
Delft Center for Systems and Control

Automatic Controller Selection

on a Humanoid Robot
Using Optimization Techniques

Evelyn D’Elia

M
a
s
te

r
o
f

S
c
ie

n
c
e

T
h
e
s
is





Automatic Controller Selection on a
Humanoid Robot

Using Optimization Techniques

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft

University of Technology

Evelyn D’Elia

August 11, 2021

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology



The work in this thesis was conducted with the Life-long Autonomy and interaction skills for
Robots in a Sensing ENvironment (LARSEN) lab at National Institute for Research in Digital
Science and Technology (INRIA) Nancy, France, under the supervision of Dr.ir. Jean-Baptiste
Mouret and Dr.ir. Serena Ivaldi. This work was also supported by the European Union’s
Horizon 2020 Research and Innovation Programme under Grant Agreement No. 731540
(project AnDy) and partly funded by the CPER project “CyberEntreprises" and the CPER
project SCIARAT.

Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.



Abstract

Designing controllers for complex robots is not an easy task. Often, researchers hand-tune
controllers for humanoid robots, but this is a time-consuming approach that yields a single
controller which cannot generalize well to varied tasks. This thesis presents a method which
uses the Non-dominated Sorting Genetic Algorithm II (NSGA-II) multi-objective optimization
(MOO) algorithm with various training trajectories to output a diverse Pareto set of well-
functioning controller weights and gains. The best of these are shown to also work well on
the real Talos robot. The learned Pareto front is then used in a Bayesian optimization (BO)
algorithm both as a search space and as a source of prior information in the initial mean
estimate. This learning approach, which combines the two optimization methods, is capable
of finding a suitable parameter set for a new trajectory within 20 trials and outperforms both
BO in the continuous parameter search space and random search along the Pareto front. The
few trials required for this formulation of BO suggest that it could feasibly be applied on the
physical robot using a Pareto front generated in simulation.

Master of Science Thesis Evelyn D’Elia



ii

Evelyn D’Elia Master of Science Thesis



Table of Contents

Acknowledgements ix

1 Introduction 1

1-1 Humanoid robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1-2 Multi-objective optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1-3 Bayesian optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1-4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1-5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5

2-1 Talos robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2-2 Task priority-based control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2-3 Evolutionary algorithms in robotics . . . . . . . . . . . . . . . . . . . . . . . . . 7

2-4 Multi-objective optimization algorithms . . . . . . . . . . . . . . . . . . . . . . . 8

2-5 Related work with NSGA-II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2-6 Policy search methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2-7 Bayesian optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2-8 Related work with BO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2-8-1 Incorporating prior information . . . . . . . . . . . . . . . . . . . . . . . 15

2-8-2 Acquisition functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2-9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Multi-objective optimization 19

3-1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3-1-1 Task formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3-1-2 Pareto front dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3-2 Experiments in simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Master of Science Thesis Evelyn D’Elia



iv Table of Contents

3-2-1 Tasks used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3-2-2 Objective function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3-2-3 Training trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3-2-4 Modified robot models . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3-2-5 Results and analysis without self-collision checking . . . . . . . . . . . . 24

3-2-6 Results and analysis with self-collision checking . . . . . . . . . . . . . . 31

3-2-7 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3-3 Experiments on the real robot . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3-3-1 Parameter sets used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3-3-2 Error measurement and calculation . . . . . . . . . . . . . . . . . . . . . 40
3-3-3 Results and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3-4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Bayesian optimization 47

4-1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4-2 Experiments in simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4-2-1 Algorithm settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4-2-2 Results and analysis of direct BO . . . . . . . . . . . . . . . . . . . . . . 49

4-2-3 Results and analysis of BO along the Pareto front . . . . . . . . . . . . . 51

4-3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Discussion 57

5-1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Bibliography 59

Glossary 63

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Evelyn D’Elia Master of Science Thesis



List of Figures

1-1 Fallen robot during the 2015 DARPA Robotics Challenge [3]. . . . . . . . . . . . 2

2-1 Talos humanoid robot and joint configuration [2]. . . . . . . . . . . . . . . . . . 6

2-2 Graphic of support polygon (SP) and zero-moment point (ZMP, ground projection
of center of mass (CoM)) of a legged robot [11, Figure 17.37]. . . . . . . . . . . 6

2-3 Visual aid to show the need for MOO and the typical appearance of a 2-D Pareto
front. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2-4 The 2-D Pareto parameter sets learned in [6, Figure 3]. Points on the upper left
side of this plot are very stable but do not closely track the desired trajectory,
while points on the lower right track the trajectory well but will probably cause the
physical robot to fall over. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2-5 1-D example of BO, showing how each sampled parameter set is picked by the
acquisition function [10]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2-6 Algorithm outline of BO [9]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2-7 Comparison of some Gaussian process (GP) kernels that are shown to work well
on a bipedal robot [29, Figure 7a]. . . . . . . . . . . . . . . . . . . . . . . . . . 16

3-1 Diagram of the steps required to carry out NSGA-II optimization, starting with a
goal trajectory and ending with a Pareto front of solutions. . . . . . . . . . . . . 20

3-2 Training trajectories used during multi-objective optimization. Figs. 3-2a, 3-2b,
3-2c, and 3-2d are handmade motions, while the other four are recorded and
retargeted from human motions. . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3-3 These plots show that without self-collision checking the Pareto front converges to
a fairly steady group of parameter sets by the time generation 500 is reached. Solu-
tions which yield tracking error of more than 0.5 m can be considered unsuccessful
and are not shown in order to keep the plots readable. . . . . . . . . . . . . . . 25

3-4 Comparison of top 50 best-performing learned soft priority weight (SPW)s for each
training trajectory over five datasets without self-collision checking. . . . . . . . 27

3-5 Comparison of top 50 best-performing learned convergence gain (CG)s for each
training trajectory over five datasets without self-collision checking. . . . . . . . 28

Master of Science Thesis Evelyn D’Elia



vi List of Figures

3-6 Examples of the change in performance of a Pareto front between one robot model
and another, without collision checking. . . . . . . . . . . . . . . . . . . . . . . 30

3-7 Comparison of top 20 best-performing learned SPWs for each training trajectory
in Set 1, which enables self-collision checking. . . . . . . . . . . . . . . . . . . . 33

3-8 Comparison of top 20 best-performing learned SPWs for each training trajectory
in Set 2, which enables self-collision checking. . . . . . . . . . . . . . . . . . . . 34

3-9 Comparison of top 20 best-performing learned CGs for each training trajectory in
Set 1, which enables self-collision checking. . . . . . . . . . . . . . . . . . . . . 35

3-10 Comparison of top 20 best-performing learned CGs for each training trajectory in
Set 2, which enables self-collision checking. . . . . . . . . . . . . . . . . . . . . 36

3-11 Examples of the change in performance of a Pareto front between one robot model
and another, with collision checking. Solutions with tracking error greater than
0.5 are labeled as failing solutions. . . . . . . . . . . . . . . . . . . . . . . . . . 38

3-12 Comparison of squat trajectory performance between hand-tuned and learned con-
trollers on the Talos robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3-13 3-D plots of the raw and smoothed measured squat trajectories vs. the reference
trajectory for the right hand of the Talos robot. . . . . . . . . . . . . . . . . . . 43

3-14 3-D plots of the measured dance trajectories vs. the reference trajectory for the
right hand of the Talos robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4-1 Diagram of the steps taken to optimize over a Pareto front with BO. . . . . . . 48

4-2 Direct BO comparison of performance on each trajectory of hyperparameter com-
binations from Table 4-1. A cost of 0.7 is used to represent all failing costs. . . . 52

4-3 Pareto-based BO performance of hyperparameter combinations from Table 4-1,
compared to direct BO and random search (along the Pareto front) results. A cost
of 0.7 is used to represent all failing costs. . . . . . . . . . . . . . . . . . . . . . 54

4-4 Zoomed in views of Pareto-based BO performance of hyperparameter combinations
from Table 4-1. A cost of 0.7 is used to represent all failing costs. . . . . . . . . 55

Evelyn D’Elia Master of Science Thesis



List of Tables

2-1 Summary of recent BO approaches on legged robots and the experiments used to
validate them. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3-1 Symbol, description, SPW name and CG type for each optimized task. . . . . . . 21

3-2 Separation scheme of training trajectories for each of the two self-collision checking-
enabled MOO sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3-3 Description of modified URDF models used for testing transferability. . . . . . . 24

3-4 Percent of total non-collision-checked Pareto individuals successful on each robot
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3-5 Average Cartesian task error achieved for each training trajectory by a hand-tuned
controller versus the average objective score of the robust controllers learned with-
out self-collision checking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3-6 Percent of total collision-checked Pareto individuals successful on each robot model. 37
3-7 Average Cartesian task error achieved for each training trajectory by a hand-

tuned controller versus the average error of the robust controllers learned with
self-collision checking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3-8 Best Cartesian task error achieved for each training trajectory by Pareto fronts with
and without self-collision checking. . . . . . . . . . . . . . . . . . . . . . . . . . 39

3-9 Comparison of modified cost fmod between hand-tuned and learned parameter sets
in simulation and reality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4-1 List of setting combinations tested for direct and Pareto-based BO. . . . . . . . 49

4-2 Best Cartesian task error achieved for each training trajectory by Pareto-based
versus direct BO with self-collision checking. . . . . . . . . . . . . . . . . . . . . 51

4-3 Best Cartesian task error achieved and its corresponding configuration for each
training trajectory in Pareto-based BO. . . . . . . . . . . . . . . . . . . . . . . . 53

Master of Science Thesis Evelyn D’Elia



viii List of Tables

Evelyn D’Elia Master of Science Thesis



Acknowledgements

I would like to thank my supervisors at INRIA, dr.ir. Jean-Baptiste Mouret and dr.ir. Serena
Ivaldi, for always making time to discuss my project and for providing valuable advice and
guidance over the past six months. I would also like to thank my advisor, prof.dr.ir. Jens
Kober, for providing thoughtful feedback and comments on my work throughout the evolution
of my thesis, and prof.dr.ir. Luca Laurenti for serving on the evaluation committee.

In addition, I would be remiss not to acknowledge the help and support of my colleagues,
with whom I exchanged ideas, tips, and tricks on a wide range of topics. Thanks to Waldez
for the presentation advice and wise words. Thanks also to Ivan and Eloise, without whom
testing on the real robot would not have been possible. Another thank you to Edoardo, for
providing suggestions and encouragement during long hours spent debugging. I would like to
thank everyone in the Larsen lab for making my time there inspiring and enjoyable.

Finally, I want to acknowledge and thank Gennaro and my parents for being my biggest
fans throughout this entire process. Without them, completing my thesis in this confusing
pandemic period would have been all the more difficult.

Delft, University of Technology Evelyn D’Elia
August 11, 2021

Master of Science Thesis Evelyn D’Elia



x Acknowledgements

Evelyn D’Elia Master of Science Thesis



Chapter 1

Introduction

Humanity’s dream of human-like machines is as old as civilization itself. Automatons were
even present in Greek mythology, thousands of years ago: the ancient Greeks believed that
the god Hepaestus built a bronze automaton named Talos [1]. So, it is not by coincidence
that the robot used in this work bears the same name, Talos [2]. Then and now, humans have
desired to create robots that would do their work for them. 2000 years later, we now have
the ability to achieve this dream.

1-1 Humanoid robots

Although technology is much more advanced than it was during the time of the Greek empire,
researchers still encounter a myriad of difficulties when controlling humanoid robots. Despite
our best efforts, we still often find our robots in a similar configuration as shown in Figure
1-1. Nonetheless, humans are stubborn and we continue to persist in developing better ways
to control humanoids.

There are a variety of motivating factors for developing robust, high-performing humanoid
robots. A robot that is shaped and moves like a person can work in a workspace designed
for humans without the need to tailor the environment. Ideally, a humanoid robot should
be able to complete manual labor that is grueling or even unsafe for humans. However,
replicating the mechanics of the human body on a machine requires a high number of degrees
of freedom (DoF), and any controller for a robot with such a large state and action space will
have high computational complexity.

Because of this complexity, and because of the ambition to make the robot capable of per-
forming vastly different trajectories such as locomotion or manipulation, it is difficult to find
successful controllers. One popular way of solving this problem is by breaking the control
down into a set of tasks, each with certain gain and weight parameters to define their be-
havior. This is called a task priority-based approach, as explained in [4], and it unifies the
control of separate parts of the robot into a single, whole-body control framework. This makes
controller design much more straightforward, but it still requires the task parameters to be

Master of Science Thesis Evelyn D’Elia



2 Introduction

Figure 1-1: Fallen robot during the 2015 DARPA Robotics Challenge [3].

chosen. One typical way to choose them is by hand-tuning these parameters, but since this
method is time-consuming, it often focuses on tuning a single controller which works for a
large set of trajectories. The main drawback of this method is that with a single “robust”
controller, the quality of individual trajectories is compromised.

In addition to the problem of designing a stable, accurate controller for a humanoid robot,
there is also the problem of creating control parameter sets that are transferable. Trans-
ferability in robotics is the ability to adapt to new situations, namely new trajectories or a
real robot which behaves differently from the simulation model. This thesis aims to address
both of these problems in two steps: a multi-objective optimization (MOO) step to generate a
large set of control parameter options, and a Bayesian optimization (BO) step to narrow down
these solutions to one which works for a new, untrained trajectory or a new robot model.

1-2 Multi-objective optimization

In most cases of learning on a real robot, especially a complex humanoid, it is beneficial to
first learn controllers in simulation. One common means of doing this is via mathematical
optimization [5], where variables in an objective function are tested, changed, and iterated
until the function value is minimized or maximized. Several types of optimization methods
have been applied to the robot control problem, the most relevant of which is multi-objective
optimization. Multi-objective algorithms are of interest because robot performance is often
measured in many ways at once. This type of method requires a prohibitive number of trials,
which constrains it to simulation use, but it can be employed as a jumping-off point for other,
more efficient real-world learning algorithms. One way MOO has been used in previous work is
to control a humanoid robot to show that creating a set of simulation-trained Pareto-optimal
controllers lowers the number of tests that must be done on the real robot [6]. However,
since this method trades off only two objectives, accuracy and stability, averaged out over the
training trajectories, it does not take advantage of the full capabilities of the MOO algorithm
used.

