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ARTICLE INFO ABSTRACT

Dataset link: https://github.com/Marine-Struct
ures-Design-Lab/DesignSpace_Fragility/release
s/tag/Ocean_Eng2

Design space reduction decisions made in set-based design use perceptions of feasibility to eliminate unfavor-
able design solutions from consideration. Perceptions are formed with incomplete information, leaving them
susceptible to change if new and conflicting information is made available later in the design process. This
paper considers how new information originating from newly sampled design points can alter perceptions
of feasibility and introduces a probabilistic and an entropic strategy for quantifying the risk of prematurely
eliminating potential design solutions. Emergent designs of automated set-based design simulations gauging

Keywords:
Set-based design
Space reductions

Information this risk are evaluated against ones neglecting it for an analogous design problem. The Python-based simulations
Fragility have different disciplines randomly explore their design spaces and generate reasonable space reduction
Probability propositions, and then they give a design manager the opportunity to check the fragility of reduced design
Entropy

spaces before finalizing any reductions. Gathered results indicate that both the probabilistic and entropic
models are able to effectively delay design decisions and help disciplines maintain a higher diversity of design
solutions while designer understanding is still growing. Both models effectively delay risky space reductions
and encourage a more gradual reduction of design spaces compared to simulations not including fragility
checks. Furthermore, as the entropic model takes a more holistic approach by working with the history of
perceptions formed in a discipline’s design space rather than just the newest perceptions, space remaining and
diversity results show it slightly outperforming the probabilistic model.

1. Introduction to keep design spaces open. Moreso than any other design approach,

successful implementation of SBD depends on robust knowledge gen-

Design decisions made within the web of interdependencies and
requirements ingrained in the marine design process produce complex
knowledge structures. While different methods have been proposed
to characterize the knowledge generation accompanying these deci-
sions (Braha and Reich, 2003; Hatchuel and Weil, 2009; Shields, 2017;
Goodrum, 2020), each one seeks to track and better understand the
emergence of (or lack thereof) design solutions. Decisions made in set-
based design (SBD) focus on eliminating undesirable solutions from
consideration rather than isolating and iterating on discrete solutions.
For that reason, SBD decisions build up these knowledge structures
more gradually, but they also leave reduced design spaces vulnerable to
emergent design failures if the perceptions and information supporting
them changes. Moreover, when design failures are imminent, designers
using a set-based approach cannot backtrack and reopen design spaces
in the same manner that iterative approaches can tweak a design be-
cause of the considerable time and resources that are already expended

eration. Providing designers with a tool to understand the risk for
new knowledge to contradict presently generated knowledge before
eliminating potential design solutions from consideration would assist
them in making much more informed and reliable space reduction
decisions.

Using iteration to make decisions and generate knowledge is an
understood reality of many complex design problems (Wynn and Eck-
ert, 2017). In an effort to promote an efficient flow of information
between iterative tasks, different studies working to enhance both the
allocation of resources (Smith and Eppinger, 1997) and communicative
pathways (Mihm and Loch, 2006; Parraguez et al., 2015) between said
tasks have been investigated. As these strategies are improved upon
to assist with iterative design decisions, they can fixate a designer’s
knowledge on one decision path, restricting the solutions that can be
attained through others (Page, 2006). Examples of this fixation are
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shown in Van Houten et al. (2022) where viable solutions within a
discipline’s design space are significantly limited by the path chosen. In
some cases, designers can lose their influence altogether if a finite set
of absorbing paths constrain the knowledge structures generated from
these temporal decision processes (Niese et al., 2015; Kana, 2017).

A consequence of becoming overly fixated on a particular deci-
sion path is leaving a design susceptible to emergent design fail-
ures. Dong (2017) discusses the prevalence of this problem in product
development when companies introduce innovative technologies into
their product’s existing functional architecture. He argues that integra-
tion issues arise before the establishment of their product’s physical
architecture and should instead be attributed to the solution prin-
ciples the design team committed to during development. He and
others (Shields and Singer, 2017; Goodrum, 2020) insist that under-
standing emergent design failures requires a shift in viewing them
from a product-centric to a knowledge-centric perspective. As Goodrum
(2020) explains, a design decision is a commitment to a knowledge
structure, and how those decisions affect future design activities will
vary depending on how new knowledge integrates with existing knowl-
edge. In his work, Goodrum (2020) attempts to identify when existing
knowledge and new knowledge become incompatible by first mapping
out the knowledge-information networks produced through previous
decisions and design activities, and then by tracking various entropy-
based metrics across subsequent activities. His approach shows a lot
of promise, but its reactive nature limits its application to iterative
design approaches embracing rework rather than convergent design
approaches avoiding it.

SBD is one such convergent design approach that protects against
emergent design failures stemming from path fixation by having design
decisions focus on eliminating undesirable regions rather than making
premature commitments to hard-set characteristics. By delaying com-
mitments and keeping variable sets open, SBD decisions create low-risk
knowledge structures (Shields and Singer, 2017) and allow designers to
maintain influence over a design problem while their understanding of
it grows (Bernstein, 1998; Singer et al., 2009). Advantages of SBD in-
clude basing the earliest and most critical design decisions on acquired
data, promoting institutional learning within the design environment,
encouraging concurrence in the design and manufacturing process, and
supporting a search for more globally optimal designs (Ward et al.,
1995). These advantages have fueled US Navy interest in making ship
design and analysis tools compatible with SBD methods (Doerry, 2012)
and applying SBD to various projects such as the Ship to Shore Connec-
tor (Mebane et al., 2011), Amphibious Combat Vehicle (Burrow et al.,
2014), and Small Surface Combatant (Garner et al., 2015). Despite
the advantages, it is still either infrequently applied to problems in
industry or generally confined to introductory design stages (Toche
et al.,, 2020). Singer et al. (2009) claim SBD’s biggest obstacle in
naval design coincides with current government acquisition policies
conforming to point-based methodologies. Other hurdles are summa-
rized in McKenney and Singer (2014) and Gumina (2019) and involve
having to manage misconceptions about implementation and lacking a
regimented process for implementation.

The SBD implementation process is multifaceted and has disciplines
individually explore areas of their design spaces to accumulate infor-
mation, form perceptions of preferred and nonpreferred areas from
this information, and propose space reductions from these percep-
tions (Bernstein, 1998). A depiction of an example design space is
shown in Figure 8 of Andrews (2018) where space reductions refer
to reducing the range of potential design solutions being left open.
A Design Integration Manager (DIM) will then consider the space
reductions proposed and the information supporting them to finalize a
conceptually robust set of space reductions across all disciplines (Singer
et al., 2009). Each of these later steps are directly tied to the in-
formation gathered at the beginning, so effective decision-making in
SBD necessitates robust information. Gembarski et al. (2021) evaluates
the robustness of information in decision-making by using Bayesian
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probabilities to model uncertainties that originate from a scarcity of
information. Sypniewski (2019) takes a different approach and assesses
how the inherent biases of information that has already been gath-
ered can lead to inadequate characterization of a design space and
misinformed decisions. As the robustness of information pertains to
decisions made during SBD specifically, research is limited. Doerry
(2015) presents a method for measuring the diversity of information
in a design space to increase the likelihood of viable solutions being
found later; however, this method intends to insure reduction decisions
against uncertain information rather than understand the uncertainty
permissible for those decisions to remain advisable. As it currently
stands, there is no way for a design manager to track gathered infor-
mation in SBD for the purposes of proactively gauging the risk of new
knowledge to integrate with existing knowledge before committing to
a space reduction decision.

