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This thesis aims to provide a better understanding on the relationship between the 

mechanical and geometrical properties of shell structures. In search hereof, an attempt 

is made to describe the thrust surface; a geometrical representation of the in-plane 

force trajectories through a structure. There exists a well-known relation between the 

parabolic shape of a (two-dimensional) catenary and the moment line of a simply-

supported beam subjected to a distributed load, a relation which is similar to the three-

dimensional case of shell structures. In this thesis, this relation is further exploited in 

the creation of various shell structures, using the moment hill of various simple plate 

cases. The moment hills of twistless plates as shell structures pose promising results 

with respect to shell-like behaviour. In the process of generating shell structures from 

moment hills of twistless plates, establishing the correct boundary conditions has proven 

to be essential in obtaining shell geometry with maximum shell-like behaviour. The Airy 

stress function is utilised to get further insight into the mechanical behaviour of shells. 

Exploiting the reciprocal relation between this Airy stress function and the diagram of 

forces allowed for both the design and analysis of shells. Taking the reciprocal figure 

of a discretised version of the Airy stress function results in a force polyhedron which 

by nature is in equilibrium. It was proven that the rules of graphic statics apply here, 

the angular defect between two planes then act as force vectors. By means of the force 

polyhedron a distinction can be made between tensile and compressive forces through 

any structure. Calculating the angular defect in an edge of the Airy stress polyhedron 

results in the force through its corresponding edge in its reciprocal figure. This thesis 

proposes multiple parametric tools with which the reciprocal figure of any Airy stress 

function can be created. These tools provide insight in the structural behaviour of a shell 

structure, and aid in the design of shells in the preliminary design stage. 
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Structures are considered funicular if they act solely in compression or tension for a 

given loading (Block, 2009). Heinz Isler suggested 39 shapes for funicular vaults, ending 

with “etc.” to demonstrate the unlimited possibilities (Isler, 1959). A two-dimensional 

cable, or a three-dimensional cable-net structure are examples of funicular systems, 

since they can only take up tensile forces. This occurrence can clearly be observed in 

hanging models, which are only loaded by their own weight and assume a state of 

equilibrium. Robert Hooke (1675) explained the analogy between a hanging chain and 

an arch as early as 1748. Translated from Latin, his explanation reads: “As hangs the 

flexible line, so but inverted will stand the rigid arch”.  A hanging chain forms a catenary 

that is in tension due to its own weight, analogous to an arch that stands in compression 

under its own weight (Figure 1.1). 

1  I N T R O D U C T I O N

1.1 BACKGROUND

Figure 1.1: (a) hanging catenary that forms an arc when inverted, (b) analysis of the dome of 
St. Peter's basilica by Poleni (retrieved from: Block, De Jong, & Ochsendorf, 2006)

1.1.1 FUNICULAR STRUCTURES
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1.1.2 HISTORY OF SHELL STRUCTURES

In the 19th century, Antoni Gaudí applied hanging models as a method to design 

arches in buildings, and thus used the inverse relation between structures in tension 

and those in compression. Form-finding as such allowed Gaudí to design slender 

structures, because bending moments were minimised. Instead, primarily normal forces 

occurred that were transferred in-plane. More recent designers of funicular structures 

are engineer Heinz Isler and the architect Félix Candela, respectively known for (among 

others) the Recherswil Schale from 1965 (Figure 1.2) and l’Oceanogràfic in Valencia 

from 2003 (Figure 1.3).

1.1.3 METHODS FOR DESIGNING SHELL STRUCTURES

The hanging model proved an intuitive and helpful method for the design of shells. 

However, it is not commonly used nowadays. With the introduction of computational 

design and optimisation, it was considered obsolete. More recent methods have 

incorporated computation, such as the Force Density Method (FDM) and the finite 

element method (FEM). The former will be further elaborated in 3.4. The latter, the finite 

element method, is nowadays the most commonly used method for structural analysis. 

It is however a very linear tool in its use, impeding application in the early design stages. 

It therefore does not prove useful in the preliminary design of shell structures.

Another method for analysing and designing shell structures is the Thrust Network 

Analysis method proposed by Philippe Block (2009). The thrust network is a network of 

nodes and branches, through which compression is absorbed. The coordinates of the 

nodes correspond with the shape of the funicular structure. This method, however, does 

not fully describe the relation between the mechanical and geometrical properties of 

such structures.
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Figure 1.2: Recherswil Schale by Isler (retrieved from: Wikipedia) 

Figure 1.3: L’Oceanogràfic in Valencia, designed by Félix Candela (retrieved from: Wikipedia) 
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1.1.4 THRUST SURFACE

The flow of forces through a shell structure is better explained and visualised by the 

thrust surface, a three-dimensional version of the thrust-line (Tiggeler, 2009). In two-

dimensional structures a discrepancy between the thrust-line and the actual structure 

causes a bending moment, which is similar to the three-dimensional situation. 

Accordingly, a shell structure that is exactly the geometry of its thrust surface is expected 

to show minimal bending moments. Determining the thrust surface is therefore very 

interesting in the design of shell structures. A conclusive description of the geometry of 

the thrust surface for all shapes and boundary conditions does not exist yet.
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A lot of research on the structural behaviour of funicular structures has already been 

carried out. Heinz Isler (1926-2009), Frei Otto (1925-2015) and Félix Candela (1910-

1997) applied graphic statics in the design of shell structures, enabling them to 

determine the optimal load paths. More theoretical research has been conducted by 

Christopher Calladine (University of Cambridge), and later Andrew Borgart (TU Delft) 

and Philippe Block (MIT), amongst many others. 

Phillippe Block and his team have done extensive research on graphic statics for 

funicular  (masonry) structures. The focus started in two-dimensional structures, but later 

evolved into three-dimensional structures. During his PhD studies, Block developed the 

Thrust Network Analysis, providing a method of designing funicular structures.

In his currently ongoing dissertation project, Borgart (my first mentor) aims to link 

the geometrical and mechanical properties of shell structures, in an effort to improve 

the understanding of their structural behaviour. He has also supported several MSc 

graduates in their graduation projects, forming a developing research over the years. 

This thesis continues on this established framework. The following perspectives have 

been taken so far:

 — de Leuw, M. (2005): 'De  steilste helling methode' (the steepest hill method): 'The 

influence of the geometry on the stress trajectories in randomly curved shells'

 — Tiggeler, L. (2009): 3D thrust-plane

 — Liem, Y. (2011): Graphic statics in funicular design: calculating force equilibrium 

through complementary energy

 — van den Dool (2012): Optimizing shell structures: by calculating the minimum 

complementary energy

 — van Dijk, N. (2014): Graphic statics in arches and curved beams: finding force 

equilibrium through total complementary energy

 — Rozendaal, R. (2014): Shells and arches: developing a new method to calculate 

shells and arches through graphic statics

 — Ros, J. (2017): Graphically calculating arcs and shells by using the lowest 

complementary energy

1.2 CURRENT STATE OF RESEARCH
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1.3 PROBLEM STATEMENT

Shell structures are highly statically indeterminate, making them difficult structures to 

calculate. Calculation of such structures requires indirect methods, such as the Finite 

Element Method (FEM). Such tools are often used by structural engineers nowadays, 

but have three main disadvantages (Borgart & Oosterhuis, 2010): firstly, FEM 

applications always offer discrete solutions as a result of the mathematical formulation 

that the method is based on. Secondly, the solution is no longer expressed in terms of 

parameters, but merely numerical; the solution is quantitative and no longer qualitative. 

Thirdly, the FEM method is not parametric; for every variance in geometry a new model 

has to be built.

At the same time, existing methods for assessing the thrust surface of funicular structures 

are either not feasible, or provide the designer with an infinite amount of possibilities, 

rather than a single optimal structure. No method exists yet that gives comprehensive 

insight in the structural behaviour of shell structures, or allows for use by designers in 

an early stage of the design process. These observations have lead to the following 

problem statement:

Problem:

'There is a lack of knowledge on the relation between the geometry and the mechanical 

behaviour of shell structures, resulting in challenges for the (structural) designer in the 

preliminary design stage of shells.'

Sub-problems:

 — There exists no conclusive description of the thrust surface of shell structures.

 — Existing structural analysis tools are mostly non-linear and are therefore difficult 

to use in the preliminary design stage of shell structures.

 — Existing structural design tools return limited (visual) feedback on the mechanical 

behaviour of shell structures. 
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 1.4 OBJECTIVES

This thesis aims to provide a better understanding of the structural behaviour of shell 

structures. With this knowledge, the goal is to create a parametric design tool, allowing 

designers to design shell structures in the early design stages. Also, the tool must allow 

for the assessment of the structural behaviour of existing shells. The tool shall be made 

so that it provides clear and comprehensive insight into the structural behaviour of the 

shell design. The main objective is stated as follows: 

Main objective:

'Define the relation between geometrical and mechanical properties of shell structures, 

and with that develop a parametric design tool for shells.'

In order to achieve this objective, the following sub-objectives have been formulated: 

Sub-objectives:

 — Obtain a comprehensive understanding of the geometry of the thrust surface of 

shell structures.

 — Develop a tool with which shell structures can be designed in the early design 

stage, which is intuitive to use and returns direct (graphical) feedback to the user.

1.4.1 FINAL PRODUCTS

Ultimately, this thesis will have as a result the following products:

 — Description of the thrust surface geometry of shell structures with different 

boundary conditions.

 — Parametric structural design tool for shells.

C H A P T E R  1 :  I n t r o d u c t I o n
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1.4.2 HYPOTHESIS

This research starts with new findings on the moment hill of a flat plate subjected to a 

projected load, relating it to the geometry of the thrust surface of a shell structure. From 

these findings the following hypothesis is formed, that will be used as starting point:

'An analogy is present between (1) the geometry of a moment hill of a plate and (2) the 

thrust surface of a shell subjected to a distributed load, and their boundary conditions 

are mutually related.'

1.5 RESEARCH QUESTIONS

In order to fulfil the main objective stated in 1.4, the following research question is 

stated:

Main question:

'How can the relation between the geometrical and mechanical properties of shell 

structures be formulated and result in an intuitive and graphical design tool for (structural) 

designers?'

To allow for a conclusive answer to this question, the following sub-questions are 

formulated:

Sub-questions:

 — How are the geometry and the thrust surface of a shell related to one another, 

and how can this relation be described?

 — How can a parametric structural tool be developed to design shell structures?

 — How can such a design tool be made intuitive and give (graphical) feedback to 

the user?

S h e l l  S t r u c t u r e S
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1.6 METHODOLOGY

This thesis provides an in-depth study into the theory behind shell geometry and its 

mechanics, as well as some geometric mathematics. These fields together later form 

the basis for the parametric design tool. The thesis is divided into six chapters, each of 

which corresponds chronologically with a phase in the research:

 — Introduction: Introduces the topic and provides the reason behind writing this 

thesis. The objectives of the research are clarified here.

 — Theoretical framework: General theory on structural mechanics as well as 

geometry is explained here. Different possible boundary conditions for loads, 

supports and materials are also explained.

 — Existing methods: Different methods of assessing and designing shell structures 

are evaluated. In this chapter, relevant existing literature on the topic is assessed 

and summarised. This desktop research serves as a theoretical framework that 

forms the basis for the subsequent research. 

 — Plate and shell analogies: The hypothesis from 1.4.2 is first assessed. Together 

with the findings from the literature research, a better understanding and 

description of the thrust surface is explored. FEM will be applied to quickly 

review test results. Based on the results from this analogy, the end result is a 

proposed description of one or multiple shell types and their corresponding 

planes of thrust. Different geometrical shapes are hereby evaluated.

 — Parametric design tool: The description from the previous section is translated 

into a design tool in Grasshopper. Input parameters are related to the desired 

shape of the final shell. 

 — Conclusion: This chapter contains the conclusions, recommendations and 

reflection of the thesis. It reviews the achievements of the research, and discusses 

possible future research topics.
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1.7 RELEVANCE  

Scientific relevance: A lot of research on shell structures has already been done. 

However, insight into the relation between the mechanical and geometrical properties 

of shells still remains incomplete. Block (2009) developed a method (Thrust Network 

Analysis) with which graphic statics is applied three-dimensionally for indeterminate 

free-form structures. The method is interesting, but very complicated and provides 

limited insight into the load-path of a structure.  This thesis attempts to go beyond that: 

it gives a comprehensive understanding of the thrust surface geometry, which is guiding 

for an optimised shell structure. 

Societal relevance: This thesis aims to provide more comprehensive knowledge on shell 

structure mechanics that makes it easier for designers to shape such shell structures. 

Ultimately, it provides designers with a tool that visualises the thrust surface, giving 

insight into the mechanical properties. The knowledge gained by this research is also 

applicable across other disciplines within structural mechanics. In 6.3, a more elaborate 

reflection on the relevance and societal impact of this research is given.
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2  T H E O R E T I C A L  F R A M E W O R K

2.1 PROPERTIES OF SHELLS

A shell can be considered an isotropic plate, that has a very small ratio between the 

thickness and the span. We can define a shell by its middle plane, thickness and 

material properties. The difference between a plate and a shell is that the middle plane 

in plates is flat, and curved in shells. Therefore, shells can carry out-of-plane loads by 

in-plane membrane forces, which plates cannot. This is the major reason that shells are 

as strong as they are. The theory behind this behaviour is called the membrane theory 

(Blaauwendraad & Hoefakker, 2014). 

2.1.1 GAUSSIAN CURVATURE OF A SURFACE

Consider the surface in Figure 2.1. At any point A on the surface, a plane tangential to 

the surface can be drawn. The normal to the surface at that point is the normal to that 

tangent plane. A plane through point A that contains the normal is the normal to the 

middle surface normal sections of the surface at A. Every curve has a local curvature 

k and a corresponding radius of curvature r. If the origin is at the positive side of the 

Normal

Normal
sections

A

Plane
containing
Normal

Figure 2.1: Intersection of a plane with a surface (retrieved from: Blaauwendraad & Hoefakker, 2014)
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normal to the surface, then r = k. If it is at the negative side of the normal, then r = -k 

(Blaauwendraad & Hoefakker, 2014).

At point A an infinite number of plane curves can be drawn. Out of these curves, one 

has a minimum curvature, which is the principal curvature κ1, another has a maximum 

curvature, which is the principal curvature κ2 of the surface at A. These curvatures are 

always perpendicular to each other. Using these curvature lines, it is possible to draw a 

UV-coordinate system onto any surface. By using the normal vectors to the surfaces as 

z-axes, a three-dimensional coordinate system UVW is made. Such a coordinate system 

is often used in 3D-modelling applications such as Rhinoceros.

The Gaussian curvature K is given by the product of the principal curvatures κ1 and κ2. 

With the principal curvatures, their corresponding principal radii can also be calculated 

[2.1]. The principal radii are the inverse of the principal curvatures. The Gaussian 

curvature can be zero, positive and negative. If the curvature is zero, the shell is 

considered to be monoclastic. If it is positive, the shell is considered synclastic. If the 

curvature is negative, the shell is considered anticlastic (Figure 2.2) (Blaauwendraad & 

Hoefakker, 2014). 

[2.1]

and [2.2]

monoclastic

(parabolic)

K = 0 K > 0 K < 0

synclastic

(elliptic)

anticlastic

(hyperbolic)

Figure 2.2: Types of Gaussian curvatures

1 2
1 2

1K
R R

κ κ= =

1
1

1R
κ

= 2
2

1R
κ

=
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a b

Figure 2.3: Examples of a surface that can be developed (a) and a surface that cannot 
be developed (b) (retrieved from: Blaauwendraad & Hoefakker, 2014)

developable undevelopable

All surfaces from Figure 2.2 are surfaces of translation. They can be generated by sliding 

one curve across another, having the same section across the entire curve.

2.1.2 DEVELOPABILITY OF A SURFACE

The developability of a surface is given by the ability to deform a planar surface 

without cutting or stretching. If this is not possible, then it is said to be undevelopable 

(Blaauwendraad & Hoefakker, 2014). Both cases are shown in Figure 2.3. Double-

curved surfaces (K < 0 or K > 0) are undevelopable while single-curved surfaces (K = 

0) are developable. The developability is a geometrical property of a surface, but is of 

structural significance. A developable surface for instance, is typically easier to fabricate, 

but is less strong. Less energy is needed to deform the surface than with that of an 

undevelopable surface. 
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The three conventional shell shapes are analytically explained below (Figure 2.4).  Each 

of these surfaces is a surface of translation; they can be created by sliding one curve 

across another. The z-coordinate in each x-y coordinate is determined by the radius in 

that point, and follows a parabolic path. 

2.1.3 DESCRIPTION OF SHELL STRUCTURES

y

x

z

y

x

z

y

x

z
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Figure 2.4: Analytical expressions for shallow shells
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To provide a complete and clear explanation of the structural behaviour of shells, 

a short overview of forces acting on a shell element is given. Figure 2.5 shows a 

thin shell element as part of a larger shell structure. It is assumed to merely take up 

membrane forces, meaning that no bending, torsion, and transverse shear stresses 

occur (Blaauwendraad & Hoefakker, 2014). In the element, four types of vectors can 

be distinguished: displacements u, strains e, membrane forces s, and loads p. The 

four vectors are related to each other by three relations: the kinematic relation, the 

constitutive relation and the equilibrium relation (Figure 2.6). The relations can all be 

expressed in differential equations.

