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Abstract

In the last decades, fiber-reinforced polymers (FRP) have become increasingly popular within many
engineering fields. Having superior specific properties makes them valuable in industries where
weight is of utmost importance, in particular the aerospace industry. However, composites are vul-
nerable to damage that is developed during various life-cycle stages and complex to model. Structural
Health Monitoring (SHM) is a means to identify and charactere the damage, which brings advantages
like improving the design or rescheduling for maintenance. The need for reliable and accurate SHM
of composite materials is still existent in the present after many years, in which the high level of com-
plexity of the damage mechanisms plays a dominant role. Thus, to achieve an improvement in the
SHM of composite materials, an enhanced understanding of the damage accumulation processes is
essential and facilitates the way towards lighter, more optimized, and more sustainable aerospace
structures.

Another trend, especially in the last decade, is the growth in the availability of data, having introduced
and slowly manifested itself in society in the form of the Internet of Things, Big Data, and Industry
4.0. It has become increasingly popular amongst researchers to use this increase in available data to
increase the reliability of SHM. Two particularly useful topics show to be promising tools that further
stimulate the ongoing trend in the use of data: machine learning (ML) algorithms and the Digital
Twin (DT). concept. One of the main advantages of using ML is that it is much faster to operate than
a computationally expensive physics-based model, such as a finite element model. The Digital Twin
concept entails, in short, creating a virtual copy of a system (its physical twin) that makes use of an
integrated, heterogeneous information database and is updated accordingly in real-time, with the
purpose of increasing the user’s knowledge of the system and allowing to act accordingly.

There are three trends ongoing that, once converged, may achieve a synergy effect: development of
SHM using composite materials, the Digital Twin concept, and machine learning algorithms. By mak-
ing a first step towards the synergy effect, this thesis aims to enhance our understanding of damage
evolution in composites and improve on health assessment during its service life by constructing a
digital twin of a composite material. The presented methodology overcomes the need for expens-
ive testing to make use of the benefits of a data-driven digital twin, which focuses on the real-time
prediction of damage accumulation within a composite specimen. Successful integration of models
and data to create a digital twin with an accurate prediction of damage contributes to the research
to damage accumulation in composite materials and validation of structural health monitoring tech-
niques.

A relevant case study object for the implementation of the digital twin in the damage accumulation
process of composites is transverse matrix cracking in a cross-ply specimen. Recent research of Li et
al. investigates damage accumulation in cross-plies, both under quasi-static and fatigue loading, and
provides data to use as a case study. The experimental data provides the opportunity to validate the
digital twin and advance the ongoing research. Even though the cross-ply specimen is a suitable case
study object, augmentation of the existing experimental data set is still essential to make the data set
compatible with a data-driven technique.

A numerical FEM model was opted to provide the augmentation, where two main challenges arise: 1)
the complexity of modelling the interaction between matrix cracks and delaminations, and 2) over-
coming the deterministic nature of FEM. XFEM-CE was deemed as a suitable method to model the in-
teraction between the two damage mechanisms. Furthermore, to overcome the deterministic nature
of FEM, material variability was implemented within the model. Next to the advantage of being able
to simulate various damage states with the same model, including the material variability accounts
for the inherent variability of composite materials, which should improve the reliability of the simu-
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lations.

With regards to the real-time application of the model that processes complex information, machine
learning algorithms were assessed as interesting tools. Based on the literature review, a recurrent
neural network (RNN) with Long Short-Term Memory (LSTM) cells was opted to serve as a digital twin
that processes information and predicts the next crack in real-time. Recurrent neural networks are
popular tools in predicting sequences across various disciplines. Even more so, it allows combining
classification and regression tasks into a single model. Predicting the next crack location based on
a crack history in the form of classification results in a probability per location, which essentially
returns a list of the most likely crack locations rather than a single location. The next crack load was
predicted using regression, in the unit of strain. After all, that is the measured entity by most sensors.

To synthesize the research project, a digital twin can serve as a tool to solve the problem of modeling
complex damage accumulation processes with the final purpose of structural health monitoring or
validation of other structural health monitoring techniques. Key building blocks of the Digital Twin
concept are developed to address the need to capture complex underlying patterns of the damage
accumulation process in composite materials. By focusing on the processing of heterogeneous data
in real-time to predict the next crack location and load within a cross-ply, a fundamental model is
built that covers the research objective and may form the basis for the next steps in further research,
which may be focusing on including different life stages, remaining useful life, and/or other topics
that relate to damage accumulation within a composite material.

Material variability was implemented per element in the FEM model, which was configured in Abaqus.
All engineering constants were assigned a distribution from which per element a material was drawn.
The distribution for the transverse matrix strength YT was experimentally obtained. The other distri-
butions were assigned as normal or Gaussian, with mean values from the datasheet and coefficients
of variance of 2%. It showed the model capable of generating various crack patterns, although some
simulations ran into convergence issues caused by numerical problems.

Damage was implemented using simple damage initiation and propagation laws. Most damage para-
meters were estimated based on trial and error within a range of values that were found in literature.
To model the transverse matrix cracks, elements were enriched in columns with a spacing of 0.5 mm.
A maximum principal stress damage initiation was used with linear softening. In general, cracks
showed to appear and propagate instantaneously, similar to what was observed in experiments. To
model delamination, cohesive surfaces were adopted. A quadratic traction damage initiation cri-
terion was implemented combined with linear softening. The crack patterns that were observed in
FEM showed to be similar to the experiments.

After augmenting the experimental data set with FEM data, the data set consists of 277 FEM patterns
and 8 experimental patterns. Further augmentation was performed by mirroring the locations and
shifting the patterns 1 mm to the left and to the right. The last augmentation procedures increase the
size of the data set by a factor 6, although it should be noted that the quality of the data is less than
that of new patterns from experiments and FEM.

An architecture with 2 LSTM layers was chosen based on exploring various architectures. The loc-
ations turned out to be too stochastic to predict. On the contrary, predicting the strain was more
successful. After approximately 5 cracks, it shows that the error decreases and stabilizes within relat-
ively small bounds: a 95% confidence bound of around ±379 µε or ±20 MPa (multiplying the strain
by a typical Young’s modulus of 52.8 GPa). Increasing the prediction horizon up to 5 cracks ahead in-
creases the confidence bounds by 229%. It is shown that experimental specimens with higher loading
rates are more accurately predicted than the specimens of a lower loading rate.

The digital twin as proposed seems to provide a stepping stone for further research: it is proven that
without many costly experiments, a digital twin can be established that can provide the user relevant
information on its damage state via integration of heterogeneous data sources in real-time. Predic-
tions on damage accumulation can be used in a later stage to take the next step in developing a digital
twin of a composite specimen. For example, the number of cracks may form, together with other fea-
tures such as a strain field, the basis for accurate modeling and prediction of stiffness degradation as
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damage progresses. Proposed key recommendations that are expected to facilitate further develop-
ments are:

• To include correlation between material properties within the distributions, which can be im-
plemented by linking a micro-mechanical model to the FEM model.

• To adopt a UMAT subroutine in the model to unlock the possibilities of using more sophisticated
failure criteria and/or including a fatigue model.

• To increase the size of the data set to improve the performance of the model as proposed.
• To change the problem definition in the neural network for predicting the location to regression

or change the type of model to a Bayesian neural network.
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5 accuracy. A high ranking means a low score, so the models that performed best from
an overall point of view have the lowest total score. . . . . . . . . . . . . . . . . . . . . . . 109
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1
Introduction

In the last decades, fibre-reinforced polymers (FRP) have become increasingly popular within many
engineering fields. Having superior specific properties makes them valuable in industries where
weight is of utmost importance, in particular the aerospace industry. However, composites are vul-
nerable to damage developed during various life-cycle stages, which, may compromise the structural
integrity. To assess the effect of damage on a structure, the damage can be identified and character-
ized via structural health monitoring (SHM). With proper SHM, advantages emerge like, for example,
improving the design or rescheduling for maintenance.

The damage mechanisms that appear in composites are complex to model. Therefore, the need for
reliable and accurate structural health monitoring (SHM) is still existent in the present after many
years. To achieve improvements in the SHM of composite materials, an enhanced understanding of
the damage accumulation processes is essential. Moreover, it facilitates the way towards lighter, more
optimized, and more sustainable aerospace structures.

Another trend, especially in the last decade, is the growth in the availability of data, having introduced
and slowly manifested itself in society in the form of the Internet of Things, Big Data, and Industry 4.0
[1]. It has become increasingly popular amongst researchers to use this increase in available data
to increase the reliability of SHM. Augmenting current failure prediction methods for composites
with the immense amount of available data might bring the prediction of the structural integrity of
composite components to the next level. Two topics are identified to support the implementation of
the growing availability of data in SHM: machine learning algorithms and the Digital Twin concept.

The increasing availability of data that comes from sensors that are monitoring a structure allows
an improvement in enhanced decision making regarding the diagnosis of a structure’s condition and
prognosis of damage within a structure. Using ML in SHM has been found particularly useful in
three use cases: 1) a large amount of available data, 2) physical characteristics that are too complex
to model with physics-based models, 3) required reduction in computational efforts [2]. However,
opposing views exist on the use of ML in the field of SHM. Its power has shown to be a welcoming ad-
dition to SHM to some, while others are hesitant because it lacks a physical foundation and is thereby
considered to be a black box [2]. It is evident that generally speaking, a ML algorithm is much faster
to operate than a computationally expensive physics-based model, such as a finite element model.
Reduced computational efforts is especially an advantage in applications where fast operations of an
algorithm are critical, such as the SHM of a fighter jet that accumulates damage during a fight.

Using the current state of a structure combined with its available operating and failure history data
shows to provide improvements in predicting the future state, which is one of many capabilities that
the Digital Twin concept introduces. The Digital Twin concept is a particularly interesting concept
that potentially provides a paradigm shift and advances further enhancement of big data in SHM.
Interest in the concept has grown in the past years along with the growth of available data: it was
identified as one of the key concepts behind the rise of Industry 4.0 [3].

In short, the main characteristic of a digital twin is to create a virtual copy of a system (its physical
twin) that makes use of an integrated, heterogeneous information database and is updated accord-
ingly in real-time, to increase the user’s knowledge of the system and allow to act accordingly. A
virtual copy does not necessarily entail a detailed, exhaustive model of the mechanical behavior of
every square millimeter of the system. In fact, it can also be to virtually copy and predict the damage
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state based on a limited quantity of state variables of the physical twin [4].

The Digital Twin concept has the potential to address the issue of required improvements on SHM
of composite materials and ultimately may revolutionize the designing, certifying, maintaining, and
operating of systems and their components [5]. However, being a relatively young concept, there is
considerable room for development: metal specimens have been the preferred test subject in many
Digital Twin studies, which, consequently, address the need for more complex test subjects such as
composite materials [5–9].

To summarize, there are three trends ongoing that, once converged, may achieve a synergy effect:
development of SHM using composite materials, the Digital Twin concept, and machine learning
algorithms. By making a first step towards the synergy effect, this thesis aims to enhance our under-
standing of damage evolution in composites and improve on health assessment during its service life
by constructing a digital twin of a composite material.

A methodology is presented that overcomes the need for expensive testing to make use of the bene-
fits of a data-driven digital twin, which focuses on the real-time prediction of damage accumulation
within a composite specimen. A prediction method to predict the damage accumulation is aimed at
contributing to the research to damage accumulation in composite materials and validation of struc-
tural health monitoring techniques.

Before presenting the research objectives and questions, chapter 2 presents a literature review on the
Digital Twin concept, damage mechanics of composite materials, material variability, and machine
learning in the context of SHM. Next, the research objectives and questions are defined in chapter 3.
The experiments performed by Li et al. that provide validation data for the finite element model
and form the basis of the data set to train a data-driven digital twin with is explained in chapter 4.
The finite element model that was built is presented in chapter 5 and the data-driven digital twin in
chapter 6. Finally, a conclusion and recommendations are provided in chapter 7.



2
Literature Review

The purpose of this literature review is to gain more insight into relevant research fields that are re-
lated to the research aim. First of all, the digital twin concept is discussed in section 2.1. The appear-
ance and modelling of damage of composite materials is discussed afterward in section 2.2. After-
ward, material variability of composite materials is covered in section 2.3. Lastly, the field of machine
learning is discussed in section 2.4.

2.1. Digital Twin Concept

The Digital Twin1 concept was first thought of as a concept for Product Lifecycle Management by Dr
Michael Grieves in 2002. The concept was further developed by Grieves in the years to follow until
it was first cited "Digital Twin" [10]. The model described by Grieves and Vickers (the co-author on
behalf of NASA) consists of three main elements: a digital entity, a physical entity, and a data and
information interface. The idea is that the Digital Twin allows to design, test, manufacture, and use
the virtual version of a product, which is considered a fundamental paradigm shift in many indus-
tries, amongst which the field of aerospace engineering [11]. In general, the majority of DT research
has been done in the field of manufacturing and industry 4.0 [12, 13], but also in other engineering
industries such as the automotive industry [14] or off-shore engineering [15].

One example of the implementation of the DT is NASA’s "Airframe Digital Twin". NASA is developing
a solution for the way in which heuristics and similitude based certification and maintenance results
in aircraft structures being heavier than necessary. They defined the Digital Twin as follows: "An in-
tegrated multi-physics, multi-scale, probabilistic simulation of an as-built vehicle or system that uses
the best available physical models, sensor updates, fleet history, etc., to mirror the life of its correspond-
ing flying twin" [11]. Consequently, on behalf of the U.S. Air Force, Tuegel et al. stated that in 2025
the first aircraft of a new model type is delivered that comes along with a digital twin of the same
aircraft [16]. Four categories of challenges are identified by Tuegel on the concept in 2012: modelling
of as-manufactured aircraft, modelling of complex flight loads such as dynamic aeroelastic effects,
selection and integration of submodels (e.g. additional material state evolution submodels are re-
quired), and managing uncertainty, i.e. reducing differences between the physical aircraft and its
digital twin [11].

A study performed by Majumdar, Haider, and Reifsnider in 2013 [4] presents a Digital Twin that is
suitable for future integration with other types of digital twins to model a multi-physical environ-
ment. Specifically, the authors examined how an electrical field causes microstructural changes to
simulate the damage tolerance of composite materials due to a lightning strike; experiments showed
how electrical current (conducted through the fibers) affects the dielectric matrix material. 3D X-ray
image processing was used to obtain the actual geometry of the composite material such that it can
be used to solve multi-physics equations. For instance, by using finite element software: a segmented
volume or area is captured by the 3D imaging and consequently used to generate a mesh and solve
accordingly.

Majumdar and Reifsnider performed another study in 2013 [17] in which they address the need for
a model that can be used for composite materials. Changes in the material properties as a result of

1"Digital Twin" or "DT" refers to the conceptual approach, "digital twin" refers to a specific digital model or replica.
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damage are essential to understand in order for a prognosis of future performance. It is shown that
measuring changes in electrical permittivity of a glass-epoxy fabric during tensile testing allows for
data to be generated in which early warnings are shown of impending failure once approaching the
end of life. Crack initiation, accumulation and interaction are identifiable based on the rate of change
of the global permittivity. The work is presented as foundation for a flying digital twin.

In 2017, Li et al. [18] proposed a concept of a probabilistic model to realise the Digital Twin vision
that was initially proposed by NASA [11]. More follow up research on the concept by NASA and the
U.S. Air Force has been done in the past years [5–8]. Outside of aerospace, the US Department of
Energy sponsored research that presents the Digital Twin as a predictive probabilistic model that was
trained using a combination of experimental and computational data by using machine learning [19].
This digital twin was used to characterise and estimate statistical dependence of parameters within
a composite material. Next to the U.S., other governments of countries such as China and Canada
are also researching the possibilities of the Digital Twin in (aerospace) applications [20, 21], as well
as conglomerates such as Airbus, that is working on a Digital Twin to fulfil the never-ending need of
aircraft operators to increase efficiency [21], or General Electric [22].

Back when Grieves first came up with the idea, it did not attract much attention among scientists be-
cause of three main reasons: difficulties in real-time processing of big data, limited developments in
options to digitally describe products, and a limited amount of technical means to collect information
in a production process [23]. Linking these difficulties that Wang described to damage mechanics in
composite materials: deep learning algorithms such as neural networks have proven to be capable to
handle big data in real-time applications [24]; damage mechanics can be described both analytically
by a plural of models and numerically via finite element software; and damage information collection
or damage diagnostics can be done via several methods that can also be used outside the laboratory
in real aerospace applications.

Therefore, the digital twin is a viable solution nowadays that could advance ongoing research on dam-
age accumulation in composite materials with the purpose of further development of SHM. Corres-
pondingly, the damage mechanisms in composite materials are more elaborately discussed.

2.2. Damage in Composite Materials
Composite materials are notorious for the complexity in analysis that arises once different types of
damage mechanisms occur simultaneously and/or interact with each other. The sequence of damage
accumulation can be attributed to various causes, such as the environmental conditions, the load
case, layup of the laminate, manufacturing defects, and material properties. modelling this process
can be challenging. Therefore, in this section it is established what types of damage can be found
in composite materials and how they can be modelled. Firstly, a qualitative discussion of damage
phenomena is provided in subsection 2.2.1. Next, the two main categories in damage mechanics
models are discussed in subsection 2.2.2. An overview is given of the development and availability of
failure criteria for the initiation and progression of damage in subsection 2.2.3.

2.2.1. Damage Phenomena

A typical evolution of damage under static or fatigue loading within a composite specimen’s life is de-
picted in Figure 2.1. Damage occurs from a microscopic to macroscopic scale – causing multi-scale
modelling difficulties, sometimes referred to as the tyranny of scales [25] – and can be divided into two
groups: interlaminar and intralaminar damage. Interlaminar damage would be delamination, i.e. the
separation of two laminas due to interlaminar matrix cracking. Intralaminar damage mechanisms are
for example matrix cracks or fiber breakage. Intralaminar damage phenomena are discussed first, fol-
lowed by interlaminar damage phenomena. In the last part of this section, the ability of the material
to withstand loading once damage is present, the damage tolerance, is described.
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Figure 2.1: Typical damage evolution within a composite specimen’s life [26].

Intralaminar Damage

Cracks in the matrix initiate in many forms and due to various scenarios. In case of damage in com-
posite materials, cracks in the matrix are rarely the sole damage that is present, but still affect the
residual strength of the material [27]. Intralaminar crack growth is often irregular and constrained by
the surrounding fibers. These surrounding fibers generally act as crack stoppers which is the reason
why often cracks between plies (delamination) do not easily branch out but mostly only grow between
different plies. Crack growth through the thickness can analytically be modelled by several models, of
which the Mar-Lin prediction method is shown to be more accurate than the Whitney-Nuismer, Poe-
Suva, and Linear Elastic Fracture Mechanics models in estimating crack size [27]. Numerical models
such as the finite element method (FEM) provide alternative methods.

Transverse matrix cracks occur in off-axis plies under both quasi-static and fatigue loading. Its de-
gree is characterised by the crack density, which is defined as the number of cracks per unit length
[28]. Once cracking begins, the crack density increases until a saturated state is reached, a so called
characteristic damage state (CDS). The CDS (or "crack saturation" point as shown in Figure 2.1) has
been proposed to be independent of the applied loads and instead is determined by the layup, next
to geometry and material properties [29], while experimental studies report specimens showing dif-
ferences in the crack density value corresponding with CDS under the same loading conditions [30].
The overwhelming majority of studies on (transverse) matrix cracks assumes that the crack spacing is
equal between the cracks and that as such, analysis can be narrowed down to a representative lamin-
ate segment [28]. However, parameters such as the applied loading rate affect the amount of scatter in
the uniformity of the matrix crack distribution [31]. Figure 2.2 shows various crack patterns that were
observed in cross-ply laminates, including other damage mechanisms induced by matrix cracking,
such as matrix micro damage (d), delamination (e), or crack kinking through the interface (f).
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Figure 2.2: (a-c) Various crack patterns in cross-ply laminates (d-f) and damage mechanisms induced by matrix cracking.
L - longitudinal, T - transversal [32].

Other type of intralaminar damage modes are micromechanical failure modes that relate to the inter-
face between fiber and matrix, such as fiber-matrix debonding. The mechanisms behind debonding
between the fiber and matrix depends on the loading type. In case of transverse loading, it can be
observed in broken specimens on a microscale that the damage pattern can be traced to the presence
of debonds; meaning the development of this type of debonding can turn out to be very significant in
the global damage accumulation of in the composite [33]. This can be considered as mode I failure,
which is further explained in subsection 2.2.2. In case of axial loading, mode II failure is occurring. To
determine the interfacial fracture toughness, the single-fiber fracture toughness test can be used [34].
Fiber pull-out is another example of failure of the fiber-matrix interface. Examples of micromechan-
ical tests that are used to determine the interface strength are illustrated in Figure 2.3.

Figure 2.3: Micromechanical failure mode tests where a load is directly applied to the fiber: (a) fiber pull-out (b)
microbond testing (c) three-fiber test (d) push-out [35].
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Different loading types generally induce different types of failure modes. Under tensile loading, fiber
breakage and matrix cracking most commonly occur, while under compressive loading the primary
failure mechanism is fiber kinking due to matrix cracking or yielding and rotation of fibers [36]. The
first campaign of the World-Wide Failure Exercise (WWFE) stressed the need for dedicated experi-
mental campaigns that investigate the mechanical response of composite laminates in the presence
of multiaxial stress states [37]. A study by Kalteremidou et al. [38] was aimed at providing such a ded-
icated experiment and considers the effect of multiaxial stress state, as well as the effect of stacking
sequence and number of off-axis layers on the mechanical response and damage sequence in car-
bon/epoxy laminates. In case of shear loading being dominant in one of the off-axis layers, delamin-
ation occurred even prior to matrix cracking.

Intralaminar Failure Modes

The failure modes within a ply of a FRP are generally characterised as Tensile Matrix Failure (MFT),
Compressive Matrix Failure (MFC), Tensile Fiber Failure (FFT), and Compressive Fiber Failure (FFC).

FFT – Fibers failing due to tensile loading results in failure of the main load-carrying components
within a ply, without the load being able to be redistributed. Therefore,it is generally considered to be
a catastrophic failure mode. FFT is an explosive failure mode because of the energy that is released
[39].

FFC – Compressive loading on the fibers is influenced by the resin’s shear load-carrying capabilities
and imperfections in the laminate. Ultimately, fiber kinking can be observed as well as microbuckling
of the fiber or shear failure of the matrix [39].

MFT – Transverse tension that causes matrix cracks is denoted as MFT. The cracks usually grow
through the thickness of a ply until stopped by the ply boundary. In general, the direct effects of
this failure mode result in minimal stiffness losses. However, once these cracks will grow they may in-
duce more sever detrimental effects and activate other damage modes such as delamination at CDS
[39, 40].

MFC – Transverse compression that causes cracks in the matrix may lead to cracks that do grow
through the thickness. Even though it is commonly referred to compressive failure of the matrix,
it is actually shear failure of the matrix, as shown by the angle between the fracture and applied load
[39].

Interlaminar Damage

Delamination is an interlaminar failure mode of a composite material of which the onset and propaga-
tion has been investigated by several reviews [28, 41, 42]. It can be difficult to detect delaminations
because they are frequently embedded in the material due to various causes such as manufacturing
defects [41]. Development in understanding the process of delamination started with the theory of
fracture mechanics, which is more elaborately discussed in subsection 2.2.2. Even though modelling
this failure mode is of great importance, it cannot be considered to be isolated from less critical dam-
age types, such as transverse matrix cracks. For instance, layup and the applied loading profile play
a role in the damage interaction [43]. The onset of delaminations of, for example, cross-ply lamin-
ates is often preceded and caused by cracking of the matrix [44]. Delaminations caused by the tips
of microcracks within a cross-ply laminate have been analysed by Nairn and Hu [45]. The authors
show here that at a certain critical crack density, the required energy release rate for the initiation of
delamination becomes lower than that for microcracking, i.e. delamination will be initiated rather
than microcracking.

Damage Tolerance

Damage of the material results in degraded residual properties, such as strength or stiffness. The
damage tolerance of a structure indicates its capability to remain its original material or structural
properties despite being damaged. The degradation of a material can be modelled both instantan-
eous and sudden. modelling how the degradation of material affects its residual properties is one of
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the main challenges in progressive failure analysis [46]. Being able to assess the effect of damage on
the material response is an essential step before prognosis. Vice-versa, the reduction of mechanical
properties can be measured and used to define damage [47].

Dependent on the type of damage, different degradation effects can be attributed to the composite
material. For example, fiber failure in case of a tensile on-axis load using a cross-ply will effect a more
significant degradation to the specimen than transverse cracking in the 90-plies. In other words, a
single, fixed damage mechanism is generally not the cause of failure of a composite laminate, which
has been shown in extensive experimental work [48]. Therefore, failure mode-dependent failure cri-
teria are more suitable to use in progressive failure analysis [49]. Such failure criteria are discussed in
subsection 2.2.3.

2.2.2. Damage Mechanics

The nucleation and growth of defects on a micro-scale to their coalescence into cracks on a macro-
scale was first used to predict the creep rupture [50]. Afterwards, the the concept of Damage Factor
was developed by Robotnov [51]. With damage mechanics providing for a measure of material de-
gradation on a microscale, damage variables were introduced to reflect the degradation of the mater-
ial on average on a macroscale, which is why Continuum Damage Mechanics (CDM) was developed.
CDM and fracture mechanics are discussed here.

Continuum Damage Mechanics

Continuum Damage Mechanics (CDM) has been widely used over the past six decades to predict
damage evolution of composite laminates and the corresponding stiffness degradation [52]. In CDM
models, the accumulation of damage is modelled by reducing certain material properties. As such,
the loss of load-carrying capability is simulated. Once the values of specified damage values reaches
a certain value, it is assumed that the material has failed and can no longer withstand any loads.
Failure criteria exist that describe the onset and progression of damage using such a strength-based
principle, which are provided in subsection 2.2.3. Correspondingly, the stress is used as measure,
which can be obtained by e.g. measuring strain via experiments. Because of this, these methods are
sometimes also referred to as stress-strain methods.

Several aspects make composites difficult to model damage using this principle. Due to the morpho-
logy of the material, there will be a preferred direction for crack growth. This is not merely resulting
from the geometry, loads or boundary condition, but from e.g. the fact that the interface between
the fiber and matrix is weaker than surrounding material [53]. Another example is the difference
in material properties such as the coefficient of thermal expansion of the fiber and matrix that may
cause internal stresses. This inhomogeneity of the composite material simply does not agree with
homogeneous modelling of reduced material properties.

Nonetheless, in the early 1990’s, CDM degradation models were first applied to composite materials
[54]. From a mesoscale perspective, a composite lamina is more suited to treat as a homogeneous
material [53]. Plane stress conditions can be assumed for a lamina, which simplifies the stress vector
from 3D to 2D. Another advantage of using lamina properties rather than material properties, is that
using ply properties prevents redoing experiments every time the layup of the laminate changes.

CDM approaches are preferred in case of a more diffuse and spread damage pattern that is typical for
intralaminar damage forms [36, 48]. Combining damage and fracture mechanics approaches to solve
progressive damage analysis problems in composite materials have been proposed in the last years
[55]. In modern approaches, progressive failure analysis is performed using FEM-based numerical
methods, which is more elaborately discussed in subsection 2.2.4.

Fracture Mechanics

Fracture Mechanics is an energy based method and was developed during the first world war by Grif-
fith to explain failure of brittle materials [56]. The change in energy during crack propagation under
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a constant load was related to the creation of crack surface. This rate is defined as the strain energy
release rate and the required energy to crack a surface is defined as the fracture toughness Gc . Plas-
ticity is not taken into account in Griffith’s theory and a stress singularity at the crack tip exists here
as well. Irwin introduced a plastic zone, which also removed the stress singularity and makes the
method valid for both brittle and ductile materials. As shown in Figure 2.4, it makes a distinction
between three fracture modes: Mode I – opening or peeling; Mode II – In-plane shear; and Mode III
– Out-of-plane shear. Mode I fracture has generally the lowest fracture resistance, making it the most
likely to occur, although a mixed mode fracture also often occurs.

