Automating the Handling Qualities Predictions of the
Flying-V

By

Adam Swiderski

Track: Control and Operations

in partial fulfillment of the requirements for the degree of

Master of Science
in Aerospace Engineering

at the Delft University of Technology,
to be defended on 08.03.2023

Supervisors:
Ir. O. Stroosma, TU Delft
Prof. Dr. Ir. M. Mulder, TU Delft

o]
TUDelft

Automating the Handling Qualities Predictions of the Flying-V

Adam Swiderski *
Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands

As the Flying-V goes through subsequent design iterations, each new model requires dedicated
handling qualities research. A part of that work, namely obtaining the handling qualities
predictions, is highly repetitive and can be automated. To address that issue, a Python library
for automated handling qualities prediction evaluations of the Flying-V was developed. The
library’s functionalities cover model implementation, trim and linearization, model reductions,
identification of the modal parameters, and finally, the evaluation of the requirements. The
library takes a semi ’black-box’ approach toward the model structure, relying on defining it
through a set of functions instead of parameters. With that, it can accommodate various sources
and formulations of the model. The library was successfully validated on two different aircraft
models. Part of the validation was replicating some of the previous Flying-V handling qualities
research data. It is expected that the use of the library will bring time savings to future handling
qualities research of the Flying-V, as well as reduce the risk of mistakes in the process.

I. Introduction

Flying-V [1-3] is a new flying wing concept aircraft currently developed at TU Delft. It is a tailless, V-shaped
aircraft dedicated to long-haul operations — seating between 293 and 361 passengers and with a design range between
11,200 km to 15,400 km (based on the family design by Oosterom and Vos [3]]). In the Flying-V, the cabin, cargo holds,
and fuel tanks are contained within one highly-swept wing structure. Initial designs claim that the Flying-V will have a
better lift-to-drag ratio and smaller fuel consumption compared to state-of-the-art aircraft of that size [[1H3]] and can be
seen as a new step towards more sustainable aviation.

One of the areas of research within the Flying-V is studying its handling qualities. Those are the assessments of how
easy the aircraft is to fly and how well the pilot can perform specific tasks with it [4-H6]. Good handling qualities are
critical for every aircraft, but special attention is devoted to Flying-V due to its unusual shape. Handling qualities can be
measured in two ways: either by performing test flights and gathering pilot opinions [4] (a subjective assessment) or by
using handling qualities predictions [7, 8] (an objective assessment) — various formulae and criteria which, using the
aircraft data, try to estimate the handling qualities level, as it would be perceived by the pilot.

In recent years, several research experiments into the handling qualities of the Flying-V were conducted [9-13]],
which addressed different iterations of the aircraft or flight conditions. The goal of these efforts was, among others,
to provide feedback to the designers of the Flying-V, which would influence the subsequent iterations of the aircraft.
The works covered the preliminary offline analysis of the model, arriving at handling qualities predictions. Some also
included piloted flight simulation experiments to obtain pilot ratings [11-13]]. The Flying-V can be expected to go
through many design iterations in the future, each of which will require its own handling qualities research. This brings
the question of whether the process can be automated, as so far, the works have been done independently. Therefore,
this study was commenced into exactly which parts of this process can be automated and how.

By reviewing the previous works and the steps taken in each of them, it was established that the preparation
and execution of piloted experiments in the simulator would be very difficult to automate in a way that would bring
meaningful time savings. This is because those steps either cannot physically be automated (collecting pilot opinions),
require creative input (designing a task to test a specific hypothesis), or expert knowledge (tuning the motion cueing
systems). On the other hand, offline analysis, i.e., evaluating handling qualities predictions, could potentially be highly
automated. This is because these steps are highly algorithmic, their results are very predictable, and they require almost
no decision-making.

Therefore, a Python library was developed to cover all operations that have to be made to obtain the handling
qualities predictions starting from the aircraft model. The goal is to provide a flexible framework for future Flying-V
handling qualities research, which would accommodate potentially different types of aircraft models, contribute to
substantial time savings, and minimize the risk of implementation mistakes. Handling qualities research is part of the

*MSc. student, Control & Simulation section, Faculty of Aerospace Engineering.

aircraft design lifecycle [14]], so fast and effective handling qualities predictions should positively impact the entire
project.

The aim of this paper is to describe the design of the library and how each step necessary to arrive at handling
qualities predictions can be automated. It highlights the model implementation framework — its capabilities and
assumptions. For this library to be a useful tool in future research, it needs to be thoroughly tested in order to ensure
that it operates properly. Therefore, the later part of the paper also outlines the extent of the validation efforts taken
during this project.

I1. Background
The purpose of this section is not only to provide the relevant background to the topics addressed in this paper
but also present information that informed the design decisions of the library. Firstly, a brief introduction to handling
qualities will be presented, followed by a review of some of the software tools for preliminary analysis of aircraft designs.
Finally, the recent handling qualities research into the Flying-V will be discussed.

A. Handling qualities

In general, handling qualities can be defined as characteristics of an aircraft that influence the ease and safety of
flying. The specific definitions vary slightly between authors. Firstly, different elements are considered to be contributing
to handling qualities. Ashkenas [5] includes “dynamic and static properties”, Phillips [6] similarly refers to “stability
and control characteristics”, but Cooper and Harper [4] also include other factors, such as “the cockpit interface (e.g.,
displays, controls), the aircraft environment (e.g., weather conditions, visibility, turbulence) and stress”. The impact of
handling qualities is also understood a bit differently between authors. For|Cooper and Harper, it is to “perform the
tasks required in support of an aircraft role”, for|Ashkenas|to “ fully exploit its performance and other potential in a
variety of mission and roles”, and for [Phillips|handling qualities have “important bearing on the safety of flight and
other pilots’ impressions of the ease of flying an airplane in steady flight”. In the context of this work, which focuses on
handling qualities predictions, the source of handling qualities will be limited to stability and control parameters. The
interpretation of the impact of the handling qualities while using the predictions is not up to their users. Instead, it is
decided by whoever designs a particular prediction criterion.

Pilot opinions are the basis of handling qualities evaluations. They can be just simple comments. Hodgkinson [[15}
p-4] claims that “[t]he best way to collect a pilot’s opinion is to ask him or her”. They can also be quantified, like in
the ubiquitous Cooper-Harper rating scale [4]], which helps the pilot to translate their experience into a 10-point scale.
Of course, conducting piloted experiments can be cost and time-consuming, so naturally, one would like to be able to
predict the handling qualities from the aircraft model. This led to establishing the handling qualities requirements or
predictions, arguably the most popular collection of which being the military specification for “Flying Qualities of
Piloted Aircraft”, also known as MIL-STD-1797 or MIL-HDBK-1797 [7]]. There are also other sources on handling
qualities requirements, like ESDU 92006 [8]], published by ESDU, a British engineering advisory organization, or
the book “Aircraft Handling Qualities” by John Hodgkinson [15]], which provides an exhaustive overview of aircraft
stability, handling qualities and their assessments. However, MIL-STD-1797 is by far the most comprehensive one,
supplemented with supporting research data, and almost all of the requirements in the other two sources are also present
in MIL-STD-1797.

The great majority of the handling qualities requirements are intended for linear aircraft models. The most commonly
used ones specifically address modal parameters of the aircraft, e.g., the damping ratio of the phugoid mode, by providing
allowable ranges of the parameters or functions thereof. With some exceptions, the output of the requirement is the
handling qualities level. Level 1 means satisfactory handling qualities, Level 2 — acceptable, and Level 3 — controllable.
It is also possible to score no level, indicating an uncontrollable aircraft. The requirements will often have different
limits based on the flight phase and aircraft class (Flying-V is a Class III aircraft — “Large, heavy. low-to-medium
maneuverability” [7])

There is not much mention of handling qualities in the civil requirements. For example, Aircraft Certification
Specification CS25 [16] only mentions it briefly, including non-specific qualitative terms like “Any short period
oscillation, not including combined lateral directional oscillations ... must be heavily damped with the primary controls*
(CS 25.181 Dynamic Stability [16]).

B. Existing tools for evaluations of preliminary aircraft designs

Being able to accurately predict aircraft characteristics, such as handling qualities, in the earliest stages of the
design is critical for effective and fast development. Rizzi [14] claims that “80% of the life-cycle cost of an aircraft is
incurred by decisions taken during the conceptual design phase” and highlights that the mistakes made during that
stage will be very costly to fix in the future. This is why many software solutions were developed to evaluate certain
aspects of preliminary aircraft designs. A recent article by Marco et al. [17] provides an overview of the most popular
products. Reviewing these programs, as well as other available examples, it is clear that a bigger focus is put on aircraft
performance than on handling qualities. Nevertheless, the latter are addressed in several instances, and the most relevant
of those will be discussed in this subsection.

CONDUIT (Control Designer’s Unified Interface) [[18]] is a tool for aircraft and rotorcraft analysis focused on
evaluating flight control system designs and providing optimization capabilities. The user implements their aircraft as a
Simulink model, and the CONDUIT can attach to the model and evaluate a set of characteristics and requirements.
Those requirements can also serve as constraints in the design tuning. The user specifies which parameters of their
model are tunable, and the CONDUIT optimizes them by minimizing either the actuator energy or feedback-loop
crossover frequency. For handling qualities requirements, the CONDUIT uses the MIL-STD-1797A.

HAREM (HAndling Qualities Research and Evaluation using MATLAB) [19] developed at DLR is a MATLAB-based
command-line tool that automates evaluation of the relevant handling qualities requirements from MIL-STD-1797A.
The need for automation arises from the fact that to evaluate an aircraft “within the entire flight envelope often several
thousands of configurations ... have to be investigated” [[19]]. The program evaluates handling qualities and outputs the
data in the form of plots, tables, or binary files. HAREM also contains a database of various aircraft data that can be
used with the tool.

MAPET (Model based Aircraft Performance Evaluation Tool) [20] is a performance assessment tool developed in
MATLAB/Simulink. It bases its results on trim calculations for ranges of mass, altitudes, and speeds. It then uses
analytical relations (often called “handbook methods*) to estimate values related to, among others, flight endurance and
range, climb, descent, and level turn. Its next iteration was the MAPET II [21]], which focuses on assessing the take-off
and landing performances. In this instance, the authors recognize that, since those are not steady flight phases, trim
calculations cannot be used. Instead, the relevant maneuvers are simulated in MATLAB/Simulink.

MITRA [22] automates the evaluation of handling qualities and performance parameters based on simulation data.
It serves as an interface to the Simulink simulation, setting up and running scenarios and then analyzing the obtained
data. MITRA, among others, evaluates take-off, landing, and climb performance, many handling qualities criteria (from
MIL-STD-1797), as well as reference speeds.

