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Rapid elasticity is one of the essential characteristics of cloud
computing identified by NIST [17]. Elasticity allows resources to
be provisioned and released to scale rapidly out ward and in ward
according to demand. Tens – if not hundreds – of algorithms have
been proposed in the literature to automatically achieve elastic pro-
visioning [15, 23, 14, 21, 13, 20, 6, 12, 16, 10]. These algorithms
are typically referred to as elasticity algorithms, dynamic provi-
sioning techniques or autoscalers.

While trying to solve the same problem, sometimes with differ-
ing assumption, many of these algorithms are either compared to
static provisioning or to a predefined QoS target, e.g., predefined
response time target, with very little – or no – comparison to pre-
viously published work. This reduces the ability of an application
owner or a cloud operator to choose and deploy a suitable algorithm
from the literature. Many of these algorithms have been tested with
one single – real or synthetic – workload in a specific use-case [13,
14, 10]. While all published algorithms are shown to work in the
specific use-case they were designed for with the , typically short,
workloads tested with, it is seldom the case that the real scenarios
will be any thing close to the test cases for which the algorithms
are shown to work. Bursts occur in workloads occasionally. Work-
load dynamics change over time and the load-mix of an application
significantly affects how provisioning should be done [21].

This work aims to validate and better understand the literature
on automated rapid elasticity algorithms under different conditions.
We compare 10 auto-scalers from the state-of-the-art, namely, [23,
7, 14, 6, 5, 12, 18, 4, 13, 11, 10, 8]. We obtained the code for five
of the auto-scalers from their designers and reimplemented five.

Since cloud applications are heterogeneous in nature with dif-
ferent resource requirements and workload characteristics [19], for
this study, we choose a set of representative applications. Each of
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these applications stress different resources. The set of applications
chosen include complex webservices, scientific workflows, big data
processing, simple web services, and video streaming, Due to lack
of space, we describe only two applications in more details.

1. Scientific applications and workflows. Currently, workflows
are widely used to drive complex computations. A workflow

(WF) or a Directed Acyclic Graph (DAG) consists of a set
of tasks (nodes) which have precedence constraints among
them. Any task can start the execution when all of its in-
put dependencies are satisfied. The whole workflow in our
setup is considered as a job. The popularity of workflows
brings the diversity of their structures, sizes, and resource re-
quirements. For our experiments we use three well known
scientific workflows, namely, Montage, LIGO, and SIPHT.
Additionally, we consider two generic workflow structures:
a star (bag-of-tasks) and a chain. To schedule and execute
workflows we use the KOALA scheduler [9] and OpenNeb-
ula private cloud which are deployed on the DAS-4 infras-
tructure 1. The execution environment for workflow tasks
consist of a single head VM and multiple worker VMs.

2. Complex Web-Services. Wikipedia, the free online encyclo-
pedia, is one of the top 10 accessed websites on the Inter-
net [2]. The Wikimedia foundation has open sourced Medi-
aWiki, a custom-made, free and open-source wiki software
platform written in PHP and JavaScript. MediaWiki runs
using a LAMP stack (Linux, Apache, MySql, and PHP) or
similar installations. This setup is similar to many cloud ap-
plications [22] including, e.g., Facebook which uses a mod-
ern version of the LAMP stack, and YouTube [1]. In our
experiments, we replicate the German Wikipedia on DAS.
We have chosen the German Wikipedia since it is one of the
most popular Wikis in terms of number of users, and in terms
of number of articles [3]. The Wikipedia server architecture
deployed in their datacenters is multi-tiered with each tier
deployed on a different set of servers, but in our setup, we
reduce the number of layers to reduce the complexity. We
have chosen to run a bare minimum setup, i.e., with the Me-
diaWiki software, a load-balancer and a MySQL database.

1www.cs.vu.nl/das4
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We benchmark the performance of the selected auto-scalers with
the chosen applications and quantify the performance based on the
following set of metrics.

1. Average Overprovisioning (OP) is the average number of
overprovisioned VMs by the autoscaler per unit time. It is
calculated by summing the number of overprovisioned VMs
over time (OP) and dividing the number by the total time for
which the autoscaler was running. A machine is considered
overprovisioned if it is of no use for the next 10 minutes. This
time window reduces the penalty if an algorithm predicts the
future workload well in advance.

2. Average Underprovisioning (UP) is the average number of
underprovisioned VMs by the autoscaler per unit time. It
is calculated by summing the number of underprovisioned
VMs over time (UP) and dividing the number by the total
time for which the autoscaler was running. Underprovision-
ing means that the autoscaler failed to provision the resources
required to serve all requests on time.

3. Average number of Oscillations (O) which is the average
number of VMs started or shut-down (O) per unit time. The
reason to consider (O) as an important parameter is the cost
of starting/stopping a VM. From our experience, starting a
machine (physical or virtual) takes from one minute up to
several minutes depending on the application running (al-
most 20 minutes for an ERP application server). This time
does not include the time required to transfer the images and
any data needed but is rather the time for (virtual) machine
boot, network setup and application initiation. Similar time
may be required when a machine is shutdown for workload
migration and load balancer reconfiguration.

4. Maximum, minimum and, average time required for com-
puting the prediction (T ). When possible, we also report the
computational complexity of each algorithm. These values
do not change significantly for the same algorithm with re-
spect to the application managed. We thus report these values
for all our experiments and comment on any anomalies in the
measured times between experiments.

In addition to these general metrics, we look at application spe-
cific metrics for the applications such as response time, throughput
and request drop rate for the web services, queue length for the sci-
entific workflows and the big data workload, and jitter in the video
streaming workload, The aim of our work is to provide researchers
and industries with a better understanding of the current state-of-
the-art.2
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