Evelyn D’Elia Master of Science Thesis



1-3 Bayesian optimization 3

To ensure that there are highly accurate controllers for different types of trajectories, and
to save time spent hand-tuning, in this thesis the use of NSGA-II [7], a multi-objective
optimization algorithm, is proposed to learn a Pareto front of task parameter sets for the Talos
robot that are scored based on how they perform for each of a set of training trajectories. This
approach directly optimizes based on the performance of a parameter set on each trajectory,
which produces a more diverse Pareto front with a better chance of transferring to new
trajectories.

1-3 Bayesian optimization

Once MOO has been used to generate a Pareto front of possible control solutions, this thesis
also introduces the idea of using that Pareto front as the search space for a single-objective
data-efficient learning algorithm. This can specifically be used to transfer Pareto solutions
to new trajectories that are not part of the MOO training set, and choosing a data-efficient
algorithm leaves open the possibility of applying the approach on the real robot.

One data-efficient class of learning algorithms, called policy search (PS) [8], [9], is very promis-
ing in the context of real-world robot learning as a method that does the opposite of deep
learning: its goal is to learn a successful controller with as little data as possible. The reason
PS is useful for data efficiency is because it allows the dimensionality of the problem to be
shrunk down to the number of parameters in the policy. Sometimes, learning a model of
the dynamics or the expected return concurrently with learning the policy parameters can
further decrease the number of needed trials. The most successful PS methods also aim to
represent the uncertainty of the models as a way of avoiding overfitting to the few trials being
conducted and increasing the robustness of the learned controller. PS can be carried out in
even fewer trials if it is fed prior information in the form of a Pareto front to search.

In terms of learning with very few trials on the real robot, the success of BO [10], a PS method
that models the expected return as a stochastic process, surpasses most other PS algorithms.
The model of mean and variance of the expected return allows the learned controller to be
robust despite few trials. One of the few downsides of BO is that it does not scale well to
high-dimensional parameter spaces, but since the size of the Pareto solutions generated in
this thesis work is relatively small at 10-D, it is a perfect choice.

1-4 Contributions

To summarize, the proposed contributions of this thesis are as follows:

• use the Non-dominated Sorting Genetic Algorithm II (NSGA-II) MOO algorithm with
a separate objective function for each training trajectory in order to generate a diverse
Pareto front of possible task parameter sets for the robot,

• compare Pareto front solutions to hand-tuned solutions on the real Talos, and

• implement a BO algorithm which searches along this Pareto front to quickly find suitable
parameter sets for new robot trajectories.

Master of Science Thesis Evelyn D’Elia



4 Introduction

The results of this analysis surprisingly show that between different simulated robot models,
the Pareto fronts generated by NSGA-II actually perform very similarly, which indicates that
there may be no need to use BO for closing the reality gap between simulation and physical
robot. This is why we focus instead on achieving transfer to novel trajectories. The first item
of contribution of this work was also presented as a poster at the 2021 Legged Robots ICRA
Workshop. A video of this presentation can be found at https://youtu.be/TaZooEwb3SE.

1-5 Outline

This thesis is structured as follows:

• Chapter 2 discusses the necessary background information surrounding the thesis topic.
It first explains the details of the robot and the control framework used. Then, it ad-
dresses the concept of Pareto optimality, some related work on MOO for robotic control,
and the MOO algorithm that is used in this project. Next, PS methods, especially BO,
are discussed. The parts of the BO algorithm, its design options, and recent related work
are also mentioned. The chapter concludes by tying the parts of the project together
and asserting the contributions of this work.

• Chapter 3 describes the full process of optimizing task parameters with NSGA-II. At
the beginning, the methods of task and objective function formulation are mentioned.
Next, the specific tasks, objective functions, training trajectories, modified robot models,
and other experimental design details are described. Then, results and analysis for
optimization with and without self-collision checking are revealed and compared. After
that the construction of the experiments on the real Talos robot are explained and the
results are discussed. Finally, the implications of the results are reviewed.

• Chapter 4 deals with the second part of this thesis, BO. It begins by addressing the
methods used to construct this implementation of the algorithm. The chapter continues
with the testing choices, then dissects the results of both continuous-space BO, and BO
along a pre-computed Pareto front. The chapter then compares the two BO approaches,
and ends with a discussion on the efficacy of the methods.

• Chapter 5, the final chapter, considers the quality and importance of the results of this
thesis, and then concludes with a discussion of recommended future work on the topic.

Evelyn D’Elia Master of Science Thesis

https://youtu.be/TaZooEwb3SE


Chapter 2

Background

This thesis aims to address two main challenges associated with learning control parameters
for humanoid robots: making the learning process efficient and transferring learned solutions
to new situations. In order to discuss this subject matter it is first necessary to explain
the building blocks of the approaches used and and related work on the topics. This chapter
provides background information about the robot, the control framework used, multi-objective
optimization (MOO), and Bayesian optimization (BO). It also discusses and evaluates the
efficacy of other approaches similar to the one in this project.

2-1 Talos robot

The robot used in both simulation and real-world experiments for this thesis is the Talos
humanoid from PAL Robotics. The robot, shown in Figure 2-1, is roughly the size of an adult
human and has 32 degrees of freedom (DoF) [2]. It is designed specifically to be capable of
lifting heavy objects and has been shown to be able to hold 6 kg weights in each hand with
its arms extended out to the side.

In order to control a mobile legged robot like this one, it is essential to prevent the robot
from falling over. For this reason, the concept of a support polygon (SP) is used: a support
polygon is defined as the convex polygon which is bounded at the outer edges of the robot’s
feet. In order for the robot not to fall, its zero moment point (ZMP), i.e. the 2-D ground
projection of the center of mass (CoM), must stay within the SP at all times during movement
[11]. These concepts of robot stability are illustrated in Figure 2-2.

2-2 Task priority-based control

The control framework employed on the Talos is a common type of whole-body control (WBC)
formulation known as task priority-based control. Here a task is defined, depending on its
type, as either a Cartesian position and/or orientation, or a set of joint angles, to track.

Master of Science Thesis Evelyn D’Elia



6 Background

Figure 2-1: Talos humanoid robot and joint configuration [2].

Figure 2-2: Graphic of SP and zero-moment point (ZMP, ground projection of CoM) of a legged
robot [11, Figure 17.37].

Evelyn D’Elia Master of Science Thesis



2-3 Evolutionary algorithms in robotics 7

Generally the assigned trajectory for the robot to follow is broken down with a task priority-
based framework into pieces to track such as the CoM Cartesian position or foot orientation.

Hard and soft task priorities are defined as explained in [4]. Soft priorities are represented
by a soft priority weight (SPW) wi (i is the task index) on the error of each task Ti, while
hard priorities are represented by the hierarchy level selector li and executed by solving each
level in the nullspace of the one above it, using the successive nullspace projection [12]. For
a formulation in which both hard and soft task priorities are used, the following quadratic
programming (QP) optimization problem is solved at each time step for any given level li of
the task hierarchy:

min
u

∑

i

wi‖Aiu − bi‖2 + ǫ‖u‖2

s.t. cmin ≤ Cu ≤ cmax

umin ≤ u ≤ umax,

(2-1)

where Ai is the task’s equivalent Jacobian, u is the control input, bi is the reference, and ǫ

is a regularization factor. The constraint inequalities represent all control input, dynamics,
environmental, and other constraints on the robot. The reference bi, which depends on the
desired trajectory, is defined for both Cartesian and postural tasks as:

bi = p̈d
i − Ȧiq̇ + λP

i e + λD
i ė, (2-2)

where superscript d refers to desired value, p̈d
i , Ȧi and e = pi − pd

i , ė= ṗi − ṗd
i are the errors

between desired and actual Cartesian position pi and velocity ṗi, and λP
i and λD

i are the
proportional and derivative task convergence gains (CGs), according to [4]. Once the control
input values are determined by Equation 2-1, the following equation is used to estimate the
robot’s response, in terms of joint positions and velocities, to those inputs:

u = M(q)q̈ + C(q, q̇)q̇ + g(q), (2-3)

where q, q̇, and q̈ are the joint position, velocity, and acceleration vectors respectively, M(q) is
the robot’s mass and inertia matrix, C(q, q̇) is its Coriolis matrix, and g(q) is its gravitational
vector. The resulting q and q̇ from Equation 2-3 are then used as feedback to determine the
next bi in Equation 2-2, which is in turn used in Equation 2-1, and the cycle is repeated at
each time step until the end of the simulation.

Task priority-based control boils down the tunable controller parameters to a small set. This
set, however, nonetheless needs to be tuned, and hand-tuning is time-consuming. Rather than
hand-tuning the parameters, it is possible to learn them with an optimization algorithm.

2-3 Evolutionary algorithms in robotics

The most common approach to optimization is via gradient-based methods, for which the
gradient of a cost function is computed. However, this requires the objective function to
be differentiable, and in this thesis that is not the case, because the objective function is
discontinuous. When gradient-based optimization is impossible, a viable alternative is an
evolutionary algorithm, inspired by biological evolution: in each generation, sets of parent
solutions are chosen from a population and offspring solutions are created (mating selection),

Master of Science Thesis Evelyn D’Elia



8 Background

the offspring solutions undergo changes (mutation), and the population size is reduced (natu-
ral selection) [13]. Evolutionary algorithms are black box optimization algorithms that work
well in continuous space, which makes them useful for robotics.

One well-known and often used example of an evolutionary stochastic optimization method
is Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [14]. An iteration in basic
CMA-ES consists of taking many parameter set samples from a Gaussian distribution. Each
candidate parameter solution is tested on the objective function J(θ) and the best-performing
candidates are used to choose how to update the Gaussian distribution for the next iteration.
However, one feature that the original version of CMA-ES lacks is the ability to apply con-
straints; this is solved by modified versions of the algorithm, of which (1+1) - CMA-ES with
Constrained Covariance Adaptation (CCA) has been found in [15] to perform the best for a
humanoid robot. In this variant of the algorithm, only one parameter set is taken in each iter-
ation and the optimization constraints are enforced by updating the covariance to discourage
solutions outside the feasible region [16]. [17] and [18] both employ this CMA-ES version to
search for optimal policy parameters for simulated tasks on the child-sized humanoid iCub
[19].

In [17], (1+1) - CMA-ES with CCA is used to optimize the parameters of radial basis functions
(RBFs) that represent task trajectories. An unconstrained optimization step (without CCA)
is done first to find an optimum within the feasible region, then that optimum is bootstrapped
by a constrained version of the same stochastic optimization. The method is evaluated only
in simulation on the humanoid iCub, for a single task in which the robot must stand up
from a chair. A similar approach [18] represents task trajectories as probabilistic movement
primitives (ProMPs), where the policy parameters optimized are one weight for each basis
function in the ProMP for each task (in this case CoM and waist trajectories). The authors
of [18] skip the first step in [17] by instead using retargeted recorded human trajectories to
initialize the optimization problem, which has 10 parameters, and constrains the CoM to stay
above ground and the robot’s waist to stay close to an inertial reference. However, this study
highlights an important weakness of this optimization algorithm: it must be initialized with
a set of parameters within the feasible region, otherwise it cannot find a solution. Another
limitation of (1+1) - CMA-ES with CCA is that it is a single objective optimization algorithm
[15], [18] and thus can only train on a single trajectory per optimization run. Therefore, for
learning many trajectories at once, CMA-ES with CCA is not suitable.

2-4 Multi-objective optimization algorithms

MOO is a subset within the optimization field that allows optimization to be done over
multiple objective functions, instead of a single one. The problem is formulated as:

min
θ

{f1(θ), f2(θ), . . . , fl(θ)}

s.t. θ ∈ S,
(2-4)

where f(θ) is an objective function, l is the number of objective functions and S is the
feasible set to which the parameter vector θ must belong (i.e., it represents the optimization
constraints). In problems with more than one objective function, there seldom exists a single
solution that optimizes every objective function. Instead, the algorithm optimizes many

Evelyn D’Elia Master of Science Thesis



2-5 Related work with NSGA-II 9

objective functions at once, without aggregating them together in a single metric. Here, the
concept of Pareto optimality is often used: a Pareto optimal solution is a point in parameter
space (within the feasible set S) for which no one objective function can be further optimized
without compromising the performance of another objective [20]. Solving a MOO problem
results in a set of Pareto optimal solutions, called the Pareto front, which each perform
differently with respect to each of the various objective functions. Figure 2-3 provides a visual
example of the need for multi-objective optimization and the typical appearance of a Pareto
front. The example shows a situation where there are two objective functions that cannot
both be optimized at once because their minima are different. Instead of finding a single
optimal solution, a 2-D Pareto front can be made, where each point on the front represents
the performance of a parameter set that minimizes one of the two functions without sacrificing
the other.

One of the most popular MOO methods is called Non-dominated Sorting Genetic Algorithm
II (NSGA-II) [7]. NSGA-II is part of a class of evolutionary algorithms, whose strength lies
in their ability to find a diverse set of Pareto optimal solutions, an important characteristic
for finding a robot controller that is able to generalize to many types of tasks. NSGA-II in
particular is shown to outperform other evolutionary MOO methods in terms of the diversity
and accuracy of solutions found [7].

NSGA-II is a genetic algorithm which works by, in each generation of the algorithm, creating a
population of parameter sets θ to test, evaluating each of them, and selecting only the Pareto
solutions from that population to survive to the next generation. In the next generation, new
variations and the previously created Pareto solutions are added to the population and the
iterations continue until the specified maximum number of generations is reached.

