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Abstract

The aim of this research is to develop an N -dimensional adaptive sam-
pling algorithm to e�ciently sample functions, meaning that with fewer
samples the same accuracy is achieved compared to what homogeneously
spaced samples would achieve. This algorithm is based on an existing
Python package called Adaptive [12]. The developed algorithm is applied
to �nd and plot the Fermi surface of crystals with a higher resolution than
homogeneous sampling would with the same number of points.
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Summary

In this report an existing adaptive sampling algorithm is extended to sup-
port functions with N -dimensional input, whereas the current algorithms im-
plemented in Adaptive [12] support functions of the form f : R → RM and
f : R2 → RM . After extending the algorithm to allow for higher input dimen-
sions, the algorithm is modi�ed to select more samples in regions where the
investigated function is curved, whereas the existing algorithm prioritises re-
gions where the function has a high gradient. We show that the expected error
using this novel adaptive sampling algorithm is less than or equal to the error af-
ter homogeneously sampling the domain, with the same number of points, with
the error being the L1-norm of the di�erence between a linear interpolation and
the actual function. In practice, functions with a curvature varying across the
domain will indeed be sampled more e�ciently and accurately with our adap-
tive sampling algorithm. On the other hand, for functions which have a nearly
constant curvature, adaptive sampling will perform comparable or slightly worse
than homogeneously sampling.

For plotting the Fermi surface, minor changes are applied to the algorithm
to provide extra dense sampling in regions that contain the Fermi surface. For
several test crystals, this algorithm produced an approximation of the Fermi
surface that consist of 30%-200% more triangles on the Fermi surface, compared
to the surface produced by homogeneously sampling the domain, while using
the same number of points inside the �rst Brillouin zone. This means that
Fermi surfaces sampled using our algorithm are smoother than the Fermi surface
obtained by homogeneous sampling using the same number of points. The
band structure is determined using the tight binding model, for the numerical
calculations of the band structure the Python package `Kwant'[7] was used.
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1 Introduction

1.1 Relevance

In physics, in particular theoretical physics, simulations are often used to in-
vestigate phenomena. These simulations take some time to evaluate, if the
calculation is di�cult, this could take several seconds, minutes or even longer.
When varying one or more parameters of the system, a lot of data points are
needed to make a graph, which requires a lot of simulations and thus a lot of
time. The same accuracy could be reached with less points if the points to
evaluate are chosen wisely: more points in `interesting regions' and fewer points
in `boring regions'. This would speed up the running time of the entire process
while still giving accurate results.
As an example, the thermal conductivity of copper varies a lot in the low tem-
perature regime while being almost �at above 100K, see Figure 1. So having
less samples in the region 100K-300K would save us time while maintaining al-
most the same accuracy. Figure 2 shows the di�erence between homogeneously
sampling the thermal conductivity of copper, or using Adaptive with the same
number of points.

Figure 1: Thermal conductivity of copper for di�erent temperatures. We can
clearly see a peak in the low-temperature regime. Figure is taken from [14]
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(a) (b)

Figure 2: Comparison of sampling the thermal conductivity of copper adaptively
and homogeneously using 12 points.

1.1.1 Fermi surfaces

The band structure of a crystal describes in what energy range an electron in a
solid may exist and the Fermi surface of this crystal indicates what the state of
electrons would be if the solid is cold (close to 0K). Figure 3 shows the Fermi
surface of gold as an example. From the band structure a researcher can infer
several properties of the crystal, like whether it is a conductor, an insulator
or a semi-conductor. To investigate band structures and Fermi surfaces, it is
often easiest to run computer simulations. However, as these simulations include
larger structures or the model gets more detailed, the simulations slow down.
In order to plot the band structure for a system, a lot of simulations have to
be evaluated, using a lot of computer resources. The number of simulations to
be run can be reduced by cleverly sampling the band structure similar to the
previous section. Speci�cally, we will have a look at Fermi surfaces as these
exist in a narrow band of the entire domain, the number of points required for
plotting Fermi surfaces can be reduced a lot when the points are chosen well.

1.2 Goals

We want to �nd and implement a sampling strategy that evaluates fewer points
and reaches the same accuracy as homogeneous sampling. This sampling proce-
dure will be integrated into a python package called Adaptive[12], this package
can already be used to sample 1D and 2D domains (functions f : R → RM
and f : R2 → RM ), but does not yet have the ability to sample functions
on a N -dimensional domain. Some algorithms in this package are similar to
the adaptive sampling algorithms described in the thesis of Wesdorp [18]. The
algorithm already implemented in Adaptive is explained in Chapter 2, but in
short, Adaptive splits the domain into smaller intervals and rates each interval
as to how accurate it was sampled. New data points will be evaluated in the
interval which has the worst rating, iteratively improving the accuracy. Usually
this strategy requires fewer points to reach the same accuracy as homogeneous
sampling.
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Figure 3: The Fermi surface of gold, taken from [10]

We will therefore extend the adaptive sampling algorithm currently imple-
mented in Adaptive to allow for e�ciently sampling functions f : RN → RM .
Furthermore as we will �nd the Fermi surface by evaluating computer simula-
tions, we have the ability to evaluate several points in parallel, the sampling
algorithm should therefore support this, suggesting multiple points that can be
evaluated in parallel.

Furthermore we want to �nd an estimate of the error after applying our
algorithm and compare this with linearly spaced sampling. So we know what
kind of error we could expect.

Lastly we will apply the newly developed algorithm to �nd the Fermi surface
of crystals e�ciently.

1.3 Structure of report

Chapter 2 contains a description of the Adaptive sampling strategy in 1 dimen-
sion. Chapter 3 extends this strategy to support N input dimensions. Chapter
4 proposes a new 1-dimensional sampling strategy which samples densest in
high curvature regions of the domain. The expected error is estimated when
sampling a function using this strategy. Chapter 5 extends this new strategy to
higher dimensions. Chapter 6 applies the adaptive sampling strategy to band
structures of crystals and uses it to plot Fermi surfaces e�ciently. Chapter 7
discusses the results and proposes points for further work.
This research was done as part of a Bachelors degree Applied Physics and Math-
ematics at the Technical University of Delft.
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2 Overview of sampling algorithm

The goal is to e�ciently sample a function f : D → R on a domain D =
[a, b] ⊂ R, meaning that more samples are evaluated in `interesting' regions
and fewer samples in `boring' regions. Additionally the algorithm should be
able to evaluate multiple points at the same time, since multi-core processing is
commonly available.

2.1 The method

The algorithm iteratively suggest new points to evaluate while using previously
evaluated points to make sure the suggested points are placed in the regions
of greatest interest. In these interesting regions the function must be sampled
more densely than in boring regions.

At each iteration, let {xi}Ni=0 be the sorted set of evaluated points and yi =
f(xi). Then every interval [xi−1, xi] of the domain is ranked according to how
`interesting' it is, called the `loss' of an interval, we use Li as symbol for the
loss of interval [xi−1, xi]. The next point to be evaluated is placed in the center
of the interval with the largest loss. The losses are recalculated to include the
newly evaluated datapoint and the algorithm proceeds with the next iteration.

2.1.1 Loss function

The goal of the algorithm is to minimise this loss, that is, the maximum of
all losses should be lowered. To achieve this, the next suggested point will be
in the middle of the interval with the highest loss. This also implies that the
loss function gives a priority ordering to the intervals, giving high priority to
intervals with a high loss.

The loss function therefore determines to great extend the behaviour of the
algorithm. By changing the loss function one can change what regions are
sampled densely or not. There is however a requirement: As we add more and
more points, the approximation becomes more accurate, therefore the loss of
every interval should go to zero as N increases, i.e.

lim
N→∞

max
1≤i≤N

Li = 0.

Notice that the loss function could in principle be a function that uses all
available information (evaluated points) and assigns a loss to every interval.
However, this is not desirable as it would require us to recompute the loss of
every interval at every iteration, slowing down the algorithm. If we restrict the
loss of an interval to only depend on local features, being the points enclosing
the interval and optionally a few neighbours of these points, we would only have
to update the losses for one or a few intervals at every iteration.

An example of a loss function would be to take the Euclidean distance be-
tween two adjacent points of the interpolation

Li = ‖(xi, yi)− (xi−1, yi−1)‖2 .
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This loss function would sample high-gradient regions denser than low-gradient
regions, as a result, for smooth functions the Euclidean distance between every
two neighbouring points will be approximately similar, at least the same order
of magnitude.

The iteration continues until the approximation of the function is considered
accurate enough, this stopping criterion will be discussed in Section 2.1.2.