Figure 2.5: Definition of displacements, loading and membrane forces (retrieved from: Blaauwendraad & Hoefakker, 2014)
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expressed in differential equations.
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px,ux

py,uy

pz,uz

nxx

nyy

y

nxx

nxy

nyx

nyy

x

nxy
nxy

z

2.1 Kinematic Relation

Recall that the displacementsux anduy are displacements tangential to the middle
surface in the direction of the principal curvatureskx and ky respectively, and the
displacementuz is the displacement normal to the middle surface, in the direction of
thez-axis. The description of the strain vectore due to the tangential displacements
ux anduy is the same as the description for a plate loaded in its plane, which is:

ou

Displacements Strains Membrane forces Loads

x

y

u
u

xx

yy

xy

xx

yy

xy

n
n

n

Kinematic Constitutive Equilibrium
relation relation relation

x

y

p

p

ε
ε

γ

Fig. 2.2 Scheme of relationships in membrane theory

2.1 Kinematic Relation 15

Figure 2.6: Scheme of relationships in membrane theory (retrieved from: Blaauwendraad & Hoefakker, 2014)

2.1.4 DIFFERENTIAL EQUATIONS FOR SHELLS
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Figure 2.6: Scheme of relationships in membrane theory (retrieved from: Blaauwendraad & Hoefakker, 2014)
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This thesis section does not go in-depth on all specific differential equations between 

vector families in an element. For now, only the nature of each relation will be elaborated, 

which will form a theoretical basis for following sections in this chapter. 

Kinematic relation: Displacements ux and uy are in the direction of the principal curvatures 

k1 and k2, tangential to the middle surface. uz is normal to the middle surface, in the 

direction of the local z-axis (see 2.1.1) (Blaauwendraad & Hoefakker, 2014). The strain 

vector e as a result of displacements ux, uy and uz  is described by [2.6], showing that the 

strain in any direction is equal to the difference in displacement in that direction.

[2.6]

The strain can also be written as a product of the principal curvature k and the 

displacement u, completing the matrix of the kinematic relation [2.7].

[2.7]

Constitutive relation: The first constitutive relation was developed by Robert Hooke, and 

is known as Hooke's law. Following this principle, the assumption is made that the shell 

material behaves linearly-elastic. The relation is in this case between the stress n and 

strain (ε & γ), given by the matrix [2.8] (Blaauwendraad & Hoefakker, 2014).

[2.8]

x
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du
dx

ε = y
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dy
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dy dx
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ε
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Equilibrium relation: The scheme in Figure 2.6 shows that there are three unknowns, 

and therefore three equations must be derived. The equilibrium components px and py 

are easily composed, since they correspond with those of a flat plate loaded in-plane. 

The equilibrium component for pz requires further investigation of the curvature of the 

middle surface (Blaauwendraad & Hoefakker, 2014). It was explained in 2.1.1 that the 

coordinate system of a surface is placed relative to its principal curvatures k1 and k2 

which in their turn are negative or positive based on their location to the normal. A load 

pz tangential to the surface results in membrane forces nxx and nyy and in a difference in 

angle (Figure 2.7). From the relation between the principal curvatures k and radii R [2.2], 

the last equilibrium equation can be derived [2.9].

[2.9]

∂ϕ

∂x

nxx

pz

r1

nxx

Figure 2.7: Membrane forces nxx and normal load p (retrieved from: Blaauwendraad & Hoefakker, 2014)

0yxxx
x

dndn p
dx dy

+ + =

0yy xy
y

dn dn
p

dy dx
+ + =

1 2 0xx yy zk n k n p+ + =
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For this thesis, it is essential that the boundary conditions of every analysed element are 

determined carefully. For instance, some boundary conditions must be applied to the 

S-surface, and others to the B-surface as described in 3.2 later in this thesis. Therefore, 

in this chapter a number of boundary conditions are established and distinguished 

in order to achieve uniformity throughout all analysis cases. Load cases and support 

conditions and material properties are assessed respectively.

2.2.1 LOAD CASES

Throughout this thesis, in three-dimensional cases a projected load as opposed to a 

distributed load is assumed. The projected load resembles the dead load of an element, 

whereas the distributed load can be imagined a snow load. Establishing this distinction 

is essential, as it has consequences on the calculation of statical problems.

The importance of making the distinction between different load cases clear also 

became apparent in the research of Riemens (2015). Riemens got inaccurate results in 

the assessment of shell structures using his parametric tool. He concluded that his tool 

proved to be accurate for shallow shells, but became increasingly inaccurate with an 

2.2 BOUNDARY CONDITIONS

Figure 2.8: Results displacement parametric tool Riemens compared to DIANA 
FEA with a projected load as opposed to a distributed load

 

102 
 

5.6.2. Results displacements w  
Original shell shape: 
 

 
Fig. 5.124 - Results  SCIA  displacements (original shape ) 

Flattened shell shape: 
 

 
Fig. 5.125 - Results SCIA displacements (�attened shape ) 

 

Exact results displacements :  

 

 

 

 
Fig. 5.126 - Displacements  from mid-edge to centre 

(original shell shape)  

 

Fig. 5.127 - Displacements  from mid-edge to centre 
(�attened shell shape)  

SCIA results
Parametric tool mesh 2,5 x 2,5m

Parametric tool mesh 1,5 x 1,5m (orange)
DIANA FEA results (blue)
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increasing R. The calculation of the 'Hallenbad shell', has been recomputed in DIANA 

FEA, but now with a projected load instead of a distributed load. The results for the 

displacement wz are compared in Figure 2.8. It can be concluded that the results are 

highly accurate for the case of a projected load. To avoid confusion, the difference 

between a projected and a distributed load is further explained in this section.

Consider a dome like in Figure 2.9. The dome is subjected to an evenly distributed 

snowload qsnow. The intensity of the load is equal to the horizontal span times q. If we 

consider snowload q as actual snowflakes falling onto the structure, we can imagine 

it to be projected. The width of the snowload is then distributed across the entire 

length of the arc, resulting in a decreased intensity per unit of length. When a dead 

load is considered, it is already projected, so the value per unit of length is known. The 

distinction is visualised in Figure 2.10.

In order to calculate the load perpendicular to the surface q⊥  for the structure subjected 

to the snowload, we consider an angle α between the horizontal axis and the tangent in 

a point. Now qsnow over the roof area is governed by cossnowq S α= ⋅ . To determine the 

total load perpendicular to the roof surface, we must once again use α. This gives us 

[2.10]. When we calculate the load perpendicular to the roof surface as a result of the 

dead load, we use [2.11]. Since the difference between the projected load and the 

distributed load is determined by α, for shallow shells the difference is often negligible.

0° 
30° 
α

α

60° 

90° 

Nyy

PZ PZ

PZ

PZ

Nyy

Nyy

Nyy

qsnow

Figure 2.9: Section of a dome subjected to a snow load q 
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load due to snow:

(distributed)

load due to own weight:

(projected)

2
. cossnow load zSnq P S α⊥ = = ⋅ [2.10]

. cosown weight zEGq P G α⊥ = = ⋅ [2.11]

q = S (N/m2
floor.area)

α

q = G (N/m2
roof.area)

PZ

R

q⊥ = G·cosα (N/m2
roof.surface)q = S·cosα (N/m2

roof.area)

PZ

q⊥ = S·cos2α (N/m2
roof.surface)

Figure 2.10: Calculation load perpendicular to surface (distributed load and projected load)
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2.2.2 SUPPORT CASES

It is important to distinguish the possible support cases. Later in this thesis, these will be 

used to show the influence on the relationship between a shell and its projection. The 

following support conditions can be distinguished (Table 2.1). Here n is the direction 

normal to the corresponding edge. All edge conditions are visualised in Figure 2.11. 

The symmetry edge can be considered an edge along which the loads are mirrored, 

allowing for displacements w, but ensuring a rotation φ = 0. We can compare it with a 

continuous floor on columns, for instance.

Support type Displacement Reaction force Angle/curvature

Free edge w � 0 f � 0 �
�

2

2
w
n

Clamped edge w � 0 f � 0
�
�
w
n

Semi-rigid edge w � 0 f � 0
�
�

2

2
w
n

Symmetry edge w � 0 f � 0
�
�
w
n

Table 2.1: Boundary conditions supports parametric tool

Figure 2.11: Different edge conditions

φ = 0 symmetry edge

free edgesemi-rigid edge

clamped edge
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2.3 RAINFLOW ANALOGY

W.J. Beranek introduced the rainflow analogy, which illustrates the direction of the load 

trajectories in an element (Figure 2.12). He considered the sum of bending moments 

mxx and myy  as 'hill', and the load as a rain shower. The trajectories vn are comparable 

to the streamlines of flowing water; the water always flows parallel to the trajectories 

(Blaauwendraad, 2010). The rainflow analogy can therefore be used to determine out-

of-plane structural behaviour. 

n

vn

t

Figure 2.12: Rainflow analogy. Water flows in the direction of the deepest slope (retrieved from: Blaauwendraad, 2010)

The principal shear forces can be determined using the sum of bending moments M̄, 

which is calculated through the following equation [2.12]:

[2.12]

Poisson's ratio v is taken into account in this equation. Further into this thesis, primarily 

an isotropic material is assumed, giving that v = 0. This gives a sum of bending moments 

M̄ = mxx + myy. Now, to calculate the shear forces vx and vy, one takes the second derivative 

of the sum of bending moments with respect to the x- and y-axes [2.13]:

[2.13]and

1
xx yym m

M D w
v

+
= = − ⋅∆

+

x
dv M
dx

= ⋅ y
dv M
dy

= ⋅
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In Figure 2.13, two triangular elements are illustrated with the shear forces acting on 

their edges. Two orthogonal sets of axes are shown; the x-y set and the n-t set. The angle 

between two sets is given by β. The shear forces acting on the element on the left are 

drawn as arrows. The top of the arrow is indicated by a dot, and the back by a cross. An 

arrow coming towards the reader indicates shear forces on faces with a negative normal 

vector; an arrow moving away indicates shear forces on faces with a positive normal 

vector. The shear force in any arbitrary direction (vn & vt) under angle α in respect to the x- 

and y-axes can now be calculated (Borgart & Oosterhuis, 2010). For this one must know 

the shear force in x-direction vx and in y-direction vy, resulting in the following formulas 

[2.14]:

[2.14]

[2.15]

To determine the direction and maximum value of vn, it is required that 0ndv dβ = . 

Using the formula for the shear force vt from [2.15], it can be established that

sin cos 0t x yv v vβ β= − + = . From equations [2.14] and [2.15] it can also be concluded 

that vt is zero when vn is maximal and vice versa. The direction angle of the trajectory is 

then calculated by [2.16] (Blaauwendraad, 2010).

 

0tan y

x

v
v

β = [2.16]

n
t

nt

n

t

x

y
vn

vy vy

vx

vt

vn

β
β

vx

vn

vt

vt

Figure 2.13: Equilibrium of plate parts (retrieved from: Blaauwendraad, 2010)

cos sinn x yv v vβ β= +

sin cost x yv v vβ β= +
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The relation between vx and vy is displayed in Figure 2.14. Now, using Pythagoras'  

theorem, the maximal shear force vn,max can be determined [2.17]. 

[2.17]where

The gradient of the contour lines of the M̄-hill surface is zero, and the steepest slope is 

always perpendicular to these contour lines. Therefore the contour lines are determined 

by the minimal shear forces and the rainflow by the maximal shear forces. The principal 

shear force can then be written as [2.18]:

[2.18]

2.3.1 COMPUTATIONAL APPLICATION

With recent computational possibilities, the rainflow analogy can now be projected 

onto the M̄-hill, giving clear insight into how loads are directed to the supports through 

shear forces. Oosterhuis (2010) developed a parametric tool with which an M̄-hill and 

its reciprocal rainflow image can be generated of a given load case on a structure. This 

tool will be applied throughout this thesis to obtain insight in the force flow of assessed 

structures. 

α
vx

vy

Figure 2.14: Relation between vx and vy 

2 2
,maxn x yv v v= + 0tv =

( )n
dv M
dn

= ⋅
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Graphic statics is a method of graphically describing forces acting on a static structure. In 

this method forces are plotted as vectors, each with its own direction and magnitude. The 

external forces on each structure are plotted to a scale of length to forces on a load line. 

Working from the load line, the forces in the members of the structure are determined 

by scaling the lengths of lines constructed parallel to the members (Greenwold & Allen, 

2001). The result is a force diagram as displayed in Figure 3.1, called the force polygon. 

So long as all forces combined form a closed loop, the structure is in equilibrium.

Figure 3.1: Graphic statics as described by Pierre Varignon in his book Nouvelle Mecanique 
Ou Statique from 1725 (retrieved from: http://eat-a-bug.blogspot.com)

The procedure is as follows:

A uniformly distributed load is reduced to a series of point loads, distributed along 

the x-axis (Figure 3.2). The forces are drawn to scale as vectors. The forces are then 

added together using the ‘head-to-tail’ method, in which the head of the first vector is 

3  E X I S T I N G  M E T H O D S

3.1 GRAPHIC STATICS

3.1.1 GRAPHIC STATICS
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connected to the tail of the second, and so on. The result is a polyline, which is the sum 

of all individual forces and therefore equal to the initial distributed load.

Next, the polar coordinate is drawn on an arbitrary location next to the force polyline 

(Figure 3.3). Lines are drawn between the heads and tails and the polar coordinate, 

resulting in a series of triangles. These triangles are the force polygons describing the 

force equilibrium in the node of the structure on that specific location (Liem, 2011). 

Since adjacent polygons share at least one member, their vectors are of the same length 

and direction. Therefore, the axial forces in that member are also equal. Figure 3.2 and 

Figure 3.3 show a direct graphical relation between the force network and its possible 

solutions (Block, 2009). An infinite number of solutions for the thrust line is possible, but 

the ‘optimal’ solution cannot be determined this way. 

F5  F4  F3 F2  

q  

F1  
F1  

F2  

F3

F4

F5

polar 
coordinate

load line

Figure 3.2: Distributed load is 
reduced to parallel pointloads

Figure 3.3: Pointloads are connected 
to polar coordinate

F5  F4  F3 F2  

q  

F1  
F1  

F2  

F3

F4

F5

polar 
coordinate

load line
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Equilibrium in a masonry arch can be visualised using a 'line of thrust' (Block, DeJong, & 

Ochsendorf, 2006). The line of thrust is a conceptual line that represents the path of the 

compressive forces through a funicular structure. For a purely funicular structure to be in 

equilibrium, the line of thrust must lie entirely within the section of the material. If this is 

not the case, the structure will collapse (unless tensile reinforcement is present).

The method of Thrust Line Analysis (Block et al., 2006) builds upon this principle. 

Consider a random arch as the one in Figure 3.4a. The arch consists of masonry blocks 

stacked on top of each other, forming a structure solely in compression. The structure 

is static, so all blocks are in equilibrium. The force polygon as described in 3.1 can be 

applied to each of the blocks. Three forces act on the highlighted block in Figure 3.4a 

(Figure 3.4b), resulting in the force polygon in Figure 3.4d. 

3.1.2 THRUST LINE ANALYSIS

Figure 3.4: For a random arched structure, (a) a possible thrust line and its equivalent hanging chain are constructed using 
graphic statics; (b) the force equilibrium of the system is represented in the funicular polygon; (c) the equilibrium of one 

of the voussoirs, and, (d) the vectors representing the forces in and on the block (retrieved from: Block et al., 2006)
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The magnitude of each force depends on the weight of its corresponding block. 

Thus, the height of the line of thrust is determined by the weight of the structure. 

Consequently, each funicular arch structure has a minimum and maximum line of thrust, 

corresponding  to a minimum and maximum weight of the structure. Figure 3.5 shows 

an example of this. The line of thrust can be considered an inverted catenary (van Dijk, 

2014).

Figure 3.5: Arch with minimum and maximum line of thrust (retrieved from: Block et al., 2006)
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Until now, graphic statics, including arch analysis, was limited to two-dimensional 

systems. To allow for graphical description of three-dimensional systems, Block & 

Ochsendorf (2007) proposed the 'Thrust Network Analysis' method. The method was 

primarily intended to assess equilibrium in masonry vaults, but also proved to be useful 

as a design tool for funicular structures.

The method is analogous to graphic statics in the sense that it utilises a graphical 

representation of forces in a system by applying force polygons. Key elements in the 

process are force networks, interactive reciprocal diagrams, the use of envelopes 

defining the solution space and linear optimisation. The latter makes it a responsive and 

insightful method. 

Thrust Network Analysis works as follows (Block & Ochsendorf, 2007):

a. First, a solution envelope is defined. The envelope supplies boundaries within which 

the solution must lie. The boundaries are defined by a minimum and maximum value 

(Figure 3.6). When exploring the thrust network of an existing masonry structure, 

these will be the border planes of the structure (also see 3.1.2). When designing a 

funicular structure, these limits can be the design envelope. 

