts; however, it is crucial for the correct functioning of the correlation process through 

the successive components. 

5.2.2. AGGREGATION 

Basically, a high-level view of what is currently occurring in a network is the desired 

outcome of the events fusion process. Therefore, correlation engines should be capable of 

recognizing scenarios through the intelligent fusion of data generated from different sources 

into meta-alerts. In order to perform this task, it is desirable to have some degree of 

awareness of what kind of events will lead up to others in certain scenarios and of what 

features are expected to be shared [41]. 

The component of aggregation is intended to cluster similar alerts together into meta-alerts, 

based on their features. Meta-alerts (also known in literature as hyper-alerts) are generally 

created by aggregating alerts with similar features caused by different sensors, in order to 

obtain high quality resulting information; for instance, alerts originating from the same 
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source and having the same target IP address [18], alerts caused by the same event, alerts 

referring to the same vulnerability, alerts caused by events belonging to the same TCP/IP 

session, alerts that are related on a temporal basis, are considered similar alerts [13]. 

Measuring and assessing similarities of attributes in alerts is the core of a probabilistic 

reasoning method, and aggregation may be controlled by configurable parameters [41]. 

A meta-alert can be seen as an intrusion report at a high-level of abstraction and its content is 

a function of the attributes of the merged alerts and contains references to them. Further 

alerts can also be merged with meta-alerts, thus creating a hierarchical structure. It can be 

represented as a tree in which the latest meta-alert is the root, sensor alerts are leaves, and 

references are followed to identify successor nodes [14]. 

Clustering of alerts is possible if they have in common at least one causal event, by which is 

meant the event causing an alert. Aggregation provides an undeniable advantage in reducing 

alert redundancy, easing later reduction of false positive alerts and causality as well as 

human analysis. 

5.2.3. CORRELATION 

In order to find the causality among events, a correlation component is required; it will 

provide a ‘big picture’ of the occurring incident. It is essential taking into account that false 

positive inputs may heavily compromise the accuracy of the correlation as it can result in 

complete but inexistent attack scenarios. 

5.2.4. FALSE ALERT REDUCTION 

It is known that low-level sensors may generate alerts with high false positive rate, making 

the final outcome of correlation process unreliable. Therefore, false alert reduction is 

intended to differentiate between true positive and false positive events. For this purpose, it 

is also crucial to combine the values of confidence supplied by various sensors and related to 

the same event into a global value. 

5.2.5. PRIORITIZATION 

Security incidents may have more or less severe impacts on targeted networks.  As security 

policies, network topologies, vulnerabilities, and other meta-data are taken into account, 

alerts can be prioritized depending on their severity. Hence, it is essential to develop specific 

classification constructs and model domain knowledge adequately. 
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5.2.6. INTRUSION STRATEGY ANALYSIS  

The importance of finding the causal relationship between events is long been recognized. 

However, correlated events usually show isolated attack patterns, and not the complete 

intention of the attacker. This may be due to events which are potentially missed by security 

systems – i.e., false negative alerts. Therefore, higher level correlation is desirable to identify 

a complete picture of attack patterns occurring in a network as well as predicting future 

attack steps. This component considerably improves the abstraction level of the meta-alerts. 

 

5.3. DESIGN OF SOLUTIONS FOR THE CASE SCENARIOS 

The objective of this section is to show how detection takes place in the scenario cases using 

the detection model which is depicted in 5.1. The blocks showed in the detection chain can 

be mapped to correlation methods in order to reason about cyber-attacks. The design 

approach is based on known attack scenarios, thus addressing the difficulty of reasoning 

about unknown threats. This complexity is typical of the reactive nature of cyber-security. 

Therefore, known scenarios will help providing the abstraction of a solution for incident 

detection based on correlation. The relevance of the following attack scenarios is previously 

reported in 2.2. 

5.3.1. SCENARIO 1: GAINING UNAUTHORIZED ACCESS AND DISCLOSURE OF 

SENSITIVE DATA 

In this section, we aim at detecting an attack scenario which is characterized by four attack 

steps. That is to say, the attacker’s intrusion strategy is performing the following four steps 

in the attempt to gain remote access to a local machine (i.e., a public server in DMZ) and 

obtain sensitive data from the organization: 

1. The attacker performs a port scan with Nmap (Network Mapper security scanning 

tool) on externally visible IP addresses in order to find open ports in the targeted 

organization’s computer systems. 

2. The attacker scans for vulnerabilities on the servers’ public IP address from the 

Internet by using a vulnerability scanning tool. 

3. The tool identifies vulnerability in the FTP server, whose port is open. The attacker 

is able to exploit it, and launches a remote-to-local (R2L) attack to the FTP server, 

using a different IP address from previous steps 1 and 2. 

4. The attacker downloads a large database file from the FTP server. 
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In order to obtain a ‘big picture’ of the attack is necessary to detect the four steps 

individually. Each of them defines an attack pattern, which in complex multi-step scenarios 

may (or may not) be causally linked to the real intentions of the malicious user. Hence, let us 

proceed step-by-step. 

5.3.1.1. STEP 1 

Let us consider to detect the incident by using a simple detection system with one probe and 

one detection engine. As previously discussed, this relies on the use of a single probe placed 

behind the perimeter firewall of our corporate network; which is equivalent to say that we 

are taking into account only network packets for analysis as raw data. 

It is generally believed that a port scan is not strictly an attack, but a precursor to a more 

complex attack, therefore it is widely accepted that detecting a scan is an important early 

warning detection process. In order to adequately detect attack precursors – and with a good 

sense of timing – network traffic should be collected real-time. 

Port scan detection can be performed in two ways: 

 By looking for anomalies – a baseline containing normal behavior is 

essential for this purpose; 

 By matching characteristics of malicious patterns – characteristics of port 

scans must be well-known in order to create adequate signatures. 

Let us assume that IDSs in use do not adequately detect port scans. A probe, located behind 

the perimeter firewall, gathers TCP packets by capturing network traffic
28

. 

A pre-processing phase will provide for the extraction and selection of data features for the 

incoming network packets; this task will be performed by summarizing packet information 

into higher level connection records. Each of the records will be a sequence of TCP packets 

which bidirectionally flow from a source IP (and port) to a target IP address (and port) 

within a pre-specified time window. 

The goal of our detection system is to correlate TCP connections together and to provide a 

reliable event report warning about suspicious scan activities: aggregating connections, 

identifying causality, and reducing the volume to analyze by prioritizing them. Moreover, the 

aforementioned processes can be executed in different order. In other words, we want to 

implement a set of mechanisms that provide for the detection of port scans while not 
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 PCAP library for *nix systems http://www.tcpdump.org and Windows systems http:// 

www.winpcap.org 
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flooding the incident response team with tens or hundreds of similar alerts. First, we can use 

a database to store and manage TCP connections. 

PRIORITIZATION 

In order to reduce the data set significantly, TCP connections can be prioritized by gathering 

contextual information which help assessing the severity of the network activity. One 

solution would be to create and maintain two databases: one including an incident handling 

fact base, and the other one containing topological information [49] (see Appendix B for 

further details). 

 

FIG. 6 AN EXAMPLE OF PRIORITIZING TCP CONNECTIONS 

This step results in a relevance score for each TCP flow, which is the degree of dependency 

between incident and the configurations of network and hosts. Security analysts evaluate the 

level of criticality of resources and assets and the success probability of the incident to 

compute an overall incident rank; then, users may prioritize TCP flows according to the 

ranking and dynamically filter out connections which are not relevant for the detection of 

port scans. 

AGGREGATION 

In this scenario, port scan packets have same source IP and target IP addresses, but different 

TCP destination ports. Alerting consists of producing high-quality information which show a 

number of scanning instances from an arbitrary remote location of given ports of the target 

system, in a certain time period. Hence, one possible solution is to group together similar 

TCP flows and count the instances; if the number of instances exceeds a threshold set by the 

expert, an alert is triggered. 

An option to reduce the data sets to be analyzed is the use of temporal-based fusion and 

grouping events which belong to a certain time pattern together [50]. In general, we can face 

the following two possible cases: (1) the time gap which occurs between a scan probing and 

another is smaller or larger than the time window used for sampling. If the gap is small 

enough, flows allow fusing duplicate features (i.e., IP source and target addresses). On the 

contrary, (2) if the gap between scan probes is bigger than the time window, our system will 
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consider port scans independently, thus generating a number of similar alerts which will 

require further processing. 

TCP flows can be clustered together if they have similar features [18; 49], according to rules 

produced by experts. First, a simple technique has been proposed to cluster data by similar 

source IP address [51]; however, this technique is not convenient for stealth scanning and 

does not take in any consideration the target. 

Clustering process can also be based on predicate logic, a formal system in which similar 

features specify the similarity between TCP connections. Every cluster may be seen as a high 

level TCP flow, according to a cluster stability – different attacks set maximum delay times 

for cluster stability [52]. Similarly, a function can assess similarity between features and 

return a value between 0 (i.e., totally diverse TCP connections) and 1 (i.e., identical 

connections) in order to cluster connection records. Subsequently, similarity values are 

averaged [41]. Analogously, it has been proposed to group connections having identical 

feature values, regardless of the time [53], since slow scanning – say a day or more – may be 

used as stealth technique. 

Alternatively, it is possible to organize connections in classes, and use a simple machine 

learning algorithm of nearest-neighbor (NN) [54] – TCP connections are assigned to the 

class of its nearest neighbor – to decide whether a flow can be considered unrelated to others 

or be clustered with related ones. In order to train this algorithm, it is generally required to 

compute the distance between instances, which is based on values of the feature set (see 6.3 

for further details). 

 

FIG. 7 AN EXAMPLE OF AGGREGATION OF TCP CONNECTIONS 

This step results in the fusion of suspicious TCP connections into one or more clusters, thus 

reducing the volume of data to be further analyzed by the detection engine. Each cluster can 
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be considered as a ´global TCP connection´, which will be more informative and accurate 

than the ones forming it. Fig. 8 summarizes the detection system for step 1. 

 

FIG. 8 1-TIER PORT SCAN DETECTION CHAIN 

 

5.3.1.2. STEP 2 

The attacker scans the server’s public IP address from the Internet by using a vulnerability 

scanning tool. Let us assume to detect the vulnerability scans by using a detection system 

with a single detection engine. In other words, our NIDS – e.g., SNORT with signature 

detection engine – provides alerts showing the presence of vulnerability scans from a remote 

IP address, as well as other alert types. Analogously to port scanning, vulnerability scans are 

considered precursors to attacks, therefore the similar considerations previously done with 

port scan are valid in step 2 too. 

 

FIG. 9 1-TIER VULNERABILITY SCAN DETECTION CHAIN 

Hereby, we do not pay close attention at the event trigger mechanism of the NIDS, which is 

based on expert rules. We want to further examine what is occurring in the network and 

correlate the alerts produced by our NIDS – located behind the perimeter firewall – with the 

alerts triggered in step 1. Hence, let us assume that we have port scan low-level alerts from 

the earlier detection engine, as well as low-level alerts from vulnerability scanning. 

The goal of our detection system is to correlate the two types of alerts (i.e., port and 

vulnerability scan) and provide a reliable event report warning about suspicious scan 

activities. Essentially, we want to implement a set of procedures that provide for the 
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detection of port and vulnerability scan while not flooding the incident response team with 

tens or hundreds of similar alerts. 

NORMALIZATION 

First, a normalization process is required to provide a unified data model to our low-level 

alerts, according to the IDMEF requirements [35]. Then we can use a database to store and 

manage alerts. 

 

FIG. 10 AN EXAMPLE OF NORMALIZATION OF HETEROGENEOUS ALERTS  

PRIORITIZATION 

Likewise prioritization in step 1, alerts can be prioritized by gathering contextual information 

which helps assessing the severity of the network activity. This step results in low-level 

alerts generated by Snort IDS, which are ranked in accordance with their predetermined 

impact over the monitored system. 

FALSE ALERT REDUCTION 

Apart from prioritizing the alerts, it is also crucial to filter out false warnings. Reduction of 

false alerts is largely assumed to be achieved by combining misuse and anomaly detection 

[55; 56]. As signature-based detection has been used to trigger our alerts, the remaining data 

(i.e., uncertain patterns) may be input to an episode mining engine, which compares 

unknown patterns to frequent episode rules. Episode rules are mined from normal network 

traffic and maintained in a database for the learning process. Highly mismatching episodes 

are labeled as anomalous and used to generate new signatures. 

Alternatively, false positive reduction can also be achieved including meta-data such as 

network topology, semantics (i.e., information proving alert relevancy towards 

vulnerabilities of the monitored system), and other information which define the security 

state of the system [42; 57]. 
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Since we are looking for anomalies, it is possible to filter data by employing novel machine 

learning algorithms which model the response of dendritic cells [58] of the autoimmune 

system, thus differentiating between danger and safe signals. Similarly, classification 

algorithms [57; 59] are capable to return a confidence score for input data, thus allowing to 

filter out low-level alerts which have values below a given threshold (see section 6.2 for 

further details). 

 

FIG. 11 AN EXAMPLE OF ALERT PRIORITIZATION AND FALSE ALERT REDUCTION 

At the end of this alert analysis process – i.e., prioritization and false alarm reduction – we 

will consider only those low-level alerts which might pose a threat to the monitored network, 

whereas discarded false alerts will be examined and used to tune the earlier detection 

engines. 

AGGREGATION 

In this scenario, IP packets of vulnerability scans have same IP source and target addresses 

as the port scan, but different destination ports. The final event report represents high-quality 

information which shows several (port and vulnerability) scanning instances from an 

arbitrary remote location, in a certain time period.  

In order to lower the number of remaining alerts, it is possible to use temporal-based fusion 

techniques [50], such as SVO or chronicles [60], thus clustering events which belong to a 

certain time pattern together.  

Alert aggregation could also be achieved by using either feature [53] similarity-based 

techniques [52; 18; 49; 41] or machine learning techniques such as nearest-neighbor [54]. 

For the purpose of aggregation, feature similarity may also be explained in terms of distance 

(i.e., path length) between feature values in the corresponding generalization hierarchy (or 

taxonomy) [61] [62]; the latter are hierarchical structures, which are built for each of the 



50 

 

features, with the goal of ordering them from general to specific values (see section 6.3 for 

details).  

 

FIG. 12 AN EXAMPLE OF META-ALERT CONSTRUCTION 

This step results in alert clusters; each of them can be seen as a global alert which includes a 

set of low-level alerts, thus eliminating redundancy and reducing the volume of data to be 

processed. 

REPORTING THE EVENT 

Alert reduction and production of meta-alerts can occur before [41] or be coupled with the 

search of causal relationships between alerts [51] [10] [6]; that is to say, correlation can be 

performed directly on low-level alerts, or else on meta-alerts after alert aggregation. In 1-tier 

detection chain, reasoning about intruder’s strategy of the individual step 1 is the same as 

simply defining causality between alerts raised by port scans. Moreover, correlation 

techniques based on pre-requisites and consequences of attacks are generally useless for 

detecting the individual step within a multi-step attack. 

If aggregation has occurred, in the best case scenario – i.e., our desirable condition – we will 

have just one global informative meta-alert which does not require further analysis and can 

be directly read as event report. However, if aggregation has produced various meta-alerts 

for the scan probes (e.g., time-based clustering) it may be necessary to provide a high-level 

view by examining mutual relationships between meta-alerts. On the other hand, if 

aggregation and correlation are coupled, we consider intrusion alerts as our input, and event 

reports will be the output. 
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FIG. 13 AN EXAMPLE OF META-ALERT CORRELATION 

 

CORRELATION OF META-ALERTS 

In order to perform correlation after meta-alerts have been produced, security experts may 

compute the probability that a feature matches if two alerts are correlated [41]; for example, 

if two probes from the same target scan the same ports on diverse parts of a sub-network, we 

have low expectation of matching target IP address. 

Time-series analysis such as Granger Causality Test (GCT) [45] is used to check through a 

statistical hypothesis test whether two time series variables x and y correlate each other. 

However, the approach requires alerts to show a temporal relationship; therefore, it will not 

be able to correlate events having random time delays between them. 

CORRELATION/AGGREGATION OF LOW-LEVEL ALERTS 

As we mentioned above, in some cases correlation and aggregation techniques are coupled. 