Figure 2.4: Fracture modes I, II, and III.

In composite materials, a plastic zone may not be (completely) developed, e.g. due to fiber bridging
between two crack surfaces. The fiber bridging may be more dense towards the crack tip, resulting
in a higher resistance to separation there. This zone is called a cohesive zone and based on two in-
dependent concepts by Dugdale [57] and Barenblatt [58]. The main advantage of this model is that
cracks can be modelled in uncracked structures, whereas classical linear elastic fracture mechanics
(LEFM) requires the presence of an initial crack. The cohesive zone model forms the basis of the co-
hesive zone element. Delaminations are generally simulated using cohesive cracks, because of the
discrete nature of the cohesive model [36, 48]. modelling cracks in finite element software and is fur-
ther explained in subsection 2.2.4. An example of the use of fracture mechanics in FEM is the Fracture
Analysis Code 3D (FRANC3D), which enables 3D arbitrary, non-planar crack growth and was coupled
to a prognostic model that was built as a digital twin [8].

Another approach in modelling delamination in composite materials is the use of an approach called
finite fracture mechanics [59]. A crack will initiate once a certain amount of energy is released, at the
point of the so called critical energy release rate, which can be explained as follows. Linear elastic an-
isotropic materials can be analysed using the strain energy release rate. For self-similar crack growth
like delamination, the SERR can be determined via local forces and moments [60]. The basic assump-
tion here is that the energy per unit area required to create a new cracked surface area is equal to R,
the crack resistance, which depends on e.g. the type of fracture mode.

At fracture, G = R holds. G I and G I I , the energy release rates for mode I and mode II fracture, together
make up the total SERR. Both G I and G I I can be expressed as a function of the geometry and loading,
which means that already from relatively simple experiments the energy release rate can be obtained
without directly measuring energy.

The critical energy release rate is experimentally obtained, based on the type of material and it is reas-
onable to consider it a material property independent of stacking sequence [61]. It should be noted
that in case of large displacements the load-displacement curve may become non-linear. An advant-
age of using a double cantilever beam (DCB) specimen is that the fracture toughness is relatively
simple to determine based on the described principles; novel methods are described in which only
the load-displacement curve is required to determine the mode I and mixed modes I/II interlam-
inar fracture toughnesses [62]. The fracture toughness of a material is an indication of a material’s
sensitivity for cracks under static loading and is used for residual strength calculations [63].
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2.2.3. Modelling Damage

Modelling the onset and progression of damage can be done by using failure criteria. These criteria
can be applied both analytically and numerically. Lots of different criteria exist, while there is no
single criterion that is universally accepted. An overview of initiation criteria which are still imple-
mented in numerical models nowadays is provided here first. For example, Hashin damage initiation
criteria are still the default setting in the widely-used commercial FEM software Abaqus. Next, dam-
age propagation and corresponding material degradation models are discussed.

Initiation Criteria

The simplest initiation criteria are the maximum stress and maximum strain criteria, which make no
distinction between different types of failure mode, i.e. mode-independent, and compare the stress
or strain in a certain direction with the material strength property in the corresponding direction.
Once the measured stress or strain exceeds the material strength properties, the ply will fail. The
Tsai-Wu failure criterion is an example of a criterion that is mode-independent [64] and was the first
to be formalized in 1971 [65]. The Tsai-Wu criterion makes use of seven polynomial invariants based
on the stress state of the material.

A few years later, Hashin and Rotem were the first to make a distinction between different failure
modes within a material: fiber and matrix failure under a cyclic tensile normal stress with plane
stress conditions [66]. Hashin continued working on the topic and established failure criteria that
were based on the hypothesis that fracture is provoked by stresses acting on a fracture surface (or ac-
tion plane) [67]. The World-Wide Failure Exercise (WWFE) resulted in 19 failure theories [68], of which
Puck and Schurmann’s criteria were found to be one of the most noticeable ones in terms of accur-
acy [69]. Puck and Schurmann developed an approach that continues the work of Hashin and has a
reasonably physical basis, namely the Mohr-Coulomb fracture hypothesis [70]. Additional paramet-
ers next to mechanical material properties are required, some which are experimentally determined
[71]. Cuntze’s failure criteria resemble that of Puck, including the failure envelopes, but included a
probabilistic method to model interaction between damage mechanisms [72]. The LaRC 03 exten-
ded Puck and Hashin failure criteria and makes use of in-situ strength values [73] which can be quite
different from experimentally obtained strength values [69]. The in-stu strength relates to the fact
that the strength of a ply that is embedded in a laminate is actually larger than the experimentally
obtained strengths of a single UD ply [74].

LaRC04 and LaRC05 are again expansions of the LaRC03 failure criteria. LaRC04 uses three-dimensional
criteria and is strongly physically based: it is devoid of empirical parameters [75], while LaRC05
provides further computational advancements and was submitted for WWFE-II [76], which is tar-
geted at developments regarding three-dimensional and through-the-thickness failure criteria. The
WWFE-II provided two rankings of 12 failure theories, however, the assessment of failure theories is
critised by Christensen because of several reasons, some of which are: the unconservativeness; par-
tial incorrectness on hydrostatic pressure load cases; contradictory theories within the winning four
theories; personal views influencing the outcome of the organizers; and a high number of input para-
meters (50-75 for the winning theories) which implies the outcome might as well be due to the power
of parameters rather than a physical basis [77]. It should be noted that Christensen’s own failure the-
ory participated and ended 11th out of 12, about which he stated "it was viewed by the organizers
as being the very poorest of quality". Nonetheless, Christensen acknowledges the WWFE-II to be a
useful step toward a robust and reliable failure criterion for FRP.

Even recent (2020) research [78] shows that Hashin and Puck criteria are able to predict first ply failure
(FPF) within a error margin of 5%. Such early theories like Hashin, but also Tsai-Wu are still widely
used because they are easy and simple to understand and implement, despite their shortcomings
[79].

Many criteria succeed in predicting the remaining strength of a composite component, but struggle
with predicting the initial failure stress, the corresponding damage mode, and the significance of this
initial damage mode for the subsequent performance after FPF [37]. However, it is argued here that
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accurate prediction of damage initiation is of paramount importance to reliably implement damage-
based failure criteria.

All in all, plenty of failure criteria exist but none has shown to be sufficiently reliable and accurate to
become universally accepted [49]. The mode-dependent criteria lack the homogeneity of the mode-
independent criteria because different failure modes are considered amongst the various criteria [49].
For an analytical model to consider all variables upon which complex damage phenomena rely, such
as delamination due to buckling, is rather challenging, which is why numerical finite element meth-
ods have been developed in the past years.

Damage Propagation

Models for the damage propagation of composites are widely available, from relatively simple stiff-
ness degradation to more complex CDM or fracture mechanics based models. CDM-based models
have shown to be the most accurate to predict failure strengths of composite materials [80, 81]. On the
other hand, delamination is more accurately modelled using LEFM based approaches [36, 48]. Mod-
elling sudden material degradation upon damage onset can be done by using one of the initiation
criteria as stated above, which are easy to use [46]. Another option is gradual degradation which al-
lows for more accuracy in modelling and the implementation of the underlying physical principle
[46]. Models for sudden material degradation have been used and are briefly discussed per failure
mode. Afterwards, gradual degradation models are discussed.

Fiber Failure In case of fiber failure, the main load-carrying components of a ply have failed. Addi-
tionally, in case of FFT there is a significant energy release that potentially damages adjacent material
[39]. Sudden fiber failure has been implemented in the form of total-ply discount methods, such as
by Lee [82]. Here, in case failure is observed using a failure criterion, the entire ply assumed to have
lost all of its material properties. Using common sense, it can be established that it is not realistic
that a ply has no material properties left at all in case of failure. To address this problem, several
models have been proposed to select more carefully what properties are degraded and to what val-
ues. One example of such a model was presented by McCarthy et al. [83]. Next to modelling not all
material properties to zero, a distinction was made between FFC and FFT. This research was followed
up by Camanho and Matthews [84]. More examples of sudden fiber failure modes can be found in a
degradation model review by Garnich and Akula [46].

Matrix Failure Generally, matrix failure is associated with the loss of transverse stiffness properties.
Camanho and Matthews distinguish compressive and tensile matrix failure, where it is assumed that a
compressive crack still allows load trasnder and therefore compressive failure is deemed less critical
[84]. Because matrix cracking is associated with shear failure of the matrix, the shear moduli are
degraded by this model as well.

Gradual Degradation Models Numerous examples exist of gradual degradation models, but un-
fortunately, those generally still lack physical understanding and reliable experimental data. One
example of a model that has a more physical basis is those that are based on bi-linear softening, as
proposed by e.g. Pinho [39, 76] and Zhang [85]. The bi-linear softening law assumes a linear softening
relation after failure. The strain softening of the material is dependent on the failure mode. Separate
fracture toughnesses for each of the failure modes have to be obtained; how to do so is described in
more detail by Pinho [39]. Another approach in gradual material degradation was proposed by Puck
and Schurmann [70]. This approach can be used in case of matrix failure and proposes the use of a
degradation factor which allows the reduction of transverse properties, dependent on the identified
failure mode of the matrix. With most of the available gradual degradation models following a heur-
istic approach and having limited physical basis, recent numerical FEM methods provide a solution
in which stress-strain based models and fracture mechanics based models are integrated, which is
discussed in subsection 2.2.4.
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2.2.4. Finite Element Method

The Finite Element Method (FEM) is a tool that has developed over the years into a indispensable
technology for the simulation and modelling in a wide variety of advanced engineering fields, such as
thermal analysis and of course structural analysis. FEM can be used to obtain the distribution of field
variables within a specified domain of a problem that is difficult to solve using analytical solutions.
Solving a structural analysis problem via FEM usually starts by modelling the structure’s geometry
and mesh it, i.e. discretize the structure into smaller pieces called elements. Next, material properties
have to be specified, as well as the boundary, initial, and loading conditions. The complexity in all the
associated calculations make FEM difficult to implement in in-situ damage prediction [86]. However,
it has been shown to be effective in the training of a prognostic model [87]. Another example where
FEM has been used, to train an artificial neural network (ANN), is provided by Mucha [88]. It was
shown that the computational effort was reduced by one order of magnitude while the accuracy was
maintained at the same high level. However, it should be noted that obtaining those results required
many attempts and was not trivial.

In case of damage, failure criteria and damage evolution laws can be selected and determine the
way in which the structure’s material properties are degraded. Depending on the type of software
that is used, failure criteria and damage progression as described in subsection 2.2.3 are available.
CDM and fracture mechanics based approaches can be used to model damage using FEM software.
Figure 2.5 illustrates a taxonomy of the computational approaches that exist to simulate fracture and
the progression of damage in composites. Relevant approaches are discussed in this section.

Figure 2.5: A taxonomy of computational damage and fracture mechanics approaches [36].

One of the simplest ways to model progressive damage and failure is through stiffness degradation
of the elements using the stiffness degradation method. By using failure criteria such as specified in
subsection 2.2.3, damage onset and progression can be determined and subsequently, the stiffness
can be degraded. Figure 2.6 schematically illustrates the process.
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Figure 2.6: Modelling a sharp crack in a FEM [48].

Cohesive Elements

The cohesive zone as described in subsection 2.2.2 formed the basis of the cohesive element in FEM.
The cohesive zone method assumes that once damage is initiated and the two faces are separated,
the load carrying capability is not instantly lost [47]. Instead, the stiffness loss progresses more gradu-
ally, as illustrated in Figure 2.7, using a constitutive traction-separation law. Cohesive elements are
interface-type elements with zero thickness that can be modelled inside the mesh along a potential
crack path [48]. Such elements are assigned zero thickness or, in some cases, a small, finite thickness.
It can be particularly useful to model delaminations. However, once it is unclear where a crack will
initiate, it can be difficult to decide the number and corresponding locations of cohesive elements
that should be modelled. To overcome this problem, alternatives exist and are discussed hereafter.

Three parameters often determine the accuracy of using cohesive elements to model delamination
in composite materials: the fracture toughness, penalty stiffness, and interfacial strength [89]. The
fracture toughness, or fracture toughnesses of multiple modes in case of mixed mode loading when
relevant, is used as input for the failure criterion and can be experimentally obtained. In case very
high stress concentrations, e.g. at crack tips, are present, the interfacial strength was found to have
no effect on the results. However, in cases where those high concentrations were lacking, the res-
ults turned out to be sensitive to the modelled strength. The penalty stiffness describes the beha-
viour of the interface before any damage is initiated. Low values decreases the structural stiffness
and delamination initiation, while high values ensure correct modelling of the structural stiffness at
the cost of an increase in required computational efforts.

Figure 2.7: Cohesive zone model [47].
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Smeared Crack Model

The smeared crack model comes down to an improved stiffness degradation method, using a cohesive
law to degrade element stiffnesses. Instead of modelling cohesive elements straight into the mesh, a
cohesive crack is smeared in a ply element following a cohesive law, and stiffness is of the element is
degraded accordingly [90]. An advantage is that because a cohesive law is used, the energy dissipation
is correct. A disadvantage is that the direction of the mesh dictates the elements that will fail next,
which affects the prediction of fracture paths [91].

Multiple possible solutions exist to overcome this mesh bias. One of which is remeshing around the
crack tip to achieve a better accuracy in the solution. However, this can still be complicated to model,
due to the complex crack geometry in composites, as well as the fact that cracks in all plies would have
to be remeshed properly. Additionally, remeshing is quite expensive from a computational point of
view. Another solution is to evaluate damage based on the weighted average strain within the region
surrounding a crack tip, rather than evaluating the sole crack tip element. Other solutions have been
developed as well in the form of different methods.

Figure 2.8: Smeared crack model [92].

Virtual Crack Closing Technique

Virtual crack closing technique (VCCT) is used for computing the strain energy release rate (SERR)
from FEM simulations in order to allow the use of the mixed-mode fracture criterion [93]. The method
is based on fracture mechanics; it is based on the assumption that the energy required to create a
crack is equal to the energy required to close it. VCCT was used as basis for a computationally ef-
ficient approach to simulate discrete crack growth [94]. Here, the FEM analysis and crack growth
module were decoupled to increase the computational efficiency. The role of VCCT was to provide
the SERRs, which were then used to convert into stress intensity factors. It is stated that other frac-
ture analysis methods could have been used as well, but VCCT was selected due to its capability of
providing accurate SERRs with a coarse mesh.

eXtended Finite Element Method

The eXtended Finite Element Method (XFEM) was proposed by Belytschko and Black [95]. In XFEM,
the elements are enriched with additional degrees of freedom (DOFs). Once a crack occurs, these
additional DOFs are used to represent a displacement discontinuity. This is illustrated by Figure 2.9.
The crack tip itself can be enriched as well, such that analytical information can be used to model the
shape functions around the crack tip. However, this information is not always available for composite
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materials. Bouhala et al. proposed an approach to allow crack tip enrichment in composite materials
[96].

Figure 2.9: Enrichment and partition of elements in XFEM. (a) enriched elements (b) partitioned elements. [97]

Several modifications have been proposed and reviewed already [98]. The main advantage of us-
ing XFEM is that crack propagation can be simulated without predefining a crack path or need to
update the mesh [99]. Van der Meer et al. have shown that an XFEM based approach was capable
of simulating transverse matrix cracks in cross-plies in good agreement with experiments [91]. The
performance of XFEM in application to the cracking process in cross-ply laminates was assessed by
Petrov, Gorbatikh, and Lomov [99] using Abaqus. It was found that XFEM was capable of predict-
ing the crack propagation and corresponding crack density in a cross-ply laminate. A physical trend
was used between crack density and observed strain, which was in agreement with presented exper-
imental data. Nonetheless, the biggest identified challenge was proper interpretation of the input
parameters that describe microscale phenomena.

One of the modifications that has been made on the XFEM model is Hansbo’s method, or the Phantom
Node Method (PNM) [100]. Elements are assigned both real and phantom nodes, where the latter are
created as a double of the real nodes. Once a crack appears, the element is split into two independent
element by the crack. With the presence of the phantom nodes, two separate displacement fields are
created. In a study by Van der Meer et al. PNM is used to model matrix cracking, cohesive interface
elements are used for delamination, and CDM is used to model fiber failure [101]. The predictions
that were made were found to be in good agreement with experimental values.

Another modification of XFEM is to integrate the cohesive elements with XFEM, the XFEM-CE ap-
proach [55]. This approach was addressed at the limitations of the smeared crack method. Both
XFEM-CE and PNM are aimed at capturing the interactions between matrix cracks and delamina-
tions more accurately. In the XFEM-CE method, XFEM is used to model matrix cracks and cohesive
elements are used to model delaminations, as illustrated in Figure 2.10. With XFEM, smearing of the
crack is no longer required and the associated mesh bias is eliminated. Cohesive elements are placed
between plies that have different fiber orientations. Furthermore, those cohesive elements are en-
riched to ensure continuity with the adjacent elements.

Figure 2.10: Interaction between partitioned solid elements and cohesive elements [97].

A parametric study was performed by Petrov, Gorbatikh, and Lomov that assesses the performance
of XFEM in modelling cracks in a cross-ply laminate [99]. It is shown that the strength distribu-
tion strongly affects damage initiation. In addition, it affects the damage propagation when using
a traction-separation law, because it changes the maximum separation for a given critical energy re-
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lease rate, which is illustrated in Figure 2.11. The crack pattern seems to be sensitive to whether
delamination is modelled or not in terms of the evolution of cracks and the final crack density. The
graph of a single crack evolution plot is compared to the model and agrees well.

Figure 2.11: Traction-separation behavior after damage initiation: (a) linear softening law with XFEM status, (b) effect of
the coupling between CERR and strength, (c) effect of correlating CERR and strength [99].

The next section covers how the material variability that is inherent to composite materials is intro-
duced into modelling damage using FEM.

2.3. Material Variability
Simulating varying material properties to model the mechanical behavior of composites has been
done already, one of the main reasons being the need to overcome the deterministic nature of models,
such as FEM models. The probability distributions that describe the variability of material properties
is ideally obtained via experiments, but unfortunately experiments are costly. Literature presents dis-
tributions that were obtained via either experiments or alternative approaches (or both). An overview
is presented in this section.

Two decades ago, Okabe and Takeda proposed an approach to estimate a strength distribution for a
single fiber embedded in a composite [102]. An adopted shear lag model takes into account elasto-
plastic deformation of the matrix in the interface region, based on which a Monte Carlo simulation2

is used to estimate parameters of a two parameter Weibull distribution. Sun et al. make use of a shear
lag model and Monte Carlo simulation as well to model transverse matrix cracks in a cross-ply under
fatigue loading [103]. Figure 2.12 shows the probability density function that was obtained. From the
shear lag model, it was found that the longer a uncracked segment’s length, i.e. between two cracks,
the higher the maximum stress amplitude and the shorter its life.

Figure 2.12: PDF of transverse crack spacing in [0/904] from simulation and two theoretical models [103].

Lian and Yao use a similar strategy in an approach to modelling fatigue life prediction of compos-

2A Monte Carlo simulation essentially simulates a physical process multiple times with different starting conditions each
time. As such, the set of simulations represents a probability distribution.
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Figure 2.13: Probability distribution (PD) of the strength on the element and specimen scale [104].

ite laminates [104]. It was found that the engineering constants and strength properties of the UD
glass-epoxy laminates that were used followed normal distributions. Consequently, a finite element
model was created where each of the 24,000 elements was assigned a different value for each of the
engineering constants and strength values. The strength in element’s scale was argued to be different
from the specimen’s scale, because failure in the specimen’s scale can be attributed to the weakest
region in the specimen. Therefore, the authors propose to generate a specimen strength based on an
experimental distribution, after which an imaginary mean strength value of the elements is created
to form the basis of a different, synthetic normal distribution for the element strengths, as illustrated
in Figure 2.13. Both stiffness degradation and fatigue life predictions show to be accurate.

A normal distribution is used as well by Naderi and Maligno to model initial flaws and impurities
in carbon-epoxy laminates [105]. The coefficient of variance (CV) that is used for all properties is
0.3%. To mimic localized defects, the properties of five random elements are set to 90%. As such,
good agreement is obtained with experimental results in predicting the fatigue life in the form of S-N
curves. Van der Meer and Dávila used a similar approach by including one initial defect to trigger
damage initiation [106]. The authors state here state that such a method shows to provide similar
results as when a distribution is assigned to mechanical material properties.

On the contrary, Lekou and Philippidis show that other distributions than a normal distribution
may be more suitable to describe the variability of specific parameters [107]. The authors show a
case study for which none of the engineering constants or strength values is best fitted by a normal
distriubtion. However, when comparing normal, log-normal, Weibull, Gamma, and extreme value
asymptotic distributions, the normal distribution scores decent overall over the different properties.
It is concluded that reliability of composite structures is seriously overestimated when the stochastic
nature of the material properties is not taken into account.

Jin et al. show an approach where analyses on micro-scale were coupled to the macro-scale [108].
Based on the fiber volume fraction, distributions for the engineering constants were obtained. Fiber
and matrix properties followed a normal distribution and were modelled with a CV of 5%. It results in
the macro-scale engineering constants following a normal distribution as well. A correlation analysis
is presented as well between the fiber and matrix properties and the macro-scale properties: e.g. E11
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is under a dominant influence of the modulus of the fiber, whereas E22 and E33 are most dominantly
influenced by the modulus of the matrix and the Poisson’s ratio. Analysis of Zhang, Zhang, and Chen
is focused on the effect of modelling this correlation between the engineering constants and strengths
and underlines that the failure probability can be largely overestimated when correlation is not taken
into account [109].

Another example of a multi-scale approach is proposed by Wu et al. [110], where a stochastic non-
linear micro-mechanical model is characterized via scanning electron microscope images. The model
serves as a surrogate model to generate random mechanical properties as input for a stochastic finite
element model. A UD composite ply is used as case study, where stress-strain curves are properly
reconstructed up until the point of ’softening onset’, after which the proposed solution diverges.

Martinez and Bishay performed a stochastic analysis of first-ply failure of composites under in-plane
static tensile loading via Monte Carlo simulation and conclude that the coefficients of variance of
material properties highly impact the failure ply, failure load, and probability of failure [111]. CVs of
all mechanical material properties are equally set and varied from 1% up to 20% with steps of 1%.
Higher coefficients show a reduction in strength, implying that materials with high CVs should take
a correction factor into account during design to account for this reduction in strength compared to
the theoretical, deterministic model where all CVs are zero.

Table 2.1 provides an overview of some of the standard deviations that were found in mentioned
literature.

Table 2.1: Coefficients of variance found in literature for relevant engineering constants and strengths. (a): Carbon-epoxy
weave [108], (b): Glass-polyester UD [107], (c): Glass-epoxy UD [104], (d): Carbon-epoxy UD, assumed values [105], (e):

Carbon-epoxy UD [109], *: Weibull distribution

COV [%] (a) (b) (c) (d) (e)
E11 3.28 8.94 3.6 0.3 7.0
E22 7.13 14.81 5.5 0.3 5.6
G12 4.72 24.90 4.2 0.3 9.0
ν12 7.32 18.68 1.4 - 4.1
XT - 15.07 5.6 0.3 7.0*
XC - 10.09 5.6 0.3 -
YC - 13.49 6.8 0.3 -
YT - 14.99 6.8 0.3 5.7*
S12 - 18.06 7.9 0.3 -

Conclusion

Successful modelling of material variability has proven to be both possible and necessary to obtain
good results. Furthermore, introducing material variability via FEM allows to overcome the determ-
inistic nature of such a simulation. It means that, given material properties and distributions, an
infinite amount of new experiments can be simulated, mainly limited by the required computational
resources and the available time. To integrate the data that potentially becomes available from such
simulations with other data sources such as experimental data, machine learning is opted as a tool
and discussed more elaborately hereafter.
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2.4. Machine Learning
Machine learning (ML) is a data-driven approach that covers a broad spectrum of algorithms which
have been have been impacting various industrial areas and scientific disciplines [112], from fatigue
life predictions up to medical diagnosis of diseases. In general, ML is used to process large amounts
of data with the goal of recognizing patterns and regression of models. This section elaborates on its
application in SHM of composite materials and damage mechanics of composite materials. Firstly,
an overview is provided of the different types of relevant machine learning algorithms and their work-
ing principles, with a conclusion on what type of algorithm is most suited to study further in-depth.
Next, the selected type of algorithm, deep learning and its backbone: neural networks, are explained
together with some examples.

2.4.1. Machine Learning in SHM

The increasing availability of data from sensors that monitor a structure allows for enhanced decision
making regarding diagnosis of a structure’s condition and prognosis of damage within a structure.
Using ML in SHM has been found particularly useful in three scenario’s: 1) large amount of available
data, 2) physical characteristics that are too complex to model with physics-based models, 3) required
reduction in computational efforts [2]. Nonetheless, opposing views exist on the use of ML in SHM:
its power has shown to be a welcoming addition to SHM to some (especially during one of the three
aforementioned scenario’s), while others are hesitant due to the fact that it can be very much like a
black box, without underlying physical models. After the presented overview, examples are discussed.

Several ways to classify ML techniques exist. A common first classification of ML techniques is made
via the way of learning of the algorithms. Learning is essentially the process of fitting training data
to your model. It can be done in four ways: 1) supervised learning, 2) unsupervised learning, 3)
semi-supervised learning, or 4) reinforcement learning [113]. Alternative classifications are the way
in which it learns "on the fly", i.e. online versus offline, or if they work by comparing data points
(instance-based) or by detecting patterns (model-based) [114].

Supervised learning is done by feeding a set of "labeled" training data, i.e. it is specified what the cor-
rect output is for a certain input. Supervised learning problems are generally described as classifica-
tion or regression, dependent on whether the output is categorical (discrete) or numerical (continu-
ous). Unsupervised learning does not use such labels and is aimed at revealing underlying patterns
in an unlabeled dataset. Semi-supervised learning uses a mix of labeled and unlabeled training data.
Reinforcement learning uses its environment to learn, so it does not have a dataset of fixed shape,
and is less popular than supervised learning and unsupervised learning [113]. Supervised learning
is the most appropriate for most SHM problems, which requires the fitting of labeled data, such as
historical or synthetic damage state data [2].

For supervised learning, the goal is to solve a generalized optimization problem by minimizing the
loss over a training dataset, shown in Equation 2.1 [113]. The loss is a function that measures the
difference between the true value y and the predicted value ŷ . The predicted value is a function of the
model, which depends on the input x and the model parameters θ. The loss is minimized by tuning
the model parameters θ. A regularization term ξΩ(θ) is added to put constraints on the amount that
the model parameters are varied when exposed to training data, balancing between letting the model
parameters hardly change and letting the model change so much it only fits the most recent training
sample it has seen. Optimizing ξ is part of the training process.

argmin
θ

1

n

n∑
i=1

ϕ
(
yi , f (x i ;θ)

)+ξΩ(θ) (2.1)

As discussed, the objective function of unsupervised learning does not include output values, as can
be seen in Equation 2.2, where α represents the model parameters [113].
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argmin
α

1

n

n∑
i=1

ϕ (x i ;α) (2.2)

For supervised learning, the input values of the datasets are shaped n × p, where n is the number
of datapoints or observations, and p the number of features. Features are also known as attributes,
covariates, or independent variables. The output value is shaped n×1: one prediction for each obser-
vation. Before training, feature selection and extraction from the data must be done, keeping in mind
which features are the most influential to improve training efficiency of the model, increase its flex-
ibility, or enhance the model’s performance. It should be kept in mind that increasing the number of
features, or increasing the dimensionality of the problem, increases the challenge of generalization,
i.e. makes it more difficult for an algorithm to perform well on new data.

Evaluation Metrics

In general, two factors are important in any machine learning algorithm: 1) a small error between
the prediction and the training data and 2) a small gap between the training error and the test error.
The latter is also known as the generalization error, which indicates the ability to perform well on
data that the model has not seen before. Whenever the gap between the training and test error is too
big, the model is overfitting. On the contrary, the model underfits in case the gap between training
and testing error is too small. Feeding a model more data will decrease the training error. At some
point, it will start overfitting such that the training error keeps decreasing but the testing error starts
to increase. Stopping at the right time is thus important to prevent either of the phenomena to occur.