3.1.3 THRUST NETWORK ANALYSIS

zi
I

zi
zi

E

i+1
i-1

P
Fli

Fki

Fji

Fji
H

Fki
H

Fli
H

i

i

j

k

l i

Figure 3.6: The constraints come from (a) static equilibrium in every node under the applied loading 
and (b) the given boundaries, resulting in nodal height constraints (retrieved from: Block, 2009)
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Γ

G

Γ*

Figure 3.7: Relationship between compression shell (G), its planar projection (primal grid Γ) and the 
reciprocal diagram (dual grid Γ*) to determine equilibrium (retrieved from: Block & Ochsendorf, 2007)

b. Subsequently, a possible force pattern topology is constructed, typically generated 

automatically by a script. This is called the primal grid Γ (Figure 3.7). It is a series 

of loaded nodes, connected by branches that represent possible load paths 

throughout the structure. 

c. Weights are assigned to each node by distributing the dead load of a structure 

across these nodes. As needed, additional weights can be applied.

d. A dual grid Γ* is generated from the primal grid Γ. The dual grid is the reciprocal 

figure of the primal grid, meaning that forces acting on a node are transformed into 

force polygons. The applied loads disappear after this conversion, meaning that the 

scale of forces becomes unknown. This unknown scale ζ determines the height of 

the structure, and depends on the horizontal forces subjected to it.

e. In Figure 3.7, all nodes are three-valent, meaning that the structure is statically 

determinate; one reciprocal dual grid Γ* is possible for a given primal grid Γ. In 

case of a network with a valency higher than three, the structure becomes statically 

indeterminate. Now the dual grid Γ is determined by the force distribution, which 

can be adjusted manually (Figure 3.9).

f. Using the geometry of the primal grid Γ and the dual grid Γ*, the loads on the nodes 

and the boundary conditions, the problem can be solved through one-step linear 

optimisation. 
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The results should all lie within the given boundaries, i.e. (Block & Ochsendorf, 2007):

[3.1]

To obtain all possibilities in that range, the minimum and maximum r (= 1/ ζ) should be 

found. The establishment of the scale factor ζ provides the magnitude of the horizontal 

forces. An analogy is present between the scale factor ζ in the Thrust Network Analysis 

and the repositioning of the polar coordinate in graphic statics (Liem, 2011).
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Figure 3.10: An element of a shallow shell showing positive sense of pressure loading, all stress 
resultants and displacements (a), the S-surface (b), the B-surface (c), a straight beam illustrating 

the physical characteristics of the B-surface (d) (retrieved from: Calladine, 1977)

An analogy exists between the statical equilibrium equations and the geometric 

compatibility equations in the theory of thin shell structures (Calladine, 1977). The 

correspondence is facilitated by two innovations; (1) the conceptual split of a shell 

structure into a stretching (S) and bending (B) surface, and (2) the use of change of 

Gaussian curvature g as a prime variable.

3.2 STATIC-GEOMETRIC ANALOGY
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Figure 3.10a shows a section of a thin shell, with its corresponding normal surface 

traction stress resultants Nx, Ny, Nxy, out-of-plane shear stress resultants Qx, Qy and 

bending and twisting stress resultants Mx, Nx, Nxy, similar to that in 2.1.4. In Figure 3.10b 

and c, these have been divided into two groups: N (1), and Q and M (2). 

The first group corresponds with the S-surface, that carries forces in-plane only, but 

is incapable of absorbing bending moments or shear forces. A surface like this is 

comparable to a thin sheet or a string, that can only carry tensile loads. The second 

group corresponds with the B-surface; it is incapable of carrying tensile loads, but 

can sustain bending moments and shear forces. Real examples rarely exist, but an 

imagination is visualised in Figure 3.10d. Its roller supports have the ability to transfer 

bending moments and shear forces, but no normal forces (Calladine, 1977).

To express the mutual reaction between the parts, a force variable p and a displacement 

variable g are introduced. These describe the duality between the surfaces; the sum of 

the  forces acting on the S- and B-surfaces results in equilibrium, resulting in [3.2]. Also, 

it is assumed that both surfaces are always equal to one another. Accordingly, the values 

of gs and gb coincide, resulting in [3.3]:

[3.2]

[3.3]

With the knowledge of [3.2] and [3.3], the static-geometric analogy can be constructed. 

The following dualities are hereby established, in which ϕ is the Airy stress function, ω is 

the normal component, ε is the normal strain and γ is the shear strain: 

[3.4]

From this, the equations for the S- and B-surface are constructed (Figure 3.11).

S Bg g=

s bp p p= +

2

x y x y

y x x S B

xy xy xy y S B

N M
N y M g p
N M p g

κ ε φ ω
κ ε
κ γ

↔ ↔ ↔ −
↔ ↔ ↔
↔ ↔ ↔
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Equations S1 and S2 are the equilibrium equations for an element of the S-surface 

(Calladine, 1977). S3 is the stress-function definition, S4 is the single compatibility 

equation. S5 is the isotropic version of Hooke's law of elasticity for the S-surface. 

A student of Calladine, Pavlovic (1984) constructed a scheme based on this theory 

to calculate a shell element. It is based on an iterative process of calculating pB with 

an arbitrary value of pS. If ps + pB equals p, the correct solution is found. Naturally, this 

means that the relationship between pS and pB is vital for the calculations. Nowadays, a 

calculation process like this can easily be conducted by means of computation.

Figure 3.11: Equations S-surface (left) and B-surface (right) in the static-geometric 
analogy in a shell surface (retrieved from: Calladine, 1977)

S h e l l  S t r u c t u r e S

4 8



Statically determinate structures can be solved using direct methods, which work via 

a linear approach. For more complicated, indeterminate structures, however, indirect 

methods must be used. The Finite Element Method (FEM) is such a method, and so 

is the method of complementary energy. In this section, an explanation is given of 

complementary energy and it is shown how it can be applied to calculate indeterminate 

structures. A division is made between normal forces and bending moments.

Consider a cube of 1 x 1 x 1, loaded uniaxially by a stress σ. This load causes the material 

to deform by an amount ε. Accordingly, when a load σ is present, δσ causes the strain to 

increase by δε (Figure 3.12a). Load σ performs an amount of work (energy) equal to σ· δε. 

The total amount of work, also called the deformation energy per unit of volume E’s, 

equals (Blaauwendraad, 2002):

with σ = σ(ε) [3.5]

Deformation energy is considered potential energy, which is accumulated in the material. 

The deformation energy E's is described by the area under the curve (Figure 3.12b). The 

remaining area above the curve describes  the complementary energy E'c (Figure 3.12c). 

In this example, an elastic material is assumed, resulting in a curved slope. The shape of 

the curve therefore depends on the material properties. 

3.3 COMPLEMENTARY ENERGY

ε
∂ε

∂σ
σ

ε

σ

ε

σ
(a) (b) (c)

Figure 3.12: Relationship ∂σ and ∂ε (a); Deformation energy (potential energy) (b); 
Complementary energy (c) (retrieved from: Blaauwendraad, 2002)
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When assuming a linearly-elastic material, however, Hooke’s law applies. The stress σ 

and elongation ε then are related linearly. In this case, the deformation energy E’s equals 

the complementary energy E’c. Hooke’s law then describes the following constitutive 

property, where E is Young’s Modulus (Blaauwendraad, 2002):

[3.6]
(stiffness formulation)

(flexibility formulation)

Accordingly, the deformation energy E’s can be described as follows: 

[3.7]

which with [3.6] can be rewritten as:

[3.8]

Similarly, the formulas for the complementary energy E’c can be established:

[3.9]

and:

[3.10]

Figure 3.13: Elongation as a function of stress in linearly-elastic materials

ε

σ

E’s

E’c

E

E
σε =

Eσ ε= ⋅

1'
2sE σε=

21'
2sE Eε=

21'
2cE Eσ=

21'
2cE

E
σ

=
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In the previous section, the deformation energy E's and complementary energy E'c were 

expressed as functions of the stress σ and strain ε. The stress σ is linearly related to the 

normal forces N subjected to an object, depending on the sectional area A (Borgart & 

Liem, 2011). This gives the following equations for the stress σ: 

[3.11]

[3.12]E

N
A

Also, the normal force N can be described as:

[3.13]

Rewriting [3.10] and [3.13] gives:

[3.14]

[3.15]

(per unit of length)

(per unit of length)

E N EAs N' ;
1
2

1
2

2

Figure 3.14b visualises the definition of E's;N and E'c;N as described in [3.14] and [3.15]. 

The area above the curve is equal to E's;N and the area below is equal to E'c;N. Since a 

linearly-elastic material is assumed, the areas are equal to each other, so the deformation 

energy equals the complementary energy.

Figure 3.14: Object subjected to tension (retrieved from: Blaauwendraad, 2002)

In the following sections, units with linearly-elastic material properties are assumed.

3.3.1 NORMAL FORCES

EA
ε

N

E’c;N

E’s;N

NN

1 ε

(a) (b)

2

;
1 1'
2 2c N

NE N
EA

ε= =

N E A ε= ⋅ ⋅
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Similar to the complementary energy due to normal forces E'c;N, bending moments in 

an object also result in complementary energy (E'c;M). When an object is subjected to a 

bending moment, a curvature κ is assumed (Figure 3.15a). In [3.16] the relation between 

the bending moment M, Young's Modulus E, the moment of Inertia I and the curvature κ 

is described (Blaauwendraad, 2002). 

[3.16](stiffness formulation) (flexibility formulation)
M
EI

The complementary energy E'c;M is a product of the bending moment M and the 

curvature κ, which can also be expressed as a function of EI and M, or as a function of EI 

and κ (Figure 3.15b). This results in functions for E's;M and E'c;M:

[3.17]

[3.18]

(per unit of length)

(per unit of length)

An analogy is present between the complementary energy from normal forces E'c;N and 

that from the bending moment E'c;B. Comparing [3.15] and [3.18] shows similarities 

between (1) normal force N and bending moment M, (2) the strain ε and the curvature 

κ and (3) the sectional area A and the moment of Inertia I. In either case, a load, a 

displacement and the geometry of the section determine the accumulated energy in a 

material.    

3.3.2 BENDING MOMENTS

Figure 3.15: Object subjected to bending (retrieved from: Blaauwendraad, 2002)

M M

κ

EI
κ

M

E’c;M

E’s;M

(a) (b)

M E I κ= ⋅ ⋅

2
;

1 1'
2 2s ME EIκ κ= =

2

;
1 1'
2 2c M

ME M
EI

κ= =
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3.3.3 TOTAL COMPLEMENTARY ENERGY

In 3.1, the conceptual division between normal forces N and bending moments M in 

a geometric body has proven to be a valid method for statical calculations. A similar 

approach is taken in the calculation of structures through complementary energy. 3.3.1 

and 3.3.2 explain respectively how the complementary energy by normal force E'c;N 

and by bending moments E'c;M are calculated numerically. Combining them, the total 

complementary energy can be determined ([3.19] & [3.20]).

[3.19]

[3.20]

(per unit of length)

(per unit of length)

The formula in [3.20] can be simplified. Both E'c;N and E'c;M contain 1/2E, which can 

be eliminated from the equation. This will result in an invalid value for the total 

complementary energy, but the minimum stays in the same place. Also, A and I can be 

rewritten, since:

(assuming a rectangular section)

[3.21]

[3.22]

The value for d is irrelevant, and is therefore eliminated from the equation. Substituting 

[3.21] and[3.22] into [3.20] gives (van Dijk, 2014):

(per unit of length) [3.23]

; ;' ' 'c c N c ME E E= +∑
2 21 1'

2 2c
N ME
EA EI

= +∑

31
12

A d t

I dt

= ⋅

=

2
2

2
12'c

ME N
t

= +∑
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Another form-finding method is the force density method, first introduced by Schek 

(1973). It is based on the mathematical assumption that the ratio between the length 

and the tension within each cable element is a constant value (Lewis, 2003). This force 

density ratio Q ultimately determines the height of the structure. The force density 

method does not constrain possible network forms by any geometrical restrictions. 

The only boundary conditions are: (1) the shape shall be in an equilibrium state, and 

(2) the cables or bars are connected at the nodes as joints. The method calculates the 

equilibrium state of a predefined net structure by transforming a system of non-linear 

equilibrium equations into a system of linear equilibrium equations by introducing a 

constant force-density ratio (Liem, 2011).

The net structure is composed of a number of nodes that are connected by branches. 

Two types of nodes are distinguished, being: fixed nodes and free nodes. For the 

fixed nodes, the x-, y and z-coordinates are known. These x-, y-, and z-coordinates are 

unknown for the free nodes. The x, y, and z components of the external forces acting on 

each node are also known. An example for a simple situation is given in Figure 3.16. Left 

is a conceptualised topology of a net structure with four fixed nodes and five free nodes. 

Right is the corresponding matrix in which the connections between the branches and 

nodes are stated. 

3.4 FORCE DENSITY METHOD

Figure 3.16: Graph and branch-node matrix Cs = [C  Cf] (retrieved from: Schek, 1973)
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All nodes are numbered from 1 to n and all branches from 1 to m. The usual branch-

node matrix is defined by [3.24]. 

[3.24]

With this, a branch-node matrix with m nodes and ns columns can be set up. By 

classification of free nodes n and fixed nodes nf, two sub-matrices are distinguished 

[3.25] (Oosterhuis, 2010).

[3.25]

Now, several matrices containing force density values (node coordinates and loads) 

must be formed that are necessary for the assembly of the system of equilibrium 

equations. First, three nf-dimensional matrices are formed by specifying the x-, y- and 

z-coordinates of the fixed points:

[3.26]

Subsequently, three nf-dimensional matrices are formed by specifying loads px, py, and pz 

for the free nodes n [3.27]:

[3.27]

Then, a diagonal m × m dimensional force density matrix Q is formed by specifying the 

force density values [3.29]. The force density value is given by [3.28].

1

n
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f

f

x
x

x

 
 =  
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f

f
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y

 
 =  
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z
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x
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for k(j) = 1
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[3.28]

[3.29]

Now that all the required matrices have been defined, for each dimension (x, y, z), an 

equilibrium equation can be formulated [3.30]:

[3.30]

Each equation can be rewritten by introducing D [3.31], resulting in the equilibrium 

equations in [3.32]:

[3.31]

[3.32]

The goal is to find the new x-, y-, and z-coordinates, so the equations from [3.32] must 

be rewritten to [3.33]:

[3.33]

1q L s−= ⋅

11 0 0
0 0 0
0 0 mm

q
Q

q

 
 =  
  

t t
f f yC QCx C QC y p+ =

t t
f f xC QCx C QC x p+ =

t t
f f zC QCx C QC z p+ =

tD C QC=
t

f fD C QC=

x f x xD D D p= =

y f y yD D D p= =

z f z zD D D p= =

1( )x f fx D p D x−= −
1( )y f fy D p D y−= −
1( )z f fz D p D z−= −
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Solving the three systems of linear equilibrium equations, the new coordinates of the 

free nodes can be determined. By then using the branch-node matrix, the points of the 

corresponding mesh can be constructed resulting in a membrane. The shape will be 

determined by the force density. Figure 3.17 shows a variety of possibilities from Scheck 

(1973) that were formed with different force densities.

Figure 3.17: Global changes in the force densities of a cable net structure (retrieved from: Scheck, 1973)
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3.5 RECIPROCAL FIGURES

In 3.1, the concept of graphic statics was explained. In graphic statics, the reciprocity 

between the 'form' and 'force' diagrams is a fundamental notion. This dual relation 

allows for the analysis and design of structural systems, and helps in visualising force 

transfer. We explained how a simple two-dimensional system could be assessed using 

graphic statics, but also how indeterminate systems posed challenges. Similarly, the 

construction of large force diagrams can be a tedious exercise. 

The use of the Airy stress polyhedron in constructing force diagrams was already 

discovered by Maxwell (1870) in the nineteenth century. Maxwell observed that every 

self-stressed two-dimensional truss is the projection of a three-dimensional polyhedron. 

This three-dimensional polyhedron is essentially a discretisation of an Airy stress surface. 

Now, it was recently demonstrated that not only two-dimensional trusses could be 

related to the Airy stress function, but that also three-dimensional force diagrams could 

be developed using this reciprocity (Vansice, Kulkarni, Hartz, Konstantatou, & Baker, 

2018). In this section, first a brief introduction of reciprocal diagrams and the different 

types of reciprocity is given. Next, it is explained how to construct a reciprocal diagram 

of any polyhedron. This can then be related to the Airy stress polyhedron, which will be 

applied in a parametric tool later in this thesis (5.1.2).

3.5.1 FRAMES AND DIAGRAMS OF FORCES

A structural frame in concept is just a system of straight lines connecting a number of 

points. When we study equilibrium of such a system, we can consider these points to 

act on each other with forces that have the direction of a straight line connecting these 

points. When these forces attempt to pull the points towards each other, we speak of 

tension. When the forces keep the points apart, we speak of compression (Maxwell, 

1870). An important notion here is that if we consider a point in a structure that is in 

equilibrium, all forces acting on this point must also be in equilibrium. Hence, if we 

would draw a force polygon from the forces acting in this point, with the directions as 

vectors and the force magnitude as length, this polygon would form a closed loop. This 

statement holds for two-dimensional systems as in 3.1.1, but should by default also 
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hold for complex three-dimensional systems. The essential property of reciprocity is the 

mutual relationship, like five over three is related to three over five. All properties in a 

form diagram are reciprocal to that of a force diagram and vice versa. 

In order to get a better understanding of reciprocal figures, let us first evaluate a 

simple two-dimensional case. Consider the force polygon as in Figure 3.18a. Each line 

represents a force, acting on the point in which it meets other lines. We can, however, 

even consider the polygon without the notion of forces at all. We then just regard it as 

a geometrical polygon with points, lines and faces. The polygon consists of a triangle 

ABC, separated into three triangles by lines P, Q and R. Each line in the polygon has 

a corresponding line in its reciprocal figure that faces in the perpendicular direction 

(Maxwell, 1870). The lines that meet in a point in the first diagram, form a closed 

polygon in the second, and vice versa. The example given in the figure is, however, the 

Maxwell projection. Would we construct a Cremona diagram, then all corresponding 

lines would run parallel. This duality was first introduced by Poncelet, and is summarised 

in Figure 3.19. 

A

R P

Q
C

B

b r

aq

c

p

Figure 3.18: (a) Simple force polygon and (b) one possible reciprocal figure (retrieved from: Maxwell, 1870)

a b

Figure 3.19: Poncelet projective geometry duality (retrieved from: Konstantatou & McRobie, 2016)
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If we consider the polygon from Figure 3.18a to be a force polygon that is in equilibrium, 

we could draw its forces acting on the points as vectors and form closed head-to-tail 

diagrams (Figure 3.20). Now, since there are only three forces acting on the point, 

the system is statically determinate; only one possible shape for the form diagram is 

possible. If we scale one vector, then all vectors must be scaled with equal magnitude to 

form a closed polygon.