Correlation between alerts can be based on heuristics, data mining and machine learning 

techniques such as decision trees, radial base function network (RBFN), multilayer 

perceptrons (MLP) [10; 51], support vector machine (SVM) [10], statistical approaches such 

as Bayesian Network (BN) [6] [45]; these techniques aim at correlating low-level alerts 

automatically by learning. Generally, training data is assumed to be used to tune parameters 

for the various techniques and extensive expert knowledge is required for the manual alert 

labeling. 
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FIG. 14 AN EXAMPLE OF INTRUSION ALERT CORRELATION 

This step results in the production of event reports, which can be considered as sets of 

correlated meta-alerts. Event reports are more informative meta-alerts, since they also supply 

causality among them. Fig. 15 depicts the architecture of the detection chain for step 2. 

 

FIG. 15 STEP 2 DETECTION CHAIN (INCLUDING OPTIONS A AND B). 

5.3.1.3. STEP 3 

If the incident response has not been activated, after scanning the public IP address of the 

organization’s servers, the attacker obtains a list of open ports as well as a list of vulnerable 

services. For example, the port scanning with nmap has resulted in the following: 

PORT STATE SERVICE 

21/tcp open ftp 

22/tcp     open ssh 

80/tcp     open http 

646/tcp filtered ldp 

1720/tcp filtered H.323/Q.931 

9929/tcp   open nping-echo 

… … … 

… … … 

 

a. Aggregation and subsequent correlation of 

meta-alerts 

b. Aggregation and correlation of intrusion 

alerts 
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It is simple to understand that a series of TCP ports are open on the server at stake. What the 

attacker needs to know is whether or not he can actually intrude the system through any of 

the open ports. The vulnerability scan tools (e.g., Nessus) has probed open services and 

listed discovered vulnerabilities. In particular, the version of the FTP service, whose port is 

open, shows a few vulnerabilities; the attacker has found himself able to exploit one of them 

and launches a remote attack. The intruder has well-judged to use a different IP address than 

the previous one which is used for the scanning probes of step 1 and step 2. 

As step 2 is in progress, security operators will be able to see a global informative event 

report which displays (and link) the two scan probes. As already stated, the event can be 

considered an attack precursor. Essentially, our system should be able to detect the occurring 

remote-to-local attack and causally link it to the precursor of step 1 and 2. 

A R2L (remote-to-local) attack is usually accomplished by sending an anomalous server 

request, such as a buffer overflow, in the application payload. It is possible to detect this type 

of incident in the NIDS as well as in the HIDS of the server. Therefore, for the detection of 

the current attack scenario let us assume to correlate alerts generated from our NIDS (i.e., 

Snort located behind the perimeter firewall) and HIDS (i.e., IDS installed on the server), 

alerts from server log, and the events generated from the attack precursor. 

Usually, there may be many exploits and techniques to attack a server, and we may not 

exactly know the specific technique used by the intruders in order to produce effective 

signatures. Hence, detection also based on anomalies is advisable; that is to say, let us 

synthesize normal behavior and create a mechanism which triggers alerts when anomalous 

events, which are logged in the server log, occur. Profiles can be built by statistical 

computation, mining activities, or using machine learning methods [17]. In order to find 

relevant entries, a log file monitor will periodically check server log entries against known 

profiles, to find anomalies and trigger alerts. 

NORMALIZATION 

Multiple events from heterogeneous sources – i.e., probe scan alerts, FTP server log entries, 

alerts from NIDS, alerts from HIDS – are initially normalized to provide them a common 

format (e.g., according to IDMEF); then, they are stored into a database. 

PRIORITIZATION AND FALSE ALERT REDUCTION 

The number of alerts from the database is reduced by filtering events by using meta-data 

(e.g., information about attacks, services, vulnerabilities, hardware, OS dependencies of alert 

types, network assets, IP to hostname mappings, active services, etc.) which help estimating 



54 

 

the severity of the network activity [42; 57; 49; 63]. Models based on human autoimmune 

system recognize and filter out ‘safe’ signals in such anomaly detection problem [58]. Alerts 

can also be reduced by using a classification algorithm which returns a confidence value for 

true and false alerts [59; 57].  

At the end of this process, only alerts which pose a threat to the monitored system will be 

considered; discarded alerts will be used to enhance signatures (or training data) for the 

preceding detection engines.  

AGGREGATION 

As irrelevant events are filtered out, we could still have a large number of alerts to process; 

so, it can be convenient to cluster together similar alerts. Various techniques based on 

similarity of data feature are widely used for alert aggregation [52; 18; 49; 41] [53]; some 

consider the complete feature set, but similarity can also be expressed regardless of 

timestamps, or in terms of path length between feature values in the relative generalization 

hierarchy [61] [62]. Machine learning techniques such as nearest-neighbor are also suitable 

for the purpose of alert clustering [54].  

A so-called spacial fusion [50] – spacial information relates to threat scores of various 

features characterizing the same event – aggregates alerts by using a two-stage algorithm 

which considers a security index based on the criticality of the application. 

Since unauthorized access generally occurs in the order of either seconds or minutes after the 

initial attack attempt, temporal-based techniques (e.g., SVO [50] and chronicles [60]) can be 

applied to fuse alerts belonging to a defined time pattern. However, it can be necessary to 

separately evaluate the performance of the two approaches, considering the possibility that 

attackers might introduce hours or days of delay between attack steps. 

This process results in a reduced number of meta-alerts; they will enclose intrusion alerts 

which somehow share features or have certain temporal relationships. 

CORRELATION OF META-ALERTS 

In order to find the causality among meta-alerts, a few alternatives have been proposed in 

literature. Likewise step 2, security operators can create a matrix which encodes the 

expectation of feature similarity between meta-alerts – i.e., the prior expectation that a 

feature matches if two meta-alerts are causally linked [41]. 

Meta-alerts can also be modeled in time series variables (i.e., alerts per time unit) and 

correlation is found through a statistical hypothesis test known as Granger Causality Test 
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(GCT) [53]. However, as previously mentioned, a temporal relationship among alerts is 

necessary for the technique to be applied. 

Causal relationship between meta-alerts can be based on pre-requisites and consequences of 

cyber-attacks. In other words, as we are aware of some pre and post-conditions of given 

attack steps, security events can be correlated by matching the consequence of an old alert 

with the prerequisite of a new alert. For example, a pre-condition for a R2L attack to an FTP 

server is that FTP is an available service on TCP port 21. 

AGGREGATION AND CORRELATION OF INTRUSION ALERTS 

Pre-conditions of attack B and post-conditions of attack A can be known and specified in 

advance by using a state description language, which is a type of predicate logic. Comparing 

pre- and post-conditions allow for merging attack specifications, thus allowing delineating 

the evolution of an attack within a host and estimating the next steps to be performed by the 

malicious user. 

Correlation and aggregation between alerts can also be based on same techniques described 

for step 2, such as heuristics, data mining and machine learning techniques – i.e., decision 

trees, radial base function network (RBFN), multilayer perceptrons (MLP [10; 51]), support 

vector machine (SVM [10]) – and statistical approaches such as Bayesian Network (BN [45; 

6]). Other approaches to correlation are based on the knowledge of the given attack scenario 

[64; 51].  

REPORTING THE EVENT 

At the end of the previous process – i.e., meta-alert correlation or aggregation/correlation of 

intrusion alerts – we have been able to reduce the number of alerts as well as find some 

causality among events. However, potentially a few events might not be detected, thus 

making difficult the reconstruction of the security incident. 

INTRUSION STRATEGY ANALYSIS 

Similarity of source and target in meta-alerts can be quantitatively measured in order to 

reconstruct different stages in a multi-step attack [41]. Algorithms to extract attack strategies 

from sequences of correlated alerts have been largely proposed. 

However, missing events (i.e., false negative alert) may make reasoning about multi-step 

attacks difficult; so, some correlation methods aim at hypothesizing missing events [52] [65; 

66]. State description languages (e.g., LAMBDA [44]) allow the abduction of intermediate 

alerts from scenarios, even though they have not been detected. 
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Missing alerts can also be inferred by manually analyzing attack scenario graphs, which are 

constructed by utilizing various techniques such as taking into account system state 

transition [67; 50], attack goals [65], or satisfying conditions for the attack execution. Trees 

can be further transformed into Bayesian networks [65; 10; 6] and inference can be applied 

on it. Eventually, event report may be ranked based on the known relevance of the attack 

[66; 67]: for instance, we could consider of storing the probability of having following 

attacks (PFA) in the attack graph. 

 

FIG. 16 N-TIER DETECTION CHAIN (N=7) 

The obtained detection system will be constituted by (at least) 7 tiers, e.g., n = 8 if log 

analysis is performed using both anomaly and signature detection. It also includes a 3-tier 

chain for scan detection, 1-tier for NIDS alerting, 1-tier for HIDS alerting, 1- or 2-tier for 

server log alerting, and finally 1-tier for correlation of alerts from multiple sources. The 

letters a and b indicate two options for generating event reports: respectively, aggregation 

into meta-alerts and causal inference, and causal-driven aggregation of intrusion alerts. The 

letters c and d indicate two alternatives for preprocessing event reports before abducting 

missing attack steps and reasoning about a multi-step incident: respectively, specifying event 

reports through a system state description language, and through the creation of attack 

graphs or trees. 



57 

 

 

FIG. 17 EXAMPLE OF MULTI-STEP CORRELATION 

The strategy analysis process results in incident reports, which can be represented 

graphically by attack trees. The colors in the picture are only suggestive of visualization 

techniques to deliver correlated events for expert analysis and incident response. Moreover, 

standardized information formats such as Incident Object Description and Exchange Format 

(IODEF) [68] allow incident reports to be stored and managed. 

5.3.1.4. STEP 4 

In step 4, the attacker attempts to download a large database file from the FTP server; thus 

our knowledge base can be extended by considering that events of step 1 to 3 are precursors 

for step 4. In order to detect and report the event at hand, we can take into account the FTP 

server log as well as alerts from NIDS and HIDS, which are placed similarly as in step 3. 

NIDS and HIDS will trigger alerts based on malicious TCP connections starting from and 

directed to the FTP server. 

A server log monitoring tool is designated to check log entries and raise alerts when 

anomalies are encountered or entries match signatures of well-known malicious behavior. 

However, since log analysis may be much slower than the time employed by an IDS to 

trigger alerts, it is advisable to include logs as source for detecting the multi-stage incident 

system rather than reporting the single event. Essentially, for the purpose of incident 

detection we propose to use the analogous system which has been depicted in the previous 

section. Nonetheless, at the time of step 4, security operators may already have enough 

knowledge about the occurring security incident and take action for response. 
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5.3.2. SCENARIO 2: DATA EXFILTRATION 

In this section, the goal is to detect an attack scenario which is made up of three main steps. 

The attacker’s intrusion strategy, in other words, is to perform the following three actions to 

send data to external site, after he/she has extended his foothold on the internal network: 

1. The attacker utilizes a remote access service (e.g., RDP) toolkit to create a 

network tunnel between the database in the internal network and the Web 

server in the DMZ. 

2. The attacker utilizes both the Web server in the DMZ and the internal 

SMTP
29

 server as a stepping stone to transfer files between the critical 

system and arbitrary systems on the Internet. 

3. The attacker erases a number of server access logs. 

5.3.2.1. STEP 1 

At a given time, the attacker has compromised a vulnerable Web service in DMZ and then 

has got a foothold on an inside database management system (e.g., a database server such as 

Oracle MySQL, Microsoft SQL Server) which contains highly confidential data. We are not 

aware of any set of techniques or tool which has been exploited to get a foothold in the back-

end network segment though. 

We could hypothesize that after a few attempts – blocked by the perimeter firewall – of 

sending organization’s data to an arbitrary Internet location, the attacker creates a network 

tunnel to exfiltrate data. This is an IP communication channel between the server located in 

DMZ, which will be used as a stepping stone (see step 2), and the internal network. 

Essentially, the firewall log can be examined to check dropped connections from the internal 

network segment to the Internet, and this evidence constitutes an attack precursor. 

In order to build a tunnel, the attacker exploits a remote access service through a toolkit. 

Thus, anomalous traffic may be identified on the remote access ports – such as TCP 3389, 

RDP or VNC – of internal servers, directed to the server in DMZ; besides, files of such 

toolkit may be discovered on the systems in the compromised network enclaves. Tools, if 

identified, are most likely to contain the port numbers used for tunneling as well as external 

destinations used by the attacker; Web server logs might be examined for further connections 

to such IP addresses. The internal firewall, which is placed at the edge of the internal 

network to separate the latter from the rest of the network, will log traffic connections which 

originates in the internal network and points to DMZ. 

                                                      
29

 Simple Mail Transfer Protocol is a standard for transmission of e-mail over Internet 

Protocol (IP). 
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Hence, alerts for the detection of step 1 are produced from the five following sources: 

 Perimeter firewall log (e.g., dropped TCP connections from DB server to 

any Internet location); 

 NIDS monitoring the internal network (e.g., anomalous traffic on remote 

access ports of internal servers); 

 NIDS monitoring the DMZ (e.g., anomalous traffic on remote access ports 

of the Web server); 

 Web server log (e.g., external IP addresses matching the IP addresses of 

toolkit files); 

 DB server log (e.g., anomalous traffic on remote access ports) 

 Internal firewall log (e.g., TCP traffic from internal server to DMZ systems). 

NORMALIZATION 

Since the events logged from each source have various format, it is required a normalization 

process in order to provide them a standardized format. Subsequently, alerts are stored in a 

database. 

PRIORITIZATION AND FALSE ALERT REDUCTION 

Given that we will have a large number of low-level alerts, before grouping them together, it 

may be convenient to filter potentially false alerts and prioritize the most relevant ones. In 

other words, by utilizing meta-data such as historical information about incidents, active and 

vulnerable services, topological information and so forth, it is possible to prioritize alerts in 

accordance with their severity. In order to remove false alerts, we can apply a classification 

algorithm [57] to alerts’ confidence values; if confidence score is not classifiable, experts 

can utilize their feedback for adaptive classification. Algorithms based on human immune 

system aim at preparing a set of mature dendritic cells which will be capable of classifying 

normal and anomalous patterns. 

The process result in confirmed intrusion alerts, which are ranked depending on their 

severity. Discarded alerts can be analyzed by experts, used to select new features and tune 

the systems (e.g., log file monitor, NIDS, etc.) which contribute to the detection. 

AGGREGATION 

Then, resulting intrusion alerts are stored in a database and processed for reducing the large 

number and give a more condensed view of the malicious activity. Many data fusion 

techniques are suitable for this purpose such as time based and feature similarity based. 
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Given that the attack can be executed in days, it is not convenient to group events with 

respect to their time patterns; instead, similar feature values are able to specify the similarity 

between alerts from heterogeneous sources.  

Hence, clusters (i.e., meta-alerts) can be produced by considering similarity of source IP 

address, features selected by experts, average values of the feature set, identity of feature 

values regardless of timestamps. Values of the feature set can also be used to calculate the 

distance between alerts and train a nearest-neighbor clustering algorithm which classifies 

intrusion alerts. 

In order to cluster alerts, experts can also examine the number of different values for each 

alert feature and build taxonomies or hierarchical structures (i.e., from general to specific 

values) for each feature, and then computing feature similarity as the path length between 

values in the corresponding taxonomy. 

CORRELATION OF META-ALERTS 

At this point produced meta-alerts can be correlated in several ways. A static matrix can be 

created from the prior probability distribution with expectation of feature similarity; feature 

values match when two meta-alerts are causally linked together. 

Known prerequisites and consequences of attacks can also be employed to model the causal 

relationship between meta-alerts by matching consequence of a meta-alert with the 

prerequisite of another one, taking into account their temporal characteristics. 

CORRELATION AND AGGREGATION OF INTRUSION ALERTS 

Comparing prerequisites and consequences may also be favorable to fuse attack 

specifications, thus explaining how an attack evolves within a host. Incoming intrusion alerts 

are checked against the ones stored in the database; if they show a certain degree of 

similarity of feature values, expert rules are utilized to trigger a single meta-alert from a 

tuple of linked alerts. Relative importance of network assets can also be used to find indirect 

causality among alerts through prerequisites and consequences of attacks. 

Data mining and machine learning models, such as decision trees, RBFN, MLP, SVM, 

Bayesian networks, are advisable to correlate and merge intrusion alerts by learning, 

although it may be expensive to manually label alert data for training. 

EVENT REPORTING 

Fig. 18 illustrates the set-up of the n-tier detection chain for step 1; by considering all the 

detection engines which contribute to detect the event at hand, n will be equal or greater than 
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7. Such intelligent system will be capable to report a reduced number of meta-alerts which 

show a certain minimum degree of causality among them. Since the attacker has executed 

only one step, any further technique of multi-step correlation is not taken into account at this 

stage. 