2.1.2 Stopping criterion

At some point the approximation is accurate enough and we do not need more
points. There are many ways to decide when this is the case, but there is already
an indication of the accuracy of the approximation in the strategy, namely the
loss. The loss of an interval indicates the accuracy of approximation for a single
interval. This can be turned into a stopping criterion by stopping when the loss
of every interval is below some threshold. Stopping when every loss is below
some threshold, is equivalent with stopping when the maximal loss is below this
threshold:

max
1≤i≤N

Li ≤ Lthreshold. (1)

Other options include but are not limited to:

• stopping when a given number of points have been evaluated;

• a human judging that the accuracy is good enough.

2.1.3 Parallelisation

We have also indicated that we want our sampling strategy to be parallelis-
able. To achieve this the algorithm has to suggest new points even while other
points are being evaluated, still making sure that the suggested points are cho-
sen in relevant regions. The points that are currently being evaluated will be
called `pending points'. The intervals adjacent to a pending point will be called
pending intervals.

So for every interval that is split in half by a pending point, we will assign
half of the loss to each of the newly created pending intervals. Now the next
point will be suggested in the interval or pending interval which has the highest
loss. If a pending interval is split in half, the same procedure applies: the
pending interval is split in half and the resulting smaller pending intervals will
be assigned half the loss of the parent.

When the evaluation of a point is completed, the loss for all adjacent pending
intervals is updated to be proportional to the loss of the real interval that
contains it.

2.1.4 The Algorithm

In Algorithm 1 we present the basis of the Adaptive sampling strategy. This
algorithm does not yet include the parallelisation, as it is intended to only give
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an idea of the core principles of the algorithm. The selected stopping criterion
for this example is to get the loss of every interval below a threshold, Lgoal.
This stopping criterion can easily be replaced by other stopping criteria.

For this algorithm, we have given a function f and a domain [a, b].

Algorithm 1 Basis of Adaptive sampling algorithm

1: x0 = a; x1 = b; y0 = f(a); y1 = f(b) . Evaluate boundary points
2: N ← 1
3: while max

1≤i≤N
Li ≥ Lgoal do . or another stopping criterion.

4: m← arg max
1≤i≤N

(Li) . Find the interval with the highest loss

5: xnew ← 1
2 (xm−1 + xm) . Next point will be the center of this interval

6: ynew ← f(xnew)
7: Insert xnew into the sorted list of evaluated points.
8: Insert ynew at the same position in the list of results.
9: N ← N + 1
10: end while

11: return xi, yi.

2.2 Example

Figure 4 visually illustrates what the adaptive sampling algorithm does. It
shows the �rst 12 iterations. The loss of each interval is shown next to the
interval. At every iteration, a new point is added in the middle of the interval
with the highest loss. This may result in an increase in loss, which typically
means a feature was discovered. Like in Figure 4e. The loss function taken here
is

Li =

√(
∆xi

xmax − xmin

)2

+

(
∆yi

ymax − ymin

)2

=

√(
∆xi

300− 4

)2

+

(
∆yi

1500− 300

)2

.

This loss takes the Euclidean distance, but �rst it scales the x and y coor-
dinate to a unit length, to avoid the thermal conductivity dictating the entire
behaviour (as the range in y is a lot greater than the range in x direction). Also,
this way the choice of units is no longer important, as both axis are normalised
in the algorithm.

Comparing Figure 4k and Figure 4l shows that indeed the adaptive sampling
strategy samples more points in the interesting region (0 − 100K) and fewer
points in the boring region (100− 300K) compared to homogeneous sampling.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) 12 points adaptively sam-
pled.

(l) 12 points homogeneously
sampled.

Figure 4: Iterations of the adaptive sampling strategy. The loss of every interval
is written next to it. The newly added point of each iteration is marked with the
square marker. Sub�gures (a)-(k) show consecutive iterations of the adaptive
sampling algorithm while Sub�gure (l) shows the same function homogeneously
sampled with 12 points (same number of points as Sub�gure (k)). The function
is the thermal conductivity of copper, the same as Figure 1. Data taken from
[14].
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3 Multi-dimensional adaptive sampling

The algorithm described in Chapter 2 can be extended to support higher input
dimension. This adds the complication of splitting the domain simplices (a
generalisation of triangles in RN ) instead of simple intervals. Similar to the
1-dimensional sampling strategy, each simplex is assigned a loss, the next point
is iteratively added to the simplex which has the highest loss at every iteration.

3.1 Incremental Delaunay Triangulation

For triangulation we will use a Delaunay triangulation, as the quality of the in-
terpolation has been shown to be good when using the Delaunay triangulation
[13]. Speci�cally, the Delaunay triangulation of a set of points is the triangu-
lation for which the minimal angle between two edges is maximised, thereby it
avoids narrow and long triangles, which has been shown to decrease the inter-
polation error [17] in general.

As in the 1D case, we want to iteratively evaluate more points based on the
known points, this iteration means that we need to update the triangulation
often. To avoid having to recompute the entire triangulation at every iteration
(which has a time complexity of O(N logN)), an incremental triangulation algo-
rithm is used, which has an average time complexity of O(logN) per insertion.
Furthermore, the algorithm has to be stable in higher dimensional space. And
lastly, to further optimise Adaptive in the future, we keep the option open to
create anisotropic triangulations, where triangles are long in directions where
nothing interesting happens and narrow the perpendicular direction, which has
been shown to reduce the interpolation error for some functions[6]. The three
algorithms we considered for constructing Delaunay triangulations are:

• Lawson Flip algorithm [9]. It works by adding a point and then �ipping
edges until the triangulation is Delaunay again. Although this is the
easiest method and works well in 2D, the algorithm is not guaranteed
to converge in higher dimensions. The reason for this is that in higher
dimensions there exist triangulations which can not be transformed into
one another by only �ipping edges [5], meaning that we could end up
with a triangulation for which no �ipping sequence will give a Delaunay
triangulation.

• Bowyer-Watson algorithm [3]. It works by adding a point and then remov-
ing all triangles that are not Delaunay anymore, then it �lls the created
gap by making connections from the border of the gap to the newly added
point. See Figure 5 for a visual explanation.

• The Quick-Hull algorithm [1]. This is the algorithm that is used by Scipy,
a popular python package for scienti�c calculations. This algorithm limits
us in that we are unable to move to anisotropic triangulations once the
time comes.
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The Bowyer-Watson algorithm proved the most suitable, as the Lawson �ip
algorithm does not extend well to higher dimensions, while the Quick-Hull al-
gorithm gave us less freedom to alter the triangulation in the future (e.g. make
it anisotropic).

Figure 5: Visual explanation of the Bowyer-Watson algorithm. When a new
point is added (the red point) the algorithm will remove all triangles for which
this point lies in the circumscribed circle of those triangle. The resulting gap is
then �lled by connecting the red point with each point adjacent to the gap.

A nice feature of these triangulation algorithms is that the domain does not
need to be rectangular, it could be any convex shape, which is particularly nice
for analysing band structures of crystals (see Section 6.2), as the Brillouin zone
is not necessarily rectangular or box shaped.

3.2 Loss function

Every simplex should again be assigned a loss to indicate the accuracy of sam-
pling. For a start we will make a similar loss function as in the 1-dimensional
case. We recall that in 1D we take the Euclidean distance between two neigh-
bouring points as the loss. In 2D this would be equivalent to the surface area of
the triangle when we take the output dimension into account. This is visualised
in Figure 6 where we have a function f : R2 → R, in this case the triangles which
have a large area in the 3-dimensional (2 input and 1 output dimensions) space
will be sampled before triangles with a small area, resulting in regions with a
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high gradient being sampled more densely than regions which are approximately
�at.

Figure 6: A function f : R2 → R. Similar to 1D near the sides of the function
are �at and there is no need for many samples in those regions. While near
the red triangle there is a higher gradient and more sample are needed. If we
extend the loss of the learner1D into more dimensions, we see that we could
take the surface area of the triangle as loss, leading to more samples near the
red triangle and less near the blue triangle.

A way of measuring the surface area of these triangles is needed. Since the
the surface area of these triangles can not be computed directly, we will use
Heron's formula: Given the lengths of the three edges of a triangle: a, b, c, we
can compute the area as follows:

A =
√
s(s− a)(s− b)(s− c) where s =

a+ b+ c

2
.

It is easy to compute the edge-lengths a, b, c, as the Euclidean distance between
each pair of points in the 3 dimensional space can be easily computed. Also, if
the output were to be higher-dimensional, the Euclidean distance between each
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pair of the three points can still be computed. The only problem is: Heron's
formula only works for triangles, and for this loss function to work in N di-
mensions, we need another method to �nd the volume of a higher-dimensional
simplex. But there is another method which is a higher dimensional equivalent
of Heron's formula: the Cayley-Menger Determinant [4]. Given a simplex in N
dimensions with vertices v1, v2, ..., vN+1 we construct a matrix B = (bi,j) with
the pairwise distances between vertices squared:

bi,j = ‖⇀vi −⇀vj‖22 .