2-5 Related work with NSGA-II

The work in this thesis builds off a similar approach by Penco et. al. [6], which also employs
MOO on a humanoid robot to learn task priority weights and gains. In [6], NSGA-II is used
to produce a Pareto front of control parameters for the humanoid iCub robot. In this case,
the control parameters include the proportional and derivative convergence gains as well as
the values that describe the hard and soft task priorities. The authors of [6], rather than
defining the reference task with Equation 2-2, define the reference bi for a Cartesian task as

bi =
[

b⊤
p,i b⊤

o,i

]⊤
=

[

(

ṗd
i + λiep

)⊤ (

ωd
i + σieo

)⊤
]⊤

, (2-5)

and for a postural task as

bi = q̇d
i + µie, (2-6)

where i is the task index, subscripts p and o are for position and orientation in the Cartesian
task, ṗd

i , ω̇d
i , and q̇d

i are the desired Cartesian linear velocity, Cartesian angular velocity, and
joint velocity respectively, and e= pi − pd

i is the error between desired and actual position,
according to [4]. The convergence gains to be optimized are one or both of λi and σi for each
Cartesian position task, or µi for each postural task.

Master of Science Thesis Evelyn D’Elia



10 Background

(a) Plot of two functions with different minima, which

cannot both be minimized with a single parameter set θ.

(b) Plot of a Pareto front and non-Pareto point. A point

is non-Pareto optimal if for any objective the performance

can be further improved without sacrificing the perfor-

mance of another objective.

Figure 2-3: Visual aid to show the need for MOO and the typical appearance of a 2-D Pareto
front.

Evelyn D’Elia Master of Science Thesis



2-5 Related work with NSGA-II 11

Figure 2-4: The 2-D Pareto parameter sets learned in [6, Figure 3]. Points on the upper left
side of this plot are very stable but do not closely track the desired trajectory, while points on the
lower right track the trajectory well but will probably cause the physical robot to fall over.

Two objective functions are employed in [6]. One measures accuracy by summing reference
error over the whole rollout for each task considered:

fa(θ) =
∑

t,i

∣

∣

∣Φd
t,i − Φt,i

∣

∣

∣, (2-7)

where Φ is the position, orientation, and/or postural value for a given task (the function
parameters), t is the time step, and superscript d indicates the desired value. The other
function measures a solution’s stability in terms of the distance of the ZMP from the center
of the SP:

fr,t(θ) = fr,t−1 +

{

|xcz
t | + |ycz

t |, if robot not fallen

xSP + ySP , if robot fallen,
(2-8)

where xcz, ycz are the function parameters representing the frontal and horizontal ZMP
distance from the center of the SP, and xSP and ySP are the dimensions of the SP.

In all, their approach optimizes three to four parameters per task considered in a rollout: the
soft priority weight, hierarchy level selector, and the convergence gain(s). NSGA-II uses three
fitness functions to evaluate the parameters: Equations 2-7 and 2-8, and a third, 2-9, which
checks whether the robot has fallen. This third function is formulated as

ff,t(θ) = ff,t−1 +

{

0, if robot not fallen

−α, if robot fallen,
(2-9)

where α is a penalty for falling.

The optimization is carried out on a simulated version of the humanoid iCub robot and outputs
20 Pareto-optimal controller configurations. The resultant Pareto fronts for two different
controller types are shown in Figure 2-4. After completing MOO in simulation, the authors
were able to achieve reasonably robust execution of three different double-support motions
on the real robot. Their method of using MOO narrows down the number of controllers to
test in the real world, but it still requires a human operator to test the Pareto solutions on
the real robot and choose one. Also, due to the relatively small number of objective functions
(two) and training trajectories (three), the resultant Pareto front is less diverse.

Master of Science Thesis Evelyn D’Elia



12 Background

2-6 Policy search methods

Policy search (PS) is a specific type of approach that falls under the heading of reinforcement
learning (RL), in which the agent (decision-making controller) searches for the policy, or state-
to-action mapping, that results in the optimization of an objective function. In RL, an agent
uses an action ut to interact with its environment, and then chooses the next action based
on the consequent state xt and immediate reward rt observed from the environment (see [21,
Fig. 3.1] for a diagram). The sum of rewards over time is called the return. In robotics, the
action is often expressed in terms of control inputs such as a vector of joint angles, while the
state is often approximated by the information obtained from the robot’s sensors, such as
cameras and accelerometers. One way in which an RL method can be categorized is as either
a value function-based approach or a policy search (PS) approach [22]. A value function-
based approach is done in two steps: first it estimates the value function, then maximizes
it to determine an optimal policy. This type of approach has the potential to directly find
an optimal solution, but tends to be more complex to solve. Instead, PS directly optimizes
the policy by maximizing expected return. Since the two-step value-based approach permits
more error propagation and often increases the dimensionality of the problem, PS is a better
choice for robotics, where the tasks are episodic, state, action, and parameter spaces can be
large or continuous, and the search method is more careful with less opportunity for errors
to grow [22].

Recently in the RL field there has been a focus on big data and deep learning, but most of
these algorithms focus on using as much data as possible to get an accurate result, and thus
are feasible only in simulation. For a real robot, this is not the ideal approach because it is
difficult and inefficient to run a large number of trials. In contrast, PS is very promising for
real rollouts because its framework facilitates training an agent using only a small amount of
data.

There are three main types of PS: model-free (has no system model), model-based (uses a
model of the system and uses it to estimate expected return), and surrogate-based (uses a
model of the expected return). The surrogate-based approach makes the parameter search
more efficient by learning a model of the expected return (objective function Ĵ(θ)). This
type of method has been shown to outperform the other methods in terms of minimizing the
number of trials required [9].

2-7 Bayesian optimization

The second part of this thesis project aims to facilitate transfer of Pareto solutions from the
MOO step to the real robot. For this, a surrogate-based PS method [9] is chosen because this
type of algorithm conforms to this particular problem’s need for few rollouts. The specific
method used, BO, is a useful method for robots like humanoids whose dynamics are complex,
because instead of directly representing the expected return, BO employs a parametrized
model of it that can be learned, limiting the influence of model inaccuracies by making the
model probabilistic.

After each rollout, BO learns a model of the expected return. The surrogate model that is

Evelyn D’Elia Master of Science Thesis



2-7 Bayesian optimization 13

almost always used is a Gaussian process (GP):

Ĵ(θ) ∼ GP(µ(θ), k(θ, θ′)), (2-10)

where Ĵ(θ) is the surrogate model of the expected return, µ(θ) is the mean function of the
GP, and k(θ, θ′) is the covariance function. Using the set of recorded returns from past
rollouts D1:t, a distribution of the expected return can be estimated for a new parameter set
θ∗ using the predictions of the GP:

µ(θ∗) = k⊤K−1D1:t

σ2(θ∗) = k(θ∗, θ∗) − k⊤K−1k,
(2-11)

where k= k(D1:t, θ∗) is a kernel vector, K is a kernel matrix with Ki,j = k(θi, θj), µ(θ∗) is
the mean prediction of the GP and σ2(θ∗) is the GP variance prediction.

The kernel function k(θ, θ′), used to quantify the difference in expected return Ĵ(θ) between
two possible parameter sets, can be defined in various ways to shape the performance of the
optimization. A class of commonly used kernels, called Matérn kernels, so classified because of
their form, are useful because of their flexibility [10]. The most popular Matérn kernel is the
Squared Exponential (SE) distance kernel, which essentially depends on Euclidean distance
between the two inputs:

kSE(θi, θj) = σ2
k exp

{

−1
2

(θi − θj)⊤diag(l2
k)(θi − θj)

}

, (2-12)

where σ2
k and lk are the signal variance and length scale vector hyperparameters respectively.

Another such kernel, the 5

2
Matérn kernel, is the one used for the implementation in this

project:

k(θ, θ′) = σ2
k

(

1 +

√
5r

lk
+

5r2

3l2k

)

exp

(

−
√

5r

lk

)

r =
∥

∥θ − θ′
∥

∥,

(2-13)

In BO, the acquisition function uses the surrogate model Ĵ(θ) to choose which policy param-
eters to test next, while balancing exploration and exploitation. Typically in order to find
parameter sets to look at, a nonlinear optimizer is used. An acquisition function is defined
as the expected utility of a given parameter vector θ, where the utility is a measure of how
much information will be provided by a parameter set. Figure 2-5 shows, for a 1-D example,
how the location of the maximum of the acquisition function determines the next sampled
parameter θ.

Some of the most common acquisition functions are probability of improvement (PI) [23],
expected improvement (EI) [24], and Upper Confidence Bound (UCB) [25]. Both PI and EI
check the likelihood that a given parameter vector will improve the return beyond a target
value T , which must be tuned. Of these, the most promising acquisition function, UCB [25],
is optimistic in that it judges each prospective parameter set by the upper limit of the GP of
its expected return:

αUCB(θ; D1:t) = µ(θ) + βσ(θ), (2-14)

Master of Science Thesis Evelyn D’Elia



14 Background

Figure 2-5: 1-D example of BO, showing how each sampled parameter set is picked by the
acquisition function [10].

where β is a hyperparameter that balances exploitation and exploration by specifying how
high the upper confidence is. This hyperparameter can be tuned by hand according to the
needs of the application, or can instead be calculated, in a variant of the UCB algorithm
known as GP-UCB. An analysis of three different acquisition functions including UCB shows
that UCB is clearly advantageous for making sure there is enough exploration of the parameter
space [26]. In the GP variant of UCB, β is calculated as:

β =

√

√

√

√2 log

(

n
d

2
+2π2

3δ

)

, (2-15)

where n is the number of past data points, δ is a hyperparameter between 0 and 1, and d is
the dimension of the parameter vector.

Figure 2-6 shows the steps of the BO algorithm: first perform a rollout to measure the fitness
of a solution, then update the GP to reflect the results of that rollout, and finally evaluate
the acquisition function to choose the next parameter set θ to test.

2-8 Related work with BO

BO is, in terms of data efficiency, the best PS approach for this work. It can be tailored to fit
the needs of the user by picking and choosing its elements, such as the mean function µ(θ), the
covariance function k(θ, θ′), and the acquisition function α(θ; D1:t). Table 2-1 summarizes
the most relevant recent work in BO.

Evelyn D’Elia Master of Science Thesis



2-8 Related work with BO 15

Figure 2-6: Algorithm outline of BO [9].

Pub Algorithm Robot Task Mode
Param
space

State
space

Joint
space

Trials

[27] BO w/UCB biped walk real R
4

R
4

R
4 ~25

[28] BO w/ DoG kernel planar biped walk simulation R
16

R
44

R
14 ~25

[29] BO w/ trajNN kernel planar biped walk simulation R
16

R
44

R
14 ~20

[30] BO w/ UCB damaged hexapod walk simulation R
36

R
3

R
12 ~10

Table 2-1: Summary of recent BO approaches on legged robots and the experiments used to
validate them.

2-8-1 Incorporating prior information

Prior information has the potential to speed up learning drastically. In BO, the typical way
of providing this prior information is via the GP mean and covariance functions.

One successful use of priors in BO [30] pre-computes a behavior-performance map, or a map
in parameter space of how well the robot performs in simulation, before commencing the
optimization. This map becomes the initial guess for the GP mean function µ(θ) and thus
serves as a guide for learning on the real robot, saving time by guiding the real-world BO
toward likely high-performing solutions.

Other works incorporate priors into the kernel function instead. Some of these are tailored
to the type of robot or task, and some of them take advantage of the flexibility of a neural
network (NN). For example, the behavior-based kernel (BBK) introduced in [31] compares
the policy distributions by calculating the Kullback Leibler (KL) divergence, but it is done in
a very computationally costly way. In [28] a new type of kernel, called Determinants of Gait
(DoG), was designed to implement BO on a bipedal robot. This kernel is designed specifically
to teach a bipedal robot with 16 policy parameters to walk, and uses short simulations to
evaluate the success of a gait by checking whether the torso is leaning forward and whether the
knee is bent while the leg is in the air, among other criteria. Using simulations to construct
the kernel is a way of incorporating prior information to speed up the PS. After the short
simulation, a composite function φDoG(θ) that accounts for the aforementioned performance
measures is then used to construct the kernel kDoG:

kDoG(θi, θj) = σ2
k exp

{

−1
2

(φDoG(θi) − φDoG(θj))⊤diag(l2
k)(φDoG(θi) − φDoG(θj))

}

, (2-16)

Master of Science Thesis Evelyn D’Elia



16 Background

Figure 2-7: Comparison of some GP kernels that are shown to work well on a bipedal robot [29,
Figure 7a].

which essentially measures the difference between the performance measure of each input
θ rather than difference between the inputs themselves. Simulated experiments on uneven
terrain with σ2

k = 1 and l = 1 show that using this type of kernel with BO significantly
decreases the number of rollouts (from ∼100 to ∼30) compared to the typically used SE
kernel. This is especially impressive for such a problem with 16 policy parameters, which is
typically too many for BO to work well. In a subsequent study by the same authors [29],
another means of designing the kernel, called trajNN, was developed using a NN, which is
shown to perform comparably to DoG, with the added advantage of not being dependent on
the cost. Like [28], [29] also uses short simulations to gather information to construct the
kernel. [29] introduces a cost-agnostic (trajNN) kernel ktrajNN . This kernel is given by:

ktrajNN (θi, θj) = σ2
k exp

{

−1
2

(φNN (θi) − φNN (θj))⊤diag(lk)−2(φNN (θi) − φNN (θj))
}

,

(2-17)
where lk is a scalar length scale hyperparameter and φNN is the NN output in the form of
trajectory information from the simulation. The trajNN kernel is more versatile and simpler
to design than kDoG because it requires no domain knowledge. Figure 2-7 shows a comparison
between the typical SE kernel, the hand-designed DoG kernel, and the learned trajNN kernel.
From the figure it can be seen that learning with these more informative kernels does improve
the speed of learning, but they also make the algorithm much more complex.

