
Fault Classification
and Vulnerability
Analysis of
Microprocessors

Pavan Talluri

Fault
Classification and

Vulnerability
Analysis of

Microprocessors
by

Pavan Talluri
to obtain the degree of Master of Science

at the Delft University of Technology,

Student number: 4942256
Project duration: November 5, 2019 – November 4, 2020
Thesis committee: Dr. Ir. M. Taouil TU Delft, supervisor

Prof. Dr. Ir. S. Hamdioui TU Delft
Dr. Ir. R. van Leuken TU Delft
Ir. D. Vermoen Riscure B.V.

This thesis is confidential and cannot be made public until February 5, 2028.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

The adoption of Microprocessors is increasingly diversifying to several embedded and mo-
bile devices. Growingly they can also be found in Smart Cards, RFID tags, SIM cards, Pay
TVs, identity cards and passports. These devices store, processes and transact sensitive
information like social security numbers and credit card numbers. Ensuring security of
such systems is of paramount importance. Attackers use Fault injection as one of the tech-
niques to induce faults into the processor in order to gain access to the sensitive information
to abuse it. Vulnerability Analysis of the processors can help chip designers to counteract
some of these risks. This analysis can be achieved by investigating the resulting fault space
upon exhaustive simulation of fault injection attacks. Therefore, efficient tools and frame-
works are needed to provide such security verification, where critical vulnerabilities can be
discover and mitigated at design-time.

Multiple tools and frameworks for simulation based fault injection of hardware designs are
available in literature, each with their own shortcomings. Two main strategies have been
proposed in literature, one based on tool manipulation while other based on codemodifica-
tion. Applying tool manipulation, a designer can automate the process to inject faults in the
system and obtain simulation results in a fast manner. However, this approach is limited
by the features provided by the tool, which makes difficult to explore many different fault
models. Additionally, in most cases, results require manual inspection to be interpreted.
The latter approach, which is code modification, can inserts agents to cause the faults (i.e.,
saboteurs) or vary the existing design (i.e., mutants). It allows designers to achieve a high
degree of control in terms of the type of fault and the injectionmethod. However, current so-
lutions are limited to a specific language, design or scenario. Hence, the literature presents
many different strategies and tools to apply faults to investigate hardware behavior, but still
the interpretation of vulnerabilities related to processors are not considered in such tools.
Moreover, a complete automated framework capable to get a design and process it to report
vulnerabilities and behavior issues related to security is still needed.

This thesis proposes a framework that provides a complete toolset able to evaluate vulner-
abilities of processors in hardware description language. Its main steps comprises design
instrumentation, simulation based fault injection and automatic fault classification. RISC-V
is chosen as the target architecture due to its open source nature and its increasing adoption
by academia and industry. Code profiling was carried out on the frameworks to identify bot-
tlenecks to performance. The results were used to optimise execution time of simulations
using the framework. Performing Fault injection campaigns requires running simulations
in the order of 100k, which requires systemswith high computing power to complete them in
reasonable time. Therefore, multiprocessor support was implemented in simulation frame-
work, which could be enabled or disabled during the injection campaign. The framework
was used to perform fault injection campaigns on PicoRV32 and DarkRISCV processors. A
comparison between the processors is made based on their major failure signatures. Anal-
ysis of finding design constructs in the processors which cause the major failure signatures
was carried out. The results from this vulnerability analysis are used to propose software
and hardware countermeasures to make the design more robust against fault injection.

ii

Acknowledgements

I would thank all the following people without whom this thesis would have been far from
completion. In no apparent order:

• My daily supervisor Dr. Ir. Mottaqiallah Taouil from TU Delft (NL) for all the guid-
ance and support during the project as well as writing the thesis. I would like to thank
Prof. Dr. Ir. Said Hamdioui, my supervising professor for his intriguing lectures and
introducing me to the field of hardware reliability and security.

• Dennis Vermoen and Stefan Droege, supervisors at Riscure BV. Their insights and
feedback were critical for what I have achieved in my thesis. Despite being busy, they
always found time to answer all my questions and have weekly meetings to help me
progress throughout the length of my thesis.

• Cezar Wedig Reinbrecht, for his suggestions and assistance in all the weekly meetings.

• My parents, Sankar and Kamala for their motivation and support, whom I owe every-
thing to.

Pavan Talluri
Delft, October 2020

iii

Contents

Abstract ii

Acknowledgements iii

1 Introduction 1
1.1 Motivation . 1
1.2 State of the Art . 2
1.3 Thesis Contributions . 4
1.4 Report Outline . 4

2 An Overview of Faults and Fault Injection Attacks 5
2.1 Faults . 5

2.1.1 Sources of Faults . 5
2.1.2 Fault Categories . 11
2.1.3 ISA/Software Faults . 12

2.2 Fault Injection Techniques . 14
2.3 Fault Models . 15
2.4 Fault Injection Frameworks . 16
2.5 Countermeasures . 18

2.5.1 Software Countermeasures . 18
2.5.2 Hardware Countermeasures . 20

3 RISC-V Processors 21
3.1 RISC-V . 21

3.1.1 Instruction Set Architecture . 21
3.1.2 Control and Status registers . 22
3.1.3 RISC-V Tool Chain . 23

3.2 RISC-V OpenSource Cores . 24
3.2.1 PicoRV32 . 24
3.2.2 DarkRISCV . 25

4 Methodology 26
4.1 Methodology Overview . 26
4.2 Tool Flow Overview. 27
4.3 Instrument Design . 28
4.4 Build Shared Library and Application Binary . 36
4.5 Fault Simulation . 37

4.5.1 Fault models . 37
4.5.2 Fault classification . 37
4.5.3 Simulation. 38

4.6 Process Results . 42
4.7 Code Profiling and Optimisations . 43
4.8 Multiprocessor Support. 45

5 Case study : FI of PicoRV32, DarkRISCV 46
5.1 PicoRV32 . 46

5.1.1 Fault Injection & Fault Bucketing . 47
5.1.2 Results . 47

5.2 DarkRISCV . 48
5.2.1 Fault Injection & Fault Bucketing . 49
5.2.2 Results . 49

iv

Contents v

5.3 Comparison of processors . 50
5.4 Implementation of Countermeasures . 52

5.4.1 Complementary Double check implementation . 52
5.4.2 Watchdog Timer . 53

5.5 Discussion . 55

6 Conclusion 56
6.1 Summary . 56
6.2 Future Work. 57

A Platform setup 58

B RV32I ISA 60

C Watchdog Timer - Sample Verilog Design 61

Bibliography 62

1
Introduction

1.1. Motivation

Since the invention of the transistor, silicon industry has made significant progress in improving the
computational capacity, power and size of silicon devices by orders of magnitude. This complexity
opened up several avenues for adversaries to develop new forms of hardware attacks [21]. One im-
portant target are the processors, which are increasingly seen in smart devices such as ID cards, SIM
cards and smart cards [28]. This claim can be substantiated by the trend of increasing shipments of
secure devices in Europe from 2010-2019 shown in Figure 1.1. These devices store sensitive infor-
mation and are often targeted by attackers, who try to retrieve this information by compromising their
security. One of the most dangerous threat are the fault injection attacks. The first article to discuss
about fault attacks in literature is from 1997, by Boneh [16]. It lists the methodology followed in corrupt-
ing a computation by manipulating the circuit environment through fault injection. Since then, several
new techniques have been designed to compromise or steal sensitive information causing great impact
on silicon industry [35][62][15].

Figure 1.1: Secure Devices Shipments in Europe [4]

Fault injection can be achieved by various techniques such as variations in supply voltage, exter-
nal clock, temperature, exposing to high intensity laser, electromagnetic radiation etc.[28]. Protect-
ing systems against fault injection is quite challenging. Successful fault attacks were carried against
DES implementation on a smart card [32], protected implementation of AES [72] as well as RSA
authentication[10]. This is the reason why system designers require an abstraction of set of faults
that could possibly be used by the attackers. Consequently, such knowledge allows engineers to build
more effective software and hardware countermeasures [56]. This grouping of possible set of faults
can be termed as a fault model. Most countermeasures are based on based on redundancy and this
add considerable area to the design or increases execution time. This is due to the fact that, there

1

2 1. Introduction

exist no methodology to evaluate vulnerable parts of the design in the event of a fault. Therefore, to
achieve an efficient methodology to explore the vulnerable parts of a design, a technique to stimulate
the design under different fault models is needed.

Fault injection(FI) techniques can be classified into Hardware based, Software based, Simulation
based, Emulation based and Hybrid [29]. Hardware based fault injection requires specialised equip-
ment to inject faults. The focus of this thesis is to inject faults at HDL level and thus simulation based FI
is adopted. Existing FI techniques focus on modifying the HDL code manually which is not desirable.
This thesis overcomes this limitation by proposing an automated frameworks to instrument the design,
inject faults and perform automatic fault classification. Vulnerability analysis of the processors as well
as software and hardware countermeasures are discussed towards the end.

1.2. State of the Art

There exist multiple techniques of simulation based fault injection for any HDL like Verilog. Different
classes of techniques are shown in the Figure 1.2. Saboteur is a special module added to the design,
which if activated, alters the value or timing characteristics of a signal in the original design at the port
level. It don’t effect the design when inactive. A mutant is module that replaces the original design mod-
ule, which when activated behaves like a module in presence of faults. Either behavioural descriptions
of the design are modified or sub-modules are replaced with different modules. Simulator commands
can also be used to modify values of either the signals or registers in a design. Unlike saboteurs and
mutants, simulator commands doesn’t require code modifications in the design. Simulation events
to inject faults can also be invoked by using Verilog programming interface(VPI). VPIs are simulator
independent and can be used to inject fault in any event region of a Verilog simulator.

Figure 1.2: HDL based fault injection techniques [37]

Code Modification - Saboteurs: A tool for automatic placement of saboteur was described in [43].
This tool, unlike the previous ones, was built considering FI for emulating external attacks and thus
included different fault effects that could be implemented by a saboteur such as stuck at 0/1, inde-
termination, delayed input etc. Though placement of saboteur is automatic, a port selection for the
placement is to be manually selected from a provided GUI. This approach becomes unmanageable for
complex designs. The tool does not do signal extraction from design, making choosing critical signals
hard.

Code Modification - Mutants: An automated framework for mutant based fault injection approach
was discussed in [44]. Multiple mutations have been considered by perturbing the model at conditions
such as if and case statements, assignments as well as operators. These translate into Stuck-Then,
Stuck-Else, Micro-operation, global stuck data, local stuck data fault models. Using the configuration
mechanism, multiple models are generated with a single fault in their component when compared to
the reference model. A static mechanism would allow only permanent faults to be injected. A dynamic
approach was developed by using guard signals along with configuration mechanism to allow for in-
jection of transient faults. In this approach, initially a fault free model is simulated till the time of fault
injection. Simulator commands are used to stop the simulation and save the state to fault. The saved
state is loaded to a model with a mutant and simulation is resumed. The drawback of this approach is
its simulation time and memory required by simulator to store all the models. The simulation time was

1.2. State of the Art 3

measured to be 100 times slower compared to the traditional simulation command based approach.

CodeModification - Netlist Level: The paper [12] discusses about a net list level fault injection tool for
FPGAs. The framework uses a fault injection unit (FIU) hardware module in the FPGA to inject faults
in RTL. The fault models modelled were stuck at 0/1, Random fault, Delay fault and SEU fault. The
nets in the net list, which need to be injected with faults are opened and connected to FIUs. FIUs either
drive the original value or a modified value to reflect one of the fault models mentioned earlier. Random
faults are made possible due to the implementation of LFSRs. The timing and the type of fault model
are controlled by a fault injection controller (FIC), which in-turn is programmed by the user. The user
enter all the nets of the synthesized design to be subjected to fault injection. Random faults can also be
controlled by the user by LFSR load value. A fault pattern file can also be used in-order to inject longer
sequences of faults. The drawback of this solution are that, it requires a third party synthesis tool as
well as signals present in HDL may not be present in netlist due to logic optimisation. The framework
also doesn’t provide a simulation script to generate a specific fault case in logical simulation.

Simulator commands - Combinational: Simulation based fault injection was earlier used to access
the dependability of fault tolerance of systems towards radiation such as cosmic rays, known as single
upset events[61]. This 1993 paper [50] proposes a VHDL based simulation tool, that can inject stuck
at faults for simple designs. It fails to discuss about the scalability of the tool to more complex designs
such as a processor and is language specific to VHDL.

Simulator commands - Sequential: A different approach entails fault injection into the model at the
time of simulation by use of simulator commands. Here, the values of variables and signals of the model
are varied by the simulator to model a fault. The paper [24] proposes a tool controlling the simulator
to facilitate FI. Macros are used to prevent re-writing command code for every single fault. A precise
control of fault duration, fault instant, fault value and fault signal/variable by the tool is possible. The
drawbacks of this approach are, the fault simulation is very slow and cannot be used for fault space
exploration; furthermore, the tool is simulator specific.

VPI: A Verilog VPI based approach was suggested in [18], which is independent of the simulator used
unlike the simulator command based approach. Simulator command approach to inject faults into a
non blocking statement is not possible as NBA(Non Blocking Assignment) is done in event region 3
of Verilog simulator as opposed to region 1. As modifying Verilog design code like in mutants and
saboteurs is not required, recompilation for different fault injection simulations is not a necessity. Bit
flip, stuck at 0/1, indetermination and high impedance were the fault models targeted. The developed
framework reads inputs from user in an XML format, where the desired fault properties can be specified.
ICORE processor was used to carry out the case study. The only shortcomings of the approach are its
inability to scale to different type of faults as well as its performance for large scale fault exploration. This
approach involves halting the simulator at the fault injection instant, injecting the fault, run simulation
for specified fault injection period, halt the simulator, clear the fault and resuming the simulator again.
The overhead of start-stop approach of the simulator as well as the need to manually add the required
fault for the simulator hinder its use for a large scale fault space exploration.

4 1. Introduction

1.3. Thesis Contributions

The main goal of this thesis is to design a framework to analyse how vulnerable is a processor to fault
injection attacks. To achieve this objective, this thesis perform fault space exploration by injecting faults
into the design, propose a classification for the faults and finally evaluate the methodology efficacy by
embedding some countermeasures into a processor. The proposed framework is validated through
two use cases; the RISC-V architectures namely PicoRV32 and DarkRISCV. As a result, we compare
and contrast for vulnerabilities in their implementations. The primary contributions of the thesis have
been the following.

• Creation of a framework for automatic instrumentation of Verilog-2001 based design to
facilitate fault injection
The framework employs, Pyverilog to convert the design described in Verilog-2001 to an abstract
syntax tree (AST). This AST is read by a custom parser written in python, that instruments the code
with fault injection signals. Finally, the framework utilises an AST code generator tool to convert
the modified AST back to Verilog. All the registers and wires in the design can be injected with
faults from the injection bus provided on the top level module of the design.

• Development of a framework for simulation of designs which supports injection of fault in
run time with automatic fault classification
The python framework converts the verilator based test bench to a C++ object, that is loaded as
a run time library. The functions in the library are utilised by the framework to inject faults in the
design when the simulation starts. The names of signals and registers where the fault are to be
injected is provided as an input to the framework. Multiple simulations are run, each with a single
fault in one of the bits of the aforementioned signals and registers. The framework also cate-
gorises the failed simulations to one of the fault categories. The framework has multiprocessor
support, enabling it to be scaled to larger designs.

• Exploration of the fault space on RISC-V based processors
An exhaustive search of fault space was performed with a single fault per simulation for RISC-V
based processors. All the faults were grouped into multiple fault classes based on their resulting
effect on the processor state.

• Comparison of Fault space for different RISC-V based processors
A complete fault space exploration was performed for PicoRV32 and DarkRISCV, both of which
implemented the RISC-V ISA. Analysis, comparing both the faults spaces illustrates the effect of
different implementations of same ISA on resulting faults.

• Proposing countermeasures for faults in the resulting fault space
Countermeasures were proposed for faults with highest frequency as seen in the simulations for
PicoRV32. A watchdog timer was implemented in the design as a hardware countermeasure
for the class of abrupt halt faults. A software countermeasure was envisaged to protect against
control flow errors like ’branch not taken’ class of faults.

1.4. Report Outline

The remainder of the thesis is divided into five chapters. Chapter 2 gives an introduction to different
faults, fault models and fault injection attacks. These basics help to create a background to help dive
into the later chapters. Chapter 3 discusses about the RISC-V architecture, ISA, available tool chains
and open source cores. Fault injection corrupts the state of the processor and thus is checked on
every clock cycle by the simulation framework. To understand what constitutes as a processor state,
knowledge regarding the RISC-V architecture is of paramount importance. Chapter 4 presents the tool
flow and framework that was used in this research, to instrument the design, inject faults and classify
the faults automatically. Several tools like verilator, Pyverilog and Yosys that were integrated into the
framework are also briefly discussed. Results of fault injection for PicoRV32 and DarkRISCV along
with the implemented hardware and software countermeasures are examined in Chapter 5. Chapter 6
concludes the thesis as well as discusses about the future scope of this research direction.