 

FIG. 18 STEP 1 N-TIER DETECTION CHAIN (N>=7) 

5.3.2.2. STEP 2 

As the attacker has set a network tunnel, he/she will utilize it to transfer some critical files 

from the Database server in the internal network segment to the Web server in DMZ. Other 

sensitive data is transferred from the DB server to a SMTP server in the same network 

enclave. And eventually, the attacker uses these stepping stones for sending data to an 

arbitrary external site. 

Hence, the sources of indicators for the detection of the event at step 2 are: 

 Internal NIDS (e.g., unusual TCP traffic from DB to SMTP server); 

 DMZ NIDS (e.g., unusual TCP traffic from DB to Web server); 

 HIDS on SMTP server (e.g., unusual TCP traffic from DB Server); 

 HIDS on Web server (e.g., unusual TCP traffic from DB Server); 

 HIDS on DB Server (e.g., unusual origins of queries); 

 Web server log (e.g., anomalous connections to the external sites); 

 DB server log (e.g., anomalous connections to the Web Server and SMTP 

server); 

 SMTP server log (e.g., anomalies in mail sending); 
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 Perimeter firewall log (e.g., unusual TCP traffic from Web server and Mail 

server to external sites); 

 Internal firewall log (e.g., unusual SMTP connections). 

NORMALIZATION 

Let us assume to employ the alerts generated by the previous eight sources of data. 

Normalization task will provide for a common format (e.g., IDMEF), so that alerts can be 

stored in a database and further processed, regardless of their origin. 

PRIORITIZATION AND FALSE ALERT REDUCTION 

Given that alerts are produced only for specific malicious connections, we can assume that 

alerts have the same priority (with regards to the impact over the targeted corporate 

network). The degree of confidence can increase and, hence the amount of false alerts can be 

reduced by combining anomaly and signature detection. For example, two types of episode 

rules can be mined: from suspicious behavior and from normal behavior; highly 

mismatching episodes are labeled as anomalous, and become input of an attack signature 

database, which is used to update signature for early detection engines [56]. Therefore, this 

technique allows lowering false positive rate and discovering unknown attacks. 

Dendritic cells can be trained by utilizing a human immune system-based algorithm; cells are 

able to classify normal and suspect behavior. Mature cells associate their input patterns with 

anomalies, while semi-mature cells consider input patterns as normal [58]. 

Cost-sensitive algorithm based on RIPPER rule learner allows adaptive classification (i.e., 

adaptation towards previously unknown events by including experts’ feedback in the form of 

labeled data) of alerts’ confidence values for true and false alerts [57]. An evolutionary soft-

computing technique based on adaptive neuro-fuzzy classifiers can also be used for the same 

purpose [59]. 

Nonetheless, confidence fusion is desirable for reducing false alerts when heterogeneous 

sensors report the same occurrence with different degree of confidence. In order to model 

conflict between sources, weighted Dempster-Shafer theory also allows weighting 

confidence values of alerts from heterogeneous data sources and obtaining a degree of belief 

from subjective probabilities [69]. 

Finally, conflicts in alert confidence from heterogeneous inputs can be solved by combining 

prior confidence of an attack type, collected from historical data, with the confidence for 

each system attribute and security state-based evidence, which can be considered as meta-
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data provided by monitoring tools, vulnerability scanners, human observations and so on 

[42]. 

AGGREGATION 

Intrusion alerts, which are obtained from the aforementioned process, should be aggregated 

in order to provide a concise view of the event, for which we have been able to get indicators 

throughout the network. A simple approach to fuse alerts is a time-based clustering, which 

nevertheless could fail offering a better representation – in terms of data reduction – if 

actions (e.g., data downloading) are performed with considerable time delay within this 

attack step. 

An alternative to aggregation is by looking at similarity of features (see section 6.3 for 

further details). Moreover, distance between alerts (i.e., values of the feature set) can also be 

employed to train a nearest-neighbor algorithm, which group intrusion alerts into a 

predetermined number of clusters – i.e., security experts can decide how much meta-alerts 

should be created – regardless of the ‘size’ of each cluster. 

EVENT REPORTING 

The event report will be the output of the system at hand; it will provide a highly consolidate 

view of the occurring event either by correlating meta-alerts, or by correlating and 

aggregating intrusion alerts. 

CORRELATION OF META-ALERTS 

Causality among meta-alerts, which have been stored in a database, can be discovered by 

using prerequisites and consequences of attacks; that is to say by matching consequence of a 

meta-alert with the prerequisite of another meta-alert. 

Security experts can also consider of encoding, in a static matrix, the prior expectation (i.e., 

probability distribution) that a feature value matches if two meta-alerts are correlated. As 

experts may have prior knowledge of meta-alerts affecting each other across different 

periods in time, meta-alerts can be modeled in time series variables on which a statistical 

hypothesis test (i.e., Granger Causality Test) is performed. However, as meta-alerts are 

required to show some temporal relationship, this technique can fail to find causality if 

random time delay is present among meta-alerts. 

CORRELATION AND AGGREGATION OF INTRUSION ALERTS 

The evolution of an attack within a host can be explained by merging attack specifications – 

i.e.,  prerequisites, post-conditions, events which allow detection, conditions proving that the 



64 

 

attack has succeeded, events which complete the attack; therefore, by comparing feature and 

specification values of two intrusion alerts, they can be considered to be causally related and 

hence merged into a single meta-alert. 

Security experts can also describe the attack scenario in advance through its known 

consequences; such rules describe the correlation relationships between events. Related 

events can be considered to belong to the same attack pattern and can be processed together 

[64].  

Machine learning methods based on decision trees, artificial neural network (RBFN, MLP), 

support vector machines, and Bayesian networks have been previously deployed and tested 

for clustering and inferring causality among alerts. 

 

FIG. 19 N-TIER DETECTION CHAIN (N>=11) 

 

5.3.2.3. STEP 3 

Web, SMTP, and database logs are valuable sources of information with respect to activities 

performed by malicious users. In this final step, the attacker erases a number of server log 

entries. Such counter forensics technique aims at hindering incident detection and forensic 

analysis by removing entire log files or only critical entries related to a malicious set of 

activities. To be thorough, it is possible to prevent this type of attack by simply creating a 

logging server at another site or real-time exporting to a log management system. 
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Let us consider that Database, SMTP, and Web servers maintain activity logs within the host 

and a log management system is intended to monitor and analyze log files for incident 

detection based on well-known signatures. Given that the intruder has deleted some relevant 

log entries, we can presume that the monitoring tool will produce alerts. 

NORMALIZATION 

Encoding variants and different standards – supported by different log file manager vendors 

– requires a preprocessing phase in order to provide a common format for the warnings, 

which the log manager has produced, and verify the information integrity (e.g., valid 

timestamp, etc.). 

PRIORITIZATION AND FALSE ALERT REDUCTION 

The input data for the detection of the step is represented by normalized alerts generated by a 

log manager, which is assumed working by signatures. Alerts can be prioritized by taking 

into account meta-data such as security policies, which help assessing the possible impact of 

the warning events. 

Since signature-based detection has been used to trigger alerts, we could assume that alerts 

are true positive alarms to a great extent, and any mechanism for detecting (and reducing) 

false alerts is not advisable due to time constraints; as a matter of fact, it is much more 

convenient to detect this incident indicator as quickly as possible in order to activate 

response immediately. 

AGGREGATION 

Temporal-based clustering – i.e., alerts grouped in the same temporal window belong to the 

same meta-alerts – might not work if every attempt of deleting (or modifying) entries in the 

server log files is performed with arbitrary lag. Similarly, nearest-neighbor clustering is not 

suitable, due to the fact that it requires determining the number of meta-alerts to produce 

beforehand. 

Clustering techniques based on similarity of features are suitable in this specific case; meta-

alerts may be created by looking at features selected manually by experts, average value of 

the whole feature set (and eventually rejecting temporal attributes from the feature set), path 

length for corresponding feature’s generalization hierarchy (or taxonomy). 

CORRELATION OF META-ALERTS 

If one of the previous techniques for aggregation eventually create several meta-alerts, it is 

necessary to find a causal relationship among them. For this purpose, the prior (i.e., 
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expected) probability that a feature value matches if two meta-alerts are correlated can be 

employed by security operators to construct a static matrix (so called “alert correlation 

matrix”), which is used to find correlated meta-alerts manually. 

Using pre-requisites and consequences to correlate meta-alerts may not be convenient, as the 

latter ones – caused by deletion of log files (or entries) – may have multiple consequence 

rules, thus making rule building a costly process for security experts. 

CORRELATION AND AGGREGATION OF INTRUSION ALERTS 

Alternatively, decision trees, artificial neural network (RBFN, MLP), support vector 

machines, and Bayesian networks have been largely proposed in literature for alert clustering 

and causal inference. However, they require extensive manual alert labeling for training the 

above mentioned algorithms. 

EVENT REPORTING 

Let us assume that we have reduced the number of alerts, and causality among them has been 

identified by applying the previous methods; we obtained, in other words, a high-level view 

of the occurring event. Therefore, security operators, who are able to notice that server log 

entries have been removed, have perceived that an incident occurred as well as gained 

insight about the compromised network assets; namely, they can consider such event (i.e., 

detection of anti-forensics techniques) as indicator of more advanced attacks. 

 

FIG. 20 N-TIER DETECTION CHAIN (N=4) 
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INTRUSION STRATEGY ANALYSIS 

Nevertheless, in order to entirely understand the security incident, the following techniques 

for analysis of the intrusion strategy can be applied, taking into account the sources of 

information regarding detection of attack step 1 and 2. 

Event reports from each of the previous three steps, which are constituted by correlated 

meta-alerts, depict the occurrence of diverse stages in a multi-step cyber-incident. Therefore, 

we could consider feeding the three types of event report (i.e., correlated meta-alerts from 

each detection step) into a multi-step inference engine which will be responsible for the 

incident reconstruction. 

Known attack scenarios can be specified in a state description language such as LAMBDA; 

when an attack step is the known consequence of a (expected) set of events which have not 

triggered alerts, missing events are hypothesized. Given that event reports can be inaccurate 

or incomplete, thus making scenario reconstruction difficult, abduction of intermediate event 

plays a key role in the reconstruction process. 

In order to find missing events, it is also possible to create correlation graphs for each event 

report, and manually analyze graphs in order to find missing virtual events which satisfy 

causal relationships. 

As regards reasoning by graphical means, scenario trees can be built in various ways. Then 

scenario trees can be transformed into Bayesian networks, and either correlation probability 

is attached to every edge or probabilities of goals (and sub-goals) are derived from the state 

of parent nodes – satisfied sub-goals and observed events are used to apply inference to the 

Bayesian net. 

Eventually, a data mining algorithm takes a set of candidate attack patterns and a minimum 

value of support, and returns a set of attack sequences and their probability of having 

following attacks (PFAs) [67]. 
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FIG. 21 STEP 2 N-TIER DETECTION CHAIN (N>=22) 

  



69 

 

5.3.3. SCENARIO 3: SOCIAL ENGINEERING, ZERO-DAY EXPLOIT, BACKDOOR, 

C&C EXPLOITATION 

In this scenario, the goal is to detect a security incident scenario which is characterized by 

the following three steps: 

1. The attacker sends a socially engineered e-mail containing a zero-day 

exploit to the CFO. 

2. The CFO launches the attachment; the exploit automatically connects to a 

Dynamic DNS domain (e.g., DynDNS) and downloads a malware which 

disables the antivirus scanner (and its automatic updates) on the CFO’s 

laptop; 

3. A Trojan horse is downloaded on the laptop, giving the attacker complete 

control over it and connects to a command and control (C&C) server on the 

Internet, whose domain name was recently registered. The malware checks 

for net commands at random time intervals. 

5.3.3.1. STEP 1 

The malicious user employs the technique of pretexting for targeting the corporate officer, 

by using an e-mail attachment as attack vector. In other words, the attacker has invented a 

plausible scenario to trick the target into open the mail attachment. This event is very hard to 

detect since it essentially exploits a ‘human vulnerability’, circumventing most detection 

mechanisms; as a matter of fact, antivirus and antispyware software are usually able to detect 

malware as it arrives (or when it is executed) but keep the host vulnerable to zero-day 

exploit. Then, if we aim at detecting zero-day malware within e-mail messages, we consider 

looking only at received e-mail logs in order to detect suspicious events. 

Let us assume that there are spelling errors in the mail address, so that it does not exactly 

match with the name of the sender. In addition, the attacker is using a free webmail. 

Therefore, a monitoring tool for inbound e-mail, which will employ adequate signatures 

(e.g., blacklisting messages originating from free mail accounts and/or containing attached 

documents) for detection of malicious activity, can signal suspicious messages through 

alerts. Such alerts are very valuable, as they can be considered as precursors of an incident; 

although they may exhibit a high false alarm rate, thus making indispensable identifying 

following events which are potentially related to email alerts. 

5.3.3.2. STEP 2 

Subsequently, the CFO executes the attached document, which appears normally, letting him 

unaware of the infection; the exploit automatically connects to a Dynamic DNS (DDNS) 
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domain (e.g., DynDNS) and downloads a malware which disables the antivirus scanner on 

the CFO’s laptop, as well as automatic updates. Since the exploit connects to a control server 

on the Internet which is intended to change public IP address frequently, the DDNS provider 

enables the attacker’s domain, which is configured into the malware, to update real-time and 

automatically point to changing IP addresses. DDNS services are largely utilized for 

malware distribution even though they cannot be considered malicious per se. 

In substance, besides the antivirus will not produce any alert, network sensors can show 

connections to diverse IP addresses, thus making it ineffective correlation based on similarity 

of IP source address. Information to be examined for detecting the malicious action at hand 

may be represented by the following: 

 anomalous system performance (e.g., CPU utilization); 

 byte-distribution payload anomalies in inbound network traffic; 

 anomalous network traffic (i.e., through IDS and firewall logs); 

 changes in configuration settings (e.g., Windows registry); 

 suspicious active system processes (e.g., vendor signatures, Windows 

process name-alike). 

The previous items translate into the employment of the following sources of information: 

 Process and registry monitoring tools; 

 NIDS over the internal network segment; 

 Firewall log file; 

By initially profiling the system (i.e., CFO’s laptop in this case), the first type of tools 

intends to produce alerts real-time when misuse is detected. Suspicious facts are, for 

instance, differences in CPU utilization, timing of API calls, active system processes, and so 

forth. A registry monitoring tool is able to create a baseline and real-time compare the state 

of the Registry at a given time to the baseline. Thus, it is able to produce alerts whenever a 

critical registry key is added or changed; security experts can set up the criticality of registry 

keys and locations for real-time monitoring. 

Firewall log monitoring tool can produce alerts based on signatures such as outbound 

connections to IP addresses that point to dynamic DNS domains. NIDS, such as Snort, 

monitors inbound and outbound network traffic of the internal network segment, and trigger 

alerts based on a rule set. In addition, NIDS can examine incoming request packets sent to 

given services (or ports) and raise alerts if any deviation from a normal profile is identified. 

Essentially, since every application has its own protocol and then its own type payload, n-
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gram payload analysis can be utilized. In other words, byte value distribution is computed 

for each port, service and direction of payload flow, and the centroid model is identified. The 

occurrence of each n-gram is counted by passing a sliding window with width n over the 

payload. The case with n=1 calculates the average frequency of each of the 256 possible byte 

values. 

NORMALIZATION 

In step 2, we propose the use of at least three heterogeneous sources of alerts, which require 

pre-processing in order to be further analyzed; it consists in the use of a common alerting 

format, integrity checking and possible correction of invalid event attributes. 

PRIORITIZATION AND FALSE ALERT REDUCTION 

Alerts can be weighted towards the severity of specific ports which are known to be often 

used by malware [70]; for this purpose knowledge of the monitored network and security 

policies are encoded in meta-data. 

The degree of alert confidence can be used for decreasing the number of false alerts in 

several ways, for example: 

 Cost-sensitive rule learner outputs confidence values for true and false 

alerts; 

 Adaptive neuro-fuzzy inference systems (ANFIS) can be trained to detect 

different attack types and return fuzzy values of class membership, which 

are consequently aggregated by using a fuzzy inference engine (FIS) with 

parameters adjusted by a genetic algorithm (GA); 

 Algorithm based on Dempster-Shafer theory (DST) weights confidence 

values of heterogeneous alerts and computes a degree of belief from 

subjective probabilities; 

 Prior confidence values of historical attack types can be combined with 

meta-data, such as system attribute and security state-based evidence, in 

order to solve confidence conflicts. 