2-8-2 Acquisition functions

Between the three common acquisition functions, [27] finds that UCB yields the best results
when tested on the bipedal robot Fox with spherical feet. In this study, the UCB method
takes only about 30 trials to learn a fast, robust gait. PI requires twice as many trials to
achieve comparable robustness to UCB, whereas EI requires at least 60 trials to reach a much
lower robustness level. Another analysis of the three aforementioned functions shows that

Evelyn D’Elia Master of Science Thesis



2-9 Conclusion 17

UCB is clearly advantageous for making sure there is enough exploration of the parameter
space [26]. The authors of [30] also use UCB on their hexapod robot, manually choosing β

to tailor the exploration-exploitation tradeoff.

Rather than using nonlinear optimization to sample parameter sets to be evaluated by the
acquisition function, Cully et. al. use a method called exhaustive search to pick the parameter
set θ for the next BO iteration [30]. Exhaustive search is useful if there is a relatively small,
discrete number of parameter sets under consideration. When this is the case, instead of
using an optimizer, exhaustive search simply uses the acquisition function to evaluate every
possible θ option on the GP, and chooses the best acquisition function performer as the next
set to test. Since in this project the Pareto front will contain a relatively small number of
individuals (∼300), exhaustive search is a realistic and efficient way to ensure only the most
promising Pareto points are chosen to evaluate during BO.

2-9 Conclusion

In summary, this thesis project employs a task priority-based control approach on the hu-
manoid Talos robot. NSGA-II, which has been used successfully before for learning task
parameters with two objective functions, will be used in this project to learn a Pareto front
of task control parameters for many objectives at once. Then, for an approach that has the
potential to take this Pareto front and apply it to new trajectories, BO is a viable choice
because of its ability to learn in few rollouts: this gives the algorithm the potential to be
applied on a real robot.

To this author’s knowledge, the combination of learning a Pareto front for many trajectories
at once, and then using it to bootstrap the search for a successful parameter set for new
trajectories has not been previously validated. This approach combines modularity with data
efficiency to be flexible and fast enough for real robot application.

Master of Science Thesis Evelyn D’Elia



18 Background

Evelyn D’Elia Master of Science Thesis



Chapter 3

Multi-objective optimization

The first part of this project focuses on training a group of control parameter sets for many
different goal trajectories at once, initially with no self-collision checking and then with self-
collision checking. This is made possible by multi-objective optimization (MOO), which allows
the learning of multiple separate objective functions at once. The resultant Pareto front of
parameter sets contains a variety of different individuals, each of which performs differently
on each trajectory. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) algorithm
yields a diverse Pareto set of control solutions that can then be analyzed to learn what control
parameter values work well for different trajectories.

3-1 Methods

In this section, in order to highlight that this MOO approach can be applied generally to the
problem of automatic tuning of control parameters, we first discuss the overarching theme
of the method. Figure 3-1 shows the steps of the rollout and how the rollouts are used for
NSGA-II to optimize the objectives fb(θ).

3-1-1 Task formulation

In this work the parameter set that is learned by NSGA-II is composed of task priority-based
control weights and gains as explained in Section 2-2. In task priority-based control, the choice
of which tasks to consider greatly influences the performance of the robot. Here, the tasks
used reflect the most important goals for accuracy and stability of the performed trajectories
on the Talos. In our MOO formulation, there are two parameters per task that are optimized:
the soft priority weight (SPW) which measures the importance of the task compared to the
other tasks, and the convergence gain (CG), which defines the responsiveness of the controller
to errors in task position and velocity.

The parameter set θ, consisting of these SPWs and CGs, captures the behavior of the con-
troller. This parameter set is what will be optimized for each trajectory, and the Pareto front
generated by MOO will contain many possible choices for θ.

Master of Science Thesis Evelyn D’Elia



20 Multi-objective optimization

Figure 3-1: Diagram of the steps required to carry out NSGA-II optimization, starting with a
goal trajectory and ending with a Pareto front of solutions.

3-1-2 Pareto front dimensions

Next, in order to generate the Pareto fronts, the quality of a given parameter set is measured
by the objective functions. The main aspect of the NSGA-II implementation in this thesis
that sets it apart from that of [6] is the objective function setup that is used. Penco et. al.
use two objective functions fa(θ) and fr(θ), one which measures positional accuracy and the
other which measures robot stability. Instead, in this thesis work, there is a separate objective
function for each training trajectory chosen. This means that the resultant Pareto front is
l-dimensional, where l is the number of objectives, corresponding in this case to the number
of training trajectories used.

3-2 Experiments in simulation

In order to perform inverse dynamics task priority-based control, the Task Space Inverse
Dynamics (TSID) library [32] was used on top of the Pinocchio framework [33] in C++.

The MOO algorithm, NSGA-II, was parallelized on a 256-core computer using the Sferesv2

evolutionary algorithm framework [34]. Parallelization drastically reduces the amount of
time required for this computationally intensive algorithm by allowing hundreds of simulated
rollouts to be completed at once. Nonetheless, to complete a single NSGA-II run of 500
generations with eight objective functions and without self-collision checking (checking self-
collisions increases the amount of computations and thus takes much longer) requires roughly
2 days to finish on the 256-core computer that was used. Each of the task priority weights
and gains was optimized in the range of [0, 2000], the same range used when hand-tuning the
task parameters.

The first datasets were gathered without self-collision checking. This made it much easier for

Evelyn D’Elia Master of Science Thesis



3-2 Experiments in simulation 21

Task Description SPW CG

T{rh,lh} hand pose (symmetric) wh λP
h = σP

h

T{rf,lf} foot pose (symmetric) wf λP
f = σP

f

TCoM CoM position wCoM λP
CoM

Tto torso orientation (roll, pitch) wto σP
to

Tp joint angles wp µP
p

Table 3-1: Symbol, description, SPW name and CG type for each optimized task.

the optimizer to find very low tracking error solutions, although most of these very ‘accurate’
solutions turned out to be infeasible due to the robot colliding with itself (such as the hand
hitting the hip) during the movement. The next set of data was gathered with collision
checking enabled, which resulted in lower accuracy (in some cases it is necessary to have
collisions to follow the trajectory exactly), but the individuals in the resulting Pareto fronts
were much more feasible for real-robot deployment.

3-2-1 Tasks used

As shown in Table 3-1, there are five tasks used to guide the movements of the Talos. This
means that the parameter set optimized by NSGA-II has 10 elements, and is structured as:

θ =
(

wh wf wCoM wto wp λP
h λP

f λP
CoM σP

to µP
p

)

. (3-1)

Table 3-1 also denotes the type of each task. The hand and foot tasks are Cartesian tasks
which track both position and orientation of those robot parts. The center of mass (CoM)
task, rather, is solely a position task in the x and y dimension of the CoM (the ground
projection), while the torso task tracks solely the roll and pitch orientations of the robot’s
torso. Finally, the posture task tracks the cumulative joint angle difference of all the robot’s
joints from their start position.

3-2-2 Objective function

For our implementation, each objective function is a measure of the Cartesian accuracy of
three selected tasks: Th, Tf , and TCoM . The form of each of these objective functions is:

fb =







1

Nt

∑T
t=0

(
∥

∥

∥eCoM
t

∥

∥

∥+
∥

∥

∥eh
t

∥

∥

∥+
∥

∥

∥e
f
t

∥

∥

∥

)

, if robot not fallen

1.0 × 1010, if robot fallen,
(3-2)

where b is the training trajectory index, Nt is the total number of time steps, T is the final
time, t is the current time, and e is the 3-D Cartesian position (without orientation) error of
the specific task at time t. Using a separate objective function per training trajectory ensures
that the learned Pareto front will contain a diverse set of parameters, likely to work well on
a variety of test trajectories.

Master of Science Thesis Evelyn D’Elia



22 Multi-objective optimization

Set 1 Set 2
Walk on spot Squat

Clap Touch ground
Lean and twist Dance

Right arm reach Lift

Table 3-2: Separation scheme of training trajectories for each of the two self-collision checking-
enabled MOO sets.

3-2-3 Training trajectories

The more diverse the Pareto front, the more likely it is to transfer well to new trajectories.
Since the trajectories used by NSGA-II to learn the Pareto front have a significant effect on
this diversity, it is essential to choose training trajectories that use different parts of the robot
and have different goals. For example, a walk-in-place training trajectory focuses on the feet
and dynamic stability, a clapping trajectory focuses on hand tracking, and another trajectory
which directs the robot to lean down and simulate picking up a box focuses on both hands
and legs.

In all, there are eight training trajectories used, each of which has a duration of 20 s. These
eight trajectories are listed in Figure 3-2 along with corresponding screenshots of the move-
ments. This training set is evenly balanced with four handmade trajectories (walk on spot,
squat, clap, and touch ground), for which the target positions were chosen by hand, and four
trajectories retargeted from human motions recorded with the XSens MVN motion tracking
suit [35]. The result of combining these trajectories is a suitably varied and diverse training
set.

For tests which did not utilize self-collision checking, eight training trajectories and thus
eight objectives were employed, whereas for the tests with self-collision checking, due to the
increased computational load, only four training trajectories and objectives were used, and the
number of generations was capped at 100. In order to glean optimized parameter information
for all eight of the original training trajectories (to allow comparison with the parameter
sets learned without collision checking), NSGA-II with self-collision checking was run twice
with two different sets of training trajectories. Table 3-2 lists which trajectories were used
as training sets in each of the two optimization setups. The choice of which trajectories to
add to each set was done in order to make both sets reasonably diverse, and thus each set
contains two handmade trajectories and two recorded trajectories.

3-2-4 Modified robot models

Since a simulation can never be an exact model of the real environment, one issue that is always
present when training in simulation for deployment on a real robotic system is the reality gap,
or the disparity between the simulation and real life. The obvious approach to solving this
issue is to make the simulation as accurate (high-fidelity) to the real environment as possible.
This can be achieved by two main approaches, either by improving the physical accuracy of
the simulator, or by improving the accuracy of the robot and environment models. However,
certain phenomena such as soft contacts or friction are too complex to estimate accurately,
thus making a perfect model impossible.

Evelyn D’Elia Master of Science Thesis



3-2 Experiments in simulation 23

(a) Walk on spot. (b) Squat.

(c) Clap. (d) Touch ground.

(e) Dance. (f) Lean and twist.

(g) Right arm reach. (h) Lift.

Figure 3-2: Training trajectories used during multi-objective optimization. Figs. 3-2a, 3-2b,
3-2c, and 3-2d are handmade motions, while the other four are recorded and retargeted from
human motions.

Master of Science Thesis Evelyn D’Elia



24 Multi-objective optimization

Model name Description
10% heavier Robot mass uniformly scaled up by 10%
10% lighter Robot mass uniformly scaled down by 10%

5 kg left shoulder 5 kg mass added to the left shoulder
5 kg right hand 5 kg mass added to the right hand end effector
5 kg backpack 5 kg mass added behind the center of the robot’s torso

Table 3-3: Description of modified URDF models used for testing transferability.

In order to evaluate the transferability (i.e. the success in crossing the reality gap) of the
Pareto solutions from NSGA-II, multiple modified models (URDF files) of the Talos robot
were created. Since the real robot is likely to have a slightly different CoM than the model,
and since its mass distribution greatly affects its stability and overall success, these modified
models, summarized in Table 3-3, vary the mass to help determine whether this method yields
transferable controller solutions.

3-2-5 Results and analysis without self-collision checking

Initially, NSGA-II was run without self-collision checking enabled. This decision was made
in order to get a preliminary idea of the performance of this method, since the simulation is
much less computationally intensive with no collision checking. For this part, all eight of the
trajectories in Figure 3-2 were used as training trajectories. Therefore, there were eight total
objective functions in the MOO.

Number of generations

At the beginning, to avoid wasting time running the optimization for too long, the number of
generations for which to run the optimization was chosen based on analysis of how the Pareto
front changed over a given number of iterations. From this, it was determined that the Pareto
front converges to a reasonably successful set of solutions by the 500th generation, as shown
in Figure 3-3. In the figure, the centers of the covariance plots change very little between the
450th and 500th generation, which means that by this point the individual solutions in the
Pareto front are fairly constant. Extra training beyond this point would increase the risk of
overfitting parameter solutions to the training trajectories, making the front less flexible for
new trajectories. Consequently, NSGA-II was run for 500 generations for each dataset.

Learned parameter values

Once the number of generations was decided, five separate optimizations were run. The values
that were learned for each parameter in θ are very useful for understanding the control needs
of different types of trajectories, so boxplots of these learned values are depicted in Figures
3-4 and 3-5.

From these figures it is clear that the best-performing parameter values vary widely depending
on the goal trajectory in question. However, two constants for every trajectory are that the
CoM weight wCoM is uniformly close to the top of the allowed range, and the posture weight

Evelyn D’Elia Master of Science Thesis



3-2 Experiments in simulation 25

(a) Plot of convergence of the Pareto front over 500 generations for handmade behaviors.

(b) Plot of convergence of the Pareto front over 500 generations for recorded behaviors.

Figure 3-3: These plots show that without self-collision checking the Pareto front converges to
a fairly steady group of parameter sets by the time generation 500 is reached. Solutions which
yield tracking error of more than 0.5 m can be considered unsuccessful and are not shown in order
to keep the plots readable.

Master of Science Thesis Evelyn D’Elia



26 Multi-objective optimization

wp is relatively close to zero for every trajectory. The values of wCoM can be explained by the
fact that the CoM position is the most important indicator of stability, which determines the
success of a parameter set. Meanwhile, the posture task uses the robot’s starting joint angles
as a reference, which explains why the wp values must be low: if the posture task receives a
high priority, the robot cannot follow the trajectory since it will not move at all. The reason
the posture task is included to begin with is that by discouraging large movements, it helps
to make the robot’s movements more efficient and less jerky.

It is also discernible from the figures that for some trajectories, there are certain parameters
whose value does not matter much, such as the hand weight wh for the dance trajectory
(Figure 3-4). What this result shows is that for this particular trajectory, the robot’s hand
position is not important for stability, probably because during this motion the robot is in
a very stable stance with its knees bent, so the hands are less likely to throw it off balance.
However, it can also be seen from this boxplot that the median value is high, which shows that
although the hand positions are not important for stability, they are important for accurate
tracking of the trajectory. Conversely, for some trajectories, there are certain parameters that
can only have a particular, exact value in order to work well. For instance, in Figure 3-4, the
lift trajectory is the only one whose wf boxplot has a tiny inner quartile range. This means
all of the most successful parameter sets for this trajectory had a very specific wf value of
about 1500.

