
Netlist Level Based Fault Injec-
tion Simulation

Davide Belloli

;

Netlist Level
Based Fault
Injection

Simulation
by

Davide Belloli
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Thursday November 11, 2021 at 1:00 PM

Student number: 5131138
Project duration: November 1, 2020 – July 1, 2021
Thesis committee: Dr. Ir. S. Wong, TU Delft, supervisor

Dr. Ir. M. Taouil, TU Delft
Ir. D. Vermoen, Riscure BV
Dr. Ir. J. Dauwels TU Delft

Thesis number: Q&CE-CE-MS-2021-11

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

The issue of securing microchip designs against hardware attacks has grown in magnitude as more
and more embedded systems are deployed in hostile environments, where security measures have to
be taken to prevent attackers from accessing unwanted information.

The first step in solving this problem is gaining awareness of the security vulnerabilities in a design,
which can be done through a fault injection campaign. Current solutions tackle the issue by either
requiring silicon manufacturing for every prototype, which is expensive, or simulating faults using a
model of the device under test and of the possible faults being injected, which takes a considerable
amount of time. Some hybrid solutions have been developed to improve this aspect (namely, by using
FPGAs to implement the device and injecting faults on it instead), but they still require some form of
specialized hardware to operate.

Moreover, a gap still remains between the results from these tools and the work necessary to
update the design and mitigate the vulnerabiliies found. Results usually reference cells in the netlist,
while the development is mostly done in a high-level hardware descriptive language.

This thesis proposes two improvements to the currently existing workflow: first, it explores the
effectiveness of equivalence checking in tracing individual gates in the netlist representation back
to the RTL lines that generated them, and second, it builds on the simulation-based fault injection
approach by introducing a formal framework to prove the presence or absence of successful faults.

The results show that equivalence checking can significantly increase the number of cells recog-
nized as results of individual RTL lines of code, enabling a designer to better pinpoint which compo-
nents should be hardened against fault injection attacks. In terms of fault identification, the framework
described can reduce the number of faults to be simulated down to 2% of the number necessary to
exhaustively check a design for possible vulnerabilities, greatly speeding up existing simulation-based
approaches.

iii

Acknowledgements

I would like to thank all of the following people, in no particular order, for helping me during the devel-
opment of this thesis. Without their support this would not have been possible, especially given the
trying times we all had to go through in the past year.

• My daily supervisors Dr. Ir. Mottaqiallah Taouil and Cezar Weidig Reinbrecht, from TU Delft, for
their guidance both when developing each topic and when writing the thesis.

• My supervisors Dennis Vermoen and Alexandru Geana from Riscure BV, for their precious in-
sights and experience. Their suggestions and feedback helped me get more acquainted with the
field, and their open-mindedness allowed me to explore different directions from which to tackle
each problem.

• My parents Dario and Roberta, for unconditionally supporting my decisions, and helping me in
my studies especially during the pandemic.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 State-of-the-art . 2
1.3 Contributions . 3
1.4 Thesis Organization . 3

2 Hardware Attacks and Fault Injection 5
2.1 Attack Classification . 5
2.2 Fault Injection Techniques . 7
2.3 Practical Fault Injection Examples . 9

2.3.1 Optical Fault Injection Attack . 9
2.3.2 Clock Glitching Attack . 10
2.3.3 Focused Ion Beam Attack . 11

2.4 Fault Profiles . 12

3 Formal Verification 15
3.1 Hardware Development Process . 15
3.2 Simulation-Based Validation and Formal Verification . 17
3.3 Equivalence Checking . 18

4 Algorithm Optimization 21
4.1 Computational Complexity . 21

4.1.1 Case Study: Insertion Sort . 21
4.1.2 Θ Notation . 24
4.1.3 O Notation . 24
4.1.4 Ω Notation . 25

4.2 P and NP . 25
4.2.1 Reducibility . 26
4.2.2 NP-Completeness and Circuit Satisfiability . 26

5 Framework Overview 29
5.1 Functional components . 29
5.2 External tools . 29

5.2.1 YoSYS. 29
5.2.2 PyEDA . 31
5.2.3 Icarus Verilog . 31

5.3 Target description. 31
5.3.1 RISC-V ISA . 31
5.3.2 PicoRV32 . 32

6 Netlist to RTL Backtracking 35
6.1 Implementation . 35

6.1.1 Algorithm optimization . 37
6.1.2 Equivalence checking with Conformal . 40
6.1.3 Binary Decision Diagrams . 40

6.2 Results . 40
6.2.1 Evaluation parameters . 40
6.2.2 Tool output . 41

6.3 Discussion . 42

vii

viii Contents

7 Fault Injection 43
7.1 Outcome Characterization . 43
7.2 Abstraction Layers . 43

7.2.1 Netlist Layer. 44
7.2.2 ISA Layer . 44
7.2.3 Application Layer . 45

7.3 Workflow . 45
7.4 Netlist Layer. 46

7.4.1 Implementation . 46
7.4.2 Static Instruction set Analysis . 47
7.4.3 Semi-static Instruction Set Analysis . 48
7.4.4 Simulation Optimization . 48
7.4.5 Results . 49

7.5 Application Layer . 52
7.5.1 Implementation . 52
7.5.2 Hash Functions and HMAC . 52
7.5.3 Target Application Analysis . 54
7.5.4 Results . 55

7.6 Discussion . 58

8 Conclusion 59
8.1 Summary . 59
8.2 Future work . 60

A Code Listings 61
A.1 YoSYS synthesis script . 61
A.2 PyEDA modification: modified ast2expr() in pyeda/boolalg/expr.py 62
A.3 Original, signed SecureBoot target application . 62
A.4 Modified, unsigned SecureBoot target application . 62

Bibliography 63

1
Introduction

This chapter will provide a brief overview of the topic addressed in the thesis: the main driver that
motivated the exploration of hardware fault injection attacks, what the current state-of-the-art is with
regards to simulation of these faults with or without manufactured hardware, and the results of the
exploration in terms of new contributions to the research on the topic. Finally, each chapter will be
briefly summarized, to facilitate navigation of the work presented.

1.1. Motivation
As the world becomes more and more interconnected, the necessity for secure means of communica-
tion and storage of information continuously increase. In order to keep this information secure, software
developers employ encryption schemes to allow only authorized parties to access critical information,
write and implement authentication algorithms to verify their identity, and fuzz their applications to
remove as many vulnerabilities as possible.

Figure 1.1: Global Embedded Systems total market revenue projection [27]

Almost always, however, they assume that the hardware they run their code on is running as in-
tended, that the algorithm they wrote is faithfully executed by the processor or hardware accelerator of
their choice. This assumption is valid most of the time, but if an attacker is motivated enough, they can
invalidate it by means of hardware fault injection.

There are multiple ways to cause hardware to misbehave: injecting disturbances into its clock lines,
briefly reducing its supply voltage below the rated limits, all the way to more sophisticated attacks
such as targeting a specific area of a chip with magnetic or laser interference. These all break the
assumption that the code being executed is the one the programmer intended, and can possibly result
in dangerous security vulnerabilities.

As a result, hardware designers also had to adapt, in a joined effort to mitigate these faults and
ensure that they are eliminated, or at the very least detectable at the software level.

A snapshot of the industry from 2019 by the EE Times and Embedded [13] showed that 1 in 5
products still had no mitigation against hardware attacks, while about 1 in 4 only employed software
countermeasures, which are easier to bypass compared to hardware solutions (Figure 1.2).

1

2 1. Introduction

Figure 1.2: Types of fault injection mitigation implemented in the embedded systems market [13]

The tools currently available to find hardware vulnerabilities either require the device under test
to be manufactured, which is extremely expensive, or are simulation-based, which is slow and does
not provide results that can be re-utilized across runs. This thesis tackles this problem by introducing
static analysis to the workflow, resulting in a more efficient vulnerability discovery process with a higher
coverage compared to fuzzing techniques.

1.2. State-of-the-art
Hardware fault injection is hardly a new concept: in 1999, an article published on IEEE spectrum states
“Dedicated hardware tools are available to flip bits on the instant at the pins of a chip, vary the power
supply, or even bomb the system/chips with heavy ions”, indicating that the topic was well known at
the time [17].

For this reason, numerous tools have been developed to aid hardware designers in identifying
potential faults. They can be roughly categorized into three classes: hardware-based, simulation-
based, and emulation-based tools [35][48].

Hardware-based tools require the actual hardware to be manufactured. Once the device is pro-
duced, it is instrumented to inject faults, and a fault campaign is executed against it. Tools that fall into
this category include FIST [29], which uses heavy ions to irradiate a chip and introduce single or mul-
tiple bit-flips, and Messaline [12], which injects faults on each pin of an integrated circuit. These tools
provide the most accurate results, with the only unaccounted variable being manufacturing tolerances
between chips, but manufacturing costs for each prototype is high, and evaluating the effectiveness
of hardware mitigations requires production of each prototype, so using this technique alone can be
prohibitively expensive.

Simulation-based tools use a model of the target system, and simulate it applying different faults
at different times, modifying the model in order to inject faults at runtime. This relies on the availability
of models of the hardware faults that should be injected too. An example of simulation-based tools
is MEFISTO [33], which allows a designer to both add saboteurs to a VHDL model and mutate ex-
isting components in it by altering their characteristics (e.g. a NAND gate replaced by a NOR gate),
manually or automatically. A similar approach of augmenting a design with fault models is followed
by VERIFY [46]. Rather than augmenting the model by adding components to it, VERIFY augments
hardware components by adding fault injection signals, specifying their rate of occurrence. Compared
to hardware-based approaches, the advantages of simulation-based approaches are that there is no
associated manufacturing cost, the turnover time between discovering a fault and observing the effects
of hardening against that fault is shorter, and they require no specialized equipment. The downsides
are that the quality of the results depends on the quality of the fault models and of the simulation,
and that the time necessary to complete a fault injection campaign is higher due to the slow nature of
simulating a complex model.

Emulation-based tools use a prototype of the system, typically on an FPGA platform, and perform
fault injection on it rather than on an ad-hoc manufactured piece of hardware. They address the long
execution times of the simulation-based approach by using FPGAs to accelerate circuit simulation,
but since the FPGA is not an accurate representation of the final manufactured hardware, the results
are not as accurate as a hardware-based approach. Moreover, they still rely on correct modeling of
each fault, since the effects are emulated by extra circuitry, and are not generated by using any of

1.3. Contributions 3

the aforementioned hardware faulting techniques an attacker would utilize. One such tool is FITO,
which instruments the VHDL design with extra gates for fault injection, then synthesizes and writes the
resulting bitstream on an FPGA for real-time fault analysis [14]. Using an FPGA to reduce simulation
times has the same advantages and disadvantages as pure simulation-based approaches, trading
short execution times for a marginally higher cost. The issue of correctly modeling a fault is still
present.

1.3. Contributions
• Python library to parse, modify, and write YoSYS intermediate language files: YoSYS is an

open source synthesis tool, used during the project to alleviate some of the issues that come
with parsing a complex hardware description language such as Verilog. Due to the numerous
advantages of the simpler syntax found in its intermediate language representation, developing
a library to parse its syntax in order to perform analysis and instrumentation of a given netlist
was critical. This resulted in the creation of a Python library able to read and write intermediate
language dumps, with the ability to express each cell’s output as a boolean function of that cell’s
inputs.

• Automated annotation recovery to identify RTL components in a netlist: injecting faults at
the netlist level produces results truer to how the hardware would behave once implemented,
but it’s hard to perform mitigations at this level of abstraction. For this reason, an algorithm was
developed to trace netlist cells back to the lines of code that generated them.

• Development of a framework to analyze netlist-level faults: as previously mentioned, netlists
are closer to the hardware representation of a component compared to the high-level description
components are usually implemented in. For this reason, a workflow was implemented to per-
form static fault propagation analysis at the hardware level, and then dynamically check which
faults would result in unwanted behaviour given an execution trace. This differs from previously
attempted approaches due to its formal nature, which has the potential to achieve 100% fault
coverage.

• Successful exploitation of a SecureBoot implementation: as a proof-of-concept, the frame-
work thus developed was used to perform a fault injection attack on a simple SecureBoot imple-
mentation, with the goal of causing it to execute code with an invalid signature.

1.4. Thesis Organization
The rest of the report is divided into 6 chapters.

Chapter 2 will discuss the major fault injection vulnerabilities, how fault injection is performed in the
real world, and types of fault that one might expect when observing the effects on the functionality of
the device under test.

Chapter 3 will provide an overview of formal verification, a process at the core of the algorithms
used to map netlist cells to lines of code in the high-level hardware description language.

Chapter 4 will motivate the important role of optimization when operating on hardware designs. It
will first introduce the common notation used when describing the computational load of an algorithm,
and then quantify the complexity of the problems that had to be solved by the framework.

Chapter 5 will give a high-level overview of the framework that was created, describing the function
of each element as well as the reason why each element was introduced. It will also briefly describe
the target chosen for validating the tools.

Chapter 6 will dive more in detail into the netlist-to-RTL backtracking algorithm, presenting the
theory behind the algorithm, the expected outputs of the tool, and the results obtained when running
the tool against the proof-of-concept target.

Chapter 7 will focus on the fault injection part of the work. It will explain why fault injection at the
netlist level was considered valuable, how the task of simulating faults at this level was implemented,
and how it was carried out on the proof-of-concept target.

Chapter 8 will summarize the results obtained during the research, discuss the limitations of the
developed tools, and indicate future lines of work that could branch from the described toolchain.

2
Hardware Attacks and Fault Injection

Stressing a device outside of its regular operating conditions can result in behaviour that diverges from
the expected. These effects can be exploited by an attacker to cause a controlled malfunction in a
chip, possibly resulting in security vulnerabilities, such as bypassing of security features, exposure of
sensitive information, or writing to protected memory regions. This chapter will introduce the most
common types of hardware attacks currently in use. First, the most commonly used classification
scheme will be described, which is used to better understand the properties of a given attack. Then,
the most commonly used fault injection techniques will be enumerated, specifying which classes they
belong to and giving a short description of their operating principles and effects. Some examples of
practical fault injection attacks will then be given, so that the reader can better understand how these
techniques are used in the real world, as well as the severity of the exploits that can be triggered using
fault injection. Finally, the higher-level outcome of hardware faults on the circuitry affected, also known
as their profile, will be described.