Evaluating the model’s performance depends on what metrics you use. Generally, performance is
assessed in terms of accuracy and error rate [114], but it depends on the type of problem that is solved.
For example, the performance of a binary classification model is generally evaluated by evaluating its
accuracy (fraction of all predictions that is correct), precision (fraction of true positive predictions
over the sum of true and false positive predictions), and recall (fraction of true positive predictions
over the sum of true positive and false negative predictions). The measure of performance needs
to be clear before training initiates, because via training, the model should optimze its performance
corresponding to the selected metric.

A simple example to illustrate this process is provided using linear regression and the mean squared
error, which is a popular performance metric:

MSEtest = 1

n

n∑
i=1

(
y test

i − ŷ test
i

)2
(2.3)

where y test
i is the prediction and ỹ test

i the true test value in a set of n features. It can also be written as
a function of the model parameters and training input:

MSEtest = 1

n

n∑
i=1

(
y test

i −θT x i
)2

(2.4)

Consequently, one wants to find a set of model parameters for which the MSE is minimal. For this
simple example, a closed-form or direct solution can be obtained, which starts with setting the gradi-
ent of the MSE with respect to the model parameters to zero:

∇θMSEtrain = 0 (2.5)

Finally, the normal equation can be derived, which is defined as follows:

θ̂ = (
X T X

)−1
X T y (2.6)
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which is the function that minimizes the MSE, or minimizes the cost function. One can imagine that
finding the gradient for a linear regression model is not that complicated. It gets more complex when
the algorithm models non-linear behavior, as is the case with neural networks. Training for such
algorithms is explained in subsection 2.4.2.

Examples

Popular supervised learning algorithms include [114]:

• Gaussian Process Regression
• Support Vector Machines (SVMs)
• k-Nearest Neighbors
• Decision Trees and Random Forests
• Logistic Regression
• Artificial Neural Networks

The first two are briefly explained here: one type of regression and one type of classification. Ex-
amples of implementation in SHM or damage mechanics of composite materials are included. In the
section hereafter, neural networks are discussed.

Gaussian Process Regression The Gaussian Process Regression (GPR) is a method that is based on
linear regression. The difference lies in the fact that GPR considers errors to be correlated and linear
regression does not. The correlation between variables describes the degree in which variables are
related to each other: in case the correlation between X and Y is 1, their values move synchronously,
while X an Y are completely independent in case their correlation is 0.

Figure 2.14 illustrates the principle of GPR. GPR assumes that all the measured data points are correct
and fits all data. During prediction, the uncertainty is described by using the so-called local departure
of the global function. The global function, often in the form of a constant or polynomial, has to be
provided by the user for both the mean value and covariance. Together, the global function and local
departure make up the simulated value of the GPR. Based on the correlation between data points, a
prediction is made for which usually the uncertainty increases as the predicted point is further away
from the latest measured data point, because the prediction converges towards the selected global
function. Therefore, extrapolating with GPR is not that different from "standard" linear regression
[115].

Figure 2.14: Illustration of the working principle of Gaussian Process Regression in the context of a structure’s degradation
level [115].
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Goebel et al. include GPR in a comparison between Relevance Vector Machine (RVM), GPR and a
neural network-based approach in the task of damage diagnostics and remaining life estimates [116].
The dataset consists of time series data of the damage state and has high noise content and a sparse
measurement interval. It is found that provides a sound framework for the task of prediction but has
some limitations as well. One of which is to choose a correct covariance function to interrelate the
data. A key ingredient in GPR prediction is that it requires some prior knowledge about the form of
the global mean function and covariance function, which should be derived based on the context of
the application. Therefore, in case of limited knowledge about the mean and/or covariance function,
selecting an appropriate function is difficult. Another observed limitation is that the computational
efforts can become a problem in case the training set becomes larger.

Surrogate models are based on the same principle as GPR and mimic complex calculations in a
simplistic way to alleviate the computational burden of complex simulations. A surrogate model F

can be generated by exploiting e.g. a FEM model to generate data. Input data is taken from a rep-
resentative set of samples of the health state where the output can consequently be calculated using
a FEM model. The mapping of the input into a data set for the surrogate model can be optimised
such that the error is minimised for training data. One example of successful implementation of a
surrogate model was by Cristiani, Sbarufatti, and Giglio [87], where the model was used to reduce the
computational burden that is associated with real-time updating of a FEM model. Another example
is where a surrogate model was used in a DT approach by Karve et al. to alleviate the computational
burden of LEFM based fatigue damage predictions [7].

It should be noted, however, that surrogate models can behave quite differently in the inter- and
extrapolation regions [115]. In most applications, surrogate models are used for interpolation, while
in prognostics the future damage state is predicted, i.e. the model needs to extrapolate. When setting
up a surrogate model with a database, the range of values should therefore be sufficienty wide such
that the values that are to be predicted are within interpolation range and require only little or no
extrapolation.

Support Vector Machine The Support Vector Machine (SVM) is most popularly used as classifica-
tion algorithm that is used in various pattern recognition tasks. The working principle is easiest ex-
plained when looking at Figure 2.153. Here, a binary classification problem is plotted, where the dots
are either blue or red. A SVM simply searches for the line that separates these two classes best. It does
that by searching for support vectors that have the greatest distance to the line (decision boundary)
and both classes separated on opposite sides of it. The decision boundary is used for classification:
in this problem, an unknown dot that exists at the left-upper-hand of the decision boundary is clas-
sified as blue, whereas on the opposite side it is classified as red. The decision boundary is defined
as a hyperplane. In an N-dimensional problem, the hyperplane has N-1 dimensions: in this 2D prob-
lem, the hyperplane is 1D, but for a 3D problem the hyperplane becomes a 2D plane. In the example,
the decision boundary is a straight line that separates two classes, but in more complex classification
problems that are not linearly separable, new dimensions can be added to the data (so by definition,
the hyperplane’s dimension is also increased) to obtain other shapes of the hyperplane. This trick is
known as the "kernel trick".

3Retrieved from: https://learnopencv.com/support-vector-machines-svm/ (Consulted on: 24-6-2021)

https://learnopencv.com/support-vector-machines-svm/
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Figure 2.15: Working principle of a classification SVM.

Damage diagnosis within a stiffened panel made of carbon-epoxy prepregs was done using SVMs by
Loutas et al. [117]. Data was acquired via Fiber Bragg grating sensors when the panel was loaded
under vibrational loads. Different damage states could be distinguished by using a SVM with a non-
linear kernel. Several advantages are provided as motivation to use SVM in this context, of which
the most interesting are: 1) good generalization capabilities, 2) a single global minimum exists for
the objective function (as opposed to e.g. neural networks, which sometimes have multiple local
minima), so an optimal set of model parameters can be obtained, and 3) no a priori knowledge of the
distribution of the data is required, as is the case with for example GPR.

He et al. present a comparison of three ML techniques to assess delamination in carbon-epoxy beams
[118]. Via vibration-based monitoring, the interface, location, and size of delaminations was pre-
dicted. Predicting the interface was a classification problem, whereas predicting the location and size
of the delamination was predicted using regression. A SVM turned out to outperform a back propaga-
tion neural network and an extreme learning machine in terms of prediction accuracy. A split of 80-20
was found to be optimal to split the dataset in training data and validation data.

Conclusion

In selecting the right ML approach, the underlying problem plays a dominant role. In predicting the
location and load of the next crack, a distinction was opted: turning the prediction of the location into
a classification problem and the prediction of the next crack into a regression problem. By turning the
prediction into a classification problem, the crack probability per location could be outputted. Fur-
thermore, discretization of the specimen into separate ’bins’ is relatively easily done; discretization in
the form of meshing is what FEM does by definition. Considering the stochastic nature of the crack
locations, a probability per location was found to provide more information about the underlying
relationship than a single continuous numerical output. Regarding the prediction of the next crack
load, discretization is not that straightforward. To output a single continuous number for prediction
of the next crack load seems more suitable, for which regression is the most suitable option. Even
though the nature of the problems is different, the information flow within a digital twin should be
integrated, meaning the ML algorithm should be able to perform both classification and regression.
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Examples of models that can perform both types of solving are more scarce. Other than artificial
neural networks, decision trees are capable of performing both regression and classification. Decision
trees are found to not perform as well as ANNs when it comes to nonlinear, noisy data by Curram
and Mingers [119]. Furthermore, it was found by Tso and Yau that decision trees are more suitable
for predicting simply a categorical outcome rather than time series data [120]. Predicting the crack
pattern based on a crack or damage history makes the problem time-dependent. As such, an ANN
was found to be the right algorithm for the task. The next section describes the working principle of
artificial neural networks and what specific type of network was chosen.

2.4.2. Artificial Neural Networks

With the non-linearities that are assocatiated with damage mechanics in composite materials, the
ML algorithm that is used to predict damage accumulation should be able to cope with non-linear
behavior. An artificial neural network (ANN) is an algorithm that is well suited for such a task. After
a brief description of its evolution throughout time, it is explained how a neural network works, fol-
lowed by some relevant examples of implementation in SHM of composite materials or modelling
damage mechanics of composite materials.

ANNs have been around for almost 80 years now after which their popularity has evolved in waves.
In the 1960s funding for research vanished once it became clear that ANNs did not found the basis
for truly intelligent machines. Next, in the 1980s the interest was revived when new architectures
were developed, after which in the 1990s other ML algorithms such as the SVM were developed and
offered better performance, which once again halted further development of the ANNs. Nowadays,
its popularity is at a peak again that might stay for a while, because of the huge amount of available
data, increased computing power, and improved training algorithms [114].

Recurrent Neural Network

With the goal of predicting crack pattern characteristics, the challenge lies in predicting future crack
characteristics based on the current crack state. Therefore, it is evident this requires sequential mod-
elling of the data, which is what a recurrent neural network is designed for. This section explains the
working principle of a recurrent neural network. To start with the fundamentals, the general working
principle of ’normal’ neural network is explained first.

Working Principle - Neuron (Node)

Figure 2.16 illustrates a schematic of a single neuron (or node), firstly introduced as perceptron, with
three inputs. These inputs xi are multiplied with a specific weight wi , where the sum of these mul-
tiplications is added to the bias b. Next, an activation function φ is applied to the total sum, which
results in the output y of the neuron. An example of an activation function is the rectified linear
function, which sets negative input values to zero:

φReLU(x) = max(0, x) (2.7)

More types of activation functions are discussed in the next section.
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Figure 2.16: Schematic of single neuron with three inputs.

Aligning multiple neurons that are fed by the same inputs is called a layer of neurons. Computing the
output y of such a layer is done quite efficiently, simply by using linear algebra on the input matrix X,
the weight matrix W and the bias vector b:

yW ,b =φ (X W +b) (2.8)

A network can include many layers in between an input and output layer. Those layers are called ’hid-
den layers’. A network with multiple hidden layers is called a deep neural network [121]. The highest
accuracy is achieved when the loss is lowest. A popular way to minimize loss is by using a Gradient
Descent algorithm, which is a slightly more complex method than using the normal equation, but
uses the same underlying principle.

Training - Gradient Descent algorithm

A gradient descent algorithm calculates the weights and biases of the neurons. As described, the
weights and biases determine the output of the neuron, which means the weights and biases also
determine the loss, which in its turn depends on the loss function that is selected. Random values
of the weights and biases are initialized before training and can be used to make a first prediction
when applied to an input value, from which a loss can be computed. The loss can be computed for
different model parameter settings (and using different input values) and finally, a combination needs
to be found for which the loss is minimum. The gradient descent algorithm initializes a random set
of model parameters and from there, finds its way down to a minimum loss by calculating the local
slope of the loss (or cost) function, as is illustrated in Figure 2.17. It makes gradient descent very
powerful, especially in scenarios where setting the derivative of the loss function with respect to the
model parameters to zero cannot be solved.

Figure 2.17: Gradient descent [114].

Training is essentially tuning the weights and biases from Equation 2.8 until the network is able to
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accurately produce the desired output from input that it has never seen before. When a neuron is
fed with training input, it will make a prediction. The degree in which the weights are corrected is
dependent on the gradient of a weight with respect to the loss. In case the gradient is steep, it means
the weight is far off from its optimal value meaning a higher correction is required than in case of a
small, flat gradient. In other words, a small difference between the prediction and target value yields
a small change in weights, whereas a large difference yields a larger change in weights. As depicted
in Figure 2.17, the learning rate determines the level in which weights are adjusted during a learning
step.

In case of more complicated multidimensional spaces, a learning step that is too small may get the
algorithm stuck into false local minima and show slow convergence. On the contrary, if it is too big,
the algorithm may overshoot, become unstable, and diverge. Figure 2.18 illustrates the idea.

Figure 2.18: Using gradient descent to minimize loss in a 3D space4.

Most optimizers are based on the stochastic gradient descent algorithm (SGD), which is a modifica-
tion of the gradient descent algorithm as described earlier. The ’basic’ algorithm uses an entire batch
of training data to update the weights and biases for each epoch (each round of passing data forward
and backward through) and is therefore called ’batch gradient descent’. One can imagine that in case
of a very large data set and/or many layers with many neurons, using the entire data set for each
epoch can become computationally exhausting.

Stochastic gradient descent tackles this problem. Instead of using the entire batch per epoch, a ran-
domly picked subset from the training set is used to compute the gradients. Naturally, this speeds
up training significantly. Disadvantages are, however, that the cost function tends to decrease in a
’bouncy’ manner: on average the loss is decreasing during training but not in a straight line. How-
ever, this disadvantage has an upside: it allows the model to escape local minima. Altering the batch
size allows to control this behavior. Using SGD or SGD-based optimizers can be particularly useful
when training via GPU’s, which allows more effective matrix operations than running via a CPU.

The described gradient descent-based algorithms have in common that when updating the weights,
previous steps in updating are not taken into account. Momentum optimization does take the pre-
vious gradients into account. An analogy to explain the principle: if the gradients are the velocity of
changing in the weights in gradient descent, the gradients become the acceleration in momentum
optimization and momentum itself becomes the velocity, i.e. a vector that changes the weights and
biases. An alternative analogy: consider a ball rolling down a hill. If it keeps rolling, it will pick up
velocity and reach the bottom of wherever it is rolling faster than if it would keep its speed. Using
momentum means the learning rate is not fixed, as is the case with stochastic gradient descent. To
prevent momentum from overshooting, friction is added to the momentum vector in the form of a

4Obtained from: https://towardsdatascience.com/coding-deep-learning-for-beginners-linear-regression-gradient-
descent-fcd5e0fc077d (consulted on 25-8-2021).

https://towardsdatascience.com/coding-deep-learning-for-beginners-linear-regression-gradient-descent-fcd5e0fc077d
https://towardsdatascience.com/coding-deep-learning-for-beginners-linear-regression-gradient-descent-fcd5e0fc077d
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decay rate, 0 being high friction and 1 being no friction.

Backpropagation algorithm

Training can be done by using the backpropagation algorithm, which in essence uses a very efficient
gradient descent algorithm. The gradients are automatically calculated in two steps: feeding data a
step forward and feeding the outcome a step backward. Based on the output that is produced during
the forward pass, the weights and biases are adapted during the backward pass such that the error
is decreased. Each time that data (either in a batch or the whole data set at once) is passed forward
and backward through the neurons is called an epoch. In case of multiple hidden layers, the data is
passed forward through all layers first, which results in a final output and corresponding error. Next,
it is calculated how much each connection in the network contributed to the error (or cost) by using
the chain rule:

dL

dθ
= dL

d y
· d y

dθ
(2.9)

θ representing the weight and/or bias of a node. The backward pass calculates the error gradient with
respect to θ by passing it through the network backwards, layer by layer. It should be noted here that

in case of multiple hidden layers, the gradient d y
dθ becomes a function of all other gradients of the

nodes that data passes through from the output during the backward pass to reach a node closer to
the input layer.

At last, a gradient descent step is taken to adapt the network’s weights and biases corresponding to
the determined error gradients that were computed from w and b to wnextstep and bnextstep:

wnextstep = w −η dL

d w
(2.10) bnextstep = b −ηdL

db
(2.11)

where η is the learning rate. In other words, the values of the gradients are calculated and based on
those values, it is determined how close a parameter is towards minimizing the loss function, just like
what is illustrated in Figure 2.17. An increase in dimensionality of the problem, i.e. including more
features, makes it more complex to find the optimal set of model parameters to minimize the loss
function.

Activation functions

A key feature of ANNs is that they can fit non-linear data. The reason for that is the option for an ac-
tivation function that is not linear. Looking at Equation 2.8, it is evident that for a layer of "standard"
neurons one would sum functions like: y1(x) = 2x −3, y2(x) = 4x +1, and so on, which would result
in the hidden layer to act as a linear function as well. Thus, a non-linear activation function must
be used to be able to model non-linear behavior. Figure 2.19 shows three popular activation func-
tions and their derivatives that can be used for it: the sigmoid function (Equation 2.12), hyperbolic
tangent function (Equation 2.13) and rectified linear (ReLU) function (Equation 2.14). The activation
functions are tailored to the desired shape by multiplication with the weights or summation with the
biases. The activation function that one selects highly depends on the application. For example, it is
an important setting in the vanishing gradient problem, which is explained later in this section, and
also determines the output format in the output layer.

φSigmoid(x) = 1

1+e−x (2.12) φTanh(x) = 2

1+e−2x (2.13) φReLU(x) = max(0, x) (2.14)
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Figure 2.19: Popular activation functions and their derivatives.

Recurrent neuron

Recurrent neural networks (RNNs) are focused at modelling sequenced data, which can come in
many forms: audio, text, images, etc. Like other neural networks, it consists of neurons, which are
nodes through which data flows. Figure 2.20a illustrates the simplest form of a RNN: a single neuron
that gets input x(t ), produces an output y(t ), and sends the produced output back to itself. This pro-
cess happens within the same neuron for each timestep, as illustrated in Figure 2.20b. The same
principle is illustrated for a layer of recurrent neurons in Figure 2.21, where the input and output of a
layer are now a vector rather than a single scalar.

Figure 2.20: a) a recurrent neuron b) an unrolled recurrent neuron through time [114].

Figure 2.21: a) a RNN layer b) an unrolled RNN layer [114].

Both the input x(t ) and the output of the previous step y(t−1) are assigned weight vectors, w(x) and
w(y). In case the whole layer is considered, the weight vectors of the single neurons can be combined
in to a single matrix, W(x) and W(y). The equation for the output vector becomes:

y(t ) =φ
(
Wx

⊤x(t ) +Wy
⊤y(t−1) +b

)
(2.15)
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where b is the bias vector and φ the activation function. In a typical display of a general neural net-
work, the nodes would represent the biases and the connecting lines between the nodes represent the
weights. The weights are preferred to have values between 1 and -1 during initializing of the model’s
layers to prevent an explosion of the numerical values.

As mentioned before, the activation function is called after the weights and biases are applied. In
case no activation function is used, it will become impossible to fit nonlinear behavior because the
model behavior will be a result of simple, linear multiplication and addition of the weights and biases
respectively. Similar to a plain or ’vanilla’ neural network, at least two hidden layers are required for
a RNN to fit nonlinear shapes, as well as nonlinear activation functions, such as one of the listed
functions shown in Figure 2.19.

It should be noted that y(t ) is a function of all inputs since t = 0. The part of the network that mem-
orizes its state is a (memory) layer. Such a layer includes a state function h(t ), which is a function of
both the inputs at that time step and the previous states. The "h" stands for hidden. This hidden state
is generally equal to the output, but in more complex cases they can differ. Typically, a single neuron
in a RNN can preserve this hidden state for about 10 steps because of vanishing gradients, although
this depends on the task. This limitation is addressed in the section hereafter.

You can input a sequence of inputs into an RNN while it simultaneously produces a sequence of
outputs, which is called a sequence-to-sequence network. A sequence-to-vector network ignores all
outputs but the final one while feeded with a sequence of inputs. Alternatively, you could input a
vector while it outputs a sequence, called a vector-to-sequence network. Lastly, you can combine a
sequence-to-vector network with a vector-to-sequence network, or encoder-decoder. This two-step
model generally is preferred over a simple sequence-to-sequence model, but is more complex to use
and generally serves a different purpose, for example language processing. The different forms are
schematically depicted in Figure 2.22.

Figure 2.22: Starting top left clockwise direction: sequence-to-sequence, sequence-to-vector, vector-to-sequence,
encoder-decoder [114].

Training of RNN based layers

During the training of a RNN(-based) layer, it is first unrolled through time and then backpropagated,
which is called backpropagation through time (BPTT). It is visualised in Figure 2.23, where the dashed
arrows indicate the initial forward pass through the unrolled network and the solid arrows represent
the gradients that results from the loss function that are propagated backward through the unrolled
network.

Compared to a standard feed forward model, backpropagation becomes more complicated and ex-
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pensive due to the relevance of time: backpropagation in RNNs is done at each individual timestep
and across all the timesteps. This requires many repeated multiplications and calling of activation
functions. However, it should be noted that the training of a LSTM layer can be done by using parallel
processing of GPU’s, which accelerates training with respect to CPU’s significantly.

Figure 2.23: Backpropagation through time, subscripts indicate the time step [114].

Limitation — Vanishing/exploding gradient problem

A limitation of the RNN that is important in the context of this project is its limited amount of inform-
ation that is contained over time: approximately 10 time steps. Considering that the number of matrix
cracks in a 100 mm specimen generally exceeds 10 cracks, it does not "possess" sufficient memory for
predicting e.g. the 15th or 20th crack based on the entire damage accumulation history. The reason
for this limited memory is caused by the vanishing gradient problem, which is not exclusive to RNNs.

The gradient here is the gradient of the loss function with respect to the weights, which is calculated
by using backpropagation as described earlier. The gradient of the loss with respect to the weights
of a layer is determined by gradients of layers that are placed later in the network. For example,
considering a neural network of five layers between the input and output layer: the gradients of the
first layer after the input layer are calculated as a multiplication function of the gradients of the four
layers that are placed after it. In case the four layers after it have gradients that are smaller than 1
and/or close to zero, you essentially multiply fractions close to zero with each other which results in
a gradient that is also close to zero, i.e. the gradients vanish.

Since the updating of the weights is done proportionally to these gradients, it means that for a very
small gradient the weights are hardly updated. As a consequence of the weights not being changed
during training, the corresponding neurons can no longer significantly contribute to minimizing the
loss function, i.e. improve the network’s performance. On the contrary, if the gradients of layers in
are larger than 1, gradients of early layers in the network risk exploding to huge values which would
correspond to exploding weights as well during training.

Solution — Long Short-Term Memory

Several solutions have been proposed over the years to overcome this limitation. The Long Short-
Term Memory (LSTM) cell is the most popular solution to this problem for a RNN. Even though it was
first proposed already in 1995, none of the variants manage to significantly improve on the original
LSTM’s performance [122]. LSTM based ANNs have been applied in a wide variety of applications:
from predicting Bitcoin’s price [123] to epileptic seizure detection [124], implying a proper level of
generalization.
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Figure 2.24 illustrates the architecture of a LSTM cell within each time step. It has both a short-term
state h(t ) and long-term state c(t ). Simply put, the long-term state first forgets some memories and
afterward adds some memories. Next, it is passed on to the next time step and copied to pass through
a activation function (a tanh activation function in the example), after which the result is filtered
by the output gate. The result is the short-term state. The long-term state of the LSTM cell allows
gradients to flow through different time steps or layers without vanishing or exploding.

The input x(t ) and previous short-term state h(t−1) (which is the same as the output of the previous
time step y(t−1)) are fed into four functions: f(t ), g(t ), i(t ), and o(t ). g(t ) is the main function from which
the most important information is stored in the long-term state. A standard RNN cell only consists
of this function. The other three layers are gate controllers with output values between 0 and 1: clos-
ing the gate at 0 and opening it at 1. The forget gate f(t ) controls what information is forgotten, i(t )

controls what information of g(t ) should be added to c(t ), and o(t ) controls what information should
be outputted to y(t ) and h(t ). The forget gate f(t ) and output activation function are the most critical
components with regards to the performance [122].

Figure 2.24: LSTM cell [114].

Examples

Califano et al. used an ANN to perform strain-based SHM on composite structure to perform dam-
age identification [24]. Strain data was acquired by using optical fibre sensors that were embedded
in the material of a specimen that was subjected to several four-point bending tests. It is proposed
that the advantage of using ANN with respect to other machine learning techniques is that it only dis-
tinguishes healthy/positive or damaged/negative samples, making it computationally efficient and
thereby less time-consuming.

Mucha et al. presented an approach in which an ANN is used to verify and validate strain gauges
that were used for the online load monitoring of a complex composite plate (a curved plate stiffened
by omega-stiffeners) [125]. An ANN was trained using FEM showing real-time implementation is
possible.

Danish, Taghipour, and Lee constructed a digital twin of turbofan engine performance degradation
and prognostics using an LSTM-based neural network [3]. They demonstrated accurate RUL estima-
tions when compared to previous models that were used on the same data set, which consists of 100
run-to-failure information samples. Mentioned advantages of using LSTM-based neural networks in
deep learning based prognostics are accurate non-linear data processing and the fact that no underly-
ing assumptions about a degradation curve or model are required to be able to generate a state-of-art
RUL estimation.





3
Research Project

This chapter elaborates on the research project in terms of the objective, research questions, hypo-
theses and overall approach. The main research objective of this thesis is to enhance our understand-
ing of damage evolution in composites and improve on health assessment during its service life by
constructing a digital twin of a cross-ply specimen loaded in quasi-static tension.

A relevant case study object for an implementation of the digital twin in the damage accumulation
process of composites is transverse matrix cracking in a cross-ply specimen, as becomes clear from
section 2.2. Recent research of Li et al. is aimed at investigating damage accumulation in cross-
ply specimens, both under quasi-static and fatigue loading, and provides data to use as case study
[31, 126]. The experimental data provides the opportunity to validate the digital twin and advance the
ongoing research. Even though the cross-ply specimen is a suitable case study object, augmentation
of the existing experimental data set is still essential to make the data set compatible with a data-
driven technique such as a recurrent neural network.

A numerical FEM model was opted to provide the augmentation, where two main challenges arise: 1)
the complexity of modelling the interaction between matrix cracks and delaminations, and 2) over-
coming the deterministic nature of FEM. From subsection 2.2.4, XFEM-CE was deemed as a suitable
method to model the interaction between the two damage mechanisms. Furthermore, to overcome
the deterministic nature of FEM, the options that were listed in section 2.3 may form a basis to imple-
ment material variability into the FEM model. Next to the advantage of being able to generate various
damage states with the same model, including the material variability accounts for the inherent vari-
ability of composite materials, which should improve the reliability of the simulations.

With regards to the real-time application of the model that processes complex information, ma-
chine learning algorithms seem interesting tools that have found their way increasingly in (aerospace)
structures. It has been found particularly useful in three cases: 1) large amount of available data, 2)
physical characteristics that are too complex to model with physics-based models, 3) required reduc-
tion in computational efforts [2]. Especially the last two descriptions are quite applicable to the case
of real-time monitoring of the complex damage mechanisms. As mentioned, the only thing that lacks
here is an exhaustive data set, which is why augmentation of the data set is addressed via the FEM
model in chapter 6, but may require further augmentation procedures. Based on section 2.4, a RNN
with LSTM cells was opted to serve as digital twin that processes information and predicts the next
crack in real-time.

Example features of advanced digital twins such as presented in section 2.1 include multi-scale, multi-
physics, probabilistic simulations that integrate heterogeneous information sources and process it
with the purpose of decision making in a fully autonomous manner. Creating such an exhaustive,
fully-equipped digital twin for all lifecycle stages is too ambitious for the scope of a 9-month pro-
ject by one master student. When considering the (im)maturity of the concept as well, smaller steps
have to be taken first. Key aspects that make such a model a digital twin are the identification and
processing of changing state variables, such as damage parameters of the test subject, in real-time.
These aspects fit in well within many engineering and scientific disciplines next to structural health
monitoring; its versatility is what makes the digital twin so interesting from a broader perspective.