AGGREGATION 

Since malicious activity is most likely to exhibit evidence of anomalies at different location 

in a short time interval, temporal-based clustering (i.e., based on timestamp values) allows 

achieving satisfying event reduction. 
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Also, similarity of features can be employed to create meta-alerts, taking into account only 

features selected by experts, average values of the whole feature-set, path length in each alert 

feature´s generalization hierarchy,  or even training a k-NN clustering algorithm (k=1). 

EVENT REPORTING 

The goal of step 2 is to detect the malware infection. At the end of the above mentioned 

processes we will be able to produce a report showing suspicious activity involving the 

personal computer of the CFO, even though it would not possible to get a complete picture 

of the occurring incident if several meta-alerts have been resulted.  

CORRELATION OF META-ALERTS 

In order to reason about the malicious occurrence, we can then consider using a technique 

based on prerequisites and consequences of meta-alerts. That is possible if alerts produced in 

step 1 are defined as prerequisite of meta-alerts in step 2, and oppositely step 2’s meta-alerts 

are defined consequences of alerts in step 1. 

In order to identify casual linkages between meta-alerts, security experts can also employ a 

matrix created by encoding the expectation of feature similarity (i.e., probability that a 

feature matches if two meta-alerts a correlated). 

CORRELATION AND AGGREGATION OF INTRUSION ALERTS 

The malware infection can be specified in terms of pre/post conditions, events which allow 

detection, conditions proving the attack succeeded, events which allow completing the 

attack. When a new alert is generated, it is compared with previous instances in the database, 

and alert pairs – showing a determined degree of feature and specification similarity – are 

merged into single meta-alerts. 

Decision trees, radial basis frequency networks, multilayer perceptron, support vector 

machines, and Bayesian networks have been largely proposed to identify causality among 

alerts and group them together with regard to the root cause. 

5.3.3.3. STEP 3 

A Trojan horse is downloaded and activated on the laptop, giving the attacker complete 

control over it. Once the backdoor Trojan is on the system, it allows the attacker to control 

the victim machine. In order to activate the Trojan, one or more files must be copied to the 

targeted system; however, the antivirus will not be able to detect any harmful files, since it 

has been previously deactivated (see step 2). 
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A network port on the victim system is required to be opened for giving control to the 

botmaster; thus tools such as netstat
30

 can be utilized for real-time monitoring of a list of 

ports, and then alerting when port status changes to “listening”. At random time intervals, the 

victim machine connects to a Command and Control (C&C) server on the Internet, looking 

for net commands. 

Most trojans add or modify keys in the Registry, for instance, to be able to run whenever the 

system reboots or the user logs in; user temporary directories and system folders can also 

reveal the presence of malicious files. Generally, unusual performance and behavior are 

observable on the victim machine due to the trojan infection; CPU usage, running processes 

on the host and network traffic can be monitored to identify anomalies (i.e., outliers). 

In order to detect the download of the backdoor Trojan and the exploitation of the command 

and control channel, we can use the same techniques presented in step 2, by further adding a 

port status monitoring tool to the previous data sources. Essentially, the attack vector has 

changed (i.e., from e-mail attachment in step 1-2 to drive-by download) the processes of 

normalization, prioritization and false alert reduction, aggregation, and correlation are 

utilized in the same manner as in the previous step, given that the trojan is not directly 

detectable by the antivirus software, which has been disabled earlier. 

In addition, it is convenient to avoid using time-based correlation given that this attack step 

can be executed with a random time delay, as well as excluding approaches based on the 

similarity of IP source address, due to the fact that the attacker is using a dynamic DNS 

service (i.e., fixed domain name pointing to changing IP address). 

INCIDENT REPORTING 

INTRUSION STRATEGY ANALYSIS 

Likewise multi-stage attack detection approaches, in which predefined scenario patterns 

abduct several state transition sequences, a backdoor infection (and exploitation of C&C 

channel) can be detected through its communication sequences. When a sequence of 

correlated meta-alerts abundantly matches a predetermined infection dialog model, an 

incident report will enclose the events which contribute to the infection. 

Correlation graphs for each generated event report (i.e., correlated meta-alerts) also come to 

the aid of security analysts in order to find missing (virtual) events which satisfy existing 

causal relationships, and provide a comprehensive incident report. Scenario graphs can be 

                                                      
30

 Command-line tool that shows network statistics concerning connections, routing tables, 

interfaces, and protocols. 



74 

 

drawn with system state (or goals) as nodes, and events which allow transitions (or malicious 

events) as edges. Subsequently, correlation probabilities (or probabilities of goals derived 

from parent nodes’ state) are appended to trees, thus obtaining Bayesian networks (see 

section 6.6 for further details). 

 

FIG. 22 SCENARIO 3 N-TIER DETECTION CHAIN (N>=6) 
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5.4. SUMMARY 

In this chapter, after having discussed the “traditional” detection system architecture, we 

have examined various multi-stage attacks, and suggested options not only for identifying 

suspicious activities in the monitored information system, but also for finding relations of 

cause and effect between events generated from heterogeneous sources of information. 

Through a complex interaction between modules, the solution is capable to filter out 

irrelevant events, reduce the number of instances to be analyzed, and reconstruct – and to 

some extent predict – advanced security incidents occurring in multiple stages. The 

following table summarizes the modules and their own objectives, possible inputs, and the 

location in the typical intrusion detection architecture. 

 

TABLE 2 SUMMARY OF CORRELATION MODULES 

COMPONENT INPUT GOAL DETECTION 

CHAIN LOCATION 

Normalization Alerts from multiple 

sources 

Giving a standard format to 

inputs 

Pre-processing 

Aggregation TCP connections Extracting features and 

clustering 

Pre-processing 

Alerts Clustering alerts Detection engine 

Correlation Alerts 

 

Finding causality and cluster 

alerts 

Detection engine 

Meta-alerts Finding causality among 

meta-alerts 

Detection engine 

False alert 

reduction 

Alerts 

 

Filtering out false positives 

alerts 

Alert analysis 

Meta-alerts Filtering out false positives 

meta-alerts 

Alert analysis 

Prioritization TCP connections Ranking connections 

according to their severity 

Pre-processing 

Alerts Ranking alerts according to 

their severity 

Alert analysis 

 

Meta-alerts 

 

Ranking meta-alerts 

according to their severity 

Alert analysis 

 

Intrusion 

strategy analysis 

Event reports Providing highest-level view 

by reasoning about 

intruder’s intentions 

Multi-step inference 

engine 
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The proposed solution, which is summarized in the previous table, is also visually 

represented in Fig. 23. 

 

FIG. 23 EVENT CORRELATION MODEL 
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6. TOWARDS THE DEVELOPMENT OF TAILORED 

SOLUTIONS 

In the previous chapter, it is shown how detection of advanced security incidents takes place 

by employing correlation techniques along different axis. In this chapter, after identifying the 

advantages of a design approach based on scenarios, we provide key elements to consider 

when developing a customized solution based on correlation of events. 

General mathematical concepts behind the methods, strengths and limitations, and technical 

considerations disclosed by the corresponding authors, are reported in more detail in 

Appendices A to G. In order to offer advice for the real-life implementation of each 

technique, the structure of this chapter follows the previous subdivision in correlation 

modules. Deep understanding of the approaches in literature eventually allows an enhanced 

categorization of the correlation techniques in question. 

6.1. SCENARIO-BASED APPROACH 

In chapter 5, the design of solutions for our scenarios is shown. The use of such approach 

based on scenarios tackle several technical issues, which are summarized as follows: 

 Scenario-based approaches allow integration into design science research 

methodology [20]; in this context, scenarios may demonstrate the utility of the 

designed solution. 

 

 By simulating real situations that users want to avoid, it is possible to elicit 

information about actions to take for the design. In addition, by providing a context, 

our approach based on scenarios allows to evoke information about the system 

requirements, which otherwise would be difficult to achieve. This is due to the 

reactive nature of cyber-security which makes detection of unknown threats 

complex. 

 

 Scenarios help understanding the goals of each actor and their different perspectives 

(i.e., intentions of attackers as well as steps followed by analysts for incident 

detection). 

 

 Scenarios provide a way to work out what the system should do and how it looks 

like. This also makes it suitable to improve communication with end-users and other 

stakeholders. 
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 Scenarios provide pragmatism – as each offers a stable perspective of attacks and a 

specific solution – as well as flexibility to handle dynamic situations, thus enabling 

to make simple changes to the detail level. 

 

 Scenarios help developing new skills and learning to ‘do’; design attempts provide a 

way to learn and reflect on tradeoffs and design consequences, which might not be 

fully understood at earlier stages. 

 

 Scenarios-based design allows general design rules to be identified and provides 

abstraction of the solution; the resulting event correlation model is depicted in Fig. 

23 Event correlation modelof Section 5.4. 

The validity of the chosen scenarios is demonstrated by the cyber-attack trends and their 

impacts, which are discussed in Section 2.2. Moreover, recent studies towards the 

development of intelligent systems for detecting Advanced Persistent Threats (APTs) 

highlight the importance of considering advanced threats executed in separate steps, which 

are shown in Fig. 24 APT analysis framework . 

 

FIG. 24 APT ANALYSIS FRAMEWORK [33] 

As different attack steps have different specific goals and it is executed with different 

methods, it is relevant to analyze individual steps and design components for detecting each 

of them. The modular approach of event correlation allows the design of tailored solutions. 

The next section will describe the components of the general event correlation model. 
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6.2. EVENT CORRELATION MODEL 

In the previous section, we stated that scenario-based design provides the abstraction of our 

solution, which is shown at the end of the previous chapter in Fig. 23 Event correlation 

model. This section provides an insight into the design alternatives of a tailored event 

correlation solution. 

6.2.1. DATA NORMALIZATION 

The module for normalization is essential to correlate events which are generated by 

heterogeneous sources. It provides the minimum data contents for correlating security-

related events, as well as providing a unified data model, regardless of the information 

source. Hence, syntactic analysis of security events may be convenient; Intrusion Detection 

Message Exchange Format (IDMEF) [35] is suggested to standardize the data model, and 

report events across a security information and event management system. In addition, alert 

messages may represent either individual or multiple events, thus allowing the representation 

of clusters or correlated alerts. In Appendix A, further technical details concerning the 

IDMEF model are presented. 

6.2.2. DATA PRIORITIZATION 

Prioritization of relevant security data is achieved by correlating events with meta-data such 

as services, hardware, vulnerabilities, and so on. The component for data prioritization can 

be generally located in two different locations of the detection chain, in an exclusive way or 

jointly. In other words, depending on what one aims at detecting, it can be more convenient 

ranking low-level alerts, prioritizing meta-alerts, event reports, or using a mixed approach. 

The choice depends on the characteristics of a given cyber incident, as well as time 

constraints. For example, an attacker could perform some actions that trigger low-impact 

alerts, which however are – from a defensive perspective – helpful to determine alert 

causality and reason about the incident. Appendix B provides suggestions for the technical 

implementation of data prioritization module. 

6.2.3. FALSE ALERT REDUCTION 

Three main approaches have been identified for reducing the number of false alerts which 

are triggered by each sensor: 

 Hybrid-based: combination of signature-based and anomaly-based intrusion 

detection reduces the volume of events by filtering out redundancies and increasing 

confidence about the security endangerment of a system. 
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 Meta-data-based: event data is combined with meta-data (e.g., vulnerability 

assessments) to achieve false positive reduction [63; 57; 42]. This is due to the fact 

that for the same type of attack, the threat can vary in different environments. The 

strength of this technique is that network and host sensors can perform faster, alert 

data is cleansed, thus providing quality information; the disadvantage is that this 

system warns only if attacks are directed towards specific vulnerabilities, ignoring 

all the other malicious activity. 

 

 Confidence-based: multiple classifiers can be trained with different categories of 

attacks in order to perform an early classification of the logged security events. The 

outputs are combined and inference on confidence values of events is used to 

distinguish between normal or attacking activity, thus reducing the amount of false 

alerts. 

Appendix C provides mathematical considerations, details for technical implementations and 

considerations based on empirical evidence. 

6.2.4. DATA AGGREGATION 

The component of data aggregation clusters alerts together into meta-alerts, based on similar 

characteristics. We can distinguish the following: 

 Temporal-based: events which belong to a certain time pattern are grouped together. 

Temporal patterns can be modeled by known attack patterns, through series of 

events compelled to time (and context); this technique is capable of reducing the 

high number of alerts as well as false positives, due to the analysis of contextual 

events. However, effectiveness is based on the prior knowledge of phenomena which 

involve many alarm messages. 

 

 Similarity-based: events which share similar features – e.g., with respect to network 

sessions, host activity, attack type  – can be assumed to be correlated and they are 

clustered together.  

 

 Threat score-based: different features can have a different threat score within one 

occurring event. Approaches in this category combine data fusion with prioritization 

towards the criticality of the features. 
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Mathematical background and information for technical implementation are reported in 

Appendix D. 

6.2.5. CORRELATION OF META-ALERTS 

This module performs analysis of clustered security events in order to find causality among 

them. We are able to distinguish three main categories: 

 Temporal-based: statistical analysis can be utilized to discover causality 

relationships among events which are modeled in time series variables (e.g., based 

on alerts per time unit). The strength of these approaches is that correlation can be 

found without prior knowledge of attacks. However, expert knowledge is still 

needed insofar as further analysis is necessary to reconstruct attack scenarios. 

 

 Probability-based: these techniques are generally able to find occurrence probability 

of alerts in a meta-alert B, given prior occurrence of alerts of meta-alert A. They 

generally do not require prior knowledge about predefined attack scenarios, or prior 

expectation that a feature matches if two alerts are correlated may be estimated by 

experts. Causal relationships among alerts can be inferred and additionally features 

which are relevant for the correlation can be discovered. 

 

 Pre-requisite and consequence-based: meta-alerts can be specified as logical 

predicates by its pre-requisites and consequences, which are known and specified in 

advance. If there is a connection between the consequences of an attack A and the 

pre-requisites of attack B, one can correlate an occurrence of A with an occurrence 

of B; if there is a link between the consequences of A and the consequences of B, 

one can assume they have the same objective, thus it is possible to correlate them. 

Given that these techniques provide a further specification of the events, it is 

potentially able to decrease the impact of false positives and negatives. However, 

they will not adequately correlate two meta-alerts if the upstream detection engines 

are not able to detect critical attacks, or there is no defined relationship between 

them. 

It is advised to consult Appendix E for mathematical considerations, examples of usage and 

suggestions for the technical implementation. 
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6.2.6. AGGREGATION AND CORRELATION OF RAW DATA 

This module performs analysis of security events in order to aggregate them and discover 

causality relationships. We are able to distinguish three main categories: 

 Scenario-based: these techniques rely on the knowledge of specific attack scenarios 

in order to determine causality between alerts and group them based on predefined 

relationships, thus reducing the number of suspicious events to be further examined 

by security analysts. Extensive expert knowledge is required for attack scenario 

specification, as well as manual alert labeling for training. The weaknesses of these 

techniques are that the models resulting from it may over-fit the training data; 

moreover, they are not able to correlate previously unseen scenarios. 

 

 Pre-requisite and consequence-based: techniques based on pre-requisites and 

consequences of alerts can be employed for correlating and cluster alert messages. 

Causal relationships among security events are found by employing Neural 

Networks or Bayesian Networks. The key strength of these techniques is that they do 

not require an enormous amount of rules in order to find causality between alerts. 

 

Appendix F provides the mathematical background behind this set of techniques as well as 

suggestions for actual implementation. 

6.2.7. MULTI-STEP CORRELATION 

Different stages in multi-step cyber incidents can be reconstructed in various ways. 

Reasoning about sophisticated threats may also require hypothesizing about events which 

have been discarded or not detected by the deployed security sensors. We can broadly 

categorize the techniques in: 

 Similarity-based: similarity of source and target of the correlated meta-alerts are 

measured in order to reconstruct different stages in a multi-step attack. However, 

this approach is considered naïve and inadequate for attack strategy analysis and 

intrusion prediction. 

 

 State Description-based: Likewise attack scenario patterns lead to sequences of state 

transitions, security incidents can be represented by state-based communication 

sequences. Attack description languages such as LAMBDA [44], which are based on 

a logical representation of the state of a given computer system, may also allow 



83 

 

deducing intermediate alerts from scenarios, even though they have not been 

detected, thus extracting correlation rules online and building up whole – and still 

unknown – attack scenarios. Essentially, if an arbitrary alert is the known 

consequence of an event that should have raised another alert too – which however 

is not received by the correlation engine – the missing event is hypothesized [52]. 