Then we de�ne B̂ as being B with an extra left column (0, 1, 1, ..., 1)T and top
row as (0, 1, 1, ..., 1). This matrix will look like

B̂ =


0 1 · · · 1
1 b1, 1 · · · b1, N+1

...
...

. . .
...

1 bN+1, 1 · · · bN+1, N+1

 where bi,j = ‖⇀vi −⇀vj‖22 .

The volume of this simplex is then given by:

V (simplex) =

√
(−1)N

2N (N !)2
det(B̂). (2)

The volume of the simplex can then be used as the loss, similar to how the length
between two neighbouring points was taken as the loss in the 1 dimensional case.
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4 Method to prioritise curved regions in one di-

mension

4.1 Motivation

In Chapter 2 and 3 we de�ned a loss function based on the steepness of a
function. While this already gives an improvement over homogeneous sampling
in many cases, we may achieve lower interpolation errors when not only looking
at the steepness, but at the curvature of the function.

4.2 Connection to line simpli�cation algorithms

The method used was inspired by the Visvalingam-Whyatt algorithm [15]. This
algorithm is a so-called `line simpli�cation algorithm' and is used for reducing
the number of points on curves while maintaining as much detail as possible.
This class of algorithms is used in interactive maps to reduce the complexity of
coastlines and rivers when zooming out, thereby reducing the download time of
the map. Our goal is exactly the reversed, namely adding more points where
more detail is needed. Since the Visvalingam-Whyatt algorithm gives an `im-
portance' rating to each point, we can use the same rating strategy. If a point
is rated as highly important, probably we need to add more points in its neigh-
bourhood, when a point is rated as irrelevant, we do not need to add many
samples in its neighbourhood. Our method would in essence be a `reversed
Visvalingam-Whyatt algorithm'. But �rst, the Visvalingam-Whyatt algorithm
will be explained.

4.2.1 Visvalingam-Whyatt algorithm

The Visvalingam-Whyatt algorithm works by iteratively removing the point
that yields the least-perceptible change. This is the point with the lowest ef-
fective area. The e�ective area is the maximum of the e�ective area of the
previously removed triangle and the area of the triangle spanned by a point
and its neighbours (this is best explained by Figure 7). The e�ective area is
therefore some importance rating and when a point is removed its e�ective area
is always greater than any previously removed point. The iteration stops when
there are no interior points left. Then every interior point has an e�ective area
associated with it. To get the actual simpli�ed line, all points with an e�ective
area larger than some threshold are selected and connected with lines. Notice
that algorithm runs until only two points are left as this would give a rating to
all points and therefore the algorithm only needs to run once, using a di�erent
coarsening factor would then only require to select all points with a rating above
some threshold, as the computation of the rating for each point has already been
done.
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(a) A line with 6 points that will be simpli�ed.

(b) Each interior point is assigned an e�ective area based on the triangle spanned by said point
and its neighbours. We �nd the point with the lowest e�ective area (point 5).

(c) The point with the lowest e�ective area (point 5) is removed and the e�ective area of its
neighbouring points is updated. If the area of the triangle associated with its neighbour (point
4) would be less than the e�ective area of point 5, the e�ective area for point 4 that will be used
is that of point 5. This step is repeated.

(d)

(e)

(f) There are no interior points left, the procedure stops.

Figure 7: Visual explanation of Visvalingham-Whyatt algorithm. After the
algorithm is completed, each point has a rating. The returned, simpli�ed line
now consists of all those points which have an e�ective area larger than some
threshold. This is always one step of the iteration (e.g. Figure (d) could be such
a simpli�ed line). Images taken from [2].

4.2.2 Relation of triangle area to second derivative

We want to add more points in curved regions, but now we are interested in
using a reversed Visvalingam-Whyatt algorithm. It would be nice if the area
of a triangle and the (local) curvature of a function have some sort of relation.
And indeed there is one, if we take a look at the triangle in Figure 8, using a
Taylor expansion of f around x, we can relate the area to:
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Figure 8: The triangle spanned by the points (x, f(x)), (x−a, f(x−a)), (x+
b, f(x+ b)).

A =
1

4

(
a2b+ ab2

)
f ′′(x) +

1

12
(ab3 − a3b)f (3)(x) + O(a4b+ b4a). (3)

The contribution of the higher derivatives go to zero faster than the contribution
of the second derivative, meaning that whenever a, b are su�ciently small, the
area is dominated by the contribution of the second derivative.

4.3 Curvature loss function

We de�ne the loss of an interval as the average area of the two adjacent triangles,
see Figure 9 (except for the left and right boundary, there only one triangle can
be used). Now we continue the Adaptive algorithm as before, in the interval
with the highest loss we insert a new point.

Do notice however, that now we also need to update the loss of the neigh-
bouring intervals whenever a point is added within some interval, whereas before
the loss of an interval is only a�ected by the two points directly adjacent to it,
but not by the next-neighbouring points.

We de�ne a, b, c as the horizontal size of the left neighbouring interval, of the
interval itself and of the size of the right neighbouring interval, respectively (see
Figure 9). We will use that if a, b, c are su�ciently small, f ′′ is approximately
the same in each point, which we write as |f ′′|. If we take the average area of
the two triangles, we could write the average area as:

L =
Aleft +Aright

2

≈ 1

8

(
a2b+ ab2 + b2c+ c2b

)
· |f ′′|.
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Figure 9: The loss of interval b can be computed by taking the average area of
the adjacent triangles.

Now if we assuming a, b, c are the about the same order of magnitude (i.e.
≈ ∆x). Then this scales as ∆x3. If we want the loss not to depend on the width
of the neighbouring intervals, but only on the width of the middle interval, we
could add some extra terms to get rid of that. (Notice b = ∆x.)

L = 4
Aleft +Aright

a2b+ ab2 + b2c+ c2b
·∆x3

≈ |f ′′| ·∆x3. (4)

Lastly, Adaptive expects that when an interval is split in half, the two halves
should each have a loss that is about half the loss of the original interval. Which
means that the loss should scale as ∆x and not as ∆x3. To solve this, the cubic
root of this loss function is taken to obtain:

L = 3

√
4

Aleft +Aright

a2b+ ab2 + b2c+ c2b
·∆x3 ≈ 3

√
|f ′′| ·∆x. (5)

As the cubic root is monotonic, the order in which the intervals are split is not
altered.

4.4 Exploration vs Exploitation

The area of a triangle on its own would not be enough to e�ectively sample a
function, since intervals which appear straight may look straight simply because
they are undersampled. We would need to add points in areas that seem boring
at �rst, in order to �nd out if there is some interesting region we did not know
about before, this is called `exploration'. On the other hand, `exploitation' is
the term used for putting extra samples in an interesting region, to reduce the
error as much as possible. This is a trade-o�: more exploration means less
exploitation and vice versa. Therefore we de�ne a parameter, β, to tune the
exploration/exploitation factor. This factor is inserted into the loss function
(Equation (5)) in order to get our �nal loss function:
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L = ∆x · 3

√
4

Aleft +Aright

a2b+ ab2 + b2c+ c2b
+ β (6)

≈ ∆x · 3
√
|f ′′|+ β. (7)

By tuning β we can get di�erent behaviour for our loss function. e.g. by
letting β approach∞ we will e�ectively ignore the curvature of the function (as
the curvature will be much less than β) and therefore we sample our function
more or less homogeneously. On the other hand, by setting β = 0 we only look
at the curvature and have a big chance of `skipping over' features. So we have
to make a choice between exploitation (zooming in on interesting regions) and
exploration (having another look at a seemingly boring region to see if we might
perhaps �nd something interesting). We selected some arbitrary value (namely
β = 0.05) as default. It seemed to work pretty well across several test functions,
where to the eye it did a good job at both exploring new regions as well as
zooming in on interesting regions.

E�ectively the area of adjacent triangles is used to compute the second
derivative. The reason for this is that it more easily extends to higher dimensions
than other methods. As the points that Adaptive chooses have no regular
structure, it is easier to compute the volume of adjacent simplices than it is
to �nd an exact expression for the second derivative.

Since the factor 3
√
|f ′′|+ β is going to be used in this report many times, we

will introduce a special letter for it: ρr as it can be interpreted as the relative
density of points.