Let us consider a force polygon in self-stress as in Figure 3.21. From each vertex we can 

create a reciprocal closed force polygon. These force polygons can then be fit together 

to form the reciprocal polyhedron (Figure 3.22). When these polygons are fitted 

together, each force has an overlapping force in the other direction. We call these pairs 

of forces, and they are equal in magnitude but opposite in direction (Crapo & Whiteley, 

1993). The forces in each bar are governed by [3.34]. The scalars are given by ω, and are 

in compression if ω ≤ 0 and in tension if ω ≥ 0, and p is the point that is assessed.

ij i jp p( )ij j ip p( ) at pi at pj [3.34]

Equilibrium in a point is reached if [3.35]:

ijj j ip p( ) 0 [3.35]

R P

Q r

q

p

Figure 3.20: Forces acting on a point (a) and its reciprocal head-to-tail diagram in equilibrium (b)

a b
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3.5.2 THREE-DIMENSIONAL RECIPROCAL FIGURE

Until now we have reviewed reciprocal diagrams in projection and in free space, i.e. 

we talked about two-dimensional systems without notion of their location in a given 

space. Now, for a three-dimensional system that is in self-stress, the same properties 

apply. Again, if we consider a polyhedron (which is the three-dimensional version of a 

polygon), we know that all points are in equilibrium, so that the sum of all force vectors 

is equal to zero. From this polyhedron we want to construct the three-dimensional 

reciprocal figure. Now let us first state that from now on we consider a three-dimensional 

coordinate system xyz. The same relations from Figure 3.19 apply, so a vertex becomes a 

plane, an edge becomes an edge (and is perpendicular) and a plane becomes a vertex. 

Since a polyhedron is nothing more than a summation of planar surfaces, each surface 

is given by [3.36] (Whiteley, Ash, Bolker, & Crapo, 2013).

1

23

ω23(p2-p3) ω23(p3-p2)ω14(p1-p4)

ω14(p4-p1)

ω13(p3-p1)

ω13(p1-p3)

ω34(p4-p3) ω34(p3-p4)

ω12(p2-p1)

ω12(p1-p2)

4

Figure 3.21: Equilibrium of forces in a polyhedron of self stress for each vertex (retrieved from: Crapo & Whiteley, 1993)

41
2

3 1
2
3

(4)

Figure 3.22: Force polygon of each vertex together form the drawing of the 
dual polyhedron (retrieved from: Crapo & Whiteley, 1993)
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 x y z 0
[3.36]

' ' 'x y z 0

If we consider two surfaces intersecting each other in edge E, we get an image like 

in Figure 3.23. The edge E separating the faces from each other, is reciprocal to the 

edge e connecting the reciprocal vertices. Since this is a diagram following Maxwell's 

theorem, these edges are perpendicular to each other in projection. Multiple edges e 

in the second figure in turn enclose a face, and these faces together form the reciprocal 

polyhedron. From the formula for faces in the force diagram from [3.36] we can get 

vertices of the form diagram and vice versa. This gives us the overview below ([3.37], 

[3.38], [3.39], [3.40]) (Vansice et al., 2018). 

(Face of Polyhedron A)

(Vertex of Polyhedron B)

(Vertices of Polyhedron A)

(Face of Polyhedron B)

[3.37]

[3.38]

[3.39]

[3.40]

These formulas, however, describe infinite planes. So in order to determine the 

intersection edges so that planes become actual trimmed surfaces, we can equate the 

formulas ([3.41] & [3.42]).

[3.41]x y x y' ' '

rx qy s r x q y s' ' [3.42]

Such an exercise can also be done through computing multiple intersecting surfaces, 

returning trimmed surfaces. This procedure is implemented in the parametric tool, and 

is explained in 5.1.2.

z x yα β γ= + +

( , , )β α γ−

( , , )q r s

z rx qy s= − +
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3.5.3 THE AIRY STRESS FUNCTION

A structural system that is in equilibrium, is equally in a state of self-stress. If we then 

consider the system as the summation of force diagrams, we can imagine its reciprocal 

figure. We can, however, also consider the Airy stress function as a force diagram. Since 

the Airy stress function is in most cases of shell structures a gradual sloping surface, it 

must first be discretised in order to obtain its reciprocal figure. After all, the reciprocity is 

just a geometrical relation between planes and vertices and edges and other edges. To 

do so, first the stress resultants acting on the element are converted into single vectors 

per Cartesian direction by multiplying it by the width that the stress acts on. Then a fold 

is made on this resulting vector, corresponding to changes of curvature of the surface. 

We notate this with κ. The double-headed arrows represent this additional folding 

(Figure 3.24) (Calladine, 1977). 

Now, κ is an approximation of the change in curvature, which is called the angular defect 

(Calladine, 1977). So the stress resultants acting through the fold are given by this 

angular defect. We can calculate it by taking the angle between two planes, since this is 

the change of curvature from one plane to another. This occurrence is later applied in 

the parametric tool.

αx + βy − z − γ = 0

(0,0,1)

(A,B)

(A’,B’)
E

e

α’x + β’y − z − γ’ = 0

Figure 3.23: Normals to the face planes create an edge e that is reciprocal (and 
perpendicular) to the separating edge E (retrieved from: Whiteley et al., 2013)
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Now, the stress resultants are determined by [3.43] to [3.46]. A visual interpretation of 

the Airy stress function of a simply-supported beam subjected to a distributed load is 

given in Figure 3.25. Here all stress resultants and their differential equations are shown 

as product of the Airy stress. It should be recognised that the direction of the angular 

defect κ is perpendicular to that of the stress resultants N, since it is the curvature in the 

perpendicular direction that determines these stress vectors.

N
yxy

x

[3.43]

[3.44]

[3.45]

[3.46]

N
xy

x

N
yx

y

N
xyx

y

Nx

aNx

aNx

bNy

aκy bκx

bNy

aκybκx

Ny

a b

a b

c d

Figure 3.24: In-plane stress resultants in an element (a), dimensions of element (b), stress resultants converted 
to single vectors (c) and polygonised version of the element (d) (retrieved from: Calladine, 1977)
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One must, however, be careful in regarding the Airy stress function of a three-

dimensional system when creating the reciprocal diagram, since the Airy stress function 

is just a three-dimensional visualisation of a two-dimensional instance. In order to obtain 

the actual stress resultants, we must know the angle that the stress resultant operates in. 

Consider Figure 3.26. An element with the dimensions dx and dy can be projected onto 

the curved surface to form ds1 and ds2. This curved surface can in our case be the thrust 

surface or the shell structure. From basic angular properties, we can establish [3.47] and 

[3.48] (Heyman, 1977). Interestingly, the shear stress resultants remain the same so that 

we get [3.49]. 

 

N N N Nxy xy yx yx� � �

N Nx x
cos
cos

N Ny y
cos
cos

[3.47]

[3.48]

[3.49]

However, in our case N̄ is already known, so we must calculate N. In order to do so we can 

rewrite the equations above into [3.50] and [3.51]. To calculate the angular differences ψ 

and θ respectively corresponding to the x- and y-axes, we use [3.52] and [3.53].

ϕ

y

x

 
xy

x

N
y
φ∂

=  ∂ 

yx
y

N
x
φ∂ =  ∂ 

x
y

N
y
φ ∂

=  ∂  y
x

N
x
φ∂ =  ∂ 

Figure 3.25: Differential equations describing relation between the stress resultants and the Airy 
stress function (example is of a simply-supported beam subjected to a distributed load
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θ

ψ

Nx’

Ny’
Nyx’Nxy’

px

py

pz

ds2

dx
dy

ds1

xyN yxN
yN

xN

Figure 3.26: Membrane stress resultants Nx, Ny and Nxy (= Nyx) in the 
tangent plane to the surface (retrieved from: Heyman, 1977)

cos
cos cos
cos

x x
x

N NN θ
ψ ψ
θ

= =

cos
cos cos
cos

y y
y

N N
N

ψ
θ θ
ψ

= =

[3.50]

[3.51]

1
2 2

cos 1 dz
dx

ψ
−

  = +  
   

1
2 2

cos 1 dz
dy

θ
−

  
= +  

   
[3.52]

[3.53]
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P L A T E  A N D  S H E L L
A N A L O G I E S4.
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In 1.4.2, a hypothesis was stated as follows: 'An analogy is present between (1) the 

geometry of a moment hill of a plate and (2) the thrust surface of a shell subjected to a 

distributed load, and their boundary conditions are mutually related.' In this section, the 

hypothesis will be further investigated. 

In order to do so, two geometrical cases are assessed, being (1) a rectangle and (2) a 

circle. For these bodies a connection is made between the planar geometry and their 

three-dimensional funicular counterparts. In other words, we aim to generate a complex 

shell structure from a simple shape. By reviewing these two different shapes, we expect 

to have a conclusive description of a shell structure, and its relation with its planar 

projection.

In this chapter, we first assess a rectangular plate. For this, different boundary conditions 

are assigned to the analysis cases. We generate the M̄-hill of each of the cases, which 

results in a specific geometry of a shell surface. FEM is used to evaluate shell behaviour, 

allowing for the comparison between different cases. Subsequently, analytical proof is 

given to support the findings from the analyses. 

The case of the circular plate has a reversed approach. First, a shell-like dome is 

determined analytically. The result of this process is then analysed and examined on the 

occurring bending moments. 

The chapter ends with a conclusion, in which the above approach in generating shell-

like structures is evaluated. The results from this will be used in Chapter 5 for the 

development of a parametric tool. 

4  P L A T E  A N D  S H E L L  A N A L O G I E S

4.1 METHODOLOGY
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4.2 RECTANGULAR

4.2.1 SIMPLY-SUPPORTED FLAT RECTANGULAR PLATE

Consider a rectangular plate that is simply-supported at the corners. Each support 

is fixed in x- y- and z-direction, but allows for free rotation. The plate is subjected to 

an evenly distributed load p, causing out-of-plane mechanical behaviour i.e. bending 

moments mxx and myy. The case is visualised in Figure 4.1. 

In his thesis, Liang (2012) proposed a parametric design tool in Grasshopper with which 

the mechanical behaviour of certain input geometries could be assessed using the 

Force Density Method (FDM). This tool is employed to analyse the structural behaviour 

of the plate. Like FEA, FDM requires meshing of the geometry prior to analysing. A mesh 

size λ is therefore indicated below. 

One of the outputs of the tool is the sum of bending moments M̄. The tool will be used 

to generate the M̄-hill of this analysis case. Given its analytical character, the tool does 

not allow for input of material properties. Poisson's ratio v is therefore considered zero, 

meaning that M̄ = mxx + myy. Also, the magnitude of M̄ is arbitrary, so the vertical scale 

of the shell can be adjusted. For the analysis, the following properties for the plate are 

assumed:

 a = b =  20 m

 p =   -1 kN/m2

 λ =  0.5 m 

 v =  0

Figure 4.1: Simply-supported flat rectangular plate subjected to a distributed load q 

p

y
z

x
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Figure 4.2: (a) M̄-hill of a plate on four supports generated with the FDM-tool of Liang (2012) and (b) its rainflow diagram

Figure 4.2a shows the M̄-hill of the rectangular plate generated by the design tool 

of Liang. It can clearly be observed that the M̄-hill resembles a shell-like structure. 

Generating its rainflow analogy gives Figure 4.2b. The shear force trajectories are drawn 

towards the supports to a certain extent, but primarily end at the edges. This indicates 

that shear forces in the perpendicular direction act at the edges to direct the load 

towards the supports. A complete rainflow diagram is illustrated in Figure 4.3, an image 

similar to one earlier introduced by Beranek (1976).

Figure 4.3: Rainflow analogy of flat plate supported on four corners (with load transfer 
along free edges) (retrieved from: Beranek, 1976, adapted to this load case)
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Figure 4.4: mxx equals zero along the y-edges and myy equal zero along the x-edges

mxx= 0
mxy≠ 0

myy= 0
mxy≠ 0y

z
x

It can be concluded that mxx equals zero along the edges parallel to the y-axis, and myy 

equals zero along the edges parallel to the x-axis (Figure 4.4). This knowledge will later 

be used in explaining the analogy between the plate and its shell equivalent.

In search of the shell equivalent for the rectangular plate from 4.2.1, we must define 

its boundary conditions. Where the rectangular plate was simply-supported on four 

corners, it is likely that its reciprocal shell figure requires different support conditions.  

In the following chapter, we look for a case in which the duality can better be exploited.

The rainflow diagram from Figure 4.3 shows shear force trajectories running towards 

the edges. These forces must not be absorbed by the material, since this would cause 

bending moments to occur along the edges. 

4.2.2 SHELL EQUIVALENT

We take the M̄-hill from 4.2.1 as our analysis geometry. From the rainflow diagram we can 

expect that the shell must be supported at the edges in order to absorb the projected 

load. A shell will be assessed of which the edges are assumed to be semi-rigid and 

hinged (wz = 0 and φ ≠ 0). The shell is then subjected to a projected load (Figure 4.5). The 

following properties for the shell are assumed:

 lx = ly =  20 m

 q =   -10 kN/m2

 λ =  0.5 m

 v =  0
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The rainflow analogy in a flat plate illustrates the M̄-hill of a plate as such, and gives 

insight in the load paths of the plate. In the case of a plate on four supports (Figure 4.4), 

bending moments at the edges can clearly be observed. The following analogies exist: 

between the bending moment mxx and myy in a plate and membrane forces nxx and nyy in a 

shell. At the edges of a plate on four supports, a bending moment occurs, meaning that 

normal forces occur in its shell equivalent. Hence, the shell equivalent is supported at the 

edges, with the ability to transfer membrane forces along its axis, but not perpendicular 

to it (Figure 4.7). 

q = -1 kN/m2

Figure 4.5: M̄-hill rectangular plate supported along semi-rigid edges

y
z

x
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Figure 4.6: mxx (top), myy (middle) and mxy (bottom) of analysed shell from DIANA FEA

Figure 4.7: nxx equals zero along the y-edges and nyy equals zero along the x-edges
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4.2.3 TWISTLESS RECTANGULAR PLATE (SIMPLY-SUPPORTED)

To obtain an M̄-hill that matches the thrust surface better, we must minimise the torsional 

moments mxy that occur in the initial plate; we must create a 'twistless' plate. The twistless 

case was first introduced by Beranek & Hobbelman (1984). In a twistless plate, bending 

moments in the x-direction are only caused by the deflections in x-direction, and equally 

bending moments in the y-direction are only caused by deflections in y-direction. This 

is allowed by the absence of torsional moments; the plate can be regarded as two 

individual systems of beams in x- and y-direction.

In order to create a twistless case, we take a plate of lx × ly with a thickness t, and an 

orthotropic rim with a height bx and by. The ratio between the dimensions of the 

orthotropic rim and those of the isotropic plate is hereby essential, since it gives us the 

ability to control the stress distribution. Beranek and Hobbelman proposed a formula 

to calculate this ratio, given in [4.1] (Beranek & Hobbelman, 1984). Here, B is the beam 

stiffness and P is the field stiffness.

[4.1]

In order to solve this equation, it is given that:

and [4.2]

 

and:

[4.3]B b ty y y�
1
12

3
andB b tx x x�

1
12

3

where:

load intensity   = f

load transfer in x-direction = fx = fα

load transfer in y-direction = fy = (1−α)f

x y x yB B P P⋅ = ⋅

31
12x yP l t= ⋅ 31

12y xP l t= ⋅

C H A P T E R  4 :  P l a t e  a n d  S h e l l

7 5



x

y

by

bx

py

px

ty

ly

ly

tx

Figure 4.9: Overview of signs Twistless case

In Figure 4.9, an overview is given of all signs related to the formulas of the Twistless 

case. We must calculate tx and ty in order to generate an element with minimal torsional 

moments. To allow for comparison with 4.2.1, the same dimensions are assumed, giving 

the following properties:

 lx = ly  = 20 m

 bx = by = 0.5 m

 t   = 0.2 m

 tx = ty   

Figure 4.8: Tiwstless plate subjected to a load q 

q

S h e l l  S t r u c t u r e S

7 6



Now, for the given properties we must calculate the ratio between the thickness t of the 

plate and the thicknesses tx and ty of the rim. We do so using the formulas from [4.1], [4.2] 

and [4.3]. Since each half of the loads in x- and y-direction is directed to each support, 

we divide the field stiffnesses Px and Py by two. tx and ty are equal due to the symmetrical 

character of the analysis case. For the given thickness, we calculate a thickness of each 

rim by [4.4]. 

[4.4]

B B P P

b t b t l t

x y x y

x x y y y
1
12

1
12

1
12

1
2

1
12

3 3 3 11
2

1
12

0 5 1
12

0 5 1
12

1
2
20

3

3 3

l t

t t

x

x y, , 00 2 1
12

1
2
20 0 2

1
24

1
24

1
1

3 3

3 3

, ,

t tx y 550
1
150

1
576

1
22500

22500 576
576

6

6

6

t

t

t

x y

x y

x y

;

;

; 222500
576
22500
0 543

6t

t

x y

x y

;

; ,

The thickness of the rim is calculated to be approximately 0,543m. This gives us all 

properties to make and analyse a twistless case. To execute this analysis we use DIANA 

FEA. First, we validate whether the case is indeed twistless. Now, some local torsional 

moments always occur. Most importantly, however, the system should work as two 

independent systems of beams in x- and y-direction. This can be evaluated by checking 

if the bending moments in one direction are linear across its axis, and the displacements 

forming a translation surface. When we consider the results of mxx and myy in Figure 4.10, 

it can be observed that they behave independent from each other. It can also be noticed 
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that mxy is almost zero across the entire field, apart from some local torsional moments 

where the rim and the plate meet. In Figure 4.11, a side-view of the displacements w is 

given. Here it becomes clear that ∂w is equal from left to right.