SimSAC (Simulating Aircraft Stability And Control Characteristics for Use in Conceptual Design) project was
commenced to improve the ways the aircraft designs are evaluated at their conceptual phases [14]]. One of the outcomes
of this project was the development of the CAESIOM Tool. It covers a wide area of aircraft design activities, which
are realized using various modules, including aircraft geometry, aerodynamic identification, flight control design,
and stability and control. One of those modules is the SDSA (Simulation and Dynamic Stability Analysis) tool [23].
The program performs stability analysis using both the eigenmodes of the linearized aircraft model and the time
histories of the non-linear 6DOF simulation. Furthermore, the tool features actuator models, a human pilot model (for
pilot-in-the-loop simulations), and a simple stability augmentation which can be used with a Linear Quadratic Regulator
(LQR). In the SDSA, the aircraft model is defined through a file containing aerodynamic derivatives.

The desire to obtain handling qualities in the early design stages is also present in rotorcraft development. Examples
of that can be the tools developed by Lawrence et al. [24] or Zanoni et al. [25]. They both use the existing NDARC
(NASA Design and Analysis of Rotorcraft) software tool and integrate it with handling qualities predictions: [Lawrence
et al.|utilize the aforementioned CONDUIT, while Zanoni et al.|implement the evaluations themselves.

The presented examples highlight the desire to evaluate the handling qualities predictions for early aircraft (and
rotorcraft) designs. The software tools can either be a part of a larger design pipeline (e.g., SDSA[23]]) or a standalone
tool (e.g., MITRA[22]). While the specifics of model formulation were not always disclosed in the referenced papers,
one could observe different approaches to that subject. In some cases, the model structure was constrained, and the user
has only to provide a set of parameters (e.g., SDSA), or the user has to implement the entire model by themselves (e.g.,
CONDUITY[18])). The source of handling qualities requirements, if referenced, was always the MIL-STD-1797. Lastly,
the discussed examples showcase the close coupling between handling qualities evaluations and the flight control system
design.

C. The Flying-V

The design was first proposed by Justus Benad in 2015 as a result of his thesis project at Airbus in Hamburg [[1]].
The initial design claimed a 10% higher lift-to-drag ratio and 2% lower empty weight over the state-of-the-art Airbus
A350-900. The work on the project subsequently continued at TU Delft. In 2017 Faggiano et al. [2] proposed an
improved design. Their CFD (Computational Fluid Dynamics) analyses showed a 25% improvement in the lift-to-drag
ratio over a reference aircraft (based on NASA Common Research Model). In 2022, a conceptual design of the aircraft
family was published [3], which includes three variants with different passenger capacities and ranges. Due to its lack of
a tail, the Flying-V does not have a classical flight control configuration. Instead, the pitch and roll authority is shared
between the elevons located at the trailing edges. The yaw control is achieved through rudders located on the winglets.

In 2019, Cappuyns [9] performed a stability and control analysis on that design and found unstable Dutch Roll and
limited lateral-directional controllability with one engine inoperative, and proposed further improvements to the design.
Overeem et al. [[10] combined the full-scale Flying-V model, obtained using the Vortex Lattice Method, with results of
wind tunnel tests of the small-scale model and analyzed handling qualities requirements on that model. The short-period
characteristics were good, but on the approach the phugoid and Dutch Roll became unstable. Furthermore, they found
that the aircraft becomes statically unstable for large angles of attack.

Most recently, several piloted (in a ground simulator) handling qualities experiments of Cappuyns’ design were
conducted. Vugts et al. [11]] analyzed the longitudinal channel in cruise. A new controlled allocation scheme was
proposed to alleviate the non-minimum phase behavior of the flight path angle response to stick step input, which
stemmed from a preliminary offline analysis. The pilots deemed the handling qualities with respect to the pitch angle
response (while performing a pitch angle tracking task) good. They did not notice the non-minimum phase behavior
while performing the flight path tracking task but still performed better under the new control allocation.

Joosten et al. [[12] looked at the lateral-directional handling qualities and found insufficient control authority for
slow speeds, which was confirmed in a piloted experiment. Besides, the Dutch Roll was found to be unstable for all
analyzed flight conditions, although controllable for some (higher) speeds. To address these issues, a generalized-inverse
control allocation and a stability augmentation system were implemented. Those were shown to have a positive effect on
handling qualities, although the problem with reaching actuator limits persisted, and some indications of pilot-induced
oscillations were noticed, which were attributed to actuator rate limits.

Torelli et al. [13] analyzed the longitudinal handling qualities at approach and found an overdamped short period
that led to the aircraft’s sluggish response, which was both yielded by the preliminary results and indicated in the
pilot’s comments. Despite that, both the handling qualities predictions and pilot opinion ratings showed acceptable
handling qualities. A pitch rate controller was implemented and tuned based on the handling qualities requirements, and
improvement was noticed by all pilots. In this experiment as well, problems with control saturation were observed.

Many steps were recurring in the previous works regarding the handling qualities predictions. The aircraft model
first needed to be implemented. The authors’ starting points were most often the stability and control derivatives,
which had to be turned into force and moment equations and supplemented with kinematics, and sometimes actuator
dynamics, to form a system of (non-linear) differential equations that describe the aircraft’s motion. Next, a trim point
had to be found - firstly, to investigate the aircraft’s configuration (angle of attack, control surface deflections, etc.) for
certain flight phases, and secondly, to be able to linearize the system. A linear system was used to evaluate some of
the handling qualities requirements and, in some cases, for flight control design. The handling qualities requirements
came predominantly from MIL-STD-1797. While the research into longitudinal handling qualities featured some
non-modal requirements, such as bandwidth or Gibson dropback criteria, the lateral-directional part relied solely on
modal requirements. The handling qualities research was also accompanied by attempts to fix the poor handling qualities
with a flight control system.

II1. Design

A. Introduction
This section presents an overview of the design of the library, outlining how the evaluation of the handling
qualities predictions of the Flying-V can be automated. However, before specific solutions are discussed, two important
philosophies that drove the design have to be introduced:
1) Reduced assumptions about the aircraft model structure — The library will not assume that a pre-determined set
of stability and control derivatives will represent the model. This implies no explicit, analytical solutions to
the equations of motion nor their linearizations. Furthermore, the handling qualities criteria will be evaluated

based on the numerical linearization of the black-box model and not on specific flight dynamics parameters.
The library was designed as a stand-alone tool. That does not preclude future integration with other software
but avoids basing the design on a specific output format of a different tool, which, if replaced, might require
redesigning this library.

2) Modularity — Instead of a single program/function running the entire evaluation, the library is designed as a set

of modules. This affords greater flexibility, covers more use cases, and facilitates easier expansion.

A review of the previous handling qualities research into the Flying-V and the insight from similar software solutions
allowed to establish the desired functionalities of the library. They cover all steps that need to be taken to obtain the
handling qualities predictions, starting from the non-linear aircraft model. Those functionalities are:

* providing a framework in which the users can implement their aircraft model,

* trimming the aircraft model,

* linearizing the aircraft model,

* obtaining modal parameters required for most of the handling qualities criteria from the linear aircraft model,

* evaluating the selected criteria,

* attempting to improve the undesirable handling qualities criteria with a Flight Control System (FCS).

The presented functionalities and their division at the same time define the library’s modules. A description of each of
them and how each step is automated will be shown in the rest of this section.

The library implementation heavily relies on the python-control library [26]. The library is used to create and
handle non-linear and linear systems and perform related operations, such as finding equilibrium points, linearization,
or simulating time responses. The library also utilizes commonly used scientific packages such as NumPy[27] and
SciPy[28].

B. Model implementation

The model implementation framework follows a semi "black-box’ approach toward the model formulation. The
top-level structure of the model is defined, and the user implements the aircraft through a set of functions that describe
its specific elements (e.g., control allocation).

(. I
0 \‘ I
11 e |
o : Ua : Auxiliary Xa !
— .
: : ! . dynamics ! :
X AR :
w L E Ly s F,, M X %
P L s Control act Forces & b Vb . . k X
> C > h —> Kinematics >
g allocation Moments ‘
P! I
! B s |
' :) 8des | Control | X |
| .
e | dynamics) |
11 I
| \) |

Fig. 1 Right-hand-side function structure for the Flying-V model. Dashed functions are optional. The default
implementation of the Kinematics function is provided by the library and does not have to be specified by the
user. The state vector x is available for all the functions inside.

The main part of the aircraft model is its right-hand-side (RHS) function of a system of first-order non-linear
differential equations. This function can be seen in It is composed of smaller functions that describe elements
of the model. Those functions are provided by the user, and the library manages the data flow between them. The
library supplies the kinematic equations, so the user does not have to provide them (although they can if they wish). The
built-in equations work under the assumption of a rigid aircraft with constant mass and flat and non-rotating Earth —
sufficient for handling qualities research.

The inputs to the system are the “pilot inputs”, which are two throttle positions (or thrust) and three stick/pedals
controls for roll, pitch, and yaw. The state vector is comprised of three parts: a kinematic state vector, an auxiliary
state vector containing additional states introduced by the user, and a control state vector containing control surface
deflections and thrust when control dynamics are used.

The kinematic state vector has 12 states: three positions (North, East, altitude), three Euler angles (roll, pitch, yaw),
three velocity components, and three body rates. It is the most common set of kinematic states used in aircraft modeling,
and there is hardly any variation except for velocity representation. Aircraft’s velocity can be represented in two ways:
either through total velocity V, angle of attack @ and sideslip angle § — the triad is sometimes called the aerodynamic
velocity — or through u, v, w body velocities. The model structure currently does not include any wind input. Therefore,
those representations are equivalent. Because the two are commonly used, the user will be able to use either of them.

Following the order of operation in the RHS function (Figure 1)), firstly, the user may define a Flight Control System
function if they wish to evaluate a closed-loop system. If this function is skipped, then the pilot inputs are fed directly to
the Control Allocation function. This function is mandatory because the Flying-V has a set of elevons that control both
the pitch and the roll, as well as two rudders. Another obligatory function to implement is the Forces and Moments
function. This is the core function of the model, which calculates the force and moment vectors in the body frame based
on the current state and inputs. The aircraft model should be explicit, meaning that the forces and moments must be
expressed exclusively in terms of inputs and states.

The user may choose to include the dynamics of the actuators and thrust in the model. If they do so, they must
provide the Control Dynamics function, which returns the derivatives of the control states. If the control dynamics are
disabled, then the control deflections are not states, and the outputs of Control Allocation are directly fed to the Forces
and Moments function. On the other hand, when the control dynamics are enabled, then the Control Allocation function
outputs desired deflections, which serve as an input to the Control Dynamics function. In this situation, the Forces and
Moments function obtains the actuator deflections and thrust directly from the control state vector.

Finally, if the user wishes to include any additional states, they can do so by providing the Auxiliary Dynamics
function, which calculates the derivatives of these states. Auxiliary dynamics can cover additional aircraft states but can
also accommodate any dynamics of the Flight Control System, such as integrator or filter states.

Despite dispatching the overwhelming majority of the model description to the user functions, the library’s model
structure still requires a couple of parameters. Those are non-arbitrary quantities like mass and tensor of inertia (required
for evaluation of kinematic equations of motion) or general model information, such as the number of control surfaces,
choice of velocity representation, etc. The user can also pass actuator deflection and thrust limits. While these are not
really used in the handling qualities requirements, they can be used to assess the validity of the trim points.