The purpose of this paper is to present two new approaches for
quantifying the risk of design space reduction decisions in SBD by
considering the potential for new information to alter perceptions of
feasibility and incite emergent design failures. In the following sections,
a brief background on SBD and a design space’s fragility (or the
vulnerability of its perceptions to new and conflicting information) will
first be provided. Next, frameworks built for assessing the fragility of
design spaces and quantifying the risk of space reduction decisions from
a probabilistic and entropic approach will be explained. The developed
fragility frameworks differ in the extent to which they utilize previously
formed perceptions to quantify risk and are intended to plug in at
the very end of the space reduction process. With the frameworks
established, a polynomial design problem and an autonomous SBD sim-
ulation are introduced for running experiments that compare emergent
design spaces with and without these fragility checks. Results gathered
from these experiments illuminate the shifting totality and diversity of
potential design solutions maintained throughout the design process
when fragility checks are made.

2. Set-based design

SBD is a convergent design approach that seeks a final solution
through the gradual elimination of design spaces rather than cy-
cles of rework and refinement synonymous with most iterative ap-
proaches. Bernstein (1998) describes the ideal way SBD should be
performed with illustrative help from Fig. 1 developed by Dr. William
Finch. In the early stages of SBD, disciplines individually explore
areas of their design spaces and expand their ranges of potential
design solutions. From a marine design perspective, these disciplines
may consist of (but not be limited to) a weights division negotiating
lightship and deadweight tonnage allotments along with center of
gravity positioning, a stability division considering allowable beam
and vertical center of gravity pairings, and a structural division con-
templating various plate thickness and stiffener sizing schemes. As
potential solution spaces are identified by each discipline, areas of
overlap between their interdependent design spaces that may satisfy all
requirements of the design problem become pronounced, and designers
focus their exploration efforts in these more promising areas. The
weights division may have its own displacement and trim requirements
to satisfy, but the vertical center of gravity of a load case cannot
prevent the stability division from satisfying intact or damage stability
requirements, and the lightship allotment must be sufficient for the
structural division to satisfy material yielding requirements within a
specific safety factor. While this understanding of potential design
solutions and trade-offs grows, disciplines propose space reductions
that would eliminate nonpreferred areas of their design spaces. It then
becomes the DIM’s responsibility to consider those proposed reductions
and finalize a universal set of reductions for all disciplines to abide by
on the grounds of infeasibility (eliminating design solutions that cannot
satisfy requirements) or dominance (eliminating design solutions not
preferred by a majority of disciplines). This process of elimination is
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Fig. 1. Ideal convergence of the SBD process through gradual elimination of nonpre-
ferred areas (Bernstein, 1998).

intended to continue until the disciplines have converged on a final,
desirable solution satisfying all design requirements.

Through this process, a major principle of SBD is delaying decisions
until the consequences of those decisions are understood (Ward et al.,
1995; Singer et al., 2009). During discussions with managers utiliz-
ing “set-based concurrent engineering” at Toyota, Ward et al. (1995)
learned that a critical aspect of their job is to discourage engineers from
making important design decisions too soon. They believe it is neces-
sary to delay decisions to ensure all the requirements of the customer
are met while also ensuring that the design is manufacturable. Bernstein
(1998) and Singer et al. (2009) discuss the benefits of delaying design
decisions from the perspectives of accrued knowledge, committed costs,
and stakeholder influence. They explain that knowledge of a design
is gathered with time as designers run analyses to build their under-
standing of the characteristics and requirements driving the process. By
delaying decisions through a set-based approach, designers can increase
the influence maintained and decrease the costs incurred until the
information and existing knowledge supporting these decisions is more
robust.

Eventually making these reduction decisions is challenging as design
spaces cannot be understood absolutely. Different disciplines often
manage large design spaces that cannot be explored completely while
tolerating analyses with varying degrees of uncertainty. Moreover, it
is common for changes in design requirements as well as the fidelity
or underlying assumptions of analyses to be introduced throughout
the design process that shift preferred and nonpreferred areas. Shields
and Singer (2017) assert that space reduction decisions create low-
risk knowledge structures while also acknowledging that SBD relies
on considerable knowledge generation and decision-making to work
effectively. In their words, “Only making decisions when the supporting
knowledge is well-understood and is unlikely to change leaves stable
knowledge to be further developed” (Shields and Singer, 2017).

This guideline is not only difficult to satisfy because of the limited
time and effort aspects, but because designers lack context altogether
over what exactly constitutes “well-understood knowledge”. Each space
reduction decision in SBD is supported by information that is incom-
plete, uncertain, and susceptible to change. When designers lack the
means to account for this uncertainty of information, their reduction
decisions may lead to exceedingly fragile design spaces, or design
spaces whose perceived feasibility is vulnerable to new and conflicting
information. In instances when new information does expose fragile
design spaces, designers using a SBD approach cannot simply rely
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on backtracking and reopening design spaces either, because their
timelines are limited by the considerable time and effort already spent
exploring those design spaces in the first place. Providing designers
with context on the robustness of their knowledge generated thus far
requires them to assess the fragility of their reduced design spaces.

2.1. Fragility and space reduction decisions

To help visualize a design space’s fragility, Fig. 2 has been created to
mirror the red, blue, and black circles in the third layer of Bernstein’s
SBD process (see Fig. 1). In Fig. 2, the perceived feasible regions of
each discipline are located within the circles. The green regions signify
perceived feasible areas of the design space for one discipline, the
yellow regions signify the same perceived feasibility for two regions,
and the orange region signifies the same perceived feasibility for all
three regions. Suppose the fragility is being assessed from the red
discipline’s perspective. One source of fragility is attributed to learning
new information that alters the perceived feasible space of the red
discipline itself, as depicted by the dashed red circle in Fig. 3. The
pink region captures the red discipline’s newly perceived feasible space,
and the grey region captures its newly perceived infeasible space. If
new information shifts the perceived feasible space such that the grey
region contains more design solutions than the pink region, then the
red discipline’s originally perceived design space was very fragile.

Another source of fragility is attributed to learning new information
that alters the perceived feasible space of an interdependent discipline,
as depicted by the dashed blue circle in Fig. 4. Suppose the fragility
is again being assessed from the red discipline’s perspective. The pink
region now captures newly perceived, shared feasible space, and the
grey region captures newly perceived, shared infeasible space. If new
information shifts the shared feasible space such that the grey region
contains more design solutions than the pink region, then the red
discipline’s originally perceived design space was again very fragile. In
both scenarios, a design space’s fragility is influenced by the negative
effect that new information has on its present perceptions.