Figure 4.10: mxx (a), myy (b) and mxy (c) of twistless rectangular plate
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Figure 4.11: ∂w is constant across both axes
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4.2.4 SHELL EQUIVALENT

Now, the hypothesis was stated that the M̄-hill of a plate on four supports was related 

to a shell with semi-rigid edges. The results in 4.2.2 showed that indeed little bending 

moments occurred, but 4.2.2 also proved this geometry not to be completely funicular. 

Therefore, we now analyse the M̄-hill of the twistless plate, again supported on semi-

rigid edges.

The values of mxx and myy from 4.2.3 can be used to generate the M̄-hill. Poisson's ratio of 

0 is assumed, so that M = mxx + myy. The values of each coordinate are exported to 

Rhinoceros, where they are used to generate a point cloud (Figure 4.12a). This point 

cloud is then interpolated three-dimensionally, computing an average surface through 

all points (Figure 4.12b). It should be noted that this is just an approximation of the 

actual M̄-hill, and that many factors, for instance the meshing size, can influence the 

results. The M̄-hill is also scaled in z-direction, so that it is neither too shallow nor to 

steep to analyse. Adjusting the load case in 4.2.3 would have a similar effect. We now 

consider the case as visualised in Figure 4.14, supported on semi-rigid edges so that 

w = 0 and 
�
�
w
n

. The following properties are assigned to the analysis:

 lx = ly = = 20 m

 t   = 0.1 m 

 λ   = 0.5 m

 v   = 0

Figure 4.12: (a) Point cloud of sum of mxx and myy generated from values from 
DIANA FEA, (b) resulting shell surface modelled in Rhinoceros

a b
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The results from DIANA FEA are given in Figure 4.14. When we first evaluate mxx, we 

notice that negative bending moments occur at the corners. These areas are indicated 

by the blue colour. Now, regarding how the geometry was generated, this could well 

be a result of the interpolation. The deviation in the z-direction between vertices here is 

much larger than in the centre. It is likely that with a more accurately formed M̄-hill, these 

localised bending moments would decrease. Correspondingly, the same occurrence 

takes place for myy. The fact that these images are not exactly identical shows that the 

geometry is slightly unsymmetrical. 

If we evaluate the results further, we notice that the bending moments are very low from 

the centre outwards. Once again it is likely that since the accuracy is higher in the middle, 

the geometry shows better shell behaviour there. Once we compare this shell surface 

with the shell from Figure 4.6, we observe a slight improvement in shell behaviour.

p = -1 kN/m2

Figure 4.13: Analysis setup of shell from rectangular twistless plate
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Figure 4.14: mxx (a), myy (b) and mxy (c) of shell from M̄-hill twistless rectangular plate

Figure 4.15: Rainflow analogy of shell from twistless rectangular plate (a) and the same diagram projected
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4.2.5 CONCEPTUAL RECTANGULAR PLATE

The case of 4.2.3 gives valuable information in the understanding of shell geometry. To 

obtain full understanding, however, more cases should be analysed. Now consider a shell 

supported on four corners. Imagining its analogous flat plate is not as straightforward as 

the one in the previous chapter. Therefore, we need to introduce a conceptual plate; 

a plate with no bending moments at the edges. All forces should be directed towards 

the point supports. If we imagine the rainflow analogy of this, we would possibly get 

something like Figure 4.16. 

A similar drawing was already introduced by Beranek (Figure 4.18). This image does 

not show the rainflow of a shell, but that of four equal flat plates on columns supported 

in the centres. Theoretically, the four parts can be considered one continuous plate 

supported on four columns (Figure 4.17). By drawing a rectangle through the four 

column supports, we get an interesting rainflow diagram in the centre. We observe 

shear trajectories starting at the centre point flowing towards the columns exclusively. 

The bounding edge acts hereby as an asymptote; the closer each trajectory approaches 

the boundary edge, the more parallel it runs. If we imagine the shape of the M̄-hill, we 

can expect the rotation φ perpendicular to the edges to equal 0. After all, the plates and 

the distributed load are both symmetrical, and at these edges a maximum value of wz is 

reached.

Figure 4.16: Expected rainflow diagram of hypothetical plate without out-of-plane mechanical behaviour
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Figure 4.18: Rainflow diagram of continuous floor on four columns

p

Figure 4.17: Continuous floor supported on four columns, subjected to a distributed load q
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To simulate this case, a rectangular plate is taken that is simply-supported on the four 

corners. Other than the plate from 4.2.1, we consider additional boundary conditions for 

the edges; φx = 0 for the edges parallel to the x-axis, and φy = 0 for  the edges parallel to 

the y-axis. All edges should still allow for vertical deformation wz. The plate is subjected 

to an evenly distributed load q, causing out-of-plane mechanical behaviour i.e. bending 

moments mxx and myy.

The analysis tool created by Liang does not support these desired boundary conditions. 

Therefore, to calculate this plate, DIANA FEA is now used. 

The following properties are assigned to the surface:

 lx = ly =  20 m

 q =   -1 kN/m2

 λ =  0.5 m

 v =  0

 

Calculating this plate results in values for mxx, myy and mxy, which are visualised in 

Figure 4.20. The deflection can clearly be observed on the left-side images. A Poisson's 

ratio of 0 is used, so M̄ = mxx + myy. The calculated values for mxx and myy will further be 

used to generate the M̄-hill of this plate. 

φx= 0

φx= 0

φy= 0

φy= 0

p

y
z

x

Figure 4.19: Boundary conditions plate on four supports with no rotation 
around the edges (left), same plate subjected to a load q (right)
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Figure 4.20: mxx (a), myy (b) and mxy (c) of flat plate with no rotation around 
the edges, deformation is shown in the left images
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4.2.6 SHELL EQUIVALENT

From the sum of the values for mxx and myy, a point cloud is generated in Rhinoceros 

(Figure 4.21a). Each x- and y-coordinate in DIANA FEA comprises four nodes (since four 

mesh planes meet here), so correspondingly there are four values for M̄ per coordinate. 

Hence, the point cloud is merely an approximation of what the M̄-hill looks like. 

A NURBS-surface is created by taking the average z-coordinate of each point, and then 

interpolating these averages. The resulting surface is an approximation of the actual 

M̄-hill (Figure 4.21b). We can then use this surface as input for the parametric tool of 

Liang, with which the rainflow diagram can be generated (Figure 4.21b). 

Figure 4.21: (a) Point cloud of sum of mxx and myy generated from values from DIANA FEA, (b) 
resulting shell surface modelled in Rhinoceros and (c) rainflow diagram of the shell surface

a b

c
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To determine its shell-like behaviour, the surface created before must be assessed in 

DIANA FEA. The following properties are assigned to the surface:

 lx = ly =  20 m

 q =   -1 kN/m2

 λ =  0.5 m

 v =  0

The results of the analysis are visualised in Figure 4.22. First of all, localised bending 

moments occur at the supports. The surface turns concave, which likely does not follow 

the thrust surface. It can also be noticed that the shell is steep at the supports and very 

flat in the centre. It will therefore act more like a plate there. Since a two-dimensional 

thrust line has a parabolic shape (just like the moment line), the edges must have a 

parabolic shape too. After all, the forces acting along this line must be directed towards 

the support along the same line. We can then consider that edge a two-dimensional arch. 

When we look at Figure 4.22, we can observe this edge not to be shaped fully parabolic, 

and can expect both negative and positive moments here. It can be concluded that the 

surface is not a translation of two two-dimensional moment lines, and that the torsional 

moments mxy affect mxx and myy. In order to create a 'pure' M̄-hill, we must eliminate mxy.
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Figure 4.22: mxx (a), myy (b) and mxy (c) of shell surface from M̄-hill flat plate with no rotation around the edges
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4.2.7 TWISTLESS RECTANGULAR PLATE (NO ROTATION)

From 4.2.6, it was concluded that mxx and myy are affected by mxy, resulting in an 

unsatisfactory M̄-hill. In order to eliminate this effect, we must eliminate the torsional 

moments mxy in the plate. To do so, we will create a twistless case again. This is done with 

help from the formulas [4.1], [4.2] and [4.3], where:

 load intensity  = f

 load transfer in x-direction = fx = fα

 load transfer in y-direction = fy = (1−α)f

In Figure 4.9, an overview is given of all signs related to the formulas of the Twistless 

case. We must calculate tx and ty in order to generate an element with minimal torsional 

moments. To allow for comparison with 4.2.5, the same dimensions are assumed, giving 

the following properties:

 lx = ly  = 20 m

 bx = by = 0.5 m

 t   = 0.2 m

 tx = ty   

Since this is a symmetrical case, we know that tx and ty will have the same value. We 

calculate these values for the given case as in [4.5].

To validate the twistless behaviour of the plate with the calculated tx and ty, the case 

is loaded into DIANA FEA. Again, no rotation at the edges is allowed so that φx = 0 

around the x-axis and φy = 0 around the y-axis (equal to the case in Figure 4.19). Since 

the plate should now work as two independent systems in x- and y-direction, the 

displacement should form a translation surface; the displacements as a result of mxx are 

translated across those of myy (or vice versa). Equally, the contour lines of mxx and myy are 

linear; they work as two individual two-dimensional systems. The results are shown in 

Figure 4.23. The values of mxy are of a completely different magnitude than those of mxx 

and myy, showing that the torsional moments are practically negligible. Even more so, 

it can be observed that both mxx and myy behave uniformly along their axes, indicating 
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that the structure acts as two individual systems in x- and y-direction. When the results 

are compared to those of a plate without an orthotropic rim (such as Figure 4.20), the 

difference can clearly be observed. 

3 3 3 3

3 3 3 3

3 3

6
;

6
;

1 1 1 1
12 12 12 12

1 1 1 10,5 0,5 20 0,2 20 0,2
12 12 12 12

1 1 1 1
24 24 75 75

1 1
576 5625

5625

x y x y

x x y y y x

x y

x y

x y

x y

B B P P

b t b t l t l t

t t

t t

t

t

=

     =     
     

     ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅      
     

     =     
     

=

6
;

6
;

;

576
576
5625

576
5625

0,863

x y

x y

x y

t

t

t

=

=

=

≈

[4.5]

S h e l l  S t r u c t u r e S

9 0



Figure 4.23: mxx (a), myy (b) and mxy (c) of twistless plate with no rotation around the edges
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Figure 4.24: ∂w is constant across both axes
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4.2.8 SHELL EQUIVALENT 

From the sum of the values for mxx and myy generated in DIANA FEA, a point cloud 

is generated in Rhinoceros. A NURBS-surface is created by taking the average 

z-coordinate of each point, and then interpolating these averages. The resulting surface 

is an approximation of the actual M̄-hill (Figure 4.25a). The rainflow diagram is given in 

Figure 4.25b. 

To determine its shell-like behaviour, the surface must be assessed in DIANA FEA. The 

following properties are assigned to the surface:

 lx = ly =  20 m

 q =   -1 kN/m2

 λ =  0.5 m

 v =  0

The structure is subjected to a projected load q, and is simply-supported on its four 

corners. Calculating in DIANA FEA gives the images in Figure 4.26a-c. It can clearly be 

observed that peak bending moments in all directions occur at the supports. When we 

look closer at the shape of the shell in these areas, we find that the geometry turns 

concave there, possibly causing tension in the structure. This geometrical defect can 

likely be explained by the generation process of the M̄-hill using DIANA FEA. It is 

possible that the point cloud generated is not completely accurate, especially at the 

Figure 4.25: (a) M̄-hill modelled in Rhinoceros with point cloud from DIANA FEA and (b) rainflow diagram of the shell surface

a b

S h e l l  S t r u c t u r e S

9 2



supports. As previously discussed, at each x,y-coordinate four points are generated 

(except at the edges, here only two points). Generally, the values for the bending 

moments per coordinate lie close to each other. But at the supports, the deviation is 

much higher, likely indicating a decrease in accuracy. Should we construct such a shell 

structure, however, the supports would need more attention anyway, since high amounts 

of localised stresses would occur. 

The colour scale of Figure 4.26 is set to the lowest and highest values occurring 

throughout the entire shell. Therefore, little insight in the bending moments away 

from the supports is given. In order to obtain a better ability to analyse the results, a 

Figure 4.26: mxx (a), myy (b) and mxy (c) of a shell surface from M̄-hill flat twistless plate with no rotation around the edges
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narrower colour scale is given in Figure 4.27. Evaluation of the results lets us conclude 

that bending moments do occur, especially towards the supports. At the same time, 

however, it can be observed that the middle part of the surface is nearly free of bending 

moments. This part poses almost maximal shell-like behaviour. Apart from the localised 

peaks at the supports, it can be concluded that this shape behaves highly as a shell 

structure, under the given boundary conditions. If we changed any of these boundary 

conditions, clearly, the results could be entirely different. In search of any shell surface 

it is therefore essential to determine the boundary conditions, and establish which 

conditions form analogies with their projected counterparts. In order to adjust the 

shape of the shell for the localised bending moments to decrease, we should study how 

to further improve its shape. 
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Figure 4.27: mxx (a), myy (b) and mxy (c) of a shell surface from M̄-hill flat twistless 
plate with no rotation around the edges, with narrower colour scale
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4.3 CIRCULAR

4.3.1 SIMPLY-SUPPORTED CIRCULAR PLATE

A circular isotropic plate with constant thickness is taken and subjected to an axial 

symmetric load. In this plate, all pie slices are identical, so all units are a function of the 

radial distance r [m] and not of the angle φ [rad]. The sum of moments M̄ is governed by 

the radial mrr and tangential bending moments mθθ ([4.6]). No shear stress nrθ can occur 

(Blaauwendraad, 2010), and therefore no shear moments mrθ, since they cancel each 

other out.

[4.6]

Bending moments mrr and mθθ are calculated through respectively [4.7] and [4.8] 

(Hoogenboom, 2008).

2 2(3 )( )
16rr
pm v a r= + −

( )2 2(3 ) (1 3 )
16
pm a v v vθθ = + − +

[4.7]

[4.8]

However, we assume a plate with Poisson's ratio v = 0, so that bending moments mrr and 

mθθ are calculated through [4.8] and [4.9]. 

[4.9]

[4.10]

Substituting [4.8] and [4.9] into [4.7] gives us the formula for the M̄-hill ([4.11]).

2 2( )
4
pz a r= − [4.11]

2 23 ( )
16rr

pm a r= −

2 2(3 )
16
pm a rθθ = −

rrM m mθθ= +
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Plotting [4.11] with axes r and z results in Figure 4.28. The height of the arc is determined 

by the magnitude of the load p. We distinguish normal forces nxx and nyy as the forces 

acting in respectively the radial and tangential direction (Figure 4.29). Both values can 

be calculated through the equations in [4.12]. For r = 0 we can easily calculate that 

nxx = nyy = − p. From the equations it can also easily be observed that nxx and nyy share 

an inversely proportional relation, meaning that an increase in r results in an increase 

in nxx and a decrease in nyy, and vice versa. This is logical since nxx and nyy are always 

perpendicular to each other.

When we draw a section across the centre of the distributed force, we get an image like 

Figure 4.32. The normal forces nxx acting through the rings are taken up at the support 

by nyy;h. The magnitude of nyy;h in each point along the edge is given by decomposing the 

force vector perpendicular to that edge into a vector for nyy;h in the direction of nxx and 

one perpendicular. Thus a distribution of nyy;h as given in Figure 4.30 is the result.

)( 2

0
lim 4 2
r

xx

yy

r

n p
n p

→
+ =

= −
= −

for r = 0

for r = 0

[4.12]
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Figure 4.28: Section of M̄-hill across circular plate
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Do note that if we were to create a section perpendicular to this one, we would get a 

similar image but with the vectors rotated 90 degrees.

Now, when we take that same section, and imagine it in a two-dimensional diagram, it 

should be noted that the distributed force acting on the section edge is basically two 

pie parts. This ultimately results in the formula for a dome, which is a function to the 

power of three [4.13].

 

z
a
x a1

6
1
6

3 2
[4.13]

Figure 4.29: Normal forces in local xx- and yy-direction

nxx

nyy

p

nxx

nyy,h

Figure 4.30: Section through the distributed force p 
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Using the formula from [4.12], we can generate the section curve of a dome. This is done 

in modelling software Rhinoceros using the plug-in Grasshopper. The section curve is 

then revolved around its symmetry axis, so that an axially symmetric dome is created 

(Figure 4.31). Again, it is important that we verify the shell behaviour of the structure, 

and observe if the bending moments are minimised.

Consider the shell-like dome in Figure 4.31. The dome is subjected to a projected load 

p. For the analysis, the following properties are assigned. An analysis is executed in 

DIANA FEA.

 a = r =  5 m

 p =   -1 kN/m2

 t =  0.1 m

 λ =  0.5 m

 v =  0

The results of the analysis are visualised in Figure 4.32. From the evenly coloured ring it 

looks like the shell shows very shell-like behaviour. Judging from the lower and upper 

bounds of the bending moments, it can be concluded that nearly no bending moments 

occur. We do, however, observe higher bending moments in the centre of the dome. 

4.3.2 SHELL EQUIVALENT

5m

p

Figure 4.31: Analysis case dome
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0.03

myy (kNm)

-0.07

0.03

mxy (kNm)

-0.03

0

0.03

mxx (kNm)

-0.07

Figure 4.32: mxx (a), myy (b) and mxy (c) of a shell surface from M̄-hill flat circular plate

This can be a result of the highly analytical character of the equations used for the 

creation of the dome shape. 
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4.4 CONCLUSIONS

In 1.4.2, a hypothesis was stated as follows: 'An analogy is present between (1) the 

geometry of a moment hill of a plate and (2) the thrust surface of a shell subjected to 

a distributed load, and their boundary conditions are mutually related.'. In this chapter, 

this hypothesis was extensively assessed. We looked at different plate geometries and 

different boundary conditions, continuously evaluating their potential shell behaviour. 

