
 
 

Delft University of Technology

Which Cloud Auto-Scaler Should I Use for my Application?: Benchmarking Auto-Scaling
Algorithms
Poster Paper
Ali-Eldin, Ahmed; Ilyushkin, Alexey; Ghit, Bogdan; Herbst, Nikolas; Papadopoulos, Alessandro; Iosup,
Alexandru
DOI
10.1145/2851553.2858677
Publication date
2016
Document Version
Accepted author manuscript
Published in
7th ACM/SPEC Int'l Conference on Performance Engineering

Citation (APA)
Ali-Eldin, A., Ilyushkin, A., Ghit, B., Herbst, N., Papadopoulos, A., & Iosup, A. (2016). Which Cloud Auto-
Scaler Should I Use for my Application?: Benchmarking Auto-Scaling Algorithms: Poster Paper. In 7th
ACM/SPEC Int'l Conference on Performance Engineering (pp. 131-132).
https://doi.org/10.1145/2851553.2858677
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/2851553.2858677
https://doi.org/10.1145/2851553.2858677


Which Cloud Auto-Scaler Should I Use for my Application?
Benchmarking Auto-Scaling Algorithms

[Poster Paper]

Ahmed Ali-Eldin
Dept. of Computing Science

Umeå University
ahmeda@cs.umu.se

Alexey Ilyushkin
Delft University of Technology

Delft, the Netherlands
a.s.ilyushkin@tudelft.nl

Bogdan Ghit
Delft University of Technology

Delft, the Netherlands
b.i.ghit@tudelft.nl

Nikolas Roman Herbst
University of Würzburg
Würzburg, Germany

nikolas.herbst@uni-
wuerzburg.de

Alessandro
Papadopoulos
Dept. of Control
Lund University

alessandro.papadopoulos
@control.lth.se

Alexandru Iosup
Delft University of Technology

Delft, the Netherlands
A.Iosup@tudelft.nl

Rapid elasticity is one of the essential characteristics of cloud
computing identified by NIST [17]. Elasticity allows resources to
be provisioned and released to scale rapidly out ward and in ward
according to demand. Tens – if not hundreds – of algorithms have
been proposed in the literature to automatically achieve elastic pro-
visioning [15, 23, 14, 21, 13, 20, 6, 12, 16, 10]. These algorithms
are typically referred to as elasticity algorithms, dynamic provi-
sioning techniques or autoscalers.

While trying to solve the same problem, sometimes with differ-
ing assumption, many of these algorithms are either compared to
static provisioning or to a predefined QoS target, e.g., predefined
response time target, with very little – or no – comparison to pre-
viously published work. This reduces the ability of an application
owner or a cloud operator to choose and deploy a suitable algorithm
from the literature. Many of these algorithms have been tested with
one single – real or synthetic – workload in a specific use-case [13,
14, 10]. While all published algorithms are shown to work in the
specific use-case they were designed for with the , typically short,
workloads tested with, it is seldom the case that the real scenarios
will be any thing close to the test cases for which the algorithms
are shown to work. Bursts occur in workloads occasionally. Work-
load dynamics change over time and the load-mix of an application
significantly affects how provisioning should be done [21].

This work aims to validate and better understand the literature
on automated rapid elasticity algorithms under different conditions.
We compare 10 auto-scalers from the state-of-the-art, namely, [23,
7, 14, 6, 5, 12, 18, 4, 13, 11, 10, 8]. We obtained the code for five
of the auto-scalers from their designers and reimplemented five.

Since cloud applications are heterogeneous in nature with dif-
ferent resource requirements and workload characteristics [19], for
this study, we choose a set of representative applications. Each of

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICPE’16 March 12-18, 2016, Delft, Netherlands

c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4080-9/16/03.

DOI: http://dx.doi.org/10.1145/2851553.2858677

these applications stress different resources. The set of applications
chosen include complex webservices, scientific workflows, big data
processing, simple web services, and video streaming, Due to lack
of space, we describe only two applications in more details.