2
An Overview of Faults and Fault

Injection Attacks

This chapter introduces the concept of faults and its sources, fault categories, fault models, fault injec-
tion techniques and finally some fault injection frameworks.

2.1. Faults
A fault is an unpermitted deviation of atleast one characteristic property (feature) of the system from
acceptable, usual, standard condition [36]. It is an abnormal condition that may cause reduction in, or
loss of, the capability of a functional unit to perform a required function [31]. In the following subsections,
we describe in details the sources of faults in a hardware system, how faults can be categorized and
what are software/ISA faults.

2.1.1. Sources of Faults
Different faults are possible based on the type of source. They are shown in the Figure 2.1 and are
discussed in more detail in the following sections.

Figure 2.1: Types of faults

5

6 2. An Overview of Faults and Fault Injection Attacks

Defects
Manufacturing processes may induce imperfections in the intended CMOS structures, affecting their
expected behaviour. These flaws are termed as process defects. In the course of their lifetime, ageing
can also induce flaws in the CMOS based designs, termed as time dependent defects. Some defects
are listed in the Figure 2.2. Environmental factors such as cosmic rays and radioactive particles can
also induce faults into chips. Physical disturbances such as voltage underfeeding, lasers, EM pulses
and clock glitching can be used by an attacker to induce faults in the chip in order to derive secret
information or compromise its security. These are discussed in detail in the coming sections.

Figure 2.2: Defects and their fault mechanisms [17]

Process Defects
• Gate Oxide Breakdown
Gate is more vulnerable to breakdown if the manufactured gate oxide is thin. When the transistor
operates and the current flows though the gate, manufactured traps get charged and start damag-
ing the oxide. This causes thermal damage to the transistor, which increases conduction through
the traps and thereby creating more traps. A conductive path between the substrate layer and
metal layer of the transistor is established. If the resulting effect is only higher leakage current,
this phenomenon is called soft gate oxide breakdown. A manifestation of a cross section in the
gate connecting the metal and substrate layer is termed as a hard gate oxide breakdown [47].

• Parasitic Devices
Unintended structures like PN junctions, Bipolar/ MOS transistors can manifest in integrated cir-
cuits (IC) due to fabrication process variations and Design/layout geometric constraints. These
parasitic devices can sometimes benefit the parametric performance of design, but a conscious
effort is made to keep their effect low to maintain the functional intent of the IC. A decrease in out-
put current drive, timing constraint violations, increased IDDQ and I/O leakages can be attributed
to parasitic devices in CMOS ICs. In a p-channel transistor, due to vertical and horizontal para-
sitic npn transistors in p-wells causes negative charge instability in undoped dielectric layer. For
designs that should be radiation hardened, gate and field oxide transistors are particularly to be
avoided. If design effort is not made to avoid these parasitic transistors, they would cause in-
creased propagation delay, altering of logical functional intent of the IC and decreased maximum
operatable clock frequency [70].

2.1. Faults 7

• Bridging Defect
If a low resistance path occurs between logical nodes while wafer fabrication, it can introduce
feedback or non-feedback configurations. A feedback can result in a latch or an oscillator, if the
number of logical inversions are odd. A test set that guarantees 100% stuck at fault coverage
doesn’t guarantee absence of 2 bridges faults. A non-feedback bridging fault fuses outputs of
two different gates. This defect can only be identified if both the gates are driven to opposite logic
states. The relative transistor conduction constants of the pull-up and pull-down networks, which
determine the current drive strength, determine the resultant voltage at the bridged node. The
following Figure illustrates the ratio of transistor conductance constants of the two bridged CMOS
inverters versus their output voltage at the bridged node [70].

(a) Bridged CMOS

(b) VOut vs ratio of conduction constants kp/kn

Figure 2.3: Bridging Defect

Time Dependent (Ageing)
• Electromigration
Due to the geometry of the metallic wires and the applied high electric field electrons migrate,
causing voids and variations in the resistance. The voids can manifest as an open circuit and the
accumulation can cause short circuits with adjacent wires. This completely alters the function of
the circuit from intended behaviour. This is widely observed in Cu-Capping layer interface as it
conducts the highest mass transport. Cu surface cladding can be deployed to minimize the effect.
Scaling has further escalated the problem due to increase of Cu interface area in comparison to
the volume. Degradation of wire due to EM depends on their geometry and current density.
Unidirectional buses don’t suffer from EM as they charge and discharge through the same end.
Power, ground, clock and bidirectional data lines are all effected by EM [5].

• Hot Carrier Injection
Scaling has reduced the channel length in the transistor, increasing its frequency of operation.
This subsequently has led to higher electric field in the channel. Coupled along with higher volt-
ages, this can give electrons or holes enough kinetic energy to move from substrate to gate oxide.
The mechanism involved could either be impact ionisation or scattering that causes this interface
state generation. The threshold of the transistor is in turn effected by this spurious injected cur-
rent. Reduction of VDD (operating voltage) along with LDD implants help to mitigate Hot carrier
injection to an extent. Below the gate length of 50nm, the gate voltage was not reduced enough
to compensate for scaling, to keep the HCI low. Emphasis on HCI will continue to increase as
transistors are scaled further [39].

• Negative Bias Temperature Instability
Operating voltages of devices has been reducing considerably over the decades. The electric
field in the gate and operating temperature on the other hand have gone up due to higher power
dissipation and lower voltage difference between VT and VGate. These higher operating temper-
atures and low gate oxide thickness cause silicon hydrogen bonds in gate substrate interface to

8 2. An Overview of Faults and Fault Injection Attacks

break. These vacant silicon ions function as holes altering the threshold voltage of the transistor.
Thus, transistors Inversion channel mobility decline, channel threshold voltage shift and subse-
quent slow down of the transistor causing timing faults over a period of time can be attributed on
NBTI[52]. As a example, due to NBTI in a MOS capacitor, a positive flat band shift due to higher
positive charges near Si-SiO2 interface can be seen initially. Further, a negative flat band shift is
obtained by exchange of charge with silicon substrate, increasing net positive charge in Si-SiO2
interface [41]. These are shown in the Figure 2.4 illustrates this effect.

Figure 2.4: Effect of NBTI on MOS capacitors[41]

Physical/External disturbances

• Voltage Underfeeding
Constant voltage underfeeding causes the rise in setup time of the combinational logic to attain
a stable state, which inturn effects the maximum operable clock frequency of the circuit. If the
frequency is still maintained as per the normal operating conditions, while decreasing the supply
voltage, proper setup of slower logic paths will fail[7]. A precision power supply such as agilent
34420A, can be used in a testbench to control the power supply of device under attack. A similar
workbench was described in [8] and is shown in the Figure 2.5. This paper describes that only
LOAD instructions are effected by this approach. This can be attributed to the fact that, LOAD
instructions have long data paths compared to STORE or other arithmetic instructions. Write
back buffers shorten critical paths of STORES and arithmetic instructions use functional units,
registers that are highly optimised. All the failing loads cause bit flip down errors and no stuck at
’1’ errors. The result is an instruction swapping error if the LOAD corresponds to an instruction
fetch and a data load error if its a data access. The spacial precision of the faults is limited in this
approach as power is distributed all over the chip by the power distribution network. The temporal
precision is also low as voltage underfeeding effect persists over multiple clock cycles [11].

Figure 2.5: Voltage Underfeeding Workbench [8]

2.1. Faults 9

• Voltage Glitching
A temporary drop or spike in the supply voltage can cause timing violations, that can be used
for an attack. Unlike voltage underfeeding, more control over the temporal location and intensity
are possible in this approach. In the paper [27], voltage glitching was used to effect the bias of
the generated output random numbers. Newer chips can have multiple power domains that can
be effected by switching between multiple voltage levels. Faults can be injected into a particular
power domain without effecting others. Attacks on controlling PC in an ARM 32 bit processor
by this method was discussed in the paper [57]. A single or multiple bit corruption in the load
instruction was induced to load an attacker desired value in the PC to allow execution for arbitrary
code. If countermeasures are in place to prevent such attacks, the paper [45] describes a method
to inject a transient timing fault by application of positive bias voltage on the substrate of MOS
transistor. This application of few mV, changes the threshold voltage of transistor and introduces
a local voltage pulse. This technique is referred to as Forward Body Biasing Injection (FBBI) and
the platform used for this is described in the Figure 2.6.

Figure 2.6: Forward Body Bias Injection Platform [45]

• Optical
This is the most precise and effective fault injection technique. The IC is first decapsulated from
the packaging and is exposed to a light pulse. The source could be a low cost flash light or a laser
beam. The latter achieves spatial precision in the order of micrometers and temporal precision in
nanosecond range. Even a single transistor can be targeted by choosing the energy and duration
of light pulse accordingly. On the flip side, the target chip could be permanently damaged. Shorter
wavelengths are used to penetrate the metal layers if the front side of the chip is targeted. Infrared
light is used to penetrate silicon substrate if backside is attacked. Multiglitching, where multiple
faults are injected in a short period is also also possible. The state of the transistor, setting or
clearing a single bit in memory can be manipulated, leading to faulty computations [21].

Figure 2.7: Laser Fault Injection [21]

10 2. An Overview of Faults and Fault Injection Attacks

• Electromagnetic
By driving a high current through a coil, electromagnetic radiation as transient or harmonic pulses
can be emitted, that can be used to inject faults in the target. Localised faults, that affect only
a part of the chip are possible. Decapsulation of the chip as in optical faults is not required in
EM attacks, though its spacial precision is comparatively lower. EM pulses induce eddy currents,
which translate to faults. Injection probe’s position and applied voltage determine the position
and intensity of the generated EM pulse. Single bit faults in the memory can be induced by eddy
currents on the surface of the chip. Errors in program flow and SRAM contents due to EM were
discussed in the paper [68].

(2.8a) EM Fault Injection [68]

(2.8b) Clock Signal glitching [21]

• Clock Glitches
If an external source supplies clock to the circuit, it can be switched between a faster and slower
clock. Temporarily the width of a clock pulse could be shortened by an attacker in clock glitching.
This causes setup time violations and incorrect values are latched by the logic paths in the circuit.
The temporal precision is very high as the clock cycle at which this glitch is introduce as well as
how long the glitch is introduced can be controlled. This can translate to premature commit of
the current instruction executing in a processor or capturing wrong data in registers or memories
[21].

• Temperature
Exposure to too high or too low temperatures outside the chips operating temperature range
can induce faults. Overheating can induce timing violations in data path or cause bits to flip in
memory cells. A focus on particular targeted portion of data is not possible. Some NVMs (Non
volatile memories) have different temperature thresholds for read and write. By maintaining the
temperature so that only write work and not the reads, different attack scenarios can be mounted.
A laser can be used to heat a particular area of the chip, giving a high spacial precision. A high
intensity light bulb or an alcoholic cooler on the other hand will offer a very low spacial precision
[65][33].

The Figure 2.9 lists out the various fault injection techniques and their different characteristics.

Figure 2.9: Fault Injection Techniques and their characteristics [11]

2.1. Faults 11

2.1.2. Fault Categories

Multiple fault categories are possible based on their temporal characteristics. They are shown in
the Figure 2.10. A detailed description of the faults is given in the remainder of the section.

Figure 2.10: Fault Categories

Transient

These faults can be generated by environmental conditions like cosmic rays or fault attacks like EM
pulses. Their effect normally lasts only for few clock cycles and wears off as soon as the fault source
ceases to exist. The effect though could propagate to software level in a processor. Original intended
behaviour could be restored by a system reset [28].

• Single Event Upsets
A single bit either in memory or registers could be flipped to a complementary state. SEUs can
also manifest as variations in power supply voltage or system clock.

• Multiple Event Upsets
If multiple SEUs occur simultaneously in the system, it is termed as MEUs. High packaging
density predisposes devices to MEUs.

• Dose Rate faults
Particles whose individual effect is negligible, but whose aggregate effect translates to a fault are
categorised as dose rate faults.

Permanent/Destructive

Permanent faults are due to manufacturing defects, wear-out mechanisms and fault attacks, where
the physical defect cannot be reversed. A fault injection technique like laser pulse can also damage
a register or memory. The effect of these faults persist indefinitely. Permanent faults in a processor
are more likely to effect the software, causing a system failure. They have a less likelihood of getting
masked and so it should be diagnosed and the system must repaired or reconfigured to avoid the faulty
unit.

• Single event burnout
This is due to thermal runaway in MOS transistors as a result of parasitic thyristors. The entire
circuit could be permanently damaged due to this [23].

• Single event snap-back
This fault is mostly observed in devices with high supply voltage. Self sustaining currents are
induced in N-channel of MOS transistors as a result of parasitic bipolar transistors.

12 2. An Overview of Faults and Fault Injection Attacks

• Single event latch-up
A parasitic PNPN bipolar transistor can create a self sustaining current in MOS devices, that can
potentially damage the device permanently. This is illustrated in the Figure 2.11.

Figure 2.11: SELs - parasitic transistors - T1 & T2

• Total dose rate
Exposure to environment can also damage the device and induce faults. Radiation can cause
effect gate potential and degrade current characteristics. As a solution, the radiation hardness of
the device can be improved [60].

Remnant

If the configuration memory in a SRAM based FPGA is injected with a fault, the architecture of the
design is altered. FPGA should be reprogrammed to get rid of the fault [20].

Intermittent

These faults recur at the same location non-deterministically and are present for finite number of
clock cycles. The architecture vulnerability due to intermittent faults depends mostly on the fault length.
Though underlying hardware defects such as device wearout and manufacturing defects are their main
cause, they are not present indefinitely. They cause stuck-at and bridging faults [47].

2.1.3. ISA/Software Faults
• Instruction Replacement
When the instruction is in the pipeline of a processor and its binary encoding are corrupted during a
bus transfer or when in pipeline registers, the instruction is transformed into an another instruction.
This fault is called an instruction replacement fault [54]. If an assembly instruction can be skipped
or if the instruction can be altered to not effect any useful register and as a result act as a nop, its
is categorised as an instruction skip, special case of instruction replacement. These type of faults
can be used by the attackers to bypass key checks in protocols like AES or RSA. Several other
attack modes such as skipping a data load, backward jump, test inversion and changing a data
load address are possible. The Figure 2.12 illustrates a C code and its corresponding assembly.
It shows how if the jump instruction at line 9 can be replaced with a nop, the else condition check
in the C program can be bypassed.

• Device Reset
A complete reset of the device can be triggered by an attack like Forward Body biasing injection
[45]. This completely corrupts the current state of the processor and the subroutines executed at
reset or the boot loader can be exploited for an attack.

• Data corruption
Multiple attack scenarios cause unique data corruption software faults. A clock glitch attack can
cause the read of data bus even before the memory has the time to update the bus with the
actual value, causing a data misread. This glitch attack particularly targets when the data is
being transferred frommemory to registers. When a laser is used to attack the data bus, it causes
the read value to be always 255 (0xFF) irrespective of the real read value. A voltage attack on
EEPROM by increasing the supply voltage Vcc to the maximum operable circuit voltage, makes

2.1. Faults 13

Figure 2.12: C code and its corresponding 8051 assembly [58]

the data to be read as zero always [28]. Attacks to alter the memory directly in register or volatile/
non-volatile memory cause a single bit or multiple bits to either flip or to be stuck at 0/1 [75].

• Computation error
When a Cryptographic chip, implementing AES is targeted by EM pulses, it can corrupt the com-
putations and produce erroneous cipher texts. The circuit operation however is not halted. The
paper [66] discusses this approach and cite an interesting effect of the type of the injector used.
They point out that only crescent injector produces erroneous ciphers and not a flat head injector.
The Figure 2.13 shows the areas on the chip that produce a computation error in cipher when
attacked by EM pulses. A similar attack on smart cards can also impact the quality of the random
numbers generated that are used internally[58].

Figure 2.13: EM attack on a Cryptographic chip [66]

14 2. An Overview of Faults and Fault Injection Attacks

2.2. Fault Injection Techniques
Fault injection techniques were long used before fault attacks to affirm the dependability of a system.
The device’s behaviour is analysed when an unexpected event arises to ascertain if it is intended or
not. To inject faults into a system prototype or model, various techniques have been designed and they
fall into the following five categories [43]. The table 2.14 contrasts various techniques.