In this process, an attempt was made to connect two-dimensional cases to three-

dimensional shell equivalents, also with respect to their edge properties and presence 

(or absence) of torsional moments.

First, a square plate on four supports was used to generate the M̄-hill. Its M̄-hill proved 

not to show optimal shell-like behaviour when supported on four corners. Drawing its 

rainflow diagram helped in understanding the force flows through the structure, and 

directed towards a review of the edge conditions. Changing the support case from 

corner supports to semi-rigid edge supports resulted in better shell behaviour. An 

analogy between the bending moments m in a flat plate and the normal forces n in its 

shell equivalent was proposed. It was, however, identified that the torsional moments 

mxy in the plate influenced the reduced sum of bending moments M̄. In order to create 

an M̄-hill in which mxx and myy operated as separate systems, the twistless case was 

introduced. The M̄-hill created from a twistless plate, supported on semi-rigid edges, 

proved to behave most shell-like of the analysed cases.

These findings provided the foundation for the subsequent research. Here, it was 

attempted to create a square shell structure on four supports. Developing its plate 

equivalent was initiated again with help of the rainflow analogy. Since the normal 

forces were to be directed to the four supports, this should be reflected in the rainflow 

diagram. Such a diagram was found in the case of a continuous floor on four columns, 

giving a rotation φ of zero, but allowing for displacement in the z-direction. By setting 

these properties and making the plate twistless, a moment hill was created that showed 

almost no bending moments when subjected to a projected load.
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Finally, the shape of a funicular dome was analytically described. This shape appeared 

not to be the M̄-hill directly, but could be described by a function to the power of three. 

Again, the analogy with the horizontal projection was given.

A number of analogies between two-dimensional geometries and their three-

dimensional equivalents have been proposed. Additionally, the reciprocal relation 

between the Airy stress function and the force diagram (thrust surface) has been 

explained earlier. Since the thrust surface is considered the optimal geometry for force 

transfer, we could use this relation to assess shell behaviour of a surface. We can then 

generate a shell from its analogous plate, and generate its force diagram. By comparing 

the force diagram and the shell surface, we can give insight in shape defects of the shell 

and thus help the designer improve the shape (Figure 4.34). In Chapter 5, a proposal for 

a parametric tool is given that exploits this relationship.

Figure 4.33: Relationship between the M̄-hill, Airy stress function, and thrust surface of a twistless plate

M̄-hill

twistless plate

thrust surface Airy stress

Figure 4.34: Process of assessing shell behaviour in a shell-like surface

Airy stress

shell surface

thrust surface

assess 
shell 

behaviour
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mxx= 0
mxy≠ 0

myy= 0
mxy≠ 0

nxx = 0
nxy ≠ 0

nyy = 0
nxy ≠ 0

Simply-supported plate 

(twistless)

Shell on semi-rigid edge supports

φx= 0

φx= 0

φy= 0

φy= 0

Simply-supported plate

(twistless & no rotation)

Simply-supported shell

Simply-supported circular plate Funicular dome

Figure 4.35: Suggested analogies between flat plate geometries and their shell equivalents
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5  P A R A M E T R I C  D E S I G N  T O O L

5.1 TOOL RECIPROCAL FIGURES

4.4 proposes two diagrams relating shell surface, thrust plane and M̄-hill with each 

other. The first diagram describes a shell surface generated from a planar surface, which 

in theory acts solely in compression and only takes up in-plane membrane forces. This 

shell geometry is therefore expected to have a thrust surface of which the geometry is 

the same. We can consider this geometry to behave as an S-surface from Calladine as 

described in 3.2. 

The second diagram describes how a shell can be assessed for its shell behaviour by 

calculating the volumetric difference between the shell geometry and its thrust surface. 

Here the ratio between the S-surface and the B-surface gives us an indication of the 

degree of shell-like behaviour. 

 

To prove the analogy above, we can make use of the Airy stress function as described in 

3.5.3. After all, the Airy stress polyhedron is explained to be the reciprocal figure of the 

diagram of forces as early as 1870 (Maxwell). The diagram of forces can be considered a 

thrust polyhedron in the sense that each line only shows in-plane mechanical behaviour. 

A previous graduate of the University of Technology Delft, Riemens (2015), was able to 

compute the Airy stress function, with which a surface could be created by populating 

their values on their x- and y-coordinates. The tool he developed will be used to 

generate the input Airy stress function for the parametric tools.

In this chapter, three parametric tools are proposed, each of which make use of the 

reciprocal figure. The tools allow for both design and structural analysis of shell 

structures. 
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5.1.1 PARAMETERS

In 4.4, two uses of the reciprocal figure were proposed. Either we take a shell body of 

which we know that it presents in-plane mechanical behaviour exclusively. By generating 

its Airy stress function, we get a polyhedron to build the diagram of forces from. This 

diagram of forces then gives us insight into the load paths of the geometry. Or, we take 

a shell body of which we know that it presents out-of-plane behaviour as well as in-

plane behaviour. With the help of the reciprocal diagram, we can build its diagram of 

forces (thrust surface). This not only gives insight in the funicular form, but also shows 

where deficiencies occur in the initial shape. After all, if the shell geometry and the 

S-component are known, the B-component can be determined.

In both cases a three-dimensional surface, the shell geometry, serves as input for the 

parametric tool. The tool of Riemens (2015) allows us to generate an Airy stress point 

cloud that will be used further. 

Additionally, a meshing size can be input, determining the size of the force density mesh 

and ultimately the accuracy of the reciprocal figure. 
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5.1.2 METHODOLOGY

The tool can be divided into five parts, structured as follows:

1. Meshing and sorting: Creating planar mesh from point cloud

2. Creating reciprocal planes: Creating dual planes from new mesh vertices

3. Intersecting planes: Intersecting planes for each ring

4. Intersecting rings: Intersecting across levels and joining new polyhedron

5. Calculating force values: Calculating normal force values from dual angles

1. Meshing and sorting

The tool uses a point cloud of the Airy stress values as input. In order to consider this a 

polyhedron, the points must be adjusted in such a way that they form planar faces. To 

achieve this, the points are used as vertices for a triangulated mesh. The edges of this 

mesh will later form a dual relation with the edges of the reciprocal polyhedron. The 

mesh size must be equal to the mesh size of the starting surface. The mesh size should 

be chosen carefully; an overly coarse mesh results in an inaccurate reciprocal figure, an 

overly fine mesh results in high computing times. 

The valency of the mesh vertices corresponds with the number of edges of the 

reciprocal diagram. It is therefore essential to use an axially symmetric triangular mesh 

if we are building an axially symmetric reciprocal diagram. The central vertex in this 

mesh has a valency of eight, since all surrounding branches meet there. Its reciprocal 

surface therefore is an octagon. All surrounding vertices have a valency of six, of which 

the reciprocal surfaces are hexagons. The vertices on the edges have a valency of four 

(Figure 5.1a). The corner vertices have a valency of three. Let us call the Airy stress mesh 

Polyhedron A from here, and its reciprocal diagram Polyhedron B. 

In order to create Polyhedron B correctly, all vertices of Polyhedron A need to be sorted. 

The central vertex must be located where the x- and y-axes meet (α = β = γ = 0). That 

vertex will have a horizontal dual surface in Polyhedron B. The adjacent ring of vertices 

will be reciprocal to the ring of surfaces around the middle surface, and should therefore 

be considered next. In essence, we work from the centre outwards, so the vertices A (VA)

should be sorted like this (Figure 5.6b). 
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Figure 5.1: Meshing principle and corresponding vertex valencies (left), and vertices VA sorting order (right)

Figure 5.2: Meshing principle following rainflow trajectories and contours
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Figure 5.3: Grasshopper workflow of generating faces FB from vertices VA

In the example, a rectangular meshing grid is assumed. Since the Airy stress mesh is a 

discretisation of the actual Airy stress surface, this could lead to inaccuracies later on. 

So in many cases the possibility to alter the mesh size is desired. This poses the ability 

to manipulate the edges of the thrust network through which the normal forces are 

directed. 

Considering that, many different types of meshes could be desired. For instance, it could 

be sensible to create a mesh from the rainflow trajectories i.e. the steepest lines, and 

contour trajectories i.e. the horizontal lines, so that the normal forces in the reciprocal 

force diagram are parallel to the minimum and maximum shear force lines. The only 

requirement of the Airy stress mesh is that all surfaces are planar. Figure 5.2 shows this 

meshing principle executed for this example. 

2. Creating reciprocal planes:

Each vertex from the starting mesh contains three values: the x-, y-, and z-coordinates. 

The x- and y-coordinates are based on the dimensions of the surface and its meshing 

size. The z-coordinates are values calculated by the shell calculation component of 

Riemens (2015). Naturally, a different source for these Airy stress values can be used 

equally. It should be noted that the magnitude of the z-values is arbitrary; the optimal 

magnitude for the thrust surface is determined at a later stage. 

As explained in 3.5, the vertices from Polyhedron A correspond to the faces of 

Polyhedron B, and vice versa. The intersection edges of the B-faces in turn correspond 

with the connection lines of the A-vertices, and vice versa. These dual edges are 

always perpendicular to one another. The dual relations follow the principles of a 

three-dimensional Poncelet duality (Konstantatou & McRobie, 2016) (Figure 3.19). 
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F1 F5

F2 F3

F8

F7

F6

F4

Figure 5.5: First ring of reciprocal faces and each intersection edge
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Figure 5.4: Duality between Polyhedron A and Polyhedron B

Polyhedron A

Polyhedron B



This knowledge will be useful in a later stage, when we calculate the force values in 

Polyhedron B. 

The coordinates of the vertices A (q, r, s) are used to generate planes of polyhedron B 

through [3.40]: rx - qy + s. Since a 3D-environment such as Rhinoceros cannot calculate 

intersection events of infinite planes, these planes are conceived as surface geometries. 

To achieve this, four corner points are created with the formula from [3.40], through 

which a rectangular planar surface is drawn (Figure 5.3). See Appendix B1 for the 

complete component.

3. Intersecting planes

As a result, there are now as many faces FB as there are vertices VA. Initially, we search 

for intersecting events between faces from adjacent vertices VA. Doing so enables us to 

create individual reciprocal polyhedrons for each ring. To draw a polyhedron of ring 1 

for instance, we are looking for intersection events between V1 and V2, V2 and V3, and 

so forth up until V8 and V1. This results in a polyhedron such as Figure 5.5, yet its shape 

naturally depends on the values of the Airy stress function.

The duality between the polyhedrons becomes more insightful once they are visualised 

as a planar projection. The relationships from the Poncelet projective geometry can then 

all be identified. From Figure 5.4 it can easily be recognised that the valency of eight 

loop 1 loop 2 loop 3

Figure 5.6: Looping operation to build reciprocal figure from the top downwards
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of the middle vertex of Polyhedron A poses a dual face with eight bounding edges; it 

becomes an octagon. Equally, the surrounding vertices with a valency of six have dual 

faces with six bounding edges.

Polyhedron B is scaled to clarify the dual relations between the edges of Polyhedron A 

and the edges of Polyhedron B. Figure 5.4 shows edge EA;01, drawn between vertices 

VA;0 and VA;1 and its dual edge EB;01, drawn on the intersection of faces FB;0 and FB;1. Both 

edges are perpendicular to each other. 

The feasibility of the process described above is highly dependent on the values of 

the input Airy stress. The difference in z-value between adjacent vertices is generally 

minimal at the centre for an Airy stress function of a shell structure. Intersection edges 

can therefore be identified easily here. However, with larger differences in Airy stress 

between adjacent vertices, distortions occur in the geometry of a ring. In some cases 

faces from non-adjacent vertices are being intersected, so that still a homogeneous 

polyhedron is created. Further elaboration on this will follow in 5.1.4. 

4. Intersecting rings

After successfully creating each polyhedron ring, we can look for intersection edges in 

the outward direction. Each ring is now considered a sum of intersecting faces, and is 

a joined polysurface in the three-dimensional environment Rhinoceros. The cross-level 

Figure 5.7: Difference in adjacencies between surfaces of Polyhedron A (left) and those of Polyhedron B (right) of the example
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VN;1

VN;0

φ
φ

Figure 5.8: Angle between normal vectors of surfaces equals angle between surface at mutual edge

intersection is a process similar to that of two faces. The sum of faces of each ring is 

intersected with the sum of faces of the subsequent ring and then joined together. The 

polysurface is thus built up from the top to the bottom, adding a ring to the polysurface 

each cycle (Figure 5.6). Since Grasshopper does not allow for looping operations, plug-

in Anemone was used. See Appendix C for the looping component in the script. 

5. Calculating force values

The duality between the Airy stress diagram and the force diagram means that all 

corresponding properties are reciprocal. As a result, we can calculate the normal 

forces nBE;i in the force diagram (Polyhedron B) by determining the angle φAE;i  on the 

intersection edge between two surfaces in Polyhedron A. After all, the stress resultants 

equal the angular defect:  NBE;i = φAE;i (3.5.2). From these stress resultants we can calculate 

the normal forces in the force diagram.

In order to calculate the angle between two surfaces in Polyhedron A, we must first 

determine each adjacency relationship of Polyhedron B. The intersection edges in 

Polyhedron B are namely reciprocal to φAE;i. in Polyhedron A. The trimmed surfaces of 

Polyhedron B, however, are no longer sorted, since they are a result of intersection 

events in two directions, as well as joining operations. It is therefore needed that the 

trimmed surfaces are again related to their dual vertices. In order to do so, each trimmed 

surface is compared to the planes built from the Airy stress vertices by their normal 
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directions. If the angle between the normal of the trimmed surface and the starting 

plane is zero, then the related surface is found. The Grasshopper component governing 

this operation is attached in Appendix C.

Before the angles between surfaces can be calculated, we need to look at the adjacency 

between them. There are two ways to approach this exercise; (1) either we start with the 

vertices from Polyhedron A, and determine for each vertex their adjacent vertices, or (2) 

we start with the trimmed surfaces of Polyhedron B and determine intersection events 

with other surfaces. Figure 5.7 shows what this difference means for the results. In 5.1.4 

the source of this difference is explained. The Grasshopper component governing this 

operation is attached in Appendix D.

Now that the relationships between surfaces are known, we can calculate their 

corresponding angles. We are looking for the angle perpendicular to the edge shared 

by both surfaces (see 3.5.3). Determining this angle is straightforward, since it is equal 

to the angle between the normal vectors of the surfaces (Figure 5.8). Figure 5.8 also 

shows that the direction of the force is now perpendicular to the edge of Polyhedron B. 

This is a property of the Maxwell duality, and needs to be addressed once we process 

the results later. The angular defects φ from Polyhedron A equal the stress resultants N 

(Figure 5.9), which become normal forces n in Polyhedron B. 

φ

N

Figure 5.9: Angular defect equals the stress resultant N in Polyhedron A
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Figure 5.10: Process diagram of parametric tool to generate reciprocal polyhedron

START

END

generate faces
reciprocal to vertices Vi

intersect & trim faces Fi'
Fr,i' ↔ Fr,i+1' (wrap)

intersect & trim faces
with F0'

trim faces of adjacent rings
∑ Fr,i' ↔ ∑ Fr+1,i '

trim remaining faces with 
outer ring

∑ Ftotal' ↔ ∑ Fouter'

calculate ∂φx and ∂φy to 

determine N in each edge

determine scale

take all points Vi in one ring

reciprocal faces of one ring
Fr,i'(rx - qy + s)

trimmed faces Fr,i'

reciprocal faces F'

reciprocal vertices
V'(−β,α,γ) reciprocal edges E'

point cloud airy stress ϕ
V(q, r, s) 

generate F0'

trim F0' with faces F1' 

repeat for every 
ring until last -1

repeat for every 
ring until last -1
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Figure 5.11: M̄-hill square plate (a), and corresponding Airy stress mesh (b)

5.1.3 RESULTS

In 5.1.2, a parametric tool was proposed to generate the reciprocal figure (Polyhedron 

B) of the Airy stress mesh (Polyhedron A). This process exploits the relationship between 

the diagrams of form and force, already introduced by Maxwell in 1870 (Maxwell, 

1870). To measure the performance of the tool, a number of different cases are now 

analysed and evaluated. For this, three of the M̄-hills from Chapter 4 are used as input. 

These surfaces have been analysed in terms of shell behaviour, which could help in 

understanding the results.

M̄-hill square flat plate 

In 4.2.2, the M̄-hill of a square flat plate was generated using the tool of Liang 

(Figure 5.11a). From this surface, we will create a force network. In order to do so, first 

the Airy stress surface is computed using the tool of Riemens (Figure 5.11b). The surface 

is converted to a triangulated mesh polyhedron. This polyhedron is then loaded into 

the parametric tool to generate the reciprocal polyhedron (force diagram) (Figure 5.12). 

The image shows the unscaled polyhedron; a steep shell-like network of lines. 
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Evidently, the scale of the force polyhedron does not correspond with the scale of the 

shell surface. The scaling factor is still to be determined when calculating the force 

values in the edges. Interestingly, we do observe the edges of the polyhedron to form a 

parabola. When we project the edges onto a horizontal plane as in Figure 5.12, then we 

find the edges not to form straight lines. Seemingly, no compression forces occur in this 

area. This occurrence is explained in 5.1.4.