The library implements the aircraft model as a NonlinearIOSystem[f] from the python-control library, so all
functions and methods designed to work with that class should also work with the aircraft model.

As discussed in the Background section, existing tools employ a range of approaches to model structure. On one
end of the spectrum, the library may force a very specific model structure and ask the user to pass a predefined set of
parameters, for example, stability and control derivatives. On the other end of that spectrum, the user may be provided
with a blank canvas and asked to implement the entire aircraft model. The proposed model framework aims to exploit
the benefits of both approaches. By deconstructing it into smaller elements and providing a top-level structure, the
challenge of creating an aircraft model is simplified for the user. At the same time, the user still has the flexibility to use
various forms of model representation, such as lookup tables, polynomial models, or multivariate splines.

C. Trim and linearization

To trim the aircraft, the library uses the find_egpt m function. The function finds an equilibrium point of a system
based on which inputs/outputs/states are free and which are fixed and to what values. Based on user input, the library
generates the equilibrium condition specification that is later passed to the find_eqpt, together with an aircraft model.

The library implements the wings-level flight condition, which is a flight with zero roll and sideslip angles and
constant vertical speed. The flight condition is described by the desired altitude and speed and optionally desired vertical
speed or a flight path angle y for climb and descent. Although not relevant for the handling qualities evaluations, the
trim module also implements the Steady Heading Sideslip flight condition to demonstrate the library’s trim capabilities.
Furthermore, the library provides a framework through which users can define their own flight condition categories.

An important feature of the trim function is that it finds the trim point in terms of the pilot input, not in terms of the
individual actuator deflections. There are two reasons for that. Firstly, the trim condition is constructed in a way that
the optimization problem is well-constrained, meaning that the number of degrees of freedom equals the number of
constraints. Using actuator deflections instead of pilot input would make the problem under-determined, meaning it has
infinitely many solutions. Adjusting the number of constraints to match the new number of degrees of freedom would

*https://python-control.readthedocs.io/en/latest/generated/control.NonlinearIOSystem.html
Thttps ://python-control.readthedocs.io/en/latest/generated/control. find_eqgpt.html

https://python-control.readthedocs.io/en/latest/generated/control.NonlinearIOSystem.html
https://python-control.readthedocs.io/en/latest/generated/control.find_eqpt.html

Table 1 Summary of available system reductions

Name States (using States (using body Inputs
aerodynamic velocity) velocities)
Longitudinal 0,V,a,q 0,u,w,q pitch stick
Short-period a,q w,q pitch stick
Lateral-directional o,.B,p,r ¢, v, p,1 roll stick and yaw pedals
Directional B.r v, 1 yaw pedals

be impractical as the number of control surfaces may change in the future, and the entire trim problem would have
to be reworked. Secondly, defining the trim point in terms of actuator deflections treats each of them independently,
bypassing the control allocation, which constrains the deflections to each other. This means that the trim point will most
likely have a control surface configuration that violates the control allocation.

The library also performs the numerical linearization of the entire model, which means that the dynamics, kinematics,
control allocation, and flight control system get linearized into a single state-space system. The linearization can be done
with respect to either velocity representation: V, @, 3, or u, v, w. Part of the linearization module are also functions to
generate reduced linear models, often used in handling qualities evaluations (see[Table T).

D. Eigenmode identification

As most of the handling qualities requirements rely on the modal parameters of the linear aircraft model, obtaining
them is a crucial step in the process. It is assumed, and was shown in previous research, that the Flying-V exhibits the
classic five eigenmodes: short period (can be overdamped[11} [13]]), phugoid, roll mode, spiral mode, and the Dutch
Roll mode. The modal parameters in question include time constants for first-order modes, and natural frequency and
damping ratio for second-order modes. Those can be directly calculated from the eigenvalues of the linearized system’s
A matrix. In the identification process, those eigenvalues have to be matched to specific eigenmodes.

Finding the appropriate eigenvalue from (at least) 12 values is challenging. However, a good approximation of
these eigenvalues can be found in the reduced systems. A 4-state reduced system for longitudinal movements, with
[6,V,a, q] states (or [0, u,w, q], depending on the velocity representation) will contain the approximate phugoid and
short period modes — 4 eigenvalues for two second-order modes. Similarly, with lateral-directional movements, a
different 4-state reduction with [¢, B, p, r] states (or [, v, p, r]) will contain approximate spiral, roll, and Dutch Roll
modes — 4 eigenvalues for two first-order modes and one second-order mode). Both systems will have eigenvalues only
related to these modes, which makes the identification easier.

In matching the eigenvalues of the reduced longitudinal system to the longitudinal eigenmodes, the following is
assumed:

* the phugoid is an oscillatory mode ({ < 1, produces two complex poles),

* the short period may be overdamped (two poles, but they do not have to be complex),

* the phugoid has a smaller natural frequency than the short period.

In matching the eigenvalues of the reduced lateral-directional system to the lateral-directional eigenmodes, the following
is assumed:

¢ the Dutch Roll is an oscillatory mode ({ < 1, produces two complex poles),

¢ the roll mode has a smaller time constant than the spiral mode.

If the system meets these assumptions, the reduced systems’ eigenvalues are guaranteed to be unambiguously matched
to the appropriate eigenmodes. Preliminary analysis showed that those reduced systems eigenvalues approximate the
full-system eigenvalues very well unless auxiliary states are used. In cases where the auxiliary states influence the
kinematic states (e.g., flight control system states), those states also affect the eigenmodes. Simple reductions ignore
that influence. To address that, first, eigenvalues of the reduced systems are obtained and matched to appropriate
eigenmodes using the assumptions above. Next, the reduced systems are augmented to include the auxiliary states, and
the eigenvalues of those systems are obtained. Finally, the eigenvalues connected to the eigenmodes are updated with
the augmented systems’ eigenvalues. The updates are done by finding a value in the augmented system eigenmodes
that is closest to the current value connected with a given mode. The updates are done separately for longitudinal and

Table 2 Handling qualities requirements available in the library

Name Source Description
Phugoid modal MIL-STD, Limits on the minimum damping ratio of the phugoid mode
ESDU,
Hodgkinson
CAP MIL-STD, Allowable ranges for the Command Anticipation Parameter (CAP). CAP =
ESDU, gwspTga/V. For more, see: [29] and [7, p. 176-177]
Hodgkinson
Short period MIL-STD, Allowable ranges for the short period damping ratio
damping ESDU,
Hodgkinson
Gibson dropback MIL-STD, Not a full requirement. After the step input is removed, the ratio between
Hodgkinson attitude dropback and steady-state pitch rate (DB/g,) should be between 0
and 0.25.
Short period step MIL-STD Allowable ranges for the transient peak ratio, effective time delay, and effective
response rise time in the pitch rate step response (with speed constant)
Spiral modal MIL-STD, ESDU Minimum time to double amplitude of the spiral mode
Roll modal MIL-STD, ESDU Maximum time constant of the roll mode.
Dutch Roll modal MIL-STD, Allowable limits for the natural frequency, damping ratio, and their product,
ESDU, of the Dutch Roll mode.
Hodgkinson
Phi-to-beta MIL-STD, The value of (¢/B), —a modal response ratio of roll angle to sideslip angle at
ESDU, the Dutch Roll. It is not constrained by any requirement on itself. However, it
Hodgkinson can influence allowable limits in the Dutch Roll modal requirement.

lateral-directional cases.

Lastly, this module also provides utilities that obtain the modal parameters from the eigenvalues. For the first-order
modes, those parameters are time constant and time to double amplitude for unstable modes. For second-order modes,
those parameters are natural frequency, damping ratio, and time to double amplitude for unstable modes.

E. Handling qualities requirements evaluation

presents a summary of handling qualities requirements available in the library. The source of these
requirements are MIL-STD-1797 [[7], ESDU 92006 [8], and “Aircraft handling qualities” by John Hodgkinson [15]].
However, as mentioned in those contain mostly identical requirements.

The modal requirements (including Command Anticipation Parameter (CAP) and short-period damping) require
comparing modal parameters (already obtained), or simple functions thereof, with allowable ranges and deducing the
final level. The CAP also requires Ty, — a high-frequency zero in the pitch attitude to pitch input transfer function. In
the library, the parameters are obtained from the short-period reduced system transfer function, which is defined to have

the following form:
q _ kq(1+Tgs))

T2 2
Up 5%+ 2pwsps + wsp

The Gibson dropback criterion is evaluated from the simulated response of a reduced longitudinal system with
constant speed. The pitch input is held at 1 for the first half of the simulation (20 seconds) and O for the rest. The
simulation time is long enough to allow the aircraft to settle (in pitch rate) after both input changes. The dropback is
measured as the change in the pitch angle 6 from the point the step input is taken off to the steady-state value thereafter.
An example of such a response is presented in [Figure 4]

The pitch rate step response requirement imposes allowable ranges for three parameters of the response. The first is
the transient peak ratio, which is a ratio of the first peak (g1) and first dip (g2) with respect to the steady state value
(gss)- It also requires calculating the effective time delay — the value at which the maximum slope of the step response

Table 3 Combined short-period requirement limits for the Level 1 handling qualities

Flight phase category min CAP max CAP minw,, min{;, max s,

A 0.28 3.6 1.0 0.35 1.3
B 0.085 3.6 — 0.3 2.0
C 0.16 3.6 0.7 0.35 1.3

Table 4 Dutch Roll requirement limits for the Level 1 handling qualities

Flight phase category min {y min {4,wgq, Min Wy,

A 0.19 0.35 0.4
B 0.08 0.15 0.4
C 0.08 0.10 0.4

intersects the time axis. Lastly needed is the effective rise time — a difference between when the step response crosses
the eventual steady-state value and the effective time delay. An example of such a response is presented in

The (¢/B), modal response ratio describes the relation of the roll angle response to the sideslip angle response in
the Dutch Roll mode. It is a complex value that includes amplitude and phase relation between the two states. Besides
influencing the Dutch Roll modal requirement, its value gives a deeper insight into the mode’s behavior, other than its
natural frequency and damping. The ratio is obtained using a method described by McRuer et al. [30, p.72-74] with
state space matrices.

F. Stability augmentation system tuning

The purpose of the automated stability augmentation system tuning in the library is not to supply the aircraft with a
full and robust flight control system but to provide additional insight into the handling qualities of the Flying-V. If the
gains required to improve the ratings to Level 1 are very large, that may indicate that the issue cannot be addressed with
a flight control system, and a redesign may be required. On the other hand, if the gains are small, that may indicate that a
flight control system can be sufficient to address the issues. This module should also be thought of as a proof-of-concept
demonstration of how can the automated flight control system tuning be integrated into handling qualities evaluation.