ρr(x) = 3
√
|f ′′(x)|+ β. (8)

The reason for this is that, since Adaptive splits the interval with the highest
loss �rst, the factor ρr(x) is an indication of the sampling density (say relative
density). Meaning that if ρr in interval a is twice as big as ρr in interval b,
then the sampling density in the interval a is expected to be twice as dense as
in interval b.

4.5 Error analysis

We are interested in how the adaptive sampling strategy compares to homoge-
neous sampling, to see how e�ective the sampling strategy actually is. We want
to �nd an expression to estimate both the error of a homogeneously sampled
function and an adaptively sampled function. First a measure of error is de-
�ned, next an estimate of the error is computed and lastly the estimated error
will be compared to the estimated error for several test functions.

4.5.1 De�nition of error

In order to compare sampling strategies, we need some way to compare the
accuracy. We will construct a linear interpolation from the points that are sug-
gested by both methods, this interpolation we will denote by f̃ to indicate that
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Figure 10: The error between a quadratic function and the linear interpolation
for a single interval, meaning the interpolation is done using only two points:
x1, x2.

it is an approximation of f . Now we have to compare the two approximations,
for that we will look at the error in the L1-norm, which is de�ned as:

Err1(f̃) =
∥∥∥f̃ − f∥∥∥

L1
=

∫ b

a

∣∣∣f̃(x)− f(x)
∣∣∣ dx. (9)

This goes to zero as the approximation becomes better and better. Also in one
dimension we can easily compute this integral numerically to obtain the error
for each sampling strategy.

4.5.2 Quadratic function

The simplest function for which we can compute some meaningful theoretical
error is the quadratic function:

f(x) = ax2 + bx+ c for x ∈ [0, 1].

Given a quadratic function and two points on this curve, we can do an interpo-
lation and compute the error or the interpolation by integrating the di�erence,
see Figure 10.

Since the di�erence is always of the same sign in between the interpolation
points (i.e. the linear interpolation and the actual quadratic function only cross
on the boundary), we can simplify it:∫ x2

x1

∣∣∣f̃(x)− f(x)
∣∣∣ dx =

∣∣∣∣∫ x2

x1

f̃(x)− f(x)dx

∣∣∣∣ =

∣∣∣∣∫ x2

x1

f̃(x)dx−
∫ x2

x1

f(x)dx

∣∣∣∣ .
This expression has already been worked out in Theorem 5.3.3 of [16], but since
f ′′ = 2a is constant, we can use m2 ≡ maxx∈[x1,x2] |f ′′(x)| = |f ′′| to obtain:

∥∥∥f̃ − f∥∥∥
L1,[x1,x2]

=

∫ x2

x1

∣∣∣f̃(x)− f(x)
∣∣∣ dx ≤ 1

12
m2∆x3 =

1

12
|f ′′|∆x3. (10)

Furthermore we are interested in what happens if we add more points in this
interval. We expect that the error will reduce, since more points are added, but
we are interested in exactly how much the error reduces.
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Figure 11: The same function but now interpolated using 3 intervals (4 points).
So in this case N = 3 and w = x3 − x0

Figure 11 is an example of an interval which is split into several sub-intervals
by adding equally spaced points into its interior. We will call the total width of
the entire interval wtot, and the number of intervals is called N . From Chapter
5.4 in [16], we �nd:∥∥∥f̃ − f∥∥∥

L1,w,h
≤ 1

12
M2wtot∆x

2 whereM2 = max
x∈[x0,xN ]

|f ′′(x)| . (11)

4.5.3 Twice di�erentiable functions

Now we will look at a broader class of functions. This time we will pick a
function f ∈ C2[a, b], that is the class of functions de�ned on an interval [a, b]
which are (at least) twice continuously di�erentiable on this interval.

If we want to know the error over the entire interval [a, b] we could sum the
error in between all neighbouring points. When the number of points becomes
very big, the width of each sub-interval becomes very small. When more points
are added, the sum of the errors will start looking more and more like an integral.
Once the intervals are small enough, we can also do some assumptions:

• As f ′′ is continuous, we can assume it to be nearly constant on some
tiny interval. Therefore m2 = maxξ∈[x−ε,x+ε] |f ′′ (ξ)| can be considered
approximately equal to |f ′′(x)| if ε is su�ciently small.

• Since the relative density of points, ρr, is also continuous, we may also
assume this to be nearly constant on a very small interval.

We have ρr to indicate the relative density of points, however, we can �nd the
absolute density of points by �rst normalising this density.

ρn(x) =
ρr(x)∫ b

a
ρr (ξ) dξ

.

Then this normalised density can simply be multiplied with the number of points
to �nd the actual density:

ρa(x) = N · ρn(x).
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Now if we integrate ρa, we will end up with the number of points, i.e.
∫ b
a
ρa(x)dx =

N . This we can then use to �nd the grid spacing, h, at some point in the interval:

h(x) =
1

ρa(x)
=

1

N
· 1

ρr(x)
·
∫ b

a

ρr (ξ) dξ. (12)

Following similar steps as in [16], we can �nd a more accurate approximation
for the error, also we use that:

Err[a,b] =

∫ b

a

∣∣∣f̃ − f ∣∣∣ dx
=

N∑
i=1

∫ xi

xi−1

∣∣∣f̃ − f ∣∣∣ dx
=

N∑
i=1

∫ xi

xi−1

1

2
(x− xi−1) (xi − x) |f ′′ (ξ(x))| dx

=

N∑
i=1

1

12
|f ′′(ηi)|∆x3i where xi−1 ≤ ηi ≤ xi.

We can use that, whenever the number of points becomes big, the width of each
interval becomes small and the second derivative does not vary much in a small
interval, since it is continuous. So, for large N , we can use f ′′(ηi) ≈ f ′′(xi) with
xi = 1

2 (xi−1 + xi), resulting in the following approximation for the error:

Err[a,b] ≈
N∑
i=1

1

12
|f ′′ (xi)| ·∆x3i .

Next we can use the approximation ∆xi ≈ h(x), yielding:

Err[a,b] ≈
N∑
i=1

1

12
|f ′′ (xi)| · h2 (xi) ∆xi.

Now when the number of points is su�ciently large, this sum is well approxi-
mated by an integral:

Err[a,b] ≈
∫ b

a

1

12
|f ′′ (x)| · h2 (x) dx. (13)

20



Adaptive sampling error Lastly we substitute Equation (12) into Equation
(13), we get that the error of an adaptively sampled function becomes:

ErrA,[a,b] ≈
∫ b

a

1

12
|f ′′(x)| · h2(x)dx

=

∫ b

a

1

12
|f ′′(x)| ·

(
1

N

1

ρr(x)

∫ b

a

ρr(ξ) dξ

)2

dx

=
1

12

(∫ b

a

|f ′′(x)| · ρ−2r (x) dx

)
·

(∫ b

a

ρr(ξ) dξ

)2

· 1

N2
. (14)

Homogenous sampling error Very similarly we can compute the error when
sampling homogeneously. Again we take Equation (13) and follow similar steps,
but now we use h = wtot

N to end up with:

ErrH,[a,b] ≈
∫ b

a

1

12
|f ′′(x)| · h2dx

=

∫ b

a

1

12
|f ′′(x)| ·

(wtot

N

)2
dx

=
1

12

(∫ b

a

|f ′′(x)| dx

)
· w2

tot ·
1

N2
. (15)

Using these two expressions for ErrH and ErrA, we can �nd the reduction of
the error by dividing one by the other:

Reduction=
ErrA,[a,b]

ErrH,[a,b]
=

(∫ b
a
ρr(x)dx

)2
·
[∫ b
a
|f ′′(x)| · ρr(x)−2 dx

]
w2
tot ·

∫ b
a
|f ′′(x)| dx

, (16)

do notice that this reduction factor does not depend on the number of points, but
only on the function f and the choice of the parameter β, through the function
ρr. The theoretical errors found in Equations (14) and (15) are compared to
errors found in practice in Section 4.6.

4.5.4 Improvement

In the previous section we called Equation (16) the reduction factor. But we
did not yet show that it is indeed an improvement. We are left with the task to
show that Adaptive performs better than homogenous sampling. This can be
done by showing that ErrA,[a,b] ≤ ErrH,[a,b]. Using the approximations for the
error, it has to be shown that:(∫ b

a

ρr(x) dx

)2

·

[∫ b

a

|f ′′(x)| ρr(x)−2 dx

]
≤ w2

tot ·
∫ b

a

|f ′′(x)| dx. (17)
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Special case: For β = 0 we can write ρr(x) = 3
√
|f ′′(x)|+ β = 3

√
|f ′′(x)|.