While a design space’s fragility directly corresponds to its vulner-
ability to new information, that vulnerability can be amplified by the
particular space reductions that have previously been made. In both
Figs. 3 and 4, the DIM may have already decided to eliminate portions
of the pink region. If that is the case, disciplines would be left without
newly perceived feasible space, meaning that the grey region would
contain even more design solutions than the pink region. Designers
want to avoid space reduction decisions that lead to exceedingly fragile
design spaces, yet they must make reductions to keep the design process
moving. At each space reduction cycle, every design space is susceptible
to increases in design space fragility that can be further exacerbated by
previous reductions. By effect, there are varying levels of risk for space
reduction decisions due to the varying levels of fragility that result from
prior reductions and new information.

2.2. Originating sources of new information

In the development of solutions to complex design problems, design-
ers are compelled to explore and gain an understanding of their own
discipline’s design space, integrate the understanding and preferences
of designers from interdependent disciplines with their own, and en-
dure changing design requirements and maturing analyses throughout
the entire process. Bearing each of these challenges in mind, three
different sources of new information are worth considering when char-
acterizing the fragility of a design space: (1) newly explored design
points of one’s own discipline, (2) newly explored design points of
other, interdependent disciplines, and (3) new or updated design re-
quirements or analyses. This work only considers the first originating
source of new information, but the other two are important to keep in
mind for future developments.



J. Van Houten et al.

Fig. 2. Overlapping regions of perceived feasible spaces for three disciplines of a design
problem (Van Houten et al., 2024).

Fig. 3. Fragility attributed to design change of main discipline (Van Houten et al.,
2024).

Fig. 4. Fragility attributed to design change of interdependent discipline (Van Houten
et al., 2024).

To observe how new information originating from newly explored
design points of one’s own discipline can impact perceptions of design
space behavior, consider Fig. 5. With the information from design
points presently available in Fig. 5(a), clear regions of feasibility have
been formed for the discipline; designers of this discipline are perceiv-
ing smaller values of Variable 1 to be feasible and larger values of
Variable 1 to be infeasible. However, those perceptions shift in Fig. 5(b)
when new information originating from newly tested design points
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becomes available. Larger values of Variable 1 are still perceived as
infeasible, but designers have also learned they may have less area to
work with for smaller values of Variable 1 than they previously thought.
Before learning this new information, suppose the decision is made to
eliminate some of the smallest values of Variable 1 because (in contrast
to this discipline) other disciplines prefer large values of Variable 1 to
small values. Designers of this discipline may be inclined to approve
the space reduction thinking they still have plenty of feasible space
with which to work. Later, they would regret to learn that the space
reduction decision has limited far more feasible solutions remaining for
them than they originally anticipated.

The intent of a fragility framework will be to protect design spaces
against scenarios like the one described. DIMs may be capable of taking
proposed space reductions from disciplines and carefully assessing the
impact those reductions would have on other disciplines with the infor-
mation at hand, but they lack a tool for understanding the consequences
of those reductions if the perceptions formed from that information
changes.

3. Fragility framework

Traditionally in SBD, the space reduction decision process ends
with the set of reductions finalized by the DIM. At this point, de-
signers have explored their own design spaces to form perceptions
and propose space reductions, and the DIM has merged them together
with the information available through infeasibility- or dominance-
based decisions. As discussed though, this process, which only considers
present information, leaves reduced design spaces vulnerable to new
information.

The intent of a fragility framework is to gauge the vulnerabilities of
each discipline’s design space to new information before committing to
any space reductions. To accomplish this goal, a developed framework
will require components that address various complexities inherent to
the space reduction process. Table 1 summarizes those space reduc-
tion complexities and corresponding fragility framework requirements.
In this work, a Probabilistic Fragility Model (PFM) and an Entropic
Fragility Model (EFM) are introduced for fragility assessment. The
PFM is replicated from Van Houten et al. (2024), while the EFM is a
new model introduced in this work to overcome some of the PFM’s
shortcomings. Both frameworks are still a work in progress and do
not address every framework requirement outlined in the table. Still,
they address many complexities inherent to SBD’s space reduction
process and have the potential to be expanded further in future work.
Both frameworks have identical beginning and ending steps for how
they form their initial perceptions of feasibility and assess the risk of
changing perceptions on a design space; their differences lie in how
they leverage the history of those formed perceptions in the middle.

3.1. Forming initial perceptions of feasibility

To form initial perceptions of feasibility throughout a design space,
designers need to extrapolate data gathered from explored areas of
their design spaces to unexplored areas. To that end, the first fragility
framework step starts off by calculating a pass—fail amount for each
explored point in a design space. Calculation of the pass—fail amount
is intended to give designers an idea of how much an explored design
solution passes or fails a discipline’s requirements based on the value
of that design solution’s output value within the objective space.

For design solutions meeting all requirements, a pass amount is
calculated as the minimum normalized difference of the calculated
output value to the nearest requirement threshold. Eq. (1) shows an
example calculation of the pass amount (P A) involving three objective
space requirements (y; > 0.2, 0.3 < y, < 0.6, y; + y, < 0.8), three
calculated output values (y; = 04, y, = 0.35, y; + y, = 0.75), and
three ranges of calculated values from explored points (y; € [0.05,1.2],
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Variable 2

Variable 1

(a) Perceptions of feasibility before sampling new points
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Variable 2

Variable 1

(b) Perceptions of feasibility after sampling new points

Fig. 5. Comparison of perceptions of feasibility before and after sampling new points within a design space. Green points represent tested designs that are feasible, red points
represent tested designs that are infeasible, green regions represent perceived feasible spaces, red regions represent perceived infeasible spaces, and yellow regions represent spaces

of mixed feasibility (Van Houten et al., 2024).

Table 1

Complexities that exist when making space reduction decisions with uncertain information and the corresponding fragility framework requirements addressing these complexities
(shaded green rows are addressed in this paper’s frameworks) (Van Houten et al., 2024).

Space reduction complexity

Framework requirement

Space reductions are focused on eliminating undesirable solutions from a ranging
design space. The desirability of solutions are rooted in perceptions of feasibility

formed by running discrete design points through the analyses established by each
discipline.

The framework needs to form initial perceptions of feasibility with presently
available information. A technique for converting information from explored
points and their output values into perceptions of feasibility throughout each
discipline’s design space is required.

Perceptions of feasibility are uncertain because they are formed with incomplete
information within a discipline’s design space. Information from newly analyzed
design points within a design space could alter perceptions.

Formed perceptions of feasibility for unexplored areas of the design space are not
definitive. The framework should account for the possibility of new design points
being tested with feasibility that is contradictory to expectations.

The number of ways new information can alter perceptions of feasibility within a
design space is unbounded and unknown until the information is made available.
The risk of a space reduction in context of itself is unlimited.