 

 Graph-based: there are several ways to construct attack scenario trees. Graphs which 

contain alerts with similar features may be further analyzed by security experts, and 

virtual missing alerts may be deduced in order to satisfy the causal relationships 

(e.g., graph inconsistencies, unpredicted attribute variations). However, that is not 

effective when none of the attacks in multi-stage incidents is known. 

 

Prior knowledge about attacks may be stored in causal networks converted from 

scenario trees, and employed to correlate isolated scenarios; this allows gathering 

useful information for further investigation, although it requires an updateable 

repertoire of known attack strategies to apply inference to the Bayesian network. 

Obtained probabilities can be attached to graphs and rank attack patterns. This 

allows identifying novel attack scenarios and predicting evidence for probable 

following attacks. However, probability of some sequences of attacks might not be 

retrieved or attack graphs may be incomplete. 

 

Assuming that the size of attack graphs is such as to make analysis feasible in 

reasonable time, similarity between sequences of events may also be seen as an error 

tolerant graph/subgraph isomorphism problem. 

Appendix G provides examples, mathematical considerations, and recommendations to 

implement the techniques in question. 

6.3. SUMMARY 

The solution we designed intends to overcome the problems which have been previously 

identified in the earlier chapters of this thesis report, by examining all the components of 

event correlation process, and techniques and methods which are considered most 

authoritative by the research community. However, the implementation of all the 

components and the choice of the techniques should be adequately evaluated, in respect to 

each situation. This chapter provides some guidelines for actually implementing the solution, 

comprehensively or only partially. Eventually, deeper insight of the approaches offers a 
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chance to better categorize the correlation techniques in question, and map them to the 

correlation modules of our model, as shown in Table 3. 

 

TABLE 3 TAXONOMY OF EVENT CORRELATION TECHNIQUES, SELECTED FROM LITERATURE 

  

CORRELATION 

COMPONENT 

TECHNIQUE APPENDIX REFERENCE 

Data normalization Parsing A [35] 

Data prioritization Meta-data-based B [49] 

False data reduction Hybrid-based 

C 

[56] [55] [71] 

Meta-data-based [57] [42] [63] 

Confidence-based [57] [58] [59] [69] [72] 

Data aggregation Temporal-based 

D 

[50] [60] 

Similarity-based [18] [49] [51] [46] [41] 

[53] [54] [6] [61] [62] 

Threat score-based [50] 

Correlation of aggregated 

data 

Temporal-based 

E 

[53] 

Probability-based [41] [6] 

Pre/post conditions-based [52] [73] 

Aggregation/Correlation of 

raw data 

Scenario-based 
F 

[51] [64] 

Pre/post conditions-based [10] [6] [45] [42] 

Multi-step correlation Similarity-based 

G 

[41] 

State-description based [70] [44] 

Graph-based [50] [67] [65] [66] [74] 

[42] [6] [10] 
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7. REFLECTIONS AND LIMITATIONS 

In this chapter, some personal considerations and research limitations which arose during the 

realization of this thesis are introduced. First of all, since there is no ultimate solution for the 

implementation of our model – e.g., selection of features, techniques, threshold parameters 

may vary – it may be crucial to perform a number of tests, which allow one to make trade-off 

decisions with respect to response time of the system, required computing power, detection 

and correlation accuracies, training time, labeling time, number of tiers of the detection 

system, data reduction rate, and so forth. 

As a matter of fact, performance is not absolute but must be empirically assessed, depending 

on specific situations. One may think for example that, for detecting certain incidents, 

prioritization and false alert reduction can be better performed again after correlation. It 

might also be interesting to cluster alert messages iteratively in case that a satisfying data 

reduction is not achieved. 

Previously, in section 3.5, design requirements have been conceptualized. The model must 

be capable of identify significant suspicious events; in particular, prioritization, false alert 

reduction, and correlation modules are responsible to select – among the ‘big data’ – the 

events which are meaningful. 

In order to detect – in heterogeneous datasets – event patterns referring to the same incident, 

first the normalization module deals with providing data attribute homogeneity and similar 

data format to each event message; then, aggregation and correlation components identify 

events which refer to the same event, while the multi-step inference engine (or intrusion 

strategy analysis module) considers those events in order to detect patterns related to a same 

incident, and aims to provide complete pictures of occurring incidents. 

As regards large volume of data and redundancy, the analysis component (prioritization and 

false alert reduction modules) work as early data filter, while aggregation and correlation 

modules – by detecting the intrusion alerts which are triggered by the occurrence of the same 

malicious event – cut off superfluous data. 

In order to supply detailed information to security operators, the normalization module 

provides a data format (i.e., IDMEF) which is a flexible object-oriented representation of 

alert messages. In addition, the alert data model offers chances to be extended with further 

information, which may be required for using multiple complementary correlation 

techniques as well as to employ the most novel ones; for example, prerequisites and 

consequences might be embedded in it. The set of correlation operations extend the data 
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model while keeping it consistent. Each component of event correlation provides messages 

which vary from ‘simple’ alerts to meta-alerts to event reports, with no semantic differences; 

hence, given that IDMEF allows specifying relationship among events at different 

granularity level, security analysts are provided with backwards view of incidents. 

Likewise a standard data model for alert messages enable the correlation of heterogeneous 

data, standard formats for incidents can further improve incident management. The Incident 

Object Description Exchange Format (IODEF) [68], for example, determines a standard 

model to represent incidents, which enables interaction between Computer Security 

Response Teams (CSIRTs) and improve their operational performance. An interesting point 

is the compatibility between IDMEF and IODEF, which allows including alert messages into 

Incident Objects. Advantages of using IODEF are also represented by the facts that IODEF 

objects are human-oriented, given that the main actors are CSIRTs, rather than security 

sensors. 

With respect to the potentially high false alarm ratio (FAR), false alert reduction module 

implements techniques which are able to decrease the rate of false positives and negatives. 

However, in order to preserve potential false negatives, which are of utmost importance for 

reconstructing complex attack scenarios, it might be advantageous to loosen signatures in 

each downstream detection mechanism while reinforcing the policies of data prioritization 

and false alert reduction. 

As regards the use of further security data for correlation, Trouble Ticketing System (TTS) 

provide information which may accelerate incident analysis and prioritize relevant data [15]. 

Moreover, a novel intelligent reputation system, which is recently under development by 

researchers at Google, has been proposed to integrate a content-agnostic malware protection 

(CAMP) [75] in the web browser, with the objective of assessing the level of risk of each file 

in download. As tests offer encouraging results – i.e., it outperforms any local or web-based 

antivirus with lower false alert rate and higher accuracy – in future one can consider of using 

further security data directly from web browsers. 

We have seen that graph-based techniques are widely used for reasoning about multi-step 

attacks. Likewise, several visualization tools have been proposed in recent years in order to 

enhance incident detection; the use of graphical models makes reconstructing incidents a 

more intuitive and sometimes unconscious process. 

Our model aims to support incident response and offers more comprehensive and accurate 

root cause analysis than ordinary security tools and procedures; nonetheless, when 
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discarding time constraints which are used for monitoring and analysis, it may also help 

performing internal corporate or digital forensic investigation, following the occurrence of 

serious computer incidents. 

The research presents some limitations as well. First, although the scenario cases we chose 

for the design phase are based on real circumstances and up-to-date threats, the synthetic 

nature of our attack scenarios reduces the complexity of the events to some extent. Despite 

the scarcity of real and exhaustive datasets which accurately outline consistent multi-threat 

scenarios is a prohibitive condition, the relevance of detecting such “artificial” incidents is 

also confirmed by the latest trends shown by recent security reports. 

Second, in order to build our model, we consider only a subset – quite wide though – of 

scientific literature in the field. Most commercial products available in the market do not 

provide sufficient details for their application within our designed solution. In addition, 

several times it is not clear what procedures are put in practice by IT security operators when 

reconstructing multiple threat events. Thus, the sources of business needs for the design of 

our artifact are mainly represented by scientific literature and industry reports, while efforts 

in identifying and interviewing different stakeholders may provide further requirements 

which are missing in this research. 

The lack of public ad-hoc datasets for performance evaluation of correlation methods 

represent a significant deficiency for empirical comparisons of the alternative solutions to be 

implemented. Moreover, producing a valid dataset in short time is unfeasible and requires a 

large commitment in terms of time and resources; hence, in the research we limit to present 

some fundamental performance assessments as they are reported by the relative authors, 

rejecting any possible criticism about the validity of each testing dataset. 

Finally, for various reasons we do not discuss the implementation of the concerned 

techniques in full. Since most of the techniques require codifying expert knowledge, and 

massive commitments towards labeling of events are expected in order to achieve 

effectiveness, the time constraint for this research did not allow us to put any solution in 

place. Moreover, each study supplies a different degree of knowledge for practical 

deployment. 

  



88 

 

  



89 

 

8. CONCLUSIONS  

In this thesis, we proposed a model for correlating event data with the goal of detecting 

sophisticated computer security incidents and help incident management. To design the 

model, we went through different research stages, including reviewing a large collection of 

scientific papers and industry reports, inquiring of security experts about common practices 

and business requirements, making up significant attack scenario cases, combining all the 

collected information in a novel configuration of existing techniques, suggesting alternatives 

for the implementation. This final chapter summarizes the main contributions of this thesis 

research and proposes directions for future researches. 

8.1. MAIN CONTRIBUTIONS 

We recognized the following contributions: 

1. The research inquires about the detection of advanced cyber-security incidents by 

employing multiple sources of security data. In particular, the focus is on attacks 

which are executed in multiple stages by malicious users and target large 

organizations. This choice is due to their need of defending high-value assets and the 

set of complex issues that such organizations have to face compared with smaller 

organizations. 

 

2. The research investigates on the relation between incidents and events which are 

observable within today’s IT infrastructures of large organizations, thus providing an 

insight into effective security incident detection based on monitoring and intelligent 

analysis. 

 

3. The research identifies and analyzes novel taxonomies and alert correlation methods, 

which are the most influential in the scientific community, showing their strengths 

and limitations along the design and the implementation planning phases. 

 

4. The research offers an abstraction of an incident detection system, when multiple 

data sources and detection engines are employed.  

 

5. The research decomposes the problem into components, which address the initial 

challenges and represent the phases of a comprehensive correlation process, and 

maps them to the above-mentioned generic detection system architecture.  
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6. The research offers alternatives and suggestions for the implementation of effective 

techniques and procedures to detect sophisticated threats. 

 

7. The research allows a classification of novel and influential event correlation 

techniques. 

This general model represents the link between problem and solution, and requires adequate 

evaluation for its utilization. However, it can simply be adapted to the specific needs and IT 

infrastructures of various companies. Moreover, small variations allow employing this model 

for different purposes such as monitoring of industrial processes or physical security 

incidents. Finally, the model can be seen as an important advance in the development of an 

intelligent security protection which improves incident response and support decision 

making processes in the management of today’s organizations. 

8.2. SUGGESTIONS FOR FUTURE RESEARCH 

The limitations and reflections of the previous chapter offer some opportunities for further 

research, which are discussed in this section. 

It is widely accepted that management of large organizations should invest in new projects 

and adopt novel technologies to defend their IT assets against advanced cyber-attack 

techniques. However, given that highly-sophisticated attacks such as APTs or digital 

espionage activities have emerged only in the last few years, their impacts are not clear yet; 

hence, investigation towards long-run impacts on large firm’s market value, changes in 

reputation of victims of cyber-espionage, and their loss of competitive advantage can offer 

important indicators for supporting future investments in cyber-security. 

By implementing the proposed techniques and setting up a test environment, one would be 

able to better define the operational requirements of this model. Another opportunity is 

offered by the correlation of common security data with new sources of data and meta-data, 

such as reputation systems, web browser information, ticketing systems as well as how to 

structure meta-data effectively. Moreover, adaptation of the model towards collaborative 

incident detection, which involves multiple incident response teams, requires further 

investigation. 

The production of datasets including real and heterogeneous data of multi-threat scenarios, 

and a valid evaluation dataset for correlation systems is essential to provide proactive and 

cutting-edge security solutions. As the model is implemented, comparisons with commercial 

product may be valuable to create industry benchmarks. Also, efforts in identifying and 
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interviewing different stakeholders may provide business requirements and challenges which 

might be missing in this research. 

The graphical means proposed for investigating multi-stage threats at a high-level of 

abstraction push research towards advanced visualization techniques and practices, which are 

widely considered very helpful. For example, one may consider of integrating incident 

reports with colors and other constructs to illustrate the likelihood of certain events within a 

multi-step attack scenario. Hence, they will provide a more intuitive interface which 

facilitates the incident analysis and speeds up incident response. 

Finally, understanding incidents by looking at events from multiple perspectives suggests 

updating current security policies, and offers the opportunity to research models for a 

strategic deployment of security sensors and other data sources. 
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APPENDIX A 

DATA NORMALIZATION 

The Unified Modeling Language (UML) diagram of the “Alert” class (and its aggregate 

classes) is depicted in Fig. 25 IDMEF Alert class. 

   +-------------------+ 

              |    Alert          | 

              +-------------------+            +------------------+ 

              | STRING messageid  |<>----------|     Analyzer     | 

              |                   |            +------------------+ 

              |                   |            +------------------+ 

              |                   |<>----------|    CreateTime    | 

              |                   |            +------------------+ 

              |                   |            +------------------+ 

              |                   |<>----------|  Classification  | 

              |                   |            +------------------+ 

              |                   |       0..1 +------------------+ 

              |                   |<>----------|    DetectTime    | 

              |                   |            +------------------+ 

              |                   |       0..1 +------------------+ 

              |                   |<>----------|   AnalyzerTime   | 

              |                   |            +------------------+ 

              |                   |       0..* +------------------+ 

              |                   |<>----------|      Source      | 

              |                   |            +------------------+ 

              |                   |       0..* +------------------+ 

              |                   |<>----------|      Target      | 

              |                   |            +------------------+ 

              |                   |       0..1 +------------------+ 

              |                   |<>----------|    Assessment    | 

              |                   |            +------------------+ 

              |                   |       0..* +------------------+ 

              |                   |<>----------|  AdditionalData  | 

              |                   |            +------------------+ 

              +-------------------+ 

                     /_\ 

                      | 

                      +----+------------+-------------+ 

                           |            |             | 

                +-------------------+   |   +-------------------+ 

                |     ToolAlert     |   |   |  CorrelationAlert | 

                +-------------------+   |   +-------------------+ 

                                        | 

                              +-------------------+ 

                              |   OverflowAlert   | 

                              +-------------------+ 

 

FIG. 25 IDMEF ALERT CLASS 

 

In addition, given the continuous evolution of detection and correlation techniques, 

AdditionalData class allows for extension of the IDMEF model. For the sake of clarity, we 

report here an example from the IDMEF memorandum; it represents a port scan (meta-) alert 

from multiple detection systems (i.e., various “analyzerid”): 

   <?xml version="1.0" encoding="UTF-8"?> 

   <idmef:IDMEF-Message version="1.0" xmlns:idmef="http://iana.org/idmef"> 

     <idmef:Alert messageid="abc123456789"> 

       <idmef:Analyzer analyzerid="bc-corr-01"> 
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         <idmef:Node category="dns"> 

           <idmef:name>correlator01.example.com</idmef:name> 

         </idmef:Node> 

       </idmef:Analyzer> 

       <idmef:CreateTime ntpstamp="0xbc72423b.0x00000000"> 

         2000-03-09T15:31:07Z 

       </idmef:CreateTime> 

       <idmef:Source ident="a1"> 

         <idmef:Node ident="a1-1"> 

           <idmef:Address ident="a1-2" category="ipv4-addr"> 

             <idmef:address>192.0.2.200</idmef:address> 

           </idmef:Address> 

         </idmef:Node> 

       </idmef:Source> 

       <idmef:Target ident="a2"> 

         <idmef:Node ident="a2-1" category="dns"> 

           <idmef:name>www.example.com</idmef:name> 

           <idmef:Address ident="a2-2" category="ipv4-addr"> 

             <idmef:address>192.0.2.50</idmef:address> 

           </idmef:Address> 

         </idmef:Node> 

         <idmef:Service ident="a2-3"> 

           <idmef:portlist>5-25,37,42,43,53,69-119,123-514 

           </idmef:portlist> 

         </idmef:Service> 

       </idmef:Target> 

       <idmef:Classification text="Portscan"> 

         <idmef:Reference origin="vendor-specific"> 

           <idmef:name>portscan</idmef:name> 

           <idmef:url>http://www.vendor.com/portscan</idmef:url> 

         </idmef:Reference> 

       </idmef:Classification> 

       <idmef:CorrelationAlert> 

         <idmef:name>multiple ports in short time</idmef:name> 

         <idmef:alertident>123456781</idmef:alertident> 

         <idmef:alertident>123456782</idmef:alertident> 

         <idmef:alertident>123456783</idmef:alertident> 

         <idmef:alertident>123456784</idmef:alertident> 

         <idmef:alertident>123456785</idmef:alertident> 

         <idmef:alertident>123456786</idmef:alertident> 

         <idmef:alertident analyzerid="a1b2c3d4">987654321 

         </idmef:alertident> 

         <idmef:alertident analyzerid="a1b2c3d4">987654322 

         </idmef:alertident> 

       </idmef:CorrelationAlert> 

     </idmef:Alert> 

   </idmef:IDMEF-Message> 
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It is noteworthy to highlight that the alerts, which contribute to the global alert in example, 

are reported as a list of related alert identifiers; the optional attributes “analyzerid“ of 

“alertident” indicates the diverse sources of security events. 
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APPENDIX B 

DATA PRIORITIZATION 

An ‘incident handling fact base’ partly overcomes this issue given that it includes historical 

information about previous attacks, services, hardware, vulnerabilities, OS dependencies of 

alert types, and so forth. Another database contains topological information (e.g., network 

assets, IP to hostname mappings, active services, etc.) which may be retrieved by automatic 

scheduling nmap. Moreover, the network topology requires to be checked for vulnerability 

dependencies [49]. 