2.1. Attack Classification

Figure 2.1: Hardware attacks classification scheme

In order to analyze the different effects that fault injection can have on a device, it is useful to
separate hardware attacks into classes based on the target of the attack, the technique used, the
part of the design that is being affected, and the development phase in which they are performed
(Figure 2.1).

The possible target classifications are the following:

• IP: attacks that attempt to clone or modify the intellectual property in a chip without authorization

5

6 2. Hardware Attacks and Fault Injection

from the original manufacturers. One such attack would be to obtain a chip, remove the protective
layers around the die, and use an electron microscope to identify each component and reverse-
engineer the implemented logic.

• Functionality: attacks that try to change the functions being implemented by the chip. Examples
include adding extra functionality to a design, known as a hardware trojan, before it is manufac-
tured, so that the product will misbehave in controlled ways after it is deployed.

• Data: attacks that try to read or modify data used by the chip during computation. An attack
falling into this category could be imaging of a ROM storing private keys on a die: one-time
programmable (OTP) ROMs usually store data by burning links between interconnects, and by
visually inspecting which links are intact and which are not, the private data contained could be
read.

In terms of technique, the following classification is made:

• Non-invasive: attacks that do not require modifying the hardware, such as exposing the chip
die, in order to be performed. Non-invasive attacks typically cause the chip to misbehave by
exceeding its physical ratings, such as operating temperature, voltage, or clock speed.

• Semi-invasive: attacks that require exposure of the die in order to be performed. The afore-
mentioned data attack performed by imaging a ROM is one such attack. It would be impossible
without removing at least some of the protective layers surrounding the die, but does not require
modification of the die itself to be carried out.

• Invasive: attacks that require exposure and modification of the die by, for example, cutting in-
terconnects or adding new connections. An example would be to change the contents of an
OTP ROM by cutting extra interconnects, resulting in a different private key being used when
encrypting and decrypting data.

As for the part of the design affected, there are three possible classes:

• Node: attacks that target cells that implement a specific functionality. Exceeding the physical
ratings of a product to force it to perform out-of-spec operations is one such attack, as is inserting
a trojan at design-time to read stored data that would have otherwise been inaccessible.

• Interconnect: attacks that target the connection between cells. An attack that would be classified
as targeting the interconnect would be using a very thin probe to read the voltage values of an
internal bus, to sniff sensitive data being sent through it.

• Access: attacks that target the input and output ports of a design. For example, one such attack
could be to use a hardware trojan to mask the existence of undisclosed functionality in a chip
during testing, by mimicking the nominal output when it detects that a pre-deployment test is
being run.

Finally, in terms of phase, the following categories are used:

• Design: attacks that are performed during the design phase of a product. Hardware trojans
added into third-party library components are an example: if a company decides to outsource
the design of a cryptographic accelerator, the external party involved could add backdoors into
this component to leak unencrypted data after deployment.

• Manufacturing: attacks that are performed while the chip is manufactured. A different kind of
hardware trojan could be added here: instead of inserting the extra functionality in a high-level
language that is then synthesized into logic gates and wires, it can be directly added by the
manufacturing plant, even if all the parties involved in the design step are not compromised.

• Field: attacks that are performed after the chip is manufactured and sold. The previously men-
tioned attacks that try to cause specific out-of-spec behaviour (by violating temperature, voltage
or clock speed constraints) all fall under this category.

2.2. Fault Injection Techniques 7

Figure 2.2: Bridge between two pads fabricated using focused ion beam deposition [3]

While this last classification, dependent on the time in the product lifecycle where the attack is
performed, is useful when describing hardware attacks in general, its utility is limited when addressing
fault injection attacks specifically, as all of them are performed in the field. Hardware attacks performed
at design-time or during manufacturing can only be performed by IP vendors or manufacturing compa-
nies, and generally try to either add functionality to allow unauthorized access to sensitive data (e.g.
private keys, certificates), or to steal intellectual property for financial gain. While protecting against
these attacks is no less important than hardening a product against fault injection, the methodologies
used to mitigate the former are very distinct from the one used to prevent the latter, and are outside
the scope of this project.

2.2. Fault Injection Techniques
Given the aforementioned classes of hardware attacks, it is useful to categorize some common tech-
niques of fault injection to better understand them.

• Focused Ion Beam: this technique involves using specialized equipment similar to a scanning
electron microscope, that uses ions instead of electrons to bombard a very small area of a chip
die. Other than the imaging functionality shared with a regular scanning electron microscope, ion
beams can also be used to add and remove material from a chip, cutting traces or creating test
points. This allows an attacker to change the functionality of a chip, effectively forcing wires to
assume a fixed value regardless of the gates connected to it. It could be used to bypass security
checks, or read memory cells that were made inaccessible by blowing one-time-programmable
fuses.

In the classification system, this attack would fall under the following categories: targeting func-
tionality, invasive, affecting nodes or interconnects.

• Laser Cutting: similar to the focused ion beam technology, laser cutting stations allow an at-
tacker to modify functionality on a chip by breaking connections, etching test points, or exposing
lower layers selectively. It, however, does not allow an attacker to deposit material, so other
techniques have to be used if the goal is to re-create broken connections or add new ones.

The classification of this attack is the same as the one for focused ion beam: targeting function-
ality, invasive, affecting nodes or interconnects.

• Voltage glitching: every chip has an operating range for its supply voltage, reported in its
datasheet. Temporarily exceeding this range in either direction can cause timing violations, caus-
ing the wrong data to be latched into flip-flops, or cause some wires to cross the 0/1 logic thresh-
old, once again resulting in the wrong data being written to the internal state. Both the timing and
the intensity of the violation can be controlled to only affect a specific instruction, but controlling
the area in which the glitches will manifest is much harder, as all cells in the same power domain
will see a supply voltage range violation.

8 2. Hardware Attacks and Fault Injection

Figure 2.3: Scanning Electron Microscope image of an interconnect cut using a laser [6]

This attack can be classified as follows: targeting data or functionality, non-invasive, affecting
nodes.

Figure 2.4: Top: voltage glitching, bottom: clock glitching [49]

• Temperature: all chips also have an operating temperature range, and exceeding this range can
result in faulty behaviour. Overheating can result in bit flips or timing violations, as temperature
and propagation delay are correlated [38]. This type of attack has a very low spatial and tem-
poral resolution, since it is impractical to rapidly cool or overheat only a portion of a chip without
affecting the rest of it.

Temperature attacks target data or functionality, are non-invasive, and affect nodes.

• Clock glitching: if one of the clocks being used by the chip under exam is supplied externally,
one could introduce spurious transitions, or increase the frequency until timing violations occur.
If the clock pulse length is smaller than the largest propagation time (corresponding to the critical
path), it’s possible to affect the data clocked into flip-flops, resulting in unexpected behaviour. Not
unlike voltage glitching, the temporal resolution is very high, but the spatial resolution is not: all
cells in the same clock domain can be affected. If the target is at the end of a long combinational
path, it will be easier to affect it and not other cells, but that is not guaranteed.

Clock glitching attacks are classified as targeting data or functionality, non-invasive, and affecting
nodes.

2.3. Practical Fault Injection Examples 9

• Electromagnetic injection: by placing inductors close to a chip’s interconnects, it’s possible to
couple the two, and induce electric currents inside the chip by energizing the inductors, causing
localized bit flips. This can all be performed with a high time resolution without exposing the die,
although spatial resolution will be limited. This allows an attacker to cause transient faults and,
once again, change the behaviour of the chip.

This type of attack targets data, is non-invasive, and affects interconnects.

Figure 2.5: Examples of electromagnetic fault injectors [42]

• Optical: another attack vector that uses electromagnetic fields involves exposing the bare die
to a strong light pulse, such as a laser. Depending on the strength of the pulse, the wavelength
chosen, and the width of the beam, it can result in very localized bit flips at any layer, down to a
single transistor for a time in the range of nanoseconds.

Optical attacks target data, are semi-invasive, and affect nodes and interconnects.

Figure 2.6: Optical fault injection testbench [15]

2.3. Practical Fault Injection Examples
To further describe the real-world effects that can be obtained with the techniques previously described,
two different attacks will be analyzed.

2.3.1. Optical Fault Injection Attack
One of the first practical attacks employing strong light pulses to induce faults is described in the paper
Optical Fault Induction Attacks, by Sergei P. Skorobogatov and Ross J. Anderson [47].

The target selected was a simple 8-bit Microchip PIC microcontroller, with 68 bytes of static RAM.
Once the bare die was exposed, the SRAM region could be located, and individual transistors were
targeted by masking all adjacent areas with aluminium foil. Using an inexpensive photoflash lamp, the
authors were able to induce single bit flips in any location: looking at Figure 2.7, causing a fault in
transistor T3 resulted in the flip-flop changing state, while targeting T4 resulted in the opposite state
change. By upgrading from a photoflash lamp to a laser pointer, the authors also managed to control
the exact timing of the injection, enabling more sophisticated attacks against other devices.

10 2. Hardware Attacks and Fault Injection

Figure 2.7: Schematic of a CMOS SRAM cell

This attack illustrates how relatively inexpensive equipment can be repurposed to carry out a tar-
geted optical attack, both in terms of affected area and in temporal resolution.

2.3.2. Clock Glitching Attack

Another practical attack, demonstrated in 2017, involves introducing glitches in the clock signal used
by an FPGA to attack an AES implementation [55].

AES is a cipher algorithm widely used to encrypt data [22]. It falls under the category of symmet-
ric key encryption schemes, meaning that the same key can be used both to encrypt and decrypt a
message. The variant used in this attack uses a 128 bit secret key, and performs 10 rounds of the
following operations: SubBytes, ShiftRows, MixColumns, and AddRoundKey. The algorithm was im-
plemented by the authors in VHDL so that each round was performed in 1 clock cycle (for a total of 11
cycles including key preprocessing), and was then loaded onto an FPGA. The researchers then used
an external function generator as the reference clock, and by slowly increasing the clock frequency
during the MixColumns operation in round 9 (Figure 2.8), they were able to induce timing violations in
the FPGA, causing either one byte glitches (model 1) or 4 byte glitches (model 2). Model 1 faults were
particularly interesting because the key could be recovered by the authors by observing the output
of just 6 different ciphertexts. Choosing an appropriate frequency allowed the authors to exclusively
cause faults following this model (Figure 2.9), enabling them to quickly find the secret key.

Figure 2.8: Oscilloscope trace of the glitched clock signal [55]

2.3. Practical Fault Injection Examples 11

Figure 2.9: Fault profiles at different glitch frequencies [55]

2.3.3. Focused Ion Beam Attack
Yet another practical fault injection attack was demonstrated in 2013, and involved the use of a focused
ion beam to replicate physically unclonable functions (PUFs) [30].

In order to prevent counterfeiting of devices, hardware designers have been using the process
variations during manufacturing to generate components that have a deterministic output, but at the
same time are hard to replicate. These are known as PUFs, and are used for different hardware
authentication schemes. Given an external stimulus (also known as a challenge), each device will
generate a unique response, which acts as a digital fingerprint. By recording multiple responses to
different challenges, the designer can build a table of challenge-response pairs that uniquely identifies
each device, and can then verify the authenticity of a deployed device by checking that the response
to a given challenge matches the one recorded before deployment.

Figure 2.10: Authentication mechanism using a PUF

A simple yet effective implementation of a PUF is an SRAM, consisting of an array of cells each
storing a single bit of information. When the device is first powered on, the value assumed by an
ideal cell has equal probability of being a logical 0 or 1, and the value assumed by each physical cell
depends on physical variations of the transistors that implement them. The manufacturer can then
supply the challenge as an address to read, and obtain the response by recording the value at that
address.

Since the responses to each challenge are stored in the memory array, if an attacker can gain
access to the array and read its contents, they would know the answer to any challenge. The authors
of [30] describe a way to then clone the PUF on a different chip, so that its responses will be identical
to the original.

The target device chosen is an 8-bit microcontroller by Atmel, namely the ATMega328P. It was first
de-capped so as to expose the backside of the chip, and prepared for milling by removing the excess

12 2. Hardware Attacks and Fault Injection

silicon. By observing the infrared emission of the SRAM on the chip, they were able to extract the
values of each cell at start-up (Figure 2.11).

Figure 2.11: Reflected image of the SRAM array to be cloned with overlaid infrared emission image [30]

The next step involved using a focused ion beam on an identical device to clone the start-up value
from the target. The new device was prepared similarly to the target, its SRAM start-up value was
read, and then portions of silicon were removed with the beam, so that bits that had values opposite
to the target were flipped, as seen in Figure 2.12. The result was an array of SRAM cells that had the
same start-up behaviour as the target, and that was still fully functional as none of the transistors were
completely removed.

Figure 2.12: Results of FIB milling under an electron microscope [30]

2.4. Fault Profiles
The classification introduced so far focuses on the available means to inject a fault. Another interesting
aspect, especially useful when attempting to create a model that can be used during simulation, are
the effects that faults have on individual signals and transistors.

A major distinction in this regard can be made between transient and permanent faults.
Transient faults only last for a limited number of clock cycles, as long as the external stimulus that

created a faulty condition is maintained, after which the device resumes normal operation. Faults of
this kind are generated, for instance, by optical or electromagnetic means, or by glitching the supply
voltage or one or more clock domains. Due to their nature, they can manifest themselves only under
certain operating conditions. Examples of such faults are:

• Single Event Upset: as the same suggests, the fault profile is that a single signal or stored bit is
temporarily flipped to the opposite state.

• Multiple Event Upset: likewise, if multiple SEUs are concurrently injected into a system, multiple
bits will be flipped at the same time.

The kind of fault induced by cutting a trace, as is done with laser or focused ion beams, is not
transient, but permanent. In these cases, the value of a signal or a group of signals is irreversibly
affected, and the effects are less likely to remain unnoticed during normal operation. Examples include:

• Single Event Latchup: the fault profile is that a high current is induced in one of the MOSFETs
in a logic port, potentially destroying it. While it can be cleared by resetting the entire device, if
left unchecked can result in a stuck-at fault.