• Physical/Hardware
The fault is injected directly at the physical level by disturbing the hardware parameters like volt-
age, clock frequency, temperature etc. This requires detailed knowledge, physical access to the
device and may require specialised equipment to inject faults [44].

• Simulation
This is the most frequently used method. The advantages of this method include flexibility as well
as not requiring the physical device. Faults are injected at high level models like a Verilog based
HDL model. On the flip side, the simulation time required to simulate all the faults is impractical.
Various approaches such as simulation command based, saboteurs and mutants[29].

• Emulation
To reduce time spent in fault simulation campaigns or to avoid expensive physical testing, FPGA
based fault injection techniques were proposed. This requires the initial HDL model to be syn-
thesisable, so that it can be used to reconfigure the FPGA. Actual behaviour of the device in the
application environment with respect to real time interactions can be studied[44].

• Software
If the errors that would have been produced upon the fault occurring in the hardware are repro-
duced at the software level, it is termed as software based fault injection[29].

• Hybrid
A mix of software implementation and Hardware monitoring. Software techniques mask their
presence and have no effect on the system other than the fault. Hardware techniques leave a
footprint while fault injection. These techniques try to balance both approaches while maximising
the effectiveness of fault injection campaigns[43].

Figure 2.14: Comparison of FI techniques [29]

2.3. Fault Models 15

2.3. Fault Models
To model the complex behaviour of a fault and its effect taking the abstraction level into consideration,
a fault model is defined. If the faults are modelled at a signal level, the following fault models are
conceivable [44][53].

• Stuck-at-0: The signal value is forced to be ’0’ due to the fault.

• Stuck-at-1: Fault forces the signal to be always ’high’.

• Stuck-open: After the retention time, the signal is forced to be ’low’.

• Bit-flip: The effect of the fault is reading the signal value and flipping it.

• Open-line: If the fault causes an open connection, the signal value can be modelled as ’high
impedance’ or ’Z’.

• Delay: Signal is updated to its expected value after a delay.

• Indetermination: The signal is written with a random value ’X’.

If the faults are modelled at the syntactical structure level of HDLs, they result in the following fault
models[37].

• Stuck-then: An If condition is replaced by True.

• Stuck-else: An If condition is replaced by False.

• Assignment control: An assignment operation is disturbed.

• Dead process: A process is never made to execute by removing its sensitivity list.

• Dead clause: One of the clauses in a Case statement is removed.

• Micro-operation: An operator is disturbed by replacing it with an another operator.

• Local stuck-data: The value of either a signal or variable is forced to a value.

• Global stuck-data: All the updates to either a signal or variable are completely removed in the
entire HDL description.

The following table summarizes various fault models based on different simulation based fault in-
jection techniques.

Figure 2.15: Fault models for different simulation based Fault injection Techniques [37]

16 2. An Overview of Faults and Fault Injection Attacks

2.4. Fault Injection Frameworks
Multiple frameworks have been proposed for different fault injection techniques, the following are widely
used and thoroughly described in literature.

• Chiffre
This framework can be used to instrument the design automatically while also facilitating run time
injection of faults. Chisel hardware description language should be used to code the design for
this framework to work. This hardware construction language(HCL) enables early stage design
emulation and security verification. A circuit compiler like FIRRTL is used to read HCL based
design and emit it’s equivalent Verilog code after optimisation and transformations to add fault
injections as well as scan chains. The fault injection is done at module level and thus the amount
of user effort required for instrumentation is very low. Both registers and wires in the design can
be instrumented at module and submodule level, offering high scalability for larger designs.

Figure 2.16: Chiffre : Chisel to Verilog generation and instrumentation [69]

• Modelsim with scripting
Modelsim is a simulation and verification tool for digital designs. This approach involves simula-
tion based fault injection using Modelsim and script to control the simulation, which in-turn control
the flow of the program. A random point in the processor such as in a register, cache memory
or flip-flop are targeted at a random time with a single or multiple bit flips. Different faults such
as SEU (Single event upsets), SET (Single Event Transients), MET (Multiple Event Transients)
and MBU (Multiple Bit Upsets) can be propagated into the design. Of the total run time, 5% to
80% can be used for the activation of the fault and the remaining time is normally used by the
processor for warm-up and to execute diagnostic routines. The paper [30] uses this methodology
for fault injection in LEON3 processor and found out that integer and multiplier units are more
susceptible to single and multiple faults respectively.

• Coppelia
Coppelia is an end-to-end tool to find security threats of hardware vulnerabilities. The tool reads
the processor design file, security critical constraint file and finds several assert statement vio-
lations. Using backward symbolic execution, a path from reset to assert failure is traced. Clock
stitching is used to handle symbolic execution over multiple clock cycles. Cone of influence and
search optimisations are used to generate exact sequence of instructions that trigger the asser-
tion fail. Coppelia thus automatically generates replayable exploits with sequence of inputs to
trigger a bug. Coppelia is built upon KLEE, a popular symbolic execution engine. It also uses
verilator to convert the HDL based design to cycle accurate C++ code. Tool flow of Coppelia is
shown in the Figure 2.17.

2.4. Fault Injection Frameworks 17

Figure 2.17: Workflow of Coppelia [64]

• VerFI
A framework designed especially to inject faults into cryptographic hardware. VerFi is a simulation
based fault injection tool that works on netlist of the design implementation. Fault injection can
be acheived at Bit level granularity. The design could be inputted in the form of HDL or netlist,
which is synthesised by either Synopsys or Yosys. The synthesizers are controlled by VerFI to not
optimise redundancy, which is used as a fault countermeasure. The synthesizers also generate
a configuration file, which the user could use for personalised fault injection. VerFI reads the
fault configuration file along with input test vectors, simulates the design and produces coverage
for the set of inputs as well as a report on the total number of generated faults. The faults are
modelled in the circuit as gate level faults. Fault injection mechanism could be either hierarchical
or component-wise. A event driven simulator is used, whose performance can be optimised by
parallel fault simulation to use AVX2 on 256 bits, instead of bit-wise operations [75].

• Emulation based flip-flop fault injection
Designs that are created using Chisel are compiled to generate a Verilog netlist. This netlist is
synthesised using Synopsys Design compiler to produce a list of flip-flops in the design. For
every flip-flop in the list, a XOR gate is added at the data input. One of the inputs of the XOR
gate is connected to a fault injection signal, which can be driven to flip the bit to inject the fault.
This instrumented design is then ported to the programmable logic side of an FPGA. The FPGA
has a host CPU on the processing system, which can be clocked as high as 50MHz. All the fault
injection signals of the design are controlled by the host CPU through an AXI interface. During
the fault campaign, to inject a fault, host CPU drives one of the fault injection lines that is selected
randomly at a random clock cycle. After the design finishes the execution, results are collected
by host CPU to classify fault effect. Silenced data corruption, unexpected termination, hang and
vanished are the outcomes that are selected as they are mutually exclusive [14].

(a) Processor Emulation on Xilinx Zynq FPGA

(b) Automated tool flow

Figure 2.18: FPGA emulation based Fault Injection Flow

18 2. An Overview of Faults and Fault Injection Attacks

2.5. Countermeasures

To thwart fault injection attacks on processors and applications running on them, countermeasures
implemented both in software and hardware were proposed [40]. In-order to best protect the device,
a combination of both software and hardware countermeasures are used. Hardware implementations
are limited by manufacturing costs and software by performance. The goal of countermeasures is to
make fault injection expensive to perform, but not to prevent them completely due to aforementioned
trade offs.

2.5.1. Software Countermeasures

Software Countermeasures are a low cost approach as design changes in the processor are not
required for their implementation, but rather a compromise in increase of execution time. They are also
flexible as software can be changed to chose between various implementations. Following are some
techniques and their brief description,

• Functional level temporal redundancy: Critical functions are called twice with same input data
and their return data are compared for consistency [28]. This helps in fault detection, with a cost
of doubling the execution time. If fault correction is desired, the function can instead be called
thrice and their result be selected based on a voting logic [54]. In case of an encryption algorithm,
running the decryption algorithm on the data produced and comparing the result with the input of
encryption algorithm can detect faults.

• Instruction Duplication/ Triplication : The previous approach involves duplication at algorith-
mic level, where as this approach is at assembly instruction level. Same instruction is executed
multiple times for error detection. The process can be automated by enhancing the compiler by
adding compiler switches to implement the functionality [55]. Instruction duplication for a load
to r4 is shown in Figure 2.19a and Instruction Triplication of xor between r1 and r2 with result
stored to r4 is shown Figure 2.19b.

(a) Instruction Duplication

(b) Instruction Triplication

Figure 2.19: Instruction Redundancy Techniques

• Parity Checking: Used for checking faults in data returned by load instructions. For data labelled
as protected value, parity is pre-computed and stored in memory and a processor register is
allocated to point to it. Later in program execution when a load instruction reads the protected
value, its parity is computed and compared with pre-computed parity to determine its consistency.
The drawback with this approach is that it can’t be used for general purpose load and stores, it
needs pre-computed parity. Storing parity is also an overhead in memory [6]. Parity check of
value stored in r4 is shown in Figure 2.20a.

• Complementary Double check: Conditions that rely on protected data are often targets of at-
tacks. A double check that’s complementary should be implemented in this case, it requires the
attacker to perform 2 different attacks in a short time, making a successful fault injection hard.

2.5. Countermeasures 19

(a) Parity Checking (b) Instruction Replacement Sequence

Figure 2.20: Algorithmic instruction level techniques

• Fault tolerant instruction sequences: To specifically protect against instruction skip attacks,
which converts an instruction equivalently to a NOP. An instruction is replaced by a sequence
of instructions, that are still functional if an instruction is skipped. The paper [54] implemented
this for ARM thumb 2 instructions. Replacement sequences for different instruction classes were
proposed. Instruction replacement sequence for push {r1,r2,r3,lr} is shown in Figure 2.20b.

• Iteration Check: Loops execute a piece of codemultiple times based on a condition. They can be
attacked to terminate halfway without completing the required iterations either in order to bypass
checks at the end of the loop or to gain access of intermediate data. Adding a loop check code
that verifies the number of iterations run by the loop once it terminates handles this fault.

• Random Code Delays: Fault injections target particular instructions in the code and assume
their position in time is always fixed in any simulations. Encapsulating a sensitive function or data
by calls to random delays, goes against the above assumption and is effective against temporal
fault attacks [76].

• Execution flow counters: A common fault attack is to corrupt execution flow by causing a branch
to a attack function and returning back. Maintaining counters that help to track which functions
are taken howmany times can avert this attack. Maintaining and incrementing counters to identify
functions uniquely causes significant performance overhead and is not scalable to large applica-
tions.

Modular exponentiation Algorithm

The Modexp operation, mathematically represented as md mod N is used in many cryptographic
algorithms such as RSA, DSA and Diffie-Hellman [26]. Algorithmically, the performance of Modexp
operation determines the cryptographic systems performance. The exponent is decomposed into a
base 2k number and Modexp operates on these bits from the most significant end (MSB). N-bit multipli-
cations and reductions mod N form the critical operations in Modexp. Depending on the exponent bit,
multiplications are either squarings, which are performed using faster squaring code or plain multipli-
cations. The Modexp operations algorithm is as shown in Figure 2.21, the if condition can be injected
with faults to corrupt the algorithm or timing difference can be used to perform a side channel attack.

Figure 2.21: Modular exponentiation operation

20 2. An Overview of Faults and Fault Injection Attacks

2.5.2. Hardware Countermeasures

Redundancy in hardware modules can be used for fault detection. Extra circuitry such as a voting
logic or encoder and decoders in case of using error correcting codes can be used for fault correction.
Choosing the suitable hardware countermeasure depends on the trade-off between allowable hardware
overhead and level of fault/error correction required.

• Triple Modular Redundancy: This uses 2 extra ALUs and same instructions are computed on
all the three ALU at the same time [49]. A majority voting logic is used to find the correct result.
Fault in one processor is masked by results from other two. A configuration with single or triple
voter for improved fault hardening can be used.

(2.22a) TMR with one voter (2.22b) TMR with three voter

• Residue Code: For error detection of arithmetic operation, residue codes can be used. Since
they don’t work for Boolean operations and as error correction is required, and extra ALU per-
forming the same ALU operation on the residues, instead of data is used [74]. The original result,
modulo m and residue processor result are compared to catch a fault.

• BCH Code: A (63,36) BCH code can be used to encode and decode data from ALU and reg-
isters respectively to implement an ALU that can correct upto 5 faults injected at the same time
[73]. Hardware overhead was experimentally shown to be 75% of the original area, which is
considerably less compared to TMR, which causes 200% area overhead.

Figure 2.23: Fault tolerant ALU using BCH Code

• Watchdog: A watchdog processor can be used to ensure fault free data transmission between
memory and the main processor [9]. The watchdog sits on the external memory bus and listens
to all the transactions on the bus. Watchdog saves a shadow copy of all the writes to memory
and on a read, compares its value with value returned by memory. On a mismatch a transaction
is made to repeat. Control flow check is also discussed in the literature, which uses signature
schemes to monitor code blocks. This can’t be scaled to large real world applications. A new
approach is proposed in Section 5.5.2.

3
RISC-V Processors

3.1. RISC-V
RISC-V is a reduced instruction set architecture based open ISA, which supports 32,64,128 bit data
widths [13]. RISC-V is increasingly being adopted in industry and academia since it’s introduction in
2010. The following factors make it more attractive compared to other ISAs:

• As it’s open source and incurs no licensing costs when compared to other similar ISAs, widespread
chip design and usage by various stakeholders is possible.

• Base ISA, which specifies concepts such as instruction encoding, address modes, integer arith-
metic is frozen, allowing software developers to design tools such as compilers.

• Standard extensions which provide additional functionality along side with base ISAs, can be
added and standardised. The new added extensions are designed to work with other existing
extensions.

• High configurability of ISA allows it to be suited for various range of applications from low power
to high performance with support for dedicated accelerators.

All memory accesses are byte level addressable and data is stored in little endian format in the
memory. All the instructions must be aligned at 32-bit boundaries. Conditional codes for instructions
other than branches are not supported as well as carry out bits to detect overflows. Three levels of
privileged modes are defined, machine, hypervisor and supervisor, each with their own control &
status registers.

3.1.1. Instruction Set Architecture

RISC-V has a base ISA that should be present in any implementation and optional extensions can be
added. The base ISA is designed to have minimum set instructions with an optional support to variable
length instructions. An ISA is characterised by the width of the integer register. If the instructions are
32 bit, they should be aligned to 32 bit boundaries.

The base ISA has 32 registers and each of them have a standard function defined for them according
to Application Binary Interface (ABI). ABI allows programs to access system hardware in order to ensure
software interoperability. Development tool-chains refer ABI names for convenience as opposed to
hard-coded register numbers. The instructions in RISC-V RV32I base ISA are shown in Appendix B.

An unusual condition at runtime due to an executing instruction is termed as an exception and is
synchronously handled. The handler executes in a privileged environment. An interrupt on the other
hand, is due to an external event and occurs asynchronously to the executing instruction. Four core
instructional formats are possible, namely R/I/S/U, shown in Figure 3.1.

21

22 3. RISC-V Processors

Figure 3.1: RISC-V Base Instruction Formats

The base ISA is integer instruction set with 32-bit(RV32I) , 64-bit(RV64I), 128-bit(RV128I) data width
specifications defined. Multiple extensions to base ISAs are possible and some frequently used ones
are described below [42],

• M - Addition of a Multiply or Divide unit.

• F - To include a Single point precision floating point unit.

• D - To add a Double precision floating point unit.

• A - Support for atomic operations.

• C - Compressed ISA.

RISC-V defines hart as a hardware thread that contains its full set of architectural registers and is
managed completely by hardware. It essentially is an abstraction of a core to support multi-threading.
Any execution environment can have one or more harts and they are completely transparent to the
environment. Harts execute independently, so they fetch and execute instructions independent of other
harts. In a software execution environment, from a perspective of a user program, a ’RISC-V system’,
constitutes of a hart and its associated memory [3].

Figure 3.2: RISC-V ABI

3.1.2. Control and Status registers

CSRs store information related to various units such as counters, timers and floating point. Most
of them are used by privileged code. A total of 4096 control and status registers can be defined per
hart. Some CSRs are unique per hart, but some are shared. They can be read and written to only
by special instructions, even though they are memory mapped. Access to CSRs is also dependent on
the privilege level of the software, some have restricted access at lower privileged levels, other such
as mscratch and mepc are duplicated. Functionality of only some CSRs is specified and others are
implementation defined to be used by designers for additional functionality. Access to CSRs in a hart
are performed in program order. The following specify some atomic instructions used to access CSRs,

3.1. RISC-V 23

• CSRRW - Read zero extended CSR value to rd, write it with value in rs.