The library can tune two controllers: a pitch rate controller that improves the short period response using the «
and g feedback, and a yaw damper that improves the Dutch roll behavior using the ¢, 3, p, g feedback. The gains are
obtained using the pole placement method [31] (implemented in SciPy library [28]]). The pole locations are optimized to
minimize the sum of gains (their absolute value) while still providing Level 1 handling qualities in relevant requirements:
CAP and short period damping (see limits in[Table 3) for the pitch rate controller and Dutch Roll modal requirement
(see limits in for the yaw damper. For the yaw damper, the feedback had to be made from 4 states because the
Dutch Roll, even approximated, could not be found in smaller reduced systems (with fewer states), making the tuning
through pole placement impossible. Since feeding back four states places four poles, that means that also the spiral and
roll mode poles are placed. Currently, those poles are being placed in the same location as the open-loop system.

IV. Validation

During testing and validation, two aircraft models were implemented using the library: an F-16 model [32], created
at the University of Minnesota, and the Flying-V model used by Joosten et al. [12]] and Torelli et al. [13]].

The F-16 is a nonlinear model, which includes kinematic equations of motion, and comes with a set of MATLAB
and Simulink files that add actuator dynamics, as well as trim and linearize the model. This makes it a good model to
test the respective elements of the developed library. The F-16 software package contains two versions of the F-16
model: a low-fidelity and a high-fidelity one. Parts of the model (dynamics and kinematics) were implemented in the C
programming language, while the rest (mainly actuator dynamics) is in the Simulink model. In order to implement the
F-16 in the library, the C source file was changed slightly to return forces and moments instead of state derivatives, then
compiled as a shared library and wrapped in a short Python code. The actuator dynamics and control allocation were

Table 5 Summary of validation sources/methods

Model Kinematics | Trim | Linearization | Eigenmode | HQ require- | SAS tuning
Implemen- Identifica- ments
tation tion
F-16 [32] v
Joosten et al.
(2] v v
Torelli et al.
(T3] v v v
unit-tests v v
manual testing v v

Natural frequency: 0.512
Natural frequency level: 1
Damping ratio: 0.023
Damping ratio level: 2
omega*xzeta product: 0.012
omega*zeta product level: 3
Final level: 3

Fig. 2 Example output (verbose) of the Dutch Roll modal requirement

also re-implemented in Python, based on the Simulink model. The high-fidelity model has an additional control surface
— the leading edge flap. This control surface is not controlled by the pilot and is instead a function of other state variables.
Furthermore, the controller driving its deflection introduces an auxiliary state which allows showcasing the auxiliary
dynamics part of the library’s aircraft model.

On the other hand, the Flying-V model comes in the form of a JSON (JavaScript Object Notation — a text-based
data container format) file containing look-up tables for stability and control derivatives for different speeds and
center-of-gravity locations. Joosten et al. [12] and Torelli et al. [[13]] implemented the aircraft in MATLAB and provided
their own engine models, control allocation, and flight control systems, which were not part of the main model. Their
implementation was replicated in Python, using the library’s framework.

As mentioned earlier, the F-16 software package evaluates the kinematic equations of motion and can trim and
linearize the aircraft. Therefore, those results can be compared with ones generated by the library. Likewise, Joosten
et al. [[12]] and Torelli et al. [13]], during their work on the Flying-V model, performed the same steps, as well as identified
the eigenmodes of the linearized systems. The library was used to recreate those results for validation purposes.

The provided model structure was shown to function properly. Both F-16 models (low-fidelity and high-fidelity), as
well as multiple configurations of the Flying-V (with different control allocation schemes, with or without the flight
control systems), were successfully implemented and could be handled by the library. Furthermore, it was demonstrated
that the library correctly evaluates the kinematic equations of motion.

The library also correctly replicated the trim points for the F-16 and the Flying-V. For the F-16 high-fidelity model,
trim convergence was found to be sensitive to initial conditions. The library also correctly replicated the linearized
matrices, although small discrepancies were found due to different linearization algorithms. Furthermore, the library
correctly recreated the model parameters obtained by Joosten et al. [[12].

In some cases, the validation could be better performed using automatic tests independent of any aircraft model. An
example of that may be those handling qualities requirements that require checking the allowable limits for specific
parameters like, for instance, the Dutch Roll modal requirement (Figure 7). In these instances, a set of input values
covering every possible case was created, together with expected outputs (handling qualities level). Requirements that
rely on time responses, and in which the library has to identify specific parameters from these responses, required
manual validation. Those requirements were run on several configurations of the Flying-V model, and their results were
carefully compared with plots of time responses. That allowed to assess whether the library correctly identified, e.g., the

10

Short period step response requirement

0.015 A
% 0.010 A
k<]
o
= 0.005 - q ---Pitch rate step response requirement---
Ss
Effective time delay: 0.0839
0.000 T T T T T T Effective time delay level: 1
0 2 4 6) 8 10 12 14 Effective raise time: 0.196
Time [s] . . .
Effective raise time level: 1
0.02 Transient peak ratio: 0.363
_ Transient peak ratio level: 2
2 0014 Final level: 2
©
T 0.00 A
_001 7 T T T T T T
0 2 4 6 8 10 12 14
Time [s]
(a) Time response (b) (Verbose) console output

Fig.3 Short period step response requirement example

0.006 -

0-0047 - §s=3.442E-03

0.002 A

q [rad/s]

0.000 ~

—0.002 A

0.075 A1

DB = 4.640E-03
0.070 A

6 [rad]

0.065 A

0.060 -

0 5 10 15 20 25 30 35
Time [s]

Fig. 4 Example of Gibson dropback criterion evaluation. The scale in the bottom plot is adjusted to better show
the dropback.

11

response peaks or the steady-steady values. Examples of such requirements can be seen in and in
Overall, all requirements were successfully validated.

The automatic tuning of the stability augmentation system was run on several configurations of the Flying-V and
yielded results indicating correct behavior. First of all, the handling qualities of interest were improved to Level 1 in all
cases. The most limiting parameter always landed just on the edge of Level 1, suggesting that the gains were optimized.
Additionally, the relative magnitude of gains in the yaw damper resembled that obtained by Joosten et al. [[12], who
implemented a similar flight control system.

A summary of which method was used to validate which library module is presented in[Table 5} To sum up, all
modules of the library were successfully validated, and no major redesigns were required.

Finally, it is difficult to rigorously quantify the time savings that the library brings. However, it can be estimated that
in the previous works [9-13]] obtaining the handling qualities predictions could have taken at least a month of work. For
the author, it took a day to re-implement the Flying-V model used by Joosten et al. [12] in the library. Furthermore,
during validation and comparison between the library results and the reference Flying-V works, several programming
errors in the latter were discovered (inconsequential to the outcome of the research).

V. Discussion

The validation confirmed the correct functioning of all of the library’s modules. Some of the results prompted minor
redesigns of the library. However, no fundamental changes were required. The library is ready to be used in the next
Flying-V handling qualities research, where it should bring substantial time savings and reduce the risk of programming
errors.

Successful implementation of both aircraft models showcases the expected robustness of the library with respect to
the model structure, as the two aircraft models are represented in very different ways. The F-16 was an almost fully
implemented aircraft model with force equations, written in another programming language. On the other hand, the
Flying-V model consisted of raw data that had to be turned into appropriate equations. Although a small effort had to be
made to implement them, it is argued that the benefit of flexibility outweighs that. Furthermore, if the same format of
the Flying-V model will be utilized in the future, then that implementation code can be reused, thus requiring almost no
additional work.

During validation, some errors in the previous work were revealed. Although they were not consequential, that
perfectly showcases why such a library can minimize the risks of programming mistakes in subsequent research, as the
library was carefully validated.

Many future handling qualities experiments will include piloted flight simulation experiments. While the library
does not cover this aspect, it should be very helpful in the process. Usually, it is impossible to test all available aircraft
configurations and flight control system designs in a simulator due to limited time and resources. Therefore, the
configurations to be tested in the simulator must be carefully picked. The library will allow getting the preliminary
analysis done quickly, perhaps test multiple control allocation schemes and flight control system solutions, and nominate
the most promising ones for the simulator tests.

It is expected that the library will be further developed. The model structure can be expanded to accommodate even
more complex models, and new handling qualities requirements can be implemented. The core functionalities of the
library also allow for expansion outside of the current scope. The previous Flying-V handling qualities research often
included some performance-related analysis, such as investigating trim points at various flight conditions. Since most of
the steps required for that analysis are already covered by the library, expanding toward more performance-oriented
analysis should not be an issue.

The library was shown to be robust to user model specification but should also be robust to potential changes in the
library’s model structure (Figure TJ). For all of the handling qualities-related activities, a linearized model is used. The
linearization is performed numerically and is agnostic to the internal structure of the non-linear model. For the non-linear
operations, it should be reminded that the library’s model implements the python-control’s NonlinearIOSystem,
which allows using that library’s functionalities on the Flying-V model, regardless of its internal structure.

12

VI. Conclusion

The developed library for automated handling qualities evaluation of the Flying-V should speed up the subsequent

handling qualities research to a large degree and decrease the risk of mistakes. The library provides a flexible model
implementation framework, which can accommodate differently formulated aircraft models. This was demonstrated by
successfully implementing two dissimilar aircraft models — the well-established F-16 model from the University of
Minnesota and the Flying-V model, which was used in previous research. The library trims and linearizes the aircraft
model, identifies the modal parameters of the aircraft, and evaluates the requirements — either from the modal parameters
or from the time response of the linearized models. Furthermore, the library tunes the stability augmentation system that
improves undesirable handling qualities. The library was successfully validated against the earlier Flying-V research
and the F-16 model, as well as using automatic and manual testing.

(1]

(2]

(3]

(4]

(5]

(6]

(7]
(8]
(9]
(10]

(1]

[12]

(13]

(14]

[15]

(16]

(17]

(18]

References
Benad, J., “The Flying V - A new Aircraft Configuration for Commercial Passenger Transport,” Deutscher Luft- und
Raumfahrtkongress, 2015. https://doi.org/10.25967/370094.

Faggiano, F., Vos, R., Baan, M., and Dijk, R. V., “Aerodynamic Design of a Flying V Aircraft,” 17th AIAA Aviation Technology,
Integration, and Operations Conference, 2017. https://doi.org/10.2514/6.2017-3589.

Oosterom, W., and Vos, R., “Conceptual Design of a Flying-V Aircraft Family,” AIAA AVIATION 2022 Forum, 2022.
https://doi.org/10.2514/6.2022-3200.

Cooper, G. E., and Harper, R. P., “The use of pilot rating in the evaluation of aircraft handling qualities,” Report TN-D-5153,
NASA, 1969. URL https://ntrs.nasa.gov/citations/ 19690013177,

Ashkenas, I. L., “Twenty-five years of handling qualities research,” Journal of Aircraft, Vol. 21, No. 5, 1984, pp. 289-301.
https://doi.org/10.2514/3.44963,

Phillips, W. H., “Flying qualities from early airplanes to the Space Shuttle,” Journal of Guidance, Control, and Dynamics,
Vol. 12, No. 4, 1989, pp. 449-459. https://doi.org/10.2514/3.20432.