Therefore Inequality (17) reduces to a much simpler one, namely:(∫ b

a

3
√
|f ′′(x)|dx

)3

≤ w2
tot ·

∫ b

a

|f ′′| dx. (18)

To prove this, we will use Hölder's inequality. Hölder's inequality states that,
for p, q ∈ [1,∞] where 1

p + 1
q = 1, all measurable functions f, g on the domain

will satisfy
‖fg‖L1 ≤ ‖f‖Lp ‖g‖Lq

We can show that Equation (18) holds for any twice di�erentiable function.
Using ρr(x) = 3

√
|f ′′(x)|, then from Hölder's inequality it follows that∫ b

a

|ρr| dx =

∫ b

a

1 · |ρr| dx = ‖1 · ρr‖L1 ≤ ‖ρr‖L3 ‖1‖L3/2

=

(∫ b

a

|ρr|3 dx

)1/3(∫ b

a

13/2dx

)2/3

=

(∫ b

a

|f ′′| dx

)1/3

w
2/3
tot .

Taking the cube on both sides yields the desired result, meaning that Equation
17 holds for β = 0.

General case: For all values of β > 0 it is much harder to prove Equation
(17). The idea of the proof is to show that: as β increases, the left-hand-side of
Equation (17) is non-decreasing, Figure 12 illustrates that for adaptive sampling
with a constant number of points, the expected error increases as β increases.
The next step of the proof is to show that, as β → ∞, the error for adaptive
sampling approaches the error for homogeneous sampling, meaning in the limit
β → ∞, Equation (17) becomes an equality. From these two observations it
follows that for all 0 ≤ β <∞, Equation (17) must hold. A more detailed proof
can be found in Appendix (A).
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Figure 12: Illustration that the error after adaptive sampling increases as β
increases. The y-axis is Equation (14) multiplied with N2 to get a constant
value for each β. The function, for which the error is estimated, is f(x) =

sin(100x)·exp(− x2

0.12 ), which is show in Figure 14(a). For a di�erent test function
we would see a similar shape, but it may be shifted and/or scaled in both the
horizontal and vertical directions.

4.6 Benchmarks

For several test functions f in 1D we compare the performance of adaptive
sampling versus homogeneous sampling. We plot the error against the number
of points and �t a curve of the form c · Np through the points (for N > 100).
We use this to validate Equations (14) and (15), the estimate of the error when
using adaptive or homogeneous sampling. For comparison, the theoretical error
estimates of Equation (14) and (15) are also calculated. The various estimates
and �ts for the convergence can be found in Table 1.

Example: tanh(10x)
The function,

f(x) = tanh(10x) x ∈
[
−1

2
,

1

2

]
,

will be used as the �rst test function. Figure 13 show this function and plots
the error against the number of points. We see that as N becomes larger, the
predicted error and actual error get closer together.
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(a) (b)

Figure 13: In Figure (a) we see a plot of f(x) = tan(10x) in the domain
[
− 1

2 ,
1
2

]
and in (b) the error of the approximation for several values of N (the number
of points), for both adaptive sampling and homogeneous sampling. The solid
line is the expected error computed using Equations (14) and (15). Whereas
the dots represent the numerically integrated error when actually doing a linear
interpolation with N points.

Example: sin(100x) · exp(− x2

0.12 )
The same analysis can be applied on a di�erent test function,

f(x) = sin(100x) · exp(− x2

0.12
),

Figure 14 shows this function and the error against the number of points.

Function Method Theoretic Fit c ·Np Fit c ·N−2

tanh (10x)
Adaptive 0.69 ·N−2 0.76 ·N−1.996 0.78 ·N−2

Homogeneous 1.67 ·N−2 1.61 ·N−1.995 1.67 ·N−2
Reduction 0.41 0.47

sin (100x) · e−x2/0.12
Adaptive 14.52 ·N−2 19.88 ·N−2.026 16.99 ·N−2

Homogeneous 97.70 ·N−2 95.44 ·N−1.997 98.02 ·N−2
Reduction 0.15 0.173

Table 1: Convergence of error for various test functions. The reduction is de�ned
as the ca/ch.

Table 1 shows that the �ts appear to agree with the theoretical error esti-
mates. The exponent is very close to the expected exponent, 2. Furthermore
the estimated error and the actual error have the same order of magnitude and
are close to each other. The di�erence between the theoretical error and the �t
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can be explained by the assumption that adaptive would be able to perfectly
spread the points such that the loss of every interval would be equal. In practice
the algorithm is limited to inserting points in the middle of an existing inter-
val, which is not optimal in most cases, therefore the error we �nd in practice
is slightly worse than the predicted error. Even though the assumption that
the points would we perfectly spread was wrong, the resulting error estimate is
remarkably accurate.

(a) (b)

Figure 14: In Figure (a) we see a plot of f(x) = sin(100x) · exp(− x2

0.12 ) and
in (b) the error of the approximation for several number of points, for both
adaptive sampling and homogeneous sampling. The solid line is the expected
error computed by Equations (14) and (15). Whereas the dots represent the
numerically integrated error when actually doing a linear interpolation with N
points. We see that as N becomes larger, the predicted error and actual error
get closer together.
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5 Method to prioritise curved regions in higher

dimension

The reversed Visvalingam-Whyatt can be easily extended into higher dimen-
sions, taking the volumes spanned by two neighbouring simplices. As the eval-
uated points are not regular, it is di�cult to �nd an explicit formulation for
the curvature, other methods require more points as the number of dimensions
increases.

5.1 The loss function

So �rst we will extend the loss to higher dimensions. The N -dimensional sam-
pling strategy will have a similar loss as the 1-dimensional loss function (see
Equation (6)), where N denotes the input dimension, i.e. we have a function

f : RN → RM .

We will take the direct neighbours of a simplex, see Figure 15a for an example,
and based on only these points/simplices we will compute the loss. The base
triangle plus one extra neighbouring point will span a simplex (see Figure 15b-
15d), the volumes of these simplices give an indication of the local curvature.
Notice that the number of output dimensions (M) does not a�ect the formula,
as the number of points of the simplex is always N + 2, meaning we can express
the volume of this simplex in a (N + 1)-dimensional space, regardless of the
number of output dimensions, M . The volume {Vi}Ni=1 is computed for each
neighbouring point and the average of these volumes (V ) is used in the loss.
To scale the average volumes into something that is of the order of the second
derivative, we will divide it by the volume of the base simplex (Vs) to the power
2+N
N , i.e. V

2+N
N

s , this would be ∆x3 in 1D. This takes the place of the divisor,
a2b+ b2a+ c2b+ b2c, from Equation (6). Future work may investigate a better

divisor, but for this case we stick to V
2+N
N

s .
Similar to the 1D loss function, an extra term, β, will be added to tune the

exploration/exploitation behaviour. This yields the following function as the
loss:

L(s) = Vs ·
2+N
N

√
V

V
2+N
N

s

+ β where V =
V1 + V2 + ...+ VN

N
. (19)
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(a) A single triangle with its direct neighbours. (b) The simplex spanned by the base triangle
and one neighbouring point.

(c) The simplex spanned by the base triangle
and another neighbouring point.

(d) The simplex spanned by the base triangle
and the remaining neighbouring point.

Figure 15: In order to compute the loss of the triangle highlighted in (a), we
will average the volumes of the simplices constructed by connecting the base
triangle with one of the neighbouring points. These simplices are highlighted in
�gure (b)-(d).

5.2 Benchmarks

Similar to the examples given in 1D, the error for adaptive sampling can be com-
pared to homogeneous sampling in N dimensions. For these higher-dimensional
functions the integral of the error becomes very slow to compute directly. To
solve this issue, Monte-Carlo integration [8] was used to integrate the error over
the domain. Some test functions have been shown in Figures 16-18. Again a
curve of the form

Err = c ·Np

is �tted through the points. Now the �t is done for N ≥ 200, as for smaller N
the data points are not yet converged to a line. The results are shown in Table
2.
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(a)

(b)

Figure 16: In �gure (a) we see a plot of f(x, y) = tanh(5 · (x + y)) and in (b)
the error of the approximation for several number of points, for both adaptive
sampling and homogenous sampling.

(a)
(b)

Figure 17: Figure (a) shows a plot of f(x, y) = sin(2πx) · exp(−y2/0.32) and
Figure (b) shows the error of the approximation for several number of points,
for both adaptive sampling and homogeneous sampling.
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(a) (b)

Figure 18: Figure (a) shows a plot of f(x, y) = x2 + y2 and Figure (b) shows
the error of the approximation for several number of points, for both adaptive
sampling and homogeneous sampling. In contrast to the other test functions,
here the adaptive sampling strategy performs slightly worse than homogeneous
sampling.