To synthesize, a digital twin can serve as a tool to solve the problem of modeling complex damage
accumulation processes with the final purpose of structural health monitoring or validation of other
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structural health monitoring techniques. Key building blocks of the DT concept are developed to
address the need to capture complex underlying patterns of the damage accumulation process in
composite materials. By focusing on the processing of heterogeneous data in real-time to predict the
next crack location and load within a cross-ply, a fundamental model is built that covers the research
objective and may form the basis for next steps in further research, which may be focusing on includ-
ing different life stages, remaining useful life, and/or other topics that relate to damage accumulation
within a composite material.

3.1. Research Questions
The main research question of this thesis is:

To what extent can the crack pattern of transverse matrix cracks in a cross-ply be predicted
using a digital twin?

With the sub-questions:

1. How can the material variability that is inherent to composite specimens be modelled into a
FEM model?

2. To what extent can XFEM-CE simulate the interaction between transverse matrix cracks and
delaminations in a carbon-epoxy cross-ply specimen under tensile quasi-static loading?

3. How well can a neural network be trained with an augmented dataset to predict the location
and load of the next crack of a carbon-epoxy cross-ply under quasi-static tensile loading?

3.2. Hypotheses
Via a hybrid approach where a physics-based model and experiments form the basis of data-driven
predictions, the crack pattern in a cross-ply specimen under quasi-static tensile loading is expected
to be predicted reasonably well. Specifically, the crack pattern of transverse matrix cracks is hypo-
thesized to be predicted well from a certain point on. After all, the first few cracks will always be
caused by randomness of the distribution of material properties, which is not predictable unless the
(micro)mechanical structure of the material is analyzed and included in the analysis. It would be
interesting to find out when the ’stochasticity’ in crack appearance is more or less modelled out.

In case of a positive outcome, XFEM-CE would show to be fast enough to sufficiently augment a
database, in spite of a uniform and relatively fine mesh requirement due to the fact that cracks may
occur anywhere in the matrix. Furthermore, fast and successful integration of the heterogeneous data
with a neural network underlines its performance when it comes to fast processing of highly non-
linear data. Moreover, in case the models integrate well, it may form a basis of the corresponding
predictive model of another specimen. In other words, if the FEM model succeeds in sufficiently
augmenting the data set, the hybrid combination of a FEM and data-driven model can relatively easy
be adapted to be used for a specimen that is made of a different material or a different layup. It would
make it easier to use the models as validation tools for SHM techniques.

In case of a negative outcome, it should be noted that the models are not dependent on each other.
Another method than XFEM-CE may be found to model the damage mechanisms, or even a differ-
ent type of numerical model than FEM to augment the data set. Similarly, a different type of neural
network or machine learning algorithm in general, such as decision trees, may turn out to be more
suitable.

3.3. Project Approach — Flowchart
Figure 3.1 presents a flowchart that links the different subjects and steps that were taken in this thesis.
The red boxes show how the experimental set-up and the corresponding crack patterns are linked
to various other parts of the project. A description of the cross-ply and the experimental set-up is
described in chapter 4. Within the FEM environment, the properties and geometries as derived from
the experiments form the basis for the Abaqus model. Once the model was configured and data was



3.3. Project Approach — Flowchart 35

post-processed, it was assessed whether the model sufficiently fitted the experimental data. Once it
did, synthetic crack patterns were generated. Actions and results directly related to FEM are displayed
in blue boxes and discussed in chapter 5. Lastly, the neural network or NN environment, which starts
with merging the synthetic and experimental crack patterns, followed by further augmentation in
the purple triangle. The green boxes indicate neural network steps and are explained in chapter 6.
Data preparation was done firstly, to obtain the data set that the network was trained with. During
model exploration, various architectures were explored, after which only the best performing ones
were finetuned until the crack prediction was satisfactory.
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Figure 3.1: Flowchart of the project approach.



4
Physical Twin - Case Study Object

This chapter explains the specifications of the physical twin in this thesis, i.e. the case study object.
The physical twin is the cross-ply specimen that was used by Li et al. to test under a quasi-static load
with different load rates [31], meaning that this chapter essentially describes the work of Li et al. The
specimen itself is described in section 4.1, followed by an explanation of the experimental set-up in
section 4.2. The final section in this chapter displays the data that forms the basis of the data set that
is ultimately used to construct a data-driven digital twin.

4.1. Cross-ply Specimen
A cross-ply was used to study the effect of the loading rate on damage accumulation [31] and to study
early fatigue damage [126]. The specimens are made of Hexply F6376C-HTS(12K)-5-35%, which is a
UD carbon fiber prepeg with high-tenacity Tenax-E-HTS45 fibers and a tough epoxy matrix: Hexply
6376. The properties of the material are shown in Table 4.1. The nominal fiber volume fraction is
65% and a single ply has a thickness of 0.125 mm. Specimens were cut from autoclaved panels into
rectangular shapes with a size of 250 x 25 mm and a layup of [02/904]s .

Table 4.1: Material properties of the used Prepreg obtained from the datasheet [127].

Property Symbol Value Unit
Longitudinal Modulus (tensile) E11 142 GPa

Transverse Modulus (tensile) E22 = E33 9.1 GPa
Transverse shear modulus G12 =G13 5.2 GPa

In-plane Poisson’s ratio ν12 = ν13 0.27 -
Transverse Poisson’s ratio ν23 0.3 -

Longitudinal strength (tensile) XT 2274 MPa
Longitudinal strength (compressive) XC 1849 MPa

Transverse strength (tensile) YT 102 MPa
Transverse strength (compressive) YC 255 MPa

In-plane shear strength S12 = S13 63 MPa
Transverse shear strength S23 35 MPa

4.2. Experimental Set-Up
To improve clamping grip, paper tabs were glued on the ends of the specimen. Specimens were placed
in a 60 kN fatigue machine with hydraulic grips. The setup was monitored during testing with two
edge camera’s, two acoustic emission sensors, and two camera’s that were used for DIC monitoring.
The region that was monitored by the edge camera’s and the acoustic emission sensors spans 100 mm,
which was taken as the length of the FEM model that is described in chapter 5. Figure 4.1 illustrates
a schematic diagram of the specimen within the experimental set-up, which also formed the basis of
the sketches of the FEM model.
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Figure 4.1: Schematic diagram of the experimental setup and specimen [31].

4.3. Data Acquisition
The positions and loads of the cracks of eight specimens that were used during the mentioned experi-
ment [31] were available to form the basis of the data set. The different loading rates showed different
damage accumulation evolutions, which is illustrated in Figure 4.2. The finite element model that
was built takes into account stochasticity of material properties, but not of the loading rate effects.
Discrepancies in results may partially be explained by this. Nonetheless, the physical experiments
provide a scatter which ideally is captured by the finite model as well, even though the cause of scat-
ter may differ.

Figure 4.2: Crack density evolution curves of the experiments. ’Load’ or ’Displ’ indicates load-controlled or displacement
controlled, followed by the loading rate (’-’ indicates the range of loading). In case the same load rate was tested twice the

different specimens are numbered by ’#’.



5
Augmenting the Dataset via Abaqus

To augment the experimental dataset that is described in chapter 4, a finite element model was sim-
ulated in Abaqus [128] via a script made in Python [129]. To overcome the deterministic nature of
a finite element model, the material properties were varied per element. Two damage mechanisms
were modelled as observed in experiments: intralaminar cracks in matrix and fiber and interlaminar
cracks between the interfaces of the longitudinal and transverse blocks, i.e. delamination. After a sim-
ulation, data is collected, analysed, verified, validated, and processed into input for the data-driven
model that is described in the next chapter.

Firstly, underlying assumptions of the model and damage theory of Abaqus are discussed before going
into the details of the model in section 5.1. The model itself is discussed in section 5.2. Next, the
results are shown and discussed in section 5.3 and a sensitivity analysis is presented in section 5.4.
Finally, the chapter is concluded with a conclusion and recommendations in section 5.5.

5.1. Preliminary Considerations
In subsection 5.1.1, the assumptions that were made before setting up the finite element model are
presented. Next, the options to model initiation and propagation of transverse matrix cracking and
delamination are explained in subsection 5.1.2.

5.1.1. Assumptions

Assumptions that were made for this model are stated and discussed hereafter.

1. The cross-ply specimen can be modelled as 2D.

(a) Transverse strength of the matrix is constant in the width direction.

(b) Transverse matrix cracks propagate instantaneous through the width direction.

2. Plane strain conditions apply.

(a) Strains in the width direction are zero (length: x, thickness: y, width: z): εzz = γxz = γy z = 0.

3. The mass of the specimen does not play a significant role.
4. The only ply-interface bonds that can fail are those on the two 0-90 interfaces.
5. Failure behavior of both the 90-block and 0-block is brittle.
6. Loading is perfectly aligned.
7. All transverse matrix cracks propagate perpendicular to the length direction.
8. Delaminated interfaces slide over each other in a smooth, frictionless manner.

Assumption 1: Assumption 1b was observed during the experiments [31] and in literature [103],
from which assumption 1a was concluded: that the strength in the width direction can be considered
to be constant, or at least not varying significantly enough to affect the direction of the crack propaga-
tion. Therefore, the width direction was considered to be irrelevant to model, which is in line with the
findings of, amongst others, van der Meer [130]. Besides that, the computational cost of adding the
width direction was expected to be very large, leading either to a coarser mesh size (and hence, less
accuracy in the solution in the plane of interest) or too much runtime of the model.
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Assumption 2: Due to the presence of the thick 90-block, a lot of stiffness is present in the width
direction. The deformation in width direction is in reality not zero, but neglibigle. Furthermore,
the assumed load distribution becomes uniform. In theory, that is valid, because of the purely on-
axis axial load that is applied and the layup. The load is applied along a principal axis without any
out-of-plane stresses, which is confirmed by experimental observations, apart from a very small out-
of-plane deformation at the moment of failure at the point of failure, as is presented in section 5.3.
Lastly, Wang et al. showed that using plane strain conditions provides good predictions of the load-
displacement response and damage evolution in a 2D FEM model that uses integrated XFEM-CE to
simulate multiple failure modes in a stiffened panel [131].

Assumption 3: The mass of a single specimen is approximately 15 g, meaning the weight would be
about 0.147 N. The applied stress right before failure is around 700 MPa, or 18.6 kN, which is about
125,000 times larger than the weight. Therefore, it is safe to say gravity does not play a role in this
experiment.

Assumption 4: This assumption is based on the experiments. During the experiments, there was no
delamination observed at a different location than the interfaces at connections between a longitud-
inal ply and a transverse ply before failure of the specimen.

Assumption 5: The failure behavior is important with respect to the failure criteria that can be
picked from. It was observed during the experiments that fiber failure occurred instantaneous and
resulted into immediate failure of the specimen. Similarly, the transverse cracks in the matrix ini-
tiated and propagated instantaneously as well. Little to none (local) ductile yielding behavior was
observed, which is why this assumption was made.

Assumption 6: In case loading is not aligned, a off-axis loading is applied instead of a purely axial
loading. Different mechanical behavior and damage mechanics are to be expected in such a case.
That is also why a cross-ply is not considered a practical layup for applications other than experi-
ments. Furthermore, statistical correlation between properties no longer influences the failure prob-
ability when the loading is perfectly aligned [109].

Assumption 7: In fact, the majority of the cracks is observed to be perpendicular to the length dir-
ection, but two exceptions are observed: 1) a curved crack that initiates close to an already exist-
ing crack, 2) two cracks that initiate from opposing 0-blocks at a slightly different position along the
length of the specimen and then propagate towards each other to meet in the middle. That means
that due to this assumption, a few cracks are modelled differently than what may happen in real life.
However, severe convergence issues arise when this assumption is not implemented, which will be
further explained in subsection 5.4.4.

Assumption 8: Due to the fact that the expected dominant fracture mode of delamination at the
interface is mode II, friction will play a role. Not including friction therefore may result in local in-
accuracies of the FEM model during damage evolution or after complete failure of the interface with
regards to delamination. Nonetheless, the main effect of delamination is that it initiates at a crack tip
and relaxes the surrounding region. The effect of friction on the delamination evolution is therefore
expected not to have a great effect on the overall solution.

5.1.2. Damage Modelling

The damage modelling of transverse matrix cracks and delaminations was based on the work of Hu
et al. [55]. The transverse matrix cracks were modelled using the eXtended Finite Element Method
(XFEM) and cohesive zone theory was used to model delamination. The damage theory behind im-
plementing both methods is discussed in this section.
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Transverse Matrix Cracks

Modelling the transverse matrix cracks via XFEM requires both initiation and propagation criteria.
Via the Python script, the options are limited by the default options that come with Abaqus which are
discussed hereafter. Two main types of modelling damage with XFEM can be distinguished: based on
cohesive zone theory or based on an LEFM approach [132].

The approach based on cohesive zone theory uses traction-separation laws and can be used for both
brittle and ductile failure. Cohesive behavior is used to simulate the stresses in the contact when
the crack opens, whereas a pressure-overclosure relationship models the behavior in case of crack-
closure. To implement this approach, a damage initiation criterion and damage evolution law need
to be specified. Depending on what settings are chosen for initiation, the propagation direction of
the crack need to be specified as well.

The approach based on LEFM is more appropriate for brittle failure and makes use of VCCT. A fracture
criterion based on critical strain energy releaste rates of different failure modes. Additionally, power
law parameters need to be specified as well, dependent on the chosen mixed-mode behavior. Using
VCCT requires specification of crack locations a priori. When the fracture criterion is satisfied, dam-
age initiates. Due to the fact that crack locations are not known a priori, VCCT surfaces are required
throughout the entire model.

Initiation Three stress-based and three strain-based initiation criteria were considered based on
what was available in Abaqus and compatible with XFEM: maximum principal stress, maximum
principal strain, maximum nominal stress, maximum nominal strain, quadratic nominal stress, and
quadratic nominal strain. The effect of compressive normal stresses and strains is not taken into
account:

〈σn〉 =
{
σn for σn > 0

0 for σn < 0
(5.1) 〈εn〉 =

{
εn for εn > 0

0 for εn < 0
(5.2)

For maximum principal stress (MAXPS) and maximum principal strain (MAXPE), damage initiation
occurs when the stress or strain value exceeds a critical value, as shown in Equation 5.3 and Equa-
tion 5.4 respectively. At initiation, f is 1.0 ≤ f ≤ 1.0+ ftol , where ftol is a tolerance value. Further-
more, the crack-plane is set to be perpendicular to the maximum principal stress or strain, which is
why this criterion is most suitable when damage is caused by a tensile load. As the crack propagates,
this direction can change.

f = 〈σn〉
σ0

max
(5.3) f = 〈εn〉

ε0
max

(5.4)

Maximum nominal stress (MAXS) and maximum nominal strain (MAXE) take transverse and shear
stresses into account on top of the normal stress. The respective criteria are defined as Equation 5.5
and Equation 5.6. A local material direction can be specified as crack plane normal when one of these
initiation criteria is used.
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}
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Quadratic nominal stress (QUADS) and quadratic nominal strain (QUADE) are similar to MAXS and
MAXE. The main difference lies in the different criteria definitions as shown in Equation 5.7 and Equa-
tion 5.8, but apart from that a local crack plane can be selected as well and both normal and shear
stresses are taken into account.
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Propagation After damage initiation, stiffness is degraded until the point where the material fails,
which is also described as softening. The softening behavior can be described by several functions:
linear, exponential, or tabular (manual input of points). The functions describe the evolution of the
damage parameter, which is 0 for no damage and 1 for complete failure:

The function is based on the after initiation on the traction-separation plot: Figure 5.1 and Figure 5.2
illustrate linear and exponential softening respectively.

Figure 5.1: Linear softening Figure 5.2: Exponential softening

Damage evolution models in Abaqus are either energy- or displacement-based. Energy based damage
evolution is based on the fracture energy G f , which is defined as the energy required from the point
of damage initiation to the point of failure. Zhang et al. define the fracture energy as:

G f =
1

2
·σ f

eq ·ε f
eq · lc (5.9)

whereσ f
eq is the equivalent peak stress and ε f

eq the equivalent failure strain [85]. lc is the characteristic
length of the element that is automatically calculated by Abaqus in order to make damage evolution
independent of the mesh size [133]. The fracture energy is similar to, but smaller than the fracture
toughness Gc , considering that the fracture toughness takes the energy before damage initiation into
account as well.

Displacement-based damage evolution requires the equivalent plastic displacement ūpl
f as input,

which is the remaining displacement after damage initiation up to failure and relates to G f as follows:

ūpl
f = 2G f

σy
(5.10)

where σy represents the yield strength.

Stabilization Softening behavior of the element may result in convergence issues. Due to the negat-
ive tangent of the matrix after damage initiation, instabilities are introduced. Viscous regularization
offers a solution to such problems and is done via the use of a viscous parameter ηvr , which works as
follows.

Consider the speed of change of the viscous regularized damage variable:

ḋvr = 1

ηvr
(d −dvr) (5.11)
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By setting ηvr , it can be controlled how fast damage grows. Rewriting Equation 5.11 into a discretized
format yields:

d t+∆t
vr −d t

vr =
∆t

ηvr

(
d t+∆t −d t

vr

)
(5.12)

Isolating d t+∆t
vr , the damage variable at the new timestep, the influence of ηvr becomes more evident.

If the time increment ∆t becomes small compared to ηvr , the first term on the right-hand side of
Equation 5.12 becomes small and the actual damage variable contributes more significantly. This
way, the new damage variable is forced to be similar to the previous one, i.e. its evolution is stabilized.

Setting ηvr too large results in slow growth of the damage variable and a minimal effect on the overall
solution. On the other hand, setting it too small may pollute the overall solution. A practical rule of
thumb when assigning ηvr is to ensure [92]:

ηvru̇ < δ0 (5.13)

where u̇ is the nodal velocity, e.g. loading rate, and δ0 the smallest length parameter in the cohesive
law. The rationale behind this relation is that in case the viscous time parameter multiplied with the
nodal velocity (resulting in a displacement) is larger than δ0, overshoot may occur of the peak in the
traction-separation law. So by ensuring that Equation 5.13 holds, the traction-separation law is not
invalidated.

Generally, it requires trial and error to set this viscous parameter correctly. To verify if viscous ef-
fects did or did not pollute the solution, the artificial viscous dissipation energy (ALLVD) must be
compared to the internal strain energy (ALLIE). In case ALLVD is too large with respect to ALLIE, the
viscous parameter must be tuned. There is no universal definition on what is considered too large,
but generally 1-2% is deemed acceptable. In subsection 5.3.3, the ALLVD and ALLIE are compared for
the simulations.

Delamination

Modelling delamination with cohesive zone theory can be done via cohesive elements or cohesive
contact surfaces. The cohesive surfaces are more simple to implement and have been successfully
implemented before with the purpose of modelling delamination [134]. Using a traction-separation
law, cohesive behavior is simulated via an interaction property that includes mechanical material
properties, damage properties, and contact properties.

The cohesive law requires to specify artificial penalty stiffness Kp values to define the mechanical
behavior of the surface bond. A literature review on numerical loading parameters in modelling
delamination in various carbon-epoxy laminates is presented by Lu et al. and shows that typical
values for Kp are in the range of 105-106 N/mm3 [89]. Setting Kp too low results in the predicted
delamination being too small or even disappears, whereas setting it too high results can result in a
significant increase in computational efforts. Rules of thumb for the penalty stiffness in the different
loading directions are [135]:

K min
nn = 50E3

h
,K min

ss = 50G13

h
,K min

t t = 50G23

h
(5.14)

Initiation Abaqus offers four damage initiation criteria for surface-based cohesive behavior: max-
imum traction, quadratic traction, maximum separation, and quadratic separation.

Maximum traction and quadratic traction initiation are the same as MAXS (Equation 5.5) and QUADS
(Equation 5.7). Maximum separation and quadratic separation are similar to MAXE and QUADE:
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(5.15)
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Propagation For cohesive contact surfaces, damage evolution describes the degradation of the stiff-
ness of the cohesive bond, whereas for cohesive elements the material stiffness is degraded. Other
than that, damage evolution options are the same, which were mostly described already in the previ-
ous section. The main difference lies in the option of modelling mode-mix dependence.

When using energy-based damage evolution, the mode-mix ratio can be defined in tabular form
(manually providing datapoints of the desired function), a power law criterion, or a Benzeggagh-
Kenane (BK) criterion.

The mixed mode criterion based on a power law in Equation 5.17 is specified based on the fracture
toughnesses of fracture modes I (normal), II (in-plane shear), and III (out-of-plane shear). Further-
more, a material-dependent power law exponent α is included to relate the different fracture modes.
λi represents the fraction of the strain energy of a certain mode of the total strain energy.

Gmc =
[(

λI

G I c

)α
+

(
λI I

G I I c

)α
+

(
λI I I

G I I I c

)α]−1/α

(5.17)

A BK-criterion requires only G I c and G I I c , because it assumes that we can say that the behavior and
fracture toughness of the two shear directions are the same. It means one less parameter is required
to set up the mixed-mode criterion. Apart from the two fracture toughnesses, the criterion in Equa-
tion 5.18 requires a value for η, the BK exponent, which is material-dependent and obtained via ex-
periments.

Gmc =G I c + (G I I c −G IC )

(
G I I

G I +G I I

)η
=G I c + (G I I c −G IC )Bη (5.18)

Stabilization Similar to the transverse matrix cracks, the cohesive laws that were implemented to
model delamination can show convergence issues that can be (partially) solved by adding artificial
viscosity. The working principle here is exactly the same as described in the previous section.

5.1.3. Verification & Validation procedures

Mechanical behavior is verified and validated by comparing the load-displacement curves with both
experiments and an analytical solution that is obtained via CLT. The mathematical foundation of the
CLT is discussed in Appendix A. To simulate damage using CLT, failure of the matrix degraded in-
ply stiffnesses to 18% of its original value and a second matrix failure or fiber failure degraded the
ply properties to zero, which is in line with the sudden degradation model parameters as proposed
by Camanho and Matthews [84]. The damage parameters that were used for the FEM model were
verified by the range of values was established when looking at comparable materials from literature
and validated by comparing results with experiments.

5.2. Finite Element Model
A finite element model was constructed in Abaqus to augment the existing experimental dataset. A
specimen length of 100 mm was simulated, corresponding to the area that was monitored during
testing. Initial settings of the model are explained in this chapter. Firstly, the specimen’s geometrical
dimensions are discussed in subsection 5.2.1, followed by the material properties and their distri-
butions in subsection 5.2.2. Damage parameters are explained in subsection 5.2.3, and the mesh,
boundary conditions, and step settings are explained in subsection 5.2.4, subsection 5.2.5, and sub-
section 5.2.6 respectively.
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5.2.1. Geometry

The specimen was modelled as three 2D planar shell parts with the same point of view as the schem-
atic drawing in Figure 4.1. The three parts consist of the two longitudinal blocks and the middle
transverse block. The parts were connected via a general contact with cohesive properties that are
further discussed in subsection 5.2.3. The parts were partitioned such that each portion of the spe-
cimen was assigned its own separate element, section, and material. The properties of the elements
were calculated based on the distributions that are discussed in the next section. Table 5.1 lists the
dimensions of the 2D model.

Table 5.1: Dimensions of the 2D model

Parameter Value Unit
Length 100 mm

Ply thickness 0.125 mm
Layup [02/904]s -

Total thickness 1.5 mm

5.2.2. Material Properties

The engineering constants and strength values are varied per element. The goal of this was to model
the inhomogeneity that is inherent to composite materials, caused by e.g. defects. This was done
by creating a different material and section per element and assigning it to the partitioned elements
in the parts. Taking into account spatial correlation between all different mechanical material prop-
erties was considered beyond the scope of this thesis, considering the additional required research
and modelling of the micro-mechanical scale. Only the correlation between YT and G f is taken into
account, because of its dominant effect on the crack pattern characteristics (further explained in sub-
section 5.2.3). Each property is assigned a distribution, which was assigned as follows.

In literature, a normal distribution was found to be a popular tool with, in general, promising results
[104, 105, 108, 111]. Therefore, a normal distribution was adopted here as well. It is characterized by
a mean value µ and standard deviation σ (or coefficient of variance (CV), which is defined as CV=
σ
µ ), which indicates the spread of the distribution. It was implemented in Python by using Numpy’s
numpy.random.normal() function. The standard deviations were not experimentally determined and
thus may differ from what one would observe during experiments. The mean values are provided by
the data sheet [127], except for the transverse strength YT , which was experimentally observed.

A Weibull distribution for the transverse strength YT of the 90-plies was observed from the experi-
ments performed by Xi Li, which was modelled into Python using the numpy.random.weibull() func-
tion. The distribution was obtained by mapping the stresses at which cracks initiate. As the cracks
propagate instantaneously through the width and through the thickness direction, the Weibull dis-
tribution was used to model the strength over the length direction only. To minimize the differences
in strength in the through-the-thickness direction, a normal distribution was used with the Weibull
strength as mean value with a CV of 0.3%, i.e. YT is essentially only varied along the length direction.

Similar to YT , the CV of XT values in through-the-thickness direction was set to 0.3%. Thus, the vari-
ation in XT was essentially modelled as a function of only the length direction as well. Implementing
this adjustment in the distribution allowed for smoother convergence at the point of failure of the
0-blocks, without significantly affecting any of the results such as the failure strength.

Tests were conducted where the CVs of all material properties that are listed in Table 5.2 were varied
from 0.01% to 20%. To validate the CV setting, the results were compared to the experimental data,
with a focus on the crack pattern characteristics, and are presented and discussed in section 5.4.
Ultimately, a CV of 2% was chosen and validated with experimental results. Figure 5.3 highlights the
effect of modelling the varying properties in the elements. The plot shows the maximum principal
stress in the matrix under an arbitrary loading that causes a different stress per element.
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Table 5.2: Distributions of the material properties of the specimen (Table 4.1), *: Experimental observations from Li.

Property Symbol Distribution Parameters Values Unit
Longitudinal Modulus (tensile) E11 Normal µ, σ 142, 2.84 GPa

Transverse Modulus (tensile) E22 = E33 Normal µ, σ 9.1, 0.182 GPa
Transverse shear modulus G12 =G13 Normal µ, σ 5.2, 0.104 GPa

In-plane Poisson’s ratio ν12 = ν13 Normal µ, σ 0.27, 0.0054 -
Transverse Poisson’s ratio ν23 Normal µ, σ 0.3, 0.006 -

Longitudinal strength (tensile) XT Normal µ, σ 2274, 45.48 MPa
Longitudinal strength (compressive) XC Normal µ, σ 1849, 36.92 MPa

Transverse strength (tensile) YT Weibull* λ, k 113.7, 14.85 -
Transverse strength (compressive) YC Normal µ, σ 102, 2.04 MPa

In-plane shear strength S12 = S13 Normal µ, σ 104, 2.08 MPa

Figure 5.3: Illustration of the effect of the varying properties in the matrix. The plot shows the maximum principal stress
within the elements under loading. The colors rank the stress from high to low as: red - yellow - green - blue.

5.2.3. Damage Parameters

Argumentation on the settings of damage parameters that were made is provided, followed by a sum-
mary of the final values that were used. Transverse matrix cracks and fiber failure were modelled by
using XFEM and delamination was modelled using cohesive surfaces. A summary of the chosen dam-
age parameters is presented in Table 5.5. Verification of the values is done in the process of selecting
the values as described in this section by using literature and the data sheet. Validation is done after-
ward where the results are discussed in section 5.3. Sensitivity analyses of the parameter settings are
presented in section 5.4.

Transverse Matrix Cracks For the cross-ply specimen, the load that will cause transverse matrix
cracks is close to purely tensile. Not only does that make sense when considering the applied tensile
load to the block of 90-plies, but also is that validated by the perpendicular shapes of the cracks (both
in width direction and through the thickness direction) in experiments. With the strength values
measured as stresses, a MAXPS criterion was considered to be the most logical choice from these six
criteria. Adopting a MAXPS criterion has already shown to provide reasonable results in modelling
failure by using XFEM [99, 131, 136], despite the fact that shear stresses that are introduced to the
0-plies at the interface with the transverse block are not taken into account. The expectation is that
thereby the strength of the longitudinal plies is slightly overestimated.