• CSRRC - Read zero extended CSR value to rd, bits set in rs are treated as bit mask and corre-
sponding bits in CSR are cleared.

• CSRRSI - zero extended 5-bit unsigned immediate is written to CSR.

Some frequently used CSR registers are as below,

• mhartid - Specifies the hardware thread ID in integer format.

• mcycle - Counter for machine cycles.

• tdata1 - Trace data register.

• dpc - Debug PC.

• mie - Machine interrupt enable register.

• fflags - Floating Point exceptions.

• hpmcounter - Performance monitoring counter.

3.1.3. RISC-V Tool Chain

A tool chain contains of compiler, assembler, linker, debugger and libraries required to convert an
application in high level language to a binary, that can enable it to run on the actual microprocessor[67].
RISC-V tool chains are currently provided by two open source frameworks, GCC and LLVM. Code can
be compiled to all RISC-V base ISAs and its extensions by GCC. Systems with RTOS such as linux
and systems with no RTOS (Bare metal) can both use GCC. LLVM provides compiler back-end and
libraries for linux, but bare-metal support is lacking. GDB can be used for debugging and Clang, which
uses LLVM as its back-end can also be used as a compiler. LLVM though offers other advantages such
as support for new programming languages like Rust. LLVM can also be used for design exploration
as it addition of custom instructions and compiler optimisations are allowed .Yocto an embedded linux
distribution was ported for RISC-V[46]. The OpenSBI project provides a supervisor binary interface
and standardises linux system development. Support for various ISAs by GCC and LLVM are shown
in the table.

Figure 3.3: LLVM and GCC supported ISAs

RISC-V specific command line arguments for GCC start with -m. The frequently used ones are as
follows,

• -march - To select the ISA for which, the assembler generates the assembly instruction for. In-
structions and registers for the compiler to use are also specified by it.

• -mabi - To choose a specific ABI, that dictates the calling conventions.

• -mtube - Added to alter the performance of the code by including optimisations particular to a
specified micro-architecture.

24 3. RISC-V Processors

3.2. RISC-V OpenSource Cores
3.2.1. PicoRV32
A 32-bit processor with a small footprint of 750 - 2000 LUTs, which is designed especially to be a aux-
iliary core for FPGA designs. It is a size optimised core designed for simple embedded applications.
Higher frequencies up-to 450MHz are supported by the processor and thus can be added to designs
without crossing clock domains [19]. The processor implements RV32I, RV32E ISA and is highly con-
figurable. Various configurations such as enabling dual port register file, barrel shifter, compressed
ISA, fast multiplier & Divider and IRQ support are possible. An optional co-processor interface is also
supported. The previous configurations are selected based on intent of design, be it either low power,
low area or high performance. To communicate either with the external peripherals or local RAM,
ROM including other processors in a multi processor system, low latency BRAM interface and AXI4
are supported [22].

Figure 3.4: PicoRV32 IP Core Block Diagram [13]

PicoRV32 is a simple single pipeline stage von Neumann processor, designed in Verilog HDL. So,
to access the instruction and data memory a single interface is used. Multiplier and divider use co-
processor interface (PCPI) to connect to the base processor. It has a CPI (Clocks Per Instruction) of
3 to 6 clock cycles for simple integer arithmetic, memory operations and branches [59]. Shifts take 15
clock cyles without a barrel shifter and 4 cycle with it. Multiply, divide and reminder take 40 cycles,
whereas MULH, both signed and unsigned take 72 cycles. PicoRV32 does not support out of order
execution nor does it have a memory management unit and a FPU. It doesn’t have JTAG or any other
debug peripheral support. Support for either instruction cache or data cache is also absent [63]. An
active low synchronous reset for flip-flops and memories is used. A single clock domain with rising
clock edge is used to synchronise. For SoC designs based on PicoRV32, that use local memory
and several peripherals, it requires an intermediate interconnect as PicoRV32 supports only single
AXI interface [13]. Support for both scratch memory and system bus configurations is provided, though
tightly coupled scratch memory support is lacking [25]. A CPI of 4 is achieved on Dhrystone benchmark
with look-ahead interface and 5.23 without it.

Figure 3.5: PicoRV32 CPI

3.2. RISC-V OpenSource Cores 25

3.2.2. DarkRISCV

DarkRISCV is a RV32I RISC-V implementation targeting Spartan-6 FPGAs[1]. A CPI of almost ’1’
is achieved for almost all instructions, except for missed branches, which causes a bubble for one clock
cycle due to pipeline flush. It is a compact design in obfuscated Verilog, available on a BSD license. A
SoC with DarkRISCV with a support for cache controllers and glue logic is also available. Some design
considerations are,

• An option to select between a 2-stage and 3-stage pipeline versions. The 2-stage pipeline has
an IPC (Instructions Per Clock) of 0.85 and can run at 50MHz. The 3-stage pipeline has an IPC
of 0.7 and can run at 100MHz, thus has a higher performance than the former.

• In the 2-stage pipeline, the first clock is spent in fetch and the second is decode and execute.
The pipeline is overlapped without interlocks to give a high IPC.

• BlockRAMs need two clock cycles to return the data. In the first clock, the address is latched
and in the second, the Data. Thus, for the 2-stage pipeline to work it requires a faster memory,
typically implemented in LUTs. To use BlockRAM based Caches or external memories, the 3-
stage pipeline was designed. Pipeline stages do a Fetch, Decode and Execute correspondingly.

• To integrate a cache controller easily, Harvard architecture was chosen.

• A pipeline version which operates on both clock edges was also designed, but is not used as it
requires a ROM or RAM to operate on dual phase clock.

• Branch predictors or delayed branches are not implemented.

• FENCE and CSR* instructions are not implemented.

• Coarse grained-multithreading and 16x16 bit MAC instructions are optionally available.

• A compact design that takes only around 1000 LUTs on Spartan FPGAs.

• Works with GCC and has an optional RV32E support.

Features such as GPIO, Ethernet controller, NOC and others are under development and Dark-
RISCV road-map is shown in Figure 3.6.

Figure 3.6: DarkRISCV Roadmap

4
Methodology

4.1. Methodology Overview

Figure 4.1: Top level Methodology

The methodology to instrument the design and simulate fault can be broadly broken into the tasks
shown in Figure 4.1. A design based on Verilog HDL is taken as an input and summary of simulation
results is generated. A brief description of each step is shown below and a detailed description of the
same is given in the following sections.

• Instrument Design: The HDL design is pre-processed to select the required configuration and
remove constructs that can’t be handled by the parser. Next, the code parser converts the design
to an AST(Abstract syntax Tree) and a custom parser adds signals and ports to the tree to enable
fault injection. Finally, the tree is converted back to HDL design by code generator.

• Build Shared Library and Application Binary: The binary of the application to be run on the
processor is generated by RISC-V toolchain. The instrumented design obtained from the pre-
vious step is converted to a shared library to facilitate being accessed from python simulation
framework.

• Simulate: A simulation framework uses the previously generated simulator shared library and
application binary along with a list of signals to be injected with fault that is inputted from the user,
to simulate the design and generate processor trace.

• Process Results: As manual inspection of the generated processor trace log is error prone,
a summary of the fault injection campaign is generated. The summary includes the total pass-
ing/ failing simulations, list of error signatures encountered along with the simulation log name.
Simulation that don’t fall into any of the fault class are denoted with the mismatch they fail with.

26

4.2. Tool Flow Overview 27

4.2. Tool Flow Overview
The framework reads Verilog based design and other configuration input files, generating the run

summary listing the passing and failing tests along with error type and test name. Dhrystone benchmark
is the application that is run on the processor while injecting faults. Dhrystone was chosen as it serves
as a good representation of actual integer workloads run by processors. It has all the different classes
of instructions in the ISA, all of which can potentially be targeted by an attacker. Various tools such
as yosys, pyverilog, and verilator are integrated into the framework. RISC-V GNU toolchain was used
to compile applications to binaries. Both design instrumentation framework and simulation framework
are written in python. The instrumented design is converted to a C++ model to avoid using commercial
simulators and to obtain large speedup in simulations achievable by verilator. The tasks achieved by
the complete tool flow can be can broken down into fault instrumentation of the design and simulation
of the design with fault injection. The tool flow overview is shown in the Figure 4.2.

Figure 4.2: Flow Overview

Verilog design files are read by the design instrumentation framework which preprocesses it and
adds a port to the top level module of the design which has fault injection control lines. This instru-
mented design is converted to a C++ model by verilator and in turn into a shared object by g++ com-
piler. The simulation framework uses this simulator object to inject faults in run-time and generates a
report of the run finally. If the names of the tests to be run are already known from a previous fault
campaign run, test2command.py can be used to generate corresponding commands to be directly
used in python_wrapper.py. The signals into which faults are to be injected are specified by a fault
injection signal list file. The simulation framework injects a single fault per simulation for all the signals
specified in the fault injection signal list file. Both processes are described in-depth in the following
sections.

28 4. Methodology

4.3. Instrument Design
Pyverilog, a hardware design processing toolkit for Verilog, is used for design instrumentation. It

provides code parser, data/control flow analyser and code generator to create custom code analysers,
translators and generators for Verilog [71]. To instrument the design, mutant technique is used, where
the original designmodule is replaced by amutant module. Themutant module behaves like the original
one when inactivate and can be activated by driving a corresponding fault control lines[37]. The top
level overview of the flow is shown in the Figure 4.3.

Figure 4.3: Design Overview

Pyverilog code parser cannot handle the following constructs in Verilog,

• ‘assert, ‘ifdef, generate statements.

• Spacing between numericals such as 3’b 001.

• Synthesis directives such as full_case and parallel_case.

• Commented modules and their port declarations.

Since none of them effect the design intent of the module, a preprocessing step, to remove them
is necessary. A Vim script is written to perform preprocessing on the design. Yosys along with con-
figuration file (config.vh) is used to configure the design according Verilog parameters as ‘ifdef can’t
be handled by pyverilog. The resulting modified design is passed to the Pyverilog code parser that
converts it into an abstract syntax tree (AST). The AST is hierarchical structure with each node rep-
resenting a program construct in the source code. Nodes could be module definitions, port lists, if
statements, always blocks etc. Nodes can have children, for example, non-blocking assignment
can have an Lvalue and Rvalue. Lvalue and Rvalue can further have children like identifiers. Nodes
in Pyverilog are implemented as classes and once it encounters a similar program construct in the
source code, it creates an object of that class. AST essentially is an hierarchical structure of objects.
The base object of an AST is Source, which instantiates Description, which in turn has children of
different module definitions (ModuleDef). All the classes in Pyverilog have children method, which
return all its children as a list or tuple. The __init__ method in all classes, as a normal python coding
practice, initialises properties of the classes, here mostly their child classes. As an example, Verilog
code for a D flip flop is show in Figure 4.4a. When Pyverilog parser reads the design, it generates an
AST as shown in Figure 4.4b.

4.3. Instrument Design 29

(a) D-Flip Flop Verilog Code

(b) AST of D-Flip Flop

Figure 4.4: D-Flip Flop Verilog code and AST

Custom Parser

Custom parser automatically modifies the following syntactical units in the behavioural description,

• Wires, Registers, Register Files, Memories.

• Conditions such as ternary operators and if-else.

• Continuous assignments (assign) and procedural assignments.

• Sensitivity lists.

• Case statement control expression and individual cases.

The parser was designed in python and supports Verilog-2001 completely apart from some specific
syntactical constructs like generate statements, along with partial support for Verilog-1995. The port
declaration of Verilog-1995 is not supported, only Verilog-2001 ANSI-C style works. Signals using
system calls like $signed can’t be injected with a fault using this parser. Fault instrumentation of
hierarchical Verilog modules, that are in separate files is buggy and requires some manual effort to
validate the instrumented design. The top level algorithm of the custom parser is described in Algorithm
1. The parser performs a depth first traversal of the AST to recursively add the fault injection control
lines. If a module name to be instrumented is not specified, the top level module in the design is initially
identified and hierarchical tree of the modules is built. All the modules are then instrumented from leaf
modules to top most module, with their injection busses moving up the hierarchy. If parameters are
used in to define widths of wires, registers or dimensions in memories and register files, they will be
replaced by the pre-processing script to an integer number before it is passed to the parser, as it can’t
be handled. Tools like Pycharm and Jupyter Notebooks were used as IDEs to design the parser.

30 4. Methodology

Algorithm 1 Custom Parser Algorithm
for ast.description.children() do

// Iterate over all children of description

if ModuleDef then
for ModuleDef.children() do

if Portlist then
for Portlist.children() do

if IoPort then
if len(IoPort.children()) == 2 then

Make the Output a Wire // If 2 children, Its an output of type reg

Delete the Reg Object
end
for IoPort.children() do

if Object is an Input or Output then
Extract signal width and name // Object is an Input or Output port

Create an Injection Wire Object //

Replace name with injection name recursively in all the design //

Add Injection Wire Object declaration to Design //

Update counter of Injection bus //

end
if Object is Output Reg then

Extract signal width and name // Object is a output of register type

Create an Injection Object (_internal) //

Replace name with injection name recursively in all the design //

Add Reg declaration and assign statement //

Update counter of wires, Injection bus //

end
end

end
end

end
if Declaration then

for Decl.children() do
if Object is a wire then

Extract signal width and name // Object is a wire

Create an Injection Wire Object //

Replace name with injection name recursively in all the design //

Add Injection Wire Object to Injection bus list //

Update counter of Injection bus, wires //

end
if Object is a Reg then

if Reg corresponds to an Output then
break

else
Extract width of Reg // Object is a Register

Create an Injection Bus Object //

Add Injection bus object in design where Reg is found //

Update counter of Injection bus, wires //

end
else

Extract dimensions, width // Object is a RegFile or Memory

Special Cases for different declaration styles //

Create an Injection bus Object for dimensions, width //

Add Injection bus Object recursively in design //

Update counter of Injection bus //

end
end

end
end

end
end
Parse AST again, add inj_bus to portlist of the module

4.3. Instrument Design 31

The fault model considered is bit flip, so a XOR gate is used to bit flip the value of signals or regis-
ters. Further, fault instrumentation of various syntactical structures in Verilog is discussed.

Input Port

An input to a Verilog module is always of type wire and can be defined to of any width. Pyverilog has
a Input class defined to handle input types. An input can be used in the design in assignments such
as continous and procedural as well as sensitivity lists, conditions for case, if-else etc. Input is never
driven in the design, so it is never on the LHS of a statement in the design. For the instrumentation
of the design, parser creates a wire, with name _inj prefix of the actual input name and an injection
control bus to control fault injection. Injection control bus and input wires are XORed and the resultant
signal is used everywhere in the design to replace the actual input recursively. The assign statement
which performs this is added to the design. An example is shown in the Figure 4.5.

(a) Original Input port

(b) Instrumented Input port

Figure 4.5: Input port instrumentation

Output Port of type Reg

In this case, Pyverilog has a class Output. The output is converted to a wire from reg type and a reg
with same dimension of actual output with name _internal prefixed is created and used everywhere in
the design instead of the actual output. Injection buses at the input and output of this reg are created,
which are added as XORs at LHS and RHS respectively.

(a) Original Reg type Output port

(b) Instrumented Reg type Output port

Figure 4.6: Reg type Output port instrumentation

32 4. Methodology

Output Port of type Wire

A wire with _inj prefixed to actual output name is created and replaces all instances of actual output
in the design. This wire Xored with injection control bus is assigned to actual output.

(a) Original Wire type Output port (b) Instrumented Wire type Output port

Figure 4.7: Wire type Output port instrumentation

Reg Types

Similar to the output port of type reg, busses to inject fault both at input and output are added on
LHS and RHS of a statement where reg type is being driven or driving a variable respectively. Only a
slice of the reg can be assigned to, in some cases and the parser is designed to handle such scenarios.

(a) Original Reg type
(b) Instrumented Reg type

Figure 4.8: Reg type instrumentation

Wire Types

Like the output port of wire type, a wire with _inj prefix to actual wire is created. This wire is used
to replace recursively all the occurrences of the actual wire, if its only on the RHS of a statement as
shown in Figure 4.9. The instances where its on the LHS are not modified. A special case for a wire
type is when it used to connect to a module that is instantiated in an another module. If the wire is used
to connect to an output of a module, its instance is not altered, where as an input instance is replaced
by the _inj version as shown in Figure 4.10.

4.3. Instrument Design 33

(a) Original Wire type

(b) Instrumented Wire type

Figure 4.9: Wire type instrumentation

(a) Instrumentation of a wire, that’s an output from a module (b) Instrumentation of a wire, that’s an input to a module

Figure 4.10: Instrumentation of wires to and from a module

Register Files and Memories

Register Files and Memories have both dimensions and width. Similar to the case of a register, fault
injection lines are added both on and instances of a register/memory in a statement for write and read
respectively. An injection bus for address is also created and is used both on LHS and RHS instances
of the register/memory. No other extra wires or registers are created.