Function Method Fit c ·Np Fit c ·N−1

tanh (5 · (x+ y))
Adaptive 2.03 ·N−1.036 1.60 ·N−1

Homogeneous 2.98 ·N−0.995 3.10 ·N−1
Reduction 0.51

sin (2πx) · e−y2/0.32
Adaptive 1.35 ·N−1.012 1.25 ·N−1

Homogeneous 2.24 ·N−1.025 1.90 ·N−1
Reduction 0.66

x2 + y2
Adaptive 0.51 ·N−1.035 0.41 ·N−1

Homogeneous 0.46 ·N−1.037 0.36 ·N−1
Reduction 1.14

Table 2: Convergence of error for various test functions.

From Table 2 we can see that the error reduces with a N−1 rather than N−2.
This can be explained because, as the number of points doubles, the distance
between two points changes with a factor

√
2 as the points are spread out in

two directions.
Furthermore we can still see that the adaptive sampling strategy is very e�ec-

tive for function which have a large di�erence in curvature across the domain.
For functions which have a constant curvature (like the quadratic function),
Adaptive performs slightly worse than homogeneous sampling. This is not sur-
prising, as every region would be equally interesting in a quadratic function,
homogeneous sampling already is optimal.
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6 Band structures

One practical application of Adaptive is analysing band structures and Fermi
surfaces of crystals. The band structure tells us what the allowed energy is of an
electron with a certain momentum in a crystal, this is used to predict properties
of the material. For example, the band structure combined with the Fermi level
will tell you if the crystal is a conductor, an insulator or a semiconductor.
Adaptive is particularly suitable for plotting the Fermi surface as this surface is
only a small subspace of the total domain, namely a 2D surface in a 3D domain.

6.1 Bloch's theorem

To �nd the band structure of a crystal we need to solve the time independent
Schrödinger equation (where ⇀r is the position vector):[

−~
2µ
∇2 + V (⇀r )

]
Ψ(⇀r ) = EΨ(⇀r ).

Where ~ is the reduced Plank constant, µ is the mass of the particle, V is a
potential (such as an electric �eld), E is the energy level of the system, Ψ is the
wave function, which represents the quantum state of the system. When doing a
measurement, one can determine from the wave the probability of each outcome,
for example: when measuring the position of a particle, from the wave-function
the probability of �nding a particle in a particular position can be determined.

If V (⇀r ) is a periodic function of ⇀r , the solutions of the Schrödinger equa-
tion can be written as linear combination of Bloch waves, denoted by ψ(⇀r ):

ψ(⇀r ) = ei
⇀
k ·⇀r u (⇀r ) ,

where ⇀u is a function with the same periodicity as the lattice. The wave
vector,

⇀
k , determines the direction and frequency of the Bloch wave. If we

have a potential V (⇀r ), the Bloch waves can be determined by �nding the
eigenfunctions of the Schrödinger equation, the eigenvalue then is the energy
(E) associated with this wave, to �nd the Fermi surface it is su�cient if E is
known, it is not necessary to �nd the actual wave function.

6.2 Fermi surfaces

We can vary the wave vector and compute the allowed energies, this de�nes a
function

E (
⇀
k ) : R3 7→ RM

which gives us the allowed energies for an electron with wave vector
⇀
k . Notice

that for a given wave vector there may be multiple allowed energies, but in the
example crystals we will only have a single band, so M = 1 for the examples.

The space of wave vectors is called the reciprocal space. In the reciprocal
space exist the reciprocal lattice, given the primitive lattice vectors {⇀a1,⇀a2,⇀a3},
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the reciprocal lattice vectors are given by:

⇀
b1 = 2π

⇀a2×⇀a3
⇀a1 · (⇀a2×⇀a3)

⇀
b2 = 2π

⇀a3×⇀a1
⇀a2 · (⇀a3×⇀a1)

⇀
b3 = 2π

⇀a1×⇀a2
⇀a3 · (⇀a1×⇀a2)

.

Mathematically the reciprocal lattice is the Fourier transform of the crystal
lattice. The Voronoi cell around the origin of this reciprocal lattice is called the
�rst Brillouin zone, we only need to know the energies inside this �rst Brillouin
zone, as outside it the wave vectors are equivalent to one wave vector inside the
Brillouin zone. Also note that

⇀
k lives in this reciprocal space, it is a linear

combination of
⇀
b1 ,

⇀
b2 ,

⇀
b3 .

We are interested in �nding and plotting the Fermi surface, the existence
of this surface is a consequence of the Pauli exclusion principle. The Pauli
exclusion principle states that no two electrons may exist in the same state, a
state is called occupied or unoccupied based on whether an electron exist in this
state. A result of the Pauli exclusion principle is that at most two electrons
(one with spin up and one spin down) can have the same wave vector. When
a crystal is cooled to absolute zero, the electrons will occupy those states with
the least energy, but as each state can only be occupied by one electron, all
states below some energy level are �lled and above this level all states will be
unoccupied, this energy level is called the Fermi level (EF ). When plotting the
band structure in 3d, this boundary between �lled and empty states forms a
surface, which is called the Fermi surface. From a mathematical point of view,
the Fermi surface is the isosurface at which E(

⇀
k ) = EF .

To �nd this surface using Adaptive, we use the same triangulation that is
already produced for �nding the losses. Every simplex that has one or more
points with a value above EF and one or more points below EF , crosses the
Fermi surface. On each edge of the simplices that cross the Fermi level we can
�nd the points at which the surface crosses the edge by linearly interpolating
the values in the corners, then we only need to connect the points to �nd the
part of the isosurface inside the simplex.

To compare the surface after adaptive sampling to the surface after homo-
geneous sampling, we will count the number of triangles of both surfaces and
compare these numbers, although this comparison is not perfect, it will give an
indication of the resolution of each surface.

We will do this for 4 types of crystals, shown in Figure 19: simple cubic (like
polonium), BCC (body centred cubic, like α-iron), FCC (face centred cubic,
like copper), and hexagonal (like emerald). Note that the Fermi surfaces shown
below do not represent the Fermi surfaces of the crystals given as example for
each structure type.

To evaluate E(
⇀
k ), we use the tight binding model, this model assumes that

an electron orbits one speci�c atom (it is `bound' to this atom, hence the name
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(a) Simple cubic (b) BCC (c) FCC (d) Hexagonal

Figure 19: Crystal structure for various crystals, these cells repeat inde�nitely
in all directions. Images taken from [11].

`tight binding'), and the electrons have some probability of hopping to a to a
neighbouring atom, then the electron is bound to this neighbour and with some
probability it may hop again. The evaluations of this model were performed
using the Kwant code[7].

6.2.1 Special loss function

As we are only interested in a tiny part of the domain, namely a surface which is
part of a 3D space, a slightly modi�ed loss function is used. As we are interested
in the parts where the function crosses the Fermi level, we will integrate this
into the loss function, using Lcurv to denote the loss from Equation (19), we can
de�ne a new loss:

Lisosurf(s) =


Lcurv(s) if E(k) > EF in all corners of the simplex

or E(k) < EF in all corners of the simplex

5Lcurv(s) otherwise (simplex crosses the Fermi surface)

(20)

This loss gives higher priority to simplices that are crossing the Fermi surface,
which is exactly what we want.

Figure 20 shows this loss applied to a function within a 2D domain, where
we get an isoline instead of a surface. The function we have used is

f(x, y) = x2 + y3 − 0.5,

on the domain [−1, 1]× [−1, 1]. The �gure shows the isoline where f(x, y) = 0,
with simplices prioritised according to the loss from Equation (20). The number
of segments that make up the line give an indication that the adaptive sampling
strategy give a smoother isoline. We can also see that the triangles that contain
the isoline are smaller in the adaptively sampled plot than in the homogeneously
sampled plot.
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(a) Isoline after 400 points of homogeneous
sampling, yielding a line consisting of 88 seg-
ments.

(b) Isoline after 400 points of adaptive sam-
pling, yielding a line consisting of 237 seg-
ments.

Figure 20: A plot of the function f(x, y) = x2+y3−0.5 with its triangulation and
an isoline at level f(x, y) = 0. We see that adaptive sampling with the custom
loss function favours adding more points in the neighbourhood of the isoline,
yielding a smoother isoline with the same number of function evaluations.

6.2.2 Comparison

Figures 21-24 show the Fermi surface for various crystals using the tight binding
model. The transparent container represents the �rst Brillouin zone. For the
homogeneous sampling, a grid of 15×15×15 points is used, so for the cases where
the Brillouin zone is not square, some of the points lie inside the �rst Brillouin
zone and some outside, yielding the surfaces outside the Brillouin zone.