Comparing the fragility of a reduced design space to a non-reduced design space
and determining what new information a discipline can handle rather than it
would have to handle will narrow the DIM’s scope and allow space reduction risk
to be quantified.

A design space may be fragile when considering all input variables together (i.e.
X,,X,,x3) and when considering various combinations of input variables (i.e. x,,x,).

The framework cannot only measure the fragility of a design space as a whole. It
must be flexible enough to also identify component-based fragilities.

Perceptions of feasibility are uncertain because of the interdependencies that exist
through shared variables between disciplines. Vulnerabilities of one design space to
new information could directly or indirectly amplify the vulnerabilities of other
design spaces.

The framework must include a cross-discipline component that ties the
individualistic fragilities of each discipline together such that the vulnerabilities
tracked across interconnected design spaces are representative of their
dependencies on each other.

Perceptions of feasibility are uncertain because they are formed with output
information that is susceptible to change. New information originating from
changes to design requirements or analyses could alter perceptions.

The location of calculated output values within the objective space must not be
treated as definitive. Instead, the framework should account for the possibility of
output values and requirements shifting in relation to each other.

¥, €[0,09], y; + y, € [0.05,2.1]). Infeasible design solutions will have
a pass amount of zero.
0.4 —0.2]

1.2-0.05"

(€Y

35-0.3] 10.75 - 0.
PA:min( 10.35-0.3] 0.75 08|>

09-0 ’ 2.1-0.05

For design solutions failing at least one requirement, a fail amount
is calculated as the normalized root mean square difference of the
calculated output value to all of the requirements. Eq. (2) shows an
example calculation of the fail amount (FA) involving three objective
space requirements (y; > 0.2, 03 < y, < 0.6, y; + y, < 0.8), three
different output values (y; = 0.1, y, = 0.25, y; + y, = 0.35), and
three ranges of calculated values from explored points (y; € [0.05,1.2],
¥, € [0,0.9], y; + y, € [0.05,2.1]). Feasible design solutions will have a
fail amount of zero.

2 2 2
0.1-0.2 0.25-0.3 0
(1.2—0.05) + ( 0.9-0 ) + (2.1—0,05)
FA= 3 2

Once the pass and fail amounts are calculated for each explored
design solution, the pass—fail amount is simply taken as pass amount
minus the fail amount. As either the pass or fail amount of each
explored solution will always be zero, subtracting the fail amount

from the pass amount is solely done for sign convention purposes.
Potential design solutions meeting all objective space requirements will
have positive pass—fail amounts, while potential design solutions failing
at least one objective space requirement will have negative pass—fail
amounts.

Data from each explored design solution’s unique input values and
calculated pass-fail amount are then used to train a Gaussian Process
Regressor (GPR) with a Radial Basis Function (RBF) kernel. The GPR
is chosen because both the mean and standard deviations of predic-
tions are used in fragility assessment, and it is paired with the RBF
kernel to handle non-linearities in feasible behavior and instill more
confidence in predicted behavior for areas closer to explored points.
The GPR is allotted a very small noise value for training such that
the learned model fits directly through each explored design solution.
Finally, remaining (unexplored) design solutions are discretized within
the discipline’s design space, and the trained GPR is used to predict
their mean pass—fail amounts, which are normalized between —1 and
+1. Positive pass—fail predictions indicate that an unexplored design
solution is perceived as feasible, while negative predictions indicate
that an unexplored design solution is infeasible.

Fig. 6 depicts this process for the remaining areas of a design space
involving two input variables (x; and x,). On the left-hand side of the
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y2
o

X1 y1

Input Location Pass-Fail Amount

(x1, x2) = (0.75, 0.75) 0.6
(x1, x2) = (0.30, 0.45) +0.4
(x1, x2) = (0.60, 0.30) 0.1
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Fig. 6. Forming perceptions of feasibility for unexplored areas of the design space (Van Houten et al., 2024).

figure, pass—fail amounts are formed for three explored (larger) points.
Data from those explored points train a GPR, and then the trained
GPR forms predictions for the unexplored (smaller) points of the design
space.

3.2. Considering the consequences of incorrect perceptions - Regret and
windfall

In the next step, designers need to consider the consequences of
their formed perceptions of feasibility being incorrect. This requirement
leads to the introduction of regret and windfall in a design space.
Suppose the sampled design space in Fig. 7 is considering the space
reduction depicted by the black box. The space reduction would elimi-
nate portions of the design space perceived as feasible (top-left) as well
as portions of the design space perceived as infeasible (top-right). Now
suppose new information comes along that throws off those perceptions
of feasibility as depicted by the left-hand design space in Fig. 8. This
new information would cause designers to regret the space reduction
if they are left with infeasible space that was expected to be feasible or
left without feasible space that was expected to be infeasible (instances
of regret). In contrast, the new information would benefit designers if
they are left with feasible space that was expected to be infeasible or
left without infeasible space that was expected to be feasible (instances
of windfall).

Before committing to a space reduction, various fragility models
must assess these potentials for windfall and regret for the reduced
design space in context of the non-reduced design space. This logic
allows designers to consider the consequences and quantify the risk of
moving forward with a space reduction compared to delaying the space
reduction.

3.2.1. Probabilistic fragility model approach

The main idea behind the PFM is to characterize a discipline’s
present understanding of a design space with straightforward probabil-
ities of feasibility and infeasibility and then to quantify its vulnerability
based on how likely those perceptions are to change. In other words,
the PFM primarily works with the complementary probabilities for a
discipline’s unexplored design space at a particular moment in time.

The complementary probabilities of feasibility are attained by lever-
aging the means and standard deviations of the trained GPR’s predicted
pass—fail amounts. Each unexplored point in the design space will have
a predicted pass—fail amount and a standard deviation associated with
that prediction. With those two pieces of information, a normal prob-
ability distribution centered around the pass—fail prediction is formed.

Variable 2

Variable 1

Fig. 7. Design space considering a proposed space reduction (signified by the black
box) (Van Houten et al., 2024).

From there, the complementary probability of feasibility or infeasibility
for the unexplored point is determined by calculating the portion of
the probability distribution lying on the opposite side of zero as the
predicted pass—fail amount.

Whether the complementary probabilities contribute to a design
space’s potential for regret or windfall depends on its presently per-
ceived feasibility and where the point falls in relation to the area of
the design space that would be eliminated. Accordingly, the unexplored
points’ complementary probability of feasibility is added to the proper
sum of either regret or windfall potentials for the reduced and non-
reduced design spaces. Fig. 9 depicts how these potentials may end
up looking between the reduced and non-reduced design spaces for a
proposed space reduction. The summed regret and windfall potentials
will eventually be used to quantify added regret and windfall potentials
accompanying a space reduction in Egs. (5) and (6) of Section 3.3.
Because the potentials for regret and windfall of the PFM will be
compared to those of the EFM, the complementary probabilities are also
normalized before summing.