US Department of Defence, “MIL-HDBK-1797. Flying Qualities of Piloted Aircraft,”, 1997.
Engineering Sciences Data Unit, “ESDU 92006. A background to the handling qualities of aircraft,” , 1992.
Cappuyns, T., “Handling Qualities of a Flying V Configuration,” Unpublished MSc thesis, TU Delft, 2019.

Overeem, S. v., Wang, X., and Kampen, E.-J. V., “Modelling and Handling Quality Assessment of the Flying-V Aircraft,” AIAA
Scitech Forum, 2022. https://doi.org/10.2514/6.2022-1429|

Vugts, G., Stroosma, O., Vos, R., and Mulder, M., “Simulator Evaluation of Flightpath-oriented Control Allocation for the
Flying-V,” AIAA SCITECH 2023 Forum, 2023. https://doi.org/10.2514/6.2023-2508.

Joosten, S., Stroosma, O., Vos, R., and Mulder, M., Simulator Assessment of the Lateral-Directional Handling Qualities of the
Flying-V, 2023. https://doi.org/10.2514/6.2023-0906,

Torelli, R., Stroosma, O., Vos, R., and Mulder, M., “Piloted Simulator Evaluation of Low-Speed Handling Qualities of the
Flying-V,” AIAA SCITECH 2023 Forum, 2023. https://doi.org/10.2514/6.2023-0907.

Rizzi, A., “Modeling and Simulating Aircraft Stability & Control - SImSAC Project,” AIAA Atmospheric Flight Mechanics
Conference, 2010. https://doi.org/10.2514/6.2010-8238.

Hodgkinson, J. M. S., Aircraft handling qualities, ATAA education series, American Institute of Aeronautics and Astronautics;
Blackwell Science, 1999.

European Union Aviation Safety Agency, “Certification Specifications and Acceptable Means of Compliance for Large Aeroplanes
(CS-25),”, 2021. URL https://www.easa.europa.eu/document-library/certification- specifications/cs-25-amendment- 27,

Marco, A. D., Trifari, V., Nicolosi, F., and Ruocco, M., “A Simulation-Based Performance Analysis Tool for Aircraft Design
Workflows,” Aerospace, Vol. 7, No. 11, 2020, p. 155. https://doi.org/10.3390/aerospace7110155.

Tischler, M., Colbourne, J., Morel, M., Biezad, D., Levine, W., Moldoveanu, V., Tischler, M., Colbourne, J., Morel, M.,
Biezad, D., Levine, W., and Moldoveanu, V., “CONDUIT - A new multidisciplinary integration environment for flight control
development,” 1997. https://doi.org/10.2514/6.1997-3773.

13

https://doi.org/10.25967/370094
https://doi.org/10.2514/6.2017-3589
https://doi.org/10.2514/6.2022-3200
https://ntrs.nasa.gov/citations/19690013177
https://doi.org/10.2514/3.44963
https://doi.org/10.2514/3.20432
https://doi.org/10.2514/6.2022-1429
https://doi.org/10.2514/6.2023-2508
https://doi.org/10.2514/6.2023-0906
https://doi.org/10.2514/6.2023-0907
https://doi.org/10.2514/6.2010-8238
https://www.easa.europa.eu/document-library/certification-specifications/cs-25-amendment-27
https://doi.org/10.3390/aerospace7110155
https://doi.org/10.2514/6.1997-3773

(19]

(20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]
(30]

(31]

(32]

(33]

Duus, G., and Duda, H., “HAREM - HAndling Qualities Research and Evaluation using Matlab,” IEEE International Symposium
on Computer Aided Control System Design, 1999, pp. 428-432. https://doi.org/10.1109/CACSD.1999.808686.

Ohme, P., and Raab, C., “A Model-Based Approach to Aircraft Performance Assessment,” AIAA Atmospheric Flight Mechanics
Conference and Exhibit, 2008. https://doi.org/10.2514/6.2008-6873|

Ohme, P., “A Model-Based Approach to Aircraft Takeoff and Landing Performance Assessment,” AIAA Atmospheric Flight
Mechanics Conference, 2009. https://doi.org/10.2514/6.2009-6154,

Krishnamurthy, V., and Luckner, R., “Automated Evaluation of Handling Qualities and Performance for Preliminary Aircraft
Design using Flight Simulation Models,” Deutscher Luft- und Raumfahrtkongress, German Aerospace Society, 2014. URL
https://publikationen.dglr.de/?tx_dglrpublications_pil%5bdocument_id%5d=340087,

Goetzendorf-Grabowski, T., Mieszalski, D., and Marcinkiewicz, E., “Stability Analysis in Conceptual Design Using SDSA
Tool,” AIAA Atmospheric Flight Mechanics Conference, 2010. https://doi.org/10.2514/6.2010-8242,

Lawrence, B., Theodore, C., Johnson, W., and Berger, T., “A handling qualities analysis tool for rotorcraft conceptual designs,”
The Aeronautical Journal, Vol. 122, No. 1252, 2018, pp. 960-987.

Zanoni, A., Gerosa, G., Di Lallo, L., and Masarati, P., “Handling Qualities in Rotorcraft Conceptual Design,” Aerotecnica
Missili & Spazio, Vol. 101, No. 1, 2022, pp. 95-108.

Fuller, S., Greiner, B., Moore, J., Murray, R., van Paassen, R., and Yorke, R., “The Python Control Systems Library
(python-control),” 2021 60th IEEE Conference on Decision and Control (CDC), 2021, pp. 4875-4881. https://doi.org/10.1109/
CDC45484.2021.9683368.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S.,
Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Rio, J. F., Wiebe, M., Peterson, P.,
Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E., “Array programming
with NumPy,” Nature, Vol. 585, No. 7825, 2020, pp. 357-362. https://doi.org/10.1038/s41586-020-2649-2.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser,
W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R.,
Larson, E., Carey, C. ., Polat, 1., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I.,
Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors,
“SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,” Nature Methods, Vol. 17, 2020, pp. 261-272.
https://doi.org/10.1038/s41592-019-0686-2.

Bihrle Jr., W., “A Handling Qualities Theory for Precise Flight Path Control,” Report TR-65-198, AFFDL, 1966.
McRuer, D., Ashkenas, L., and Graham, D., Aircraft Dynamics and Automatic Control, Princeton University Press, 1973.

Kautsky, J., Nichols, N. K., and van Dooren, P., “Robust pole assignment in linear state feedback,” International Journal of
Control, Vol. 41, No. 5, 1985, pp. 1129-1155. https://doi.org/10.1080/0020718508961188.

Russell, R. S., Non-linear F-16 Simulation using Simulink and Matlab, University of Minnesota, 2003. URL https:
//dept.aem.umn.edu/~balas/darpa_sec/software/F16Manual.pdfl

Swiderski, A., “Preliminary Thesis Report: Pipeline for automated handling qualities evaluations of the Flying-V,” Unpublished
preliminary thesis, TU Delft, 2022.

14

https://doi.org/10.1109/CACSD.1999.808686
https://doi.org/10.2514/6.2008-6873
https://doi.org/10.2514/6.2009-6154
https://publikationen.dglr.de/?tx_dglrpublications_pi1%5bdocument_id%5d=340087
https://doi.org/10.2514/6.2010-8242
https://doi.org/10.1109/CDC45484.2021.9683368
https://doi.org/10.1109/CDC45484.2021.9683368
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1080/0020718508961188
https://dept.aem.umn.edu/~balas/darpa_sec/software/F16Manual.pdf
https://dept.aem.umn.edu/~balas/darpa_sec/software/F16Manual.pdf

A. Answering the Research Questions

A. Introduction

In the preliminary thesis [33|], after scoping the problem, the research objective was formulated, which specified the
desired functionalities of the library. This was followed by an introduction of the research questions, which asked how
those functionalities would be automated. In the second part of the preliminary thesis, a design proposal, which answered
(as hypotheses) those questions, was presented. After that, a second group of research questions was introduced, this
time pertaining to the specific design proposal. The aim of these questions was, amongst others, to guide the validation
of the library. Those questions were as follows (cited verbatim):

* “Does the proposed aircraft model structure accommodate an arbitrary number of control surfaces, auxiliary states,
and any control allocation scheme?”

“Does the pipelineﬂ correctly implement the kinematic equations of motion?”

“Does the pipeline automatically and correctly trim the aircraft for the “straight-flight” flight condition?”

“Does the pipeline automatically and correctly linearize the aircraft around a given trim point?”

“Does the proposed method correctly identify eigenmodes from the state-space model?”

“Does the pipeline correctly evaluate the handling qualities predictions?”

“Does the proposed stability augmentation system, implemented and automatically tuned as described in Section
4.6 improve the CAP and the Dutch Roll requirements?”

“How does the stability augmentation system, implemented and automatically tuned as described in Section 4.6
influence the remaining handling qualities requirements?”’

In this section, the activities undertaken to validate the library will be presented, as well as their results. Their description
will be organized by the aforementioned research questions. Note: in some cases, the research questions will be
rephrased for clarity.

As mentioned in[section IV] the F-16 model [32]] and the Flying-V model were used in the validation. The goal was
to replicate the data that can be generated from the F-16 software package (trim and linearization) and some of the
results of Joosten et al. [[12] and Torelli et al. [13]] with the library. If the results match, that gives high confidence in
the library’s correct operation and, at the same time, validates the reference data. To compare the results, NumPy’s
function assert_al 1_close{ﬂ was used. It uses two parameters that will also be used to quantify the accuracy of the
match: relative tolerance (rtol) and absolute tolerance (atol). The assertion passes when the differences are smaller than
atol + rtol - (x), where x is the reference value. The absolute tolerance is useful in situations where minuscule numerical
artifacts are created, which can generate large relative errors. Absolute and relative tolerances of the match will be used
in tables throughout this section. Those are not the measurements of the match, per se, but rather the most conservative
settings that still allow the assertion to pass. Note that if, for a specific model, several data points are used, atol and rtol
are set for the worst match.

Not all parts of the library were validated by comparing them to reference data. In some cases, there was no data to
which to compare, for example, with some handling qualities requirements or stability augmentation system tuning. In
other cases, like the modal handling qualities requirements, using different methods was more effective.

B. Research questions and answers

Does the proposed aircraft model structure accommodate an arbitrary number of control surfaces, auxiliary states, and
any control allocation scheme?

The F-16 high-fidelity model contains a leading edge flap. This control surface is not controlled by the pilot, instead
is a function of the angle of attack, as well as static and dynamic pressure. Additionally, there is an integration step
involved. That means that compared to the low-fidelity model, the high-fidelity model has an additional control surface
and auxiliary state.

Therefore, the F-16 model has 3 or 4 control surfaces. The Flying-V has 6 control surfaces. Furthermore, during
validation, 3 different control allocation schemes for the latter were implemented — two from Joosten et al. [12]] and one
from Torelli et al. [13]]. Besides that, the stability augmentation system designed by Joosten et al. [[12]], which introduces
an auxiliary state (the washout filter state), was also implemented.