With the transverse tension being the predominant load on the 90-block, the fracture is assumed to
be purely mode I. It should also be noted that the case study subject has quite a thick 90-block, thus
the effect of shear loads in the interface regions on the matrix cracks is expected to be even smaller.
As such, a mode-independent fracture of the matrix is assumed.

However, as mentioned before, it should be noted that G I c is in fact the fracture toughness of a mater-
ial, i.e. the area under the entire traction-separation curve of the entire displacement, including the
phase before damage initiation. That means using G I c directly as G f for the mode I fracture energy of
the 90-block theoretically results in an overestimation of G f . G I c is therefore interpreted as an upper
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limit for the fracture energy, rather than the precise value.

A correlation between G f and YT was included because of the following. When YT is lowered but G f

is kept the same, the crack opening displacement at complete failure of the element would increase,
which does not make sense from a physical point of view: one would not suddenly expect a rather
ductile damage response in case the strength is decreased due to defects such as voids. Not correl-
ating these parameters may result in unrealistic situations that go hand in hand with convergence
issues, which has been acknowledged before.

Van der Meer and Dávila [106] assigned random scalar fields to scale both the strength and frac-
ture toughness proportionally, which comes down to linearly scaling the fracture toughness with the
strength. Petrov, Gorbatikh, and Lomov correlated the fracture energy with the strength [99] in a
quadratic manner, as illustrated in Figure 2.11. Both types of correlation were looked into: linear and
quadratic scaling.

Scaling G f linearly with strength would result in the same displacement for all elements:

G f =
YT

YT,µ
·G f ,µ

where subscript µ indicates the mean values. Scaling G f quadratically with the strength would result
in a proportional change of the crack opening displacement at failure:

G f =
(

YT

YT,µ

)2

·G f ,µ

The quadratic scaling option was considered to make the most sense from a physical point of view.
An increase in strength means that the element can cope with a higher amount of stress. However,
as mentioned, correlating the engineering constants and strengths is considered beyond the scope
of this thesis. Thus, assuming that the modulus is not correlated with the strength, an increase in
strength also increases the failure strain and vice versa.

YT,0 was based on the mean value of the Weibull distribution: 110 MPa. Compared to the datasheet,
the mean value of the Weibull distributin is 10 MPa higher, which can be explained by in-situ effects
caused by the embedding in between the two blocks of 0-plies.

To come up with a reasonable value for the fracture energy, G f values for tensile matrix failure in
other carbon-epoxy specimens were found to provide an indication of a reasonable range of values.
Table 5.3 presents the found values for these fracture energies. Based on these findings, the range of
values that were tested for (G f )90 was set to 0.15 - 0.35, with steps of 0.1. Ultimately, (G f )90 was set to
0.25 N/mm.

Table 5.3: Fracture energies for tensile matrix failure in carbon-epoxy laminates from literature.

Material (G f )m f t [N/mm]
IM7/8552 [81, 137] 0.28

AS4/8552 [138] 0.2
T300-1034C [53] 0.13

Fiber Failure In view of the longitudinal plies being aligned with the loading, fiber failure was con-
sidered to be the failure mode of the longitudinal plies and thereby the specimen, which is confirmed
by experimental observations. Therefore, the MAXPS initiation criterion was chosen for the longit-
udinal plies as well. Ideally, a more advanced criterion was implemented to model the fiber failure to
account for the shear that is introduced in the interface region by the difference in moduli between
the 0- and 90-block, for example by Hashin’s criteria. However, this is not an option for the type of ele-
ments that are used in this 2D approach. Via a subroutine like UDMGINI or UMAT, custom initiation
and propagation criteria could be defined in Fortran code, but considering the limited time resources
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due to the data-driven model, this was considered beyond the scope of this thesis. The considered
alternative criterion was a MAXS criterion, which takes into account the transverse and shear stress as
well. Nonetheless, the contribution of transverse and shear stresses is significantly smaller than the
axial normal stress when considering the purely axial loading and alignment of the longitudinal plies.
Additionally, delaminations that initiate at the transverse matrix crack tips are expected to introduce
some relaxation of the shear stress. XT was assigned as strength value. A correction factor of 1.1 was
applied to increase the failure strength of the specimen to the level of the experimental values.

Similar to the transverse block and in line with the assumption that fiber failure is dominated by the
axial normal stress, it is assumed that the fracture is purely mode I. The corresponding fracture energy
(G f )0 was found by testing simulations within a range that was based on G f values for tensile fiber
failure of the same carbon-epoxies as mentioned in Table 5.3. These fracture energies are summarised
in Table 5.4. The range was set from 10 - 100 N/mm. Within this range, the only parameter that G f ,0

was found to affect was the failure strength of the specimen. Cracking of the matrix seemed to occur
more or less independently from this parameter.

Nonetheless, tuning the fracture energy of the 0-plies turned out to affect convergence, whereas too
low values resulted in a single block of 0-plies to fail with scenarios such as depicted in Figure 5.4. Also,
the load at which the 0-plies fail was found to be decreased. On the contrary, the higher values showed
difficulty in convergence in a different way: simulations would just keep on iterating when damage
initiates in one of the elements without successfully continuing damage evolution until failure. Values
equal to or lower than 25 N/mm turned out to result in the exact same damage accumulations. In an
attempt to strike a balance between a too brittle and abrupt failure and difficulties in convergence,
the fracture energy was set to 75 N/mm. To enforce smoother failure, the artificial viscosity coefficient
was set relatively high: 10−4 1/s.

Figure 5.4: Fiber failure in only one of the 0-blocks, resulting in close to 7,000 iterations after failure of the lower 0-block to
attempt to break the upper block of 0-plies. Red blocks indicate fully failed elements (STATUSXFEM=1.0) and green blocks

indicate elements that are in between damage initiation and complete failure (0 < STATUSXFEM < 1). Maximum
displacement is 3 mm.

Table 5.4: Fracture energies for tensile matrix failure in carbon-epoxy laminates from literature.

Material (G f ) f f t [N/mm]
IM7/8552 [81, 137] 81.5

AS4/8552 [138] 92.0
T300-1034C [53] 52.5

Crack Spacing A spacing between the cracks was introduced to alleviate computational efforts and
to prevent an infinite number of cracks initiating. A transverse matrix crack that is modeled as a
discontinuity with XFEM does not necessarily result in unloading of the surrounding elements. In
other words, in case no delamination is present yet, the stress will keep increasing in the region of
a "new" matrix crack in every uncracked element around it until the strength is exceeded and those
elements fail as well. It can be concluded that not only a crack spacing is required, but also accurate
delamination modelling to prevent an infinite number of cracks initiating. A crack spacing parameter
was introduced by van der Meer and Sluys because of the same issue [139] and was used afterward by
Petrov, Gorbatikh, and Lomov too [99].
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Elements were enriched in columns, as shown in Figure 5.5. The reason for the chosen spacing of the
columns was based on the smallest spacing that was observed in experiments, which was 0.44 mm. A
spacing of 0.5 mm was chosen, where the output format of the crack pattern that serves as input for
the neural network was also taken into account: choosing a spacing of 0.5 mm makes discretization of
the specimen more convenient and was considered close enough to the observed minimum spacing.
Furthermore, it was verified that decreasing the spacing does not significantly affect the number of
cracks that appear, but does significantly increase computational efforts, which is in line with findings
in literature [99, 139]. The sensitivity of the spacing parameter is further assessed in section 5.4.

Figure 5.5: Illustration of crack spacing principle in a portion of the specimen: X-direction is along the width, Y-direction is
through-the-thickness. Green X patterns mark enriched element columns.

Table 5.5: Damage parameters of the enriched elements.

Parameter Value Unit
(G f )0 75 N/mm
(ηvr )0 10−4 1/s
(G f )90 0.25 N/mm
(ηvr )90 10−5 1/s

Minimum crack spacing 0.5 mm

Delamination The additional computational cost of implementing crack locations throughout the
model compared to the cohesive based approach resulted in a preference for the cohesive based ap-
proach over the LEFM based approach. A cohesive surface was chosen over cohesive elements be-
cause of simplicity and reduced computational cost (cohesive elements require "double nodes" at the
interface).

Firstly, the cohesive behavior was defined via the uncoupled penalty stiffnesses. For simplicity, the
penalty stiffness is assumed to be the same in all three directions. The value for this penalty stiffness
was set to 105 N/mm3, which is the minimum value that is recommended to use for carbon-epoxy
laminates [89]. Increasing the value increases the number of iterations that is required for conver-
gence, thereby the computational time, without drastic changes in the outcome. In addition, increas-
ing the penalty stiffness postpones delamination and as such matrix cracking, which results in a shift
of the majority of the matrix cracks toward a higher load when they occur all at the same time.

Furthermore, a frictionless tangential behavior was assumed for delaminated surfaces. The block of
90-plies was assigned as slave-surface on both ends, because it is the softer material. A simple hard
pressure-overclosure contact was defined in case of compressive loads through the thickness.

Delamination Initiation A quadratic traction law was adopted for damage initiation in the cohesive
surface contact. Literature presents good results with the criterion [55, 89, 131, 140]. A mixed-mode
B-K criterion was adopted, which requires the normal strength (mode I) and shear strength (mode
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II = mode III) of the interface. The interface strength value for mode I fracture was based on the
transverse strength of the ply from the datasheet: 102 MPa. The mode II strength value was based
on the interlaminar short beam shear strength that is provided by the data sheet of the material:
108 MPa. Turon et al. report it is acceptable to reduce the interface strength values in case large
cohesive elements are used to promote convergence [135]. As such, the tested ply strengths of the
normal/shear strength of the interface were scaled based on the data sheet values: 102/110 MPa,
76.5/81 MPa, and 51/55 MPa.

The lowest pair of interface strengths showed to experience an increased difficulty in converging.
This is attributed due to the significant increase of total delamination initiations and thus the total
delaminated area, which sparks convergence issues related to contact modelling. The highest pair
showed delaminations to occur only around the crack tips, without extending much further to adja-
cent elements. The middle pair of values, 76.5 MPa for the normal strength and 81 MPa for the shear
strength, showed the most reasonable results by using the balance.

The cohesive zone length is an important parameter concerning the minimum mesh size to provide
sufficient accuracy. It is a measure of the distance between the crack and the location of maximum
traction. Turon et al. state that the importance of having at least 3 to 5 elements in this zone to obtain
sufficient accuracy of the cohesive zone modelling [135]. To estimate its length, Equation 5.19 can be
used:

lcz = ME
Gc

(τ0)2 (5.19)

where M is a parameter that depends on the cohesive model and is typically close or equal to 1. For
orthotropic materials with plane strain conditions, the transverse modulus E2 can be used for E . To
calculate the length of the cohesive zone, it is assumed that it is a resin-rich region, meaning data
from the resin’s datasheet was used: G I c = 0.432 kJ/m2 and τ0 = 102 MPa. It results in a a cohesive
zone length of 0.378 mm. Having at least 3 to 5 elements in this zone means a minimum element size
of 0.0756 - 0.126 mm. It should be noted here that the upper limit of an allowable size exceeds the
largest element size that was considered: one square element through the thickness of a single ply of
0.125 mm.

Delamination Evolution A study focused on cohesive zone modeling in FE performed by Alfano
[141] showed that exponential softening behavior was optimal in terms of accuracy, whereas a bilin-
ear law would be the best compromise in terms of accuracy versus computational cost. Keeping the
computational cost in mind due to the high number of degrees of freedom, the bilinear setting was
chosen.

A B-K criterion was adopted to model the evolution of delamination. No experimental values were
obtained for the material that was used in the experiments. Therefore, small ranges of values were
found based on the used material and literature.

Regarding the fracture energies, mode I was based on the found value for matrix cracking and the
data sheet of the matrix and mode II was based on literature. The values that were tested for mode
I are 0.25 N/mm and 0.4 N/mm and for mode II 0.6 N/mm and 1.0 N/mm. The total number of
combinations that was tested is 12, including the various strength parameters, from which the final
values are shown in Table 5.6. A more elaborate discussion on these results is presented in section 5.3.
A viscous parameter was calculated by using Equation 5.13, to be approximately 6 ·10−5. Because the
matrix is tough and not ductile, a B-K exponent of 2 was assumed.

It was found that the mode I fracture hardly affects the results, which makes sense when looking at
the load case: the longitudinal blocks and matrix block are shearing over each other. Thus, mode I
effects seem negligible. The mode I fracture energy was set equal to the fracture energy of the matrix.

The lower fracture energy of 0.6 N/mm showed a smoother evolution of the crack density curve, com-
pared to a rather steep curve caused by simultaneous cracking at different locations. Delamination
progresses more easily at lower values for fracture energy and as such, relaxation in the stress field
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around matrix cracks is facilitated.

Table 5.6: Cohesive interface parameters

Parameter Value Unit
Kp 105 N/mm3

τI 76.5 MPa
τI I 81 MPa
τI I I 81 MPa

(G f )I ) 0.25 N/mm
(G f )I I ) 0.6 N/mm

B-K exponent 2 -
(ηvr )coh 10−5 1/s

5.2.4. Mesh

At the time of this project, XFEM’s compatibility in Abaqus is limited to linear elements. Hence, lin-
ear CPE4I plane strain elements were used on all elements. The setting of incompatible modes was
toggled on to account for potential issues in case of local bending of the specimen at the point of
failure of the 0-blocks. The shape and size of the mesh was configured during the partitioning of
the parts into squares. Because cracks can initiate at essentially any location, the same accuracy is
required everywhere, so the same element size was set uniform over the entire model.

The largest element size that was taken into account corresponds with one single square element
through the thickness of a single ply, i.e. 0.125 mm. Two more element sizes were considered as well,
corresponding with two and three elements through the thickness of a single ply: 0.0625 mm and
0.03125 mm respectively. The result of a mesh convergence study is presented in section 5.4.

5.2.5. Boundary Conditions

The clamps that were placed on the specimen during the tests were modelled as a constraint in move-
ment in through-the-thickness direction (U 2 = 0) and a constraint in rotation (U R3 = 0). The left
side of the specimen was constrained to move in the loading direction as well (U 1 = 0), i.e. was fully
clamped, as shown in Figure 5.6. Constraining of U 2 and U R3 showed to improve stability the system,
which was particularly necessary when modeling the full length of the specimen. Boundary condi-
tions were applied per edge of the element as a result of keeping the element size and layup variable
in the script. The boundary conditions at the loaded edge are shown in Figure 5.7.

However, constraining through-the-thickness displacement at the clamped and loaded edges intro-
duces additional stresses. As a result, despite the variation in strength per simulation, the specimen
consistently failed prematurely near the edges. Therefore, a "crack-free" region of 2.5 mm near the
edge was introduced, meaning that elements near the edge were not enriched and could not fail. The
value of 2.5 mm was based on observations of the stress field near the boundary condition, similar to
the stress field observations that are discussed in the mesh convergence study in subsection 5.4.1.
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Figure 5.6: Boundary conditions at the clamped edge: U 1 =U 2 =U R3 = 0. The coordinate systems that coincide with the
clamped edge are those of the three different parts: the two longitudinal blocks and the transverse block.

Figure 5.7: Boundary conditions at the loaded edge: U 2 =U R3 = 0, U 1 =∆U .

Loading

Loading was applied as a displacement boundary condition, where corresponding reaction forces are
a result of the specimen’s stiffness. These reaction forces were converted to a stress to validate results
with experimental data. Displacement controlled loading was in this case preferred over applying a
force controlled loading because of stability: force controlled loading turned out to have great dif-
ficulties to converge because of the many cracks that cause disruptions on the load-displacement
curve. On the contrary, displacement controlled loading showed small, vertical drops on the load-
displacement curve when cracks appear, that are handled more adequately by Abaqus. The failure
strength of a specimen was obtained by taking the peak stress in the stress-strain curve, the corres-
ponding strain was taken as failure strain.

To speed up the runtime, the load was applied by using a tabular amplitude loading, as illustrated
in Figure 5.8. It can be estimated beforehand what portion of the load can safely be applied without
sudden simultaneous failure at several locations in the matrix. This fraction of the load is indicated
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in the figure as f1 and is applied in the time t1. Accordingly, the loading rate of this first load portion
can be increased: per time increment, a larger displacement is applied which decreases the runtime.
Once the displacement is getting close to a level where matrix cracks are expected, the load rate is
again decreased to obtain sufficient accuracy.

Depending on the desired loading rates in the two stages, t1 can be adjusted. t1 was made into a
function of ε0, εt , and a load rate factor (LRF), as shown in Equation 5.20. ε0 is the strain at which
the specimen is still undamaged, εt the total applied strain, and the LRF is the ratio between the load
rates of the first loading block (0 < ε ≤ ε0) and the second loading block (ε0 < ε ≤ εt ).

t1 = 1

LRF · εt−ε0
ε0

+1
(5.20)

Table 5.7 shows the parameter settings that were used to come up with the chosen value of t1. ε0 and
εt were observed from several simulations and LRF was arbitrarily set.

Table 5.7: Parameter settings to calculate t1 by using Equation 5.20.

Parameter Value Unit
ε0 0.007 -
εt 0.015 -

LRF 10 -
f1 0.467 -
t1 0.08 sec

Figure 5.8: Amplitude that was applied to the displacement controlled loading. f1 corresponds with the fraction of the
total applied load until which no failure is expected. t1 is the corresponding step time.

5.2.6. Step

A dynamic implicit quasi-static step was implemented to obtain convergence of this relatively un-
stable problem. Due to the highly non-linear nature of the problem, time incrementation settings
were changed to the values that are shown in Table 5.8. An explanation is provided on why the values
were changed.

∆ti ni t is the setting for the first time increment, which, if set too large can cause convergence issues.
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∆tmi n determines the lowest increment for which it is tried to obtain convergence. Setting this value
too high could result in a prematurely stopped simulation, whereas setting it too low could result in
endless cutbacks and prevent the simulation from stopping once it gets stuck.

The maximum time increment during a step ∆tmax is an important parameter that needs to be bal-
anced in between accuracy of the solution and number of iterations to convergence, i.e. computa-
tional efforts. Setting ∆tmax too low results in a significant increase in runtime, whereas setting it too
high results in simultaneous failure of the matrix at multiple different locations. The latter results in
a polluted solution. To determine ∆tmax , the following relation was derived:

∆tmax = ∆δcr i t

LR
(5.21)

where ∆δcr i t is the smallest increment in applied displacement that causes damage initiation in the
first element, defined as εcr i t · l0, where l0 is the characteristic length or in case of square elements:
element length. Dependent on the mesh size, ∆δcr i t is recalculated based on εcr i t . LR is the applied
loading rate in the second loading block. With none of the parameters (apart from the artificial vis-
cosity coefficients) being dependent on time, it was argued that increasing the runtime or decreasing
the value for ∆tmax would make little difference. The latter was option was picked. A value for δcr i t

was derived by observing the moment of first element failure for several simulations. The loading
rate was calculated based on the settings for t1 and does not change much when LRF is varied. With
settings for t1 as in Table 5.7, a specimen length of 100 mm and an element size of 0.0625 mm, ∆tmax

becomes 0.00115 sec.

I0, IR , IP , IC , and IL are parameters that involve the number of consecutive equilibrium equations
before certain checks are performed. Due to the highly non-linear nature of the problem, keeping
these settings to default may cause convergence issues. Thus, increasing these values prevents the
simulation from non-convergence and premature aborting of the job.

Table 5.8: Time incrementation settings.

Parameter Default Setting Unit
∆ti ni t 0.01 0.001 sec
∆tmi n 0.001 1e-12 sec
∆tmax 0.01 0.00115 sec

I0 4 40 -
IR 8 80 -
IP 9 90 -
IC 16 160 -
IL 10 100 -

5.3. Results and Discussion
The results of the analyses are discussed in this section. Post-processing of the results was done in
the Python environment as well. Several text files were generated based on the output data base
generated by Abaqus, from which the most important information was extracted. 277 patterns were
simulated. The results are compared to the experimental results and an analytical solution based on
CLT. The comparison forms the basis of the discussion and conclusion on the validity of the model
and corresponding recommendations.

Firstly, load-displacement curves are presented and compared to experiments and literature in sub-
section 5.3.1. Next, the appearance of matrix cracks and delamination is discussed in subsection 5.3.2.
In subsection 5.3.3, using artificial viscosity is justified and limitations of the model are discussed in
subsection 5.3.4.
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5.3.1. Mechanical Behavior

The mechanical behavior of the specimen was compared to the experiment in which a displacement
based load was applied with a loading rate of 1 mm/min [31] and a CLT based solution.

The experimental data shows to ’jump around’ a straight line, with the jumps becoming larger at a
later stage. This is explained by the fact that the experiment was displacement-controlled: as dis-
placement is further increased, instabilities are introduced by the fact that the required resulting re-
action force to displace the specimen further drops for a moment at the point of cracking.

The Young’s modulus of the pristine specimen that was simulated via CLT was 53.65 GPa. Failure of
the transverse block occurs at a stress of 649 MPa, or a strain of 0.0121, after which the modulus is
(instantaneously) degraded to 48.65 GPa. The CLT specimen fails at 775 MPa.

The stress-strain curves of the three methods are shown in Figure 5.9. 10 FEM curves were included
to provide an indication of the variability within the simulations. The curves are dotted to prevent
complete cluttering of the graph. It is evident that the analytical CLT method overestimates the failure
strength the most significantly, which makes sense when considering all of the assumptions that are
made and how damage progression is simulated: without the presence of delamination and without
taking into account any shear stresses that are introduced near the interface region.

Some FEM simulations slightly overestimate the strength, which can be partially attributed to the
maximum principal stress damage initiation criterion that was used to model fiber failure. After all,
the strength of the fibers in the longitudinal blocks determines the global strength of the specimen.
Furthermore, it can be seen that the non-linearity in the stress-strain curve is different between the
FEM model and experiments: the FEM specimen fails at a higher stress but lower strain. Not only is
this due to the initial difference in stiffness of the specimen as a whole, but also can it be attributed
to the ’simple’ bilinear softening law. An exponential softening law might provide more accuracy.

The plot also shows that in some cases FEM simulations underestimate the strength and failure strain,
which could be the result of material properties having arranged itself in an unfavorable manner. Fig-
ure 5.10 zooms in on the region where the specimens fail in Figure 5.9. It can be seen that the modulus
of the FEM simulations lies in between the CLT specimen and the experiment. This implies that the
coefficient of variance could have been increased, which as discussed in subsection 5.2.2, degrades
the modulus. Furthermore, the failure points of the specimen are quite similar to the experimental
specimen, although the failure strength is consistently higher, presumably caused by the higher mod-
uli.
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Figure 5.9: Stress-strain curves of a displacement-based experiment [31], analytical solution, and 10 FEM dotted FEM
curves indicating the variability.

Figure 5.10: Zoom of Figure 5.9 at the region where the specimens fail.

5.3.2. Damage Results

It was found that the majority of the matrix cracks initiated at elements located at the interface.
This is explained by the fact that the elements near the interface are constrained via the cohesive
bond to the longitudinal plies, which causes a local increase in the observed principal stresses. Time
between the moment of initiation and propagation differs per crack: it was both observed that some
elements failed almost immediately after damage initiated, whereas other elements were damaged
(i.e. STATUSXFEM=0.4) more gradually towards failure when the load was increased.
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The curved cracks that were mentioned earlier were also encountered in the results, although rarely.
An example is illustrated in Figure 5.11. Images of the sequential progression of the cracks of this
portion of the specimen are presented in Appendix B.

Figure 5.11: Maximum principal stress field around a curved crack that was found in the results of the simulations. The red
color indicates a stress of 245 MPa, whereas the dark blue indicates a compressive stress: -16 MPa.

Remarkably, the location of the first crack showed not to occur at the exact same place as where the
lowest strength values of the elements were placed. This is explained by the difference in mechanical
properties per element: first failure occurs at the element which firstly experiences a stress that ex-
ceeds a strength value. In case the moduli of elements that are assigned the lowest strength are lower
as well, this means the stress in the element is also lowered and another element could fail first. In
reality, one would expect the first crack to show at the same place as the lowest strength. The reason
that the reality differs from the FEM simulation here, is the lack of correlation between the different
material properties. Thus, it is expected that introducing correlation between the material properties
will fix this phenomenon.

Within the Python environment, crack patterns were plotted based on the output files of the Abaqus
simulations. Examples of such plots are shown in Figure 5.12 - Figure 5.14. The red dots indicate
failure of enriched elements and the green diamond shapes indicate delamination (CSDMG > 0). It
should be noted that the aspect ratio of these plots is drastically different than the actual aspect ratio
of the cross-ply specimen; the current aspect ratio was purely chosen to clarify the content.

Figure 5.12 depicts a crack pattern with similar characteristics as the experiments and convergence
of fiber failure. Figure 5.13 shows a pattern of a simulation that stopped convergence because of dif-
ficulties in modeling fiber failure. Figure 5.14 shows a crack pattern that results from initial struggles
of the model to converge fiber failure, during which significant delamination is caused. The corres-
ponding Abaqus plot before final failure of the fiber is shown in Figure 5.18. Fiber failure can easily
be spotted from the crack pattern graphs: elements with a y-coordinate smaller than 0 mm or larger
than 1.0 mm correspond to elements within the longitudinal plies.

Failure of the longitudinal plies occurred at locations were a matrix crack already existed, which is in
line with findings during the experiments. Nevertheless, damage initiation within the plies regularly
showed to cause convergence issues, after which simulations were aborted before complete failure
occurred.

Comparing Figure 5.12 - Figure 5.14 to the experimentally observed crack patterns that are depicted in
Figure 5.15 - Figure 5.17 show similarities: the range of total number of cracks is similar, as well as the
fact that this range can be rather wide. The experimental specimens range from 12 transverse matrix
cracks to 34. The FEM simulations show a similar, with 13 matrix cracks in Figure 5.14 and the highest
number of cracks being 39. The precise lowest number of cracks for fully-run simulations is difficult
to obtain, because of the simulations that encounter convergence issues, as is further discussed in
Figure 5.18. Another similarity is the non-homogeneous crack spacing, with sometimes portions of
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5-25 mm of a pristine matrix combined alternated clusters of cracks at failure.

Figure 5.12: Crack pattern of a specimen that converges.

Figure 5.13: Crack pattern of a specimen that does not converge beyond fiber failure.

Figure 5.14: Crack pattern of Figure 5.18, a specimen that converges after many iterations.
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Figure 5.15: Crack pattern of a displacement-controlled experiment where the applied displacement rate was 1 mm/min.

Figure 5.16: Crack pattern of a load-controlled experiment where the load was gradually increased from 0 to 19 kN.

Figure 5.17: Crack pattern of a load-controlled experiment where the applied load was 19 kN.
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Figure 5.18: Stiffness degradation plot of the cohesive surface (CSDMG) in a simulation that encountered difficulties in
modelling fiber failure, resulting in locally large delaminations.

5.3.3. Effect of Artifical Viscosity Coefficient Settings

Figure 5.19 shows the evolution of the internal strain energy (ALLIE) and viscous dissipation energy
(ALLVD) in a representative specimen. To verify that the chosen settings for the artificial viscosity
parameters in damage stabilization did not pollute a solution, ALLVD needs to remain small. In the
example below, the maximum value of ALLVD expressed in % of ALLIE is 1.5%. This maximum value
of 1.5% was found not to vary significantly between various simulations. As such, it was concluded
that the artificial viscosity parameter settings did not pollute the solutions. The steeper part of the
curve early on in the loading is attributed to the amplitude loading.

Figure 5.19: Viscous dissipation energy (ALLVD) compared to the internal strain energy (ALLIE) during a simulation. Right
before the vertical jumps near the end of the graphs, the specimen fails. Before the specimen fails, ALLVD is never above

1.5% of ALLIE.

5.3.4. Convergence Issues — Limitations of the Model

The number of maximum iterations was limited based on simulations that ran smoothly. Conver-
gence issues resulted in not every simulation running up until fiber failure. Requiring significantly
more iterations than that number of iterations was considered to be a waste of the available resources,
because the additional knowledge of the exact point of fiber failure was deemed less important than
generating more matrix crack patterns, albeit focusing on early damage development. Several simu-
lations were prematurely aborted, caused by one of or a combination of the phenomena as described
below.