Figure 5.12: Unscaled force polyhedron from M̄-hill square plate 
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Figure 5.13: M̄-hill square continuous plate (a), and corresponding Airy stress mesh (b)

M̄-hill square flat continuous plate

A force network is created of the M̄-hill of the continuous plate from 4.2.5. The M̄-

hill surface is given in Figure 5.13a, and its corresponding Airy stress polyhedron is 

visualised in Figure 5.13b. It can clearly be observed that the Airy stress function is 

relatively steep compared to the previous one.

In Figure 5.14, the force polygon is shown. Since the shell was created using DIANA FEA, 

it is not completely symmetrical. Therefore two of the supports in the force polygon do 

not reach ground level. Also, only a limited number of polygons are created, meaning 

that the rest of the polygons would result in an uncontinuous surface. This could be the 

result of tension, but that should be further analysed. We can again clearly observe a 

parabolic shape on each side of the force polygon going towards the supports. This is 

different from the initial shell surface and gives input for possible improvement of the 

geometry.
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Figure 5.14: Unscaled force polyhedron from M̄-hill square continuous plate 
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M̄-hill square continuous twistless flat plate

The M̄-hill from a square continuous twistless plate showed most shell-like behaviour of 

all cases analysed in Chapter 4. Expectedly, the geometry of this force diagram is highly 

similar to that of the shell surface. The reciprocal figure is generated and visualised in 

Figure 5.16. If we compare this image to the previous reciprocal figures, we can clearly 

observe the higher density of edges here. It appears that more points were converted 

into surfaces than in the other cases (or less surfaces were omitted).

When we look at the edges of the shell surface in Figure 5.15, the curvature is slightly 

anti-clastic. This is not reflected in the reciprocal figure. This could be the result of 

tension occuring at these edges, but could also have a different cause. 
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Figure 5.16: Unscaled force polygon from M̄-hill twistless 'continuous' plate with horizontal projection
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Figure 5.17: Division of loading capacity of a shell into loading capacity of the membrane and that of the plate

5.1.4 LIMITATIONS

Three force diagrams were created of different shell diagrams. A number of challenges 

became apparent in the process.

First of all, we can observe that the reciprocal figures do not have the same footprint as 

the initial shells. A number of the surfaces created from nodes in the Airy stress function 

were eliminated in the process of generating the reciprocal figure. This is a result of the 

loading capacity going from membrane forces (in-plane) to plate forces (out-of-plane) 

(Figure 5.17). Here, tension occurs, which is not supported by the reciprocal figure. In 

5.2, a different approach is taken in order to get a more comprehensive image of the 

thrust surface.

Secondly, the scale of the reciprocal figure is still arbitrary. If we scale it by hand, 

part of the geometry is really similar to the initial shell, but we cannot draw definite 

conclusions from this. Since this is an indeterminate structure, it is necessary to calculate 

the horizontal forces at the supports, and then calculate the minimum complementary 

energy.
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5.2 TOOL FORCE DIAGRAMS

In 5.1, it was explained how the reciprocal figure of the discretised Airy stress function 

could be created. That reciprocal figure was then the force diagram, constructed of 

edges in which only compression occurred. The force diagram gave insight into the 

thrust surface of the initial shell structure, but was by default limited to the display of 

compression. In order to make the forces occurring in the structure - compression and 

tension - we should further analyse the results. Now, since the reciprocal figure of the 

Airy stress polyhedron (which is the network of stress resultants) is the force diagram, 

every node of the Airy stress polyhedron can be evaluated individually. 

The Airy stress function is assumed to be in equilibrium (since the initial structure 

is also in equilibrium), so in every node of the stress function an equilibrium is also 

accomplished. Therefore, if we construct the force diagram (head-to-tail diagram) of 

every node of the Airy stress polyhedron, they should form a closed loop. 

5.2.1 METHODOLOGY

To construct the head-to-tail diagram of each node of the Airy stress polyhedron, we 

have a vector direction i.e. the projected edge pointing towards the vertex, and a vector 

magnitude i.e. the angular defect. An example is given in Figure 5.18.

Figure 5.18: Stress resultants in the Airy stress polyhedron acting on a vertex
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Angular defect

In order to construct each force polygon, we use the triangulated Airy stress polyhedron. 

This is a discretised version of the Airy stress function, so that the curvature is converted 

to an angular defect. This angular defect between two corresponding surfaces can be 

calculated again by calculating the angle between their normal vectors. It is essential to 

distinguish convex and concave angles, since the sign of the angular defect corresponds 

with the sign of the stress resultant. A negative (concave) angle is therefore considered 

a member in tension, which is a negative stress resultant (Van Mele, Lachauer, Rippman, 

& Block, 2012).

For every pair of surfaces between which an angle is calculated, we must first determine 

if it is convex or concave. This is done by drawing a line between the centre points of 

the surfaces, and then evaluating its position relative to the Airy stress polyhedron. Is it 

underneath the stress polyhedron, then the surfaces form a 'bowl', indicating that it is 

convex. Is it above the stress polyhedron, then the surfaces form a 'valley', indicating 

that it is concave. The concave angles are then multiplied by -1, so that their vector 

direction is flipped. 

Creating the force polygon

For every vertex in the Airy stress polyhedron, there is an i amount of edges connected 

to it, depending on its location in the mesh. By selecting a point, each of these edges 

is identified, and sorted counter-clockwise. By sorting it, it is ascertained that the force 

polygons are drawn in the right order. Each force line consists of a front and a back (or a 

head and a tail), and by drawing each next force from the head of the previous one, we 

get a closed force polygon as a result. The angular defect in radians gives the length of 

the vectors, so their length corresponds with the force as it does in graphic statics. 

5.2.2 RESULTS

Three examples of head-to-tail diagrams created with the parametric tool are given 

in Figure 5.19. They were all created from the Airy stress function from the M̄-hill of 

the simply-supported rectangular plate 4.2.2. This case is known to have tension. The 

first example was created from a vertex near the centre of the Airy stress function. We 
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can observe that only compression occurs in this system, since all angles are obtuse 

(between 90 and 180 degrees). This means that none of the vectors were flipped, so 

no tension is present. Later in this chapter we see that this shape is almost equal to 

that of the reciprocal figure created by the tool from 5.1.2. The second example shows 

a combination of compression and tension. Such shapes could not be formed by the 

tool for reciprocal figures. This is the same for the third example. The diagram is self-

intersecting, which we cannot construct a surface from. 

Creating the complete projected dual polyhedron can be done as explained before 

in 3.5.1 (Figure 3.22). This is easily done for vertices in which only compression takes 

place. We have done so for the example in Figure 5.20. From this exercise a number of 

conclusions can be drawn. The centre force polygon is exactly equal in size and shape 

as the projection of the centre face of the reciprocal figure (Polyhedron B). From the 

centre outward, a discrepancy in the shape and size between the force polyhedron and 

Polyhedron becomes visible. This could be a result of the fact that the force polygons 

are projected onto a horizontal plane, assuming that the 'vertical' stress resultant is 

actually vertical, and not perpendicular to the Airy stress surface. This occurrence should 

be studied further in a future research in order to better understand both diagrams. For 

now, it appears to be a reasonable approximation, and the differences are small. 

In each force polygon, there is also a tiny gap between the head of the last vector and 

the tail of the first (so small that it is not visible in the figure). This means that they do 

not close completely and are thus not completely in equilibrium. Now, the Airy stress 

Figure 5.19: Three examples of head-to-tail diagrams created with the tool
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function is based on a projected load that is evenly distributed across the shell surface. 

The force polygons, however, assume discretised stress resultants (like the process 

explained in Figure 3.24). The stress resultants are just an approximation of the real 

situation, likely causing this defect In 5.2.3, this issue will further be analysed. 

The force polygons of vertices in which tension occurs are indicated with a blue 

colour. Just one side is displayed, but since this is a symmetrical case, all edges have 

similar polygon formations. Since tension occurs in these areas, it is difficult to create a 

coherent force polyhedron here. At these locations, the force polygon is trimmed along 

a parabola-like shape. 
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5.2.3 VALIDATION

In 5.2.2 it was found that the individual force polygons did not form fully closed loops. It 

was stated that this was possibly a result of the discretisation of the Airy stress function. 

In this section, a simple known case is analysed with use of the parametric tool, and the 

results are compared with the theory. 

Consider a simply-supported beam as in Figure 5.21. The length l of the beam is 

6m and the height is 1 m. It is subjected to an evenly distributed load p = 1 kN/m. The 

general formula for the Airy stress function of a simply-supported beam subjected to a 

distributed load is given in [5.1] (Beranek, 1974). After introducing the values for l, h and 

p into [5.1], we get [5.2]. 

1
8

36 4
36

2 3 13
2

3 2h x y y

p
h
l x y hy h

8
4 2 33

2 2 3 2 3( )( ) [5.1]

[5.2]

The Airy stress function can be plotted in an x,y,ϕ-coordinate system, which results in the 

Airy stress surface (Figure 5.22). The result is a smooth surface, just like the Airy stress 

surfaces that were generated with the tool of Riemens. We can discretise this surface 

by imagining a grid of 1 x 1, and triangulating that grid in order to form planar surfaces 

(Figure 5.23). By discretising the Airy stress surface, the continuous beam is discretised 

6m

0

p

x

y

1m

Figure 5.21: Simply supported beam subjected to a distributed load p
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too. The beam can then be considered a lattice girder like in Figure 5.24. The distributed 

load p is divided into point forces F acting on each vertical bar. The division of forces is 

given in Figure 5.24, where the forces with a minus sign represent bars in tension, and 

those with a plus sign represent compression. Following 5.2.1, the normal forces in a 

bar can be calculated by measuring the angle between the two corresponding surfaces 

in the Airy stress function. 

In order to validate if the angles in the triangulated Airy stress function return the right 

forces, they will be calculated with the parametric tool and then compared with the 

distribution in the lattice girder. The surfaces out of the bounds of the beam are 

modelled by hand following the tangents of the initial Airy stress function. For each 

plane in y-direction this gives 
z
x

0 . We are able to calculate each angle corresponding 

with the bar forces using the tool. The results are shown in Figure 5.25. 

Let us compare the results in Table 5.1. We find that for every negative (tensile) force, a 

positive angle is returned. This effect we shall neglect for now. For every bar, the ratio 

between the force N and the angle φ is calculated. The results are all similar, with a 

1m

6m

ϕ

y

x

Figure 5.22: Airy stress function of a beam subjected to a distributed load (retrieved from: Beranek, 1974)

1m

ϕ

y

x
6m

Figure 5.23: Triangulated version of the Airy stress function of a beam subjected to a distributed load
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Figure 5.24: Bar forces in a lattice girder (retrieved from: Beranek, 1989)
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Figure 5.25: Angles between triangulated surfaces calculated with the parametric tool

Bar Force N Angle φ Ratio (N/φ)

AB 0 0.0 N/A

BC −5 0.2437 −20.52

CD −8 0.38008 −21.05

EF +9 −0.42244 −21.30

FG +8 −0.38051 −21.02

GH +5 −0.24498 −20.41

AH −1 0.04648 −21.51

BG +3 −0.14451 −20.76

CF +1 −0.04593 −21.77

DE 0 0.0 N/A

BH −5√2 0.3447 −20.51

CG −3√2 0.19779 −21.45

DF −√2 0.06218 −22.74

Table 5.1: Angles between triangulated surfaces calculated with the parametric tool
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maximum deviation of approximately 11%. This shows that the discretisation can result 

in inaccuracies. 

With this knowledge, let us use the tool to create a number of head-to-tail diagrams 

of the lattice girder to evaluate if the inaccuracy is present here too. The diagrams of 

points B, C and D are given in Figure 5.26. Each of these points returns a head-to-tail 

diagram that does not form a closed loop. The differences are similar to those of the 

diagrams created in 5.2.2. It can therefore be concluded that the discretisation causes 

this inaccuracy. 

Figure 5.26: Head-to-tail diagrams of lattice girder

point B point C point D
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5.3 TOOL RECIPROCAL FIGURE BY CONNECTIVITY

In 5.1, a thrust surface was created by creating polyhedrons from the centre outwards 

and intersecting and joining these rings together. In order to form a continuous 

polyhedron, only surfaces that form convex angles are joined. This results in a 

connectivity in Polyhedron B that is different from that in Polyhedron A, meaning that 

these are technically not reciprocal to one another. The regenerated mesh in Figure 5.7 

shows this occurrence. In Figure 5.20 it is shown that this approach results in a figure 

with only compression through the edges, and that data about tension in the structure 

gets neglected. In this section, an alternative approach is taken in order to generate a 

complete reciprocal figure; the connectivity between vertices in Polyhedron A is used in 

creating Polyhedron B.

5.3.1 CONNECTIVITY

We already established the three-dimensional geometrical duality between a point and 

a plane, a line and a line, and a plane and a point in two reciprocal figures. Now, from 

these dualities we can also derive dual connectivities. In this, a duality exists between 

the connectivities of again: a point and a plane, a line and a line, and a plane and a point 

(Konstantatou, D'Acunto, & McRobie, 2018). If two points of one diagram are connected 

via an edge, then the corresponding faces of the reciprocal figure intersect and share a 

common edge. 

From this it can be concluded that by identifying the connectivity between vertices in 

Polyhedron A, we can determine which faces intersect in Polyhedron B. If the intersection 

between two faces from two connected vertices is calculated, we find the corresponding 

edge in Polyhedron B. Since the edges meeting in a vertex in Polyhedron A form 

the bounding edges of a face in Polyhedron B, these faces can now be determined. 

This occurrence is shown in Figure 5.27. When we assess the highlighted triangle for 

instance, we find that it is created by connecting vertices 1, 3 and 4. The bounding edges 

of this triangle are clockwise c, l and d, which correspond to edges C, L and D in the 

reciprocal figure. Naturally, this exercise can also be carried out the other way around; 

vertex 9 is connected to vertices 2, 1 and 8 clockwise by edges j, a and i. These vertices 
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correspond respectively with faces II, I and VIII. The edges enclosing these faces are 

reciprocal to the edges connecting the vertices in the initial figure. 

5.3.2 PARAMETRIC TOOL

The knowledge from 5.3.1 can now be applied in a parametric tool to construct 

the complete reciprocal figure of the Airy stress function, taking both tension and 

compression into account. Equal to the parametric tool from 5.1, the input data is a 

point cloud of the Airy stress function. This point cloud can be computed by a tool such 

as that of Riemens (that was used in most previous examples), but can in simpler cases 

also be derived from a formula. Any shape can hereby be used, as well as any boundary 

condition. After all, boundary conditions such as the support cases, load cases and the 

geometry all influence the outcome of the Airy stress function. 

Methodology

The process starts again with creating a triangulated mesh from the vertices of the Airy 

stress function, making sure that all faces are planar. Equal to the parametric tool from 

5.1, the vertices are mapped to planes through the formula from [3.37]. The result is a 

list of surfaces Fi'. 
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Figure 5.27: Connectivity between reciprocal figures
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In order to create the reciprocal figure based on connectivity, first a connectivity matrix 

must be established. The Grasshopper cluster governing this process is given in 

Appendix E. The triangulated Airy stress mesh consists of vertices and faces, the faces 

of which each have three bounding edges. First, all edges of the mesh are identified, 

and related to each point in the Airy stress point cloud. This results in the corresponding 

edges for each point, the number of which depends on its valency. 

Once it is established which point lies on which edge, it can also be determined which 

two points lie on a single edge. By doing this for all points, we get a matrix with the 

connectivity CV for each vertex in the Airy stress mesh. Subsequently, these points are 

sorted clockwise, giving us the sorting indices with which the reciprocal planes are later 

sorted too. Using these sorting indices, the connectivity matrix is sorted accordingly. 

Each plane reciprocal to the Airy stress vertices is then intersected with its corresponding 

planes. The result is a number of 'infinite' edges, intersecting adjacent edges at vertices 

Vi'  reciprocal to the Airy stress faces Fi. Connecting these vertices with edges Ei', gives 

the reciprocal force polygon (Fi'). 

In order to obtain a better insight into the structural behaviour of the assessed structure, 

it is helpful to make a distinction between edges that act in compression and those that 

act in tension. It was explained in 5.2.1 that a convex angle between two faces in the Airy 

stress mesh indicates a mutual edge in compression, and a concave angle indicates a 

mutual edge in tension. In order to determine the convexity of an angle, a line is drawn 

between the centroids of two corresponding faces. If the line is located underneath the 

Airy stress mesh, then the angle is convex and the edge thus acts in compression. If the 

line is located above the mesh, then the angle is concave and thus acts in tension. 

A process diagram of the tool is given in Figure 5.28. See Appendix F for an image of 

the full Grasshopper script.
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Figure 5.28: Process diagram of parametric tool to generate reciprocal polyhedron via connectivity

START

END
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reciprocal to vertices Vi
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surface
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extract mesh faces
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5.3.3 RESULTS

In order to validate the performance of the parametric tool, a number of Airy stress 

functions with various geometrical properties are assessed. From each of these 

functions, the reciprocal figure is generated. By comparing the individual results, a 

better understanding is acquired of the process of the tool. The following geometries 

will respectively be analysed:

 — Square shell on semi-rigid edges

 — Rectangular shell on four supports on four supports

 — Airy stress function from a dome-like structuree

For each case, images are taken from various angles in order to give comprehensive 

insight into the process of the parametric tool. Polygons that are only in compression 

are shown separate to polygons consisting of edges in both tension and compression. 

Again, the angular defect between two faces sharing an edge Ei in the Airy stress 

mesh determines the force in its reciprocal edge Ei' (as explained earlier in 5.1.2). So, 

each force in the form polyhedron can be calculated, where tensile forces are given a 

negative sign. To provide better insight into the mechanical behaviour of each structure, 

compressive forces are visualised in blue, and tensile forces in red. The magnitude of 

each force determines the tint; ranging from white for a force of zero to respectively 

blue or red for higher forces.