*In the design proposal, the software was referred to as *pipeline’, not ’library’.
Shttps://numpy.org/doc/stable/reference/generated/numpy.testing.assert_allclose.html

15

https://numpy.org/doc/stable/reference/generated/numpy.testing.assert_allclose.html

Table 6 Summary of trim results comparisons

Model Flight Condition Number of datapoints rtol atol

F-16 low-fidelity straight level 1 1077 1070

F-16 high-fidelity straight level 1 1073 0.03
Flying-V (Joosten et al. [12]]) straight level 27 1073 107°
Flying-V (Torelli et al. [13]) straight level 15 1077 107°
Flying-V (Joosten et al. [12]]) steady-heading-sideslip 23 1073 1076
Flying-V (Torelli et al. [13]) descent (-3 deg) 13 5-107% 107

At no point during subsequent testing did the library have any issues with handling these models and their
configurations. These models have different sources for force equations, various numbers of control surfaces, various
control allocation schemes, and some introduced auxiliary states. Therefore it can be concluded that the proposed
aircraft model structure accommodates an arbitrary number of control surfaces, auxiliary states, and any control
allocation scheme.

Does the library correctly implement the kinematic equations of motion?

Both the F-16 model as well as the work of Joosten et al. [12] contain the 6DOF equations of motion under the same
assumptions. Results from these two were compared with the results obtained from the library for a random input and
state vector. In both instances, the results matched, meaning that the the library correctly implements the kinematic
equations of motion.

Does the library automatically and correctly trim the aircraft for the “straight-flight” flight condition?

The library was used to trim the two F-16 models and several Flying-V configurations. presents a summary
of trim results comparison against the F-16 software package and the Flying-V research data. The worst match of trim
results happened for the F-16 high-fidelity model. The tolerance is lowered mainly because of small non-zero aileron
and rudder deflections in the trim points in both the library and F-16 software. Those, of course, for that flight condition
should be both zero. In it was mentioned that the trim routine was sensitive to the initial condition for
the high-fidelity model. That specifically concerned the initial angle-of-attack value. However, for the most intuitive
value of @ = 0, all trim problems (including the Flying-V) converged. Because the reference Flying-V work contained
calculations for the many configurations of the aircraft, that allowed comparing results from a multitude of data points.
For the Joosten et al. [12] implementation, the aircraft was also trimmed for two different control allocation schemes as
well as the stability augmentation system.

All the trim points compared during validation matched. Furthermore, the find_eqpt function used in the trim
routine returns, amongst others, information from the solver if the optimization was converged successfully. That was
the case for all the test runs. Furthermore, for a couple of aircraft configurations, a simple non-linear simulation was
run, with a trim point (state and input) as initial conditions, to verify that the aircraft is indeed in equilibrium. That was
also confirmed. All that allows concluding that the library correctly trims the aircraft for the “straight-flight” flight
condition. Although not asked in the original research questions, the library also correctly trims the aircraft for the
steady-heading-sideslip.

Does the library automatically and correctly linearize the aircraft around a given trim point?

[Table 7 presents a summary of linearization results comparison conducted during validation. During testing, it was
discovered that the type of linearization algorithm has a non-negligible influence on the results of the linearization.
Initially, the linearization function in python-control was used. It used the perturbation method with a forward difference,
which was a source of some inaccuracies. Therefore, the linearization method was re-implemented using central
difference perturbation. This improved the accuracy of the match for both the F-16 and Flying-V data. Furthermore,
initial comparison with the work of Joosten et al. [12]] yielded noticeable differences, which were traced to two
programming bugs in their source code. After fixing them, the errors dropped by one order of magnitude. There may
still be errors in the reference code. Otherwise, the current discrepancies are most likely due to different linearization

16

Table 7 Summary of linearization results comparisons

Model Flight Condition ~Number of datapoints rtol atol

F-16 low-fidelity straight level 1 1075 107

F-16 high-fidelity straight level 1 1075 107
Flying-V (Joosten et al. [12]) straight level 27 1076 1072

approaches —|Joosten et al.|linearized the forces equations numerically and kinematics analytically. Regardless, given
the close match on multiple points and various models, it can be concluded that the library correctly linearizes the
aircraft around a given trim point.

Does the library correctly identify eigenmodes from the state-space model?

To validate the eigenmode identification, the results from the Joosten et al. [12] were used. For 27 different aircraft
configurations, the results matched very closely (tested on rtol = 10~ and atol = 0), allowing to conclude that the
library correctly identifies eigenmodes from the state-space model. The validation highlighted a need to match
the reduced-system eigenmodes to the systems augmented by auxiliary variables. Some of the tested configurations
contained the yaw damper, one of its elements being the washout filter on the yaw rate. That meant that the FCS’s
output and, as a result, the aircraft yaw response was a function of the auxiliary filter states. The classic 4-state reduced
system ignores that variable, and the results were as if there was no washout filter. Matching the reduced system’s
eigenvalues to the augmented system’s eigenvalues allowed for achieving the correct results. The possibility of matching
the approximated eigenvalues to the full system was explored during development. However, it became apparent that
that runs a risk of mixing up the longitudinal and lateral-directional eigenvalues.

Does the library correctly evaluate the specified handling qualities predictions?

The validation of the handling qualities predictions was performed in several ways. For those requirements specifying
allowable ranges of parameters, automatic testing was performed. The tests were designed to cover each possible
case. present which requirements were tested that way, together with the number of required tests. Simple
requirements, like the phugoid modal requirement, needed a small number of points, while the more complex ones, like
the Dutch Roll modal, required more.

The remaining requirements were tested manually. The short-period step response and Gibson criteria were validated
by looking at the time responses and seeing if the obtained results matched the plots, as the values used in the criteria
can be easily read from the plots. An example of the Gibson criterion can be seen in[Figure 4] It is unclear what aircraft
model the Gibson dropback criterion requires. However, in the initial Flying-V tests using a 4-state reduced longitudinal
system, the phugoid response was so profound that it completely obscured the desired dropback observation, as evident
in Therefore, it was decided to use a 2-state short-period reduced system for that requirement.

The (¢/8), modal ratio is calculated in the library from the state space matrices but can also be estimated from
time histories. The second method is less accurate but can be used to validate the library results. An example of such
a response is presented in Because the modal ratio in question is specifically in the Dutch Roll mode, the
response must contain only that mode. To do that, the initial condition was set to the Dutch Roll eigenvector. The phase
of (¢/B), was obtained by comparing the time separation between peaks in the two responses, and the results matched
the ones obtained by the library with errors smaller than 0.1 degrees. The magnitude of the (¢/8), was estimated by
dividing the first peak values of each response. That method is not accurate for a better damped Dutch Roll, as the peaks
do not appear at the same time, and the amplitude quickly decreases with time. However, for a poorly damped Dutch
Roll, as presented in [Figure 6] the estimation is accurate.

To summarize, all implemented handling qualities requirements were successfully tested, and correct results were
demonstrated. Therefore, it can be concluded that the library correctly evaluates the specified handling qualities
predictions.

17

0.005 A
n
S 0.000
o
=
—0.005 A
_0010 L T T T T T T T T
0 5 10 1 25 30 35
Time [s]
0.02 A
g 0.00 A
=y
—0.02 A
—0.04 A
0 5 10 1 25 30 35
Time [s]

Fig. 5 Aircraft response to Gibson dropback simulation with non-constant speed

1 -
=)
g 0
—1
0 10 0 1 15 0 17 5 20 0
Time [s]
0.4 1
0.2 1
k=)
S 0.0
«
—0.2 1
—0.4 4
0 5 10 0 20 0
Time [s]

Fig. 6 The time histories of the roll and sideslip angles in the free response in the Dutch Roll. The (¢/8),
obtained by the library: 2.735 + 2.087i. (¢/8), from the time histories: 2.727 + 2.080i

18

Table 8 Summary of handling qualities requirements validation

Requirement Validation type number of tests
phugoid modal unit tests 6
CAP unit tests 42
short period damping unit tests 23
short period step manual testing 9
Gibson Dropback manual testing
roll mode unit tests 8
spiral mode unit tests 31
Dutch Roll unit tests 52
phi-to-beta manual testing 27

Does the automatically tuned stability augmentation system improve CAP, short period, and the Dutch Roll requirements?
How does automatically tuned stability influence the remaining handling qualities requirements?

The automatic tuning of the stability augmentation system was run on several aircraft configurations (those used by
Joosten et al. [[12]]). After the gains were tuned, the stability augmentation system was implemented on the non-linear
aircraft model and linearized again to compare the bare airframe and closed-loop systems. [[able 9|presented selected
results for the pitch rate controller and [Table 10| presents selected results for the yaw damper. In the pitch rate controller,
it can be seen that the short-period damping and CAP requirements are improved. Furthermore, closed-loop systems
scored just on the edge of the limiting requirements. For example, in the first two examples, the short period damping
ratio {, is placed at 0.3, which is the bottom limit for Level 1. This shows that the gains were optimized. An interesting
observation can also be made that the unsatisfactory short-period damping is improved using the angle-of-attack
feedback, and the unsatisfactory CAP (which is a function of short-period frequency) is improved by the pitch rate
feedback. For the yaw damper, similar observations can be made. The tuning successfully improves the Dutch Roll
requirement. The poles are again placed on the edge of the requirement limits — in this case, the limiting requirement is
the product of the damping ratio and natural frequency (0.15 for cruise and 0.1 for takeoff and approach).

For the pitch rate controller, the phugoid is only slightly changed in the closed loop. For the yaw damper, the roll and
spiral poles remained unchanged since they were also placed, unlike the phugoid poles. The validation also has shown
no cross-effects between the control channels, i.e., the pitch rate controller did not influence the lateral-directional
movements, and the yaw damper did not influence the longitudinal movements. All that allows stating that the stability
augmentation system improves the relevant handling qualities requirements and has a negligible effect on other
handling qualities requirements.

C. Discussion

In short, it can be concluded that the library worked as designed. Some of the small issues detected during validation
were immediately addressed, and the improved design worked as desired. Changes with respect to the proposed design
include:

* The default python-control linearization method was overwritten to use central difference perturbation instead of
the forward difference.

* The approximate eigenvalues from the reduced systems are not good approximations when auxiliary states are
used. Therefore, matching them to augmented systems’ eigenvalues is necessary. However, matching to a full
system runs a risk of mixing up the eigenmodes.

* The Gibson criterion had to be evaluated on the reduced system with speed constant because the phugoid
component made it hard to measure the dropback.

* The yaw damper design initially assumed only 8 and r feedback. That was based on the assumption that the
reduced system with 8 and r would contain the Dutch Roll approximation. That assumption is false for the
Flying-V, so the design was changed to 4-state feedback.