• Non-failing 0-plies: quite often, it was found that damage initiated at the 0-plies, but struggled
to evolve from the point of damage initiation to failure. This could be attributed to the chosen
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setting of the fracture energy. An attempt to solve this problem was made by setting the artificial
viscosity in the 0-plies to a relatively high value (10−4), but the problem kept occurring, causing
thousands of additional required iterations only to break the fibers. Therefore, a loss was accep-
ted in terms of accuracy: not every simulation that was used to provide data for the database
included all matrix cracks up until failure. It is hypothesized that the accumulation before the
point of fiber failure is independent of this convergence error.

• Limitation due to the enriched columns: Some of the cracks initiate within an element along
a curved path. However, the elements are enriched in columns. Therefore, a crack sometimes
hits the "sides" of its column and cannot recover its path from that, causing a loop of itera-
tions without the possibility of the crack to evolve following its initiated path. However, this
phenomenon was observed rarely.

• Asymmetric failure of 0-plies: as shown in Figure 5.4, it occurred that only one of the 0-plies
failed and the other one would not break, resulting in a significant increase in required itera-
tions. Nonetheless, it should be noted that in reality, in case one of the longitudinal plies breaks,
the other one breaks instantaneously as well. Therefore, the damage accumulation pattern ob-
tained after asymmetric failure was deemed to be still useful.

5.4. Sensitivity Analyses
This section presents the sensitivity analysis of four model parameters: mesh size in subsection 5.4.1,
the CV of the material properties that were modelled via a normal distribution in subsection 5.4.2, the
Y T distribution in subsection 5.4.3, and the spacing between enriched columns in subsection 5.4.4.

5.4.1. Mesh Convergence study

Three different meshes were tested: 1, 2, and 3 elements through the thickness of a single ply. The
corresponding DOF and runtime are presented in Table 5.9.

Table 5.9: Mesh convergence study parameters.

Mesh Element size [mm] Number of nodes [-] Number of elements [-] Total DOF [-]
1 0.125 66,155 16,000 107,630
2 0.0625 207,967 51,200 347,374
3 0.03125 417,837 105,600 705,726

Crack initiation and propagation behavior seemed relatively independent of the mesh. The stress
field around a crack was further analysed to assess the effect of the mesh size. Specifically, it was
determined to what range around a crack the stress field was affected by its presence. Furthermore,
the shape of the stress field was taken into account.

Figure 5.20 - Figure 5.22 depict the stress fields around a matrix crack for the different mesh sizes. The
limit values of the color plots were set equally for all plots and were based on the stresses that were
observed with the finest mesh. Naturally, a finer mesh results in a smoother stress fields. Nonetheless,
the ’coarse’ mesh of elements with size 0.125 mm shows to be able to capture the overall shape of the
stress fields. Furthermore, it was found that the size of the stress field region around a crack that is
affected by the presence of a crack varies in the order of 0.01 mm, i.e. not significantly: up to about
1.2 mm on both sides of the crack, the stress field is differs from the observed stresses in uncracked
regions.

For the layup that was used in the experiments, using the coarsest mesh was deemed acceptable.
Because of the thick block of transverse plies, 8 elements are present through the thickness of this
transverse block and 12 elements are present in total throughout the thickness. Having 8 elements
through the thickness of the transverse block allows sufficiently accurate stress (re)distributions to
model the transverse matrix cracks.
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Figure 5.20: Max. principal stress field around a matrix crack. Coarse mesh — 1 element though the thickness of a ply —
0.125 mm. Total width displayed: 3.125 mm.

Figure 5.21: Max. principal stress field around a matrix crack. Medium mesh — 2 elements though the thickness of a ply —
0.06125 mm. Total width displayed: 3.175 mm.

Figure 5.22: Max. principal stress field around a matrix crack. Fine mesh — 3 elements though the thickness of a ply —
0.03 mm. Total width displayed: 3.0 mm.
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5.4.2. CV of Material Properties

The CV’s of the engineering constants and strengths (except for XT and YT ) are varied from 0.01% up
to 20%. As shown in Table 5.10, the failure strength decreases overall when the coefficient of variance
of the engineering constants and strength values increases. These findings are in line with a recent
study that investigates the effect of including stochasticity into FEM [111]. The undamaged modulus
was calculated based on the global load-displacement curve up to before damage initiation at a total
applied strain of 0.005, corresponding to an applied stress of approximately 200 MPa. The overall
trend is that the global modulus decreases with an increasing CV, which too is in line with the findings
of [111].

Even though the mean value of the stiffness properties remains the same when increasing the CV, it
makes sense that the strength and stiffness are affected when the CV is decreased. The differences
in properties between adjacent elements increases and causes local peaks in stress, which explains
the decrease in observed failure strength. Furthermore, it is hypothesized that due to the growing
local differences in case of increasing CVs, the load transfer between elements is affected and causes
the global stiffness to decrease. Nonetheless, the decrease in global stiffness is significantly less af-
fected than the failure strength. This can be attributed to the strength being dependent on only the
lowest values within a drawn set of samples from a distribution, whereas low stiffness elements are
compensated for by an approximate equal amount of high stiffness values.

Looking more closely at the individual results, it is observed that for an increase in CV, the damage
accumulation process up to failure becomes more abrupt. For lower values of CV, several transverse
matrix cracks initiate from which delaminations starts, until at some point the longitudinal blocks fail
at a location of an existing transverse matrix crack. At higher values of CV, only one or a few matrix
cracks initiate, after which the longitudinal blocks fail at a "random" location that does not extend
from a matrix crack. This phenomenon makes sense from the point of view that e.g. a CV of 15% for
the longitudinal strength X T drastically reduces the local strength, such that the fibers fail already
before the matrix has failed. Moreover, considering that no correlation was adopted between the
engineering constants and the strengths, a reduction in strength could be combined with a higher
longitudinal modulus within the same element. Such a scenario is deemed unphysical and would
result in an even more drastic reduction in strength, as such facilitating the observed phenomena.

Table 5.10: Sensitivity study of the coefficient of variance that is applied to all engineering constants and strength values,
except for Y T . *: convergence issues encountered.

CV [%] Failure strength [MPa] Difference [%] Modulus (undamaged) [GPa] Difference [%]
0.01* 720 0.075 53.85 3.37

1 739 5.73 53.85 3.36
2* 657 -6.0 53.81 3.28
3* 682 -4.7 53.76 3.19
5 696 -0.47 53.72 3.11

10 602 -17.0 53.21 2.14
15 497 -28.9 52.68 1.11
20 518 -29.2 52.31 0.4

5.4.3. Transverse Strength distribution

The transverse strength distribution dominantly affects the progression of matrix cracks. A new set
of properties was drawn from the experimental Weibull distribution for each simulation. The lowest
strength values logically affect the load at which matrix cracks start to appear: the lower the strength
values, the earlier the cracks showed and vice versa. Therefore, it was found that for a part of the
specimens, cracks started initiating earlier, but also stopped to initiate earlier. In other words, the
crack density evolution curve seemed to have been shifted backwards.

Figure 5.23 shows what happened when all input variables are kept the same, except for adding a bias
of 5, 10, 15, and 20 MPa to strength values that were drawn from the same Weibull distribution. In
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other words, one set of strength values was drawn from one Weibull distribution and to assess the
effect of increasing transverse strength, the same simulation was done five times: adding 0, 5, 10, 15,
and 20 MPa to the set of strength values, while keeping all other variables the same.

The overall trend that can be derived from the plot is that increasing the strength values manually
(sometimes literally) shifts the crack density curves towards the right. The orange curve of YT +5 is
somewhat of an outlier because it is the only simulation that does not have a final crack density of
0.18 cracks per mm. Nonetheless, it can be seen that all curves have a similar pattern in the evolution
of matrix cracks, proven by the parallel lines for the majority of the regions of crack density evolution.

It was opted to include the crack patterns that were generated with these ’low outliers’, because of
two reasons. Firstly, it is not unrealistic to expect a decrease of strength to 60% of the mean value
in a poorly produced specimen, which means the dataset includes specimens of different qualities,
making it more robust. Secondly, the crack locations that are generated with these low outliers hardly
change when one would increase the strength: the evolution is almost identical for all of the curves.
All specimens but the orange curve of show cracking at the exact same locations, except for the ad-
ditional cracks of orange curve of YT +5 with respect to the total number of cracks of the other four
curves.

Figure 5.23: Crack density evolution when increasing the strength distribution.

5.4.4. Enrichment Spacing

Enrichment spacing values were varied from 0.25 mm to 1.0 mm. It was observed that a higher spa-
cing postpones crack initiation, as can be seen in Figure 5.24. A logical reason for that would be that
an increase in spacing means more columns are taken into account for failure that could have a lower
strength value and thereby reduce the required load for the first crack. Furthermore, increased crack
spacing seems to promote simultaneous failure at several locations, which shows in the plots as ver-
tical jumps, whereas lower spacing values result in a more smooth crack density curve.

Table 5.11: Sensitivity analysis of the spacing between the enriched columns.

Enrichment spacing [mm] Failure strength [MPa] Crack density [1/mm] Crack initiation [µε]
0.25 664 0.21 8162
0.5 659 0.26 8531

0.75 652 0.2 8602
1 647 0.29 9269
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Figure 5.24: Effect of spacing between enriched columns on the crack density evolution curves, simulated using 40 mm
specimens.
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5.5. Conclusion and Recommendations
A model with varying material properties per element has shown to overcome the deterministic nature
of a FEM model and augment the existing experimental data set. As a result of the 2D simplification
and limited time resources, straightforward damage parameters were implemented. Verification and
validation of the input parameters was done by comparing input values to similar materials found in
literature and comparing results with an analytical solution, literature and the experimental data set.

A Weibull distribution of the strength of the matrix was obtained by Li based on the performed ex-
periments. This distribution was directly implemented to generate strength values for the elements.
The tensile strength of the transverse plies was correlated with the fracture energy to prevent invalid-
ation of the physical nature of the traction-separation law that was adopted to model the evolution
of the matrix cracks after initiation. It provided reasonable results that mostly compare well with ex-
perimental data. Deviating crack patterns can be caused because of too low strength values that are
drawn from the distribution: 60% of the mean value or lower. Nonetheless, these crack patterns are
still deemed relevant to train the data-driven model with, because increasing the strength values pro-
duces similar or sometimes even the same patterns in terms of the crack locations and also to account
for poorly produced specimens.

The engineering constants and other strength values were modelled using a normal distribution, tak-
ing mean values from the data sheet and setting the coefficient of variation to 2% of the mean value.
This allows sufficient variation in element properties to generate different crack patterns without af-
fecting the strength and stiffness of the specimen too much with respect to experimental data. A CV
of 2% can be considered as quite low, however, the experiments were performed using prepregs, so
fewer defects and a higher degree of uniformity of the material properties can be expected.

Furthermore, XFEM-CE turned out to provide reasonable results in modelling the interaction between
transverse matrix cracks and delamination with square elements of 0.125 x 0.125 mm. Elements were
enriched in columns to prevent convergence issues caused by interacting cracks that deviate from a
straight path. The spacing between these columns was based on experimental observations and set
to 0.5 mm. Different spacings show similar evolution curves, with the main difference in the point
of crack initiation: lower spacings showed earlier crack initiation caused by the inclusion of lower
strength values from columns that otherwise would not have been enriched, i.e. allowed to fail. En-
riched columns in the matrix extended towards the longitudinal plies, to allow evolution of a matrix
crack to the longitudinal plies and ultimately cause failure of the specimen, as was observed to be the
failure mode in experiments.

A cohesive surface was adopted to model delamination using traction-separation laws for damage
initiation and evolution. Allowing for delamination to occur around the tips of the matrix cracks
showed to play an important role in the evolution of the crack pattern. Setting the penalty stiffness
and fracture energy of the cohesive surface too high prevented delamination to occur and as such
prevented stress relaxation around a matrix crack, which caused premature failure of surrounding
elements.

Both for the enriched elements and cohesive surfaces, damage evolution parameters were estimated
based on trial and error within a range of values that were found in literature. The established para-
meters show to be able to model the damage mechanics deservingly.

Convergence issues were encountered that potentially could be solved with a finer mesh, but would
increase the computational efforts by too much to generate a sufficiently large data set within the
available time.

The following recommendations are made to further develop the proposed Abaqus model:

• Material property distributions:

– The transverse strength YT is the only parameter for which the distribution was experi-
mentally observed. The distribution of other parameters, especially XT , E11, E22, are ex-
pected to most significantly affect the outcome of the FEM simulations. Experiments to
obtain those distributions are likely to improve the accuracy of the results.
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– A spatial correlation between distributions of several parameters exist that could be mod-
elled into a multivariate distribution. As such, properties such as the tensile modulus and
tensile strength can become interlinked, which would be in line with the research by Srira-
mula and Chryssathopoulos [142]. The spatial correlation could be obtained by relying on
the micro-mechanics scale, for example by characterizing the stochastic behavior based
on simulations of stochastic representative volume elements [110].

– Using the obtained distribution for the transverse strength values sometimes results in
an underestimation of the strength of the matrix for the adopted damage initiation and
evolution laws. Improvements can be made in terms of the adopted damage initiation
and evolution laws (as discussed in upcoming bullets). Consequently, the compatibility
between chosen damage laws and the strength distribution should be investigated more
closely. It could be investigated what the minimum strength of the matrix would be and
adjust the Weibull distribution accordingly.

• Generalization:

– The failure initiation criterion of maximum principal stress seems sufficiently accurate for
this layup and load case, but severely limits the range of other types of load cases and
layups to which the model can be applied as it is built. Nonetheless, altering the failure
criterion can relatively easy be done by using the Python script in case one wants to use
one of the other "standard" failure criteria that is used. Otherwise, the script is compatible
to use in combination with a subroutine, such as UDMGINI or UMAT. This extends to the
current damage evolution laws: more complex load cases and layups require the adoption
of mixed-mode fracture.

– Including fatigue to assess the effect of variability on predicted life and stiffness degrada-
tion would be very interesting. Using a UMAT subroutine seems as a viable and suitable
solution to implement it. Because the same experiments using the same material have
been performed already by Li, one could use the model that was made for this thesis as a
starting point and can focus completely on implementing a fatigue loading.

• Loading

– The specimens that formed the basis of the data set were tested under varying loading
rates, which has been shown to affect damage evolution [31]. By including this effect in
the FEM model, the model becomes more representative for the experimental data.

– Both experiments and simulations were damaged by gradually increasing the load until
failure, without unloading in between. It should be assessed how much the damage pat-
tern changes when unloading in between. In case it does change significantly, the applied
loading in the experiments and FEM model could be tailored such that the digital twin is
also valuable when its physical twin is completely unloaded at a point where cracks already
exist, after which it is brought back into operation before repairs.

• Damage modelling - XFEM

– A more sophisticated initiation criterion to model the fiber failure is expected to improve
accuracy, because with the MAXPS criterion, the shear stress in the longitudinal plies near
the interface region is not taken into account. Including a more sophisticated initiation
criterion is expected to reduce the strength of the fibers, because the introduced shear
stress is essentially added to the normal stress that is already applied to the fibers.

– The crack spacing as is limits the exact locations where cracks appear as well as any in-
teraction between two adjacent cracks that are close to each other. Thus, by shifting the
starting point and varying the spacing, new types of crack patterns can be simulated.

• Damage modelling - Delamination

– More extensive research and experiments should be performed to verify and validate the
mechanics more accurately. Frictionless surfaces are now assumed, whereas including
friction will affect the results. Thus, to simulate the physics more accurately, modelling the
friction should be looked into more carefully.
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– The use of cohesive elements rather than a cohesive surface would allow to vary properties
of the interface as well. End-notched flexure experiments were performed by Motamendi
et al. from which it was concluded that the variation in fracture properties of specimens
from the same batch affects the result [143].

• 2D model

– Extending the model to 3D would greatly increase the computational efforts, but in its turn
would allow to model and validate crack patterns that are observed in experiments, as well
as in 2D model. Free-edge delaminations are currently not taken into account whereas
out-of-plane stresses at the free edges are not zero. Furthermore, by adding the width dir-
ection, the propagation direction of both delaminations and matrix cracks can be observed
and taken into account.

• Convergence

– A relatively large portion of the samples in database that was used for training the neural
network consists of simulations that were not finished. Underlying issues that have been
identified should be solved, as well as further analysis of other unidentified issues.



6
Data-Driven Digital Twin - A Deep Learning

Approach

The data-driven digital twin that predicts the location of the next crack and its corresponding load
based on the crack state is proposed as an artifical neural network in the form of RNN-based LSTM
layers. It is defined in Python [129], using the Keras library [144]. For an explanation on the theory
behind the working principle of the neural network, the reader is referred to subsection 2.4.2.

The preparation of the data set is discussed in section 6.1, followed by a description of augmentation
procedures that extend the data set further in section 6.2. In section 6.3, the hyperparameters are
explained. Model evaluation metrics are discussed in section 6.4 and the training procedures are
depicted in section 6.5. After the results and a discussion are presented in section 6.6, section 6.7
includes a helicopter view of the digital twin within its intended environment. section 6.8 provides a
conclusion and recommendations on the data-driven digital twin.

6.1. Data Preparation
A first step in data preparation is deciding what and how many input values should be used in pre-
dicting the target value(s), or put differently: feature selection. Increasing the number of features
potentially benefits the performance of the model because it is fed with more information, but on
the other hand more features increases the computational cost and potentially increases the required
size of the training data set, which in its turn would degrade the model’s performance. Therefore, in
the step of feature selection, the number of input variables is reduced to the minimum.

A lot of information about the various (damage) state variables of a specimen can be extracted via
sensors during its life. However, this project focuses on predicting characteristics of the crack pattern,
which is why the input features per specimen are limited to those that directly relate to the crack
pattern: a vector with locations of all the cracks and a vector of the corresponding loads at which they
initiated at time t . To elaborate: when the first crack initiates, its location and initiation load are fed
into the model, which then provides a prediction on the location and load of where the next crack is
going to be. This process repeats until the specimen is completely failed.

The crack locations that are generated from the FEM model are discretized, caused both by the fact
that FEM discretizes a structure by definition and the induced crack spacing between the enriched
columns. This makes the prediction of crack locations a multi-class classification problem, where all
possible locations are considered to be the classes. An advantage of such a problem is that the output
specifies a probability per bin. If, for example, the next crack is likely to occur at either 64 mm or
23 mm, then it should show higher probability on the output at those locations, whereas regression
would result in a single answer and would only show the single most likely location.

Loading is applied as displacement-controlled, which is why the loading is expressed in strain. Being
numerical values, the problem of predicting the strain at which the next crack initiates is a regression
problem.

Before locations and loads could be fed as input to the model, the data needs to be transformed into
the right format. Because the nature of the problem differs between the locations and loads, they are
discussed separately.

69
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Crack Locations When modelling the crack locations as a classification problem, the crack locations
are provided as binary arrays that represent the specimen over the length. Each value corresponds
to the crack state of a portion of the specimen that equals the discretization width. Each portion is
either cracked (1) or uncracked (0).

Increasing the discretization width results in a less accurate prediction of the location, whereas setting
this width too small results in too many possibilities for the model to accurately predict the next crack.
The minimum spacing observed in experiments was approximately 0.5 mm. Using 0.5 mm results in
200 ’bins’. Increasing it to 1 mm could improve the performance of the model, but requires additional
handling of cracks that appear within the same bin, e.g. when cracks appear at 50.1 mm and 50.8 mm.
By using this discretization, the prediction is expressed as a probability distribution over the length of
the specimen. It was considered to provide a more nuanced prediction than a single location.

Crack Loads The crack loads are specified in global applied strain. Regression problems require
scaling of the input features, which can be done either by normalization or standardization. Nor-
malization scales all values from a minimum to a maximum, commonly from 0 to 1, which is done
by subtracting the minimum value from all values and divide the values by the maximum minus the
minimum:

xscaled = x −xmi n

xmax −xmi n
(6.1)

Alternatively, standardization subtracts the mean value and divides by the standard deviation:

xscaled = x −µ
σ

(6.2)

Standardization can be helpful in case the input or output variables have a Gaussian distribution or
when there are outliers in the data set that would crush a normalization scale. Because such outliers
are not expected in the crack loads, normalization is applied. The predicted load is expressed as a
numeric value.

6.2. Data Augmentation
Due to the high runtime of the FEM model, the total number of samples that could be obtained was
limited. Approximately 100-150 specimens were simulated using FEM, whereas the training of a deep
neural network generally is done with a larger training set, such as in [145], where 500 instances of
data were used to train a surrogate model for fracture analysis of composite materials. Therefore,
further augmentation of those obtained was deemed necessary.

If a crack pattern has n cracks, it is fed to the network n −1 times. A pattern is split after each crack,
such that each crack is predicted once. For example, consider a pattern that consists of five cracks:
the second crack gets predicted based on the first crack, the third crack is predicted based on the first
two cracks, and so on until the final crack is predicted. This increases the number of samples that the
neural network sees by approximately a factor 20, depending on the average number of cracks per
crack pattern.

Next, a single pattern is used to create two more by shifting all crack locations x mm to the right and
x mm to the left. The idea here is that the physical relationship between the cracks is maintained by
keeping the distance between cracks the same, but different numerical values are linked to the cracks.
The loads are kept the same to refrain from invalidating the physics. This converts a single pattern
into three.

Important to note here is that after these modifications of the data set, the patterns are shuffled.
Otherwise, the model risks to overfit each pattern after it is being fed the same data right after each
other, meaning the final model parameters would be overfitted to the last pattern the model has seen.

Finally, data instances were ’padded’ such that each pattern that is fed to the neural network consists
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of arrays of the same length. Based on the longest array in the data set (corresponding to the pattern
with the most cracks), all other arrays were concatenated with zeros until they had the same length.
To prevent the neural network from interpreting the zeros as data, masking was required. Masking
means that each array that is inputted to the network is accompanied by an array of the same length
with boolean value that inform the network about which values to interpret and which values to ig-
nore. In other words, when the network encounters a zero, nothing is done.

Before discussing the model parameters in the next section, a top level overview of the process of
processing data from Abaqus simulations and the experimental data towards the final training and
testing data is provided in Figure 6.1.

6.3. Model Hyperparameters
This section explains the hyperparameters of the neural network that was used for crack predictions.
The majority of the theory behind the working mechanisms has been explained in subsection 2.4.2.
Otherwise, it is briefly explained here. The loss functions and optimizers are explained in subsec-
tion 6.3.1 and subsection 6.3.2 respectively. The model was trained via Google Colab, which allows to
use GPU’s that have been made available by Google. Using the GPU’s speeds up training immensely,
but does introduce certain constraints, which are explained in subsection 6.3.3. Hyperparameters
that were introduced to overcome overfitting specifically are described in subsection 6.3.4, followed
by the different types of layers in the Keras environment that were adopted in the final architecture of
the model as listed in subsection 6.3.5.

6.3.1. Loss Functions

Different types of loss functions are required for the locations and loads due to the difference in nature
of the problem. The prediction of the location of the next crack is probabilistic, whereas the predic-
tion of the load of the next crack is numeric.

Multi-class Classification

For multi-class classification problems, categorical cross-entropy is the default loss function. It cal-
culates a score based on the average differences between predicted probability distributions for all
the classes. As mentioned before, the definition of the optimization problem is to find a set of model
(hyper)parameters that minimizes the loss. The mathematical formulation of cross-entropy is:

LCE =−
n∑

i=1
Ti log(Si ) (6.3)

where Ti is the label, or truth, and Si the predicted probability.

Regression

The mean squared error is the default loss function for regression problems. It was defined previously
in subsection 2.4.2 as:

LMSE = 1

n

n∑
i=1

(
y test

i − ŷ test
i

)2
(2.3)

It calculates the average of the differences between the prediction and target value squared. By squar-
ing this error, large errors are penalized more severely than small errors. Ideally, its value is zero.

In case one does not want severe punishment for large errors, an additional step can be included in
calculating the error by taking the natural logarithm of the values:
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LMSLE = 1

n

n∑
i=1

(
log(y test

i +1)− log(ŷ test
i +1)

)2 = 1

n

n∑
i=1

(
log

(
y test

i

ŷ test
i

))2

(6.4)

Figure 6.1: Data flowchart from Abaqus and the experiments towards the train and test files that were used as input to the
neural network. Square boxes indicate a process, parallelograms indicate data.
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6.3.2. Optimizers

The optimizer specifies the algorithm that updates the weights and biases of the network during train-
ing. A popular optimizer that uses momentum is the so-called ’Adam’ optimizer [146], which stands
for adaptive moment estimation. Not only does it calculate the exponential moving average of past
gradients, but also does it calculate the moving average of the variance of those gradients. It intro-
duces two additional parameters that are linked to these two properties: β1 and β2, which control
the decay rates of the momentum and variance. The Adam optimizer has become a benchmark in
literature [145]. It will be compared to the earlier discussed SGD algorithm.

Learning rate The learning rate determines the steps that are taken during gradient descent, as
described earlier. The learning rate can be configured according to a schedule, meaning it can change
during training by becoming a function of the epochs. As such, early steps in training can be relatively
large, while smaller steps are taken once the algorithm is already closer to a minimum.

A popular learning rate schedule makes use of exponential decay, such that the learning rate de-
creases exponentially as training progresses and, possibly, as it comes closer to the minimum. Altern-
atively, a cyclic learning rate schedule can be used, which alternates linearly between a minimum
and maximum learning rate, as is shown in Figure 6.2. It was proposed by Smith in 2015 [147] and is
said to eliminate the need to experimentally find the best values for global learning rates and mono-
tonically decrease the learning rate during training. The cyclic learning rate shows an increases in
classification accuracy without lots of tuning. As such, a cyclic learning rate is adopted here.

Figure 6.2: Triangular learning rate. Blue line indicates the learning rate that is changing between the maximum and
minimum learning rate bound. The stepsize is the number of iterations in half a cycle [147].

6.3.3. LSTM Layers in Keras

To be able to make use of the computational efficiency of GPU’s, Keras has the following constraints
on its architecture with LSTM’s:

• Activation function must be tanh
• Activation function of hidden state must be sigmoid
• Drop-out of hidden state must be zero
• Bias has to be included
• If masking is used, inputs must be right-padded

As such, these settings were implemented and limited the options regarding the activation functions
for the hidden layers. These setting restrict flexibility in terms of the activation functions of the LSTM
layers, but these activation functions are popular for their performance and have shown proper res-
ults in the context of damage prediction in composites [145].

6.3.4. Overfitting

In general, overfitting is one of the most prominent issues in deep neural networks [148]. It means the
model is memorizing the training data but performs poorly when it is inputted data that the model
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has never seen before. As will be more elaborately be discussed in section 6.5, overfitting was a reg-
ularly encountered problem during training. A brief overview is presented here on hyperparameters
that were implemented to attempt to overcome overfitting.

Dropout Dropout improves regularization of the model by disconnecting nodes during each train-
ing epoch. These nodes are randomly picked and could be part of either the input layer or one of the
hidden layers. It can be configured how many of the neurons are dropped out each epoch. For an
RNN, this is typically 20-30% of the nodes [114]. When 20-30% of the nodes are not included during a
training step, it comes down to training a ’new’ neural network during each epoch. Including dropout
makes the network less dependent on a small group of nodes, thereby making it more robust.

Batch size A smaller batch size splits up the training data into more subsets, meaning the model is
exposed to more data. A result of this is that training takes longer per epoch, with the upside that
the model learns in less epochs. A smaller batch size also corresponds with the earlier described
’bouncing around’, which has the upside of having the possibility to jump out of a local minimum,
but the downside of jumping around or away from the global minimum. Increasing the batch size
generally slows down learning and thereby smooths the loss function curves, however, if it is increased
by too much, the model may stop learning early.

Early stopping Early stopping means to stop the training of a model once the loss is at a minimum
or before the training and validation error start to diverge, i.e. before overfitting starts. It was imple-
mented in the form of a callback in Keras. A callback allows to monitor model parameters, such as the
validation loss, during training after each epoch. As such, in case the validation loss stops to decrease,
the model is either overfitting or has stopped learning. In practice, you set the parameter you want to
monitor, the minimum change of that parameter that is still considered to be an improvement, and
the number of epochs that the callback remains patient, i.e. a slow-down of loss for one epoch should
ideally not stop training.