Some additional images of the results generated by the tool are attached in 

Appendix G as well as the reciprocal figure of a three-valent mesh. 

C H A P T E R  5 :  P a r a m e t r I c  d e S I G n  t o o l

1 3 5



Square shell on semi-rigid edges

Consider the M̄-hill of a simply-supported square plate that is subjected to a distributed 

load, of which we compute the Airy stress function (Figure 5.29). The angles between 

adjacent faces in the Airy stress mesh give the forces in the reciprocal figure. The 

magnitude of these forces is visualised in Figure 5.30. It should be noted that the edges 

in the Airy stress mesh are perpendicular to those in the reciprocal figure. It can be 

observed that only compressive forces occur in the centre of the structure, but that a 

combination of compression and tension arises towards the supports. At the locations 

where tensile forces start occurring, the reciprocal figure appears to flip its direction 

(Figure 5.31). All polygons meet in one point, at an angle of 45 degrees (a result of 

scaling the figure by 1/10).

Many polygons in which tensile forces occur are self-intersecting. It is difficult to imagine 

these shapes as actual shell geometry, which appears more logical for the polygons that 

are in compression only. Figure 5.32 shows this difference in a clear manner. Now, when 

analysing Figure 5.33, the generated figure is similar to a tensegrity structure, where 

compressive edges are bars and tensile edges are cables. This assumption should later 

be verified.

a

b

Figure 5.29: M̄-hill square plate (a), and corresponding Airy stress mesh (b)
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Figure 5.30: Compression (blue lines) and tension (red lines) in Airy stress mesh

Figure 5.31: Side view of reciprocal figure of Airy stress from square shell on semi-rigid supports
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Figure 5.32: Top view reciprocal figure of Airy stress from square shell on semi-rigid supports 
with compression-only polygons (left) and tension and compression polygons (right)

Figure 5.33: Reciprocal figure of Airy stress from square shell on semi-rigid supports
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Rectangular shell on four supports

A simple rectangular elpar shell is created by means of the parabolic function from [5.3] 

with dimensions of 20 x 30 m (Figure 5.34a). It is simply-supported on four corners and 

subjected to a projected load. Computing the Airy stress function of this case gives 

Figure 5.34b. 

Computing the reciprocal figure of this Airy stress mesh gives Figure 5.35. The grey 

colour in the centre indicates very low compressive forces, so here the structure shows 

shell-like behaviour. However, towards the supports corners, large tensile forces occur. 

Considering that it is supported on four corners, as opposed to the semi-rigid edges 

from the previous example, these higher tensile forces can be explained.

Figure 5.34: Rectangular elpar shell (left) and its corresponding Airy stress mesh
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Figure 5.35: Reciprocal figure of Airy stress from rectangular shell on semi-rigid support; compression-
only (top left), tension and compression (top right) and holistic image (bottom)

S h e l l  S t r u c t u r e S

1 4 0

compression

tension



Airy stress function from a dome-like structure

In both previous examples tensile forces occur towards the corners, resulting in 

geometry that is difficult to interpret as form diagram. The part that works purely in 

compression, however, appears to have a circular footprint. It is therefore interesting to 

create the reciprocal figure of a dome-like structure to get a better understanding of the 

process.

A conceptual Airy stress mesh with a parabolic section is created as in Figure 5.36. Since 

there are no convex angles between planes, we can expect the reciprocal figure to 

solely acct in compression. Calculating the angle and colouring the Airy stress edges by 

magnitude gives Figure 5.37. Its reciprocal figure is shown in Figure 5.38. The tangential 

edges appear to be uniform towards the edges. The radial forces are minimal in the 

centre, but increase outwards. At the supports, a number of lines go towards a focal 

point f. It is likely that these forces represent the resultants at the supports.

Figure 5.36: Meshed Airy stress function of a dome-like structure
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Figure 5.37: Top view reciprocal figure of Airy stress from dome-like structure

Figure 5.38: Reciprocal figure of Airy stress from a dome-like structure
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5.3.4 DISCUSSION OF THE RESULTS

Three different Airy stress functions were used to create the reciprocal figure from. A 

number of conclusions can be drawn from analysing the results, that are discussed here.

Edges in tension

Different from the first proposed tool, this tool is capable of not only converting 

synclastic, but also converting anticlastic parts of the Airy stress function. These edges 

are considered to be in tension in the reciprocal figure. When producing the head-to-tail 

diagrams via the second tool, it was already observed that polygons in tension flipped in 

direction, resulting in a self-intersecting polyhedron in projection. The same occurrence 

is observed upon creating the reciprocal figure with this tool. Creating a continuous 

polyhedron appears therefore not to be possible in a single process. It appears that the 

'tensile' polygons are drawn in the correct plane, but in the wrong direction. When we 

look at the reciprocal figure of the circular Airy stress function, all polygons that meet at 

the focal point f, could well be imagined to continue in the other direction (or form the 

support reactions). 

Force density

When comparing the forces Ni derived from the Airy stress function to the length li' of 

each edge, it appears that this ratio varies across certain structures. In other words, the 

force density is not equal. From this it can be concluded that the reciprocal figure is not 

a force polyhedron, since the lengths of the edges do not correspond with the forces 

going through them. In order to create the force polyhedron, the force density must be 

distributed evenly. In order to do so, the length of each edge Ei' in the reciprocal figure 

must be scaled in correspondence with the normal force Ni that is related to it. 

Scaling

Since the forces through each edge are known, the horizontal reaction forces can 

theoretically be determined. By means of the complementary energy, it is then possible 

to determine the optimal scale of the structure. This thesis does not elaborate further on 

how to execute this.  
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5.4 CONCLUSION

In 5.1, a parametric tool has been proposed with which the force diagram of a shell 

surface could be made. It makes use of the mathematical notion of reciprocal figures. 

This parametric tool is used on the Airy stress function, which could be computed with 

the tool from previous graduate Kris Riemens. By creating a plane-faced polyhedron 

from this stress function, the reciprocal force diagram could be generated. The 

parametric tool relies on the discretisation of the stress function, so the result is always 

an approximation. 

A number of force diagrams have been created using the tool. Each result showed a 

network of edges through which only in-plane forces would travel. This gives insight into 

the possible occurrence of tension, since the geometry could be compared to the input 

geometry. This showed too, however, that some information was lost in the reciprocal 

figure. Especially for shell structures that showed imperfect shell behaviour, a lot of the 

geometry could not be converted. In this process, the connectivity between vertices was 

re-established, resulting in a continuous polyhedron. 

The force diagrams created by means of the tool are of arbitrary scale. This is 

characteristic of shell structures, so additional information is needed to determine the 

optimal scale. Also, since the generated force diagram is of an indeterminate character, 

the scale between the different edges should be evaluated. Taking a three-valent Airy 

stress mesh does result in a determinate structure.

Since the force diagram is just a summation of single force polygons, the shell could 

also be assessed by creating force polygons from the Airy stress polyhedron. For this, 

an additional parametric tool was created. This tool gives insight into shell parts that are 

in tension, and creates a more holistic force diagram. By combining these two tools, the 

optimal scale of the force diagram can potentially be created.

Ultimately, a parametric design tool was proposed that creates the reciprocal figure of 

the Airy stress function via connectivity. It was proven here that the connectivity between 

two vertices in the first polyhedron, is reciprocal to the connectivity between two faces 

in the second. It also showed, however, that creating a reciprocal figure from a partially 
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anticlastic shell structure resulted in a polyhedron that is self-intersecting in projection. 

Such polyhedrons were still in equilibrium, so could be considered a force polyhedron 

rather than a form diagram. 
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6  C O N C L U S I O N

6.1 CONCLUSIONS

This research started with the question: 'How can a better understanding of the relation 

between geometrical and mechanical properties of shell structures be formulated and 

result in an intuitive and graphical design tool for (structural) designers?' In order to 

provide a conclusive answer, first a theoretical framework was created. This framework 

comprised of basic understanding of curved geometry, differential equations of shells, 

and established boundary conditions that are used throughout this thesis. Then, a 

number of topics were discussed that were more specifically related to the design and 

evaluation of shell structures. 

In 1.4.2, a hypothesis was stated as follows: 'An analogy is present between (1) the 

geometry of a moment hill of a plate and (2) the thrust surface of a shell subjected to a 

distributed load, and their boundary conditions are mutually related.' This analogy has 

been thoroughly assessed. In this process, an attempt was made to relate flat plates to 

their shell equivalents. The rainflow analogy proved helpful in the understanding of the 

structural behaviour of each shell. This resulted in a number of proposals for analogies 

between two-dimensional geometries and their three-dimensional shell equivalents.

Additionally, the mathematical notion of reciprocal figures has been studied carefully, 

and was implemented in combination with the Airy stress function. It was established 

that the reciprocal figure of the Airy stress polyhedron was the force diagram of a 

shell structure, and the expectation was stated that combining these would allow for 

the design and assessment of shell structure geometry. Graphic statics proved to be 

applicable here, and provided a better understanding of reciprocal figures in general. 

Finally, a relationship between the moment hill of a flat plate, the Airy stress function, 

and the thrust surface of a shell was presented.

A parametric tool has been proposed with which the force diagram of a shell surface 

could be made using the notion of reciprocity. This parametric tool is used on a 

discretised approximation of the Airy stress function. A number of force diagrams have 

been created using the tool. Each result showed a network of edges through which 

C H A P T E R  6 :  c o n c l u S I o n

1 4 7



only in-plane forces would travel. This showed too, however, that some information was 

lost in the reciprocal figure. Especially for shell structures that showed imperfect shell 

behaviour, a lot of the geometry could not be converted. Also, since the generated 

force diagram is of an indeterminate character, the scale between the different edges 

should be evaluated.

Another tool was created to form individual force diagrams from the stress resultants 

of Airy stress functions. Since the force diagram is just a summation of single force 

polygons, the shell could also be assessed by creating these from the Airy stress 

polyhedron. The tool gave insight into shell parts that were in tension, and created a 

more holistic force diagram. By combining these two tools, the optimal scale of the 

force diagram can potentially be created.

Ultimately, a parametric tool has been created that allows for the creation of holistic 

reciprocal figures of any Airy stress function. This tool makes use of the connectivity 

between vertices in the Airy stress mesh, which is reciprocal to the connectivity of 

planes in the generated figure. A number of examples were assessed, each resulting 

in a closed polyhedron. The parametric tool allows for visualisation of the magnitude of 

the forces through the structure, as well as separating compression and tension. In cases 

where tension occurs, however, a reciprocal figure is created with a self-intersecting 

projection. A continuous figure can only be created for Airy stress functions in which 

solely compression occurs.

To conclude, let us once again review the research question. A clear relationship 

between the moment hill of a flat plate and its shell equivalent was established. By 

using the Airy stress function and its reciprocal figure, this relationship could further be 

exploited into the design and assessment of shell structures. For this, three parametric 

tools were generated that allow for the design of shells, but also gives insight in the 

force trajectories. For now, the scale of the generated shell is determined arbitrarily, but 

this could be elaborated further in a following research project. Since the forces in the 

edges are known, the horizontal resultants in the supports can also be determined, and 

with that the optimal scale.
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6.2 RECOMMENDATIONS

Analogies were proposed between square plates and shells and circular plates and 

shells. Other geometric shapes such as asymmetrical cases for instance, have not been 

within the scope of this research. It could, however, be interesting to research whether 

the same analogies exist in different shapes. Similarly, different boundary conditions 

could also be assessed in future research.

In the creation of the moment hills of twistless cases, DIANA FEA was used. It was 

already discussed that this could have led to inaccuracies in the shell geometry. In a 

further research, a more accurate method to create shells from twistless plates, such as 

the FDM could be explored. These shells are expected to show even better shell-like 

behaviour.

The proposed parametric tools showed good performance in the creation of a 

reciprocal figure from a convex Airy stress mesh, but posed challenges in case of 

concave parts. Since the concave parts correspond with tensile forces in the structure, 

interpreting the results proved to be difficult. The force polygons in which tension 

occurs are often self-intersecting, and are difficult to imagine as structure. Also, these 

polygons flipped towards the centre point of the figure. A lot of research can still be 

done on this occurrence, and on how to create a continuous reciprocal figure from any 

Airy stress function. 
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6.3 REFLECTION

Graduation process

The Building Technology master track is positioned between architecture and civil 

engineering, and incorporates a variety of courses. Across these courses, a design 

aspect - which is closely related to architecture - is manifested. And with that, the 

reasoning behind all design decisions is required to be substantiated. The engineering 

aspect, whether in building physics, material science or structural mechanics, forms the 

foundation of any of these design decisions. This combination makes the course unique, 

as it enables its graduates to operate in between architecture and engineering practice. 

Throughout my university career I developed an increasing interest in the influence 

technology can have on architectural decisions. This is why I decided to study Building 

Technology, and later why I chose to graduate in the track of structural design. The topic 

of shell structures is relevant for architectural applications, but also helps in exploiting 

the theory behind its mechanics. In that, a clear mix between design and engineering 

is found by design through research. In other words, my graduation project explores 

the mechanics behind shell structures, to better understand how to design them. The 

parametric tool, which is a product of the project, helps in making these mechanics 

insightful. Thus, the design and evaluation of shell structures becomes more accessible 

and understandable to the structural designer or architect.

A number of research methods have been employed throughout. The research process 

started with a broad literature study, that ranged from basic understanding of curved 

geometry to thorough study on complex mathematics. Later, iterative testing was 

done by means of finite element analysis, in order to get a better understanding of the 

mechanics of shell structures. Part of the process was envisioned early on, but a lot of 

the methods developed along the way. A combination between theory and application 

remained present throughout. This proved to be a very effective work-flow, as it allowed 

for the understanding of otherwise complicated matter. In hindsight, the planning has 

broadly been followed. Some changes were made along the way, as the direction of the 

project developed gradually.
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Societal impact

Over the years, a lot of research has been done on shell structures. The thrust surface 

proved to be helpful in understanding the force flow through the structure. The shape 

of this surface, however, was considered complicated to determine. Philippe Block and 

his team proposed a method called the Thrust Network Analysis, but this method still 

produces many possible surface geometries, and not one optimal case. The method 

also turned out very complicated and tedious to use.

In my project, I propose the use of the Airy stress function in creating the thrust surface, 

a relation (between form and force diagram) that was already observed in 1870 by 

Maxwell. This allows to both analyse existing shell structures as well as to design new 

shells. Further research into the moment hill of certain plates allowed for the generation 

of better stress functions. Little experience exists on the application of the Airy stress 

function in assessing and designing shell structures. In my graduation proposal, this 

possibility has been further explored in combination with the reciprocal figure. The Airy 

stress as the form diagram and the thrust surface as the reciprocal force diagram is an 

idea not executed before. At the same time, applying graphic statics to the Airy stress 

enabled extra possibilities in exploiting this relationship. This provided extra insight 

into the mechanical behaviour, i.e. where tensile stresses occur, and how these can be 

minimised.

Shell structures only comprise a small part of the built environment. They can be 

considered a niche element in the diverse sectors of structural design. Shell structures 

are, however, significant, in that they require practically all that is known of structural 

mechanics to come together. In order to understand the behaviour of shell structures, 

we must understand all these aspects. At the same time this means that our findings on 

shell behaviour are applicable across the entire discipline, potentially presenting new 

architectural possibilities.
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APPENDICES

APPENDIx A: PARAMETRIC TOOL LIANG

Figure A.1: Grasshopper script of parametric tool from Liang (2012)
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APPENDIx B:  LOOPING OPERATION TO CREATE POLYHEDRON B

APPENDIx C: RELATE TRIMMED SURFACES TO AIRY STRESS VERTICES

Figure C.1: Grasshopper script that connects created surfaces back to initial vertices from the Airy stress mesh

Figure B.1: Grasshopper script looping operation intersecting rings with one another
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APPENDIx D: DETERMINE DUALITY BETWEEN EDGES

APPENDIx E:  DETERMINE CONNECTIVITY BETWEEN VERTICES

Figure E.1: Grasshopper script that determines connectivity between vertices in a mesh

Figure D.1: Grasshopper script that determines duality between edges of the Airy stress mesh and the reciprocal figure
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APPENDIx F:  RECIPROCAL FIGURE VIA CONNECTIVITY

Figure F.1: Grasshopper script reciprocal figure via connectivity
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APPENDIx G: ADDITIONAL RESULTS PARAMETRIC TOOL CONNECTIVITY

Figure G.1: Reciprocal figure of Airy stress function of square shell on semi-rigid edges with compression-only polygons

Figure G.2: Reciprocal figure of Airy stress function of square shell on semi-
rigid edges with tension and compression polygons

Square shell on semi-rigid supports
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Figure G.3: Top view of reciprocal figure of square shell on semi-rigid supports with only edges in compression

Figure G.4: Top view of reciprocal figure of square shell on semi-rigid supports with only edges in tension

1 7 1



Figure G.5: Short side of reciprocal figure of Airy stress from square shell on semi-rigid supports

Figure G.6: Long side of reciprocal figure of Airy stress from rectangular shell

Rectangular shell
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Figure G.7: Top view of reciprocal figure of rectangular shell with only edges in compression

Figure G.8: Top view of reciprocal figure of rectangular shell with only edges in tension
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Dome-like structure

Figure G.9: Side view of reciprocal figure of Airy stress from dome-like structure
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Figure G.10: Conceptual three-valent Airy stress polyhedron

Three-valent Airy stress mesh

Figure 5.39: Three-dimensional view of reciprocal figure of three-valent Airy stress mesh

1 7 5



Figure G.11: Short side of reciprocal figure of three-valent Airy stress mesh

Figure G.12: Long side of reciprocal figure of three-valent Airy stress mesh

Figure G.13: Top view of reciprocal figure of three-valent Airy stress mesh
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