3.2.2. Entropic fragility model approach

While the PFM may prove to be a straightforward and effective
strategy, it will likely be hindered to some extent by temporal biases.
Each time a fragility check is performed with the PFM, it only considers
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WINDFALL: Being left
without infeasible space that
was expected to be feasible

Variable 2

Variable 1

REGRET: Being left with
infeasible space that was
expected to be feasible

WINDFALL: Being left with
feasible space that was
expected to be infeasible
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REGRET: Being left without
feasible space that was
expected to be infeasible

Variable 2

Varjable 1

WINDFALL: Being left with
feasible space that was
expected to be infeasible

REGRET: Being left with
infeasible space that was
expected to be feasible

Fig. 8. Instances of regret and windfall for the reduced design space (left) and non-reduced design space (right) (Van Houten et al., 2024).
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Fig. 9. Converting perceptions of feasibility into potentials for regret and windfall for a non-reduced and reduced design space (Van Houten et al., 2024).

perceptions of feasibility formed at that present moment in time. Those
present perceptions should be the most accurate ones formed thus far
because they are derived from the either the same or more explored
points than past perceptions. However, those present perceptions could
still be fluctuating significantly compared to previous ones, indicating
that future perceptions are likely to do the same. The PFM disregards
any sort of fluctuating perceptions in its risk assessment, limiting
the effectiveness of this approach when present perceptions especially
contrast actual design space feasibilities. To overcome this temporal
handicap, the EFM is developed.

The main idea behind the EFM is to characterize a discipline’s
present uncertainty of a design space from its history of predicted pass—
fail values. Rather than working solely with present probabilities, the

EFM uses the breadth of information acquired up to a certain point in
time to convert those probabilities into information entropies.

To understand the EFM approach, it helps to first understand what
exactly is information entropy. Information entropy was first intro-
duced by Shannon (1948) as a means to quantify informational content
from a set of events with various probabilities. For a pair of events hav-
ing equal probability, an observer would have high uncertainty about a
future event’s outcome, corresponding to a higher entropy. Contrarily,
if the events have more of an 80%-20% probability split, an observer
is more certain of the outcome of a future event, corresponding to a
lower entropy.

Since Shannon’s introduction of information entropy, there have
been plenty of different extensions introduced. One such extension
called Generalized Cumulative Residual Entropy (GCRE) works with
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the cumulative probability distributions of events (Rao et al., 2004). An
advantage of GCRE over Shannon Entropy (SE) is that GCRE naturally
incorporates the magnitudes of potential outcomes into an observer’s
uncertainty quantification. Goodrum (2020) uses the same logic behind
GCRE to introduce an entropy measure working with a time-history
of outcomes called Target Value Entropy (TVE). Eq. (3) shows how
TVE is calculated for a time-history of outcomes (V = {V;,V}, ..., V, }).
As more points are explored within a design space and new pass—
fail predictions are formed over time, TVE can give designers an idea
of how uncertain they are for those predictions to keep fluctuating.
High TVE values would indicate pass-fail predictions are continuing
to fluctuate and the design space is still quite fragile, and vice versa for

low TVE values.
(o]

TVEYV)= —/ p(V > v)log, p(V > v)dv 3)

—oo

After every exploration cycle, new pass—fail predictions are made
for every unexplored design point remaining within each discipline’s
design space. These predictions will also have a history of standard
deviations associated with them that will presumably decrease as more
points are explored. To calculate the TVE for each unexplored point,
a probability needs to be assigned to each of its pass—fail predictions.
Those probabilities are formed by inverting the standard deviations of
the predictions, summing the inverted standard deviations together,
and then assigning the probability as the fraction of the inverted
standard deviation to the sum. If an unexplored point has predicted
pass—fail amounts of —0.1, 0.0, and 0.2 with respective standard devia-
tions (o) of 0.1, 0.2, and 0.4, those pass—fail amounts would be assigned
respective probabilities of about 0.57, 0.29, and 0.14 (where Eq. (4)
provides an example calculation for the first probability, p,).

[ l_l _ 0'1—1
Yol 0171402714047

p = =0.57 )

To be able to calculate TVE after every exploration cycle, including
the first one, pass—fail predictions also need to be made for the special
zeroth time case. As no points have been explored yet, a designer would
have no idea of what areas of the design space are passing or failing;
for that reason, each unexplored point is assigned a pass—fail amount in
the middle at 0.0 with a standard deviation of L, which is reflective

V3
of a uniform distribution ranging between —1 and +1.

With the history of pass—fail predictions and standard deviations
gathered for each unexplored point, the TVE of those predictions can
now be calculated. Whether those TVE values contribute to a design
space’s potential for regret or windfall follows the same exact logic
as is done for the complementary probabilities calculated in the PFM.
Depending on an unexplored point’s presently perceived feasibility and
where it falls in relation to the area of the design space that would be
eliminated, its normalized TVE is added to the proper sum of regret or
windfall potentials for the reduced and non-reduced design spaces. And
in a similar fashion, the summed windfall and regret potentials will be
used to quantify added regret and windfall potentials in the following
subsection.

3.3. Assessing risk from regret and windfall

Once the potentials for regret and windfall are calculated for all
the unexplored areas of a design space with the PFM or EFM, the risk
of committing to a space reduction can be quantified. Gathering these
potentials for both the reduced and non-reduced design spaces permits
the DIM to gauge the risk of approving a space reduction in context of
leaving a design space untouched.

Egs. (5) and (6) introduce an added potential for regret metric
(4,,) and an added potential for windfall metric (4,,,,) based on the
summation of the regret and windfall potentials (¢,,, and ¢,,;,4) of each
unexplored point (x) in the reduced and non-reduced design spaces.
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Each metric tracks how opportunities for regret and windfall would
shift if the DIM moves forward with a certain space reduction. When
these metrics are calculated, they are combined in Eq. (7) to create
an endured added risk metric (Risk) that weighs the potential for new
information to be introduced that would hurt designers against new
information that would benefit them.

A _ Zi:l ¢reg,red(x) 1 (5)

" Z?:l ¢reg,rwnred(x)

A= et Puind rea ) . ©
vind = <n . .

o Z;":1 ¢wind,nanred (x)

Risk = Ao — Aying @

At last, the risk of moving forward with a space reduction decision
is quantified in context of forgoing the space reduction, and the DIM
can decide if they are willing to accept that risk at a particular moment
in time of the design process. Low risk values align with space reduc-
tions that see greater potentials for windfall and lesser potentials for
regret in a reduced design space, while high risk values align with the
opposite. Both the endured added risk and the added risk that a DIM is
willing to accept will fluctuate as a design problem progresses. To next
observe how emergent design spaces are impacted with this new space
reduction risk consideration in mind, the fragility frameworks need a
design problem and a SBD simulation into which they can be inserted.