2.4. Fault Profiles 13

• Single Event Burnout: a MOSFET exceeds its rated maximum temperature and is permanently
damaged, resulting in a stuck-at fault.

Given these different fault profiles, more abstract models can be used to express the effect each
of them has on the data carried by the affected wires. These models are useful when simulating fault
injection attacks, more so than fault profiles, because they only express the outcome of injecting a
fault, regardless of the underlying mechanism that caused it, and that is all the information necessary
to simulate a particular fault. For instance, whether a flip-flop is damaged by excessive voltage, or the
trace connecting it to the supply voltage is cut with a laser, the result is the same: its output is stuck to a
logical value regardless of the data at its inputs. The following fault models express the most common
effects of injecting a fault:

• Stuck-at 0: typical of single event latchups and single event burnouts, a signal is forced to the ‘0’
value permanently.

• Stuck-at 1: signal is forced to the value ‘1’ permanently.

• Open line: found when cutting a trace, the value of a signal is neither high nor low, but in a third
state of high impedance.

• Bit flip: found in single event upsets, the value of a signal is flipped to its complementary for a
limited amount of time.

• Delay: possible when timing violations occur, such as when performing clock glitching attacks.
The value of a signal is delayed by one or more clock cycles.

These fault models can then be used to simulate the effects a fault would have on the hardware
realization of the device under test.

3
Formal Verification

Hardware development is an iterative process, where the design is continuously refined to meet re-
quirements by looking at simulation behaviour as well as outputs from automated tools. A high-level
overview of the process can be seen in Figure 3.1. Validation and verification are integral parts of this
process, as both of them allow designers to identify bugs early and adjust the design accordingly.

Figure 3.1: Typical hardware design process

This chapters will show the major components of the hardware development process, and the
central role played by formal verification in ensuring the correctness of the final product. The formal
language employed by formal verification played a central role in the thesis, as it allows one to prove
whether two portions of the design at different stages of development implement the same functionality.
This can be used to identify high-level constructs at lower levels of abstraction, making the hardening
process once a vulnerability is found much simpler.

3.1. Hardware Development Process
When designing an integrated circuit, the first step is the delineation of a set of requirements and speci-
fications that the final product should adhere to. These include strictly functional requirements, specify-
ing what functionality the product should implement, as well as non-functional requirements, indicating,
for instance, the operating conditions that the product should tolerate, or the physical dimensions that
should not be exceeded, or the type of technology that should be used during manufacturing.

From these requirements, a first, high-level hardware implementation is derived, using a language
such as VHDL or Verilog. These languages allow designers to describe what the hardware will look like
with varying degrees of abstraction, from software-like functional statements down to individual gates.

15

16 3. Formal Verification

The resulting description is then tested against the previously defined requirements, and adjustments
are made iteratively until the result is satisfactory.

Of note is that designers hardly ever work directly with individual gates at this stage, as that would
be impractical and error-prone. Instead, they use higher level descriptions of what the hardware should
do, such as those seen in Figure 3.2. Just like software developers do not typically write programs
directly in assembly language, hardware developers do not usually describe hardware at the gate level.
Instead, they use other tools to obtain a gate-level description of the design, which are collectively
classified as synthesizers.

Figure 3.2: Verilog description of a synchronous counter

If the high-level description satisfies the given requirements, it is synthesized into a list of gates and
interconnects, called a netlist, and the result is, once again, checked to ensure that the specifications
are met. If that also succeeds, another transformation is performed on the netlist to obtain a bitstream,
which can be used to program an FPGA and obtain a first hardware prototype of the final product.
Further checks are performed on this prototype, and then the circuit is ready for manufacturing.

The overall development process is not too dissimilar from that of a software product: a list of spec-
ifications is created, a first implementation is generated, then the implementation is tweaked until it
matches the given specifications, and using external tools it is converted into a low-level representa-
tion that the hardware (or the manufacturing plant in the case of hardware products) can understand.
Formal verification, however, is extensively used in hardware development, while in software develop-
ment it is only used if misbehaviour of the application will have catastrophic consequences [25]. The
main reason behind this disparity is cost.

Figure 3.3: Relative cost of fixing defects in various development stages [20]

Catching bugs early is necessary to reduce development costs, as the average cost of fixing a
defect exponentially increases the further a product is in its lifecycle, as shown in Figure 3.3. While
this growth is fairly constant in software development, hardware development has a much higher jump
in cost from the prototype stage to the manufacturing stage. The cost per chip is relatively low for large
volumes, but each mask used for chip manufacturing can cost from around 100000 dollars for a 180nm
node size up to more than 1.4 million dollars for a 28nm node size [7]. It is imperative, therefore, to en-
sure that any possible defect introduced during the design stage is identified and removed, something
that cannot be accomplished by validation alone.

3.2. Simulation-Based Validation and Formal Verification 17

Figure 3.4: Simulation-based testing diagram [26]

Figure 3.5: Formal verification diagram [26]

3.2. Simulation-Based Validation and Formal Verification
In order to check whether a design is implementing the necessary functions, a way to write values to
its input ports and read the results from its output ports is necessary. During simulation, this is done
with (usually unsynthesizable) code that interfaces with the device under test by emulating peripherals
attached to it, recording the values of each signal, called a testbench.

In a typical functional simulation, every piece of the testbench is written by the designer: a set of
stimuli is selected and compiled into a test suite, and each of them is input to the device under test
using a driver. Then, the design is simulated, the outputs are captured by a monitor and compared
against the output of a reference model, and a pass or fail status is recorded based on whether the
two match (Figure 3.4).

This process is useful in the first stages of development, to catch bugs as early as possible, and is
extensively used both in hardware and software development due to its generic nature. If a product can
be simulated or executed, whether it is hardware or software, functional simulation can be performed.

In order to catch as many bugs as possible, the input stimuli have to be carefully crafted to exercise
all parts of the design, including any possible edge cases that require special handling of the inputs. A
large number of test cases can be obtained by using random inputs, but the quality of the test results
ultimately depend on the skills of the designer and the amount of time spent generating test cases.

More importantly, a design passing all tests does not guarantee the absence of bugs: an input
sequence that causes the device under test to malfunction could always exist outside of the test suite.
In other words, it is never possible to guarantee that every part of a design is working exactly as
intended without checking every possible input. This becomes infeasible very quickly if the device
under test stores information in an internal state, as every input has to be checked with every state
combination to ensure correct implementation of RTL functionality at the netlist level. This is the gap
that formal verification fills.

Formal verification is the act of proving that an algorithm satisfies a certain set of specifications
defined at design-time [28]. It has the same goal as functional simulation - to identify bugs in the
design. In formal verification, however, no test suite, driver, or monitor is necessary: the tool itself
performs checks automatically (Figure 3.5). The designer specifies a set of assumptions that constrain
the inputs according to the design specification, and a set of assertions that express properties of
the outputs that should always hold. This is much less error-prone than manually specifying test
cases, because specifications are formalized in the same assertions-assumptions format during the
first stages of the design process.

18 3. Formal Verification

Since the device under test is essentially a network of logic gates and flip-flops, it can be repre-
sented as a set of mathematical equations, which can be used by the tool to prove that the given
assertions logically follow from the given assumptions.

The mathematical nature of formal verification allows this procedure to prove the absence of bugs
in a design, something that is infeasible by means of functional simulation. The downsides are that the
complexity of the tools necessary is higher, and the time necessary to obtain a result longer, which is
why simulation-based testing is still used during the development process.

3.3. Equivalence Checking
Equivalence checking is the portion of formal verification concerned with proving that two representa-
tions of a design exhibit the same behaviour [39]. It is applied throughout the design process, and on
different scopes. One of its uses is to prove that the netlist output of a synthesis tool exactly implements
the functions specified at a higher level of abstraction.

The need for equivalence checking post-synthesis comes from the fact that there might be bugs in
the synthesis tools, which could lead to an incorrect netlist output from a correct RTL input. The goal
of equivalence checking is to identify whether any bugs were triggered during the synthesis process.
It does so by mathematically proving the logical equivalence between the input RTL and the output
netlist.

There are two kinds of equivalence checking: sequential equivalence checking, where the goal is
to prove that two finite state machines are equivalent, and combinational equivalence checking, which
aims to prove whether two sets of gates implement the same boolean function.

Figure 3.6: Product machine for sequential equivalence checking [36]

Formally, sequential equivalence checking proves whether two finite state machines produce iden-
tical output sequences for all valid input sequences [36]. The classical way of verifying this statement
for two state machines M1 and M2 is to create a product machine as shown in Figure 3.6, and ver-
ifying that for any input sequence x, λ = 0. The problem can be reduced to proving that there is a
characteristic function ρ : S → {0, 1}, such that:

ρ(s0) = 1

ρ(s) = 1⇒ ∀x, ρ(δ(x, s)) = 1

ρ(s) = 1⇒ ∀x, λ(x, s) = 1

(3.1)

where δ is the next state function and λ is the output of the combined state machine.
Combinational equivalence checking, on the other hand, aims to prove that two different implemen-

tations of the same boolean function are equivalent. It involves the following steps:

3.3. Equivalence Checking 19

Figure 3.7: Schematic representation of logic cones [43]

Figure 3.8: Binary Decision Diagram for the boolean function f(x1, x2, x3) = (x1x2) + ¬x1 ∧ ¬(x2∨̇x3))

• Read: the implemented design and the golden reference are read, and segmented into groups of
logic gates bordered by registers, ports, or black boxes called logic cones, as shown in Figure 3.7.

• Match: the output of each logic cone is considered a compare point, and compare points are
matched between the two designs using both function and non-function based methods, such as
name-based matching. This maps logic cones from the reference design to the corresponding
logic cones in the implemented design.

• Verify: matched logic cones are compared to each other, checking that the functions they imple-
ment are equivalent.

The output of the tool will be a set of comparison points with mismatching logic cones. If none are
reported, the pre- and post-synthesis representations are mathematically proven to behave the same
way for all inputs.

Since the logic cones being compared can be expressed as boolean functions, the problem of com-
binational equivalence checking can be reduced to a boolean function equivalence problem. There are
two basic techniques used for boolean reasoning: binary decision diagrams (BDDs) and satisfiability
problem solving (SAT).

BDDs are representations of boolean functions as directed acyclic graphs, where each non-leaf

20 3. Formal Verification

node represents a variable, each leaf represents an output of the boolean function, and each edge
represents an assignment of TRUE or FALSE to that variable. An example is shown in Figure 3.8.
The output of the function can be determined by traversing the graph starting from the root node, and
choosing the next edge based on the value assigned to the variable in the current node. For example,
in order to determine the output of the function in Figure 3.8 for x1 = 0, x2 = 1, x3 = 0, starting at the
top node, the right edge will be followed, then the left edge again, and finally the right edge, landing on
the leaf node 0.

The advantageous property of these structures is that they have a canonical form, called Reduced
Ordered Binary Decision Diagram, which, given a variable ordering, is shared among all equivalent
boolean functions. This makes equivalence checking trivial, since all that has to be done is to check
whether the two canonical BDDs are equal [16].

Alternatively, the problem of equivalence checking can be expressed as a reductio ad absurdum
SAT problem: two functions are equivalent if there is no input for which they are different. In symbols:

f1 ≡ f2 ⇔6 ∃x, f1(x)∨̇f2(x) = True (3.2)

where ∨̇ indicates the exclusive-or function.
If the expression f1(x)∨̇f2(x) can never be satisfied, then the two functions will have the same

output for all inputs, and are equivalent by definition.
While SAT is a known NP-complete problem [34], with no known polynomial-time algorithm for

deterministic computers, multiple heuristic solvers exist with varying degrees of optimization, able to
solve problems involving tens of thousands of variables [41]. This makes it practically feasible to use
SAT solvers to check designs for equivalence.

One such optimizations is the use of cutpoints: internal equivalence points used to decompose
large expressions into smaller ones. The existence of cutpoints cannot be guaranteed in general, but
experimental analysis of real-world designs showed that the number of internal equivalence points
is significant, and that equivalence checking algorithms can and should exploit these similarities to
reduce their execution time [37].

4
Algorithm Optimization

While the central part of developing any algorithm is the correctness of the functionality being devel-
oped, an important practical aspect is that of computational complexity. In short, for an algorithm to be
practical, it should yield results in a reasonable amount of time.

This is of particular importance when treating notoriously hard problems, such as checking whether
a boolean function can ever be true, or verifying that two boolean functions are equivalent to one
another. Since a large portion of the work described in this thesis revolves around these complex
operations, particular care was taken to optimize the algorithms developed to some degree, so that
they would be more than theoretical proof-of-concepts.

This chapter aims to provide a cursory understanding of the terminology used when describing the
complexity of an algorithm, such as O-notation and NP-completeness.

4.1. Computational Complexity
When evaluating the time and memory required to solve a problem with a given implementation, the
number of variables involved is very high. Everything from the language chosen to write the algorithm,
to the operating system from which it is launched, to the type of processor it is run on (architecture,
cache size, memory bandwidth, clock frequency) can affect how long the program will take to produce
an answer.

In order to better compare different algorithms, and choose the ones that are better suited for the
problem at hand, all of these parameters have to be abstracted away. To do this, an ideal Random
Access Machine, or RAM, is defined. This machine can execute all of the operations typically found in a
modern computer in a constant amount of time. These instructions include arithmetic operations such
as addition and multiplication, instructions to move data around such as load and store, and control
flow instructions such as jump and return. Instructions that require an operand work with limited-size
items, so that an arbitrary sized input cannot be processed all at once, which would be unrealistic for
any real-world computer.

The random access machine thus defined is deliberately fuzzy in its definition. Some operations
may or may not be performed in a constant amount of time by it. For instance, an arbitrary computer
cannot perform exponentiation in a constant amount of time, but can however compute 2k with a single
instruction for a limited range of k values. Moreover, it does not model the memory hierarchy found in
modern computers at all, something that can heavily influence the computation time in practice. Taking
all of these variables into account would result in a more accurate time estimation, but would also make
the analysis more difficult to perform. Regardless of these limitations, analyzing the characteristics of
an algorithm on this machine can yield useful insights into how a program behaves with different inputs.