(a) Original Register File / Memory
(b) Instrumented Register File / Memory

Figure 4.11: Register File / Memory instrumentation

34 4. Methodology

A D-F/F shown in Figure 4.12a whose Verilog code is mentioned in Figure 4.4a. When it is pro-
cessed by the custom parser, the resulting design with XOR gates and fault injection control line shown
in Figure 4.12b is obtained.

(a) D-Flip Flop

(b) Instrumented D-Flip Flop

Figure 4.12: Fault instrumentation of a D-Flip Flop

The AST of the D-F/F is modified to include the fault control signals to instrument the design. It also
produces a mapping.txt file that includes the names of the injection control signal that are added, the
module to which they are added, the line number in the module where they were added and the index
of the injection bus which they correspond to. This is shown in Figure 4.13.

Figure 4.13: Mapping file for D-Flip Flop

4.3. Instrument Design 35

Code Generator

Code generator converts the modified AST obtained from the custom parser shown in Figure 4.14a
back to Verilog code, shown in Figure 4.14b. The statements in red in AST are from original AST and
the statements in green are added by the custom parser. It is similar in the Verilog code of the D-F/F
shown. The obtained Verilog design has a fault injection bus port in it’s top level module’s port list that
can be used to inject faults into the design. The design instrumentation framework can be used for
behavioural level designs as well as gate level designs.

(a) Modified AST of D-Flip Flop

(b) Verilog Code for fault instrumented D-Flip Flop

Figure 4.14: Verilog code for D-F/F generated by code generator by reading modified AST from custom parser

36 4. Methodology

4.4. Build Shared Library and Application Binary
Application run on the processor for fault injection simulation isDhrystone benchmark, due to stress

on integer operations, which closely represent actual workloads. RISC-V GNU Tool chain is used to
generate binaries from application program and not CLang/ LLVM tool-chain. The first step involves
converting dhrystone application in C to a binary file to be loaded into to the processor memory by
the simulator. A Makefile was used for the same and commands in it are described below. They can
also be run on a bash command line directly. In the following commands, gcc is passed an -c option,
thus it acts as an assembler and assembles the C files to object files. Along with dhrystone, libraries
stdlib,syscalls are also converted to object files(.o). The RISC-V architecture for which the application
is assembled is specified by the option -march, here as an example, rv32im is used.

riscv32-unknown-elf-gcc -c -MD -O3 -march=rv32im -DTIME -DRISCV \
-Wno-implicit-int -Wno-implicit-function-declaration dhry_1.c

riscv32-unknown-elf-gcc -c -MD -O3 -march=rv32im -DTIME -DRISCV \
-Wno-implicit-int -Wno-implicit-function-declaration dhry_2.c

riscv32-unknown-elf-gcc -c -MD -O3 -march=rv32im -DTIME -DRISCV stdlib.c
riscv32-unknown-elf-gcc -c -MD -O3 -march=rv32im -DTIME -DRISCV syscalls.c

The linker links all the object files to generate a final object file. Objcopy converts the object file to
a binary. Objdump is used to create a disassembly, to aid in debugging.

riscv32-unknown-elf-gcc -MD -O3 -march=rv32im -DTIME -DRISCV \
-Wl,-Bstatic,-T,riscv.ld,-Map,dhry.map,--strip-debug -o dhry.elf dhry_1.o \
dhry_2.o stdlib.o syscalls.o -lgcc -lc \

chmod -x dhry.elf
riscv32-unknown-elf-objcopy -O binary dhry.elf main_app.data
riscv32-unknown-elf-objdump -d -M no-aliases dhry.elf > disass

All the above commands can be run by a Makefile by executing following,

make dhry

Figure 4.15: Binary and Disassembly generation

Verilator converts the synthesisable Verilog code to a C++ class. An Objdir is created, which has
a file design.h that is included in test-bench (tb.cpp) to instantiate the design.

Figure 4.16: Verilator to transform design to a c++ class

g++ is used to convert the testbench (including design instantiation) and some verilator libraries to
generate a shared object, that can be used in a python script. An example g++ command is shown
below.

4.5. Fault Simulation 37

Figure 4.17: Generation of rtl simulator shared object

g++ -O0 -shared -fPIC -I/usr/share/verilator/include/ design.cpp \
obj_dir/Vdesign.cpp obj_dir/Vdesign__Syms.cpp obj_dir/Vdesign__Trace.cpp \
obj_dir/Vdesign__Trace__Slow.cpp \
/usr/share/verilator/include/verilated.cpp\
/usr/share/verilator/include/verilated_save.cpp \
/usr/share/verilator/include/verilated_vcd_c.cpp -o rtlsimulator.so

4.5. Fault Simulation
The following section describes, the chosen fault model, possible fault classes and finally simulation

of the design with fault injection.

4.5.1. Fault models

The fault model used for fault injection was bit-flip, so an XOR gate was used to model it in the
design. Various possible fault models and the structures to implement them are shown in the table 4.1.
Multiplexers can actually be used to implement any combinational fault model and to choose between
them dynamically at simulation run-time by the user. To implement a delay fault model, a multiplexer
alone would not suffice, a delay element such as D-F/F is required. The same custom parser can be
used to instrument designs for all the previously discussed fault models by using a different design
structure instead of a XOR gate. This is one of the potential future works that could be explored for
higher fault space coverage of designs.

Design Structure Fault Model
AND gate with one input tied to ’0’ Stuck at 0
OR gate with one input tied to ’1’ Stuck at 1

XOR gate Bit Flip
Multiplexer Open line or indetermination

Table 4.1: Fault models and structures to implement them

4.5.2. Fault classification
The following broad fault classifications are discussed and used in literature,

• Instruction Re-execution [48]

• Instruction Skip [38]

• Abrupt Halt [51]

• Silent Data corruption [34]

Specific instructions could be targeted to compromise the security of the processor. Based on the
above, specialised classes of faults for processor were explored and the following were broadly used,

• Instruction Re-Execution: The Next PC logic of a processor is effected, forcing the processor
to re-fetch an instruction that was just executed and re-execute it.

38 4. Methodology

• Processor Abrupt Halt: The flow of execution of instructions is halted. Either the fetch logic,
pipeline registers or stall generation logic is corrupted.

• Early Instruction Termination: An instruction that take multiple clock cycles to execute is termi-
nated without completion. Multiple sub types of this are possible where, execution flow could be
altered and subsequent instructions could be skipped.

• Delayed Instruction Execution: Instructions take more clock cycles to finish than expected and
their effect on the processor state could be not as intended. Like the previous category, changed
execution flow and subsequent instruction skip are possible.

• Branch Not Taken: Conditions such as an If or case could translate to a branch instruction in
assembly. To bypass the condition checks, attackers frequently target branch instructions and
their conditions are effected. Branches that are supposed to cause a program flow change, thus
do not fetch from the target address and continue executing in program order.

• Branch to different Address: Address calculation of a branch can be effected and the program
can be made to branch to an address where the attacker program sits.

• Illegal Branch Taken: Similar to the case of Branch not taken, condition checks are exploited to
gain control of the execution flow.

• InstructionModified: Faults could be injected in the opcode of the instruction to alter its intended
functionality. Register numbers from which data should be read or written to can be modified. The
instruction could be converted to effectively function as a NOP.

• PC Changed Not Flow: A benign error, which just effects the current PC. The subsequent in-
structions to be fetched are not affected as pipeline registers and Next PC logic are not corrupted.

• Instruction Skip: The Program Counter(PC) + 4 instruction is skipped and PC + 8 is executed
after the current instruction completes execution. Conditional checks can be targeted to exploit
this fault.

• Flow Changed: The program flow can be altered not just by manipulating and corrupting instruc-
tions, but also data in the registers and memory. Data corrupted in a particular clock cycle can be
used by the processor in next clock cycles to calculate address for branches or also as conditions
for branches.

• Data Error: Data alone can be corrupted without changing the program flow. Keys required by
cryptographic algorithms like AES and RSA can be corrupted. Silent data corruption also falls
into this category.
Varying Micro-architectural implementations of a processor define what constitutes a processor
state. Based on different implementations, several new fault categories are possible. All fault
classification is done automatically by the simulation script.

4.5.3. Simulation

On every cycle of fault simulation, the processor state and expected processor state from golden refer-
ence model are compared to find mismatches. State machines that keep track of type of fault signature
are also updated. Optionally, the processor state is print to simulation log. One clock cycle before sim-
ulation ends, summary of all mismatches and final fault signature are printed in the simulation log. This
is shown in Figures 4.18 and 4.19.

A snippet of generated simulation log for ’1’ clock cycle is shown in Figure 4.20. If a list of known
tests are to be run, a script test2command.py can be used to generate commands to be added to the
python simulation script, python_wrapper.py. The simulation run command requires fields such as
fault injection start time, length of fault injection and injection bus indexes of the signals to be injected
with fault. These fields are extracted by the script from the test name and commands are saved in a
file runcommands.txt. These commands are then copied to python_wrapper.py to run the simulation.
The following section describes the python simulation script in more detail.

4.5. Fault Simulation 39

Figure 4.18: Simulation Flow

Figure 4.19: Comparison of golden reference state with current processor state

Figure 4.20: Processor Trace for ’1’ clock cycle

40 4. Methodology

Python Simulation Script

A python script automates simulation, processor trace and vcd creation. It’s algorithm is shown in 2.
The previously created rtlsimulator.so by g++ is used as a DLL/shared library in RtlSimulator class,
whose object is created and used in the script. Ctypes in python is used to call C foreign functions by
wrapping them in pure python. It is used as a DLL in class as shown below,

self.sim_dll = CDLL(rtlsimulator.so,mode=RTLD_GLOBAL)

Algorithm 2 Python Simulation Script

memory[] ← binary file // load memory list in python with binary from application

proc_state_list[] ← golden reference file // read golden reference processor state

sig_list[] ← fault injection signal list file // read signal names of which faults should be injected

into

Create RTL Simulator Object(simulator) // RtlSimulator class loads rtlsimulator.so

Set fault injection period, fault injection simulation time range //

Specify whether to generate VCD, Processor Trace //

Set maximum allowed semaphore count //

Specify if it’s a golden reference run //

for sig_list[] do // iterate over all different signals to be injected with fault

for data_list[] do // generated list of data by right shifting ’1’ for injection bus length

for final_instr_list do // time instances of where faults are to be injected

simulator.run() // calls run method, which internally call rtlsim_run in DLL

end
end

end
process.join() // Wait for all the process to complete

simulator.close() // Calls rtlsim_close in DLL

Algorithm 3 rtlsim_run function

Handle memory accesses // Copy contents of binary to python

for Number of clock cycles in a simulation do //

Read address bus of design and use it to index C++ memory //

Drive data or instruction on memory read bus based on access type //

Update C++ memory from memory write bus //

Save current processor state to an internal variable //

Pass current processor state to python //

Advance by 1 clock cycle in simulation // Executing eval() will advance simulation

Dump to VCD //

end
Close VCD Clear C++ memory variable // memset to clear memory, so as to not effect next

simulation

4.5. Fault Simulation 41

The RtlSimulator class dynamically links rtlsimulator.so using CDLL. The following are also done
in the class,

• Clears fault type counters, proc_state mismatch counters, fault state machine variables

• Opens golden reference file.

The test-bench in C++ has two functions rtlsim_run and rtlsim_close, they are called using CDLL
from python simulation script. The function rtlsim_run algorithm is explained in 3, it essentially runs the
simulation. rtlsim_close function frees up the memory allocated in the test-bench for next simulation.
A call back function cb2() in rtlsim_run calls status_callback in python to send the current processor
state to python simulation script. This function calling structure between python and C++ is shown in
the Figure 4.21.

Figure 4.21: Call backs between python simulation script and C++ testbench

A single processor state in python script is maintained as an object of a class proc_state. The
following constitute a proc_state,

• Processor general purpose registers, CPU state register

• Current instruction address & opcode, next PC

• Memory interface signals (access type, valid, ready, read data, write data, address, strobe)

• ALU internal signals (reg_op1, reg_op2, alu_out, reg_out)

• Decoder signals (decoded_rd, decoded_rs1, decoded_rs2, decoded_imm, decoded_immj)

All the above are properties in the class proc_state, a class method to print current state of a proces-
sor is also implemented. A list of proc_state for the entire length of simulation with expected processor
state is created by running a simulation without any injected faults, called a golden processor state.
The current processor state and golden processor state are compared on every clock cycle for mis-
matches. This comparison logic is implemented in status_callback in python simulation script, whose
algorithm is shown in 4.

Algorithm 4 status_callback function

Create current proc_state to simulation log file // Print processor trace

Read expected golden proc_state from current clock cycle //

Update state machines that keep track of specific failure types based on current proc_state // ex :

PC mismatch, Reg mismatch

Compare golden state and current proc_state to update mismatch counters //

From state machines, determine if a particular fault type is hit //

Update fault type error signature if any // ex : processor abrupt halt

42 4. Methodology

The following instructions are targeted in Dhrystone benchmark for fault injection campaign,

1. ALU instructions - ADDi, SUB, ADD, OR

2. Shifts - Slli, Srai, Srli, Sll, Srl

3. Multiply instructions - Mul, Div, Remu

4. Branchs - Jal, Bgeu, Bltu, Jalr, Bne, Blt, Beq, Auipc

5. Load/ Stores - SW, LW, Lui

4.6. Process Results
The next step is to parse the generated simulation logs and generate the summary report. The

script result_python.py processes simulation logs to create a run summary. High level summary with
total tests run along with failing and passing are mentioned. Number of failures and their file names of
a particular fault type are also listed. Finally tests that fail with no particular fault type, but rather with
some mismatches are also included. The summary file is named result.txt and is displayed by a top
script after the simulations complete. A sample run summary is shown in Figure 4.22.

Figure 4.22: Run Summary

4.7. Code Profiling and Optimisations 43

4.7. Code Profiling and Optimisations
As the fault injection simulation campaigns need to run tests in the order of 100k, execution time of

each simulation is very important. One of the ways to improve run time is to profile the code to identify
bottlenecks. To profile the python code, Cprofile, line_profiler and pprofile were used. Cprofile gives
the total runtime, along with time spent in executing each function and number of times the function
was called. This helps to identify and optimise the function that consumes the most time to execute.
Reducing the function call count is another way to improve the execution time. Cprofile can invoked
while running the script using the following command,

$ python3 -m cProfile -s tottime python_wrapper.py

The following is a snippet from the log generated by Cprofile for a simulation with no fault injections.
The length of the simulation was 49998 clock cycles. As it can be seen, most of the time in simulation
is consumed by run, status_callback methods. The run method is where the actual simulation is done.
The status_callback is called 49998 times are it is invoked every clock cycle. The ’module’ is actually
where reading of the application binary and setting internal variables of the script takes place. When
a regression is run, the ’module’ part is only run once, but run and status_callback invoked by every
simulation. So, the effective total simulation time is 3.078 seconds.

807622 function calls (807263 primitive calls) in 4.611 seconds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(function)
1 1.598 1.598 3.143 3.143 python_wrapper.py:1027(run)

49998 1.480 0.000 1.543 0.000 python_wrapper.py:288(status_callback)
1 1.084 1.084 4.611 4.611 python_wrapper.py:1(<module>)
1 0.138 0.138 0.138 0.138 python_wrapper.py:1021(close)

50001 0.119 0.000 0.119 0.000 {method 'split' of 'str' objects}
99998 0.070 0.000 0.070 0.000 python_wrapper.py:50(__init__)

214952 0.022 0.000 0.022 0.000 {method 'append' of 'list' objects}
81013 0.016 0.000 0.016 0.000 {method 'read' of '_io.BufferedReader' objects}
81013 0.011 0.000 0.011 0.000 {method 'hex' of 'bytes' objects}
46347 0.010 0.000 0.010 0.000 {built-in method builtins.bin}
73172 0.009 0.000 0.009 0.000 {method 'popleft' of 'collections.deque' objects}
73172 0.008 0.000 0.008 0.000 {method 'append' of 'collections.deque' objects}
13242 0.004 0.000 0.004 0.000 {built-in method builtins.isinstance}

6 0.003 0.001 0.003 0.001 {built-in method _imp.create_dynamic}
29 0.003 0.000 0.003 0.000 {built-in method marshal.loads}
107 0.003 0.000 0.006 0.000 <frozen importlib._bootstrap_external>:1233(find_spec)

2090 0.003 0.000 0.003 0.000 {built-in method _codecs.utf_8_decode}

line_profiler lists time taken by individual lines of code. This was used further to narrow down the
search for lines that slow down a particular functions. @profile decorator should be added to functions
that are to be profiled. It can be executed by running the following,

$ kernprof -l -v python_wrapper.py

The following is a snippet of the log generated by line_profiler for a simulation with no faults injected.
As can be seen, time taken per line and number of times the line is executed in a function along with
their line number are specified.