4. Introducing an analogous design problem and SBD simulation

Investigating the impacts that a SBD process including fragility
checks has on emergent design spaces requires a design problem. A
more complex problem could be adopted from other papers or case
studies, but using a simple problem for this initial assessment keeps
focus directed on the frameworks and makes interpretation of results
in their early stages of development more straightforward.

As shown in Fig. 10, the design problem created for this work
involves three different disciplines having some shared input variables
and unique output variables. The input variables are analogous to
the different ship characteristics that a discipline has influence over,
while the output variables are analogous to the different ship per-
formance characteristics with which a discipline is concerned. This
design problem involves polynomial mathematical equations (shown in
Egs. (8)-(12)) which are meant to be analogous to the different para-
metric models or design programs with which marine design disciplines
may be working. Each discipline also has requirements that must be
satisfied for their input and output variables. The bounds on all the
input variables are normalized between 0 and 1. The bounds on the
output variables are unique and described as follows: 0 < y; < 0.4
or 12 <y, < 16,05 < y < 07,02 < y3 <050 < y, <
0.5, 0.8 < ys < 1.6. For a more detailed explanation of the design
problem and visualizations of each discipline’s feasible design spaces,
see Van Houten et al. (2024).

Discipline 1:
¥ = 0.8x7 +2x2 - x, ®
Discipline 2:
¥y = 1.25x5 — 12.5x3 +6.25x2 &)
v = (x) +x5)° 10

Discipline 3:

1
¥4 = 2x5 +0.2sin (25x¢) — x; an

1
15 —cos (3x5) 12
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x1  x2 x3 x3 x4 x5 x5 x6 x1
Discipline 1 Discipline 2 Discipline 3
y1 y2 y3 y4 y5

Fig. 10. Input and output variables for three disciplines of the polynomial design
problem (Van Houten et al., 2024).

To fairly evaluate the fragility of emergent design spaces for this
design problem with and without the fragility frameworks, a SBD sim-
ulation that proposes reasonable space reductions is also needed. With
the simulation, experiments can be run that compare emergent design
spaces when there are fragility checks being made with the PFM or EFM
compared to when there are no fragility checks. The simulation created
is coded in Python and is designed to operate autonomously for a couple
of reasons. For one, automating the simulation removes the impact that
human inconsistencies would have on an experiment’s emergent design
spaces by ensuring the same criteria are used to explore design spaces
and propose space reductions every time. Additionally, automating the
simulation cuts back on the time it would take for a human designer
to evaluate the present state of the data and formulate their next
exploration or reduction decision. The simulation is not meant to be a
perfect replication of how SBD activities are performed and reductions
are made because SBD is fundamentally a human-centric process that
is driven by knowledgeable designers. A simplified depiction of how
the SBD simulation works is shown in Fig. 11, while a more detailed
depiction of the simulation and all of the code can be viewed via the
link in the Data Access Statement. Different parts of the simulation fall
under the groupings of problem setup, exploration, or space reduction.
Each one of these groupings are discussed in detail in Van Houten et al.
(2024).

5. Assessing emergent design spaces

With the fragility frameworks, design problem, and SBD simula-
tion established, different tests could be conducted to observe each
discipline’s emergent design spaces with and without fragility checks.
The test cases are set up such that only the type (or absence) of
fragility model differs; in each test case, design spaces are explored,
space reductions are proposed, and fragility thresholds are set using
the same, predefined process. The results evaluate the fragility of design
spaces following space reductions by tracking each discipline’s total and
feasible design solutions remaining along with the diversity of those
remaining design solutions over the elapsed project time.

5.1. Experimental setup

Different levels of space reduction and fragility checks are con-
ducted for each test case of the SBD simulations as depicted in Table 2.
The purpose of reducing the design spaces is to leave the design team
with a much smaller and more manageable set of potential design
solutions to pursue further. For the first test case, no fragility checks
are performed at all; rather, it only gathers and considers opinions
from each discipline based on present information before having the
DIM finalize any space reductions. For the second two test cases,
fragility checks are performed with either the PFM or EFM to assess
the vulnerabilities of reduced design spaces to new information.
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Each test case is run over a complete project timeline of 50 and 200
time iterations, and all simulations are run with the same effort and
goal of reducing design spaces down to roughly 5% of their original
size. Ideally, both frameworks should delay space reductions at no
added cost to the design team. No added cost means that the total design
solutions remaining at the end of the elapsed project time are not any
greater than simulations conducted without any fragility checks.

Whenever a discipline chooses to run their analyses and explore
another potential design solution, that expends time in the simulation.
Exploring a new point in Discipline 1 takes 2 time iterations, exploring
a point in Discipline 2 takes 3 time iterations, and exploring a point
in Discipline 3 takes 4 time iterations. All explored points are treated
equally to reflect designers using the same analyses over the entire
project time and no one discipline being more of a design driver than
another. Explored points are created by assigning a uniform random
value between 0 and 1 to each design space’s coordinates. If the
new point created falls within the remaining design space, then it is
utilized for exploration. Otherwise, the process is repeated by assigning
a new uniform random value to each coordinate. Designers would
likely institute a more directed sampling approach than described for
an actual design problem, but for purposes of investigating fragility in
design spaces between the PFM and EFM, this randomized approach
will suffice.

The complete project timeline relative to each discipline’s analysis
execution time are made drastically different between the 50 and 200
iteration experiments. These differing timelines force designers to train
GPRs and form perceptions of feasibility with varying amounts of
explored points so that emergent design space behavior can be observed
under different levels of uncertainty.

Each discipline is also limited to proposing space reductions involv-
ing only one of their design variables. By nature of the design problem,
any proposed space reductions involving x;, x3, or x5 will directly affect
two disciplines, while any proposed space reductions involving x,, x4,
or x4 will directly affect one discipline.

All other user inputs chosen for the SBD simulations are displayed
in Table A.1, with their descriptions available in the script.py file of
the Python code (see Data Access Statement). Because explored points
are randomly chosen in any given simulation, the perceptions formed
and space reductions proposed fluctuate from simulation-to-simulation,
regardless of any fragility checks performed. To accommodate for
this fluctuation, each test case is executed for 200 complete SBD
simulations, and the averages of those simulations are gathered when
examining the final results.

5.2. Establishing a maximum risk threshold

When faced with the endured added risk of a space reduction, a DIM
could very well decide for themselves what constitutes a high-risk space
reduction. However, to keep the SBD simulations completely automated
and to maintain a fair comparison of the final results between the PFM
and the EFM, a maximum added risk threshold the DIM is willing to
endure at any moment in time is needed.

When setting that maximum added risk threshold, a DIM will likely
be weighing the amount of each discipline’s design space that has
already been reduced along with the amount of time remaining for the
design project. DIMs should be less inclined to take on risk when much
of a design space has been reduced and/or significant project time
remains, and they should be more inclined to take on risk when little
of a design space has been reduced and/or little project time remains.
With that logic in mind, Eq. (13) is used to set a reasonable maximum
added risk threshold (Risk,,,) for each discipline at any moment in
time (¢). If the endured added risk of a space reduction exceeds the
maximum added risk threshold, then the reduction will be delayed, and
vice versa if the endured added risk of a space reduction falls below the
threshold.
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Fig. 11. Simplified flowchart of the automated SBD simulation with a fragility framework plug-in (depicted by the pink box) (Van Houten et al., 2024).