Some of the results are surprising, such as the fact that the hand weight is high for the squat
trajectory. This can be explained by the fact that the hands balance the robot to avoid falling
backward. Another unexpected result is that the touch ground trajectory requires a very high
wf , even though its feet do not need to move. This may be because the orientation, not the
position, of the feet is crucial to keep the robot from falling. On the other hand, an expected
result from Figure 3-5 is that all the CGs for robust trajectories are relatively low: these gains
are measures of the controller’s reactiveness, and the more reactive it is, the more risk the
robot runs of becoming unstable and failing.

For these training results without self-collision checking, a video comparing the most ac-
curate learned parameter set θ for each trajectory to a generic or robust θ is available at
https://youtu.be/cnIo-aWCOcs. This video shows that there is a large disparity in the track-
ing performance of learned control parameters for a specific controller versus generic param-
eters. From the boxplot, we can also observe this compromise on accuracy that the robust
controllers make: wherever the robust and trajectory-specific boxplots do not overlap, such as
between the squat and robust λP

CoM boxplots, it means none of the robust controllers are in
the top 50 (out of ∼1500 Pareto individuals total across the five datasets) highest performers.
Clearly, a robust parameter set sacrifices accuracy in order to succeed on multiple trajectories.

Knowing the typical best-performing parameter values for different trajectories is useful for
multiple applications, such as the design of better-performing hand-tuned parameter sets, or
providing initial estimates in order to speed up the optimization.

Evelyn D’Elia Master of Science Thesis

https://youtu.be/cnIo-aWCOcs


3-2
E

xp
erim

en
ts

in
sim

u
lation

27

Figure 3-4: Comparison of top 50 best-performing learned SPWs for each training trajectory over five datasets without self-collision checking.

M
aster

of
S
cien

ce
T

h
esis

E
velyn

D
’E

lia



28
M

u
lti-ob

jective
op

tim
izatio

n

Figure 3-5: Comparison of top 50 best-performing learned CGs for each training trajectory over five datasets without self-collision checking.

E
velyn

D
’E

lia
M

aster
of

S
cien

ce
T

h
esis



3-2 Experiments in simulation 29

Trajectory Original 10 percent heavier 10 percent lighter 5 kg right hand 5 kg left shoulder 5 kg backpack
Walk on spot 35.6% 16.2% 35.6% 16.8% 9.3% 4.8%

Squat 100% 99.7% 100% 99.7% 100% 100%
Clap 33.5% 29.3% 31.1% 16.8% 21.9% 31.7%

Touch ground 53.6% 45.5% 56.6% 30.2% 40.7% 42.2%
Dance 45.2% 24.6% 31.1% 12.0% 29.0% 40.7%

Lean and twist 78.4% 74.9% 75.7% 35.0% 71.0% 86.2%
Right arm reach 100% 100% 100% 99.1% 100% 100%

Lift 88.6% 88.6% 89.2% 78.7% 88.9% 94.6%

Table 3-4: Percent of total non-collision-checked Pareto individuals successful on each robot
model.

Performance on modified models

After analyzing the performance of the Pareto fronts on the original robot model, it was also
evaluated on the modified models. Table 3-4 shows for an example dataset the proportion of
the Pareto front individuals that succeed (do not fall) on the original and modified models.
The information in this table indicates that for most of the trajectories, using a modified model
does not have a large effect on whether the Pareto individuals fail. In fact, the squat and right
arm reach trajectories are non-failing with almost every parameter set for every model. The
walk on spot trajectory, on the other hand, does not succeed on very many Pareto individuals
on the original model, and on the modified models its performance suffers even more. A
reasonable explanation for this result may be that since this is the only trajectory that moves
its feet off the ground, it is more susceptible to becoming unstable.

The modified model which affects the trajectories most negatively is the one which adds 5
kg to the right hand. This makes sense since it is the only modified model which adds extra
weight at an end effector, which is further from the CoM and thus has a larger effect on the
inertia of the robot. This result shows the usefulness of having a large number of parameter
options in the form of a Pareto front, because a hand-tuned solution which works for a robot
with no payload is unlikely to work for a robot holding an object. Analyzing the performance
of the Pareto front on this type of modified model helps to weed out solutions that will not
work when the robot works with payloads.

Despite the fact that the modified models affect the performance of the Pareto front, they do
not affect its shape. This was verified by plotting the fitness versus Pareto individual number
between the original model and the modified model. Figure 3-6 shows two examples of these
plots, one for the squat trajectory, whose performance does not suffer on the modified models,
and one for the walk on spot trajectory, which is severely affected by the model changes. From
the plots, it is clear that although some parameter sets that succeed on the original model
fail on the modified model, the overall shape of the Pareto front is similar. This means that
the region of the Pareto front with the best Pareto individuals on the original model is the
same on the modified model. Since the main difference between the simulation model and
the real robot will likely be the distribution of mass, these results imply that there is no need
to close the reality gap.

Master of Science Thesis Evelyn D’Elia



30 Multi-objective optimization

(a) Squat.

(b) Walk on spot.

Figure 3-6: Examples of the change in performance of a Pareto front between one robot model
and another, without collision checking.

Evelyn D’Elia Master of Science Thesis



3-2 Experiments in simulation 31

Trajectory Hand-tuned (m) Learned (m)
Walk on spot 0.0923 0.1020

Squat 0.1196 0.0894
Clap 0.4375 0.4105

Touch ground 0.4433 0.4242
Dance 0.1970 0.1898

Lean and twist 0.1889 0.1597
Right arm reach 0.1881 0.1865

Lift 0.1881 0.1770

Table 3-5: Average Cartesian task error achieved for each training trajectory by a hand-tuned
controller versus the average objective score of the robust controllers learned without self-collision
checking.

Evaluation of generic parameter sets

Finally, more analysis is done to show that this MOO method of generating control param-
eters is superior to hand-tuning not just in terms of labor-intensiveness, but also in terms
of performance. Here, the average Cartesian task errors over all the robust parameter sets
found by NSGA-II are compared to those of a parameter set (refer to Equation 3-1 for order
of task weights and gains) hand-tuned by members of the LARSEN lab:

θ =
(

10.0 1000.0 1000.0 10.0 1.75 30.0 30.0 30.0 30.0 10.0
)

.

Table 3-5 shows that for all but one trajectory, the learned parameter sets achieve better
tracking error than the hand-tuned set. For the lone trajectory on which the learned sets
do not perform better, the difference is very small: less than 1 cm. These results show that
generating a Pareto front of control parameter sets not only produces accurate solutions for
multiple specific trajectories, it also yields generic solutions that perform as well or better
than hand-tuned ones, and require a fraction of the hands-on time to generate.

It can also be observed from Figures 3-4 and 3-5 that the actual mean parameter values
learned for a robust controller are different from those in the hand-tuned set. Specifically, the
value for wf decreases drastically and the value for wCoM increases drastically, while λP

h , λP
f ,

and λP
CoM also increase by a significant amount.

3-2-6 Results and analysis with self-collision checking

The optimized results from Section 3-2-5 are useful for finding solutions that accurately track
the training trajectories. Unfortunately, these results are not safe to use on the physical Talos
due to the risk of self-collision. Therefore, another experiment was conducted using NSGA-II,
this time employing a self-collision checker in the simulation.

Learned parameter values

For the self-collision-checked datasets, due to the amount of time required to create them,
there is only one of each, although undoubtedly running a larger number optimizations would

Master of Science Thesis Evelyn D’Elia



32 Multi-objective optimization

yield a fuller view of the parameter ranges that work well for each trajectory. These datasets,
since they are only optimized with four training trajectories and for 100 generations each,
only have about 100 Pareto individuals: the Set 1 Pareto front has 120 individuals and the
Set 2 front has 110 individuals. For SPWs, Figures 3-7 and 3-8 show that just as for the
parameters generated with no self-collision checking, wCoM and wp are, respectively, very
high and very low for every trajectory. Interestingly, the hand weights wh for the clap, lean
and twist, right arm reach, and squat trajectories are much closer to the upper bound of 2000
in this collision-checked set, whereas without collision checking the hand weights were in the
lower end of the allowable range. It makes sense that when trying to avoid self colliding, the
robot places high importance on the position of the hands, as these are the parts that are
responsible for most collisions. On the other hand, from non-collision-checked to collision-
checked Pareto fronts, the wh increases modestly for the walk, touch ground, dance, and lift
trajectories, which do not move the hands much near the rest of the robot’s body, and thus
are at less risk of colliding.

The wf and wto values in the collision-checked sets are also in general slightly higher than
those exhibited without collision checking. This may stem from avoidance of torso to thigh
collisions. The typical value of the walk wto is higher in Set 1 than in the non-collision-checked
sets, but lower than that of the other trajectories in Set 1, and this is probably due to the
fact that like the hands, the torso is not moving much in this trajectory and therefore is at
low risk of colliding. Also, the squat and touch ground trajectories exhibit a large range for
wto, which means this task is not likely to cause self-collisions for these trajectories.

The CG boxplots in Figures 3-9 and 3-10 show that the learned parameters vary less between
trajectories here than without collision checking. The λP

CoM values are universally very close
to 2000, which is necessary to allow the robot to maintain stability. On the other hand, the
torso and posture CGs are generally nearer to zero. It can be postulated that by making
these robot parts less reactive, there are less jerky motions, lowering the risk of both self-
collision and falling. The walk and squat trajectories buck these trends somewhat, and this is
possibly due to the fact that a self-collision failure is much less likely than falling over for these
trajectories (since the hands are not moving much). Except for those of the squat trajectory,
the torso and posture CGs have a tiny range of values, meaning that these parameters need
to be very precise not to cause collisions. The squat is the most stable and therefore ‘easy’
trajectory to find control parameters for, so for this reason it has a wider range of successful
weights and gains. Conversely, λP

f values for each trajectory have a wide range and a relatively
high median, suggesting that the specific value of this parameter does not have as large an
influence on the possibility of failure, but that it does play a role in stabilizing the robot.

Evelyn D’Elia Master of Science Thesis



3-2
E

xp
erim

en
ts

in
sim

u
lation

33

Figure 3-7: Comparison of top 20 best-performing learned SPWs for each training trajectory in Set 1, which enables self-collision checking.

M
aster

of
S
cien

ce
T

h
esis

E
velyn

D
’E

lia



34
M

u
lti-ob

jective
op

tim
izatio

n

Figure 3-8: Comparison of top 20 best-performing learned SPWs for each training trajectory in Set 2, which enables self-collision checking.

E
velyn

D
’E

lia
M

aster
of

S
cien

ce
T

h
esis



3-2
E

xp
erim

en
ts

in
sim

u
lation

35

Figure 3-9: Comparison of top 20 best-performing learned CGs for each training trajectory in Set 1, which enables self-collision checking.

M
aster

of
S
cien

ce
T

h
esis

E
velyn

D
’E

lia



36
M

u
lti-ob

jective
op

tim
izatio

n

Figure 3-10: Comparison of top 20 best-performing learned CGs for each training trajectory in Set 2, which enables self-collision checking.

E
velyn

D
’E

lia
M

aster
of

S
cien

ce
T

h
esis



3-2 Experiments in simulation 37

Trajectory Original 10 percent heavier 10 percent lighter 5 kg right hand 5 kg left shoulder 5 kg backpack
Walk on spot 94.2% 99.2% 98.3% 98.3% 82.5% 99.2%

Clap 47.5% 0.8% 1.7% 0.8% 0.8% 0.0%
Lean and twist 65.0% 55.8% 71.7% 20.0% 33.3% 50.8%

Right arm reach 86.7% 95.8% 100% 97.5% 97.5% 99.2%
Squat 79.2 91.7 91.7 91.7 91.7 91.7

Touch ground 35.9 25.0 25.0 22.5 25.0 23.3
Dance 55.0 74.2 70.0 57.5 75.0 79.2
Lift 62.5 80.8 80.8 80.8 80.8 80.0

Table 3-6: Percent of total collision-checked Pareto individuals successful on each robot model.

Performance on modified models

After analyzing the learned parameter values, both Pareto fronts were tested on the same
modified robot models as before. Table 3-6 shows that with self collision checking, unlike
without, many of the trajectories exhibit less of a steep decrease in performance on new
models. In fact, many of them (walk on spot, squat, dance, and lift) exhibit improved
performance on most of the modified models. The walk on spot and right arm reach perform
very well on every model, possibly because they are not moving the hands near the rest of
the robot’s body. On the other hand, the clap trajectory suffers much more markedly with
self collision checking on the new models than it does without collision checking. This is
probably due to the likelihood of the hands colliding with each other: on the original model
the robot had enough trials to learn to avoid this, but changing the model throws off the
delicate balance. It can also be observed from the Pareto plots of selected trajectories in
Figure 3-11 that just as without collision checking, with collision checking the Pareto front
tends to retain its general shape, even if a modified model causes more Pareto individuals to
fail.

Evaluation of generic parameter sets

To evaluate whether NSGA-II learns solutions that are better than hand-tuning, once again
the error of hand-tuned parameter sets is compared to that of learned sets. For self-collision-
checked control, there are two hand-tuned parameter sets: one for handmade trajectories,

θ =
(

10 1000 1000 10 1.75 30 30 30 30 10
)

,

and one for recorded trajectories,

θ =
(

100 100 2000 1000 100.75 1000 30 1000 30 60
)

.

The performances of the corresponding hand-tuned parameters are compared to the average
error of the robust Pareto front solutions in Table 3-7. From this comparison we see that, as
without collision checking, in most cases the learned robust parameter sets outperform the
hand-tuned controller. This is especially clear for the touch ground trajectory, which was not
included when the hand-tuning was performed. Because of this, the hand-tuned parameter
set is unsuccessful on that trajectory.