4.1.1. Case Study: Insertion Sort
As a simple example, consider the algorithm described in Algorithm 1. Given an array A of numbers,
it will sort its elements from smallest to largest. To do so, it looks at each element in the array one at a
time, from first to last, and moves each element preceding it to the right until the sub-array is sorted.

21

22 4. Algorithm Optimization

Figure 4.1: Schematic diagram of a random access machine

Algorithm 1 Insertion sort pseudocode

Require: A unsorted array of numbers
Ensure: A sorted from smallest to largest

1: for j = 2 to A.length do
2: key = A[j]
3: i = j − 1
4: while i > 0 ∧A[i] > key do
5: A[i+ 1] = A[i]
6: i = i− 1
7: end while
8: A[i+ 1] = key
9: end for

The time required to execute said algorithm on the RAM depends on the input A: if the array
contains 100 numbers, the algorithm will take longer than it would on an array of only 10 numbers. The
time taken also depends on the initial position of the elements in the array, as the inner while loop will
run for fewer iterations if the key is already in the correct position. In general, the time required by an
algorithm will grow with the size of the input, so the complexity is most often expressed as a function
of the size of its input data.

The definition of “size of its input data” can vary from problem to problem: for sorting algorithms it
is the number of elements in the input, for exponentiation it is the number of bits required to represent
the input. Other times, it is more appropriate to describe the size of the input with more than one
dimension, such as when treating matrix operations. It is important to note, however, that the definition
of “size of the input data” is dependent on the problem at hand, not on the algorithm used to solve it.
This makes it possible to compare possible solutions, and choose the one that is fastest for a set size.

When analyzing an algorithm, the execution time is defined as the number of primitive opera-
tions necessary to calculate the solution. Describing a universal definition of a primitive operation can
be hard, as seen when outlining the concept of a RAM, but for practical purposes, we can assume
that each line of code requires a constant number of operations. Different lines may require different
amounts of primitive operations to execute, but the number of operations is a set constant regardless

4.1. Computational Complexity 23

Line number Cost Number of executions
1 c1 n
2 c2 n− 1
3 c3 n− 1
4 c4

∑n
j=2 tj

5 c5
∑n

j=2 tj − 1

6 c6
∑n

j=2 tj − 1

7 0
∑n

j=2 tj
8 c8 n− 1
9 0 n− 1

Table 4.1: Complexity analysis for the insertion sort algorithm

of the input data. This hypothesis is compatible with the RAM model, and is also reflected in how
real-world computers execute code.

For Algorithm 1, we can associate a cost ci to each line, indicating the number of atomic operations
necessary to execute that line. The total time taken will then be equal to the sum of the costs multiplied
by the number of times each line is run. These counts will be expressed as a function of the input size
n, so as to obtain a generic formula for the execution time. The results are reported in Table 4.1, where
tj is the number of times the while loop will be run for the j-th iteration.

The total execution time will be therefore:

T (n) = c1n+ c2(n− 1) + c3(n− 1) + c4

n∑
j=2

tj + c5

n∑
j=2

(tj − 1) + c6

n∑
j=2

(tj − 1) + c8(n− 1)

Even for inputs of the same size, this time may vary greatly based on how the input numbers are
arranged. In the best-case scenario, the input array is already sorted, and tj will be equal to 1 for all
iterations. The time required will reduce to:

T (n) = c1n+ c2(n− 1) + c3(n− 1) + c4(n− 1) + c5(n− 1) + c6(n− 1) + c8(n− 1)

This can be expressed as a linear function of n an+b, where a and b depend on the (constant) execution
time of each line. When the array is not sorted, however, the time required changes drastically: in the
worst-case scenario, where the array is inversely sorted (from highest to lowest), tj is always equal to
j, resulting in the following:

T (n) = c1n+ c2(n− 1) + c3(n− 1) + c4

(
n(n+ 1)

2
− 1

)
+ c5

(
n(n+ 1)

2

)
+ c6

(
n(n+ 1)

2

)
+ c8(n− 1)

This function can be expressed as an2 +bn+c, which is a quadratic function with constants depending,
once again, on the execution time of each line of code. As n increases, this function increases much
more quickly than the one obtained in the best case, highlighting how the input size is not the only
parameter to consider when calculating the execution time requirements of the algorithm.

In most practical applications, the metric used to determine the performance of an algorithm is the
worst-case execution time. There are multiple reasons behind this choice:

• The worst-case execution time is an upper bound on the execution time of an algorithm for any
input. Knowing this value, the algorithm is guaranteed to return an answer within this time period,
without any other hypothesis on the input data.

• For most algorithms, the worst case execution time is much more likely to occur than the best-
case or average-case execution time. For example, when searching a hash in a database, the
worst-case execution time occurs every time the hash is not in the database.

• The average-case execution time is often in the same order of magnitude as the worst-case
execution time. Take for instance the insertion-sort algorithm: on average, half of the elements
will have to be checked by the while loop in each iteration to determine where to place each
element. Thus tj ≈ j/2, resulting in a quadratically increasing execution time.

24 4. Algorithm Optimization

• The average-case execution time often requires some level of statistical analysis on the expected
input data, as well as more assumptions on what the average case looks like for a given problem.

Yet another simplifying assumption used in practice is considering only the fastest-growing term in
the execution time function. For insertion-sort, the best-case execution time is said to grow linearly,
while the worst-case execution time grows quadratically, disregarding all terms with a lower degree.
This is because the interesting behaviour is that observed for very large values of n, where execution
times might be measured in the order of hours or more.

4.1.2. Θ Notation

(a) Example of Θ(g(n)) (b) Example of O(g(n)) (c) Example of Ω(g(n))

Figure 4.2: Graphical representations of different complexity notations

As previously mentioned, the most widely used metric for determining the time required for an
algorithm to run is its asymptotic complexity. A more rigorous definition of asymptotic complexity is the
following: for a given function g(n), Θ(g(n)) indicates the set of all functions such that:

Θ(g(n)) = {f(n) : ∃c1, c2, n0 > 0 : 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) ∀ n ≥ n0}

A graphical representation is shown in Figure 4.2a. In less formal terms, a function f(n) is in the
Θ(g(n)) set if and only if there are two constants c1 and c2 such that f(n) is between c1g(n) and c2g(n)
past a certain value n0. As an example, the function T (n) for insertion sort in the worst-case is Θ(n2),
because as n approaches infinity, 0.5n2 < T (n) < 2n2, as the lower-degree terms in T (n) contribute a
smaller and smaller fraction compared to the second degree term. Note that the constants associated
with the higher-degree term are also irrelevant, since for any function f(n) = ank, it is sufficient to
choose c1 < a, c2 > a in the definition of Θ(g(n)) to find functions that are part of the set.

4.1.3. O Notation
The Θ notation just described bounds the function f(n) both from above and below. When the goal
is to only find an upper bound on the given function, an alternative notation is used, called big-o or O
notation. The definition is the following:

O(g(n)) = {f(n) : ∃c, n0 > 0 : 0 ≤ f(n) ≤ cg(n) ∀ n ≥ n0}

As can be seen from the example in Figure 4.2b, this notation limits the function only from above.
This is a superset of the functions in Θ(g(n)), which have an extra condition for the lower bound. For
example, taking the T (n) for the worst-case execution in insertion sort, it still holds that T (n) ∈ O(n2).
It also holds true that any linear function is in O(n2): given a generic f(n) = an + b, one can choose
c = a+ |b| and n0 = max(1,−b/a) to ensure that cn2 ≥ f(n) ∀ n ≥ n0.

This notation is more commonly used than the more stringent Θ notation because it is simpler to
prove, and still provides enough information to determine which algorithm has better performance (a
O(n) algorithm is always asymptotically better than a O(n2)). It will be the notation of choice when
describing the computational complexity of the algorithms described in this document.

4.2. P and NP 25

4.1.4. Ω Notation
Just as the lower bound requirement can be removed from the Θ notation to obtain the O notation,
the upper bound requirement can be lifted to obtain another notation, called Ω-notation. The definition
then changes as follows:

Ω(g(n)) = {f(n) : ∃c, n0 > 0 : 0 ≤ cg(n) ≤ f(n) ∀ n ≥ n0}

In this notation, the function is only bounded from below, and can grow arbitrarily large at any rate,
as shown in Figure 4.2c. Ω(g(n)) is also a superset of Θ(g(n)), because once again the definition of
Θ(g(n)) has an extra condition for the upper bound.

This notation is only sporadically used, when for instance the goal is to show that an algorithm is
at least as bad as another. Since it does not provide an upper bound, both f1(n) = 2n and f2(n) = n2

can be shown to be Ω(n2), even though the former will grow at a much quicker rate than the latter.

4.2. P and NP

Figure 4.3: Relationship between P and NP problems

Most algorithms have a worst-case execution time ofO(nk) for some constant value of k. Examples
include insertion sort (O(n2)), linear search in an array (O(n)), and search in a sorted binary tree
((O)(log(n))). All of these problems are said to belong to the P class, or class of problems that have
polynomial-time solutions.

However, not all problems can be solved in polynomial time. A classical example is the “halting
problem”: given a Turing machine, a program and an input sequence, it is impossible to determine
whether the machine will halt, regardless of the time available [54]. Some other problems can be
solved, but not in O(nk) [32].

There is another class of problems for which there is no known polynomial solution, but that are
also not proven to have strictly exponential computation time. These are known as NP problems.

The NP class contains all problems that can be verified in polynomial time: given a candidate
solution, it takes O(nk) time to verify whether it is an actual solution, where n is the length of the
input to the problem. This means that every problem in the P class is also part of the NP class:
obtaining solutions can be done in polynomial time by definition, and comparing the solution with the
given candidate can also be done in polynomial time. It is still unknown, however, whether P is a

26 4. Algorithm Optimization

Figure 4.4: Examples of growth of complexity curves. NP problems have curves similar to the ones orange and sky blue

proper subset of NP or P = NP . If P = NP was proven true, it would mean that all problems
currently considered intractable have a polynomial-time solution, but currently NP problems are still
exceptionally hard to compute (Figure 4.3 and Figure 4.4).

4.2.1. Reducibility
A very useful tool to identify whether a problem is in P or NP is that of reduction. Intuitively, a problem
Q can be reduced to another problem Q′ if it’s possible to rewrite all instances of Q as instances of Q′.
For example, the problem of solving a linear equation ax + b = 0 can be rewritten as the problem of
solving a quadratic equation 0x2 +ax+b = 0, and solving this problem yields the answer to the original
equation. The insight provided by reduction is that, if Q can be reduced to Q′, it is at worst as hard to
solve as Q′.

A problem Q is said to be reducible in polynomial time to Q′ if there exists a function f that maps
solutions to Q into solutions to Q′, and x is a solution to Q if and only if f(x) is a solution to Q′.
Polynomial reduction is a powerful tool to prove that a problem belongs to P: if Q can be reduced to Q′

in polynomial time and Q′ belongs to P, then Q also belongs to P.

4.2.2. NP-Completeness and Circuit Satisfiability
Among all problems in the NP class, the hardest ones are known as NP-complete. These problems
have the added characteristic of being at least as hard as every other problem in NP, or that they can
be reduced in polynomial time to any other problem in the NP class. If these were proven to have a
polynomial-time solution, it would imply that all problems in NP also have a polynomial-time solution,
hence their relevance in the P = NP discourse.

One such problems is that of circuit satisfiability: given a set of interconnected logic gates, prove
that there is a set of inputs that causes the output to be TRUE. The naïve solution is to extensively
check all possible combinations for inputs and see whether the output is ever TRUE. Since each
boolean variable can be either TRUE or FALSE, the number of test cases is 2n, resulting in a Ω(2n)
complexity (assuming that the number of gates is polynomial with respect to the size of the input).

To prove that the problem is NP-complete, it must first belong to the NP class, meaning that it can
be verified in polynomial time. This can be done using the following algorithm: given the logic circuit
C and a set of wire assignments K, the algorithm checks for each logic gate whether the output found
in K is correct given the inputs in K. If this is the case, and the output of the overall circuit is TRUE,
the algorithm returns TRUE, else it returns FALSE. The algorithm thus described executes a number
of operations linear with the number of gates, which is assumed to be polynomial with respect to the
number of inputs. It therefore runs in polynomial time, so the circuit satisfiability problem is in NP.

The second part is to prove that the circuit satisfiability problem is at least as hard as every other

4.2. P and NP 27

problem in NP, or that every problem in NP can be reduced in polynomial time to a circuit satisfiability
problem. The entire proof can be found in Introduction to Algorithms by Cormen et. al. [18], but the
intuitive idea is to write a given NP problem as an algorithm to run on a simplified computer, composed
of a working memory and a combinational circuit that operates on it. It is possible to create a function
that reduces a NP problem into an algorithm that can be run by this computer in polynomial time, and
the computer itself will run the algorithm in polynomial time. This proves that the circuit satisfiability
problem is at least as hard as any other NP-class problem, and is therefore NP-complete.

The proven difficulty of treating circuit satisfiability problems has guided the optimization efforts
during the development of the entire framework. The most tangible improvements were obtained by
reducing the number of circuits that had to be satisfied, as the computation time was dominated by the
O(2n) term introduced by satisfiability algorithms.

5
Framework Overview

In order to obtain concrete results from the tools developed in this thesis, a number of different tools
had to be used, ranging from Verilog simulators to compilers for the processor architecture chosen.
The goal of this chapter is to provide an overview of how all of these components fit together at a high
level, followed by a short description of the external tools that were selected to realize some of these
components. A description of the design targeted during the thesis will also be given, both in terms of
the generic architecture selected and in terms of the specific implementation chosen.

5.1. Functional components
Two main research directions were followed during this project. The first was concerned with estab-
lishing relations between netlist components and RTL components, while the aim of the second was to
implement a more formal approach to netlist fault simulation, reducing the computational requirements
of netlist-level fault injection simulations at the same time. Figure 5.1 shows how the two components
fit together into the framework. The setup phase uses readily available components to generate a
netlist, a preprocessed RTL with a simplified structure, and an execution trace for the target application
running on the netlist. The execution phase uses the developed scripts to perform annotation recovery
and netlist fault simulation. The two are completely independent, and were treated as such during
development.