Table 2

Extent of space reduction checks for different test cases of the 50 and 200 iteration simulations.

Test case Description Fragility model
1 Only consider present opinions of other disciplines for each proposed space reduction -

2 Consider present opinions of other disciplines and conduct fragility checks PFM

3 Consider present opinions of other disciplines and conduct fragility checks EFM

In the equation, ¢,y acts as a scaling coefficient, space,,,, refers
to the fraction of a discipline’s remaining design space before the
newest space reduction, space,,,, refers to the fraction of a discipline’s
maximum allowable remaining design space, and time,,,, refers to the
fraction of time remaining in the design project. Each multiplicative
factor in Eq. (13) plays an important role in setting a discipline’s
maximum added risk threshold.

space,,,(t) 1
space,,, (t)  time,,,(t)

Risk,,q (1) = g * (13)

The asymptotic factor ( -

W) increases the threshold as project
time is depleted. As fragility checks intend to protect reduced design
spaces against new and conflicting information, the threshold should
be lowest when there is more time for that information to be made
available. Towards the end of a design project, there should be little
to no concern for having fragile design spaces as there should be very
little opportunity for new information to alter formed perceptions.

The adaptive factor (w ) adjusts the rate at which the thresh-

Space . (1)
old increases towards infinity based on the design space that remains
relative to a predetermined space reduction pace. For the automated
SBD simulation, the maximum space remaining consists of an expo-
nential equation dictating when a discipline needs to relax constraints
that discourage space reductions. If space reductions within a discipline
are keeping up with that pace, the adaptive factor will decrease the
maximum added risk threshold. If space reductions within a discipline
are falling behind that pace, the adaptive factor will increase the
maximum added risk threshold.

The DIM factor (c,;; ) allows the user to put their own touch on how
influential a role they want fragility considerations to play in space
reduction decisions. They can use their own preferences to either set
a larger DIM factor to discourage delaying space reductions on the
grounds of fragility, or set a smaller DIM factor to encourage them.

5.3. Space remaining and diversity metrics

The final results will display the remaining size of a discipline’s total
and feasible design spaces as well as the diversity of those remaining
designs over the elapsed project timeline.

The ‘Total Space’ curves show the total potential design solutions
remaining in a discipline, and the ‘Feasible’ curves show the feasible
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design solutions remaining in a discipline. The ‘Feasible-to-Remaining’
curves combine the two to show the ratio of feasible-to-total designs
remaining in a discipline. Test cases with the fragility checks are
susceptible to decreasing ratios because they are more inclined to
delay space reductions and maintain more total designs; however, also
maintaining higher totals of feasible designs can alleviate the ratio
reduction.

The curves on the accompanying design space discrepancy graphs
display the uniformity of potential design solutions remaining in a dis-
cipline. The discrepancy measure is adopted from SciPy’s Quasi-Monte
Carlo submodule. The default, centered-discrepancy method is utilized
and explained thoroughly in Zhou et al. (2013). The metric quantifies
discrepancy by measuring the distance between a hypercube’s uni-
form distribution and each discrete design solution remaining. A low
discrepancy close to zero indicates that the distribution of remaining
design solutions is uniform, while larger discrepancy values indicate
the distribution of remaining design solutions is less uniform and more
locked-in on certain areas of the hypercube. Maintaining a low discrep-
ancy corresponds to maintaining a high diversity of potential design
solutions. A high diversity of remaining designs gives a discipline more
flexibility to adjust to new information that shifts present perceptions
of feasibility.

5.4. Results and discussion

Average emergent design space and discrepancy results are gathered
across each discipline of the SBD problem for each test case outlined in
Table 2. The results of the simulations are displayed in Figs. 12-17.

The total space remaining results across each discipline indicate
that both fragility models support a more gradual reduction of design
spaces. When observing the ‘Total Space’ curves across each discipline
of the 50 time iteration simulations (see Figs. 12(a), 14(a), and 16(a)),
the test case without any fragility checks (TC1) sees the quickest
reduction of each discipline’s design space, followed by the test case
with the PFM (TC2), and then by the test case with the EFM (TC3).
In fact, TC1 sees a very abrupt reduction of each discipline’s design
space from roughly 20%-50% of the elapsed project timeline, before
its ‘Total Space’ remaining curve across each discipline starts to flatten
out. TC2 and TC3, on the other hand, always maintain at least 65% of
their original design space by the time they reach 50% of the elapsed
project timeline, without any abrupt decreases. This trend is further
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Fig. 13. Space remaining and discrepancy results for emergent design spaces of Discipline 1-200 time iterations.

accentuated across each discipline of the 200 time iteration simulations
(see Figs. 13(a), 15(a), and 17(a)). Looking at Fig. 17(a) specifically,
Discipline 3’s total design space remaining at 45% of the elapsed project
time is about 43% for TC1, 73% for TC2, and 96% for TC3. Design
teams not conducting fragility checks may think that these abrupt space
reductions are advisable as long as they primarily involve potential
design solutions perceived as infeasible, but in doing so, they ignore the
fact that quickly eliminating these areas leave them more vulnerable to
new information that end up shifting those perceptions.

The more gradual reduction of design spaces accompanying test
cases with the fragility checks also helps each discipline maintain their
feasible design solutions longer. This trend is most apparent in Discipline
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1 where over 30% of its initial design space contains feasible design
solutions (see Figs. 12(a) and 13(a)). The ‘Feasible’ curves both start
and end at roughly the same points across each test case of Discipline
1, but significant gaps form between these curves in the middle of the
simulations. TC1’s abrupt space reductions lead to quicker decreases in
the feasible solutions remaining, followed by TC2, and then by TC3. In
the 40%-50% elapsed time frame, there is anywhere from a 10%-15%
difference in the feasible design solutions remaining between TC1 and
TC3 for both the 50 and 200 time iteration simulations. This lack of
feasible designs for TC1 can become a major problem for the discipline
if new design requirements or analyses are introduced at this stage in
the design process that further rule out these potential design solutions.
These feasibility trends between each test case also occur in Discipline
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Fig. 14. Space remaining and discrepancy results for emergent design spaces of Discipline 2-50 time iterations.

2 and Discipline 3, but they are not as noticeable in the figures because
each of these disciplines begin with much smaller feasible spaces than
Discipline 1.