Additionally, Figures 3-7, 3-8, 3-9, and 3-10 show that the actual mean parameter values
learned for a robust controller are very different from those in the hand-tuned set, further
illustrating the usefulness of optimization via this method.

Master of Science Thesis Evelyn D’Elia



38 Multi-objective optimization

(a) Walk on spot.

(b) Lean and twist.

Figure 3-11: Examples of the change in performance of a Pareto front between one robot model
and another, with collision checking. Solutions with tracking error greater than 0.5 are labeled as
failing solutions.

Evelyn D’Elia Master of Science Thesis



3-3 Experiments on the real robot 39

Trajectory Hand-tuned (m) Learned (m)
Walk on spot 0.1701 0.1654

Squat 0.2486 0.2314
Clap 0.5893 0.1644

Touch ground 1.0 × 1010 (self collides) 0.3557
Dance 0.1936 0.3234

Lean and twist 0.1845 0.1649
Right arm reach 0.1877 0.1681
Lift and twist 0.2154 0.2469

Table 3-7: Average Cartesian task error achieved for each training trajectory by a hand-tuned
controller versus the average error of the robust controllers learned with self-collision checking.

Trajectory No collision checking (m) Collision checking enabled (m)
Walk on spot 0.0426 0.1417

Squat 0.0195 0.2303
Clap 0.3467 0.1531

Touch ground 0.2574 0.1821
Dance 0.1447 0.1822

Lean and twist 0.1117 0.1531
Right arm reach 0.1376 0.1532
Lift and twist 0.1220 0.1821

Table 3-8: Best Cartesian task error achieved for each training trajectory by Pareto fronts with
and without self-collision checking.

3-2-7 Comparison

In the previous sections it is shown that while the learned parameters and consequent fitnesses
are very different between non-collision-checked and collision-checked training configurations,
NSGA-II is successful in finding a reasonably large set of well-performing options in both
cases.

Table 3-8 shows that in most cases the tracking error is higher with self-collision checking than
without. This is expected, since in effect, the robot’s movements are more constrained in the
collision checking case. However, self-collision checking is necessary for learning parameters
that are safe to test on the real robot.

3-3 Experiments on the real robot

After evaluating the performance of the learned Pareto fronts in simulation, two of the tra-
jectories were validated on the real Talos robot. This was done for two reasons: to see if
it performed similarly to the simulation, and to compare a learned parameter set with the
hand-tuned parameter sets. The two trajectories chosen for this test were the squat and
dance, one which is a very stable, handmade trajectory, and the other which is a less stable
motion recorded by a human. We executed each of the trajectories using both the hand-tuned
parameters and the NSGA-II parameters learned with collision checking.

Master of Science Thesis Evelyn D’Elia



40 Multi-objective optimization

3-3-1 Parameter sets used

The hand-tuned parameters used for these tests correspond to those listed in Section 3-2-
6, where the set for handmade trajectories is used for the squat and the set for recorded
trajectories is used for the dance. In constrast, the learned parameters were chosen based
on their success in the Gazebo simulator, which has higher fidelity than the simulator used
for NSGA-II optimization. The control parameters with the best squat tracking error in the
Set 2 Pareto front worked well in Gazebo. On the other hand, the Set 2 Pareto solutions
that worked the best for the dance trajectory during training were too unstable and failed
in Gazebo. Therefore, the learned parameter set we chose to use for the dance trajectory on
the real robot was the seventh best in the Pareto front. The values of the chosen NSGA-II-
generated parameter sets are listed below:

θsquat =
(

1296.6 1241.3 1871.3 248.9 26.1 1591.1 916.9 1968.6 618.0 231.5
)

θdance =
(

207.9 192.1 1885.1 852.3 45.9 898.6 1074.7 1935.8 26.0 215.9
)

.

3-3-2 Error measurement and calculation

A motion capture system was used to track the positions of the hands and feet of the robot
in order to estimate their tracking error. The 3-D tracking data from this motion capture
was compared to the reference positions sent to the robot over the course of each rollout.
Comparing these two sets of information raises some issues, one of which is that the motion
capture measurements need to be transformed to the same reference frame as the goal posi-
tions. To achieve this, Umeyama’s method [36] was used, where matching points from each
dataset are manually chosen and then an optimization problem is carried out to estimate the
proper transformation. This optimization problem is given as:

min
c,R,t

1
n

n
∑

m=1

||ym − (cRxm + t)||22, (3-3)

where c is the scaling factor, R is the rotation matrix, t is the translation vector, n is the
number of point pairs used, m is the index of the point pair, and xm and ym are the input
and output 3-D point vectors. In this way the result is a transformation from the reference
frame of xm to that of ym, such that the transformed xm coordinates can be calculated using:

xm,transform = cRxm + t, (3-4)

where xm,transform is the transformed point.

Additionally, the motion capture measurements began before the robot started moving, while
the reference positions begin when the robot starts the rollout. The starting point in the mo-
tion capture measurements had to be manually picked, which was somewhat difficult due to
noise in the data. Noise makes it more difficult to choose accurate points for the transforma-
tion, and it also adds cumulatively to the error calculation. This problem was only significant
for the squat motion, for which the feet stay in place and the hands barely move, so the
noise is more noticeable. To mitigate this, a simple moving average (smoothdata function in
MATLAB) was used to smooth it out.

Evelyn D’Elia Master of Science Thesis



3-3 Experiments on the real robot 41

Trajectory Hand-tuned cost (m) Learned cost (m)
Simulation Reality Simulation Reality

Squat 0.1487 0.0638 0.1233 0.1391
Dance 0.1771 0.1179 0.1663 0.0896

Table 3-9: Comparison of modified cost fmod between hand-tuned and learned parameter sets
in simulation and reality.

The final issue with the measurements is that the motion capture and reference trajectory
data were gathered using two different time step sizes. Since the motion capture operated at
120 Hz and the robot controller operates at 500 Hz, the error calculations were done at the
largest common multiple of these frequencies: 20 Hz.

As a consequence of the limitations of motion capture, it was not possible to accurately record
the CoM position during trials on the real robot. Instead, a modified version of the objective
function, which calculates the average tracking error of only the hands and feet, was used to
compare each of the results:

fmod =
1

Nt

T
∑

t=0

(∥

∥

∥ehands
t

∥

∥

∥+
∥

∥

∥e
feet
t

∥

∥

∥

)

, (3-5)

After all of this manipulation of the data, Equation 3-5 was used to compute the cost of each
experiment from the smoothed, transformed motion capture measurements.

3-3-3 Results and analysis

The calculated costs of each of the experiments on the Talos are shown in Table 3-9, which
compares the error computed via Equation 3-5 between the hand-tuned and learned parameter
sets in both simulation and reality. Also, to visualize the tracking accuracy during the hand-
tuned and learned parameter tests, Figures 3-13 and 3-14 compare the 3-D position over time
of the right hand of the robot during each rollout to that of the goal trajectory. A video
comparison of the learned and hand-tuned performance of these two trajectories on the Talos
robot is available at: https://youtu.be/Cqe3ykzWGtY.

In simulation, we can see that the learned parameter sets show a modest improvement over
the hand-tuned sets for both trajectories in terms of modified cost fmod. In contrast, on the
real robot, the results are less clear. From watching the rollout of the squat trajectory, it can
be observed that with the hand-tuned controller the robot exhibits shaking in the hands as
well as some movement of the wrists. Instead, the learned squat parameters seemed to work
better: with the learned parameters the robot’s wrists only moved in the range of about 8
mm back and forth during the motion, which is much less than they did with the hand-tuned
parameters (see Figure 3-13), and this made the whole movement smoother and more stable.
Figure 3-12 shows that the hands move much less in the world frame (compare their height
against the background) with the learned parameters than with the hand-tuned parameters.
Because of this, it is surprising that the error calculated for the hand-tuned parameters is less
than half that of the learned parameter set. It can be observed from the trajectory of the right
hand in Figure 3-13 that the learned squat data has much more visible noise than the other

Master of Science Thesis Evelyn D’Elia

https://youtu.be/Cqe3ykzWGtY


42 Multi-objective optimization

(a) With hand-tuned parameters.

(b) With learned parameters.

Figure 3-12: Comparison of squat trajectory performance between hand-tuned and learned con-
trollers on the Talos robot.

measurements. This is because the entire trajectory is within such a small range that the
amplitude of the noise comprises a large percent of that range. The large proportion of noise
made it difficult to choose ideal points for transforming the frame, which could contribute to
a larger calculated cost.

For the dance trajectory, the calculated cost is about 3 cm less for the learned parameter set
than for the hand-tuned set. It is shown in Figure 3-14 that the motions track the shape
of the reference trajectory fairly closely and smoothly. The costs for the dance are likely
to be more trustworthy than those for the squat, since the larger range of motion (compare
bounds of squat and dance plots in Figures 3-13 and 3-14) implies two things: that it was
easier to choose accurate points for the transform, and that the proportion of the error caused
by sensor noise was much lower than it was for the squat. These two facts mean that the
calculated costs for this trajectory have a lower percent of error from transform inaccuracies
and noise.

Interestingly, the costs calculated from the real robot experiments are in general smaller than
those found in simulation. One possible explanation for this, other than error introduced by
data manipulation, is that the real robot has slightly different properties than the model used

Evelyn D’Elia Master of Science Thesis



3-3 Experiments on the real robot 43

Figure 3-13: 3-D plots of the raw and smoothed measured squat trajectories vs. the reference
trajectory for the right hand of the Talos robot.

Master of Science Thesis Evelyn D’Elia



44 Multi-objective optimization

Figure 3-14: 3-D plots of the measured dance trajectories vs. the reference trajectory for the
right hand of the Talos robot.

Evelyn D’Elia Master of Science Thesis



3-4 Conclusion 45

in simulation.

In summary, both of the Pareto solutions that were tested worked well on the real robot. From
these results it can be concluded that in addition to producing control parameters much more
efficiently than hand-tuning, learning in simulation via NSGA-II also yields parameter sets
that are transferable to reality.

3-4 Conclusion

There are a number of takeaways from the results of the experiments explained in this chapter.
Analyzing the Pareto fronts produced by NSGA-II allows the comparison between robust and
specific parameter sets, between self-collision checking and no self-collision checking, between
hand-tuned and learned parameters, and between different robot models. For instance, it
is useful to know which range a given parameter must be in in order to yield a successful
controller because this information can be used as an initial guess to speed up further opti-
mization. It is also important to recognize the sacrifice in accuracy that must be made by
the robot to avoid self-colliding. However, perhaps the most surprising result found in these
experiments is that the Pareto fronts do not change shape when applied to different robot
models. This is a positive result because it means no extra steps need to be taken between
simulation and reality: the best individuals in a simulation-trained Pareto front are likely to
also be the best on the real robot. In fact, the simulation-trained Pareto solutions tested on
the real robot are shown to perform well.

Master of Science Thesis Evelyn D’Elia



46 Multi-objective optimization

Evelyn D’Elia Master of Science Thesis



Chapter 4

Bayesian optimization

The second part of this thesis project is based on using the Bayesian optimization (BO)
algorithm both by itself as a comparison to the results from Non-dominated Sorting Genetic
Algorithm II (NSGA-II), and as a complement to NSGA-II to bootstrap the learning. As a
complement, BO is used to transfer the Pareto fronts to new trajectories. Since the goal is
for this procedure to be achievable on the real Talos, for the Pareto front-based BO, only the
robot-safe Pareto sets trained with self-collision checking are used.

4-1 Methods

In this work, BO was conducted in two ways: directly in continuous parameter space and
along the previously generated Pareto fronts from NSGA-II results. Direct BO was used
mainly as a baseline comparison. For the second and main method, Figure 4-1 shows: how
the Pareto front and new trajectory are used as input, what the rollout process is, and that
the final result of BO is a single optimal parameter set that works well for the new trajectory.

This implementation of Pareto-based BO used the optimized Pareto front as a search space,
therefore the parameter space was finite and easily searchable. This initialization strategy is
similar to that used in [30], where the initialization contained prior information in the form
of a behavior-performance map that was pre-computed in simulation. The work in this thesis
differs from their approach in the way that the map (Pareto front in this case) is generated.
Here, since the parameter space is easily searchable, instead of using an optimizer (such
as a nonlinear optimizer or Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
[14]), an exhaustive search algorithm similar to that used in [30] was employed. The mean
function µ(θ) of the Gaussian process (GP), which has a significant effect on the performance
of the optimization, is initialized using the average of the fitnesses from the NSGA-II train
trajectories for each Pareto individual. The Matérn 5

2
kernel function in Equation 2-13 is

used to represent the GP’s covariance k(θ, θ′).

The Upper Confidence Bound (UCB) acquisition was chosen because of the clear results
in the literature indicating its superiority over other common functions. Additionally, for

Master of Science Thesis Evelyn D’Elia



48 Bayesian optimization

Figure 4-1: Diagram of the steps taken to optimize over a Pareto front with BO.

consistency the same objective function (Equation 3-2) adopted for NSGA-II was also used
for BO to evaluate the success of new trajectories.

4-2 Experiments in simulation

BO was tested in two ways: within the continuous parameter search space as a comparison
to other methods, and along the Pareto fronts generated from multi-objective optimization
(MOO) to allow the robot to learn to follow new trajectories, on which the Pareto front was
not trained. In the Pareto-based BO experiments, since the goal was to learn a new trajectory
using a Pareto front which was not trained for that specific trajectory, the Set 1 trajectories
were learned by searching along the Set 2 Pareto front, while the Set 2 trajectories were
learned by searching along the Set 1 Pareto front (refer to Table 3-2).

4-2-1 Algorithm settings

For both of the ways in which BO is used, the settings of the algorithm affect its performance.
The BO algorithm contains several variable parts and hyperparameters, each of which has a
different effect.