1. Scientific applications and workflows. Currently, workflows
are widely used to drive complex computations. A workflow

(WF) or a Directed Acyclic Graph (DAG) consists of a set
of tasks (nodes) which have precedence constraints among
them. Any task can start the execution when all of its in-
put dependencies are satisfied. The whole workflow in our
setup is considered as a job. The popularity of workflows
brings the diversity of their structures, sizes, and resource re-
quirements. For our experiments we use three well known
scientific workflows, namely, Montage, LIGO, and SIPHT.
Additionally, we consider two generic workflow structures:
a star (bag-of-tasks) and a chain. To schedule and execute
workflows we use the KOALA scheduler [9] and OpenNeb-
ula private cloud which are deployed on the DAS-4 infras-
tructure 1. The execution environment for workflow tasks
consist of a single head VM and multiple worker VMs.

2. Complex Web-Services. Wikipedia, the free online encyclo-
pedia, is one of the top 10 accessed websites on the Inter-
net [2]. The Wikimedia foundation has open sourced Medi-
aWiki, a custom-made, free and open-source wiki software
platform written in PHP and JavaScript. MediaWiki runs
using a LAMP stack (Linux, Apache, MySql, and PHP) or
similar installations. This setup is similar to many cloud ap-
plications [22] including, e.g., Facebook which uses a mod-
ern version of the LAMP stack, and YouTube [1]. In our
experiments, we replicate the German Wikipedia on DAS.
We have chosen the German Wikipedia since it is one of the
most popular Wikis in terms of number of users, and in terms
of number of articles [3]. The Wikipedia server architecture
deployed in their datacenters is multi-tiered with each tier
deployed on a different set of servers, but in our setup, we
reduce the number of layers to reduce the complexity. We
have chosen to run a bare minimum setup, i.e., with the Me-
diaWiki software, a load-balancer and a MySQL database.

1www.cs.vu.nl/das4

131



We benchmark the performance of the selected auto-scalers with
the chosen applications and quantify the performance based on the
following set of metrics.

1. Average Overprovisioning (OP) is the average number of
overprovisioned VMs by the autoscaler per unit time. It is
calculated by summing the number of overprovisioned VMs
over time (OP) and dividing the number by the total time for
which the autoscaler was running. A machine is considered
overprovisioned if it is of no use for the next 10 minutes. This
time window reduces the penalty if an algorithm predicts the
future workload well in advance.

2. Average Underprovisioning (UP) is the average number of
underprovisioned VMs by the autoscaler per unit time. It
is calculated by summing the number of underprovisioned
VMs over time (UP) and dividing the number by the total
time for which the autoscaler was running. Underprovision-
ing means that the autoscaler failed to provision the resources
required to serve all requests on time.

3. Average number of Oscillations (O) which is the average
number of VMs started or shut-down (O) per unit time. The
reason to consider (O) as an important parameter is the cost
of starting/stopping a VM. From our experience, starting a
machine (physical or virtual) takes from one minute up to
several minutes depending on the application running (al-
most 20 minutes for an ERP application server). This time
does not include the time required to transfer the images and
any data needed but is rather the time for (virtual) machine
boot, network setup and application initiation. Similar time
may be required when a machine is shutdown for workload
migration and load balancer reconfiguration.

4. Maximum, minimum and, average time required for com-
puting the prediction (T ). When possible, we also report the
computational complexity of each algorithm. These values
do not change significantly for the same algorithm with re-
spect to the application managed. We thus report these values
for all our experiments and comment on any anomalies in the
measured times between experiments.

In addition to these general metrics, we look at application spe-
cific metrics for the applications such as response time, throughput
and request drop rate for the web services, queue length for the sci-
entific workflows and the big data workload, and jitter in the video
streaming workload, The aim of our work is to provide researchers
and industries with a better understanding of the current state-of-
the-art.2

1. REFERENCES

[1] 7 Years Of YouTube Scalability Lessons In 30 Minutes.
Accessed: October, 2015, URL:
http://highscalability.com/blog/2012/3/26/7-years-of-
youtube-scalability-lessons-in-30-minutes.html.