Generation of the annotated netlist uses the synthesis output and a pre-processed version of the
RTL design, and matches parts of the former to parts of the latter using equivalence checking. The
inner workings of the algorithm are discussed in chapter 6.

Fault injection is performed in two steps. First, the synthesized netlist is statically analyzed to
determine which glitches would generate faults that will affect the state of the processor. For each fault,
the accessory conditions necessary for this to happen are also calculated. Once the static analysis
is complete, the trace from simulating the target application is used to check when the propagation
conditions are met, and to track which states will be affected in subsequent clock cycles. Given a set
of conditions that, if met, would result in a vulnerability, the output will be a set of faults that result in
those conditions being met. More in-depth discussion of the algorithms used will follow in chapter 7.

5.2. External tools
In order to facilitate development and reduce the chances of errors in the core algorithms used to
implement the aforementioned functional components, some external tools were used, namely YoSYS,
PyEDA, and Icarus Verilog.

5.2.1. YoSYS
Previous research attempts directly used Verilog design descriptions to perform hardware vulnerability
analyses, but struggled with supporting all the features that are part of the Verilog language specifica-
tion [50]. This resulted in multiple preprocessing steps, necessary to rewrite unsupported constructs
in more simple forms.

29

30 5. Framework Overview

Figure 5.1: Framework functional block diagram

Object name Function
Module Describe a collection of cells and wires, exposed to other components via ports
Cell Instantiate modules
Wire Represent a physical wire interconnecting two or more cells
SigSpec Connect cell ports with wire objects, constants, or a concatenation of both

Table 5.1: List of synthesizable constructs in the YoSYS intermediate language specification

A more robust alternative is to use existing tools to perform the necessary preprocessing step. One
such tool is YoSYS, the Yosys Open SYnthesis Suite.

YoSYS is a vendor-agnostic open-source synthesis framework [11]. Many other tools exist to per-
form synthesis of an RTL description into a netlist, both free and commercially licensed. Examples
include Genus [5], developed by Cadence, and Vivado [10], developed by Xilinx. Each of them has
unique features, and optimizations for specific FPGA layouts. The unique feature of YoSYS used
throughout the development of the tools is its ability to represent Verilog hardware descriptions into a
simpler intermediate language, called the YoSYS intermediate language, RTL intermediate language,
or RTLIL. The specification for this language is also freely available [53].

The RTLIL is functionally equivalent to Verilog, and conversion to and from Verilog can be easily per-
formed using YoSYS’s command pairs read_verilog/write_ilang and read_ilang/write_verilog.

The synthesizable portion of the RTLIL consists of a very small set of simple objects, which can
be parsed with ease: modules, cells, wires, and sigspecs. A short description of each is reported
in Table 5.1.

Both the RTL description and the netlist synthesized equivalent can be represented using these
objects, with the only difference being the abstraction level of the cells being instantiated, described
as high-level functions first, and then gradually mapped to a given cell library during the synthesis
process.

Synthesis is controlled using scripts, where a design is read first, then elaborated with one or more
commands, and finally written to disk. The script used throughout this project to convert an RTL design

5.3. Target description 31

into a netlist is reported in section A.1.

5.2.2. PyEDA
Since the entire work presented here revolved around analyzing logic networks, it was necessary
to find a library that supported evaluation and manipulation of boolean functions, the mathematical
abstraction of collections of logic gates.

Boolean function operations were performed using PyEDA, a Python library for electronic design
automation [21].

This library provides routines to simplify functions, evaluate them given a set of inputs, compose
them, convert them to their canonical binary decision diagram representation, and check their satisfia-
bility, among others.

The library had to be slightly modified to be able to load and store the results from one script to
the next. More specifically, it was adapted to correctly parse stored literals, necessary to successfully
reconstruct boolean functions from a file into memory. The changes made are reported in section A.2.

A limitation of PyEDA is that boolean variable names can only contain a subset of all printable
characters, so wire names could not be used directly in boolean expressions. The solution adopted
was to map each wire to a unique name only containing allowed characters, and storing the mapping
between Verilog names and PyEDA variable names.

5.2.3. Icarus Verilog
The tool used to simulate Verilog code was Icarus Verilog [23]. This is an open-source simulation and
synthesis tool, able to compile and simulate Verilog IEEE-1364 components.

Icarus Verilog compiles Verilog source code into executable programs for simulation, using vvp, or
other netlist formats for synthesis and further processing. Here only the simulation part will be used, to
generate a VCD trace containing the value of each wire in the design at every simulation time instant.

5.3. Target description
The target selected for validation of the developed tools was PicoRV32, an open-source, configurable
RISC-V processor [52]. It is optimized for size and maximum clock frequency, and can be configured
to, among other things, perform hardware multiplication, division, and interrupt handling.

5.3.1. RISC-V ISA
RISC-V is an open standard instruction set architecture, based on reduced instruction set computer
(RISC) principles [9]. It implements a common load-store architecture, with a small number of instruc-
tions that allow for simpler, more efficient designs. It is designed to be modular and extensible, with a
small core ISA and multiple standard extensions (Figure 5.2).

Figure 5.2: RISC-V instruction set architecture extensions [44]

32 5. Framework Overview

Register name Symbolic name Description Saved by
x0 zero Always zero -
x1 ra Return address Caller
x2 sp Stack pointer Callee
x3 gp Global pointer -
x4 tp Thread pointer -
x5 t0 Temporary/alternate return address Caller
x6-7 t1-2 Temporary Caller
x8 s0/fp Saved register / frame pointer Callee
x9 s1 Saved register Callee
x10-11 a0-1 Function argument / return value Caller
x12-17 a2-7 Function argument Caller
x18-27 s2-11 Saved register Callee
x28-31 t3-6 Temporary Caller
f0-7 ft0-7 Floating point temporary Caller
f8-9 fs0-1 Floating point saved register Callee
f10-11 fa0-1 Floating point argument / return value Caller
f12-17 fa2-7 Floating point argument Caller
f18-27 fs2-11 Floating point saved register Callee
f28-31 ft8-11 Floating point temporary Callee

Table 5.2: RISC-V integer and floating point registers, and ABI usage

Contrary to other architectures, RISC-V was developed with the explicit intent of being an open-
source, academic-friendly architecture, with no royalties to be paid. The base specification is inten-
tionally simple, describing instruction encodings, control flow, registers, and integer operations. It is
sufficient to implement a general-purpose processor, with a general-purpose compiler to develop soft-
ware to run on top of it.

The base specification includes 32 general-purpose integer registers, which can be coupled with
32 more floating-point registers if the F extension is implemented. A description of their usage, which
can be found in the application binary interface (ABI), is shown in Table 5.2.

As previously mentioned, accessing memory is performed with a load-store architecture: instruc-
tions can only operate on registers, and specific load and store instructions are used to read values
from and write them to memory, respectively. The byte ordering is little-endian, with the least significant
bit coming first and the most significant bit last.

The standard instruction encoding is fixed in size to 32 bits, simplifying the instruction decoding
process. The downside is that the resulting code size is larger than other instruction sets. To address
this issue, the C extension was added as part of the specification, allowing for a commonly used subset
of instructions to be encoded in 16 bits instead [51].

5.3.2. PicoRV32
PicoRV32 is a good candidate for a proof-of-concept target due to its non-trivial complexity and modest
size. Being a processor, its runtime functionality can be affected without changing the hardware,
allowing for exploration of multiple failure modes. At the same time, it is not prohibitively complex, as
that would increase the time required to verify the functionality of each component in the framework.
Moreover, if the toolchain can be proven to work on this processor, it is very likely that it will also work
on non-programmable designs, with functionality that is fixed in hardware and that do not require any
firmware to run.

A block diagram of the main functionality of the core is shown in Figure 5.3. It features a simple,
single-stage pipeline, so instructions require multiple clock cycles to execute (its CPI is 3-6 clock cycles
per instruction for simple arithmetic, up to 40 cycles for multiplication [52]). It does not support out-
of-order execution nor does it feature IEEE-754 floating point support. It connects to memory via a
standard AXI-4 interface [1].

The processor configuration chosen included support for hardware multiplication (M extension) and
compressed ISA (C exension). The following is a full list of the parameters that were toggled compared

5.3. Target description 33

Figure 5.3: Block diagram of the PicoRV32 RISC-V core [31]

AND2X2 cells 584
AOI21X1 cells 1293
AOI22X1 cells 291
INVX1 cells 2065
MUX2X1 cells 254
NAND2X1 cells 2169
NAND3X1 cells 450
NOR2X1 cells 2190
NOR3X1 cells 71
OAI21X1 cells 5456
OAI22X1 cells 327
OR2X2 cells 160
XNOR2X1 cells 86
XOR2X1 cells 57
Total cells 18356

Table 5.3: Synthesis statistics for PicoRV32 in the chosen configuration

to the default configuration:

• COMPRESSED_ISA: enables support for the C RISC-V extension.

• ENABLE_MUL: enables support for the M RISC-V extension, adding a hardware multiplier to the
design.

• ENABLE_DIV: enables support for hardware division, also part of the M extension.

• ENABLE_IRQ: enables support for external interrupts.

To better indicate the size of the design under exam, post-synthesis metrics are reported in Ta-
ble 5.3.

Generating software for the processor to run was done through the GCC toolchain, an open-source
collection of compilers for different languages and target architectures [4]. The two lanugages used
were C and RISC-V assembly, and the target architecture was riscv32imc.

6
Netlist to RTL Backtracking

Since netlist-based simulations are closer to the hardware layer compared to RTL-based ones, it is
preferable to perform fault injection campaigns at this level, as the results would be more comparable
to how the chip will perform once it’s etched in silicon.

Netlist fault simulations, however, pose a challenge for a designer interested in hardening their
product: because the abstraction level is lower, adding mitigations at this level can be a tedious task.
The functional blocks developed during the design process are no longer clearly distinguishable, mak-
ing it harder to assess what the effects of a fault in a specific cell would be on the overall functionality
of the chip.

Of note is that some tools do partially preserve the RTL to netlist mapping information during
synthesis. YoSYS, for example, can keep track of flip-flops across each transformation step, and
reports the mapping between them and register declarations in the RTL with Verilog annotations. This
information is however quite limited: all other logic gates are no longer mappable to the RTL lines that
generated them, and distinguishing functional blocks by only looking at the flip-flops they are connected
to might be impossible.

The proposed solution to this problem is to reconstruct the mapping information lost during synthe-
sis by means of equivalence checking. The core principle is the following: assuming that the synthe-
sized design exactly implements the functionality described at the RTL level, if the output of a netlist
cell and that of an RTL cell are functionally the same, then the two are equivalent, and that portion of
the netlist was obtained by synthesizing the corresponding RTL section. This approach has the added
benefit of being agnostic to the synthesis tool utilized: its only requirement is that the RTL and netlist
are functionally equivalent, which can be verified using formal verification tools.

This chapter will guide the reader through the implementation details of this step: how to find
sections of netlist that match lines of RTL code, how to use this information to reconstruct netlist
metadata, and the optimization techniques that had to be used in order to reduce the computation time
to a reasonable amount. After describing some of the optimization attempts that failed, the results of
the tool will be described, comparing the metadata of a pristine netlist with one processed by the tool.

6.1. Implementation
In order to prove that two wires are functionally equivalent, it is necessary to express them as functions
of common input variables, which can be mapped via other means between the two levels of abstrac-
tion. Once that is done, known algorithms for checking the equivalence of boolean functions can be
employed, and when an equivalence is found, an annotation can be added to the netlist wire referring
back to the corresponding RTL wire.

The input variables chosen were flip-flops and top-level inputs. The reason is that flip-flops store
the value at their input only on the rising or falling edge of the clock, so their output can be considered
fixed when determining the boolean function corresponding to a wire. Similarly, top-level inputs are, by
definition, inputs to any function expressed by the gates in the netlist, so they too are endpoints when
generating boolean functions.

The boolean functions themselves are obtained by recursively backtracking the netlist until only

35

36 6. Netlist to RTL Backtracking

Figure 6.1: Example section of a netlist

input variables are hit, as shown in Algorithm 2. In short, each variable in a given function that is not an
input is expanded into an expression that only contains inputs, then the original function is composed
with the newly expanded expression.

Algorithm 2 Recursive backtracking

Require: E list of variables where backtracking should end
Require: f function corresponding to the wire under exam
Ensure: f is expanded to be only a function of the endpoints

for v ∈ f do
if v 6∈ E then
fv ← get_function(v)
fexp ← backtrack_recursive(E, fv)
f ← f · fexp

end if
end for

As an example, let’s assume that a part of the netlist looks like Figure 6.1. A, B, C and D have
been identified as backtracking endpoints due to them being flip-flops. Finding the logic function that
describes the input of flip-flop X will be performed as follows:

X = J Expand J
= E∨̇I Expand E and I
= (F ∧A)∨̇G A is an endpoint, expand F and G
= ((B ∨ ¬C) ∧A)∨̇(C ∧D) All variables are endpoints, no expansion needed

Similarly, the function at the input of Y is derived as follows:

Y = H Expand H
= C ∨D All variables are endpoints, no expansion needed

This operation is repeated for every wire in the netlist, until all of their input functions are deter-
mined. The time complexity of this algorithm is O(vc), proportional to the size of the combinational
network the initial variable is part of, for each wire analyzed.

Given the core principle under which the mapping will be performed, creating an algorithm that
will check each possible pair of wires in the RTL and netlist for equivalence is fairly simple: for each
possible pair of netlist and RTL wires, get their corresponding boolean variables, express those as
function of only input variables, then check if the two are equivalent (Algorithm 3).

This algorithm is quite inefficient however. Checking whether two functions are equivalent, as
explained previously, has a time complexity exponential with the number of variables involved, and this

6.1. Implementation 37

Algorithm 3 Naïve annotation recovery

Require: N list of netlist wires, R list of RTL wires
Require: En list of netlist endpoints, Er list of RTL endpoints

for wr ∈ R do
vr ← get_variable(wr)
fr ← backtrack_recursive(Er, vr)
for wn ∈ N do
vn ← get_variable(wn)
fn ← backtrack_recursive(En, vn)
if fn ≡ fr then
annotate(wn, wr)

end if
end for

end for

algorithm has to perform O(|R| · |N |) checks for equivalence, a number proportional to the product of
the number of wires in the RTL and netlist. This situation worsens as the complexity of the RTL and
netlist increase: not only are the functions to be compared larger on average, but there will be more of
them, as every sub-section of each has to be checked against every other. In order to improve the time
necessary to analyze a given design, since the equivalence checking algorithm cannot be performed
in sub-exponential time, it is of utmost importance to reduce the number of comparisons as much as
possible.