One of these parts is the initial mean function for the GP. The choice of initial mean µ0(θ)
determines whether the optimizer is optimistic or pessimistic, which influences its ability to
find good solutions. In order to determine which of these approaches is better, direct BO
is evaluated both with an initial mean of zero, which is very optimistic, and with an initial
mean of -1.0, which is somewhat pessimistic since all successful objective scores will be greater

Evelyn D’Elia Master of Science Thesis



4-2 Experiments in simulation 49

Combination name µ0(θ) lb β

C1 -1.0/ avg w/ failing sols 1.0 0.5
C2 0.0/ avg w/out failing sols 1.0 0.5
C3 0.0/ avg w/out failing sols 5.0 0.5
C4 0.0/ avg w/out failing sols 1.0 2.0

Table 4-1: List of setting combinations tested for direct and Pareto-based BO.

than this value. On the other hand, since Pareto front-based BO has access to the Pareto
solutions, instead of a constant mean, its optimistic initial mean is an average of the NSGA-II-
trained fitness values over all training trajectories for each individual, ignoring failing fitness
values. In contrast, the pessimistic initial mean for Pareto-based BO is the same average of
the NSGA-II-trained fitness values, including failing solutions in the calculation which bring
down the average significantly. When the initial mean estimate is pessimistic, the algorithm
favors exploitation over exploration: since most of the parameter sets it tests will perform well
compared to the initial mean, it will have little impetus to test other areas of the parameter
space. On the other hand, when the initial mean is optimistic, the algorithm tends to explore
more, since the untested areas of the parameter space retain a high UCB value.

Another tunable hyperparameter is the smoothness hyperparameter lb > 0 of the GP kernel
(Equation 2-13). Changing this hyperparameter affects how much the estimated expected
returns Ĵ(θ) of parameter sets near the sampled one are changed. The larger lb is, the wider
the spread of updates to the GP.

The last part of the BO algorithm that will be examined is the exploration hyperparameter
β > 0 of the UCB acquisition function. This parameter governs how much the sampling will
exploit promising regions of the parameter space versus exploring more of the unsearched
space. A larger value of β results in more exploration, while a smaller value causes more
exploitation.

In order to evaluate which of these hyperparameters and mean initialization schemes work
best, the combinations are given the names C1-4 and the details for each is listed in Table 4-1.
These combinations are tested for both direct and Pareto-based BO. In the upcoming plots,
failing costs are scaled from 1.0 × 1010 to 0.7 for readability. Furthermore, each algorithm is
run for 120 iterations. This is because the Set 1 Pareto front has 120 individuals, and the
Set 2 front has only 110. Since random search along the Pareto front will certainly find the
best solution by the time it has tried every Pareto individual, and since the BO approach is
useless if it is less successful than random search, there is no need to see how BO performs
beyond this number of iterations.

4-2-2 Results and analysis of direct BO

The first experiment conducted with BO in this thesis is with direct BO, which searches the
entire allowable parameter space for solutions. The reason these tests are done is to have
a competing algorithm to compare both to the results of NSGA-II and those of the Pareto-
based BO approach, as well as to gain a better understanding of the effects of varying the
aforementioned hyperparameters.

Master of Science Thesis Evelyn D’Elia



50 Bayesian optimization

Comparison to NSGA-II

Table 4-2 compares the best tracking errors for each trajectory found within the NSGA-II
Pareto fronts with the best tracking errors achieved by the direct BO setup (both with
self-collision checking enabled). The results show that for all except the squat trajectory,
NSGA-II far outperforms direct BO. This shows that although NSGA-II requires much more
computation time, it is the superior method for generating highly successful parameter sets.
The table also summarizes which BO hyperparameter combinations performed the best and
how many iterations of BO it took to find the best cost. Both in the table and in the plots
of Figure 4-2, it is apparent that the trajectory which the algorithm learns changes which
settings work best.

Effects of changing smoothness hyperparameter

We can also see that different hyperparameter combinations learn faster than others. For
example, in most of the plots of Figure 4-2, C3 finds a good (not necessarily optimal) solution
earlier than C2. A larger lb value means that when a parameter set is tested, the GP updates
a larger range of the sets near it. So, a larger value of this smoothness hyperparameter should
work well when the parameter sets in each region of parameter space perform similarly to each
other. This is generally the case, except in regions where the parameters cause instability; in
these areas of the parameter space, a tiny change made to a single parameter could cause the
robot to fail. This appears to be the situation for the walk, touch ground, and lift trajectories,
where C3 learns more slowly than the others. Maybe this is because the robot’s center of
mass (CoM) moves much more when shifting its weight from side to side or bending over,
and thus its stability is more delicate.

Optimistic vs. pessimistic initial mean function

Between C1 and C2 the former learns faster in some trajectories (this is easy to see in Figures
4-2a and 4-2c for example), but the latter learns better parameters overall. The pessimistic
mean initialization of C1, by assuming that all parameter sets will perform badly, encourages
exploitation over exploration. This is because when it tests a point in parameter space,
that set will likely have a cost of less than 1, therefore that becomes the only region of the
search space which looks promising compared to the rest. Most of the time, especially when
searching in the continuous parameter space, parameters nearby will indeed perform similarly
well. However, a pessimistic mean initialization is more likely to get stuck in a local optimum,
unlike an optimistic initialization, which has the opposite effect by prioritizing exploration.
The trajectories for which the pessimistic C1 actually performs better than the optimistic C2
(squat and dance) are likely to have all the best parameter solutions clustered in a certain
area of the parameter space.

Effects of changing exploration hyperparameter

Between C2 and C4, increasing the value of the exploration hyperparameter α pushes the
algorithm to sample more often from unexplored areas of the search space. This is because

Evelyn D’Elia Master of Science Thesis



4-2 Experiments in simulation 51

Trajectory NSGA-II (m) Direct BO (m) Best direct BO hyperparameter combo
Walk on spot 0.1417 0.1561 C4

Squat 0.2303 0.2141 C1
Clap 0.1531 0.5039 C2

Touch ground 0.1821 0.4678 C2
Dance 0.1822 0.2357 C1

Lean and twist 0.1531 0.2035 C2
Right arm reach 0.1532 0.2390 C2

Lift 0.1821 0.2088 C3

Table 4-2: Best Cartesian task error achieved for each training trajectory by Pareto-based versus
direct BO with self-collision checking.

a larger α increases the covariance of the GP, meaning that unexplored areas, which already
have larger covariance than highly trafficked areas, are more likely to score well with UCB. For
almost all of the trajectories, C4 learns faster than C2, but cannot find comparably successful
parameter sets. An α value of 2 may increase the covariance so much that the algorithm can
barely exploit at all, which prevents it from improving over time.

This study of the effects of changes to certain hyperparameters for direct BO is useful because
it informs us about the characteristics of the successful parameter areas for each of these
trajectories.

4-2-3 Results and analysis of BO along the Pareto front

The final experiment of this thesis work is to run BO using only the NSGA-II-trained Pareto
fronts as a search space. The main idea fueling this experiment is the desire to have the
ability to train a Pareto front on a few trajectories, but then later have a means of adding
new trajectories to the robot’s repertoire without having to complete the MOO all over again.
The Pareto front should ideally be diverse enough for a variety of types of new trajectories
to succeed for at least one Pareto parameter set.

In addition to testing this approach on many different trajectories, we also perform trials with
a similar set of hyperparameter variations as in the experiments of Section 4-2-2, C1-4. In
order to gain a better understanding of how well this method performs, Figure 4-3 compares
it to direct BO from the previous section, as well as the results of random search of the Pareto
front space, averaged out over 1000 runs.

Figures 4-3 and 4-4 indicate that in most situations, this learning approach finds very good
control solutions within 20 iterations. Additionally, it often finds non-failing solutions within
the first few iterations. These characteristics suggest that this algorithm could also be applied
on a real robot, not just in simulation.

Pareto-based BO vs. direct BO and Pareto-based random search

One immediate takeaway from Figure 4-3 is that direct BO finds conspicuously worse solutions
than either the random search along the Pareto front or Pareto-based BO. This proves that
there is a clear benefit to shrinking and discretizing the search space using prior information

Master of Science Thesis Evelyn D’Elia



52 Bayesian optimization

(a) Walk on spot. (b) Squat.

(c) Clap. (d) Touch ground.

(e) Dance. (f) Lean and twist.

(g) Right arm reach. (h) Lift.

Figure 4-2: Direct BO comparison of performance on each trajectory of hyperparameter combi-
nations from Table 4-1. A cost of 0.7 is used to represent all failing costs.

Evelyn D’Elia Master of Science Thesis



4-2 Experiments in simulation 53

Trajectory Pareto-based BO Best Pareto-based BO combo
Walk on spot 0.1448 C3

Squat 0.2308 C4
Clap 0.4851 C1

Touch ground 1.0 × 1010 (fails) N/A
Dance 0.1817 C2

Lean and twist 0.1768 C2
Right arm reach 0.1783 C4

Lift 0.1714 C3

Table 4-3: Best Cartesian task error achieved and its corresponding configuration for each training
trajectory in Pareto-based BO.

in the form of a Pareto front. The other obvious result is that for the touch ground trajectory,
none of the Pareto-based methods find a single successful solution. This is a Set 2 trajectory,
meaning it searched the Set 1 Pareto front for a solution. In fact, no successful solution exists
for this trajectory on the Set 1 Pareto front, so in this particular case direct BO is the only
viable approach. This points to either a lack of adequate diversity in the trajectory group
which Set 1 is trained on, or an insufficient number of training generations with NSGA-II.

Comparison of different settings

Unsurprisingly, every Pareto-based BO configuration performs much better than either direct
BO or random search. Having access to either the filtered or unfiltered average of the Pareto
fitnesses as an initial GP mean function effectively weeds out many of the parameter sets:
sets that fail on most NSGA-II training trajectories are more likely to fail on a new trajectory.
In order to examine the Pareto-based BO results more closely, zoomed-in plots are provided
in Figure 4-4. Upon close inspection of the data in these zoomed-in plots, it appears that
every configuration with filtered mean initialization (the optimistic option) performs almost
identically on every trajectory. This likely means that the filtered mean already encourages
exploration enough that increasing the α hyperparameter does not make much of a difference.
The tiny differences that can be seen between C2 and C3 show that an increased smoothness
hyperparameter does not perform quite as well. This means that within the Pareto front the
solutions that perform well for a given trajectory are not all located in a single area of the
Pareto front.

Notably, the filtered mean configurations outperform the unfiltered, pessimistic C1 for every
trajectory except the clap (for which C1 performs better by only about 0.5 mm), as displayed
in Table 4-3. In general, the filtered mean provides a better description of the search space
compared to the unfiltered mean, which is full of extremely large error estimates.

Finally, it is worth noting that for the dance trajectory, C1 does not find a single successful
solution in 120 iterations. This means it performs even worse than random search and direct
BO. A possible explanation for this behavior is that in the Set 1 Pareto front, out of 110
individuals, only 3 are non-failing for the dance trajectory. Since the C1 mean is initialized at
very negative values for every individual (due to any one or more of the four train trajectories
failing), it is not encouraged to explore and thus it gets stuck in the area of the front which
has no successful parameter solutions.

Master of Science Thesis Evelyn D’Elia



54 Bayesian optimization

(a) Walk on spot. (b) Squat.

(c) Clap. (d) Touch ground.

(e) Dance. (f) Lean and twist.

(g) Right arm reach. (h) Lift.

Figure 4-3: Pareto-based BO performance of hyperparameter combinations from Table 4-1,
compared to direct BO and random search (along the Pareto front) results. A cost of 0.7 is used
to represent all failing costs.

Evelyn D’Elia Master of Science Thesis



4-2 Experiments in simulation 55

(a) Walk on spot. (b) Squat.

(c) Clap. (d) Touch ground.

(e) Dance. (f) Lean and twist.

(g) Right arm reach. (h) Lift.

Figure 4-4: Zoomed in views of Pareto-based BO performance of hyperparameter combinations
from Table 4-1. A cost of 0.7 is used to represent all failing costs.

Master of Science Thesis Evelyn D’Elia



56 Bayesian optimization

4-3 Conclusion

The results of Pareto-based BO vastly outperform those of direct BO and random search
along the Pareto front. This shows that providing a prior in the form of a parameter ‘map’
greatly speeds up learning and allows the algorithm to find better solutions. However, not
all the results were positive: for the touch ground trajectory, no parameter set in the Pareto
front was successful. This means that the quality of the pre-BO step, the generation of the
Pareto front, should be improved. This can be done by perhaps adding a better variety of
trajectories to the training set or by running the optimization for more generations in the
hopes that better solutions are found over time.

Despite the lack of success on the touch ground trajectory, Pareto-based BO outperforms
the other similar methods, can be tuned via the hyperparameters discussed previously in
this chapter, and is overall successful in finding parameter solutions for new trajectories.
Furthermore, because it learns acceptable solutions in very few trials, it could feasibly be
applied on a real robot with a simulation-generated Pareto front, since the Pareto solutions
are shown in Chapter 3 to transfer easily between different robot models.

Evelyn D’Elia Master of Science Thesis



Chapter 5

Discussion

This thesis work presents a solution for learning task-priority-based control parameters for a
humanoid robot in two steps: optimizing a Pareto front of parameter sets with Non-dominated
Sorting Genetic Algorithm II (NSGA-II), and searching in that Pareto front to learn suit-
able parameters for new trajectories with Bayesian optimization (BO). This combination
of methods saves time that would otherwise be spent painstakingly hand-tuning controllers
for various trajectories, and simultaneously improves the tracking accuracy of the robot on
individual trajectories.

The experimental results in Chapter 3 show the superiority of this approach. Automatically
tuning via NSGA-II yields a set of control solutions that contain not only better-performing
‘robust’ solutions than a hand-tuned controller, but also several solutions for each training
trajectory which exhibit tracking performance far superior to that of the hand-tuned con-
troller. Additionally, in this chapter it is found that the Pareto front retains a similar shape
when tested on modified models, hence there is no need to use further optimization to adapt
the Pareto front to new robot models.