Regularizer A regularizer adds artificial loss to a certain layer, which increases the total loss of the
model. Consequently, the model keeps changing its parameters and as such it should regularize. L1
and L2 regularizers are popularly used and relatively simple to implement via Keras.

6.3.5. Types of Layers

The functional API of Keras was used, allowing multi-input and multi-output modelling. The location
and strain arrays were inputted separately in different input layers and output separately in different
output layers. In between, LSTM, Dense, and Concatenate layers were used. Only the arguments that
were used are discussed.

Input — tf.keras.Input() — The layer in which the data is inputted.

• shape: specifying the shape of the input data. In case of locations, this setting was set to (None,
n_bins). ’None’ allows a variable input length of data. ’n_bins’ specifies the number of bins that
was used to discretize over the length of the specimen.

Masking — tf.keras.layers.Masking() — The masking layer that was used to learn the network to
ignore the padded zero input values and is placed directly after the Input layer.

• mask_value: the value which should be masked, i.e. ignored, being 0 in this case.
• input_shape: similar to the Input layer, the input shape is matched to the shape of the input

data.

LSTM — tf.keras.layers.LSTM() — A LSTM layer consisting of the LSTM cells as described in subsec-
tion 2.4.2. Implementations that were listed already in subsection 6.3.3 are repeated here for the sake
of completeness.

• units: specifying the number of nodes within the layer.
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• activation: the activation function of the layer.
• recurrent_activation: the activation function of the hidden state.
• return_sequences: boolean that specifies whether to return the last output or the entire se-

quence.
• dropout: the fraction of all nodes in a layer that is dropped each layer to increase robustness of

the network, which is further explained in section 6.5.
• recurrent_dropout: dropout fraction of the hidden state.

Concatenate — tf.keras.layers.concatenate() — A layer that was used to merge the crack locations
and strain values. The layer concatenates the values from the layers from which it receives input and
outputs a single array, without applying any functions to these values.

Dense — tf.keras.layers.Dense() — A dense layer that was used in between LSTM layers and as out-
put layer.

• units: number of nodes in the layer, which in case of the output layer should correspond with
the preferred number of outputs. In case of the locations, this value is set to the number of bins.
For the strains, it is set to 1.

• activation: the activation function for the layer. A ReLU activation function was used for all
Dense layers that were not the output layers. The activation functions for the output layers is
discussed below.

6.4. Model Evaluation
Metrics are used to assess the performance of the model, but are, in contrast to loss functions, not
used in the training of the model. The mean squared error is used both as loss function and as met-
ric to assess the accuracy of the strain predictions, its mathematical formulation is shown in Equa-
tion 2.3. Regarding the assessment of accurately predicting the of the location, a "top-k accuracy"
metric was adopted. It is a popular metric for classification problems. A prediction is labeled as ac-
curate when the target value appears in the top k predictions. The default setting is k=5, meaning a
prediction is labeled as accurate if the target is in the bins with the 5 highest predicted probabilities.

Train-validate-test split The entire data set is split up into a training set, validation set, and testing
set. The training data is used to train the model, i.e. adapt the model parameters based on the chosen
optimizer. The validation data is used for model selection (e.g. configuring the number of layers or
nodes per layer) and tuning the hyperparameters (e.g. the learning rate). Per epoch, the newly up-
dated model is evaluated by using the validation data, which is particularly useful in assessing if the
model overfits and from what point. The testing data is a separate data set that can be used to as-
sess the performance of the final model once training is finished. The reason that testing data was
deemed necessary is because of the model selection: it allows a fair comparison in model perform-
ance between different models (e.g. 1 hidden layer compared to 5 hidden layer) on the same set of
completely unseen data. By making use of the testing data set, there is no bias, which would have
been there if validation sets were used to evaluate performance, because tuning the hyperparameters
is partially based on the validation sets.

The split in data that was made is: train/validate/test 7̃0/20/10. The test set was created before aug-
menting through mirroring or shifting, or modification of the data. 4 experimental crack patterns
were included in the test, together with 27 crack patterns from FEM. No augmentation through mir-
roring or shifting of the data was performed on the test set. The remaining 4 experimental patterns
and 259 FEM patterns were combined into a training set. Once the patterns are fully augmented and
split into patterns per crack, the set is shuffled. Using validation_split within the Keras environment,
the set is split into a training and validation set corresponding to the 70/20 split.

It is given that the appearance of at least the first crack is random and fully determined by the the
distribution of the properties. The second crack is most likely also randomly distributed, perhaps the
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third as well. It is investigated to see if the model is able to predict the crack location given a crack
history. To investigate that, a new testing data set was created by changing the format of the initial one
by splitting it up and sorting by number of cracks. As such, the model’s performance can be evaluated
per crack number, i.e. a model performance can be obtained for predicting the second crack based
on the first crack, the third crack based on the first two cracks, and so on.

6.5. Training
The final architecture was configured by training models with different architectures and selecting
the one that performs best. This section explains the systematic process of training and finetuning
that led to the final architecture. Two types of networks were configured: a network where the data of
crack locations and strains is combined into a single "coupled" model and networks where the loc-
ations and strains are predicted separately. As such, it can be assessed if combining the information
of location and strain improves the performance. To obtain the decoupled networks, the coupled
network was simply decoupled by removing the concatenation layer without further modification of
the parameters, to allow for a fair comparison. Furthermore, a prediction horizon was set up, which
predicts multiple cracks ahead instead of just one. As such, the model’s ability to predict further into
the future can be assessed.

After a brief description of techniques to overcome overfitting in subsection 6.5.1, the training of the
coupled model is discussed in subsection 6.5.2. In subsection 6.5.3, it is explained how the models
were set up that were used to generate the prediction horizon.

6.5.1. Overfitting

Overfitting was found to be a prominent issue, for which several techniques exist to cope with it. A
brief description of the techniques with the effect is provided before the systematic training proced-
ure is presented that was followed to result in the configuration as is, because the described tech-
niques were an an integrate part of the process of training in an iterative manner. Overfitting of the
data was constantly encountered during training, which is, in general, one of the most prominent
issues in deep neural networks [148]. It means the model is memorizing the training data but per-
forms poorly when it is inputted data that the model has never seen before. Besides increasing the
size of the data set by augmentation via FEM and mirroring and shifting of the patterns, one of or a
combination of the following actions were taken when overfitting was encountered:

• Reduce the complexity of the model, i.e. reduce the number of layers and/or nodes.
• Use early stopping, so stop training at the moment that the training and validation error start to

diverge.
• Adjust the learning rate.
• Increase the drop-out rate.
• Increase the batch size.
• Try a regularizer, which essentially penalizes the loss during a training step for the whole model.

Regularizers can be used for the weights, biases, output.

The working principle of these hyperparameters is discussed in subsection 6.3.4.

6.5.2. Training of the coupled network

An infinite number of possibilities of neural networks exist, considering the options for number of
layers, activation functions, optimizers, learning rates, and so on. To come up with a network, the
architecture was explored first, i.e. the number of layers and number of nodes per layer. To gradually
narrow down the many options to a single model to finetune further, the following procedure was
followed:

1. Explore architectures, i.e. the number of layers and nodes per layer — narrow down to three
architectures

2. Find range of suitable learning rates for cyclic learning rate schedule
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3. Implement learning rate schedule and compare — compare performance metrics across mod-
els and move on with one model for further finetuning

4. Adapt batch size
5. Implement drop out

1. Explore architectures A variety of configurations was tested with mostly default settings to get
a grasp of what combination of layers and nodes per layer is most suitable. The following choices
were made regarding the basics of the architecture. Separate input layers are used for the location
and strain data and right after these input layers, masking layers are placed to make sure the padded
zeros are ignored. Within the model, the data is concatenated to include dependency between the
location and load. It was opted to vary the number of LSTM layers before concatenation of data and
have one LSTM layer after the concatenation layer. Initially, the number of nodes in this final layer
was fixed to be equal to the number of bins + 1 that was implemented, such that one node is available
per output at the final hidden layer. The number of bins was quickly determined to be 100; setting it
to 50 and 200 showed lower accuracy for initial models that were tried.

Accordingly, the dense output layers are also separated, for which the activation functions determine
the format of the predictions. For a classification problem, either a softmax activation function or a
sigmoid activation function can be used. Softmax activation function is used in case the probabilities
are dependent (i.e. the probabilities sum to 1) and a sigmoid activation function is used when prob-
abilities are independent (i.e. the probabilities do not sum to 1). The purpose of the digital twin in
the first place is to reveal a relationship between the different cracks, which implies the assumption
of dependency between cracks. Therefore, the activation function of the output layer for classifica-
tion of the next crack location was implemented with a softmax activation function. The activation
function of the output layer for the regression problem of predicting the next crack load was set to
rectified linear to allow for non-linear behavior and output a real, continuous number.

Determining the number of layers and number of nodes per layer before concatenation was the first
step in configuring the network. Regarding the number of LSTM layers and number of nodes per layer
the following combinations were tried:

• Number of layers before concatenation - 1/2/3/5
• Number of nodes per layer - 2/8/16/32/64/128/256

These networks were trained with a learning rate of either 10−3, 10−4 or 10−5; a fully augmented data
set, i.e. including the patterns from mirroring and shifting; and a dropout setting of either 0% or
30% (recommended value from Géron for RNNs [114]). Furthermore, constraints were imposed on
the LSTM layers as explained in subsection 6.3.3. For each combination of number of layers and
number of nodes, the model with the lowest loss was picked. The resulting loss & accuracy of the
models from this initial training are shown in Appendix C. Due to the overfitting, an early stopping
callback was implemented to stop diverging models from training to save time. The early stopping
was configured such that if the validation loss would start to increase by 0.0001 without decreasing
for 10 epochs, training was stopped and the model parameters associated with the lowest validation
loss were adopted as final.

From the initial configurations, it becomes clear that models with less degrees of freedom are prefer-
able with the current data set:

Table 6.1: Preliminary model selection.

Number of layers before concatenation Number of nodes per LSTM layer
1 8
2 8
2 16

It makes sense that these models were most successful, considering that overfitting was constantly
encountered, which indicates the need for less complexity in the model.
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2. Find range of suitable learning rates for cyclic learning rate schedule The next step that was
taken was to tune the learning rate. A scan of the ’loss landscape’ was made by varying the learning
rate between 10−8 up to 100 and calculating the loss after 10 epochs of training. From these scans, the
learning rates at which the model learns best were derived. These learning rates form the basis for a
learning rate schedule. Loss landscapes were made for both the Adam optimizer and a SGD optimizer
with default settings for momentum. To generate these plots, the data from augmentation via shift-
ing and mirroring of the basic patterns was excluded from the training set to reduce computational
efforts. Because these plots are aimed at providing an overview of a range of proper learning rates,
excluding the shifting and mirroring data is not deemed to affect the result. The plots are shown in
Figure 6.3 and the resulting learning rate bound are presented in Table 6.2.

Figure 6.3: Loss landscapes of the three different architectures for both the adam and SGD optimizer with momentum.
Generated by varying the learning rate and the resulting loss after training for 10 epochs.

Table 6.2: Learning rate boundaries for the cyclic learning rate schedule, obtained from loss landscape plots.

Ref. Layers Nodes Optimizer Min. learning rate Max. learning rate
1 1 8 Adam 2·10−5 6·10−4

2 1 8 SGD 4·10−5 6·10−2

3 2 8 Adam 10−5 4·10−2

4 2 8 SGD 2·10−5 10−2

5 2 16 Adam 10−5 6·10−3

6 2 16 SGD 2·10−5 3·10−2

3. Implement learning rate schedule and compare A cyclic learning rate schedule as explained
in subsection 6.3.2 was adopted. It requires four inputs: the base or minimum learning rate, the
maximum learning rate, the step size, and the scale function. The minimum and maximum learning
rates were the result of the loss landscapes scan as described in Table 6.2.

The stepsize needs to be determined in terms of number of iterations. The number of iterations is a
function of the total number of samples and the batch size. In case of all training samples are used
with the default batch size of 32, it results in one epoch having 117 iterations. Smith recommends
setting the stepsize to a factor in the range of 2-10 of the number of iterations per epoch, such that
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the end of a learning rate cycle coincides with the end of an epoch [147]. Setting it to 2 results in
a relatively ’wavy’ behavior of the loss due to the quick fluctuation of learning rates. It was opted
to set the stepsize to 10 to reduce the waviness and maintain the early stopping callback. The scale
function determines the shape of the learning rate cycle function. Smith obtains the best results using
a triangular shape function (Figure 6.2), which was also adopted here.

The results were obtained with a fully augmented data set. During training, models with Adam op-
timizers showed more bouncy and unstable training than the SGD optimizers, as shown in Figure 6.4.
The earlier mentioned ’waviness’ due to the cyclic learning rate is also clearly visible for the training
loss of the SGD optimizer. Also, it can be seen that the Adam optimizer results in quite fast overfitting,
whereas the SGD optimizer remains fairly stable.

Figure 6.4: Training of architectures with 2 layers before concatenation and 8 nodes per layer including the cyclic learning
rate schedule with boundaries as shown in Table 6.2.

The resulting loss, MSE, and top-5 accuracy of the settings as shown in Table 6.2 is presented in
Table 6.3. The best performing model, both in terms of MSE and top-5 accuracy, is model 2, i.e. 1
layer before concatenation, 8 nodes in the layer, and a SGD optimizer with momentum.

Table 6.3: Performance of the models from Table 6.2.

Ref. Loss MSE Top-5 accuracy
1 4.6085 0.0079 0.051
2 4.6021 0.0049 0.0743
3 4.6082 0.0102 0.0403
4 4.6113 0.0125 0.0658
5 4.594 0.0061 0.0701
6 4.6043 0.0114 0.0637

4. Adapt batch size Different batch sizes between 4 and 128 were adopted to evaluate differences.
The final outcome did not vary significantly between different settings. The main difference showed
early on in training, as shown in Figure 6.5, and in the required training time per epoch: lower batch
sizes increased the training time because the training set was split into more batches.
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Figure 6.5: Effect on the training loss of various batch size settings.

5. Implement drop out To evaluate the effect of implementing drop out, six settings were attemp-
ted: 0-50% with steps of 10%. Drop-out was applied at the LSTM layer after concatenation. The
layers before concatenation only consist of 8 nodes, which is why applying drop out in those layers
would leave too few nodes active and destabilize training of the model in an unfavorable manner.
Table 6.4 shows that the top-5 accuracy is fluctuating between all different drop out settings but the
MSE steadily decreases with decreasing drop out rate. Therefore, no drop out was implemented after
all.

Table 6.4: Performance of the model when using drop out.

Drop out Loss MSE Top-5 accuracy
0 4.6150 0.0060 0.0573
10% 4.6160 0.0121 0.0594
20% 4.6233 0.0145 0.0637
30% 4.6296 0.0189 0.0446
40% 4.6226 0.0187 0.0510
50% 4.6286 0.0200 0.0594

6.5.3. Prediction Horizon

Setting up the prediction horizon provides an indication on the model’s capability to predict further
ahead into the future. The goal here is to establish a prediction horizon in the form error evolution as a
function of predicting several cracks further ahead into the future and relate the errors to a confidence
interval.

Predicting several cracks ahead into the future can be done by two ways: 1) predicting the next crack
and adding that to the crack history to predict the following crack, and so on; 2) training the model to
predict several steps ahead in one go.

The first option would imply accumulation of errors that are associated with each prediction, some-
times referred to as the ’naive’ approach. To elaborate, predicting one crack ahead introduces an
error to the crack history once the prediction is appended to it. Using multiple predictions as input
to predict an upcoming crack only further increases this error.

Thus, the second option was implemented. It required retraining of the model, because the format
of the data changes if multiple cracks ahead are predicted at once. Instead of feeding the model a
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sequence and learning it to output a single value, it should output a sequence with the length of the
number of cracks one wishes to predict ahead.

The prediction horizon was analyzed up to 5 cracks in the future, which was deemed a reasonable
number given the size of the data set and the number of samples that are available to test. To predict
2, 3, 4, and 5 cracks ahead at once theoretically requires the training of four additional models: each
model being tailored and specifically trained to predict a certain number of cracks ahead. For each of
the models, the same architecture and hyperparameter settings were used. Furthermore, the training
and testing data was reshaped to match the output data to the number of cracks that was predicted.

As a consequence, the size of the data set decreased as a higher number of cracks was predicted
at once. Taking for example a pattern of 20 cracks: based on the 1st crack, up to the 6th crack is
predicted, and so on until the first 20 cracks are used to predict up to the 25th. However, not every
sample in the training or test set has the same crack pattern length. As a higher number of cracks is
predicted, less samples are available for training and evaluation. Accordingly, predictions of the 25th
crack are less reliable than predictions of the 8th crack. For this reason, the prediction horizon was
established by predictions based on no more than 20 cracks as input.

6.6. Results and Discussion
The architecture is presented in Figure 6.6, where the type of layer is preceded by its name, so ’name:
type of layer’. The format of the data shape is added to the graph, which is [batchsize, timesteps,
features]. Setting timesteps to ’None’ allows variable input in terms of timesteps. ’x’ indicate the
crack location layers and ’e’ the strain layers.

After the input layer, masking is required to ignore the zeros as discussed before, after which one
LSTM layer is placed. These layers return full sequences, meaning all time steps are returned in each
pass of data. Next, the data of the location and strain values is concatenated in a concatenate layer,
after which the data is passed through one more LSTM layer. Finally, the data is passed to the output
layers.

Figure 6.6: Final architecture of the neural network.
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The results are presented and discussed in three parts: the overall model performance in subsec-
tion 6.6.1, the performance per crack based on the error evolution in subsection 6.6.2, and the pre-
diction horizon in subsection 6.6.3.

6.6.1. Overall Model Performance

Table 6.5 shows the performance metrics for the coupled and decoupled models. Figure 6.7 shows an
example prediction of the location of the 15th crack, where the blue dotted lines indicate the inputted
crack history, the orange line the outputted prediction, and the green line the ground truth. Similarly,
Figure 6.8, shows the prediction of the corresponding strain. A random crack history length was used
to illustrate the information that becomes available within a prediction.

Predicting the strain of the next crack was more successful than predicting the next location of the
crack. The additional information of the strain at which the next crack occurs does not significantly
affect the top-5 accuracy. Throughout training, the top-5 accuracy never exceeded 10% and was close
to 5%. With 100 bins and a top-5 accuracy, this is hardly an improvement compared to a blind guess
of the next location. There are believed to be two main causes for this: the problem definition and the
size of the data set.

Table 6.5: Model performance of the coupled and decoupled models.

Model Loss MSE Location loss Top-5 accuracy
Coupled 4.6021 0.0049 4.5972 0.0743
Decoupled - Strain 0.0031 0.0031 - -
Decoupled - Location 4.5977 - 4.5977 0.0531

Classification of the next crack locations into 100 bins may be too complex for the network to properly
learn. Nonetheless, using a lower amount of bins showed a lower accuracy of the model metrics.
Furthermore, lowering the amount of bins increases the discretization width, whereas with 1 mm it
is already larger than the smallest observed crack spacing. As such, details will be lost for lowering
the number of bins, especially regarding dependent cracks that initiate close to an existing crack.
Changing the problem to a regression problem could potentially improve results and would allow to
combine the crack load and location into a single layer.

Alternatively, the underlying relationship between crack locations may simply be too complex to
grasp for the network with the current data set. This could again be the result of the data set not being
large enough or the relationship between the crack locations being too complex to accurately model.
Furthermore, as can be seen in Figure 6.7, the weights for each bin are still close to 1%, which means
that, when assuming there should indeed be some detectable pattern for the location of cracks, the
model did not learn sufficiently. With a larger training set, it is expected that the weight will be able to
form a more significant shape in prediction, i.e. providing a less uniform prediction than as it is now:
around 1% per bin.

In summary, it is argued that the underlying causes for the location predictions to be off are most
likely in both the problem definition and the size of the data set. The relationship between crack loc-
ations sure is complex, but a higher accuracy than 7.43% should be able to be obtained with current
level of technology. Luckily, predicting the strain was more successful. It is shown that the decoupled
model is able to obtain a MSE of 0.0031, which is almost 40% lower compared to the coupled model.
The strain plot highlights the non-linear relationship between the strain and crack number, confirm-
ing the need for a model that is capable of addressing such complex relationships.
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Figure 6.7: Example prediction of the location of the 15th crack using the coupled model.

Figure 6.8: Example prediction of the applied strain that causes the 15th crack using the coupled model.

6.6.2. Error Evolution

The error evolution of the prediction of the strain for the next crack is presented here for the de-
coupled network, because of its 40% lower MSE than the coupled model. As explained in section 6.2,
each pattern in the testing database (4 experimental patterns, 27 FEM patterns) was split into more
patterns in the same way as was done to the training and validation set, although the testing set was
not further augmented via mirroring and shifting of the locations.

The errors were calculated per crack number, from which both a mean value and a standard deviation
was found. The mean values and standard deviations are plotted in Figure 6.9, with the number of
samples in the test set that was used to determine the error and standard deviation plotted in Fig-
ure 6.10. The number of samples with a crack history length of more than 20 cracks keeps decreasing
after 20 cracks, which is why the error increases again thereafter. To provide a more intuitive judgment
of the errors in the same unit as the strength values, the strain was converted to stress. Non-linearities
in stress-strain behavior of the specimen during damage accumulation are ignored for simplicity: the
strain is multiplied by a Young’s modulus of 52.8 GPa, a typical value for the specimens.
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Figure 6.9: Error evolution as a function of the predicted crack number.

Figure 6.10: The available number of samples per crack history length within the test set.

From Figure 6.9, it becomes clear that the mean value of the error and standard deviation decrease
with an increasing crack history length. It shows that from a crack history length of 5 cracks, the
mean error and standard deviation remain within the same region of values. As such, it confirms
the hypothesis that the first cracks are random, and from a certain point on, it gets more predictable.
This suggests that the stochasticity steadily decreases until about 5 cracks, from which a more reliable
prediction can be made. It can be seen that the curve is not entirely smooth, which is explained by
the decrease in available samples as a higher crack number is predicted. More testing data should
improve the accuracy of the error evolution and smoothness of the curves. Ideally, more testing data
is obtained from more experiments, to further validate the model.

Multiplying the standard deviation by 1.96 provides a 95% confidence interval. Taking for example
the error at a crack history of 6: the mean value of the errors is 0.16 MPa and the standard deviation
is 9 MPa. It means that a 95% confidence bound would be ±17.6 MPa (±333 µε or 0.0333 mm for the
100 specimen) around the mean error of predicting the load of the 7th crack. Intuitively, that seems
like a relevant number to a user in terms of damage tolerance of the structure. Figure 6.11 illustrates
three different confidence interval bounds: 68%, 95%, and 99.7%. The bounds were calculated by
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multiplying the standard deviation with 1, 1.96, and 3 respectively and summing and subtracting
those values from the mean value. The limit of what is acceptable highly depends on the use case and
in what loading stage the specimen is in: for example, ±50 MPa might be acceptable when the load is
quite low, but unacceptable in case the specimen is loaded close to its strength.

Figure 6.11: Confidence interval bounds of predicting the next crack load per crack history length.

6.6.3. Prediction Horizon of Strain

With the crack locations being too stochastic to extract a pattern from, the prediction horizon was set
up for solely the prediction of the strains. Based on the results and discussion in the previous section,
it was opted to establish a prediction horizon from the 5th crack onward up to 5 cracks ahead. Due
to the improved results in predicting the strain, the decoupled strain prediction model was used.
As discussed in subsection 6.5.3, four additional models were set up which are analyzed first before
presenting their performance based on a 5-long crack history.

Table 6.6 shows the total losses for each of the models that was trained. It should be noted that there
is some variability in all of the models. Training a model with the exact same parameters results in a
slight variation each time, which is mainly caused by the random manner of initializing the weights
within each layer and the random selection of validation data via the Keras function. Nonetheless,
more global trends have shown to be fairly constant throughout training, such as the trend discussed
around Figure 6.12.

Table 6.6: Losses of the models that were trained to determine the prediction horizon.

Ref. Prediction horizon Loss (MSE)
P1 1 0.0031
P2 2 0.00098
P3 3 0.0011
P4 4 0.0013
P5 5 0.0016
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To further analyze the different models, the mean error and its standard deviation in predicting a
specific crack number into the future was compared. For example, model P2 is trained to predict the
next two cracks based on a certain crack history and therefore predicts ’crack 1’ and ’crack 2’ into the
future. Those individual predictions are associated with a certain error and standard deviation of the
error. Predictions were made based on the first 2-20 cracks in a crack history, so 19 predictions per
model per crack number.

Table 6.7 shows the average mean error and standard deviation in predicting a specific crack number
into the future for each of the models that was trained. Figure 6.12 shows a plot on the average mean
value and standard deviation of the errors per crack number as a function of the prediction horizon.

Table 6.7: Average mean value and standard deviation error in MPa per predicted crack for the models that were trained to
determine the prediction horizon. ’Crack 1’ indicates the average error and standard deviation of each of the models to

predict the first crack ahead, ’Crack 2’ indicates the average error and standard deviation to predict the second crack
ahead, and so on.

Ref.
Crack 1 Crack 2 Crack 3 Crack 4 Crack 5
Error σ Error σ Error σ Error σ Error σ

P1 -0.54 10.89 - - - - - - - -
P2 -1.67 11.48 -1.88 16.95 - - - - - -
P3 -0.74 11.32 -1.06 16.15 -0.87 20.50 - - - -
P4 -1.45 11.33 -2.11 16.23 -1.76 19.93 -1.76 23.07 - -
P5 -1.45 11.53 -2.16 16.49 -2.53 20.18 -2.31 22.70 -3.26 25.94
Average -1.17 11.31 -1.80 16.45 -1.72 20.20 -2.03 22.89 -3.26 25.94

Figure 6.12: Error evolution for a prediction horizon of up to 5 cracks ahead into the future, based on the average mean
errors and corresponding standard deviations from Table 6.7.

A clear trend is observed in Table 6.7 and highlighted in Figure 6.12: cracks further ahead into the
future are predicted with a larger (absolute) error and a higher standard deviation, which makes sense
intuitively. It should be noted here that the absolute value of the average mean error is not a proper
evaluation metric on its own. After all, an average error of 0 MPa might as well be achieved with luck
and a standard deviation of 200 MPa, which, obviously, is an indicator for a very unreliable model.

The average mean error seems to deviate further from 0 as the prediction horizon is increased, albeit
that it is still relatively close to 0. On the other hand, the standard deviation is seemingly growing
linearly. As such, the associated confidence intervals are also growing, as is shown in Figure 6.13.
Here, the confidence bounds were calculated in the same way as for Figure 6.11.
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Figure 6.13: Confidence interval bounds of prediction horizon, based on the error evolution of Figure 6.12.

Figure 6.14 and Figure 6.15 provide more nuance in the discussion on the prediction horizon, where
all models listed in Table 6.6 were used to predict a crack. It should be noted that generating this
plot with model P5, which predicts the next 5 cracks, results in very similar plots. From Figure 6.14, it
becomes clear that the error is very similar for all prediction horizons. Only the error in predicting the
fifth crack has quite a drastic jump at a crack history length of 16, where the others remain more alike.
This is attributed to the decrease in available number of training samples for longer crack patterns,
meaning the model has seen less of longer crack patterns.

Figure 6.15 shows how the standard deviation, thereby the confidence interval and reliability of the
prediction, steadily increases as the prediction horizon increases. Up until about 16-18 cracks, the
standard deviation is staying within the same range of values, after which it starts to deviate from
the trend. This is partially attributed to the decrease in available number of training samples as well.
Moreover, the decrease in available testing samples for longer patterns means a decrease in number
of errors. The standard deviation is a function of the number of errors that was used to calculate
it, because a lower number of values means less reliability in the distribution that is aimed to be
mapped.