The incident handling fact base must contain, at least, the following fields: 

 Incident identification code; 

 Incident description; 

 OS types, versions, and hardware type required for the incident to succeed; 

 Ports, services, and applications required for a ‘successful’ incident; 

 References (e.g., Bugtraq ID and URL). 

A relevance score is computed for each alert, based on the likelihood of successful incident, 

ranging from 0 to 255. In other words, for each alert, the prioritization module should look 

for known dependencies in the incident handling fact base and check them against 

configuration of the targeted system. 0 represents no match at all, while values close to 255 

show that most of the required dependencies match the topology of the target. 

It is also relevant that security analysts define the mission profile, in order to perform a 

mission-impact analysis: 

 critical assets and services;  

 unreliable users and administrative accounts; 

 high-relevance classes  of incidents. 

The rank is defined as the assessment of the events with respect to: 

 mission profile 

 likelihood of success 

Relevance, priority and rank – i.e., low, medium and high – can be mathematically 

calculated using belief propagation on a Bayesian network. Probabilities 

P(criticality|priority) are elements of adaptive Conditional Probability Tables (CPTs) which 
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encode the mathematical relationship between evidence and intermediate node values of the 

incident rank tree in Fig. 26, which represent the beliefs of outcome, priority and relevance 

scores.  

 

FIG. 26 INCIDENT RANK TREE [49] 
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APPENDIX C 

FALSE ALERT REDUCTION 

CORRELATION OF SIGNATURE- AND ANOMALY-BASED DETECTION 

An early mixed technique has been proposed to reduce the volume of reported events by 

filtering out redundancies and increasing confidence about the security endangerment of a 

system. While the signature-based detection is used to detect a large range of well-known 

threats, a statistical module aims at detecting anomalies comparing long to short-term 

behaviors of each user. The following equation represents the degree of anomaly D in the 

short term behaviors [71]: 

D = (S1 
2
 + S2 

2
 + … + Sn 

2
) / n 

where Si (0<i<n+1) are the degrees of anomaly for each selected feature, n is the total 

number of measures. Hence, large D represents anomalous behavior. Historical data related 

to D can be used to adjust the threshold value for the declaration of false positives. 

Uncertain patterns resulting from signature-based detection may be input to an episode 

mining engine [56] which produces frequent episode rules. The episode mining engine will 

consists of episode rules mining and pruning. The rules are the compared to episode rules 

produced with normal traffic; highly mismatching episodes are labeled as anomalous, 

become inputs of an attack signature database, and are used to update the rule-based 

detection engines with newly generated signatures. 

Alternatively, frequent episode rules are employed to extract normal patterns of events which 

satisfy the requirements of support in the association rule and confidence, as well as events 

which may be false positives; alert patterns which are consistent with a frequent episode rule 

are considered false positives. In order to generate rules, cleansed network traffic is adopted 

for the learning process. The algorithm for anomaly detection is the following [55]: 
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Let us consider having a set of alerts B, frequent item sets F, and high-confidence rules R. 

Initially, the alerts are checked against a frequent item set; if they do not match, the most 

supported item set M is identified. M contains the alerts which occur frequently within the 

alert burst B, but they are not known to occur simultaneously. D contains the alerts that 

occur less frequently than the minimum support threshold, which is set according to the 

frequency of known innocuous alerts. 

META-DATA CORRELATION 

Correlation of event-based data with meta-data is employed to achieve false positive 

reduction [63; 57; 42]. This is due to the fact that for the same type of attack, the threat can 

vary in different environments. 

The strength of this technique is that network and host sensors can perform faster, alert data 

is cleansed, thus providing quality information; the disadvantage is that this system warns 

only if attacks are directed towards specific vulnerabilities, ignoring all the other malicious 

activities. Gula distinguishes three approaches to correlate IDS alerts with vulnerabilities 

[63]: 

 Persistent correlation occurs within the triggering mechanism of a detection system. 

Network vulnerability assessment scans are performed daily and vulnerability 

checks are maintained in a database. When alerts are related to any of the 

vulnerabilities, a ‘high quality’ alert is raised. Hence, the model links several alert 

types with the vulnerability checks and is capable to query the vulnerability database 

rapidly, so that it can keep pace with the event flow. The system is able to filter out 

alerts which do not target any known vulnerability. 

Therefore, using heterogeneous detection systems it is possible to detect activities 

which relate to different vulnerabilities. On the other hand, not every technology can 

correlate with vulnerability checks directly. 

 Near-time approach does not maintain a vulnerability database; the network is 

inspected actively as security events occur – i.e., OS, application, vulnerability, in 

sequence – and events that are not correlated to vulnerabilities are ignored. 

However, despite the advantage of not storing and managing a large database with 

vulnerability information, the lack of it translates into a slower correlation and gives 

the chance to malicious users to perform many spoofed attacks, while the correlation 

engine looks for much more detailed vulnerability information. 
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 Real-time correlation system assumes that IDSs may derive real-time vulnerability 

information with signatures to perform correlation and automatically discard 

irrelevant vulnerability checks. However, information about a number of 

vulnerabilities cannot be gathered passively but requires an active vulnerability 

assessment. Such a real-time model requires speed, information reliability, and 

accuracy to provide valuable alerts. 

Any case, correlating vulnerabilities provide information with high level of confidence 

towards the occurring threat. Hence, the technique enables automated and better decisions, 

such as tuning firewall and IDS rules, for instance. 

Moreover, since vulnerability assessments can also produce false positives or negatives, it is 

advisable to periodically perform a manual check concerning the quality of correlation, so to 

avoid situation in which actual threats are not identified, or normal traffic is considered 

malicious. 

MULTIPLE CONFIDENCE CORRELATION 

Classification algorithms are also employed for reducing the amount of false alerts [59; 57]. 

Let assume to train the system with true and false labels, a rule learner such as RIPPER [76], 

which is efficient with noisy datasets, is capable of building rule-sets by discriminating 

between the two classes of alerts. The system also produces training examples from experts' 

feedback, which verify the correctness of the classification, and continuously update the 

classifier in order to improve classification; such incremental learning is executed in batches 

and can be controlled by a threshold parameter. However, the weakness of this technique is 

that the volume of training sets increases infinitely. 

Generating ordered rule sets – i.e., rules for only one class – has been preferred to unordered 

–  i.e., for both true and false alerts – rules, since the former are smaller and easier to 

interpret; a rule is made up of a comparison between attribute values and a class label. In 

order to optimize misclassification cost, training sets are weighted through a cost matrix, 

which encloses the misclassification costs for each class pair. Therefore, the system is able to 

attach a confidence value, which is the likelihood of a correct classification. 

Neuro-fuzzy classifiers – so called ANFIS, adaptive neuro-fuzzy inference system [77] – can 

be trained with specific alert classes [59] – e.g., normal, probe, DoS
31

, U2R
32

 and R2L
33

. 

                                                      
31

 Denial of Service attack 
32

 Remote user-to-root attack 
33

 Remote user-to-local attack 
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ANFIS may produce fuzzy rules without using expert knowledge. A method of subtractive 

clustering determines the number of rules and the initial membership functions. 

A fuzzy inference module takes the outputs of the neuro-fuzzy classifiers and determines 

whether those data patterns are normal or malicious. When the pattern is intrusive, the 

‘normal’ classifier determines the attack class. 

The neuro-adaptive (supervised) learning is employed to overcome the difficulty, in some 

situations, to choose the membership functions by only observing the data; the associated 

parameters can be chosen by looking at the variation of input and output data. 

ANFISs implement the following reasoning mechanism. Let us consider a fuzzy inference 

system with the first order of Sugeno Fuzzy Model [78], with input x, y and output z; a fuzzy 

rule-set with two fuzzy if-then rules is: 

if x is A1 and y is B1 then f1 = p1x + q1y + r1; 

if x is A2 and y is B2 then f2 = p2x + q2y + r2; 

where A, B are input fuzzy sets, z=f(x,y) is a zero- or first-order polynomial function. 

The structure of the FIS implements a Mamdani Fuzzy Model [79]; let us consider this 

model with inputs x, y and output z; a fuzzy rule-set with two fuzzy if-then rules is: 

if x is A1 and y is B1 then z is C1; 

if x is A2 and y is B2 then z is C2; 

 where A, B are input fuzzy sets, C is the fuzzy output set. 

The two models are equal in the way they fuzzyfy the inputs and apply the fuzzy operator; 

however Sugeno output membership function is either linear or constant. 

Genetic operators – i.e., mutation, crossover, selection – are employed to optimize the 

inference engine by selecting, from the current population, individuals who evolve towards 

the optimal solution. 

Apart from fuzzy inference systems, fusion of multiple classifiers has also been proposed by 

employing [72]: 

 majority voting rule 

 average of classifiers' outputs 

 Naïve Bayesian rule 
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 Decision trees rule 

 Dynamic Classifier Selection (DCS) 

The first two items are fixed rules, which assume that diverse classifiers make uncorrelated 

errors even though they should present pair-wise output correlation. In Naïve Bayes, a 

confusion matrix on the training set is employed to weight each classifier. The dynamic 

classifier selection aims at automatically selecting, for each new pattern, the most accurate 

classifier. 

There is evidence showing that DCS performs better with data presenting pairwise output 

correlation and different accuracies. Known attacks are effectively classified by DCS and 

decision trees; the fusion rule of the latter also exhibits a better performance on unknown 

attacks than methods based on single classifiers. 

 

FIG. 27 MULTIPLE CLASSIFIER SYSTEM [72] 

The architecture of the Multiple Classifier System is shown in Fig. 27. It is clear from the 

figure, that three types of feature have been suggested as input for the classification: 

 content features, i.e., payload information, such as OS errors; 

 intrinsic features, i.e., general traffic information; 

 traffic features, i.e., comparison with previous similar occurrences. 

Similar to a classification algorithm, Dendritic Cell Algorithm [58] is a data filtering method 

modeled upon the human autoimmune system. The algorithm has been hitherto employed for 

the detection of ping-based port scans – i.e., SYN scans – but can be possibly used with 

other time-dependent datasets. 
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Dendritic cells are capable of activating adaptive immune responses by correlating external 

signals, processing antigens and show them on their own surface, to the other immune cells. 

DCA model’s inputs include pathogen associated molecular patterns (PAMP), safe signals, 

danger signals, and inflammatory cytokines; inputs provide a description of an antigen’s 

context. 

First, a population of immature dendritic cells (iDC) is created to get antigens and signals, 

and convert them into co-stimulatory molecules (csm), semi-mature dendritic cell cytokines 

(smDC), and mature dendritic cell cytokines (mDC). The first one monitors a value of 

maturation of DC; essentially, the DC is mature if exceed a specific threshold value. Mature 

cells are used for anomaly detection, and maturation basically correlates input data and 

signals to safe or danger contexts. Table 4 DCA input signals shows how the input signals 

are modeled in intrusion detection. 

 

TABLE 4 DCA INPUT SIGNALS [58] 

Authors provide evidence on the robustness of DCA when PAMP and danger signals are 

misrepresented; however, safe signal must be chosen accurately to achieve a satisfying 

performance. 

Every mature cell transforms signals to output op(m) according to the following equation 

[58]: 
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where Wijp are transforming weights for a signal type i, category j, in the cell's signal matrix 

s(m). A parameter controls the mature context antigen value (MCAV) of a given antigen 

type, which determines its degree of anomaly, according to the following equation: 

MCAV(antigen_type) = mature_count/antigen_count 

Therefore, MCAV is a value between 0 and 1, representing the probability that an antigen is 

a danger signal. Sensitivity analysis, performed by the authors of the research, shows that a 

good performance is achieved at high frequency of signal sampling. However, it is difficult 

to compare this technique with other machine learning or rule-based techniques for 

classification, given that in general the latter cannot correlate such signals. 

Dempster-Shafer theory [80] allows taking evidence from multiple sources and obtaining 

degrees of belief from subjective probabilities, thus modeling uncertainty and confidence 

conflict between different information sources. Therefore, the component for confidence 

aggregation returns an overall confidence value. Dempster’s rule [69] considers various 

weights of the confidence values, given by the various sources. For example, events 

originating from a signature-based detection engine are supposed to have higher confidence 

score than suspicious events reported from anomaly-based sensors. 

Let us assume that two observers O1, O2 believe hypothesis H is true with different 

confidence values m1(H), and m2(H), the following equation represents the overall 

confidence on hypothesis H according to a Weighted D-S combining rule [80]: 

 

Where wi are weights for the values of confidence; they can be computed in many ways such 

as according to a Maximum Entropy principle, Minimum Mean Square Error, and so on. 
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APPENDIX D 

DATA AGGREGATION 

TEMPORAL-BASED 

Temporal based aggregation is used to group together events which belong to a certain time 

pattern – so-called temporal fusion [50]. Temporal logic formalism can also be utilized for 

modeling threat scenarios through so-called chronicles [60], which are series of events 

(malicious or harmless) compelled to time and context, providing a procedure to model 

temporal patterns and examine the evolution of the monitored system. Time information 

allows users to specify time intervals between events.  

Each new alert is checked against predefined chronicles; if the attack pattern matches with 

any of them, the chronicle’s state is modified; otherwise new chronicles are built up. Let us 

consider the following example of chronicle for scans [60]: 

chronicle scan[?source, ?target] 

{ 

event(alarm[sid_1,?source,?target], t1) 

occurs((1,+oo),alarm[sid_2,?source,?target], (t1+1,t2)) 

noevent(alarm[sid_3,?source,?target], (t1,t2)) 

event(alarm[sid_3,?source,?target], t2+1) 

t1<t2 

 

when recognized { 

emit event(alarm[scan, ?source, ?target], t2); 

} 

} 

 

The example relies on the fact that we have alerts showing the beginning of the scan, several 

others during the scan, and an alert when the scan is supposed to end – respectively sid_1, 

sid_2, and sid_3, with same source and target. The chronicle starts with the first event, which 

instantiates t1, while the last event instantiates t2; between t1 and t2+1, infinite port scan 

alerts may occur. Moreover, a constraint that sid_3 does not occur more than once within a 

chronicle is also required. 

This technique, which is based on the knowledge of specific scenarios, seems to be capable 

of reducing the high number of alerts as well as false positives, due to the analysis of 

contextual events. Chronicles have analogies with attack scenario modeling languages, such 

as LAMBDA [44]; however, these are not based on time and often rely on straightforward 

definition of the scenarios, impeding flexibility in understanding attacker’s intentions when 
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arbitrary actions are performed. Hence, chronicles do not explicitly represent attack 

scenarios but is meant to model attack patterns in which many events as well as other 

contextual information are involved. 