In Chapter 4, the performance of BO along the NSGA-II-generated Pareto front is shown
to be much better than that of direct BO and Pareto-based random search. Pareto-based
BO successfully learns favorable control parameters for trajectories not part of the initial
NSGA-II training set. In addition, this learning process finds a good solution in less than 20
trials, meaning that it also has the potential to be applied on the real robot.

5-1 Future work

The results of this thesis work are satisfying, but further development and testing should be
done to ensure the design of the approach is optimal. First, the self-collision-checked NSGA-II
optimization process should be run for a larger number of generations to flesh out the Pareto
front. The optimization could also be run with a larger number of test trajectories in order to
produce more diverse results. Furthermore, this work analyzes only a single Pareto dataset for
each self-collision-checked training set. To ensure integrity of the analysis, several more tests

Master of Science Thesis Evelyn D’Elia



58 Discussion

need to be done and the average results reported, such that parameter value estimates and
performance on modified robot models are less likely to be influenced by potential outliers.

Another direction which deserves further investigation is to design and test other objective
functions. The objective function used in this work is discontinuous: when the robot fails,
regardless of what type of failure it is or what part of the trajectory at which it fails, the
assigned cost is always the same. This means that there is a large area of the parameter
search space where the fitness is constant, and thus no information is provided about which
direction to go in to improve. It would be wise to attempt the optimization with an objective
function that is more descriptive, such as one that accounts for how much of the trajectory
the robot completes before failing, or something similar.

In terms of the BO step, it would be useful to test even more hyperparameter settings to
fine-tune the performance of the algorithm. Specifically, it would be of interest to try a wider
range of lb and α values. Other ways of initializing the Gaussian process (GP) mean function
could also be useful to test, such as by measuring which NSGA-II training trajectory is most
similar to the BO trajectory via some heuristic, and then using that training trajectory’s
Pareto front performance as the initial mean for learning the new trajectory.

Most importantly, it is necessary to complete further tests on the real robot. More tests are
needed to be certain that this approach for learning parameter sets actually does transfer well
from simulation to reality.

Evelyn D’Elia Master of Science Thesis



Bibliography

[1] Hyginus, “Astronomica 2.1,”

[2] O. Stasse, T. Flayols, R. Budhiraja, K. Giraud-Esclasse, J. Carpentier, J. Mirabel, A. D.
Prete, P. Soueres, N. Mansard, F. Lamiraux, J.-P. Laumond, L. Marchionni, H. Tome,
and F. Ferro, “TALOS: A new humanoid research platform targeted for industrial ap-
plications,” in 2017 IEEE-RAS 17th International Conference on Humanoid Robotics
(Humanoids), IEEE, Nov 2017.

[3] E. Guizzo and E. Ackerman, “Darpa robotics challenge: A compilation of robots falling
down,” June 2015. [Online; posted 06-June-2015].

[4] A. Rocchi, E. M. Hoffman, D. G. Caldwell, and N. G. Tsagarakis, “OpenSoT: A whole-
body control library for the compliant humanoid robot COMAN,” in 2015 IEEE Inter-
national Conference on Robotics and Automation (ICRA), IEEE, May 2015.

[5] S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press,
2019.

[6] L. Penco, E. M. Hoffman, V. Modugno, W. Gomes, J.-B. Mouret, and S. Ivaldi, “Learning
robust task priorities and gains for control of redundant robots,” IEEE Robotics and
Automation Letters, vol. 5, pp. 2626–2633, Apr 2020.

[7] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective
genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6,
pp. 182–197, Apr 2002.

[8] M. P. Deisenroth, “A survey on policy search for robotics,” Foundations and Trends in
Robotics, vol. 2, no. 1-2, pp. 1–142, 2013.

[9] K. Chatzilygeroudis, V. Vassiliades, F. Stulp, S. Calinon, and J.-B. Mouret, “A survey
on policy search algorithms for learning robot controllers in a handful of trials,” IEEE
Transactions on Robotics, vol. 36, pp. 328–347, Apr 2020.

Master of Science Thesis Evelyn D’Elia



60 BIBLIOGRAPHY

[10] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas, “Taking the human
out of the loop: A review of bayesian optimization,” Proceedings of the IEEE, vol. 104,
pp. 148–175, Jan 2016.

[11] B. Siciliano and O. Khatib, Springer Handbook of Robotics. Berlin: Springer, 2008.

[12] A. Dietrich, C. Ott, and A. Albu-Schäffer, “An overview of null space projections for
redundant, torque-controlled robots,” The International Journal of Robotics Research,
vol. 34, pp. 1385–1400, Mar 2015.

[13] N. Hansen, D. V. Arnold, and A. Auger, “Evolution strategies,” in Springer Handbook
of Computational Intelligence, pp. 871–898, Springer Berlin Heidelberg, 2015.

[14] N. Hansen and A. Ostermeier, “Completely derandomized self-adaptation in evolution
strategies,” Evolutionary Computation, vol. 9, pp. 159–195, Jun 2001.

[15] V. Modugno, U. Chervet, G. Oriolo, and S. Ivaldi, “Learning soft task priorities for safe
control of humanoid robots with constrained stochastic optimization,” in 2016 IEEE-RAS
16th International Conference on Humanoid Robots (Humanoids), IEEE, Nov 2016.

[16] D. V. Arnold and N. Hansen, “A (1+1)-CMA-ES for constrained optimisation,” in Pro-
ceedings of the fourteenth international conference on Genetic and evolutionary compu-
tation conference - GECCO '12, ACM Press, 2012.

[17] V. Modugno, G. Nava, D. Pucci, F. Nori, G. Oriolo, and S. Ivaldi, “Safe trajectory opti-
mization for whole-body motion of humanoids,” in 2017 IEEE-RAS 17th International
Conference on Humanoid Robotics (Humanoids), IEEE, Nov 2017.

[18] W. Gomes, V. Radhakrishnan, L. Penco, V. Modugno, J.-B. Mouret, and S. Ivaldi, “Hu-
manoid whole-body movement optimization from retargeted human motions,” in 2019
IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids), IEEE, Oct
2019.

[19] G. Metta, G. Sandini, D. Vernon, L. Natale, and F. Nori, “The iCub humanoid robot,”
in Proceedings of the 8th Workshop on Performance Metrics for Intelligent Systems -
PerMIS '08, ACM Press, 2008.

[20] K. Miettinen, Nonlinear Multiobjective Optimization. Springer US, 1998.

[21] R. S. Sutton and A. G. Barto, Reinforcement Learning. MIT Press Ltd, 2018.

[22] J. Kober and J. Peters, “Reinforcement learning in robotics: A survey,” in Springer
Tracts in Advanced Robotics, pp. 9–67, Springer International Publishing, 2014.

[23] H. J. Kushner, “A new method of locating the maximum point of an arbitrary multipeak
curve in the presence of noise,” Journal of Basic Engineering, vol. 86, pp. 97–106, Mar
1964.

[24] J. Močkus, V. Tiesis, and A. Žilinskas, “The application of bayesian methods for seeking
the extremum,” Toward Bayesian Optimization, vol. 2, 1978.

[25] N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger, “Gaussian process optimization
in the bandit setting: No regret and experimental design,” CoRR, 2009.

Evelyn D’Elia Master of Science Thesis



BIBLIOGRAPHY 61

[26] E. Brochu, V. M. Cora, and N. de Freitas, “A tutorial on bayesian optimization of
expensive cost functions, with application to active user modeling and hierarchical rein-
forcement learning,” 2010.

[27] R. Calandra, A. Seyfarth, J. Peters, and M. P. Deisenroth, “Bayesian optimization for
learning gaits under uncertainty,” Annals of Mathematics and Artificial Intelligence,
vol. 76, pp. 5–23, Jun 2015.

[28] R. Antonova, A. Rai, and C. G. Atkeson, “Sample efficient optimization for learning
controllers for bipedal locomotion,” in 2016 IEEE-RAS 16th International Conference
on Humanoid Robots (Humanoids), IEEE, Nov 2016.

[29] R. Antonova, A. Rai, and C. G. Atkeson, “Deep kernels for optimizing locomotion con-
trollers,” CoRR, 2017.

[30] A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret, “Robots that can adapt like animals,”
Nature, vol. 521, pp. 503–507, May 2015.

[31] A. Wilson, A. Fern, and P. Tadepalli, “Using trajectory data to improve bayesian op-
timization for reinforcement learning,” Journal of Machine Learning Research, vol. 15,
no. 8, pp. 253–282, 2014.

[32] A. D. Prete, N. Mansard, O. E. Ramos, O. Stasse, and F. Nori, “Implementing torque
control with high-ratio gear boxes and without joint-torque sensors,” International Jour-
nal of Humanoid Robotics, vol. 13, p. 1550044, Mar 2016.

[33] J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel, F. Lamiraux, O. Stasse, and
N. Mansard, “The pinocchio c++ library : A fast and flexible implementation of rigid
body dynamics algorithms and their analytical derivatives,” in 2019 IEEE/SICE Inter-
national Symposium on System Integration (SII), IEEE, Jan 2019.

[34] J.-B. Mouret and S. Doncieux, “Sferesv2: Evolvin' in the multi-core world,” in IEEE
Congress on Evolutionary Computation, IEEE, Jul 2010.

[35] D. Roetenberg, H. Luinge, and P. Slycke, “Xsens mvn: full 6dof human motion tracking
using miniature inertial sensors. xsens motion technologies bv,” tech. rep., 2009.

[36] S. Umeyama, “Least-squares estimation of transformation parameters between two point
patterns,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13,
pp. 376–380, apr 1991.

Master of Science Thesis Evelyn D’Elia



62 BIBLIOGRAPHY

Evelyn D’Elia Master of Science Thesis



Glossary

List of Acronyms

INRIA National Institute for Research in Digital Science and Technology

LARSEN Life-long Autonomy and interaction skills for Robots in a Sensing ENvironment

DoF degrees of freedom

MOO multi-objective optimization

BO Bayesian optimization

NSGA-II Non-dominated Sorting Genetic Algorithm II

PS policy search

SP support polygon

ZMP zero moment point

CoM center of mass

WBC whole-body control

SPW soft priority weight

QP quadratic programming

CG convergence gain

CMA-ES Covariance Matrix Adaptation Evolution Strategy

CCA Constrained Covariance Adaptation

RBFs radial basis functions

ProMPs probabilistic movement primitives

RL reinforcement learning

GP Gaussian process

SE Squared Exponential

PI probability of improvement

EI expected improvement

Master of Science Thesis Evelyn D’Elia



64 Glossary

UCB Upper Confidence Bound

NN neural network

BBK behavior-based kernel

KL Kullback Leibler

DoG Determinants of Gait

TSID Task Space Inverse Dynamics

List of Symbols

α Falling penalty

β UCB tradeoff parameter

θ∗ New parameter set

C(q, q̇) Coriolis matrix

e Task Cartesian position error

g(q) Gravitational vector

k Kernel vector

lk Length scale vector hyperparameter

M(q) Mass matrix

pi Actual Cartesian task position

q Joint position vector

R Rotation matrix

t Translation vector

xm Input point set

xm,transform Transformed xm point

ym Output point set

Ai Task Jacobian

bi Reference value

e Task error

u Control input

ut Action

xt State

q̈ Joint acceleration vector

p̈d
i Desired Cartesian acceleration

δ GP-UCB hyperparameter

Ȧi Time derivative of task Jacobian

ṗi Actual Cartesian task velocity

q̇ Joint velocity vector

ω̇d
i Desired Cartesian angular velocity

Evelyn D’Elia Master of Science Thesis



65

ė Task velocity error

ṗd
i Desired Cartesian velocity

q̇d
i Desired joint velocity

ǫ Regularization factor

Ĵ(θ) Surrogate model of expected return

λi Cartesian position gain

λD
i Derivative convergence gain (CG)

λP
i Proportional CG

Ti Task

µ(θ) GP mean function

µ(θ∗) GP mean prediction

µi Postural gain

Φ Robot value

φDoG(θ) DoG performance measure

φNN NN performance measure for kernel

σ2(θ∗) GP variance prediction

σi Cartesian orientation gain

σ2
k Signal variance hyperparameter

b Trajectory index

c Transformation scaling factor

d Parameter vector dimension

D1:t Rollout data

f(θ) Objective function

i Task index

K Kernel matrix

k(θ, θ′) GP covariance function

kDoG DoG kernel

ktrajNN Cost-agnostic neural network kernel

l Number of objective functions

li Hierarchy level selector

lk Length scale scalar hyperparameter

m Umeyama point pair index

n Number of point pairs for Umeyama’s method

Nt Total time steps

rt Reward

S Feasible set

T Final time

t Current time

wi Soft priority weight

xcz Frontal zero moment point (ZMP) deviation from support polygon (SP) center

Master of Science Thesis Evelyn D’Elia



66 Glossary

xSP Length of SP

ycz Horizontal ZMP deviation from SP center

ySP Width of SP

Evelyn D’Elia Master of Science Thesis


	Front Matter
	Cover Page
	Title Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements

	Main Matter
	Introduction
	Humanoid robots
	Multi-objective optimization
	Bayesian optimization
	Contributions
	Outline

	Background
	Talos robot
	Task priority-based control
	Evolutionary algorithms in robotics
	Multi-objective optimization algorithms
	Related work with NSGA-II
	Policy search methods
	Bayesian optimization
	Related work with BO
	Incorporating prior information
	Acquisition functions

	Conclusion

	Multi-objective optimization
	Methods
	Task formulation
	Pareto front dimensions

	Experiments in simulation
	Tasks used
	Objective function
	Training trajectories
	Modified robot models
	Results and analysis without self-collision checking
	Results and analysis with self-collision checking
	Comparison

	Experiments on the real robot
	Parameter sets used
	Error measurement and calculation
	Results and analysis

	Conclusion

	Bayesian optimization
	Methods
	Experiments in simulation
	Algorithm settings
	Results and analysis of direct BO
	Results and analysis of BO along the Pareto front

	Conclusion

	Discussion
	Future work


	Appendices
	Back Matter
	Bibliography
	Glossary
	List of Acronyms
	List of Symbols