The drawback of delaying space reductions and maintaining more
feasible design solutions is having to maintain more infeasible design
solutions as well, especially when it is entirely possible that present
perceptions of feasibility will not change. This drawback is most appar-
ent when observing the ‘Feasible-to-Remaining’ curves of Discipline 3 in
Fig. 17(a). As Discipline 3’s design space is reduced much more abruptly
for TC1 than TC2 and TC3, the feasible-to-remaining design space
ratio for TC1 increases more quickly than those test cases including
fragility checks. Designers of TC1 may have fewer feasible design
solutions available, but they can also disregard far more currently
infeasible design solutions than designers of TC2 and TC3. For the 50
time iteration simulations, delaying space reductions with the fragility
frameworks can lead to a noticeable gap between the total design
solutions remaining across each test case. That gap elicits a subsequent
reduction in the feasible-to-remaining design space ratios at 100% of
the elapsed project time. Even so, DIMs should be willing to accept
this drawback because of the greater flexibility the fragility framework
provides them when there are still uncertainties about design space
feasibility in the time prior. Unlike the 50 time iteration fragility
test cases, none of the 200 time iteration test cases suffer from this
drawback. Evidently, designers of these test cases are given ample time
to form their perceptions of feasibility, and instituting either the PFM or
EFM is remarkably at no added cost to their allotted time and resources.

Finally, the more gradual reduction of design spaces accompanying
both fragility models also results in each discipline maintaining a
higher diversity of remaining design solutions for longer. Maintaining
a higher diversity of potential design solutions helps ensure each disci-
pline is less vulnerable to new information that changes their current
perceptions of feasibility by providing designers with more alternative
solutions. When observing the discrepancy results across each discipline
of the 50 time iteration simulations (see Figs. 12(b), 14(b), and 16(b)),
TC1 increases the fastest, followed by TC2, and then TC3. These results
indicate that simulations with the EFM maintain the highest diversity
of potential design solutions, followed by simulations with the PFM,
and then simulations without any fragility checks. These discrepancy
trends still generally hold for the 200 time iteration simulations (see
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Figs. 13(b), 15(b), and 17(b)), but to lesser extents. In Discipline 1, the
PFM and EFM test cases have discrepancies that generally overlap and
lie just below or also overlap that of TC1. In Discipline 2, the EFM test
case maintains a low discrepancy while the PFM test case discrepancy
falls more in-line with TC1. And in Discipline 3, the EFM test case
maintains a low discrepancy while the PFM discrepancy initially aligns
more with that of TC1 before aligning more with the EFM test case
later. These discrepancy results between the 50 and 200 time iteration
simulations indicate that the fragility models help disciplines more
effectively maintain diversity within their design spaces when project
timelines are shorter, with the EFM slightly outperforming the PFM.

6. Conclusions

The main objective of this research was to explore the efficacy of
two different approaches that mitigate the vulnerabilities of reduced
design spaces to new information before making a design space re-
duction decision. Both approaches similarly begin by forming present
perceptions of feasibility from the potential design solutions explored
thus far and end by comparing a reduced design space to its non-
reduced design space to quantify the risk of a space reduction inciting
emergent design failures. They differ by either quantifying fragility
from the present probabilities of feasibility (PFM) or from the entropies
characterizing the time history of formed perceptions (EFM). Once each
fragility framework was introduced, experiments were conducted on an
interdependent design problem with a SBD simulation coded in Python
to observe emergent design spaces with and without these fragility
checks.

The results show that SBD simulations including the fragility checks
support a more gradual reduction of design spaces with less tendency
to lock-in on certain designs prematurely. Both the PFM and the
EFM helped reasonably delay space reduction decisions for the design
problem while more potential design solutions are explored and under-
standing of design space behavior grows, although the EFM did so to a
greater extent. The EFM consistently maintained the highest total and
feasible designs remaining within each discipline as the design project
progressed, which also resulted in those design spaces having a higher
diversity of potential design solutions for longer. For the 200 time
iteration simulations, none of the delayed space reductions prompted
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15. Space remaining and discrepancy results for emergent design spaces of Discipline 2-200 time iterations.
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Fig. 16. Space remaining and discrepancy results for emergent design spaces of Discipline 3-50 time iterations.

by the PFM or EFM was at an added cost to the designers. The total
space remaining results of those simulations always realigned at the
end of the project, while the 50 time iteration test cases saw only minor
increases in designs remaining.

In spite of this initial evidence, it is still hard to declare with
absolute certainty that the EFM is superior to the PFM. There could
be situations where fluctuating perceptions of feasibility end up ham-
pering space reduction decisions made with the EFM far more than they
would with the PFM. Furthermore, and as already mentioned, neither
the PFM or EFM has been built up enough to address every fragility
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framework requirement outlined in Table 1. More specifically, neither
framework assesses the fragility of design spaces on a component-
based level, connects fragility across interdependent design spaces, or
considers the effect that changes to design requirements or analyses
would have on a design space’s fragility.

With those deficiencies in mind, there are several extensions for this
work moving forward. For one, both fragility models can be improved
by considering fragility risks for various combinations of design vari-
ables within each discipline rather than only considering the fragility
of each discipline’s design space as a whole. Both models can also start
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Fig. 17. Space remaining and discrepancy results for emergent design spaces of Discipline 3-200 time iterations.

Table A.1

User inputs established in Python for running SBD simulations (Van Houten et al., 2024).

Simulation parameters

Parameter values

problem_name
iters_max
sample
search_factor
total_points
run_time
exp_parameters
auto_accept
fragility
fragility_type
fragility_shift
change_design
change_time
part_params
dtc_kwargs
gpr_params
bez_point

‘SBD1’

50 or 200

‘uniform’

100

10000

[2, 3, 4]

array([0.2, 2.2, 1.0, 0.95])

False

False (Test case 1) or True (Test case 2 and 3)
‘PFM’ (Test case 2) or ‘EFM’ (Test case 3)

0.4

n]

n]

{‘cdf_crit’: [0.1, 0.1], ‘fail_crit’ [0.0, 0.05], ‘dist_crit> [0.2, 0.1], ‘disc_crit [0.2, 0.1]}
{‘max_depth” 1}

{‘length_scale_bounds”: (le-2, 1e3), ‘alpha’ 0.00001}
{‘P0’: (0.0, 1.0), ‘P1’: (0.5, 0.8), ‘P2: (1.0, 0.0)}

considering some other originating sources of new information, such
as new information arising from newly explored design points of inter-
dependent disciplines as well as new information arising from changes
to design requirements or analyses. Currently, the fragility frameworks
treat all information equally when forming perceptions of feasibility
with the GPRs; in the future, the GPRs should be made more flexible
so as to handle information coming from analyses with varying fidelity
and importance. Furthermore, the frameworks either implement space
reductions or delay space reductions based on the results of the fragility
checks, with no in between. Introducing strategies that either guide
sampling or reduce the size of a space reduction to alleviate design
space fragility may give designers a little more flexibility when dealing
with a high risk space reduction. Eventually, the PFM and EFM should
be evaluated for more complex design problems that have some more
direct marine design applications as well. As these additions are made
to both fragility models, they will provide DIMs with context as to
whether or not their space reduction decisions are leaving disciplines
exceedingly vulnerable to new information and prone to emergent
design failures.
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