19

0¢

Table 9 Selected results for the pitch rate controller tuning. Requirements’ abbreviations: PH = phugoid, SP-D = short period damping, CAP = Command
Anticipation Parameter

Bare airframe

Closed loop

CG Flight Gai
option condition Modal Parameters HQ Levels ams Modal Parameters HQ Levels
Wph {ph Wsp {sp PH SP-D CAP K, K, Wph {ph Wsp {sp PH SP-D CAP
1 cruise 0.054 0.010 1.995 0240 2 2 1 0.000 8.601 0.054 0.010 2.014 0300 2 1 1
2 cruise 0.054 0.010 1.724 0.263 2 2 1 0.000 4932 0.053 0.010 1.737 0.300 2 1 1
3 takeoft 0.097 0.004 0982 0.711 2 1 2 6.194 0.000 0.101 0.001 1.029 0.683 2 1 1
Table 10 Selected results for the yaw damper tuning. Requirements’ abbreviations: R = roll mode, S = spiral mode, DR = Dutch Roll
i Bare airframe Closed loop
CG Flight Gai
option condition Modal Parameters HQ Levels ams Modal Parameters HQ Levels
T, T Wdr Lar R S DR Ky Kg K, K, T, T Wdr Lar R S DR
1 cruise 1.647 9514 0811 -0.011 2 1 None 4.192 0.000 1653 -106.8 1.647 9514 0.790 0.190 2 1 1
2 takeoff 1.051 -11903 0.803 -0.024 1 1 None 12.13 0.000 34.18 -125.6 1.051 -11903 0.771 0.130 1 1 1
3 approach 1.222 -63.97 0.898 -0.078 1 1 None 5225 0.000 202.17 -353.8 1.222 -6397 0.826 0.121 1 1 1

B. User Guide

A. Introduction

This is the user guide of the fvlib — a Python library for the automated handling qualities evaluation. The goal of
this document is to describe the setup and provide a top-level overview of the library. For a specific description of
functions and classes, refer to the source code documentation (the documentation is embedded in the code). To navigate
the library source code, use the README.md files. Furthermore, you can look at the provided code examples. A good
overview of the library’s functionalities can also be found in the library’s tests. Using fvlib requires basic knowledge of
Python. Familiarity with the NumPy library will also be helpful. Furthermore, in many places, the library utilizes the
python-control package, and it is therefore recommended to refer to its documentation as welﬂ The library uses SI
units (meters, Newtons, kilograms, radians, etc.).

B. Getting started

1. Installation

The library source code can be obtained from Ir. Olaf Stroosmam Alternatively, the repository is currently hosted
athttps://github.com/adswid/FlyingV-Pipeline. To get access, contact the author The library will be
ready to use “as is” already. However, to run tests or code examples, two aircraft models: F-16 and Flying-V, have to be
configured.

To use the F-16 model, you must build its nonlinear plant library. The Python implementation expects a shared library
libnlplant.* (.d11 for Windows and . so for Linux) in the data\f16\build directory. The CMakeLists.txt file
is provided to build the plant using CMake E The example build commands (Linux) should look as follows. In the
data\f16 directory:

mkdir build & cd build
cmake ..
make

To use the Flying-V model, you must manually add a few files. These are not a part of the repository because of data
confidentiality. The files can be obtained from Ir. Olaf Stroosma M. The folder FlyingVData contains the following
items:

1) 3JSON files: FV_reset_xcg=*.HQ. json — place them in the data\flyingv directory

2) flyingv directory — place it in the tests\reference_data folder

2. Repository structure
The top-level directory looks as follows:
* data - contains aircraft models used in code demos and tests
* doc - source files for autogenerated documentation
* examples — a collection of short and simple python scripts that demonstrate the library’s functionalities
e fv1ib — the actual library source
* tests — contains library tests and reference data

C. Running tests and demos

The code demos are simple stand-alone Python scripts. Run them in the IDE of your choice. Refer to the inline
comments for an explanation of the steps and their results.

The tests were developed using pytest @ and were run from the PyCharm IDE. They can also be run from the
command line, using pytest command in the repository’s root directory, but the plots may not show. You can also run
single test files (the SAS tuning tests take a long time).

Ipython-control.readthedocs.io
10.Stroosma@tudelft.nl
**al.swiderski@gmail.com
”https ://cmake.org/
*https://docs.pytest.org/

21

https://github.com/adswid/FlyingV-Pipeline
python-control.readthedocs.io
https://cmake.org/
https://docs.pytest.org/

import fvlib
def actuator_dynamics(model, t, x, u, params=None):
Actuator dynamics function contents

return control_derivatives

def forces_and_moments(model, t, x, u, params=None):
Forces and moments function contents
return forces, moments

def ca(model, t, x, u, params=None):
Control allocation function contents
return desired_controls

aircraft_spec = fvlib.AircraftSpec(mass=300000,
tensor_of_inertia=[[1le7, O, 0],[0, le6, 0],[0, O, 1e7]]
control_surfaces_count=6,
control_dynamics=actuator_dynamics,
auxiliary_states_count=0,
forces_and_moments=forces_and_moments,
control_allocation=ca,
fcs=None,
auxiliary_dynamics=None)

aircraft_model = fvlib.Model(aircraft_spec, use_vab=True)

Listing 1 Example of model implementation (does not represent any actual aircraft)

D. Creating an aircraft model

1. The fvlib.Model class

Your aircraft model will be represented by £v1ib.Model. This class derives from the control.Nonl inearIOSysten@
This means that you can treat your aircraft model as an instance of that class and for example: calculate the derivatives
of the state vector with the dynamics method or simulate time responses @ The fvlib.Model adds a few additional
elements to the control.NonlinearIOSystem, some of which will be later discussed. The source and complete
documentation of the class is available in fvlib\model.py.

The most important part of the fvlib.Model is the _model_rhs — a main right-hand-side (RHS) function of the
nonlinear system. This function manages the data flow between various user-defined and built-in parts of the model.
The top-level overview of this function is presented in[Figure T]of the main paper.

2. The fVlib.AircraftSpec class

So how do you create and implement your own aircraft model? For that, we need to introduce the fvlib.AircraftSpec
class. As mentioned in the main paper, the aircraft in the fv1ib is defined by a set of functions describing elements of
the model, together with a couple of parameters. fvlib.AircraftSpec is a structure to store these functions@and
other parameters. The detailed description of the model elements you define in the fvlib.AircraftSpec is presented

in but for now, let us continue with model implementation.

§§https ://python-control.readthedocs.io/en/latest/generated/control.NonlinearIOSystem.html
lﬂ‘”https ://python-control.readthedocs.io/en/latest/generated/control.input_output_response.html
**In Python, functions are objects (unlike in, e.g., C++) and can be simply passed as arguments to function or stored as attributes in a class

22

https://python-control.readthedocs.io/en/latest/generated/control.NonlinearIOSystem.html
https://python-control.readthedocs.io/en/latest/generated/control.input_output_response.html

3. Creating a fvlib.Model instance

Having created your model functions and parameters and filled the fvlib.AircraftSpec with them, you can now
create your aircraft model. The fvlib.AircraftSpec is passed as the first argument in the fvlib.Model constructor,
followed by other settings, such as the selection of velocity representation. This fvlib.AircraftSpec is then stored
in the £fv1ib.Model instance and its elements are called by the class at appropriate moments. The simplified example
of a model implementation is presented in Listing]

E. Model definition specification (fvlib.AircraftSpec)

This section provides a complete description of (required and optional) fields of the fv1ib.AircraftSpec structure,
together with desired format or interface (for functions). If the field is marked as optional, it can be omitted. Otherwise,
it must be specified. The fields can be divided into two parts: functions and parameters.

The following parameters can be set in the fvlib.AircraftSpec:

* mass — aircraft’s mass in kg.

* tensor_of_inertia — tensor of inertia in kg - m.

e control_surfaces_count — number of control surfaces.

e auxiliary_states_count (optional, default: 0) — number of auxiliary states.

e thrust_limits (optional) — minimum and maximum thrust as an array (optional). It is assumed that both

engines have the same limits, so pass only one set of limits. Example: [5000, 100000].
* control_surfaces_limits (optional) — minimum and maximum deflections per surface.
Example: [[-20,20], [-30,30], [-10,15]]

* control surfaces limits policy (optional, default: ’off”) — choose ’soft’ (exceeding limits is allowed, but warnings

are raised), "hard’ (limits cannot be exceeded), or "off” (limits are ignored).

Before the specification of the functions inside the fv1ib.AircraftSpec will be presented, aclass fvlib.StateVector
has to be introduced. A state vector will be passed to every user function. The fvlib.StateVector subclasses
numpy .ndarray (a typical NumPy array) to include convenience properties for easier access to the state’s elements.
For example, to get the roll rate p, you can call state_vector[9], having to remember states’ order, but you can also
use state_vector.body_rates[0]. This is also helpful when trying to access control states. A second control state
will not always be state_vector[13] because that depends on the number of auxiliary states, so it’s easier to call
state_vector.control_states[1]. Regardless, the fvlib.StateVector can still be treated as a regular array.

Having introduced the fvlib.StateVector, we can now discuss all the functions the user can provide in the
fvlib.AircraftSpec. The presentation will roughly resemble the order of execution (some functions as evaluated in
parallel). Use for reference.

» fcs (optional) — flight control system user function.

Arguments:

— model - the aircraft model (fvlib.AircraftSpec)

— t—time (float)

— X — state vector (fvlib.StateVector)

— u - pilot input (array). Order: throttle left (1), throttle right (2), roll, pitch, yaw.

— params — dictionary with additional parameters that can be passed during the RHS function.
Returns: augmented input (array). The output of this function is directly passed to the control allocation
function, and therefore there is no convention on its structure. It can also contain additional variables (e.g.,
inputs to the auxiliary dynamics that must be forwarded through the control allocation).

* control_allocation — translates system inputs into thrust and control surface deflections.

Arguments:

— model — the aircraft model (fvlib.AircraftSpec)

— t—time (float)

— x — state vector (fvlib.StateVector)

— u - pilot input (see above for order) if fcs is not implemented, otherwise fcs output

params — dictionary with additional parameters that can be passed during the RHS function.
Returns:
— thrust and control surface deflections (in a single array). The order of control surface deflection is
arbitrary. However, the thrust values have to be placed before the control surface deflections.
The order must match the order of deflection limits and will also be reflected in the control state

23

vector if used. If the control dynamics are enabled, those values will be interpreted as desired thrust
and deflections. If the control dynamics are disabled, those values will be interpreted as actual thrust
and deflections.
— input to auxiliary dynamics (optional)
forces_and_moments — calculates forces and moments acting on the aircraft.
Arguments:
— model — the aircraft model (fvlib.AircraftSpec)
t —time (float)
— x — state vector (fv1lib.StateVector)
u — thrust and control surface deflections (array)
params — dictionary with additional parameters that can be passed during the RHS function.
Returns:
— forces in body frame (array)
— moments in body frame (array)
kinematics (optional) — calculates derivatives of the kinematic states. The library provides a default implemen-
tation of this function. It is not recommended to overwrite it unless necessary.
Arguments:
— model — the aircraft model (fvlib.AircraftSpec)
— t—time (float)
— x — state vector (fvlib.StateVector)
— u - thrust and control surface deflections (array)
— params — dictionary with additional parameters that can be passed during the RHS function.
Returns: derivatives of kinematic states. Maintain the kinematic states order definedin fvlib.StateVector.
Depending on the value of model .use_vab, return derivatives of aerodynamic velocity or body velocities.
control_dynamics (optional) — calculates derivatives of the control states.
Arguments:
— model — the aircraft model (fvlib.AircraftSpec)
t —time (float)
x — state vector (fvlib.StateVector)
— u —desired thrust and control surface deflections (array)
params — dictionary with additional parameters that can be passed during the RHS function.
Returns: Derivatives of the control states
auxiliary_dynamics (optional) — calculates derivatives of the auxiliary states.
Arguments:
— model - the aircraft model (fvlib.AircraftSpec)
— t—time (float)
— X — state vector (fvlib.StateVector)
— u—inputs to the auxiliary dynamics (array) — the second return value of the control_allocation.
If control_allocation does not return a second value, an empty array will be passed as input
— params — dictionary with additional parameters that can be passed during the RHS function.
Returns: Derivatives of the control states

Lastly, it is possible to implement your model functions as methods inside the class so that they can share common data
or for easier parametrization (see the implementation of the Flying-V in data\flyingv\flyingv.py). In that case,
remember to add self as the first argument in each function.