[2] Top Sites. Accessed: October, 2015, URL:
http://www.alexa.com/topsites.

[3] Wikipedia Statistics. Accessed: October, 2015, URL:
https://stats.wikimedia.org/EN/Sitemap.htm.

[4] A. Al-Shishtawy and V. Vlassov. ElastMan: Autonomic
elasticity manager for cloud-based key-value stores. In
HPDC 13, pages 115–116, 2013.

2This project is done as a collaboration between different partners
in the SPEC Cloud Research Group.

[5] A. Ali-Eldin, M. Kihl, J. Tordsson, and E. Elmroth. Efficient
provisioning of bursty scientific workloads on the cloud
using adaptive elasticity control. In ScienceCloud, pages
31–40, 2012.

[6] A. Ali-Eldin, J. Tordsson, and E. Elmroth. An adaptive
hybrid elasticity controller for cloud infrastructures. In
NOMS 12, pages 204–212, April 2012.

[7] T. Chieu, A. Mohindra, A. Karve, and A. Segal. Dynamic
scaling of web applications in a virtualized cloud computing
environment. In ICEBE 09, pages 281–286, Oct 2009.

[8] C. Delimitrou and C. Kozyrakis. Quasar: Resource-efficient
and qos-aware cluster management. ACM SIGPLAN Notices,
49(4):127–144, 2014.

[9] L. Fei, B. Ghit, A. Iosup, and D. Epema. KOALA-C: A task
allocator for integrated multicluster and multicloud
environments. In CLUSTER, pages 57–65, 2014.

[10] H. Fernandez, G. Pierre, and T. Kielmann. Autoscaling web
applications in heterogeneous cloud infrastructures. In IC2E,
2014.

[11] A. Gandhi, P. Dube, A. Karve, A. Kochut, and L. Zhang.
Adaptive, model-driven autoscaling for cloud applications.
In ICAC, pages 57–64, 2014.

[12] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. A.
Kozuch. AutoScale: Dynamic, robust capacity management
for multi-tier data centers. TOCS, 30(4):14:1–14:26, Nov.
2012.

[13] N. R. Herbst, N. Huber, S. Kounev, and E. Amrehn.
Self-adaptive workload classification and forecasting for
proactive resource provisioning. In ICPE, pages 187–198,
2013.

[14] W. Iqbal, M. N. Dailey, D. Carrera, and P. Janecek. Adaptive
resource provisioning for read intensive multi-tier
applications in the cloud. FGCS, 27(6):871–879, 2011.

[15] H. C. Lim, S. Babu, J. S. Chase, and S. S. Parekh. Automated
control in cloud computing: Challenges and opportunities. In
ACDC, pages 13–18, 2009.

[16] A. H. Mahmud, Y. He, and S. Ren. Bats: Budget-constrained
autoscaling for cloud performance optimization.
SIGMETRICS, 42(1):563–564, June 2014.

[17] P. Mell and T. Grance. The nist definition of cloud
computing. 2011.

[18] H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes.
AGILE: Elastic distributed resource scaling for
Infrastructure-as-a-Service. In Proc. 10th Int. Conf. on

Autonomic Computing, ICAC 13, pages 69–82, 2013.
[19] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A.

Kozuch. Heterogeneity and dynamicity of clouds at scale:
Google trace analysis. In SoCC, page 7. ACM, 2012.

[20] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. CloudScale:
Elastic resource scaling for multi-tenant cloud systems. In
SOCC, pages 5:1–5:14, 2011.

[21] R. Singh, U. Sharma, E. Cecchet, and P. Shenoy. Autonomic
mix-aware provisioning for non-stationary data center
workloads. In ICAC, pages 21–30, 2010.

[22] K. Sripanidkulchai, S. Sahu, Y. Ruan, A. Shaikh, and
C. Dorai. Are clouds ready for large distributed applications?
ACM SIGOPS Operating Systems Review, 44(2):18–23,
2010.

[23] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood.
Agile dynamic provisioning of multi-tier internet
applications. ACM TAAS, 3(1):1:1–1:39, 2008.

132