6.1.1. Algorithm optimization
A first major improvement can be obtained by using the mapping information that is preserved by
the synthesis tool: in general, registers and ports declared at the RTL level are kept unchanged in
the resulting netlist, and their names in the netlist are based on their names in the HDL code. This
information can be used to build an initial equivalence relation between the synthesized design and
the RTL, which can in turn be used to speed up annotation recovery.

By using Algorithm 4, it is possible to obtain a set of all variables obtained when backtracking from
a given starting point towards input variables. The initial equivalence relation can then be exploited as
shown in Algorithm 5.

Algorithm 4 Variable collection algorithm

Require: f function to collect the variables of
Require: E set of endpoints to stop variable collection at
Ensure: V set of all variables encountered when backtracking to variables in E
V ← {}
for v ∈ f do
V ← V ∪ v
if v 6∈ E then
fv ← get_function(v)
V ← V ∪ collect_variables(fv, En)

end if
end for

By starting from wires that are known to be equivalent, the variables collected during backtracking
will be the only ones that can potentially be equivalent to each other. This reduces the search space
for a RTL wire from the entire netlist down to the logic cone behind an equivalent flip-flop in the netlist.

Yet another optimization was obtained by using the notion of cut-points in each logic cone. If two
cones being compared share two equivalent sub-cones, the backtracking step can be halted early,
since the two output variables of the sub-cones are known to be equivalent. The two shared compari-
son points are known as cut-points.

The concept of cut-points is used extensively by all formal verification tools to tame the exponential

38 6. Netlist to RTL Backtracking

Algorithm 5 Faster annotation recovery

Require: N list of netlist wires, R list of RTL wires
Require: En list of netlist endpoints, Er list of RTL endpoints
Require: Eq list of (rtl, netlist) pairs of a priori equivalences

for (wr, wn) ∈ Eq do
vr ← get_variable(wr)
vn ← get_variable(wn)
Rv ← collect_variables(vr, Er)
Nv ← collect_variables(vn, En)
for vr ∈ Rv do

for vn ∈ Nv do
fr ← backtrack_recursive(Er, vr)
fn ← backtrack_recursive(En, vn)
if fn ≡ fr then
annotate(wn, wr)

end if
end for

end for
end for

complexity inherent in the equivalence checking algorithm, and can be extremely effective at acceler-
ating the verification process.

As an example, consider a netlist logic cone with n inputs being checked against an RTL section
with the same number of inputs n. Checking these two for equivalence will require at worst O(2n)
variable assignments, and assuming a constant evaluation time, will have an overall complexity of
O(2n). Now assume that an equivalence point pair (er, en) is found within the two, corresponding to a
sub-cone involving k variables in the netlist and a similar amount Θ(k) of variables in the RTL (a reason
why the quantities might differ is that a simplification occurred in the synthesis process and removed a
portion of the RTL that did not affect the value of the point under exam). Knowing the existence of this
equivalence between sub-cones, it is no longer necessary to calculate the value of the function leading
up to those points, and (en, er) can be considered an input variable pair, just like any flip-flop at the
input of the logic cone. The result is that O(2k) operations are saved for each comparison involving en
and ek.

To better visualize the advantage of this approach, consider the two logic functions represented
in Figure 6.2. Under normal conditions, verifying whether the two implement the same function would
require expanding all the gates in the RTL block F prior to evaluation. If, however, the red wires in
the RTL and the netlist are found to be equivalent, the number of operations can be reduced: the
expansion does not have to be performed for one of the inputs of gate 2.

The process of determining which pairs of variables are valid cut-points does not require any extra
processing steps compared to the previous implementation: sub-cones are checked for equivalence
regardless, so all this step requires is to change the order in which points are checked. By looking at
variables that are fewer gates away from the input wires before those that are closer to the outputs,
cut-points can be found and exploited to accelerate the annotation recovery process.

Figure 6.2: Sample RTL and hypothetical netlist

6.1. Implementation 39

In order to implement this, the backtracking step for the netlist was halted at both known-equivalent
variables and variables that may have an equivalent, while the backtracking for the RTL had to be
performed fully. Then, each netlist function that only contained known equivalents was checked against
all RTL functions. If no equivalence was found for a given variable, all netlist functions that had that
variable as one of their inputs was updated, substituting the variable with its function. This process
was repeated until no netlist variables were left to be checked. The resulting algorithm is shown in 6.

Algorithm 6 Cut-point based optimized annotation recovery

Require: N list of netlist wires, R list of RTL wires
Require: En list of netlist endpoints, Er list of RTL endpoints
Require: Eq list of (rtl, netlist) pairs of a priori equivalences

for (wr, wn) ∈ Eq do
vr ← get_variable(wr)
vn ← get_variable(wn)
Rv ← collect_variables(vr, Er)
Nv ← collect_variables(vn, En)
Nunchecked ← Nv

Bn ← {}
for vn ∈ Rn do
Bn ← Bn ∪ {backtrack_recursive(En ∪Nunchecked, vn)}

end for
for fn ∈ Bn do

if ∀vn ∈ fn, vn ∈ En then
eq ← 0
for vr ∈ Rv do
fr ← backtrack_recursive(Er, vr)
if fn ≡ fr then
annotate(wn, wr)
En ← En ∪ {fn}
eq ← 1

end if
end for
Nunchecked ← Nunchecked \ {vn}
if eq = 0 then

for fn ∈ Bn do
fn ← backtrack_recursive(En ∪Nunchecked, fn)

end for
end if

end if
end for
for vr ∈ Rv do

for vn ∈ Nv do
fr ← backtrack_recursive(Er, vr)
fn ← backtrack_recursive(En, vn)
if fn ≡ fr then
annotate(wn, wr)

end if
end for

end for
end for

To exemplify, consider the netlist from Figure 6.1. The algorithm will start by expanding all variables
one step back: J = E∨̇I, E = A ∧ F, F = B ∨ ¬C, I = ¬G,G = C ∧D,H = C ∧ ¬D. The only known
equivalents at the beginning of the algorithm are the flip-flops A,B,C,D,X, Y , and the only functions
that only contain these variables are F = B ∨¬C, G = C ∧D and H = C ∧¬D. These three functions
will be checked against all known RTL functions in the relevant logic cone for equivalences.

40 6. Netlist to RTL Backtracking

Let’s assume that a known equivalence is found for F and H, but not for G. The set of known
equivalences will then be updated to contain A,B,C,D,X, Y, F,H. Next, each function that was not
analyzed will be expanded once again, resulting in J = E∨̇I, E = A ∧ F, I = ¬(C ∧D). Note that E
and I are not expanded in the functions that contain them, because it is still unknown whether they
are equivalent to any part to the RTL. The functions checked for equivalence in this iteration will be
E = A ∧ F, I = ¬(C ∧ D). Note that the function for E does no longer have to be expanded fully: F
was found to be equivalent, so the complexity of the function being analyzed now is lower.

Once again, let’s assume that an equivalence is found for E but not for I. The new set of known
equivalences is A,B,C,D,X, Y, F,H,E. The last function to be analyzed, J = E∨̇I, is expanded into
J = E∨̇¬(C ∧D), and checked for equivalence against the RTL.

The worst-case computational complexity is unchanged compared to the previous algorithm: if no
equivalences are found, each wire’s boolean function representation will have to be expanded until it
only contains flip-flops, and checked for equivalence. The average case, however, was found to be
much faster than the previous algorithm. This is because the netlist is derived from transformations
applied to the RTL, so the probability of an intermediate equivalence point being found is high. Due
to the exponential complexity associated with checking the equivalence of two functions, finding even
one point of equivalence greatly reduces the time necessary to complete the analysis.

6.1.2. Equivalence checking with Conformal
Since equivalence checking was essentially at the core of the algorithm used to perform annotation
recovery, and it took up a significant portion of the total runtime, an effort was made to use the equiv-
alence checking core available in Cadence, called Conformal [2]. This, however, did not succeed, as
the inputs to the tool have to be standalone modules and the objects being checked for equivalence
are just portions of modules. The only way to perform this step would have been to extract each logic
tree from the netlist and the RTL, build dummy modules around them, and pass those to Conformal,
which would have taken a significant amount of time to implement.

6.1.3. Binary Decision Diagrams
As mentioned in chapter 3, BDDs are a viable way to check for equivalence: given two logic cones,
equivalence between them can be proven by representing both as BDDs, then bringing them into a
canonical form, and checking whether the two are the same. The comparison process itself has a
complexity of O(n), linear with the number of nodes in the BDD.

The issue with this approach is that the complexity of the BDD associated with a boolean formula is
greatly dependent on the variable ordering, and the process of reducing a BDD into a canonical form
has a complexity dependent on the complexity of the initial BDD. Moreover, “Some functions cannot
be represented efficiently with [a BDD] representation regardless of the input ordering. Unfortunately,
the functions representing the output bits of an integer multiplier fall within this class” [16].

While these issues do not immediately preclude the ability to use BDDs to perform equivalence
checking, they caused the library used to operate on boolean functions to seemingly stop working for
long periods of time, so the SAT approach was used instead.

6.2. Results
6.2.1. Evaluation parameters
In order to evaluate the results from the annotation recovery step, the number of annotations present
before and after synthesis was collected first, and then compared to the number of annotations af-
ter the algorithm was run. The target selected was PicoRV32, configured to include support for the
compressed ISA, hardware multiplication and division, and external interrupt requests (IRQs).

The thus configured RTL was then synthesized by YoSYS using the script shown in section A.1,
which also dumped intermediate outputs during the synthesis process. The number of source anno-
tations during the synthesis process was then extracted by counting the number of occurrences of
attribute \src in each file

Finally, the number of unique RTL lines referenced at each stage was extracted using the following
command, which first extracts all the source annotations, then extracts the quoted string from them
containing the lines referenced, then splits that line so that each reference is treated separately, and
finally removes any leading or trailing spaces and counts the unique occurrences:

6.2. Results 41

Stage Source annotations Unique line references

0_postbegin.ilang 2906 916
1_postcoarse.ilang 2023 623

2_postopt.ilang 1949 606
3_posttechmap.ilang 15982 615

4_postopt.ilang 15982 615
5_postlibmap.ilang 1751 221

6_postopt.ilang 1751 221
7_postabc.ilang 4761 221

8_postflatten.ilang 4753 217
9_postclean.ilang 1657 138

netlist.ilang 1657 138

Table 6.1: Number of annotations and unique line references during synthesis

for file in *. ilang; do echo -n "$file "; grep "attribute \\\\ src" $file | cut -d"\""
-f2 | sed -e ’s/|/\n/g’ | awk ’{$1=$1};1’ | sort -u | wc -l; done

The results of running the two commands are summarized in Table 6.1.
Contrary to expectations, the number of referenced lines is not monotonically decreasing as the

synthesis process is run to completion: from step 2 to step 3 both the number of annotations and the
number of unique references increases. By analyzing the output of step 3, it can be seen that multiple
references are added to an external file, techmap.v, as YoSYS is mapping the high-level modules
from the RTL to an internal cell library, which is then used to perform subsequent transformations.
This explains why the number of annotations increased during that step. Similarly, step 7 saw a large
increase in source annotations, while the number of unique references remained the same. This is
because step 7 involves the use of ABC, a tool that performs sequential synthesis and optimization[40].
Looking at the differences compared to the output of the previous step, the most likely reason for this
increase is that YoSYS copies all the annotations from the cells input to ABC to the resulting outputs,
which are more numerous because of the sequential synthesis performed.

Given this baseline, an evaluation of the performance of the algorithm from section 6.1 can be done
by looking at the two metrics above for the netlist output by the tool: higher metrics are better, and the
ideal case would result in the same number of unique RTL references as the first intermediate file in
the synthesis process.

6.2.2. Tool output
The intermediate file used as the RTL reference was 4_postopt.ilang for two reasons. First, it con-
tains only modules, cells, wires and sigspec objects, which is a requirement for the tool to parse the
given intermediate language file and is not the case for the first intermediate file. Secondly, it uses a
known set of modules from the YoSYS cell library, all of which can be expressed as boolean functions.
This allows the expression of any signal in that file as a boolean function of inputs to the module and
flip-flop states, which is necessary to perform equivalence checking.

The number of signals matched based on their name was 2191, which was lower than expected
since the design had 2495 flip-flops. This discrepancy was caused by multiple flip-flops in the multiplier
module having names that could not be found in the RTL. Manually inspecting the two files revealed
that two register banks, rs1 and rs2 were renamed to next_rs1 and next_rs2 during the synthesis
process. Other variables were renamed during synthesis too, preventing them from being matched by
comparing names directly. This limited the number of equivalences that can be found, as the number
of known equivalent points was reduced.

In total, 330 equivalences were found between RTL and netlist sub-cones, Of these, 281 resulted
in new source annotations being added to the netlist, and the number of unique RTL lines of code
referenced increased by 61. This brought the number of cells with source annotations from 0.75% to
1.08%. The collected statistics for the annotated output are shown in Table 6.2.

42 6. Netlist to RTL Backtracking

Stage Source annotations Unique line references

Netlist 1657 138
Post-annotation 1938 199

Table 6.2: Number of annotations and unique line references post-annotation

6.3. Discussion
Source annotation recovery by means of equivalence checking seems to be a promising avenue to
aid in design hardening. The results shown indicate that there is room for improvement, since the
number of new annotations added by the tool was only 44% over the ones found in the original netlist.
This could be improved by addressing limitations of the current tool, such as its inability to recognize
flip-flops that were renamed by the synthesis process.

Despite these limitations, the results prove that this is a worthwhile method of remapping portions
of the netlist to parts of HDL code. The main appeal of this approach is that it is vendor-agnostic, so
the netlist output of any synthesis tool could be augmented for hardening purposes. It would enable
netlist-level fault injection results to drive RTL-level hardening in a more effective way, without changing
the existing synthesis workflow.