F. Using the library

1. Aircraft model

Some of the functionalities of the fvlib.Model were already introduced. This subsection presents some additional

elements.

We have discussed the RHS function of the model, but you can also call the output function: either by output

(method of the control.NonlinearIOSystem) or model_output_fcn (method of the fvlib.Model). The output
vector contains the kinematic states, auxiliary states, and control surface deflections. When the control dynamics are

24

enabled, the control surface deflections are states. However, when control dynamics are disabled, control surface
deflections are neither states nor inputs. Therefore, they would be inaccessible to the user if not included in the output
vector.

You can also add an additional output equation using the add_output_eqn method. This could be used for trimming
(details in the Trim section of this guide) or to obtain variables that are not state variables, like the flight path angle 7.
The new output equation should have the following signature:

eqn(aircraft: Model, t, x: StateVector, u, params) -> float

2. Automatic evaluation of handling qualities requirements

The fastest way to simply obtain the handling qualities predictions is to call the fvlib.auto_eval. This function
will perform all necessary steps and print the results. Apart from passing your aircraft model, you need to provide the
altitude, speed, and flight phase category. The example call looks like this:

fvlib.auto_eval (your_aircraft_model, altitude=0, speed=70, category='B')

3. Trim

To trim the aircraft, use the fvlib.trim.trim function. To trim your aircraft, pass the aircraft model
(fvlib.Model), name of the flight condition (or custom trim class — see below), and keyword arguments with
parameters of the trim condition. The example call looks like this:

X_eq, u_eq, y_eq, result = fvlib.trim.trim(aircraft_model,
flight_condition="wings-level',
altitude=2500,
speed=150
vertical_speed=-2)

For the wings-level flight condition, you have to pass altitude and speed. If you want to trim in steady climb or descent,
include parameter gamma or vertical speed. The function returns trim values and trim results. You can also trim for
the flight condition steady-heading-sideslip. That requires additional argument beta (sideslip angle).

Because the convergence of the trim may sometimes depend on the initial conditions, the user can pass them in the
trim function as well (as keyword arguments). For the initial state vector, use x0, and for the initial input vector, use u®.

The library currently supports two flight conditions: ’wings-level’ and ’steady-heading-sideslip’. If you wish
to use different flight conditions, you can create a new class derived from trim.TrimCondition. In creating the
class, you must implement two methods: pre and post. The first method is called before the trim optimization
and takes the same arguments as the main trim function. In the pre, you should fill all of the trim specification
constraints that will be passed to the control. find_eqpt function (see TrimCondition.__init__ for the fields
that you can fill and the control. find_eqpt@locumentation on how the trim condition is specified). The post
function is called after the trim point has been found and can be used to do additional processing. When you have
created your class, pass it as a flight_condition field in the trim function. Important: Pass the class, not the
class instance! For examples of how the trim conditions are implemented, see trim.py and the implementation of
WingsLevel and SteadyHeadingSideslip classes. To see how a custom trim condition can be created, refer to
WingsLevelF16 in data\f16\f16.py. Note that in that case, the new trim condition derives from WingsLevel class,
not a TrimCondition, which allows reusing more of the existing code (do not forget about the super () call).

4. Linearization
To linearize the aircraft, call the 1inearize method of your aircraft model. Pass the linearization point’s state and
input. The example call looks like this:

aircraft_model.linearize(x_eq, u_eq)

H*Lhttps ://python-control.readthedocs.io/en/0.9.3.post2/generated/control. find_eqgpt.html

25

https://python-control.readthedocs.io/en/0.9.3.post2/generated/control.find_eqpt.html

The linearize function returns the control. LinearIOSyste Having obtained the linear system, you can use
the library to get reduced systems. To do that, call the fv1lib.linear.reduce function and specify the reduction type.
You can also decide if the auxiliary or control states should be included or whether to have control surface deflections
and thrust in the output equation. Refer to the code documentation for details.

5. Eigenmode Identification

To identify the eigenmodes, you need to provide the linearized A matrix, indicate whether the aerodynamic velocity
is used, and if the system should match the approximated eigenvalues to the augmented system ones. The example call
would be like this:

eigenmodes = fvlib.eigenmode.identify(a_matrix, use_vab=True,
match_augmented_system = True)

The function returns an Eigenmodes object, which contains information about the five eigenmodes. Each field can
be either of type FirstOrderEigenmode or SecondOrderEigenmode.

You can use the first and second-order eigenmode classes to create your own instances. You can define the first-order
eigenmode by a pole value or a time constant. For example:

my_first_order_mode = eigenmode.FirstOrder(pole = -2)
will give the same results as:

my_first_order_mode = eigenmode.FirstOrder(time_constant = 0.5)
For a second order eigenmodes you create it using poles:

my_second_order_mode eigenmode.SecondOrder(-3 + 4j, -3 - 43j)
or using parameters:

my_second_order_mode = eigenmode.SecondOrder (omega=5, zeta=3/5)

6. HQ requirements
To run all of the HQ requirements, call the fvlib.hqreq.run_all function. The difference with the fvlib.auto_eval
function is that it requires a linear system. The example call to the function looks like this:

fvlib.hqreq.run_all(linsys, speed, category, use_vab=True,
auxiliary_states_count=0)

You can also run each requirement individually. Refer to the code documentation for the required parameters. When the
requirement yields a handling qualities level, that is what is returned by the function. In other cases, relevant values
(like phi-to-beta) are returned. In all requirements, you can set the verbose argument for the function to print the
intermediate and final results of the evaluation. In the short period step response and the Gibson criterion, you can also
set the plot option to obtain the relevant time histories.

7. SAS tuning

To tune the stability augmentation system, call the fvlib. sas. tune function, and select the control channel (‘lat’,
‘lon’, or ‘latlon’) to tune. You also need to provide a trim point for which the gains should be tuned and the flight phase
category. An example call looks like this:

fvlib.sas.tune('lat', aircraft_model, x_eq, u_eq, 'B', verbose=True)

The function returns the aircraft model (fv1ib.Model type) with the flight control system implemented.

iiihttps ://python-control.readthedocs.io/en/latest/generated/control.LinearIOSystem.html

26

https://python-control.readthedocs.io/en/latest/generated/control.LinearIOSystem.html

C. Recommendations for future work
This section contains suggestions for the future development of the library. They include improvements to the original
design, as well as expansion of the functionalities within the original scope and outside of it. Those recommendations
are sorted by importance, starting with the most pressing actions/improvements and finishing with long-term expansions.

Use the library

The main recommendation for the future development of the library is to, first and foremost: use it, for instance, in
the next Flying-V handling qualities research. This research project focused on scoping the desired functionalities of
such a library, implementing them, and then validating the final product. However, the library was not yet used for any
specific handling qualities research. Using it in practice will provide valuable insight into its potential shortcomings. It
will also better highlight where the upgrades or expansions are much needed. And undoubtedly, it will uncover some
bugs that were not caught in the testing phase.

Linear (state-space) model support

fvlib.Model implements and expands the control.NonlinearIOSystem. The same should be done for
control.LinearIOSystem, which is used numerous times in later stages of the library. The fv1ib.Model contains
useful attributes like the number of auxiliary variables or control surfaces. Those parameters are also needed in functions
that use linear models and must be passed separately. Including them in a single linear model class would simplify the
function interfaces and improve the user experience.

Improve handling of the flight control system states

It is not uncommon that the flight control system introduces some states. It happens when the FCS has, for instance,
integrators or filters. In the current model structure, these states are treated as auxiliary states. Therefore, their dynamics
have to be handled in another function. Furthermore, the user has to pass the input to those dynamics through the
Control Allocation function. This is an inconvenience for the user, and it is suggested to improve the model structure so
that everything FCS-related is handled in one function.

Performance related requirements

As mentioned earlier, the library does not include performance-related requirements. However, many of the elements
required for such analysis are already a part of the library. Given that such requirements were of interest in previous
Flying-V handling qualities research, their inclusion in the library would be desirable. Furthermore, it is believed that
the designed model framework, together with trim and linearization routines, constitutes a solid backbone upon which
the library can be developed outside of the scope of handling qualities requirements to include other aspects of the
analysis of preliminary aircraft designs.

Introduce auxiliary inputs

Auxiliary inputs were planned for the current version but were removed due to time constraints and limited utility in
the first iteration of the library. However, as the Flying-V models would get more advanced, being able to introduce
additional inputs, like, for example, flight spoiler lever position, would be appreciated by the user.

Integrate an FCS tuning system

The stability augmentation system tuning was introduced into the library as a proof-of-concept to demonstrate how
the Flight Control System design/tuning can be integrated into the handling qualities evaluation process. It was also
shown that discussions about the FCS are an integral part of the handling qualities evaluation process. However, it is not
recommended to develop the module substantially. Instead, those efforts should be devoted to integrating an existing
FCS tuning system or cooperation with Flying-V research that focuses purely on flight control system design.

27

	Introduction
	Background
	Handling qualities
	Existing tools for evaluations of preliminary aircraft designs
	The Flying-V

	Design
	Introduction
	Model implementation
	Trim and linearization
	Eigenmode identification
	Handling qualities requirements evaluation
	Stability augmentation system tuning

	Validation
	Discussion
	Conclusion
	Answering the Research Questions
	Introduction
	Research questions and answers
	Discussion

	User Guide
	Introduction
	Getting started
	Installation
	Repository structure

	Running tests and demos
	Creating an aircraft model
	The fvlib.Model class
	The fvlib.AircraftSpec class
	Creating a fvlib.Model instance

	Model definition specification (fvlib.AircraftSpec)
	Using the library
	Aircraft model
	Automatic evaluation of handling qualities requirements
	Trim
	Linearization
	Eigenmode Identification
	HQ requirements
	SAS tuning

	Recommendations for future work