After discussing the overall trends of the prediction horizon, experimental data of four specimens was
used as test subject. Five models were generated, which showed similar performance in predicting
certain crack numbers with a minor variation in error evolution, as illustrated in Table 6.7. Ideally,
a certain crack is predicted with a model that is optimized for that specific crack, but to keep the
number of plots and prevent the plotting of 5 overlapping lines, predictions plots were generated by
using the model with a prediction horizon of 5 cracks.

The prediction horizon will be based on the performance of predicting a number of cracks into the
future based on a crack history of 5 cracks. Experimental data of four specimens was used for each
of the five models. The experimental data consists of the two specimens that were tested under an
increasing loading rate from 0 to 0.19 kN and the two specimens that were tested under an increasing
loading rate from 0 to 19 kN (the blue, orange, green, and red curves that are showing as the first four
curves in legend in Figure 4.2).



88 6. Data-Driven Digital Twin - A Deep Learning Approach

Figure 6.14: Mean error vs. crack history length for a prediction horizon of 1, 2, 3, 4, or 5 cracks. Each line was generated
using the corresponding model as listed in Table 6.6.

Figure 6.15: Standard deviation vs. crack history length for a prediction horizon of 1, 2, 3, 4, or 5 cracks. Each line was
generated using the corresponding model as listed in Table 6.6.
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Figure 6.16 shows the predictions for both specimens under the 0-19 kN load based on a crack history
of 4 cracks (t1) and 5 cracks (t2) and Figure 6.17 shows the predictions for the specimens under the
0-0.19 kN load. Comparing both figures suggests that the specimens under the higher loading rate are
more accurately predicted. That makes sense, considering that the loading rate in the FEM models
was also rather high, as discussed in subsection 5.2.5.

Zooming in further on the individual plots in Figure 6.16 and Figure 6.17, three things are noted: 1)
overall, the first crack is more accurately predicted than the other cracks, which is in line with what
was discussed earlier in this section; 2) within the set of predictions, there seems to be cracks that are
predicted at a lower load than its predecessors, such as for the plot of specimen 0-0.019 kN #2 at t2

in the bottom right of Figure 6.17; and 3) several predictions, including the first appearing crack, are
lower than the applied the stress.

The last two phenomena are interlinked but not the same, however, it is hypothesized that both phe-
nomena are solved by the same fix: an increase in the size of the data set. Similar to the cause of
difficulties in predicting the locations, this is believed to be caused by the weights having not enough
data to be properly trained. Additional training data will result in the model recognizing that each
prediction load should at least be higher than the latest prediction.

Figure 6.16: Predictions of the next crack load, where the strain was converted to stress again by multiplying the strain
values with a typical modulus of 52.8 GPa. The two specimens were loaded under an increasing load of 0-19 kN.
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Figure 6.17: Predictions of the next crack load, where the strain was converted to stress again by multiplying the strain
values with a typical modulus of 52.8 GPa. The two specimens were loaded under an increasing load of 0-0.019 kN.

6.7. Helicopter View Digital Twin
After detailed discussions on the finite element model and neural network, this section zooms out
to place the digital twin into context again. Figure 6.18 illustrates the proposed digital twin in the
environment in which it operates. The dotted lines indicate one of the main interfaces: the user, the
physical twin, and the digital twin. The user controls the mechanical environment which affects the
physical twin.

Damage diagnosis was not covered in this thesis but is performed via acoustic emission sensors and
digital image correlation monitoring on the physical twin. In case of a new crack, the damage state
of the digital twin is updated, i.e. the neural network receives a new location and load of a crack. In
case the digital twin is operable, new cracks could be saved in the operational history and the network
could learn online, i.e. ’on the fly’. The updated damage state is fed into the network which outputs
a new prediction of a crack location and loading. The latest prediction is passed to the user, which
could use this information to, for example, adjust the loading conditions.

The digital twin as proposed seems to provide a stepping stone for further research: it is proven that
without many costly experiments, a digital twin can be established that is able to provide the user
relevant information on its damage state via integration of heterogeneous data sources in real-time.
Predictions on damage accumulation can be used in a later stage to take the next step in develop-
ing a digital twin of a composite specimen. For example, the number of cracks may form, together
with other features such as a strain field, the basis on accurate modeling and prediction of stiffness
degradation as damage progresses.
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Figure 6.18: Environment in which the digital twin operates.
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6.8. Conclusion and Recommendations
The data-driven digital twin was proposed in the form of an artificial neural network made out of
LSTM layers, because it is the benchmark in the prediction of sequences within the field of deep
learning. Using LSTM layers allows to include the crack history of a pattern as input for a prediction,
thereby including a time component. The basis of the data set was formed by experimental data as
described in chapter 4 and augmented by the FEM model described in chapter 5. Further augmenta-
tion was performed by shifting locations of the data set all by the same amount, to maintain physical
relationship between them.

To come up with an architecture, both the number of LSTM layers and nodes per layer were varied.
Overfitting was a prominent issue, which is why out of all tested architectures, the architecture with
relatively few degrees of freedom performed best. Performance was measured in mean squared error
for predicting the next crack load and a top-5 accuracy metric was adopted to measure the accuracy
of predicting the next crack location.

The crack location was found difficult to predict, which was attributed to the problem definition,
classifying the next crack out of 100 classes, and the size of the data set, it is hypothesized that the
relationship between crack locations is too complex to be modelled with the current data set size.

The strains at which the next crack appears were predicted more successfully. To introduce more
intuitive numbers, strains were converted to stress by assuming linear elasticity for simplicity and a
Young’s modulus of 52.8 GPa. After approximately 5 cracks, the average error of close to 30 predic-
tions of different specimens is close to 0 with a standard deviation of the errors of around 10 MPa. It
confirms the initial hypothesis that the first few cracks in the crack pattern are random and from a
certain point onwards, it gets predictable.

Increasing the prediction horizon for predicting the next crack load up to 5 cracks ahead shows that
the error steadily increases when more cracks ahead are predicted. The average mean error and
standard deviation for predicting 1 crack ahead by using a crack history length of 2-20 are -1.2 MPa
and 11.3 MPa respectively, which becomes -3.3 MPa and 25.9 MPa at predicting the 5th crack ahead:
an increase of 229%. It underlines the fact that improvements in the model are necessary to be able
to increase the prediction horizon without severe loss in accuracy.

All in all, it was found that the digital twin as proposed is able to predict the crack pattern reasonably
well in terms of at what load the next crack is going to appear. It seems a suitable stepping stone to
take the next steps in the development of a digital twin of a composite specimen. The following bullet
points are recommendations for this further research:

• Data set

– The data set should be expanded both in terms of experimental data and FEM data to im-
prove the performance. In case a split was made between experimental data and FEM data
to perform model evaluation, only four experimental patterns were used to evaluate and
four experimental patterns were used to train the model. Especially when discrepancies
between the FEM data and experimental data exist, such as the bias between crack density
curves as discussed in subsection 5.4.3, a higher ratio of experimental data over FEM data
is expected to improve performance of the model.

• Feature selection

– The crack load could be linked to the mechanical state of the specimen, for example the
stiffness. As such, a more exhaustive digital twin could be constructed. It also provides the
user with additional relevant information. The stiffness of the specimen could form the
basis of a remaining useful life prediction.

– By including more features into the model, it could be extended to predict damage initi-
ation. A relatively simple manner to predict damage initiation could be to see if the global
stiffness evolution of a specimen can be monitored and inputted to provide for a predic-
tion of damage initiation. Alternatively, if the strain fields of the model could be mapped in
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real-time, that information could be used as additional features to provide inputs to pre-
dict damage initiation. Cristiani et al. provide an example where the strain field was used
as input to an ANN surrogate model [87], meaning

• Problem definition

– The model that was built assumes the appearance of cracks to be a time-dependent prob-
lem. It would be interesting to see how for example a neural network built out of non-RNN
based layers would perform. In that case, one would input simply the current crack loca-
tions and applied load based on which it predicts the next crack location and load, without
taking into account the history of evolution.

– In case a larger data set can be obtained, it could be investigated what parameters can
be monitored in real-time and be added as input features, for example by including the
(degraded) stiffness state.

• Loss fuction

– The loss function that was used for regression is the mean squared error, which ’pun-
ishes’ severe errors more than small errors. An improvement for the cases presented in
Figure 6.17 may be accomplished via a different loss function, such as the mean absolute
error loss function.

• Pruning

– A different approach in constructing the network that could improve results by preventing
overfitting is presented by You et al. [149]. The authors propose to take a set of randomly-
initialized networks from which subsets may match or even exceed test accuracy of the ori-
ginal network: ’winning tickets’. Identification of these winning tickets involves pruning,
which is a process of setting connections to unimportant weights to zero, thereby elimin-
ating the neuron. Generally, it is costly to first train a fully dense network and start pruning
afterwards. You et al. present a technique called ’early-bird tickets’, which allows to draw
winning tickets earlier in the training process with low-cost training algorithms.

• Black box effect

– Whether or not the "black box" nature of deep learning is worth it is partially dependent
on the allowable time for a prediction: in case an abrupt and critical load is applied to a
structure, one wants to know about it as soon as possible to act accordingly to save the
structure, whereas if it is a matter of failure after 10,000+ cycles under a fatigue loading, it
is less of a problem if the prediction time is more than a couple seconds.

• Uncertainties

– Proper representation, quantification, and propagation of uncertainties is critical when it
comes to accurary in predictions. Two major types of uncertainties exist: aleatoric uncer-
tainties — statistical uncertainties caused by inherently random effects, such as flipping a
coin, which is always influenced by randomness — and epistemic uncertainties — system-
atic uncertainties caused by the used model, which may be caused by erroneous settings
or a general lack in knowledge. Both types of uncertainties are addressed in an extens-
ive paper by Hüllermeier and Waegeman, with many ways to address uncertainties [150].
One particular model is encouraged to look deeper into to handle uncertainties within the
context of this thesis: a Bayesian neural network.

– The nature of the network could be changed to a Bayesian Neural Network, where weights
are substituted for probabilities. A similar type of outcome is outputted — it outputs a pos-
terior distribution of the prediction, (typically Gaussian, but non-Gaussian is possible as
well) rather than a single value — but now with possibly an improved result. As described
in the problem definition of classification of the locations, such a posterior distribution
would have three advantages: 1) it provides the user with more nuance in the prediction
to make a better decision in case the digital twin is operative; 2) accurately predicting
posterior distribution may reveal the complex underlying patterns between for example
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the location of the next crack; 3) it allows to capture epistemic uncertainties revolving the
weights of a ’normal’ neural network.

• Verification & Validation

– The validation set that was used during draining to tune the hyperparameters was split
automatically from the training data that was inputted, under the assumption that after
shuffling the training data, the samples are distributed in an unbiased manner. Therefore,
the performance of the model could vary once another part of the training set is assigned
as validation set. Doing such an analysis where the entire training set is ’folded’ k times is
known as k-fold cross validation. It comes down to assigning a different part of the training
set as validation set while retraining the model several time, until all samples have been
part of the validation set once. If the set is split into 10 different validation sets, it would
be 10-fold cross validation. As such, the metrics across iterations could be analyzed via an
average, range, standard deviation, and so on. It allows more accurate verification of the
model performance.

– The model could be trained on a different data set that is already validated to assess the
quality of the current data set. For example, it could be trained with a homogeneous data
set coming from either experiments or a synthetic source of which underlying patterns are
already known and verified. In doing so, the root cause of encountered problems could
be attributed to the data set if it turns out the problems disappear once the data set is
changed.

– To assess the accuracy of the model, it could be compared to alternative predictive meth-
ods. One of which would be to implement a certain crack pattern into a FEM model using
pre-cracked elements. Alternatively, the type of problem could be changed. It was found
most difficult to predict the next location rather than the strain at which the next load oc-
curs and it was approached as a classification problem. To assess the performance of the
architecture, the input and output of the location could be converted to numerical values,
changing the problem into a regression problem. As such, the effect of problem definition
on the model performance can be further assessed.
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Conclusion

Improvement in the SHM of composite materials requires an enhanced understanding of the dam-
age accumulation processes and helps in the way towards lighter, more optimized, and more sustain-
able aerospace structures. A digital twin can serve as a tool to solve the problem of modelling complex
damage accumulation processes with the final purpose of structural health monitoring or validation
of other structural health monitoring techniques. By mirroring the current state of its physical twin
in real-time, it provides a fast manner of processing new information by integration of heterogeneous
information sources.

In this thesis, a hybrid approach is proposed by combining experimental data and physics-based
finite element simulations as a basis for data-driven predictions. A digital twin is presented as a data-
driven approach in the form of a recurrent neural network with LSTM cells. The physical twin is a
cross-ply specimen for which experimental data under various quasi-static tensile load rates is avail-
able. The finite element model that was built was used to augment the experimental data set. The
initial hypotheses were fulfilled, as it was confirmed that the first few cracks were random but after
a certain point, approximately 5 cracks, the error decreased. Furthermore, fast and successful integ-
ration of the heterogeneous data was proven to be capable with the recurrent neural network with
LSTM cells. As such, a methodology is presented that overcomes the need for expensive testing to
make use of the benefits of a data-driven approach such as machine learning.

This thesis aimed to answer the following main research question:

To what extent can the crack pattern of transverse matrix cracks in a cross-ply be predicted using
a digital twin?

The short answer is that with the proposed approach, the crack pattern can be predicted reasonably
well. The location turned out to be too stochastic to predict, whereas the strain at which the next
crack appears was predicted more successfully. A more detailed answer is found via answering the
sub-questions:

1. How can the material variability that is inherent to composite specimens be modelled into a FEM
model?
Material variability was successfully implemented in the finite element model by partitioning
the model parts into the desired element shape and assigning a separate section with each ele-
ment having its own material. Material properties were defined in distributions, from which a
different set of properties was drawn per element. Naturally, the model is sensitive to the ad-
opted material distributions. The transverse matrix strength has the most dominant effect on
the progression of transverse matrix cracks, which also was the only distribution that was ex-
perimentally observed. A normal distribution was adopted for the other material properties by
taking the mean values from the data sheet and setting the coefficients of variance to be small
(2%), taking into account that the used prepregs generally hold a higher quality than e.g. hand
lay-ups. The distributions showed to result in various damage evolution patterns, which, over-
all, match experimental observations. The main difference was found to be in the initiation
strain of the first matrix crack and the initiation strain of the last matrix crack; the ones of the
finite element simulations seemed to have the same shape but shifted to lower loads, possibly
caused by a discrepancy in the Weibull distribution.
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Results are expected to be further improved by implementing a correlation between the distri-
butions of parameters. One option to do so would be to link the finite element model to a micro-
mechanics model. Furthermore, more distributions of material properties than the transverse
strength YT are expected to advance the model.

2. To what extent can XFEM-CE simulate the interaction between transverse matrix cracks and
delaminations in a carbon-epoxy cross-ply specimen under tensile quasi-static loading?
Based on comparing the results of the finite element model with experimental observations,
XFEM-CE seems to be able to capture the evolution of transverse matrix cracks well, even though
most damage parameters were derived from trial and error within ranges that were established
based on other carbon-epoxy specimens. Both transverse matrix cracks and fiber failure were
modelled using enriched elements and delamination was modelled using cohesive based sur-
faces. However, introducing an enrichment spacing was required to facilitate convergence. Dif-
ferent spacings show similar evolution curves, with the main difference in the point of crack ini-
tiation: lower spacings showed earlier crack initiation caused by the inclusion of lower strength
values from columns that otherwise would not have been enriched, i.e. allowed to fail. Con-
vergence issues were encountered that are believed to be caused by troubles of the model in
damage evolution in the longitudinal plies. It resulted in a significant amount of the specimens
in the augmented data set to have crack patterns that do not run until failure of fibers, but stop
before it already. Nonetheless, patterns resulting from prematurely aborted simulations were
included in the data set, because those essentially include all cracks except for the last one until
failure. Lastly, no validation on delamination was done, other than assessing its effect on the
evolution of transverse matrix cracks, which was the focus of this thesis. Setting the penalty
stiffness and fracture energy of the cohesive surfaces too high prevented the required stress re-
laxation around a matrix crack, which causes premature failure of surrounding elements.

To improve of the model’s overall performance and generalization, several adjustments are pro-
posed. Firstly, the failure initiation criterion of maximum principal stress could be changed to a
more sophisticated one, such that the shear stresses in the region of the interface between the
longitudinal plies and transverse plies are taken into account more accurately. Furthermore, via
a UMAT subroutine, one could implement fatigue loading to assess the effect of material vari-
ability on the predicted remaining useful life and stiffness degradation to build a digital twin
that focuses on the fatigue life. The main step that needs to be taken to implement fatigue here
would be to successfully implement a fatigue model in the Abaqus model; experimental fatigue
data of the same specimen already exists for which the same experimental setups and research-
ers as explained in chapter 4. Lastly, extending the 2D model to 3D would unlocks two things:
1) validation of the 2D model, 2) implementation of other layups than cross-plies, because with
the current definitions, only 0° or 90° can be modelled.

3. How well can a neural network be trained with an augmented data set to predict the location and
load of the next crack of a carbon-epoxy cross-ply under quasi-static tensile loading?
The data-driven digital twin was proposed in the form of a recurrent neural network with LSTM
cells. The crack location was found difficult to predict, which was attributed to the problem
definition, classifying the next crack out of 100 classes, and the size of the data set, the relation-
ship is probably too complex to be modelled with the current size. The strains at which the next
crack appears were predicted more successfully. After approximately 5 cracks, the mean error of
close to 30 predictions of different specimens is near 0 MPa with a standard deviation in errors
of around 10 MPa. Increasing the prediction horizon to 5 cracks into the future hardly affects
the mean error but increases the average standard deviation (taken over the use of crack histor-
ies ranging from 2-20 cracks) by 229% to 25.9 MPa. Thus, it was concluded that improvements
in the model are necessary to be able to increase the prediction horizon without severe loss in
accuracy. All in all, it was found that the digital twin as proposed is able to predict the crack
pattern reasonably well in terms of when the next crack is going to appear.
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By adding data from more simulations and experiments, the performance is expected to further
improve. Not only because of more training data, but also to increase the testing data set, to
gain a better insight on the error evolution. The network itself could also be improved by a
change in problem definition for the locations: changing it from a classification problem to a
regression problem. Another method to change the problem definition would be to change the
entire network type to a Bayesian neural network, where weights substituted for probabilities.
An advantage of shifting to a Bayesian neural network is that epistemic uncertainties revolving
the weights a ’normal’ neural network are dealt with.

Placing the digital twin in a broader context, the presented methodology seems suitable for further
research. Without costly experiments, a first step was taken towards a digital twin of a composite
specimen that mimics its damage mechanics. The neural network showed capable of fast processing
of a large amount of information from heterogeneous sources to provide a reasonable prediction of
the loading at which the next crack occurs in real-time.

Using this thesis as a stepping stone, further steps could entail a larger specimen, a different layup,
or a different load case to start with, as well as the above-mentioned recommendations. It would
allow for the digital twin to develop and aid in further enhancement of our understanding of damage
accumulation in composite materials. In conclusion, with the expectation that the current trends in
availability in data and use of composite materials will continue to grow, the digital twin will, in the
proposed form or another, find its way into structural health monitoring of composite structures.
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A
Classical Laminate Theory

In this appendix, the classical laminate theory (CLT) that was used for verification of the mechanical
behavior of the FEM simulations (Figure 5.9 and Figure 5.10) is explained. CLT is an extension of the
classical plate theory of Kirchoff for homogeneous plates [151]. Using CLT, the mechanical properties
and stresses of a laminate composed of UD plies can be calculated, both per ply and of the global
laminate.

The generalized stress-strain relationships or Hooke’s law describe the mechanical behavior and state
of deformation by relating the normal and shear stresses to the normal and shear strains by using 21
independent constants, as shown in Equation A.1.
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The UD plies that are dealt with in this thesis can be assumed to be orthotropic, meaning it has two
axes of symmetry. This assumption sets many coupling terms to zero and simplifies Equation A.1 to
Equation A.2:
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To calculate stresses within a laminate and its plies, the problem is reduced from three dimensions
to two dimensions. By assuming plane stress conditions, the out-of-plane stresses are assumed to be
negligible compared to the in-plane stresses. Filling this in into Equation A.2:



σx

σy

0
0
0
τx y


=



E11 E12 E13 0 0 0
E12 E22 E23 0 0 0
E13 E23 E33 0 0 0

0 0 0 E44 0 0
0 0 0 0 E55 0
0 0 0 0 0 E66





εx

εy

εz

γy z

γxz

γx y


(A.3)

Hence:

γy z = γxz = 0 (A.4)

As such, the system of equations is reduced to the following:
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
σx

σy

τx y

=
 Qxx Qx y 0

Qx y Qy y 0
0 0 Qss


εx

εy

γx y

 (A.5)

where

Qxx = E11 −
E 2

13

E33

Qx y = E12 − E13E23

E33

Qy y = E22 −
E 2

23

E33

Qss = E66

(A.6)

Besides the ply thickness, based on the following five elastic constants Equation A.5 can be defined
for each ply and ultimately, the entire laminate:

• EL : Longitudinal Young’s modulus
• ET : Transverse Young’s modulus
• GLT : In-plane shear modulus
• νLT : In-plane major Poisson’s ratio
• νT L : In-plane minor Poisson’s ratio (is calculated as: E2·νLT

EL
)

In Equation A.7, the matrix in Equation A.5 is rewritten in terms of the constants that are listed above.


σx

σy

τx y

=


EL

1−vLT vT L

vLT ET
1−vLT vT L

0
vLT ET

1−vLT vT L

ET
1−vLT vT L

0

0 0 GLT




εx

εy

γx y

 (A.7)

If necessary, the obtained stress-strain relationships can be rewritten to account for rotated plies, for
which the zeros in Equation A.5 and Equation A.7 become nonzero again. However, because this
thesis deals with a cross-ply and in-plane longitudinal loading, the reader is referred to the book of
Kassapoglou on design and analysis of composite structures for further reference on how to transform
stresses and strains to a different angle [152].

Once having defined the mechanical properties of each ply by applying Equation A.7, the stresses and
strains per ply are integrated through the thickness to obtain the global response. These integrations
are a summation of the stresses per ply, while taking into account each ply’s relative position to ac-
count for curvature effects. It is common practice to define forces and moments through integration
through the thickness of the entire laminate. For example, in longitudinal direction: Nx = ∫ h/2

h/2 σx d z.
Obtaining all forces and moments by integrating the stresses as defined by Equation A.7 yields Equa-
tion A.12.

The Ai j components are defined as shown in Equation A.8 and represent the extension/compression
response of the laminate. The summation is simply the summation of the Ai j for each ply. Similarly,
Bi j components are calculated using Equation A.9 and represents the coupling between extension/-
compression and bending. The B-matrix is zero for symmetric laminates such as a cross-ply. The
bending response of the laminate is represented by the Di j components, which are calculated via
Equation A.10.

Ai j =
n∑

k=1
Qi j (zk − zk−1) (A.8)

Bi j =
n∑

k=1

Qi j

2

(
z2

k − z2
k−1

)
(A.9)
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Di j =
n∑

k=1

Qi j

3

(
z3

k − z3
k−1

)
(A.10)

To account for the through-the-thickness position of the plies, the local curvature is include in calcu-
lating the strain as shown in Equation A.11.

εx = εxo + zκx

εy = εyo + zκy

γx y = γx yo + zκx y

(A.11)

In summary, Equation A.12 shows a system of equations that allows the modelling of the mechanical
response of a composite laminate based on four material characteristics and the thickness of the plies.
The stress per ply can also be calculated.



Nx

Ny

Nx y

Mx

My

Mx y


=



A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66





εx

εy

γx y

κx

κy

κx y


(A.12)

Via further mathematical manipulation of the matrix above, it can be shown that for a symmetric,
balanced laminate the Young’s modulus is calculated via Equation A.13.

E1m = 1

h

A11 A22 − A2
12

A22
(A.13)

Alternatively, one could plot the stresses in a laminate while increasing the applied strain to generate
a stress-strain curve, as shown in Figure 5.9. This was simulated using a Python script, where both
the global response and stresses per ply were updated under an increasing strain.

To apply damage, a Hashin failure criterion was adopted. A distinction was made between failure
of the matrix and failure of the fibers. Failure of the matrix within a ply results in a reduction of the
in-plane ply stiffnesses to 18% of its original value, which is in line with Camanho and Matthews
[84]. A second failure of the matrix is interpreted as fiber failure, which degrades all properties to
approximately zero (setting it to zero enforces numerical errors).





B
Damage Accumulation Around a Curved

Crack

All images show the maximum principal stress field in a portion of the specimen at which a curved
crack appears. The color bars are set to the same limit in each plot for fair comparison of the stress
fields, ranging from 245 MPa (red) to -16 MPa (dark blue). With the specimen length of 100 mm,
a global applied strain of 1000 µε corresponds with a total elongation of the specimen of 0.1 mm,
measured at the boundary condition where the displacement load is applied.

Figure B.1: Applied strain: 4994 µε — Increment: 180 — Step Time: 0.3329. Initiation of the first crack in this portion of the
specimen.

Figure B.2: Applied strain: 6420 µε — Increment: 332 — Step Time: 0.4280. Simultaneous damage initiation at four
locations.
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Figure B.3: Applied strain: 6593 µε — Increment: 398 — Step Time: 0.4395. Initiation of second crack.

Figure B.4: Applied strain: 6768 µε — Increment: 422 — Step Time: 0.4512. Initiation of third crack.

Figure B.5: Applied strain: 10059 µε — Increment: 540 — Step Time: 0.6706. Evolution of damage at the location where the
curved crack initiates.
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Figure B.6: Applied strain: 10290 µε — Increment: 600 — Step Time: 0.6860. Initiation of the curved crack.





C
Training Results

Table C.1: Training results from the initial configurations that were tested. The total loss is presented together with the
top-5 accuracy of predicting the right location and the MSE of predicting the strain. Three models were selected based on
a ’total score and are highlighted. The total score measures the overall performance, taking into account both the accuracy

of predicting the strain and location. The total score was made up out of two elements: 1) the ranking based on lowest
MSE, and 2) the ranking based on highest top-5 accuracy. A high ranking means a low score, so the models that performed

best from an overall point of view have the lowest total score.

Reference no. LSTM cell Nodes Dropout Loss MSE Top-5 accuracy Total score
1 1 2 0 4.5937 0.0234 0.0637 41
2 1 8 0 4.5867 0.0036 0.0722 11
3 1 16 0 4.5961 0.0043 0.0658 14
4 1 32 0.3 4.5654 0.0194 0.0849 25
5 1 64 0 4.6015 0.0052 0.0425 31
6 1 128 0.3 4.5494 0.019 0.0955 19
7 1 256 0.3 4.5413 0.0243 0.0807 35
8 2 2 0 4.6024 0.0086 0.0573 33
9 2 8 0 4.5928 0.0059 0.087 11
10 2 16 0 4.5991 0.0049 0.0913 7
11 2 32 0 4.5994 0.0045 0.0594 20
12 2 64 0 4.5903 0.0073 0.087 15
13 2 128 0.3 4.5934 0.0203 0.0594 39
14 2 256 0.3 4.5454 0.0217 0.0807 32
15 3 2 0 4.5988 0.0254 0.0679 39
16 3 8 0 4.6047 0.0098 0.0637 29
17 3 16 0 4.6005 0.0073 0.0488 34
18 3 32 0 4.6016 0.0063 0.051 29
19 3 64 0 4.6045 0.0097 0.0467 39
20 3 128 0.3 4.5959 0.0206 0.0616 38
21 3 256 0 4.5742 0.0063 0.0807 16
22 5 2 0 4.6026 0.0046 0.0467 27
23 5 8 0 4.6048 0.0058 0.0403 33
24 5 16 0 4.6105 0.0102 0.0318 45
25 5 32 0 4.5931 0.0075 0.0743 22
26 5 64 0.3 4.6121 0.019 0.0637 33
27 5 128 0.3 4.6145 0.0208 0.0403 50
28 5 256 0.3 4.6114 0.0208 0.051 45
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[33] E. Correa, F. París, and V. Mantič, “Fiber-matrix debonding in composite materials: Transverse loading,”
in Modeling Damage, Fatigue and Failure of Composite Materials, pp. 97–116, Elsevier Inc., 2016.
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