We can restrict the surface to only the triangles which are inside the Brillouin
zone (the part we are interested in), this yields a plot which is similar to the the
adaptively sampled plot, except it consists of fewer triangles. For the adaptively
sampled plot, we will use the same number of points as are inside the Brillouin
zone for the homogeneously sampled plot, this number is proportional to the
volume of the Brillouin zone divided by the volume of its bounding box.

For each plot the Fermi level is taken to be EF = 0. Furthermore there
are two more parameters we need to chose, ε and t, normally these parameters
can be determined if the potential V (⇀r ) is known, but as we only want to
illustrate what Adaptive does, we will pick these parameters arbitrarily. t is the
hopping integral, this determines the probability of an electron hopping to a
neighbouring atom. For simple crystals (crystals with only one atom in the unit
cell) it only changes the amplitude of the band structure but not the shape, we
will pick t = 1 for the example. ε is the on-site energy and for simple crystals
it only o�sets the energy, it does not alter the shape or amplitude of the band
structure, ε is chosen for every crystal to give a visually nice looking Fermi
surface. Do notice that if we chose a di�erent value for ε or t, we could still
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�nd some Fermi level EF that would give the same Fermi surface. For more
complex crystals (with multiple atoms in the unit cell), the choice of ε an t does
in�uence the shape of the band structure.

Crystal
#triangles in 1st Brillouin zone

Homogeneous (153 pt) Adaptive Ratio

Simple cubic 4081 11640 (using 3375 pt) 2.85
Hexagonal 3994 9023 (using 2531 pt) 2.26

FCC 3086 5998 (using 1688 pt) 1.94
BCC 2134 2801 (using 844 pt) 1.31

Table 3: The number of triangles in the isosurface for various crystals using
either homogeneous sampling or adaptive sampling.

From Table 3 we can see that using adaptive yields about 1.3 to 3 times
more triangles on the isosurface than homogeneous sampling, with the same
number of points in the Brillouin zone. Meaning that, on average, the triangles
of the isosurface after adaptive sampling are about 1.3-3 times smaller than the
triangles after homogeneous sampling, yielding a smoother surface.

Furthermore, using Adaptive it is easier to restrict the function evaluations
to be inside the �rst Brillouin zone, as the way adaptive was constructed allows
all convex domains to be sampled.

We can make the same comparison with a di�erent amount of points, to look
how Adaptive compares to homogeneous sampling when varying the number of
points. Tables 4-6 show the number of triangles on the Fermi surface inside
the �rst Brillouin for 53, 103 and 203 samples respectively. From these tables
we can see that as the number of points increases, the ratio increases, meaning
Adaptive becomes better as the number of points increases. Furthermore it can
be noted that for a very low number of points, Adaptive perform quite bad,
or appears to perform quite bad. This can be explained by two factors: the
adaptive sampling algorithm �rst needs to evaluate a certain number of points
before it can accurately determine which regions are interesting. And secondly,
since we look for the isosurface and then count the number of triangles which are
(partially) inside the �rst Brillouin zone, we also count triangles which are only
a tiny bit in the Brillouin zone, this measure of resolution is therefore slightly
in favour of homogeneous sampling and has a relatively larger e�ect if there are
only a few triangles.

34



Crystal
#triangles in 1st Brillouin zone

Homogeneous (53 pt) Adaptive Ratio

Simple cubic 311 489 (using 125 pt) 1.57
Hexagonal 347 379 (using 94 pt) 1.09

FCC 328 256 (using 63 pt) 0.78
BCC 93 88 (using 32 pt) 0.94

Table 4: The number of triangles in the isosurface for various crystals using
either homogeneous sampling or adaptive sampling. After sampling 53 points
homogeneously, the number of points for adaptive is proportional to the volume
of the Brillouin zone divided by the volume of the bounding box.

Crystal
#triangles in 1st Brillouin zone

Homogeneous (103 pt) Adaptive Ratio

Simple cubic 1680 3321 (using 1000 pt) 1.98
Hexagonal 1643 2738 (using 750 pt) 1.67

FCC 1323 1890 (using 500 pt) 1.43
BCC 1270 922 (using 250 pt) 0.73

Table 5: The number of triangles in the isosurface for various crystals using
either homogeneous sampling or adaptive sampling. After sampling 103 points
homogeneously, the number of points for adaptive is proportional to the volume
of the Brillouin zone divided by the volume of the bounding box.

Crystal
#triangles in 1st Brillouin zone

Homogeneous (203 pt) Adaptive Ratio

Simple cubic 7509 27984 (using 8000 pt) 3.73
Hexagonal 7303 21634 (using 6000 pt) 2.96

FCC 6097 14314 (using 4000 pt) 2.34
BCC 4182 6482 (using 2000 pt) 1.55

Table 6: The number of triangles in the isosurface for various crystals using
either homogeneous sampling or adaptive sampling. After sampling 203 points
homogeneously, the number of points for adaptive is proportional to the volume
of the Brillouin zone divided by the volume of the bounding box.
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(a) Fermi surface after homogeneous sam-
pling. The isosurface consists of 4081 trian-
gles.

(b) Fermi surface after adaptive sampling.
The isosurface consists of 11640 triangles.

Figure 21: The isosurface of a simple cubic lattice with ε = −0.5.

(a) Fermi surface after homogeneous sam-
pling. The isosurface consists of 3994 trian-
gles that are (partially) inside the �rst Bril-
louin zone.

(b) Fermi surface after adaptive sampling us-
ing 2531 points. The isosurface consists of
9023 triangles.

Figure 22: The isosurface of a hexagonal lattice with ε = −0.5.
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(a) Fermi surface after homogeneous sam-
pling. The isosurface consists of 3086 trian-
gles that are (partially) inside the �rst Bril-
louin zone.

(b) Fermi surface after adaptive sampling us-
ing 1688 points. The isosurface consists of
5998 triangles.

Figure 23: The isosurface of a FCC lattice with ε = −1.

(a) Fermi surface after homogeneous sam-
pling. The isosurface consists of 2134 trian-
gles that are (partially) inside the �rst Bril-
louin zone.

(b) Fermi surface after adaptive sampling us-
ing 843 points. The isosurface consists of
2801 triangles.

Figure 24: The isosurface of a BCC lattice with ε = −1.
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7 Discussion and conclusion

In this thesis the algorithm withing Adaptive [12] is extended to N -dimensions.
This algorithm splits the domain in simplices and assigns a loss to each simplex,
then new points are added in the simplex with the highest loss.

Secondly for the one dimensional adaptive algorithm a loss function is devel-
oped which depends on the local curvature of the function. A formula is derived
to estimate the error after linearly interpolating the points using N adaptively
sampled points. We also show that the expected error in the L1-norm is when
using adaptive sampling is less than or equal to the error after homogeneous
sampling with the same number of points. However, when the curvature of the
considered function is almost constant across the domain, the expected error
for adaptive sampling and homogeneous sampling is almost equal and Adap-
tive might perform slightly worse in practice. But in practice, most interesting
functions have a varying second derivative, for which Adaptive performs better
than homogeneous sampling. As an extreme example: for the function

sin (100x) · e−x
2/0.12 x ∈

[
−1

2
,

1

2

]
,

the error (measured in the L1-norm) is reduced with a factor 5.5 when using
adaptive sampling as opposed to homogeneously sampling with the same number
of points .

The curvature loss is thereafter extended to the N -dimensional adaptive
sampling algorithm, again yielding a reduction in the error for functions which
have a varying curvature, and yielding a slight increase in error for functions
with constant second derivative.

When analysing Fermi surfaces, a slightly modi�ed loss function is used to
speci�cally add more points near the Fermi surface. This results in Adaptive
producing a plot of the Fermi surface with 1.3-3 times more triangles on the
Fermi surface within the �rst Brillouin zone, compared to homogeneously sam-
pling the same surface. This implies that on average the triangles are 1.3-3 times
smaller when using adaptive sampling, resulting in a smoother, more accurate
representation of the Fermi surface.

We conclude that using this adaptive sampling algorithm yields lower error
for functions with varying second derivative. And the adaptive algorithm with
a modi�ed loss function to sample Fermi surfaces produces smoother, more
accurate representations of the Fermi surface.

7.1 Suggestions for future work

There are some points where Adaptive can be improved. Mainly, implementing
an algorithm that uses anisotropic triangulations in higher dimensions is inter-
esting. That way the triangles can be long in one direction and short in an
orthogonal direction as to reduce the total error [6].

Furthermore the curvature loss function of the N -dimensional strategy can
be improved to more accurately approximating the curvature of the function
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inside a simplex, as the current loss function only roughly approximates the
curvature. Also the modi�ed loss function for �nding the Fermi surface can be
improved to ignore high curvature regions which are su�ciently far away from
the Fermi surface, as the current loss will also sample highly curved regions far
away from the Fermi surface, this is not always needed.