Timer unit: 1e-06 s

Total time: 0.257298 s
File: python_wrapper.py
Function: __init__ at line 49

Line # Hits Time Per Hit % Time Line Contents
==

49 @profile
50 def __init__(self, param_list):
51
52 99998 138351.0 1.4 53.8 self.reg0_addr = param_list[22:54]
53 99998 118947.0 1.2 46.2 self.state_variables = param_list[0:22]

Total time: 0.00017 s
File: python_wrapper.py
Function: check_status at line 235

44 4. Methodology

pprofile, which was developed inspired from line_profiler was also used. pprofile also does profiling
at line level granularity and is also thread aware. The profiler gives hits, time per hit, total time and
percentage of total simulation time per every line in the script by default. Modification of source to
enable profiling like in the case of line_profiler is not required. Also, recursive methods profiling is
handled efficiently compared to in line_profiler. The profiling of libraries and imported modules used is
also shown. A snippet is shown below,

Command line: python_wrapper.py
Total duration: 108.105s
File: python_wrapper.py
File duration: 107.88s (99.79%)
Line #| Hits| Time| Time per hit| %|Source code
------+----------+-------------+-------------+-------+-----------

1| 2| 0.000343084| 0.000171542| 0.00%|from ctypes import *
(call)| 1| 0.0366392| 0.0366392| 0.03%|# <frozen importlib._bootstrap>:966 _find_and_load
(call)| 1| 0.000100613| 0.000100613| 0.00%|# <frozen importlib._bootstrap>:997 _handle_fromlist

2| 1| 4.24385e-05| 4.24385e-05| 0.00%|import math
3| 1| 6.12736e-05| 6.12736e-05| 0.00%|import time
4| 1| 5.38826e-05| 5.38826e-05| 0.00%|import re
5| 1| 0.000143051| 0.000143051| 0.00%|import csv

(call)| 1| 0.0132754| 0.0132754| 0.01%|# <frozen importlib._bootstrap>:966 _find_and_load
6| 1| 0.000141621| 0.000141621| 0.00%|from collections import deque

(call)| 1| 0.000107288| 0.000107288| 0.00%|# <frozen importlib._bootstrap>:997 _handle_fromlist
7| 1| 5.53131e-05| 5.53131e-05| 0.00%|import multiprocessing
8| 0| 0| 0| 0.00%|
9| 0| 0| 0| 0.00%|

10| 1| 5.26905e-05| 5.26905e-05| 0.00%|def search_signal_in_file (file_name,signal_name):
11| 0| 0| 0| 0.00%| text_file = open(file_name,”r”)
12| 0| 0| 0| 0.00%| msb_lsb_tuple_list = []
13| 0| 0| 0| 0.00%| signal_name_inj = signal_name + ”_inj”

Based on the above tool logs, the following optimisation were made in the code,

• Unnecessary number conversions to integer type, by calling int()were removed, inorder to reduce
the total number of function calls.

• Replaced variables by lists, where possible.

• Initialising lists by ’*’ instead of range() function.

• Reading from ctypes arrays by ’:’, instead of range().

• Removed many unnecessary internal variables and other generic code optimisations.

A code version with only Numpy arrays instead of python lists was implemented to achieve better
performance. Instead, it performed worse than using normal lists. Numpy arrays offer performance
gain only when the array size is large. In the simulation script, the array sizes are not large enough to
cancel out effect of loading numpy and initialising it’s arrays.

PyPy is an alternative python implementation, that uses just-in-time compilation to reduce execution
times. PyPy was also used for python simulation script to improve the execution time. The performance
obtained is worse compared with original python implementatio CPython and minutely beter than the
numpy version.

An option to generate all simulation logs in .csv was added to the script, to enable importing into
a database inorder to support SQL queries. SQL queries can be used for more advanced processing
of log files, such as to obtain information about instructions executed right before simulation fail and
group failures based on them. Reading and writing golden reference machine state file is slower if it’s in
.csv format, so .txt format is still used. The following are run-times of a single simulation with different
optimisations,

• Original - 6.556 seconds

• Numpy - 7.750 seconds

• PyPy - 7.367 seconds

• Optimised - 3.558 seconds

4.8. Multiprocessor Support 45

4.8. Multiprocessor Support
Code profiling and subsequent optimisations improve simulation performance for single core. To

further reduce execution time for fault injection simulation campaigns, multiprocessors should be used.
Python provides two classes for multiprocessing, namely process and pool. Both the approaches are
evaluated for performance. An option to enable and disable multiprocessing support is provided in the
python simulation script.

Pool

If data parallelism is required, Pool based implementation is to be used. The same function is
executed with multiple sets of input data. Input data is distributed across multiple processes. The sim-
ulation script worked for 2-processes on a 4-core system and crashes any higher number of processes.
Simulation time of 2.14 seconds is obtained with 2-processes pool. An algorithmic level python code
implementation of pool is shown below,

def pool_func (pool_params):
simulator.run(pool_params)

pool__params_list = []

pool = multiprocessing.Pool(2) #3 Crashes the system

for sig_list[] : #For every signal in the fault_inj_sig_list.txt
for shifted_data_list[] : #Generate list of data by right shifting '1'

for final_instr_list[] : #Various simulation time instances to target multiple instructions
multiproc_params_list.append #Generating multiple sets of input data

pool.map(multiproc_func,multiproc_params_list) #runs simulator.run()

Process

For a function based parallelism, where for same data, multiple functions are to be run, process
is used. The number of processes is controlled by number of semaphores. A different process is
allocated for each signal to be injected with fault. Algorithmic python code for process implementation
is shown below,

def proc_func (individual_signal,sema):
for shifted_data_list[] : #Generate list of data by right shifting '1'

for final_instr_list[] : #Various simulation time instances to target multiple instructions
simulator.run

pool__params_list = []

sema = multiprocessing.Semaphore(2)

all_processes = []

for sig_list[] : #For every signal in the fault_inj_sig_list.txt
sema.acquire()
p = multiprocessing.Process(target=multiproc_func,args=(individual_signal,sema))
all_processes.append(p)
p.start()

for p in all_processes:
p.join()

With 2 processes each simulation took 1.7 seconds. Having 4 processes was slower and 20 pro-
cesses fails with an error, too many files open. The Pool implementation of parallelism is slower by
26% compared to Process implementation and thus was chosen for fault injection campaigns. This
is unexpected given, what Pool and Process are meant to be used for. This could be attributed to
the fact that, a 4-core system with only 2-cores available to virtual box is used, with high system
memory constraints. If processes are spawned on a computer cluster designed to handle parallelism,
the performance of Pool should easily outpace that of Process for the python simulation script.

5
Case study : FI of PicoRV32,

DarkRISCV

5.1. PicoRV32
PicoRV32 is a highly configurable processor, it was design to be chosen either to be high perfor-

mance or low area and power as explained in section 3.2.1. As the objective here is fault injection,
design with all extensions and features is preferred, so the high performance variant RV32IM core is
chosen. To configure the core, following Verilog parameters are to be set,

• ENABLE_REGS_16_31: This enables registers 16 to 31 in design, giving processor more reg-
ister to work with. If they are not enabled, it corresponds to RV32E core configuration.

• ENABLE_REGS_DUALPORT: Two read ports instead of one, improves the performance.

• BARREL_SHIFTER: By default, shift is done in two stages. A barrel shifter completes a shift
operation in ’1’ clock cycle like any ALU operation.

• ENABLE_PCPI: The Co-Processor interface is used to implement external cores.

• ENABLE_FAST_MUL: A normal multiplier completes MUL instruction and MULH instruction in
40 and 72 cycles respectively. The fast multiplier is a single cycle multiplier and it uses the PCPI
interface.

• ENABLE_DIV: A divider that executes DIV/REM in 40 clocks is enabled.

Processor State

The following constitute a processor state in PicoRV32. They are compared with expected proces-
sor state from golden reference model on every clock cycle.

• General purpose registers - 0 to 31.

• Current Program Counter, Opcode and CPU state register.

• Temporary ALU result (ALU_Out), ALU operands (reg_op1,reg_op2).

• Memory interface signals - valid, ready, read/write data, address, strobe and access type.

• Instruction operands’ decoder signals - rs1 (1st source operand), rs2 (2st source operand), rd
(destination operand), immediate.

46

5.1. PicoRV32 47

5.1.1. Fault Injection & Fault Bucketing

For fault injection, 95 important signals and states were chosen from a total of 213. Data bus
signals such as mem_wdata and mem_rdata were not included as the focus was control errors and
not data errors. Many signals and register such as pcpi_div_outsign , pcpi_fast_mul_rd_q that are
internal to divider and multiplier were ignored as they effect only divide and multiply instructions, while
drastically increasing the required number of simulations. The chosen signals fall into the following
categories,

• Decoder - 30

• Look ahead interface - 7

• Co-Processor interface - 5

• Main State Memory and ALU - 27

• Memory - 17

The following are some note worthy points about fault injection simulation in PicoRV32,

• The injection bus width is 5715, it is added as a top level input port to the instrumented design.

• As defined on page 42, ALU instructions, shifts, Multiply/Divide, branches and Load/Store are
targeted for fault injection in dhrystone.

• The times at which faults are injected are once every clock cycle from 2-cycles before the instruc-
tion executes to 1-cycle after it completes. This is to make sure that, faults in fetch,decode and
memory write back signals actually effect the intended instruction.

• A fault campaign involving 99534 simulations was run for PicoRV32.

• A total of 17 different failure signatures are possible. Signatures are similar to classes men-
tioned in page 37.

5.1.2. Results

In the total 99534 simulations, 85093 pass without any error and 14441 simulations fail. The cor-
responding percentages are shown in the Figure 5.1. A test is classified as being passed, if for all the
length of simulation, the program flow and processor state match with golden reference model. It is
classified as fail otherwise.

Figure 5.1: Fault campaign pass and fail percentages for PicoRV32

Of the total 14441 fails, the distribution of the different fault signatures is as shown in Figure 5.2.
Mismatches that don’t cause either a change to control flow or data are grouped under others category.

48 5. Case study : FI of PicoRV32, DarkRISCV

Figure 5.2: Failure distribution for PicoRV32

These are transient changes in signals/ registers that are corrected in the subsequent clock cycle
without having any effect on the processor.

As seen above, most of the injected faults don’t translate to an error in the processor state or affect
the program flow. Ignoring data errors, which are essentially silent data corruptions as they don’t ef-
fect the program flow. Of the remaining fails, Processor abrupt halt, Branch not take and Instruction
modified constitute the bulk of fails around 60%. Knowledge about such failures can help processor
designers to make choices about choosing countermeasure for particular modules in processors in-
order to yield high returns. PicoRV32 doesn’t implement a watchdog timer or duplication of decode
logic, which could have helped in processor abrupt halt and instruction modified cases respectively.

5.2. DarkRISCV
The DarkRISCV processor was designed to replace high performing Coldfire processors running at

more than 75MHz and to be implemented on spartan-6 FPGAs. As such, it too is highly configurable
like PicoRV32. Pyverilog can’t handle ’ifdef constructs and takes the if part by default, ignoring the
’defines in the configuration file (config.vh). For PicoRV32, the design was manually edited, which
is error prone. In order to automate the process of manually configuring the Verilog parameters and
inturn editing Verilog design file, yosys can be used. Initially, parameters to be configured are ’defined
in config.vh. Then running the following on command line gives the configured design.

echo ”read_verilog -ppdump darkriscv.v” > synth.ys
yosys synth.ys > darkriscv_yosys.v

The following parameters are selected in the design,

• __3STAGE__: Enables 3 stage pipeline

• __MAC16X16__: To add MAC block to the design.

• __HARVARD__: Set to ’0’ as VonNeumann architecture is desired.

Threading and performance measurement are also disabled. DarkRISCV currently doesn’t have
support for multiply or divide instructions, as such it implements only RV32E. The parameters were
chosen so that, it resembles PicoRV32 as much as possibles, with an aim of making fault injection
comparison of the two processors fair.

5.2. DarkRISCV 49

Processor State

DarkRISCV doesn’t have a CPU state register or status register. It also has only 15 general purpose
registers as RV32E ISA is chosen. The three stages of the pipeline have a PC corresponding to them,
to indicate the instruction in that stage.

• General purpose registers - 0 to 15.

• Current Program Counter (PC), next PC, next PC2 and Opcode.

• Outputs from various modules in ALU - LData, KData and RMData.

• Memory interface signals - read/write data and address.

Code adoption

AsDarkRISCV is a pipelined design, the statemachines for fault classification used in python_wrapper.py
(simulation script), are not valid as they were written with PicoRV32, which is a single cycle processor
in consideration. This is also impacted by change in variables that constitute a processor state. The
state machines were rewritten to reflect these changes.

5.2.1. Fault Injection & Fault Bucketing

A total of 39 signals and registers were chosen for fault injection. Unlike PicoRV32, where faults
only targeted control signals, here all control signals and internal data outs from ALU modules were
selected to increase the simulation count. The injection bus is of width 1317. The signals chosen fall
into these groups,

• Control Signals - FLUSH, FCT3, FCT7, OPCODE, HLT : 5

• Stage 1 Pipeline signals (Decode) - XLUI, XMAC, XRCC, etc. : 10

• Stage 1 Pipeline signals (Execute) - LCC, SCC, MCC, etc. : 10

• Register file control - RESMODE, BE, S1PTR, S2PTR, DPTR : 5

• Jump Control - BMX, JAL, JALR, JVAL : 4

• ALU outputs - LDATA, SDATA, RMDATA, KDATA : 4

The fault campaign had 31850 simulation for DarkRISCV. 18 failure signatures are possible. Com-
pared to PicoRV32 the only new signature is that of default error, as the name implies is hit if none
others are. The following 2 categories of mismatches are also added as the architecture is different
compared to PicoRV32,

• Next PC mismatch, Next PC2 mismatch.

• Data address, Data read/write mismatch.

5.2.2. Results

A total of 10324 simulations passes and 21526 simulations fail of the total 31850 simulations. The
respective percentages are shown in the Figure 5.3.

Various fault signature as a percentage of total fails are shown in Figure 5.4. A majority of the faults
are data errors, which is expected as faults are injected into 4 ALU output signals. As the focus is on
control errors, ignoring data errors, the highest errors are branch to a different address, Branch not
taken and PC changed. In PC changed fault, the PC value itself is corrupted by doesn’t effect the
next instruction in the pipeline or current instruction as it is overwritten in the next clock cycle. Thus
countermeasures for branching logic can avoid 12.78% simulation fails. In-order to fix the major data
errors, duplication technique such as Triple modular redundancy can be implemented.

50 5. Case study : FI of PicoRV32, DarkRISCV

Figure 5.3: Pass/Fail percentages for DarkRISCV

Figure 5.4: Failure Signatures for DarkRISCV

5.3. Comparison of processors

As both PicoRV32 and DarkRISCV both implement the RISC-V ISA, analysing their types of failures
can be used to draw insights to RISC-V ISA and implemented micro-architecture vulnerabilities.

Processor Abrupt Halt

Approximately, 30% of the failures are from this category in case of PicoRV32 and none in Dark-
RISCV. Most of the fails in PicoRV32 are due to direct or indirect fault into mem_do_prefetch signal,
which controls the cpu_state updation to fetch state. As can be seen from the following code, de-
coder_trigger is also effected and thus not only new instruction is not fetched, the current instruction
that is already fetched is not executed.

if (!mem_do_prefetch && mem_done) begin
cpu_state <= cpu_state_fetch;
decoder_trigger <= 1;
decoder_pseudo_trigger <= 1;

end

Where as in DarkRISCV, there is no equivalent signal tomem_do_prefetch in the implementation.
The HALT signal is an input to the processor and thus, even if a fault is injected on it for ’1’ clock cycle,
it recovers in the next. This prevents the processor to go into a complete HALT. The PCs are updated
in DarkRISCV based on reset and HALT as shown in the code below,

input HLT; // halt
PC <= HLT ? PC : NXPC; // current program counter
NXPC <= HLT ? NXPC : NXPC2
NXPC2 <= RES ? 0 : HLT ? NXPC2 : // reset and halt

JREQ ? JVAL : // jmp/bra
NXPC2+4; // normal flow;

5.3. Comparison of processors 51

Branch not taken & Branch to a different address

Branch not taken is the 2nd and 3rd highest signatures for PicorRV32 and DarkRISCV respectively.
In PicorRV32, reg latched_branch is used in control logic to keep track of branch and jump instructions.
When a fault is injected in it, a branch can be made to be not taken. In DarkRISCV case, JAL, JALR,
JREQ, BMUX regs in control logic are used to keep track of keep track of branches and registers.

assign next_pc = latched_store && latched_branch ? reg_out & ~1 : reg_next_pc;
case (1):

latched_branch: begin
cpuregs_wrdata = reg_pc + (latched_compr ? 2 : 4);
cpuregs_write = 1;
end

Branch to a different address contributes to only 38 simulation fails in PicoRV32 , whereas it is the
2nd highest signature in DarkRISCV simulations. The difference arises since there is no dedicated reg
for holding jump address value in PicoRV32, whereas DarkRISCV has the reg JVAL. JVAL is used
to drive NXPC2 and NXPC, which are PC address for 1st two pipeline stages. A fault in this directly
translates to a corrupted branch address.