FEATURE SIMILARITY-BASED 

It has been widely recommended to cluster events together when they have similar features 

[18; 49; 51; 41] [53] [52]. M-Correlator [49], for example, proposes to group together alerts 

with regards to the following matching features: 

 ports and IP addresses, i.e., same network session; 

 process ID or user ID, i.e., host activity; 

 alert type, i.e., attack class defined for previous alert instances in an Incident 

Handling Fact Base (see Data Normalization). 

Naïve aggregation [51] suggests clustering events which share the same source IP addresses. 

Although this technique is very effective in reducing data volume for simple attacks – i.e., 

performed through simple scripts by unskilled computer fanatics –, it makes detection of 

advanced attacks nearly impossible. 

Security experts can also define a rule set to cluster alerts based on similarity of features 

related to [46]: 

 attack type, i.e., defined in a classification field; 

 timestamp, i.e., the actual time of occurrence of the event; 

 event source and target, i.e., for most network attacks we can compare 

services and nodes, for other attacks – such as TCP scan – it is enough to 

compare nodes. 

A meta-alert must be updated as soon as new alerts are added; for this purpose it has been 

proposed to utilize a maximum delay time for cluster stability. In other words, new alerts 

cannot be inserted into an existing meta-alert after a certain time-span. In addition, if the last 

meta-alert’s update occurred in a remote past, the relative cluster can be reported to security 

officers, and further ignored [54]. The temporal threshold, however, is predetermined and 

depends on the detected class of attack. 

It is noteworthy to say that alerts within the same meta-alert might have some differences, 

thus leading to a local information conflict. Hence, it may be helpful defining some integrity 

constraints to check during the aggregation; for instance, checking that “this attack type has 
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always a single source” allow detecting conflicts and potentially reporting additional 

information [46], such as a second source for the meta-alert at hand. 

Possible ambiguity of an alert that belongs to multiple attack classes can be solved by taking 

into account the class of the following alert with unique label. Nonetheless, if alerts have no 

class specified, they can be clustered in a “no-class” meta-alert, and then manually labeled 

[54].  

A different technique [53; 6] with regards to the selected features considers grouping alerts 

with identical attributes but different timestamps, although they should belong to the same 

(predetermined) temporal window. By using a sliding time window, alerts belonging to the 

same window are clustered into meta-alerts if they also have similar values of the feature set. 

Depending on the type of attack that one aims at detecting and the computational 

performance, a threshold parameter is employed to modify the width of the time window. 

Clustering algorithms based on learning such as Nearest Neighbor (NN) have also been 

proposed [54] with the goal of classifying items and assigning them to the nearest cluster; the 

distance, in other words, between the item (e.g., alert) and the cluster (e.g., meta-alert) must 

be lower than a given threshold: 

 

dist(A.feati , M.feati ) ≤ thresi ∀i = 1, .., v 

where A is an alert to be clustered, M is a meta-alert, feati is the i-th feature,  v is the total 

number of features. The threshold is chosen based on the attack class and the 

characteristics of the network. 

If dist(A,Mi) ≤ threshold ∀i = 1, .., k then the we should consider mini=1,…, k dist(A,Mi); in other 

words, when an alert can be clustered with several meta-alert, we will always choose the 

association that minimizes the distance. Some of the distances among features proposed 

for NN clustering include: 

 distance between IP addresses; 

 distance between port; 

 time span (i.e., in milliseconds) between alert’s creation time and last meta-

alert update. 

The algorithm is able to effectively group events belonging to the same attack and evidence 

has shown some robustness to erroneous attack classification by IDSs. 
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Similarly to the aforementioned technique, distance between feature values within the 

relative generalization hierarchy [61] [62] can explain event feature similarity. 

Generalization hierarchies are structures used to hierarchically order features, from the most 

general to the most specific values; generalization is achieved by analyzing the number of 

different values for every feature. The following pictures depict examples of generalization 

hierarchies (or taxonomies). 

 

 

FIG. 28 GENERALIZATION HIERARCHIES FOR IP ADDRESSES (LEFT UP), PORT NUMBERS (RIGHT UP), 

TIME (BOTTOM) [61, 62] 

Given a desired minimum size for clusters n, the algorithm automatically group events which 

are not dissimilar. The dissimilarity between alerts is the sum of each feature dissimilarity D; 

the latter is defined as the longest path between feature values in the corresponding 

hierarchy: 

Di = max dist(A.feati ,B.feati) ∀i = 1, .., n 

where A, B are two alerts, feati is the i-th feature, n is the total number of features. 

Given that identifying root-causes in large clusters usually translates into valuable results, 

security analysts can take advantage of presetting a minimum size for clusters. Moreover, it 

mitigates the risk of grouping alerts which are similar only by chance. However, the 

approach does not take into account the fact that various features can have diverse 

significance, and various alerts might produce clusters of different size. In addition, there is a 

risk that threats – such as stealthy attacks – may trigger a number of alerts smaller than 

minimum size n, and not produce any meta-alert. 
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THREAT SCORE-BASED 

The approaches in this category combine data fusion with prioritization towards the 

criticality of the features. Consider a subject-verb-object model to describe events in such a 

way that the subject is the origin of the action, the verb is the action itself, and the object is 

something or someone involved in the action executed by the subject. It is possible to define 

a threat chart [50] as in Table 5, where different features can have a different threat score 

within one occurring event. 

Event Subject Verb Object 

1 Feature 1 

Feature 2 

Feature 3 

… 

Feature n 

Action Feature 1 

Feature 2 

Feature 3 

… 

Feature n 

… … … … 

TABLE 5 THREAT CHART [50] 

For example, the score of the subject    can be computed through the following equation 

[50]:  

      

 

 

 

where n is the number of features, and    is the score of a single feature. 

The following equation defines the final threat score [50]: 

                  

where Ex is the final score, Sx score of the subject, Ox score of the object, Is security index 

of the subject, Io security index of the Object, and Iv is the security index of the Verb. 

Security experts set the security indexes; that is to say, a threat level is assigned to each 

involved process. 
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APPENDIX E 

CORRELATION OF META-ALERTS 

TEMPORAL-BASED 

Time series analysis can be employed to identify causal relationships among events modeled 

in time series variables. A time series is a set of ordered and finite values on a time axis, 

related to a variable of interest. Let us consider to model meta-alerts in time series variables, 

based on alerts per time unit; the assumption is that if event A causes event B, then A occurs 

before B. Granger Causality Test [53] is utilized to determine statistical causality between 

each vector autoregression (VAR) model variable, whose evolution is explained through an 

equation based on its own lags and those of other model variables.  

The prior knowledge – in our case – is a set of meta-alerts which may affect each other 

across different periods in time. Autoregressive (AR) estimates the variable y at given time t 

based on its previous values;  autoregressive moving average (ARMA) estimates the variable 

y at given time t based on previous values of variable x as well as its own previous values. 

The Null Hypothesis to be tested is the following: 

H0: βi = 0, i=1, 2, …, p 

In other words, x does not affect y, up to a delay p. The null hypothesis is rejected if a 

Granger Causality Index g is bigger than a critical value: 

 

With F(a,b) Fisher’s distribution. The residuals of AR model are computed as follows: 

 

The equation resulting in the residuals of ARMA model is the following: 

 

where T is the difference between the size of the time series variable and the lag length. 

Essentially, if ARMA gives a better estimation than AR, then x Granger-causes y. The main 

strength of the technique is that no prior knowledge about attacks is required. 
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PROBABILITY-BASED 

An early approach to causality analysis between clusters of alerts involve the construction by 

security experts of a static matrix [41] which encodes the probabilistic similarity measure 

between attack classes; essentially, analysts are required to assess the probability which a 

given type of alert will follow another type. 

Each new alert is compared to existing meta-alerts in order to identify common features; a 

similarity function returns, for each feature, a value between 0 and 1, where the latter 

represents two identical items. The overall similarity is defined as follows [41]: 

 

 

where X is the new alert, Y is the candidate meta-alert, j is the feature index, E is the 

expectation of similarity. 

The expectation of similarity weights the average of similarities of features, and is a value 

between 0 and 1; 0 if, for each feature, the similarity value is less than a predefined 

minimum similarity. Minimum matching criteria for any feature must be satisfied – 

regardless of the general similarity – in order for alerts to be merged. Similarity expectation 

represents the prior expectation that a feature match if two alerts are correlated. Each new 

alert may be embedded in the most similar meta-alert or start a new meta-alert if the 

similarity does not reach the minimum match threshold. Generic features that are utilized by 

the correlation engine include the following: 

 Sensor information (e.g., location, name, etc.) 

 Meta-alert 

 Incident class 

 List of source and target IP addresses 

 List of ports 

 Source and target user IDs 

 Timestamp 

 

If correlation is performed within an individual sensor, high minimum expectation similarity 

are applied on attack class, IP addresses, ports, and the sensor identifier; whereas, by 

loosening it on the features related to the sensor, and increasing the minimum expectation on 
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features such as attack class, source and target, the technique has been seen capable to 

correlate meta-alerts from heterogeneous sources. 

Bayesian networks are able to retrieve causal relationships and relevant features among two 

meta-alerts, with no knowledge of predefined attack scenarios. The technique [6] results in 

the probability of the occurrence of alerts in meta-alert B – i.e., P(B|A[fj]) – given the prior 

occurrence of alerts of meta-alert A. Therefore one should have knowledge about: 

 prior probability of alerts in meta-alert B P(B); 

 probability of alerts in meta-alert A with a certain feature value P(A[fj] = 

dom(B,fj)). Dom(B,fj) is the range of values that the j-th feature for alerts in 

meta-alert B; 

 probability of alerts in meta-alert B with a certain feature value P(B ∧ A[fj] = 

dom(B, fj)). 

 

Given a threshold value t, the technique also helps determining: 

 features with negative influence, i.e., P(B|A[fj] = dom(B, fj)) < P(B), feature 

fj values of A decreases the occurrence probability of B; 

 features with positive influence, i.e., P(B) < P(B|A[fj] = dom(B,fj)) < t, 

feature fj values of A increases the occurrence probability of B; 

 features with critical influence, i.e., P (B|A[fj] = dom(B,fj)) > t, feature fj 

values of A considerably increases the occurrence probability of B; 

 irrelevant features, i.e., P (B|A[fj] = dom(B,fj)) = P(B), feature fj does not 

affect the occurrence probability of alerts in B. 

 

PREREQUISITE AND CONSEQUENCE-BASED 

Meta-alert correlation can be based on pre-requisites and consequences of attacks. Apart 

from other attributes, each meta-alert can be specified as logical predicates by its pre-

requisites and consequences. This information must be known and specified in advance by 

using state description languages, such as LAMBDA [44]. By using this language, attacks 

are set of events which can be specified by: 

 pre-condition and post-condition of an attack; 

 events which are performed by the attacker (i.e., “attack scenario”); 

 events which allow the detection of the attack (i.e., “detection scenario”); 
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 conditions proving the attack succeeded (i.e., “verification scenario”). 

The following code is an example of TCP scan in LAMBDA [52]: 

<?xml version="1.0" encoding="UTF-8"?> 

<attack attackid="MIR-0074"> 

<name>tcpscan</name> 

<pre>use_soft(Source_address,tcpscan), 

          use_service(Target_address,Target_service), 

         service_type(Target_service,tcp) 

</pre> 

<post> 

   knows(Source_user,use_service(Target_address,Target_service)) 

</post> 

<scenario>Action</scenario> 

<cond_scenario>script(Action,’tcpscan $Target_address’) 

</cond_scenario> 

<detection>Alert</detection> 

<cond_detection>alert(Alert), 

source(Alert,Source), 

source_node(Source,Source_node), 

address(Source_node,Source_address), 

source_user(Source,Source_user), 

target(Alert,Target), 

target_node(Target,Target_node), 

target_service(Target,Target_service), 

classification(Alert,"MIR-0074") 

</cond_detection> 

</attack> 

 

If there is a link between the post-condition of an attack A and the pre-condition of attack B, 

one can correlate an occurrence of A with an occurrence of B; if there is a link between the 

post-condition of A and the post-condition of B, one can assume they have the same 

objective, thus it is possible to correlate them. In this way, one can build a set of correlation 

rules which are used to correlate meta-alerts [52]. 

Correlation can be performed by matching consequences of an alert with prerequisites of 

another one, taking into account temporal characteristics [73]; if there is at least one 

consequence of meta-alert x which occur before the first occurrence of one of the 

prerequisites of meta-alert y, then we may state that x prepares for y. The following SQL 

statement epitomizes the correlation process: 

SELECT DISTINCT c.MetaAlertID, p.MetaAlertID 

FROM PrereqSet p, ExpandedConseqSet c 

WHERE p.EncodedPredicate = c.EncodedPredicate 

AND c.end time < p.begin time 



123 

 

It is noteworthy to clarify that an attack may occur despite the occurrence of earlier attacks 

that are encoded as its prerequisites; and vice versa, an earlier attack may exist even if it does 

not cause attacks which are specified as its consequences. 

Given that the technique offers a further specification of the events, it is potentially able to 

reduce the negative impact of false positives – i.e., they are most likely to appear accidental 

and not correlated to others – as well as false negatives, as the approach is robust even if a 

few intrusions have not been detected; however, the technique will not adequately correlate 

two meta-alerts if the upstream detection engines is not able to detect critical attacks, or there 

is no defined relationship between them. Hence, the authors also suggested employing it 

together with other correlation techniques in order to improve its effectiveness; in addition, 

this technique requires security experts to encode quality additional information in advance, 

which may be an expensive and unreasonable task. 
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APPENDIX F 

CORRELATION/AGGREGATION OF INTRUSION ALERTS 

SCENARIO-BASED 

These techniques rely on the knowledge of specific attack scenarios in order to determine 

causality between alerts and group them based on predefined relationships, thus reducing the 

number of suspicious events to be further examined by security analysts. 

Attack scenarios can be described with consequence rules, which contain the ordered 

relationships between attack classes [64]. Back and forward reasoning is employed to detect 

duplicates and consequences of alerts from multiple detection sensors; duplicates refer to 

alerts with matching features from different detection sensors, whereas consequences are sets 

of ordered and correlated security events – within a specified time window – which describe 

attack scenarios. Duplicates and consequences – defined in a configuration file – are 

identified to logically link alerts together. The duplicate definition is represented by the 

following fields: 

 class of the initial alert; 

 class of the duplicate alert, i.e., the alert candidate to be duplicate; 

 list of alert attributes, i.e., attributes should match for considering two alerts 

duplicates; 

 updated severity level, i.e., the severity level is updated by any found 

duplicate. 

First, each intrusion alert is checked against previous alerts in order to find those with similar 

‘class of duplicate alert’, originating from different sensors (e.g., by looking at ‘analyzerid’ 

in IDMEF message). Then the algorithm looks for the early alert which match the ‘class of 

the initial alert’ and the attribute conditions; if it is found, the current alert is linked to the 

above mentioned initial alert, and the severity level of the duplicate definition is updated. 

The consequence mechanism involves a set of connected alerts and requires a fixed order for 

the occurrence of them, within a temporal window. The consequence definition is 

represented by the following terms: 

 class of the initial alert; 

 source (probe) of the initial alert; 

 class of the consequence alert; 
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 source (probe) of the consequence alert; 

 severity level, i.e., predetermined severity level of the consequence; 

 wait period, i.e., timer. 

Forward reasoning is used to check whether an arriving intrusion alert is the consequence of 

previous alerts. If the consequence does not occur during the wait period, an internal alert 

with predefined severity level is created and linkages are discarded; or else the consequence 

link is marked as occurring. 

Finally, events emerging from the correlation process are clustered into data structure called 

situations based on the following features: 

 source; 

 target; 

 attack class. 

Situations can be seen as quasi-meta-alerts; when the threshold value for the severity level of 

a situation is exceeded, the meta-alert is created. Depending on the features which are 

selected for aggregation, the authors distinguish seven possible situations, ordered from more 

to less specific: 

 Source, target, and class of the alerts are similar (e.g., an attacker attacking a 

web server). 

 Source and target of the alerts are similar (e.g., an attacker attacks various 

services on a machine). 

 Target and class of the alerts are similar (e.g., distributed attack of a single 

target). 

 Source and class of the alerts are similar (e.g., attacker launching name 

server attacks on DNS servers). 

 Source of the alerts are similar (e.g., single attacker, multiple targets). 

 Target of the alerts are similar (e.g., distributed attacks). 

 Class of the alerts is similar. 

The more specific a situation is, the higher the priority – among other situations – for the 

production of a meta-alert. 