The implementation of Adaptive, speci�cally the Bowyer-Watson algorithm
can run faster by translating it to a faster programming language, like C++ or
Cython, instead of using python.

Furthermore some methods could be developed to let Adaptive chose the
points such that it generates `nice' meshes, where `nice' is dependent on the
application. For example many methods for solving partial di�erential equations
usually bene�t from having the triangles as close to equilateral as possible. Also,
when regarding PDE's, it would be interesting to look if a generated mesh could
be largely reused and adaptively coarsened in some places and re�ned in other
places. Speci�cally when adding a time dependence on the PDE, reusing the
same mesh would save time compared to building a new adaptive mesh from
scratch.

Lastly, in this thesis the number of triangles was used as an estimate of the
resolution of the sampling of the Fermi surface. Using a di�erent metric to
specify the accuracy of the approximation would be interesting, as an example
the average distance between the interpolated surface and the actual location
of the surface could be a good measure of the error.
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A Mathematical derivations

A.1 Proof adaptive is better in approximation

We want to show that Equation (17) holds for all values of β > 0. To prove
this, we will show that as β →∞ we get

(∫ b

a

ρr(x) dx

)2

·

[∫ b

a

|f ′′(x)| ρ(x)−2 dx

]
= w2

tot ·
∫ b

a

|f ′′(x)| dx.

And we will show that as β increases, the left-hand-side is non-decreasing.
Meaning we will show, for 0 < β <∞:

d
(∫ b

a
3
√
|f ′′(x)|+ β dx

)2
·
[∫ b
a
|f ′′(x)| (|f ′′(x)|+ β)

−2/3
dx
]

dβ
≥ 0. (21)

The �rst step is fairly easy, when β →∞ we can approximate

ρr(x) = 3
√
|f ′′(x)|+ β ≈ 3

√
β,

because f ′′ � β. From this we get:

(∫ b

a

ρr(x) dx

)2

·

[∫ b

a

|f ′′(x)| ρ(x)−2 dx

]
≈

(∫ b

a

β1/3 dx

)2

·
∫ b

a

|f ′′(x)|β−2/3 dx = w2
tot ·

∫ b

a

|f ′′(x)| dx.

To show that Equation (21) holds, we will �rst compute the derivatives of the
individual integrals. We use Leibniz's rule to swap the integration and di�eren-
tiation. The di�erentiation then becomes a partial derivative.

d

dβ

∫ b

a

(|f ′′(x)|+ β)
1/3

dx =

∫ b

a

∂

∂β
(|f ′′(x)|+ β)

1/3
dx

=
1

3

∫ b

a

(|f ′′(x)|+ β)
−2/3

dx,

and

d

dβ

∫ b

a

|f ′′(x)| (|f ′′(x)|+ β)
−2/3

dx =

∫ b

a

(
∂

∂β
|f ′′(x)| (|f ′′(x)|+ β)

−2/3
)
dx

= −2

3

∫ b

a

(
|f ′′(x)| (|f ′′(x)|+ β)

−5/3
)
dx.
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Now we can �nd the derivative of the combined function, for this we use the
product rule, (we will use ρr = 3

√
|f ′′(x)|+ β to make notation shorter, note

that ρr > 0 because β > 0).

d

dβ

(∫ b

a

ρr dx

)2

·

[∫ b

a

|f ′′(x)| ρ−2r dx

]
≥ 0⇔

2

3

(∫ b

a

ρr dx

)(∫ b

a

ρ−2r dx

)
·
∫ b

a

|f ′′(x)| ρ−2r dx

−2

3

(∫ b

a

ρr dx

)2

·
∫ b

a

(
|f ′′(x)| ρ−5r

)
dx ≥ 0.

This has a common term of 2
3

(∫ b
a
ρr dx

)
, which is always greater than zero, so

we can divide it out, so we need to show that:∫ b

a

ρ−2r dx ·
∫ b

a

|f ′′(x)| ρ−2r dx−
∫ b

a

ρr dx ·
∫ b

a

|f ′′(x)| ρ−5r dx ≥ 0. (22)

Next we will combine this into one big integral. We can do this by changing the
name of the integration variables, to get:

∫ b

a

ρ−2r (η) dη ·
∫ b

a

|f ′′(ξ)| ρ−2r (ξ) dξ −
∫ b

a

ρr(η) dη ·
∫ b

a

|f ′′(ξ)| ρ−5r (ξ) dξ ≥ 0.

Since η and ξ are independent of each other, we can pull one integral inside the
other and consider it a constant:∫ b

a

ρ−2r (η)·

[∫ b

a

|f ′′(ξ)| ρ−2r (ξ) dξ

]
dη−

∫ b

a

ρr(η)·

[∫ b

a

|f ′′(ξ)| ρ−5r (ξ) dξ

]
dη ≥ 0.

Which can be combined into a single integral:

∫ b

a

ρ−2r (η) ·
∫ b

a

|f ′′(ξ)| ρ−2r (ξ) dξ − ρr(η) ·
∫ b

a

|f ′′(ξ)| ρ−5r (ξ) dξ dη ≥ 0.

And since η does not depend on ξ, we can also pull the term ρr(η) inside the
inner integral:∫ b

a

∫ b

a

ρ−2r (η) |f ′′(ξ)| ρ−2r (ξ) dξ −
∫ b

a

ρr(η) |f ′′(ξ)| ρ−5r (ξ) dξ dη ≥ 0.

Which can then be rewritten into one big double integral:∫ b

a

∫ b

a

ρ−2r (η) |f ′′(ξ)| ρ−2r (ξ)− ρr(η) |f ′′(ξ)| ρ−5r (ξ)dξ dη ≥ 0.
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Then we note that the symbol for these variables does not matter, switching ξ
with η does not change the value, e.g. if we consider

g(ξ, η) = ρ−2r (η) |f ′′(ξ)| ρ−2r (ξ)− ρr(η) |f ′′(ξ)| ρ−5r (ξ),

then, because the symbol does not matter, we can write:∫ b

a

∫ b

a

g(x, y) dx dy =

∫ b

a

∫ b

a

g(y, x)dy dx.

And even more, since f ∈ C2, f ′′ is continuous, therefore g(x, y) is also contin-
uous. This means that we can use Fubini's theorem to �ip around the order of
integration:∫ b

a

∫ b

a

g(x, y) dx dy =

∫ b

a

∫ b

a

g(y, x)dy dx =

∫ b

a

∫ b

a

g(y, x)dx dy.

If we add g(x, y) and g(y, x) together and integrate, we get∫ b

a

∫ b

a

g(x, y) + g(y, x) dx dy = 2 ·
∫ b

a

∫ b

a

g(x, y) dx dy.

At �rst this does not appear very useful, but this integral can be shown to be
non-negative relatively easy:

g(x, y) + g(y, x) =

ρ−2r (y) |f ′′(x)| ρ−2r (x)− ρr(y) |f ′′(x)| ρ−5r (x)+

ρ−2r (x) |f ′′(y)| ρ−2r (y)− ρr(x) |f ′′(y)| ρ−5r (y)

Multiplying with ρ5r(x) · ρ5r(y) (which is always positive) yields

ρ3r(x)ρ3r(y) |f ′′(x)| − ρ6r(y) |f ′′(x)|+ ρ3r(x)ρ3r(y) |f ′′(y)| − ρ6r(x) |f ′′(y)| =
(|f ′′(x)|+ β)(|f ′′(y)|+ β) |f ′′(x)| − (|f ′′(y)|+ β)2 |f ′′(x)|+

(|f ′′(x)|+ β)(|f ′′(y)|+ β) |f ′′(y)| − (|f ′′(x)|+ β)2 |f ′′(y)|

Which can, by writing out all term, be written into:

β |f ′′(x)|2 − 2β |f ′′(x)| |f ′′(y)|+ β |f ′′(y)|2 = β (|f ′′(x)| − |f ′′(y)|)2 ≥ 0

Which means that g(x, y) + g(y, x) ≥ 0. So to show that Equation (22) holds:∫ b

a

ρ−2r dx ·
∫ b

a

|f ′′(x)| ρ−2r dx−
∫ b

a

ρr dx ·
∫ b

a

|f ′′(x)| ρ−5r dx

=

∫ b

a

∫ b

a

g(x, y) dx dy

=
1

2

∫ b

a

∫ b

a

g(x, y) + g(y, x) dx dy

=
1

2

∫ b

a

∫ b

a

β (|f ′′(x)| − |f ′′(y)|)2

(|f ′′(x)|+ β)5/3 · (|f ′′(y)|+ β)5/3
dx dy ≥ 0 �
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