NXPC2 <= RES ? 0 : HLT ? NXPC2 : // reset and halt
JREQ ? JVAL : // jmp/bra
NXPC2+4; // normal flow

NXPC <= RES ? 0 : HLT ? NXPC : // reset and halt
JREQ ? JVAL : // jmp/bra
NXPC+4; // normal flow

Instruction Modified

Its the 3rd highest signature for PicorRV32 and causes only 20 fails in DarkRISCV. In PicorRV32,
current_pc is a register, driven by reg_next_pc, alu_out_q and reg_out. Injecting a fault into reg_next_pc
on any cycle the instruction is being executed, corrupts current_pc.

current_pc = reg_next_pc;
case (1'b1)

latched_branch: begin
current_pc = latched_store ? (latched_stalu ? alu_out_q : reg_out) & ~1 : reg_next_pc;

end

On the other hand, PC, NXPC and NXPC2 feed into each other conditionally. Injecting a fault into
either of them doesn’t translate to a failing test as instruction decode control signals are latched for
every pipeline stage.

Delayed Instruction Termination

These types of failures are not seen in DarkRISCV as it is a 3-stage pipeline and if an instruction in
pipeline is corrupted, it is still completed in the same clock cycle without halting the pipeline. A quarter
of a percentage fails are seen in PicoRV32 with this signature. The instructions get delayed by one or
more clock cycles and may also have a corrupted output. This is possible in PicoRV32 only because
the design is not pipelined.

PC changed not flow

With 911 and 274 simulation failing in DarkRISCV and PicoRV32, it is a significant fail in the former
but not the latter. This can be attributed to the fact that DarkRISCV has 3 registers to hold PCs, PC,
NXPC and NXPC2 that drive each other, where as PicoRV32 has current_pc, which is to be corrupted
at a specific clock cycle to not change the flow. So, corrupting the PC without effecting flow is easier in
DarkRISCV.

52 5. Case study : FI of PicoRV32, DarkRISCV

Instruction Skip

No cases of instruction skip were seen in PicoRV32. There are few cases of delayed instruction
with skip, where the decode logic doesn’t take into account the updated processor state and re-fetches
the next instruction. Injecting faults into JVAL for some address can cause and instruction skip in
DarkRISCV.

An interesting finding is, none of the injections in any signal was able to produce an instruction
re-execution in either of the processors. This type of fault requires multiple signals and registers to be
corrupted spread over few clock cycles. It can be inferred from the analysis that, a pipeline design is
less likely to suffer an abrupt halt than an single cycle design. Having registers in control logic with a
well defined functionality is very vulnerable to attack. Attackers don’t have access to design code, thus
their implementation by design tool will determine it’s vulnerability.

5.4. Implementation of Countermeasures
Inverse operation check as a software countermeasure for branch not taken fault and Watchdog

timer as a hardware countermeasure for processor abrupt halt fault signature in PicoRV32 are dis-
cussed in this section.

5.4.1. Complementary Double check implementation

Branch not taken failure signature was the second highest in both PicoRV32 and DarkRISCV. The
program in Figure 5.5a, which has a for loop with an if condition inside, controlled by binary bits similar
to Modexp operation in Figure 2.21 is used as a test program. A fault is injected with and without
countermeasure, to test its effectiveness. The equivalent assembly code for the test program is shown
in Figure 5.5b. A Branch not taken fault is induced, when the bne instruction indicated in the Figure
5.5a is executing. This corresponds to an if condition, that checks the key value in the C test program.
The expected value of result is 0xF5F5, but since the if condition for index 4 is skipped, the resulting
value is 0xA0A0.

(a)

(b)

Figure 5.5: Test program and its assembly code

When inverse operation check is added to the test program as a countermeasure, though one
branch is skipped by the injected fault, the 2nd branch does the complementary check and catches the

5.4. Implementation of Countermeasures 53

fault. It then redirects the test to outside the loop. this is shown in the Figure 5.6. The test program
was run on PicoRV32 and the fault was injected using the python simulation framework. In order to
activate the branch not taken fault signature, fault is injected into decode_rs2 signal to make it to pick
a wrong operand for bne instruction.

(a)

(b)

Figure 5.6: Test program and assembly code with countermeasure

5.4.2. Watchdog Timer

Around 4300 simulations fail with processor abrupt halt failure signature in fault injection campaign
for PicoRV32, that accounts for 30% of the total failures. A watchdog timer, that restarts the proces-
sor after 80 clocks of inactivity was added to PicoRV32 as a countermeasure for processor abrupt
halt fail signature. To finally test the implementation, 10K simulations, were selected from the total 100k
simulations uniformly to include all failure signatures and run. This makes sure that the watchdog while
preventing processor abrupt halt fails, doesn’t effect functionality of other modules. Multiple implemen-
tations of watchdog were evaluated for highest simulation pass percentage. The watchdog resets the
processor only after 80 clock cycles because MULH instruction takes 72 clock cycles to complete. To
recover the processor to it’s previous state once it is halted, following several approaches were chosen
based on the new cpu state they put the processor in,

• CPU state based on current instruction: Based on the type of current instruction being exe-
cuted before halt, the cpu state on watchdog reset is determined. For shift instructions, cpu state
is set to decode the operands again. Whereas for store and loads, the processor state is set to
refetch from memory and for other class of instructions, the instruction is refetch. These states
were determined studying the processor implementation of these instructions. A pass percentage
of 39 was obtained by this approach.

• Set CPU state always to Re-fetch: In this approach, the halted instruction is always refetched
while also clearing temporary registers in ALU like alu_out, reg_op1, reg_op2 that hold ALU
result and ALU operand 1 and 2. 56% pass rate was achieved for simulations with this approach.

• CPU state based on previous CPU state: The CPU state after reset is set to one state previous
to when it was in halt. For example, if the processor was in execute state when it was halt, on

54 5. Case study : FI of PicoRV32, DarkRISCV

reset it is set to decode and if it was decode, it is set to fetch. 61% pass rate was seen for this
approach in simulations.

• Instruction re-fetch frommemory: Parts of above approaches alongwith clearing ofmem_state
is followed here. The CPU state after watchdog reset is always fetch and all temporary ALU reg-
isters like alu_out, reg_op1, reg_op2 are also cleared. Unlike previous approaches, here the
instruction is made to re-fetch from the memory instead of using the previous values in mem-
ory read control logic. A pass percentage of around 97.7 is achieved with this. The remaining
simulations still fail because the HALT happened after the instruction already wrote the result
to the general purpose register. So, when the instruction is restarted, it uses these corrupted
register and fail. Simply not restarting such instructions should theoretically work, but was not
implemented.

The simulations discussed above were the 4300, that were failing with processor abrupt halt failure
signature. When the previously discussed mini regression of 10k simulations, which is a representative
of the total fault injection campaign simulations were run, a pass percentage of 93.8 was obtained as
opposed to 85.5 without the watchdog. It should be noted that, recovering the processor from Halt
after fault injection poses a risk in security perspective. The watchdog timer was implemented only as
a proof of concept.

Updating Python Simulation Script

Dhrystone was the application program that was used for fault injection campaign. Dhrystone has
functions to check for performance of program based on number of clock cycles consumed using pro-
cessors performance registers. When watchdog is used to reset the processor, the clock count changes
and simulations fail due to this mismatch even though there were no other failures. This check has been
masked by writing the expected value to the function. All the errors due to checks between processor
when its in halt and reference model are also cleared. The state of reference model is set to be same as
the processor after it is reset by watchdog. All of this was updated in python_wrapper.py, the python
simulation script.

Implementation internals of watchdog

The following registers are used in watchdog internally to implement its functionality,

• watchdog_counter: Counts the number of clock cycles the processor has been in halt state.
When the processor starts executing again, the count is reset. When the count reaches 78, the
watchdog is activated.

• watchdog_pc_old: Holds the address of instruction which was executed before the current in-
struction. This register is updated on every clock cycle the processor is not in halt and when an
instruction completes execution.

• watchdog_pc_new: Current Program counter value is saved in this register. Used by watchdog
to re-fetch the instruction in-case the processor halts. The PC can also be corrupted by fault
injection, so this extra copy is maintained. This register is updated when ever the PC changes.

• watchdog_set_counter: Maintains a count indicating howmany times thewatchdog has restarted
the processor.

• watchdog_sticky: Used internally by watchdog state machine.

Impact of watchdog on Silicon Area

In order to measure area utilisation of watchdog, the design was synthesised with both Qflow and
Vivado. In Qflow, technology used was osu035_redm4. Without the watchdog, the maximum fre-
quency achieved in MHz was 96.3177, with watchdog, it was 96.1666. The increase in utilisations for
various resources was shown in table 5.7a.

5.5. Discussion 55

(a) Resource usage for Qflow (b) Resource usage for Vivado

Figure 5.7: Area usage for Watchdog

With Vivado, the maximum operable frequency fell from 424 to 348 MHz. The target device was
set to Zynq-Ultrascale+ and the part was selected to be xczu7ev-ffvc1156-2-e. As can be seen in table
5.7b, the utilisation of total cells has increased by around 7%. A sample code of the implemented
watchdog timer is presented in Appendix C.

5.5. Discussion
Fault injection into two RISC-V processors was performed, namely PicoRV32 and DarkRISCV. The

design instrumentation framework was used to instrument both the designs without any porting re-
quired. Fault simulation and automatic classification framework on the other hand required adaption
based on microarchitecture of the processor as expected. Vulnerability analysis involves root causing
the logic in the processor that causes a particular fault signature when injected with fault. This analysis
was done for all the major fails for both the processors. One of the major bottleneck in fault space ex-
ploration is speed and to counteract this multiprocessor support for simulation script was implemented.
The two processors were not designed to be tolerant to fault injection. For the top two failure failure
signatures in PicoRV32, Abrupt Halt and Branch Not Taken, a watchdog timer as a hardware counter-
measure and inverse operation check were implemented. With the countermeasure implemented, a
decrease of 8.3% in total simulation failures was achieved.

6
Conclusion

6.1. Summary
Chapter 1 introduces the motivation for simulation based fault injection of microprocessors. The chap-
ter discusses various fault injection techniques currently used by attackers to compromise the security
of the device. It introduces various state of the art fault injection frameworks being used for instrument-
ing the design to enable simulation based fault injection. This thesis mainly focuses on development
of frameworks for design instrumentation, fault injection and automatic classification of faults.

Chapter 2 of this thesis gives a brief overview of various types of mechanisms that can induce faults
in CMOS devices including defects, ageing and external disturbances. A brief background of the fault
categories based on their temporal nature and mechanisms involved is reviewed. This is followed by
listing of classes in instruction set architecture faults. Furthermore different categories of fault injection
techniques were enumerated and contrasted with each other. Subsequently, fault model types that are
modelled at signal level and HDL syntactical structure were given. The chapter finishes with a delve
into state of the art frameworks proposed in literature.

Chapter 3 of this thesis introduces the reader to instruction set architecture internals of RISC-V.
RISC-V is an emerging open source ISA, that is being increasingly being adopted by the industry as
well as academia. Thereafter various RISC-V tool chains available along with their current support
of variants of RISC-V ISA was examined. This is followed up with an overview of two RISC-V open-
source cores, PicoRV32 and DarkRISCV. Their implementation details along with their architecture is
illustrated.

Chapter 4 presents the methodology chosen for fault instrumentation and simulation. The chap-
ter initially presents an overview of the Verilog design instrumentation framework. This is followed up
with a discussion on the implemented custom parser and algorithmic description of its design. Fur-
thermore, fault instrumentation of different syntactical structures in Verilog is presented and illustrated
with examples. Thereafter, fault models and fault classification used by the fault simulation framework
is explained. The chapter then highlights the internal mechanisms of fault simulation, log parsing and
report generation. Following this, code profiling and optimisations to improve the performance of fault
simulation framework is discussed. Finally the chapter ends with an explanation on multiprocessor
support provided, which can be used to speedup the fault injection campaign by orders of magnitude.

Chapter 5 of this thesis presents the platform setup for the proposed frameworks. Then it dis-
cusses PicoRV32’s chosen design parameters, processor state variables and fault bucketing. This is
followed up with presentation of fault injection campaign results for PicoRV32. Then, the simulation
framework code adoption required for DarkRISCV and its design parameters along with fault bucketing
and processor state were explained. Subsequently, fault injection results for DarkRISCV were illus-
trated. Thereafter, a comparison of different fault signatures for both the processors along with their
vulnerability analysis is detailed. Implementation of software countermeasure for branch not taken, the
complementary double check was presented. Finally, watchdog timer as a hardware countermeasure
for abrupt halt was examined. Its improvement in simulation failure rate along with the impact on silicon
area was provided.

56

6.2. Future Work 57

6.2. Future Work
In this section, recommendations for future work to further improve the topics addressed in the thesis
are highlighted.

• Exploring different processor implementations: This thesis showed the fault injection of only
PicoRV32 and DarkRISCV processors. Several other cores such as E2 from SiFive, RISCY
and MRISCV from MIT are available. Their fault injection campaigns may uncover various new
classes of fault signatures and give new insights into RISC-V architecture vulnerabilities.

• Implementation of new fault models: Only the bit flip fault model was used in fault injection
campaigns of the processors. A XOR gate was used for this purpose. Replacing the XOR with
an OR, AND gates can yield new fault models of stuck-at-1 and stuck-at-0 respectively. Fur-
thermore, a MUX can instead be used and choice of selecting the fault model at run-time during
the simulation can be provided to the user.

• Multi-file design support: Currently the framework can automatically only instrument the de-
signs if they are all present in a single file. Most of the modern designs are modular and are
also developed with reusability in mind, making multi file designs very common. The current
workaround is to cat all the design files into a single file and perform design instrumentation.
Support for Multi-file design will further improve the usability of the framework.

• Support for other design languages: Only Verilog based designs are supported by the frame-
work. Increasingly designs are being developed in languages such as System Verilog and Chisel.
Both of them can be converted to Verilog using tools SV2V and FIRRTL hardware compiler frame-
works. Integrating these into the high level flow will future proof the simulation framework.

• Eliminate Duplicate Injection Signals: Multiple duplicate signals are possible in injection bus
with current parser design. A methodology to identify and removing them should be developed.
This will speedup the fault injection campaign by removing simulations which have the same fault.

• ImprovedWatchdog: Watchdog was built as a proof of concept instead of an actual implementa-
tion. Hence it was designed to be very specific to PicoRV32 in this thesis. Providing a configurable
open source design supporting pipelined processor architectures will help designers to adopt this
countermeasure and integrate in their designs.