7
Fault Injection

In this chapter, the second part of the framework will be described: how to identify hardware faults that
will result in successful exploitation and potential security vulnerabilities. First, the results expected
by the fault injection campaign will be described, indicating the limitations that had to be introduced to
prevent an explosion in complexity. Then, three different layers of abstraction will be described. These
were employed to better manage the difficulty of the problem at hand, as well as to gain insight into the
vulnerability of the target at different levels. Following that, a description of the envisioned workflow,
that ties the analysis processes mentioned up to that point together, will be given. Finally, for each
layer, the implementation details will be discussed, together with optimization techniques employed,
failed attempts, and the results of applying the workflow described against the given target.

7.1. Outcome Characterization
An ideal output of a fault injection campaign would describe, for each clock cycle and each possible
injectable glitch, the result in terms of high-level netlist functionality, such as whether the netlist halted
execution, its execution flow changed, or it entered an infinite loop. This allows a designer to quickly
identify faults that may result in security vulnerabilites, reducing the number of glitches to investigate
more in depth and potentially mitigate.

Identifying whether a glitch caused a netlist to halt or enter an infinite loop, commonly referred to as
deadlock and livelock conditions, in general requires a priori knowledge on which states result in the
netlist entering these states. This is because determining if a Turing machine has halted is an unde-
cidable problem, and a processor is approximately a Turing machine for all intents and purposes [19].
For simpler netlists, which implement smaller finite state machines, a complete state space exploration
can be performed to identify states that result in a halt, but that approach cannot be generalized to
more complex designs such as processors.

In order to gain useful insights from static analysis, and bypass the issues introduced by the halting
problem, a different, lower-level indicator of successful faults was chosen: a fault was considered
successful if the netlist trace deviated in any way from the reference, non-glitched one. This deviation
would then be dynamically analyzed against a target application later in the glitch injection campaign
to determine what the effect of the glitch was on the execution flow.

7.2. Abstraction Layers
Sub-dividing the fault injection process into multiple layers was helpful in reducing the complexity of this
step: instead of having to exhaustively search the entire state space of the netlist for all glitches that
are successful, or randomly glitching the board looking for possible fault injection vulnerabilities while
it’s running, static analysis can be performed first to gain insight into which glitches are worth looking
into, reducing the time necessary and increasing coverage compared to the random search approach.
This process has the added benefit that the information learned in lower-level layers is independent
from the higher layers, making it possible to test, for example, multiple applications running on the
same processor without re-analyzing the effects of each glitch at the hardware level.

A high-level overview of the different layers of abstraction is represented in Figure 7.1.

43

44 7. Fault Injection

Figure 7.1: Examples of division of components into abstraction layers

7.2.1. Netlist Layer
At this layer, all that exists are individual flip-flops and gates. No higher-order groupings are present.

The propagation of physical faults injected is performed at this level of abstraction. Each wire is
glitched based on some predefined strategy (one at a time or multiple at a time, only for one clock
cycle or for multiple clock cycles), and each attempt is considered successful if the resulting state
and/or output is different from the one reached by the golden reference. The reason why the outputs
are also important is that transient faults on the outputs could be clocked into external memory cells or
flip-flops, making the fault somewhat permanent. This depends on the type of component connected
to the outputs, so some of the transient faults at the outputs could be ignored, but for simplicity here it
is assumed that transient faults on any output are potentially successful.

Since glitches may or may not be masked by the state at the time of the glitch, a set of potential
states can be provided. These valid states would have to be determined in higher levels of abstraction,
where each flip-flop is assigned a meaning and invalid combinations of bits can be identified. Alter-
natively, a set of constraints on the state that must be satisfied for the glitch to be successful can be
created during the injection process. These constrains will be on a set of individual wires at first, and
can be expanded to be requirements purely on the state variables using the same process adopted
when performing annotation recovery.

The types of faults that can be injected in a design are multiple. Since analyzing the effects of all
of them would be impractical, the only fault profile analyzed was that of single event upsets, which
result in bit flips. These can be modeled by forcing the affected wire to assume the opposite value,
and attempting to propagate this state flip to a state, creating constraints on the fly in order for this
propagation to occur.

The process of propagating the fault to the outputs may cause conflicting requirements on the state.
In that case the glitch cannot occur at all (if the chosen strategy only allows glitching one wire per clock
cycle), or requires another glitch to be injected in order to manifest itself in the next clock cycle.

It may also cause requirements on the glitch itself, forcing it to be a specific value in order to be
propagated to the state. This would be interpreted as an ability for an attacker to glitch the value of a
specific state only when the wire they are trying to glitch assumes a certain value, which is perfectly
valid.

7.2.2. ISA Layer
At this layer, cells and interconnects are grouped into higher-order constructs, such as registers, wire
buses, and adders, and assigned a logical interpretation based on those groupings. With the knowl-
edge of larger constructs, we can define which states are legal, i.e. reachable during normal operation,

7.3. Workflow 45

and which are not. Examples of illegal states include: multiple bits set on a one-hot encoded bus,
conflicting redundant states, or counters out of normal execution bounds.

Fault injection at this level would be performed by manipulating the state of the board rather than the
values of individual flip-flops. A fault is considered successful if the netlist does not reach an illegal state
after injection. Of note is that the definition of “legal state” used here is quite loose. Ideally, all states
in which the board is not completely stuck would be considered legal: some faults might temporarily
cause the board to temporarily enter a state that is not reached during nominal execution, but not halt.
The resulting definition would however be hard to verify in practice: the looser the definition, the harder
it becomes to determine whether a state is legal a priori. If the goal was to define which states are
legal according to the aforementioned definition, an exploration of the entire state space would have to
be performed, noting which state combinations cause the board to halt indefinitely.

To simplify the analysis, it is assumed that the netlist under exam is working correctly if the state
is legal, and all states that contain inconsistencies or invalid values cause the board to halt and are
considered illegal. In theory, however, any definition of legal and illegal state could be used.

7.2.3. Application Layer
This is the topmost layer of abstraction analyzed, where the application that the netlist is expected to
run is executed. Examples include a set of instructions in the case of a programmable processor, or a
set of states in the case of a hard-coded finite state machine.

Fault injection at this level aims to find which operations are susceptible to hardware faults and
could lead to successful exploitation of the board. For this reason it is specific to each application,
and the states reached during its execution. Example of successful exploitations include: a conditional
branch instruction jumping to the target address when it shouldn’t, an instruction becoming a no-op, or
a finite state machine transitioning to an unlocked state without performing the necessary checks.

In order to identify the effects of a fault on the high-level operations being executed by the board
under exam, some level of insight into the functions implemented by the netlist is necessary. More
specifically, it is nontrivial to determine whether a glitch causes the board to completely halt, or to
execute a sequence of operations in an infinite loop. Without this insight, it is also impossible to know
whether a fault that causes the execution to diverge from the reference is successful under the narrower
success definition of “causes the processor to misbehave in ways that compromise the security of the
design”, which is more reflective of the typical definition of a successful glitch.

For this reason, it is assumed that the designer knows which signals in the netlist are symptoms
of a indefinitely halted state, and which signals are critical for secure execution at which timestamps.
These would both be supplied to the application-level analysis algorithm, which can thus identify faults
that cause the netlist to halt and highlight those that affect critical signals.

7.3. Workflow
Fault injection could be performed on each layer separately, and the results combined at the end to
obtain a list of potential vulnerabilities. This is not particularly efficient however, and unnecessarily
complex, since a lot of insight gained in a layer this way may not be applicable to the other layers due
to constraints defined in those layers.

A better approach is to perform fault injection on one layer, then propagate the results up or down
the layers, progressively adding constraints to the faults found. An example of a possible workflow
through the layers of abstraction is the following:

• Netlist layer: perform a full fault injection campaign, simulating the effects of any possible glitch
of interest and recording both the targeted states and the constraints necessary for the glitch to
propagate to those states.

• ISA layer: given the list of faults generated in the previous step, remove glitches the requirements
of which cannot be satisfied by any legal state, or that bring the netlist into an illegal state.

• Application layer: given the list of glitches from the previous steps, and a set of states that
should not be reached during normal operation (or transitions that should not occur), simulate
the application on the netlist, and verify whether those states can be reached by means of fault
injection.

46 7. Fault Injection

This will be the workflow implemented in the following sections. The only discrepancy is that, due
to time limitations, the ISA layer was not implemented, as the results obtained at the netlist layer could
be immediately utilized during simulation at the application layer. The disadvantage of this approach
is that some of the glitches reported as successful at the netlist layer will never result in successful
exploitation at the application level, as they might depend on an invalid state to propagate in the first
place. This was not a major issue in the selected test platform thanks to its limited size, but could have
the potential of slowing down the application layer analysis as the size of the design under examination
increases.

7.4. Netlist Layer
7.4.1. Implementation
The method used to obtain a set of faults that can propagate to a state or output variable is based
around path sensitization, i.e. given a candidate wire that should be glitched, determine which values
the other wires should assume for it to propagate to a target state.

As an example, consider the simple combinational network shown in Figure 7.2.

Figure 7.2: Simple combinational network

Assume that Y is the input to the target state, and A is the wire that will be targeted by a bit flip.
In order for A to propagate to Y , it should first propagate through the AND gate, then through the OR
gate, and finally through the inverter. To propagate its value through the AND gate, it must be that
B = 1, otherwise the output would always be 0 due to the way the logical AND function operates.
Similarly, for the bit flip to affect the output of the following OR gate, it must be that C = 0, meaning
that C = 1. The final propagation through the inverter does not add any extra requirements. The final
list of requirements for a bit flip on A to propagate to Y is therefore B = 1 ∧ C = 1.

This procedure is known as path sensitization [8], and is used both in hardware and software testing
tools to find which condition is necessary for a specific line of code to execute, or for a specific wire to
assume a predetermined state.

The simplest approach to testing a digital circuit would be to generate all possible input patterns,
and exhaustively check whether each can excite the target location. The problem is that the same
issue found when performing equivalence checking is present here: the time complexity increases
exponentially with the number of input variables. Unlike in equivalence checking, however, the scope
of testing is more narrow: given a fault on wire x, the goal is to prove that there is a combination of
states that cause this fault to propagate to a predetermined target. Rather than considering the logic
network as an single black box, one can proceed one gate at a time, identifying whether there is a set
of inputs to that gate that causes the fault to appear at its output.

This path sensitization procedure is at the core of the algorithm used at this stage. In order to extend
the process to any gate, the algorithm reported in Algorithm 7 was implemented. The library function
satisfy_all was used to generate a comprehensive list of all input combinations that resulted in the
output being equal to 1 and 0. Then, the lists were compared against each other, and combinations
that were present in both with only the targeted variable flipped were collected. The obtained sets were
then trivially converted into conjunctive normal form expressions (given the set {{a = 0, b = 1}, {a =
1, c = 1}}, the resulting expression would be a ∧ b ∨ a ∧ c), and OR’d together to obtain the final
requirement for a given variable to propagate to the output of a given cell.

The aforementioned procedure to sensitize a cell’s output Y to a glitch in an input wire V was then
applied to all cells with Y as an input, and the constraints obtained for each were then AND’ed with
the pre-existing constraints on Y to obtain the constraints necessary for V to propagate one layer
further. This process was repeated until the affected output variables were all inputs to states or output

7.4. Netlist Layer 47

Algorithm 7 Path sensitization algorithm

Require: f boolean function of the output of the given cell.
Require: v variable that will be glitched.
Ensure: C set of all input variables that sensitize the output of f to v.
P ← satisfy_all(f)
N ← satisfy_all(Not(f))
// Invert the value of v if present in any n ∈ N , so that P and N can be compared
for n ∈ N do

if {v = 0} ∈ n then
n← n \ {v = 0} ∪ {v = 1}

end if
end for
C+ ← {}
C− ← {}
for n ∈ N do

if ∃p ∈ P, n ⊂ p then
C+ ← C+ ∪ (n \ {v = 0})

end if
end for
for p ∈ P do

if ∃n ∈ N, p ⊂ n then
C− ← C− ∪ (p \ {p = 1})

end if
end for
C ← CNF(C+) ∨ CNF(C−)

variables.
The final product of this analysis was a set of constraints indicating the conditions necessary for a

glitch in any given variable to reach all states combinationally connected to it. These constraints are not
functions of just state variables, but of intermediate variables as well (generated by combining states
using logic functions). Because of this, some constraints may not ever be satisfiable, and the glitch
may never propagate to the designated state: the relation between different intermediate variables
may be such that they cannot assume the required values at the same time, but that relation can only
be determined by backtracking each variable using the approach delineated in chapter 6.

Removing these false positives, however, requires checking each constraint for satisfiability: it is
necessary to prove that the expression obtained by AND’ing all constraints cannot be verified by any
set of inputs. This requires processing time exponential with the number of variables in the expression
under exam. Moreover, the values of the wires inside each combinational network were recorded by the
simulation tool selected, and could be accessed directly when checking which glitches can propagate
for a specific trace, lifting the requirement of expressing each constraint only in terms of inputs and
flip-flop variables.

7.4.2. Static Instruction set Analysis
The first idea to approach the problem of analyzing an application running on the processor was to
statically analyze the fault profile of each instruction in the ISA separately, and then perform fault
injection directly at the software level.

This would have had the advantage of being a fully static analysis, requiring no simulation at the
hardware level from external tools and reducing the time necessary to analyze any given application.
It could have also produced insight into which instruction were most vulnerable at the hardware level,
which in turn could have been exploited at the software level by performing checks right before and
after these instructions.

The main issue with this approach is that glitches depend not only on the instruction being decoded,
but may also succeed or fail based on the data the instruction is operating on, the address from which
the instruction is read, and other states inside the processor, especially for a pipelined design (this was

48 7. Fault Injection

not the case for PicoRV32, but the goal was to create a workflow that would work on any processor).