Techniques based on machine learning employ manually-labeled alerts to learn scenarios; 

labels specify the scenario which alerts belong to. A heuristic technique [51] compares each 

new intrusion alert with the most recent alerts in a scenario. Scenarios can be considered as 
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meta-alerts which contain ordered sequences of correlated alerts. The probability P that two 

alerts having different class should belong to the same scenario is computed as the following 

product: 

P = L * T * S 

Where L is the probability that alert of a generic class A is followed by an alert of a generic 

class B, T is a sigmoid function which accounts for the time span between the two alerts, S 

accounts for the source IP addresses; P, L, T, and S are all values in the range [0,1]. This 

technique is based on the assumption that alerts belonging to a given scenario occur close in 

time and involve the same range of source IP addresses; in addition, the authors believe that 

some sequences of alert types occur more often than others. 

Analogously, decision trees, radial base function network (RBFN), and multilayer 

perceptrons (MLP) have been utilized to build alert classifiers, thus clustering alerts into 

scenarios. The features that have been utilized are summarized as follows [51]: 

 class of the arriving alert; 

 class of the 3 most recent alerts in the scenario; 

 time span between the new alert and the most recent in the scenario; 

 maximum number r of bits in a subnet mask; 

 previous alerts in a scenario are same class of the new alert (e.g., same tools 

or attacks repeated); 

 destination IP address (e.g., attack to a single target); 

 maximum value of r when comparing two source IP address (e.g., spoofed 

attacks); 

 maximum value of r when comparing source IP address of a new alert to the 

destination IP of all alerts in a scenario (e.g., a compromised host is used as 

source of attacks). 

Each alert may be attached to a scenario (i.e., meta-alert) which has the highest probability, 

or starts a new one if the probability estimation does not exceed a predefined threshold 

value. Probabilities of false alarms may also be assigned to scenarios in order to decrease the 

rate of false positives and to increase the sensor sensitivity [51]. There is evidence showing 

that decision trees, on equal training data, have the lowest error rate than MLP and RBFN. 

Extensive expert knowledge is required for attack scenario specification, as well as manual 

alert labeling for training. The weaknesses of these techniques are that the models resulting 
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from it may over-fit the training data; moreover, they are not able to correlate previously 

unseen scenarios. 

PREREQUISITE AND CONSEQUENCE-BASED 

Likewise meta-alert correlation, techniques based on prerequisites and consequences of 

alerts can also be employed to correlate and cluster intrusion alerts. 

Neural Networks (i.e., Multi-layer Perceptrons and Support Vector Machines using a 

sigmoid function) employ supervised machine learning to compute the probability that two 

alerts are correlated [10]. Prerequisites and consequences of alerts are encoded, in terms of 

correlation weight and average time span between two alerts, in a correlation matrix, which 

is incrementally updated during training. Hence, one is able to detect variations in known 

attack patterns and discover new scenarios. An example of correlation matrix for 3 alerts 

(i.e., a1, a2, a3) is depicted in Table 6. 

 a1 a2 a3 

a1 C(a1,a1) C(a1,a2) C(a1,a3) 

a2 C(a2,a1) C(a2,a2) C(a2,a3) 

a3 C(a3,a1) C(a3,a2) C(a3,a3) 

TABLE 6 EXAMPLE OF CORRELATION MATRIX [10] 

For two arbitrary alerts ai and aj with i≠j, C(ai,aj) and C(aj,ai) are different values, which 

depend on the order of occurrence of the two alerts; for instance, C(ai,aj) implies that ai 

occurs before aj. In addition, if C(ai,aj) is much bigger than C(aj,ai) then aj is consequence 

of ai; whereas, if C(ai,aj) and C(aj,ai) are similar values, one can conclude that there is no 

correlation between the two alerts. The correlation strength is calculated according to the 

following equation [10]: 

                  

 

   

 

where p(k) is the probability of the k-th correlation, n represents the number of times that ai 

and aj have been directly correlated. 

The following six features have been suggested by the authors for the correlation of two 

intrusion alerts: 

 similarity between source IP addresses (i.e., sim(ip1, ip2) = n/32, where n is 

the number of identical bits, 32 is the number of bits of an IPv4 address); 
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 similarity between target IP addresses (i.e., sim(ip1, ip2) = n/32); 

 similarity of target port numbers; 

 similarity between source IP address of the new alert and the target IP 

address of previous alert; 

 backward correlation strength between two alerts (i.e.,              

         
 
   ); 

 frequency of correlation of two alerts. 

Selected features form the input vector for a feed-forward neural network model – e.g., 

authors have employed one hidden layer with seven neurons – known as multilayer 

perceptron (MLP). For the training stage, MLP uses back-propagation, which occurs by 

modifying the weights after each piece of data is processed, according to the comparison 

between the expected result and the error in the output. 

The training consists of assigning the desirable correlation probabilities to some training 

patterns. When all the features match the training pattern will be assigned label 1, opposed to 

label 0 when all the features mismatch; other labels are assigned by comparing one example 

with those that were previously labeled. The output of the MLP is the correlation probability 

for two alerts, which is a value between 0 and 1.  

Correlation can also be considered as a binary classification problem. Hence, support vector 

machine (SVM) can be employed to state whether or not two alerts are correlated. Unlike 

MLP, SVM training patterns are assigned class labels 1 and -1 – i.e., correlated and not 

correlated, respectively – and not their probabilities [10]. The output of the SVM is not in the 

form of probability but represents the distance between the input vector and the hyperplane 

which divides the two classes optimally. However, by fitting a sigmoid that maps SVM 

output to posterior, a good mapping from SVM to probability is obtained. 

The authors utilize two thresholds: correlation threshold and correlation sensitivity; the 

former is a value between 0 and 1 (e.g., 0.5) which determines if two alerts are correlated or 

independent, the latter basically determines the number of correlations of a new alert to 

previous ones. 

Although SVM is generally very robust for classification and non-linear regression with 

large number of inputs,  and makes quicker and easier labeling process and training, 

evidence shows that MLP produces more accurate outputs (i.e., correlation probabilities). In 

order to improve accuracy, adequate training examples should be chosen for the SVM. 

Nonetheless, the training of MLP is slower and it may over-fit the training data. The big 
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advantage of using these techniques is that it does not require a huge amount of rules in order 

to find causality between alerts. 

Causal relationships between alerts can also be inferred through statistical approaches such 

as Bayesian Networks (BN) [45; 6; 42]. The technique can be used to automatically retrieve 

casual relationships among a large amount of alerts, as well as features which are influential 

for the degree of relevance of two alerts, according to a prior correlation probability. 

In essence, a Bayesian network is made up of a directed acyclic graph (DAG), which defines 

variables, and the probabilities of each variable (e.g., alerts, system attributes, etc.). 

Occurrence of ‘child’ alerts depends on the state of ‘parent’ nodes. Prior knowledge is 

represented by prior probability of root’s states and conditional probabilities of child nodes. 

The following probabilistic inference can be propagated from parent nodes to child nodes: 

P (child|parent) = P (child ∧ parent)/P (parent) 

As the Bayesian model also computes the occurrence probability of alerts, it can be used to 

check alert behavior variations and update correlation probabilities real-time, thus updating 

causal relationships between meta-alerts. Statistical relationships between alerts in each time 

slots are used to fill in Conditional Probability Tables (CPT), which encode the prior 

probabilities. Table 7 shows an example of CPT where A, B, and C are alerts, P1, …, P8 are 

probability values; the value 1 corresponds to the occurrence of the alert, 0 the non-

occurrence. 

 

Each alert can be assigned to time slots and be represented by a binary value 1 or 0, either it 

occurs or not in the considered temporal window [45]. Conditional probabilities, which can 

be derived from the statistical relationships between alerts within each time slot, show the 

strength of the relationship between an alert and another one that has caused it. 

 

 
AB=0

0 

AB=0

1 

AB=1

0 

AB=1

1 

C=0 P1 P2 P3 P4 

C=1 P5 P6 P7 P8 

TABLE 7 EXAMPLE OF CONDITIONAL PROBABILITY TABLE [45] 

Each non-root node in the causal network relates to a CPT, showing the strength of the 

relationship with the parent nodes. Probability threshold can be tuned to get better results 

with respect to the detection rate or false positive rate. 
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Alternatively, let us assume to represent alerts and system attributes (i.e., security state of the 

system) as nodes in a directed acyclic graph [42]; edges connect attributes to alerts or to 

other attributes. In the first case, the system attribute is a prerequisite of an attack; the second 

case indicates that one attribute implies another. Alerts are considered true – and can be 

added to the graph – only if the precondition attribute is true. 

In other words, the probability P(a) that alert a is true, is the prior confidence of a when the 

prerequisites are satisfied, otherwise P(a) = 0. Hence, each graph node is associated with a 

conditional probability table which specifies the relationship between a child and parent 

nodes. Given n alerts belonging to an attack type T, the aggregated prior confidence Pra(T) is 

computed as follows [42]: 

 

where ai are alerts to be merged into meta-alerts, Typeai represent the attack class of the i-th 

alert. Clearly, high confidence in state-based data translates into certainty about alerts. 

Hence, it is crucial to monitor the system regularly and strike a balance between system 

scanning frequency and resource consumption. 
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APPENDIX G 

MULTI-STEP INCIDENT CORRELATION 

Different stages in multi-step cyber incidents can be reconstructed in various ways. 

Reasoning about sophisticated threats may also require hypothesizing about events which 

have been discarded or not detected by the deployed security sensors [65] [52; 66]. 

SIMILARITY-BASED 

One naïve technique [41] consists of measuring the similarity between source and targets of 

event reports. In other words, similarity of source and target of the correlated meta-alerts are 

measured in order to reconstruct different stages in a multi-step attack. Let us evoke the 

concept of expectation of similarity of section 0, the technique has been able to reconstruct 

multistep attacks by relaxing the minimum expectation on attack class features, although it is 

considered inadequate for attack strategy analysis and intrusion prediction. 

 

STATE DESCRIPTION-BASED 

Likewise attack scenario patterns lead to sequences of state transitions, security incidents 

such as bot infection can be identified through communication sequences [70]. As a matter 

of fact, a subset of potential predetermined transactions can be observed during bot 

infections; these potential transactions shape a generic infection dialog model as follows: 

E1: Inbound scan 

E2: Inbound exploit 

E3: Outbound binary acquisition 

E4: Outbound C&C communication 

E5: Outbound infection scanning 

In order to solve the problem of missing events, one can set up minimum and sufficient 

conditions for bot infection declaration (e.g., one meta-alert showing outbound host 

coordination and one meta-alert of exploit propagation; at least two distinct outbound bot 

dialog meta-alerts, and so forth). Sequences of meta-alerts are tracked and stored in a 

dynamic data structure (e.g., network dialog correlation matrix in Fig. 29) for each internal 

host in the relative dialog transaction column (E1, …, E5); ‘old’ meta-alerts will be removed 

from the matrix by utilizing a temporal-based pruning algorithm. The bot infection dialog 

model may require periodical updates, depending on the evolution of malware which is 

involved in the infection. 
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FIG. 29 EXAMPLE OF NETWORK DIALOG CORRELATION MATRIX [70] 

State description languages (e.g., LAMBDA) also allow the abduction of intermediate alerts 

from scenarios, even though they have not been detected, thus extracting correlation rules 

online and building up whole – and still unknown – attack scenarios. Essentially, if an 

arbitrary alert is the known consequence of an event that should have raised another alert too 

– which however is not received by the correlation engine – the missing event is 

hypothesized [52]. 

GRAPH-BASED 

Apart from state description or dialog modeling, abduction of virtual events can be obtained 

by graphical means. In other words attack scenario trees can be drawn with system state as 

nodes, and patterns of observed events which enable predetermined state transitions as edges 

[50; 67] (see Fig. 30 Example of attack scenario tree); or even report goals and sub-goals of 

attacks (i.e., leaves are malicious actions, internal nodes are sub-goals, and the root is the 

final goal of the attack, see Fig. 31). 

 

FIG. 30 EXAMPLE OF ATTACK SCENARIO TREE [50] 

By combining complementary techniques to correlate alerts independently, we are able to 

create a set of correlation graphs, which in general might be disconnected because of missing 

alerts. Graphs that contain alerts with similar features are further analyzed by experts, and 

virtual missing alerts are included in order to satisfy the causal relationships [65; 66]. For 
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instance, one can use prior knowledge about attacks and timestamps in order to form 

hypotheses on causality between events in two different graphs. Therefore, the technique is 

not effective when none of the attacks in multi-stage incidents is known. 

Prior knowledge about attacks can be stored in causal networks converted from scenario 

trees and employed to correlate isolated scenarios [65]; for example, if a scenario is sub-goal 

of another and occurs after it in time, individual scenarios can be combined. Thus, the 

technique allows collecting information which may be useful for further investigation; 

however, it requires beforehand definition – by security experts – of an updateable archive of 

known attack strategies in order to apply automatic correlation and predict multi-step 

incidents using the Bayes model. Moreover, by applying this technique one assumes to have 

understood the actual goal of the attacker; nonetheless, that task is very challenging when 

many attackers participate in the same attack. 

Attack strategy graphs can also be depicted as directed acyclic graph (DAG) in which nodes 

are attacks, edges shape the order of the attacks, and some satisfying conditions for the attack 

execution are defined on nodes and edges. Similarity between attack patterns are explained 

in terms of the cost of converting a scenario into another. In other words, assuming that size 

of attack graphs is such as to make analysis feasible in reasonable time, similarity between 

sequences of events can be seen as an error tolerant graph/subgraph isomorphism problem; 

error tolerance handles noise and distortion in the input graphs. Hence, similarity between 

two graphs is the least cost pattern of editing operations, which turns a graph into another 

(e.g., by inserting nodes, replacing edges, and so on) [81]. 

An arbitrary attack graph can be considered as a quadruple of nodes, edges, nodes labeling, 

and edges labeling – i.e., G = (N, E, T, C). Given two graphs G1 and G2, a bijective function 

f is defined a graph isomorphism from G1 to G2 if [81]: 

 

An arbitrary subgraph of G is a graph Gs = (Ns, Es, Ts, Cs) with Ns  N, Es = E  (Ns x Ns), 

Ts(ns) = T (ns) for each node of Gs, and Cs(es) = C(es) for each edge of Gs. Given two graphs 

G1 and G2, an injective function f is defined a subgraph isomorphism from G1 to G2 if: 

Ǝ G2s subgraph of G2 : f is a graph isomorphism from G1 to G2 
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Graph isomorphism problem relates to the similarity between two attack strategies, while 

subgraph isomorphism problem aims at identifying strategies which are components of 

another strategy. Graph edit distance determines the similarity of two graphs as the least cost 

sequence of edit operations to transform one graph into another one. Let assume having Nn 

node edit operations to transform a graphs Ga into Gb, with na and nb nodes respectively, the 

similarity between them results from the following equation [81]: 

 

The model in which a DAG has attributes and alerts as nodes [42] (i.e., a system state leads 

either to alerts or other security states) may contain graph inconsistencies due to missed 

events, or unpredicted variations in the attributes; security analysts can ground their 

hypotheses about missing events on such inconsistencies. 
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FIG. 31 EXAMPLE OF ATTACK TREE (TOP) AND CAUSAL NETWORK (BOTTOM) [42] 

In order to predict incidents, alert trees can be transformed into Bayesian networks by 

attaching a correlation probability to each edge [6] (see Fig. 32) – i.e., probability that alert 

of arbitrary type A leads to alert of type B has been widely and effectively used for 

reconstructing high-level attack scenarios [6; 10] – or by computing goals and sub-goals 

probabilities [65], derived from the parent nodes’ state, and then apply inference to the 

Bayesian network based on satisfied sub-goals and observed events (see Fig. 31). 
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FIG. 32 EXAMPLE OF ATTACK GRAPH WITH CORRELATION PROBABILITIES [6] 

By applying a data mining algorithm, it is also possible to derive scenarios and their 

probability of having following attacks (PFAs), by taking into account as input a set of 

candidate scenarios and a minimum support value; then, computed probabilities can be 

attached to attack graphs and used to rank attack patterns [67]. Fig. 33 shows an example of 

attack graph, in which Si are system security states, ej are exploits that lead to state changes, 

the decimal quantities represent the PFAs. 

 

This technique presents some limitations due to the fact that the PFA of some attacks cannot 

be retrieved, as well as the resulting attack graphs may be incomplete. However, the 

technique is capable to identify novel attack scenarios and to predict evidence for probable 

following attacks. 
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FIG. 33 EXAMPLE OF ATTACK GRAPH WITH PROBABILITY OF HAVING FOLLOWING ATTACK  [67] 