A
Platform setup

To instrument the Verilog design, initially Pyverilog has to be setup. Pyverilog requires Icarus Verilog,
Jinja 2, PLY to be already installed to work. Optionally pytest, pytest-pythonpath, graphviz, pygraphviz
can be installed for automatic testing as well as graphical visualisation of data flow and control flow
graphs. They can be installed on a linux system by the executing the following on the command line,

sudo apt install iverilog #Install icarus verilog 10.1 or later
pip3 install jinja2 ply #Install atleast Jinja2 2.10 or PLY 3.4
pip3 install pytest pytest-pythonpath
sudo apt install graphviz
pip3 install pygraphviz

Pyverilog can be downloaded from Github repository [2]. Once the requirements are met, install
pyverilog by,

python3 setup.py install

Copy the custom parser and Verilog design files to example directory in Pyverilog. Run the
custom parser by the following,

python3 custom_parser.py design.v

Copy the generated instrumented design file, design_modified.v as well as mapping.txt file to
fault injection directory, which has the python simulation script python_wrapper.py. If not already
available, install and configure RISC-V tool chain for rv32im architecture by the following,

git clone https://github.com/riscv/riscv-gnu-toolchain riscv-gnu-toolchain-rv32i
../configure --with-arch=rv32im --prefix=/opt/riscv32im
make -j4

To generate the binary main_app.data for dhrystone benchmark using the RISC-V tool chain a
Makefile is provided. Run the Makefile with dhry target,

make dhry

In fault_inj_sig_list.txt file, enter names of signals that are to be injected with faults. The format
is, a single signal name should be specified per line, without any delimiters, such as

decoder_trigger
launch_next_instr
mem_do_prefetch

58

59

Set the following parameters in python simulation script (python_wrapper.py) according to the cho-
sen design and simulation requirements,

inj_period = 2 #length of the fault, 1 clock cycle
run_time_prog = 99996 # Simulation runtime in clock cycles x2
signal_list_file = ”fault_inj_sig_list.txt” #signals to be injected with fault
mapping_file_name= ”mapping.txt” #for inj_bus indexs for design
write_to_csv = 0 #simulation logs are written in csv format
golden_run = 0 #set for a golden reference run
regression_run = 1
gen_vcd = 0
print_state_to_text_file = 0 #Print Processor trace for every clock cycle

The simulation run-time is set to be 99996 as it covers all unique targeted instructions in dhrystone,
which were described in section 4.4. Verilator is required to convert the instrumented design to a C++
object. Install it by,

sudo apt install verilator

Simulation and result parsing is controlled by script, named top. It can be run by ./top. It calls the
following scripts internally,

source python_command #Runs Python simulation script
python3 result_python.py #Script to parse generated simulation logs

The python_command script runs verilator and python_wrapper.py scripts to generate simulation
logs. The simulation logs are generated in the current directory, with each logs size around 4KB if only
final run summary is printed and 500KB if processor state for every clock cycle is printed. Log names
are unique as they have timestamp of run time, fault injection length, time instance and instruction
targeted for FI.The sample names of logs are as shown,

1597911810.978404_179_99996_84728_2_3560_3553_cpu_state_inj_in_0x20_srl.txt
1597911812.789443_179_99996_30_2_3560_3553_cpu_state_inj_in_0x02_addi.txt
1597911814.309057_179_99996_36640_2_3552_3545_cpu_state_inj_out_0x10_slli.txt
1597911816.2411432_179_99996_82012_2_3560_3553_cpu_state_inj_in_0x20_remu.txt
1597911818.047203_179_99996_36498_2_3552_3545_cpu_state_inj_out_0x20_jalr.txt

For a multiprocessor system, the number of processes run in parallel can be controlled by setting
the number of available semaphore to assailable processor cores in python_wrapper script. In the
following example, 2 processes can be run in parallel,

sema = multiprocessing.Semaphore(2)

Every simulation takes around 3.56 seconds to finish. Thus, for a fault campaign with 100k simula-
tions will take approximately 100 hours on a system with single core. The final run summary listing total
tests run, passed, failed and various fault signatures is generated in results.txt by result_python.py
script, which can be used as a starting point for all analysis.

B
RV32I ISA

60

C
Watchdog Timer - Sample Verilog

Design
always @(posedge clk_inj) begin

watchdog_counter <= resetn_inj ? (watchdog_counter + 1) : 0 ;
if (watchdog_counter == 77) begin

mem_state <= 0;
end
if (watchdog_counter == 78) begin

reg_next_pc <= watchdog_pc_new;
cpu_state <= 8'b01000000; // Fetch state

end
if (watchdog_counter == 79) begin

watchdog_sticky <= 1;
end
if (watchdog_counter > 79) begin //Restarting only after 80 clocks

watchdog_counter <= 0;
cpu_state <= 8'b01000000; // Fetch state

alu_out = 0; //Clearing ALU registers
alu_out_q <= 0;
reg_op1 <= 0;
reg_op2 <= 0;
decoder_trigger <= 1;

watchdog_set_counter <= watchdog_set_counter+1;
watchdog_sticky <= 0;

end
if ((watchdog_pc_new != reg_pc) & (watchdog_counter < 80)) begin

watchdog_pc_new <= reg_pc;
watchdog_pc_old <= watchdog_pc_new;
watchdog_counter <= 0;

end
end

61

Bibliography
[1] DarkRISCV. URL https://github.com/darklife/darkriscv.

[2] Pyverilog. URL https://github.com/PyHDI/Pyverilog.

[3] RISC-V ISA. URL https://riscv.org//wp-content/uploads/2017/05/
riscv-privileged-v1.10.pdf.

[4] Secure Devices Shipment Trends in Europe. URL www.eurosmart.com/
eurosmarts-secure-elements-market-analysis-and-forecasts/.

[5] Jaume Abella and Xavier Vera. Electromigration for microarchitects. 2010.

[6] Israel Koren et al. Alessandro Barenghi, Luca Breveglieri. Countermeasures against fault attacks
on software implemented aes: Effectiveness and cost. 2010.

[7] Luca Breveglieri et al. Alessandro Barenghi, Guido M. Bertoni. Low voltage fault attacks to aes.
2010.

[8] Luca Breveglieri et al. Alessandro Barenghi, Guido M.Bertoni. A fault induction technique based
on voltage underfeeding with application to attacks against aes and rsa. 2013.

[9] Giorgio Di Natale Paolo Prinetto Alfredo Benso, Stefano Di Carlo. A watchdog processor to detect
data and control flow errors. 2003.

[10] Todd Austin Andrea Pellegrini, Valeria Bertacco. Fault-based attack of rsa authentication. 2010.

[11] Marc Witteman Bilgiday Yuce, Patrick Schaumont. Fault attacks on secure embedded software:
Threats, design, and evaluation. 2018.

[12] OVE S. Taune et al. C. Fibich, P. Rössler. A netlist-level fault-injection tool for fpgas. 2015.

[13] Jaco Hofmann et al. Carsten Heinz, Yannick Lavan. A catalog and in-hardware evaluation of
open-source drop-in compatible risc-v softcore processors. 2019.

[14] Hyungmin Cho. Impact of microarchitectural differences of risc-v processor cores on soft error
effects. 2018.

[15] Hugues Thiebeauld Christophe Giraud. A survey on fault attacks. 2004.

[16] A. DeMillo D. Boneh, R and R. J. Lipton. On the importance of checking cryptographic protocols
for faults. 1997.

[17] J.-Carlos Baraza-Calvo et al. Daniel Gil-Tomás, Joaquín Gracia-Morán. Injecting intermittent faults
for the dependability assessment of a fault-tolerant microcomputer system. 2016.

[18] Gerd Ascheid et al. David Kammler, Junqing Guan. A fast and flexible platform for fault injection
and evaluation in verilog-based simulations. 2009.

[19] Kwangki Ryoo Dennis Agyemanh Nana Gookyi. Selecting a synthesizable risc-v processor core
for low-cost hardware devices. 2019.

[20] Debdeep Mukhopadhyay et al. Durga Prasad Sahoo, Sikhar Patranabis†. Fault tolerant imple-
mentations of delay-based physically unclonable functions on fpga. 2016.

[21] Ingrid Verbauwhede Dusko karaklajic, Jorn Marc. Hardware designer’s guide to fault attacks.
2013.

62

https://github.com/darklife/darkriscv
https://github.com/PyHDI/Pyverilog
https://riscv.org//wp-content/uploads/2017/05/riscv-privileged-v1.10.pdf
https://riscv.org//wp-content/uploads/2017/05/riscv-privileged-v1.10.pdf
www.eurosmart.com/eurosmarts-secure-elements-market-analysis-and-forecasts/
www.eurosmart.com/eurosmarts-secure-elements-market-analysis-and-forecasts/

Bibliography 63

[22] Michael Barrow Dustin Richmond and Ryan Kastner. Everyone’s a critic: A tool for exploring risc-v
projects. 2018.

[23] P. Calvel et al. E. G. Stassinopoulos, G. J. Brucker. Charge generation by heavy ions in power
mosfets, burnout space predictions and dynamic seb sensitivity. 1992.

[24] M. Rimen J. Ohlsson J. Karlsson E. Jenn, J. Arlat. Fault injection into vhdl models: The mefisto
tool. 1994.

[25] Zavier Aguila Eric Matthews and Lesley Shannon. Evaluating the performance efficiency of a soft-
processor, variable-length, parallel-execution-unit architecture for fpgas using the risc-v isa. 2018.

[26] T. Granlund. Defeating modexp side-channel attacks with data-independent execution traces.
2013.

[27] E San Millán et al. H Martin, T Korak. Fault attacks on strngs: Impact of glitches, temperature,
and underpowering on randomness. 2014.

[28] DAVID NACCACHE MICHAEL TUNSTALL HAGAI BAR-EL, HAMID CHOUKRI and CLAIRE
WHELAN. The sorcerer’s apprentice guide to fault attacks. 2006.

[29] Rafic Ayoubi Haissam Ziade and Raoul Velazco. A survey on fault injection techniques. 2004.

[30] Ronak Salamat Hamed Abbasitabar, Hamid R. Zarandi. Susceptibility analysis of leon3 embedded
processor against multiple event transients and upsets. 2012.

[31] Ali Mili et al. Hany H. Ammar, Bojan Cukic. A comparative analysis of hardware and software fault
tolerance: Impact on software reliability engineering. 1999.

[32] Ludger Hemme. A differential fault attack against early rounds of des. 2004.

[33] Schmidt J-M Hutter M. The temperature side channel and heating fault attacks. 2013.

[34] Juan-Carlos Ruiz Ilya Tuzov, David de Andrés. Accurate robustness assessment of hdl models
through iterative statistical fault injection. 2018.

[35] Jorn-Marc Schmidt Ingrid Verbauwhede, Dusko Karaklajic. The fault attack jungle - a classification
model to guide you. 2011.

[36] Rolf Isermann. Fault-diagnosis systems: An introduction from fault detection to fault tolerance.
2006.

[37] D. Gil J. Gracia, J.C. Baraza and P.J. Gil. Comparison and application of different vhdl-based fault
injection techniques. 2001.

[38] Chien-Ning Chen Jakub Breier, Dirmanto Jap. Laser profiling for the back-side fault attacks. 2015.

[39] James C. Hoe et al. Jared C. Smolens, Brian T. Gold. Detecting emerging wearout faults. 2007.

[40] Federico Menarini Jasper G. J. vanWoudenberg, Marc F.Witteman. Practical optical fault injection
on secure microcontrollers. 2011.

[41] S.Zafar J.H.Stathis. The negative bias temperature instability in mos devices: A review. 2005.

[42] Christophe Deleuze et al. Johan Laurent, Vincent Beroulle. Cross-layer analysis of software fault
models and countermeasures against hardware fault attacks in a risc-v processor. 2019.

[43] Christian Steger et al. Johannes Grinschgl, Armin Krieg. Automatic saboteur placement for
emulation-based multi-bit fault injection. 2011.

[44] Sara Blanc Daniel Gil Juan-Carlos Baraza, Joaquín Gracia and Pedro-J. Gil. Enhancement of
fault injection techniques based on the modification of vhdl code. 2008.

[45] M. Lisart et al. K. Tobich, P. Maurine. Voltage spikes on the substrate to obtain timing faults. 2013.

64 Bibliography

[46] David Kanter. Risc-v offers simple, modular isa. 2016.

[47] Karthik Pattabiraman Layali Rashid and Member Sathish Gopalakrishnan. Characterizing the
impact of intermittent hardware faults on programs. 2015.

[48] Niek Timmers Lucian Cojocar, Kostas Papagiannopoulos. Instruction duplication: Leaky and not
too fault-tolerant! 2017.

[49] R. E. Lyons and W. Vanderkulk. The use of triple-modular redundancy to improve computer reli-
ability. 1962.

[50] J. Karlsson et al. M. Rimén, J. Ohlsson. Design guidelines of a vhdl-based simulation tool for the
validation of fault tolerance. 1993.

[51] Michail Maniatakos ; Maria K. Michael ; Yiorgos Makris. Investigating the limits of avf analysis in
the presence of multiple bit errors. 2013.

[52] J.W. McPherson. Reliability challenges for 45nm and beyond. 2006.

[53] Timothy K. Tsai Mei-Chen Hsueh and Ravishankar K.Iyer. Fault injection techniques and tools.
1997.

[54] E. Encrenaz et al. N. Moro, K. Heydemann. Formal verification of a software countermeasure
against instruction skip attacks. 2013.

[55] P. P. Shirvani N. Oh and E. J. McCluskey. Error detection by duplicated instruc- tions in super-
scalar processors. 2002.

[56] Amine Dehbaoui et al. Nicolas Moro, Karine Heydemann. Experimental evaluation of two software
countermeasures against fault attacks. 2014.

[57] Marc Witteman Niek Timmers, Albert Spruyt. Controlling pc on arm using fault injection. 2016.

[58] X. Kauffmann-Tourkestansky et al. P. Berthome, K. Heydemann†. High level model of control flow
attacks for smart card functional security. 2012.

[59] Davide Rossi Pasquale Davide Schiavone, Francesco Conti. Slow and steady wins the race? a
comparison of ultra-low-power risc-v cores for internet-of-things applications. 2017.

[60] X. Montagner et al. Ph. Cazenave, P. Fouillat. Total dose effects on gate controlled lateral pnp
bipolar junction transistors. 1998.

[61] E.J. McCluskey P.P. Shirvani, N. Oh. Software-implemented hardware fault tolerance experiments
cots in space. 2000.

[62] Francesco Regazzoni Roberta Piscitelli, Shivam Bhasin. Fault attacks, injection techniques and
tools for simulation. 2017.

[63] Dominik Ballek et al. Roland Höller, Dominic Haselberger. Open-source risc-v processor ip cores
for fpgas – overview and evaluation. 2019.

[64] Peng Huang et al. Rui Zhang, Calvin Deutschbein. End-to-end automated exploit generation for
validating the security of processor designs. 2018.

[65] Skorobogatov S. Local heating attacks on flash memory devices. 2009.

[66] P. Maurine S. Ordas, L. Guillaume-Sage. Electromagnetic fault injection: the curse of flip-flops.
2016.

[67] Donato Kava et al. Sahan Bandara, Alan Ehret. Brisc-v: An open-source architecture design
space exploration toolbox. 2019.

[68] Jörn-Marc Schmidt and Michael Hutter. Optical and em fault-attacks on crt-based rsa: Concrete
results. 2007.

Bibliography 65

[69] Pradip Bose Schuyler Eldridge, Alper Buyuktosunoglu. Chiffre: A configurable hardware fault
injection framework for risc-v systems. 2018.

[70] Jerry M. Soden and Charles F. Hawkins. Electrical properties and detection methods for cmos ic
defects. 1989.

[71] Shinya Takamaeda-Yamazaki. Pyverilog: A python-based hardware design processing toolkit for
verilog hdl. 2015.

[72] Karim Khalfallah Thomas Roche, Victor Lomné. Combined fault and side-channel attack on pro-
tected implementations of aes. 2011.

[73] Mohammad Mortazavi Vahid Khorasani, Bijan Vosoughi Vahdat. Analyzing area penalty of 32-bit
fault tolerant alu using bch code. 2011.

[74] Varadan Savulimedu Veeravalli. Fault tolerance for arithmetic and logic unit. 2009.

[75] Amir Moradi et al. Victor Arribas, Felix Wegener. Cryptographic fault diagnosis using verfi. 2020.

[76] Marc Witteman. Secure application programming in the presence of side channel attacks. 2010.

	Abstract
	Acknowledgements
	Introduction
	Motivation
	State of the Art
	Thesis Contributions
	Report Outline

	An Overview of Faults and Fault Injection Attacks
	Faults
	Sources of Faults
	Fault Categories
	ISA/Software Faults

	Fault Injection Techniques
	Fault Models
	Fault Injection Frameworks
	Countermeasures
	Software Countermeasures
	Hardware Countermeasures

	RISC-V Processors
	RISC-V
	Instruction Set Architecture
	Control and Status registers
	RISC-V Tool Chain

	RISC-V OpenSource Cores
	PicoRV32
	DarkRISCV

	Methodology
	Methodology Overview
	Tool Flow Overview
	Instrument Design
	Build Shared Library and Application Binary
	Fault Simulation
	Fault models
	Fault classification
	Simulation

	Process Results
	Code Profiling and Optimisations
	Multiprocessor Support

	Case study : FI of PicoRV32, DarkRISCV
	PicoRV32
	Fault Injection & Fault Bucketing
	Results

	DarkRISCV
	Fault Injection & Fault Bucketing
	Results

	Comparison of processors
	Implementation of Countermeasures
	Complementary Double check implementation
	Watchdog Timer

	Discussion

	Conclusion
	Summary
	Future Work

	Platform setup
	RV32I ISA
	Watchdog Timer - Sample Verilog Design
	Bibliography