7.4.3. Semi-static Instruction Set Analysis
Once the infeasibility of a purely static analysis was established, the plan of action shifted to identifying
which wires are only dependent on the instruction being decoded, and using those to reduce the
constraints to simpler expressions. In order to do this, the following step-by-step solution was created:

1. Assume that the CPU is at the beginning of the fetch phase. This means assuming values for
some states in the CPU which govern the instruction phase it’s in. For PicoRV32, the state
picorv32_core.cpu_state was assumed equal to b01000000, a value that can be found at
picorv32.v:1152.

2. Mark the data bus from memory as instruction-dependent.

3. Perform one simulation step.

4. Check which registers only depend on previously marked values, mark those as instruction-
dependent.

5. Repeat steps 3 – 4 until picorv32_core.cpu_state changes.

The resulting list of marked states would be the set of instruction-dependent values after the fetch
phase. Effectively, it would have been a list of the output wires for the instruction decoder, the value of
which could be computed independently for each possible instruction.

All the propagation constraints for each glitch would then be restricted against the flagged values,
and this would result in one of the following:

1. The constraint was reduced to TRUE: this would mean that the given glitch would always propa-
gate regardless of data for that instruction.

2. The constraint was reduced to FALSE: this would indicate that the glitch under exam would never
propagate when executing that instruction regardless of data.

3. The constraint was reduced to another boolean expression, or did not change at all: in this case,
the glitch would be truly data-dependent when executing the given instruction.

Cases 1 and 2 would have given the same level of information that the previous attempt would have
given: glitch propagation information dependent only on the instruction being decoded. Glitches that
resulted in case 3 would have to be analyzed dynamically however, filling in the values of the remaining
variables in the constraints based on a simulation of the netlist (hence the semi-static nature of this
analysis).

The main issues faced with this approach were during the identification of the values that were
purely instruction-dependent. First and foremost, marking the data bus as instruction-dependent at
the beginning of the propagation was not enough, as the output of the instruction decoder depends on
other internal states as well, such as whether the CPU is processing an interrupt, or if it has thrown an
exception. These internal states cannot be assumed to have specific values for each instruction without
loss of generality for the analysis, meaning that no constraint can be truly only instruction-dependent.

7.4.4. Simulation Optimization
As previously mentioned, Icarus Verilog was the simulation tool of choice. It is reliable and provides
the necessary output. It is not, however, particularly fast, and can only run on a single core. Since
simulating the injection of a single glitch took up to 30 minutes on a Core i5-7200U processor, an
alternative, better optimized simulator was sought.

A promising project is Verilator, an alternative open-source simulator that claims to “outperform
many commercial simulators” [24]. It does so by translating Verilog descriptions into C++, and then
compiling the resulting source into an executable optimized for the platform where the simulation is
performed. The advantage is that by doing so the processor is no longer interpreting the design as it is
simulated, but interprets it once and then compiles it into native machine instructions. It also supports
running the simulation on multiple threads, scaling linearly with the number of concurrent threads.

7.4. Netlist Layer 49

Preliminary results showed a large performance benefit, reducing the time taken to simulate the
board without glitches by up to 90%. The fatal limitation of this tool, however, is that the trace it gen-
erates does not include all intermediate combinational signals, but only flip-flop outputs and top-level
ports. Intermediate signals are mandatory for the application-level analysis to be correctly performed
however, and the only way to obtain these values without changing the source code of Verilator itself
was to create a new top-level port connected to all of these signals, thus forcing the simulation tool to
also record the states of these signals.

Adding this extra port significantly decreased the simulation performance, resulting in a simulation
time in line with the one produced by Icarus Verilog. The most likely explanation is that most of the
performance improvements obtained by Verilator are in simplifications applied to the combinational
networks in the design, resulting in all of the intermediate signals being inaccessible. Connecting all
wires to a top-level port prevented Verilator from applying these optimizations, resulting in next to no
performance benefit.

Similarly, adding an XOR gate to each wire, and tying the other input of each gate to a top-level port
in order to arbitrarily flip bits in the design during simulation, caused the performance improvements
introduced by Verilator to all but disappear. For this reason, Icarus Verilog was used both during the
collection of golden reference traces and during the fault injection verification process.

7.4.5. Results
While the results are meant to be used as a basis for further analysis, insight into the vulnerability of a
design can be inferred from netlist-level analysis alone.

Figure 7.3: Potentially affected states per glitch

Some insight can be gained by plotting a histogram of the number of state variables affected, as
shown in Figure 7.3. The mean number of states affected per glitch was 16.0, and the median 2.0.
The fact that the distribution is this heavily skewed towards the left side suggests that most faults only
affect a small number of states.

The spike above 1000 states are due to glitches that affect most flip-flops in the register file, which
has 32 · 32 = 1024 flip-flops. Examples include glitching latched_rd, which contains the index of the
register that should be modified by the current instruction. All of these glitches also affect other internal
states that are not part of the register file, such as cpu_state, hence why there is no defined spike at
x = 1024.

Each filp-flop can be individually affected by glitching its data input, and since there are 2495 flip-
flops in the design, around 25% of the glitches in the first bin are due to these interconnects. The
rest of them, on the other hand, comes from glitching combinational logic interconnects, and could
be protected against by adding redundancy to computations, either in terms of duplicated logic, or by
adding parity checks on the outputs.

50 7. Fault Injection

Figure 7.4: Number of glitches affecting each state

Plotting the inverse histogram (glitches per state rather than states affected by each glitch) yields
some more insights: by checking how many glitches can affect a single state, a rough estimate of the
vulnerability of the design is possible. The further left the distribution is, the fewer glitches can affect
each variable, making it harder for an attacker to affect multiple states in a single clock cycle.

As can be seen from Figure 7.4, the PicoRV32 design analyzed has a large number of states that
can be affected by multiple glitches. The mean value was 113.9 glitches per state, and the median 97.

To push the distribution further to the left, a designer should intervene on interconnects that, if
glitched, have the largest impact on the overall state of the design, hardening by either moving those
interconnects further down the layers stack, or splitting the function being computed so that each part
affects a smaller subset of states.

Figure 7.5: Constraint complexity for each glitch to propagate to a state

Another measure of hardening effectiveness is how probable it is for a glitch to propagate. This
can be measured by looking at the number of variables involved in the propagation constraints for that
glitch: the larger the set of states that are involved, the more statistically improbable it is for the glitch
to propagate to a state. To have a better estimate of the actual constraint complexity, the following
indicator was computed on its boolean function representation:

7.4. Netlist Layer 51

• If the function is OR or NOR, the complexity is equal to the minimum between the complexities
of its arguments, since verifying any of them results in the overall function being verified.

• If the function is AND, NAND or XOR, the complexity is the sum of the complexities of its argu-
ments, as all of its inputs have to be verified for the output to be verified.

• The complexity of an individual variable is 1, and the complexity of a constant (TRUE or FALSE)
is 0.

The results are shown in Figure 7.5. The mean constraint complexity was 10.7, and the median 9.

Figure 7.6: Combinational path length distribution

Compared to the previous two histograms, the shape of this distribution is much more regular, and
closely resembles that of a log-normal random variable with a mode of 6. A possible explanation
is that propagating through each gate requires constraining one variable, and since these individual
requirements are ANDed together to obtain the final constraint, the constraint complexity is linear with
the length of the combinational path from the glitched wire to the targeted state. Since combinational
path length also roughly follows a log-normal distribution, as seen in Figure 7.6, the same shape is
reflected in the constraint length.

Assuming that all input variables are independent, and that they follow a Bernoulli distribution with
p = 0.5, the average probability of a glitch successfully propagating is 0.510.7 = 0.06%. This is just a
rough estimate however, and these results have to be followed up by more in-depth validations. The
probability of a constraint being verified depends not only on its complexity, but also on the probability
distributions of the input values. They cannot be assumed to be independent, nor do they have a 50%
chance of being either 0 or 1. A more accurate estimate could be obtained by determining the actual
distribution by looking at an execution trace, but the results would be application-dependent, since
different applications may use different parts of the processor for different amounts of time.

This is where the ISA layer analysis would come into play. By looking at constraints put on the
variables by design limitations, such as a one-hot encoded bus where only one out of a set of variables
can be TRUE at any given time, a probability distribution for the constraint variables can be determined,
and a more accurate vulnerability score can be assigned to each injectable fault. The advantage
of obtaining the distribution this way, rather than with experimental data, is that these results would
still be application-independent, and could be used directly to perform hardware mitigations. The
disadvantage is that not all variables may be constrained at design-time, meaning that the distributions
will still be inaccurate, and should be refined still by means of application-dependent analysis.

52 7. Fault Injection

7.5. Application Layer
7.5.1. Implementation
Given the results of the analysis at the netlist level, a trace from the target running under nominal
conditions is obtained. Then, at each time step in the simulation, the conditions for each potential
glitch to propagate are checked, and successful injections are recorded.

During the development of this abstraction layer, care was taken to remove false positives, or
glitches that cause changes in the state of the netlist but only temporarily. An example of this would
be a glitch that causes a bit flip in a register that is never read, or that is overwritten by a subsequent
instruction without being read.

In order to observe the effects a glitch has on the execution trace without simulating the entire
netlist from the injection time onwards, states affected by a fault were marked as glitched, and these
states were propagated in subsequent clock cycles, tracking the states affected in turn. If at any point
during propagation the set of affected states became the empty set, the glitch was discarded as a false
positive, since its effects on the execution trace had vanished before reaching the target.

This addition to the analysis further extended the results from the initial implementation: glitches
that indirectly affected the critical states by propagating from state to state were also identified, and not
only those glitches that directly affected the critical states. If, during propagation, any of the affected
states was part of the critical set, either success or failure was reported for that glitch, depending on
whether it would cause the board to halt or compromise its security, respectively. The pseudocode
implementation of the algorithm is shown in Algorithm 8.

A limitation of the implementation is that, once a glitch is injected, it is assumed that no other glitch
will occur in that simulation timeline. At any given clock cycle, all glitches that cause the netlist state
to diverge from the reference are recorded, and their effects are propagated assuming that the netlist
will behave as dictated at design-time from then on. While theoretically possible, analyzing the effects
of injecting multiple faults at different times would be a lot more computationally intensive, requiring
O(na) time (where n is the number of potential glitches per clock cycle and a is the number of glitches
allowed in each simulation timeline).

Notably, this approach could be used not only for netlists that execute an application, but for fixed-
function designs as well. As long as a netlist and a trace collected from running the netlist are provided,
the same analysis could be theoretically carried out with no modifications.

7.5.2. Hash Functions and HMAC
The authentication algorithm used by the target application is a well-known method to ensure both the
integrity and the authenticity of a message (or, in this case, a user application). This method is called
HMAC (Hash-based Message Authentication Code), and employs specific mathematical functions,
called hash functions, to generate a signature for the message.

Hash functions all have the same property: regardless of the size of their input, their output size
is always fixed. A trivial example is the constant function f(x) = 1, but most commonly used hash
functions generate different values for different messages, and their values are used to index large
amounts of data, allowing applications to find items in large databases in near constant time. Hash
functions used with HMAC are known as cryptographically secure hash functions, a subset of all hash
functions that are used to ensure the integrity of a given message.

In order for a hash function to be considered cryptographically secure, it must also obey the follow-
ing properties [45]:

• Given a hash, it is infeasible to generate a message that yields the same hash value

• Given a message and its hash, it is infeasible to generate another message, different from the
one given, that yields the same hash value

• A small change in the input message results in the corresponding hash being uncorrelated with
its original value.

These three properties are sufficient to ensure integrity: a sender would compose a message, cal-
culate its hash using a function obeying these properties, and then send both to the intended recipient.
If a part of the message is corrupted during transmission, the entire hash will change, and its extremely
unlikely that any change introduced in the message will not change the value of its hash. Moreover, if

7.5. Application Layer 53

Algorithm 8 Application-level fault analysis

Require: T netlist trace obtained by simulating the execution of a target application with no faults.
Assumed to be an array of dictionaries, one for each clock cycle. Each dictionary contains the state
of all wires in the netlist.

Require: G collection of glitches from the netlist layer analysis.
Require: C collection of critical states that, if modified, would cause the netlist to halt.
Require: S collection of success conditions.
Ag ← {} Set of glitched states resulting from earlier injections
for state ∈ T do

Evaluate which states would be affected next by the active glitches in Ag

for A ∈ Ag do
A← states_affected_by(A)
if A = {} then
Ag ← Ag \A

end if
end for
Evaluate which glitches would be successful at the current simulation step
for glitch ∈ G do
Ag,new ← {}
if eval(glitch.constraint, state) = True then
Ag,new ← Ag,new ∪ glitch.affected_states

end if
end for
Ag ← Ag ∪Ag,new

Check for glitches that affected critical states
for A ∈ Ag do

if A ∩ C 6= {} then
Ag ← Ag \A

else if any_verified(S,A) then
Glitch reached a success condition

end if
end for

end for

54 7. Fault Injection

Contents Start address End address Size (bytes)
SecureBoot code 0x0000 0x7FFF 32768

Application signature 0x8000 0x8020 32
Application code 0x8020 0xFFFF 32736

Table 7.1: SecureBoot ROM memory layout

an attacker purposefully changed any part of the message, it would be infeasible for him to generate
a new message with the same hash. The recipient would then calculate the hash of the corrupted
message, and by comparing it against the original hash, would know that the message was tampered
with.

Hash functions alone cannot, however, be used to ensure the authenticity of the message. After all,
if the attacker can change the message, they could also change the hash to match, and the recipient
would be unable to verify whether what he received was what the original sender transmitted. In order
to also ensure the authenticity of the message received, the two parties should first exchange some
secret value, only known to them, and then combine this secret with the hash, so that the other party
can verify that the sender also knew the secret.

It is extremely important, however, that the attacker cannot retrieve the secret by knowing the hash
and the message, and that he cannot forge new messages from a given hash/message pair. For
example, concatenating the secret with the message and computing the hash of both is not sufficient:
most cryptographically secure hash functions repeat the same operation on fixed-length blocks of
data, using the result of previous rounds to compute the next, until the output is obtained. Knowing
H(k||m), where k is the secret and m is the message, an attacker could compute H(k||m||m′) by
using the original hash as the starting point for his calculation, obtaining a message that still passes
authentication at the receiver. One secure way to use hash functions for authentication is HMAC.

The HMAC of a message is computed as follows. Given a message m, a secret key K, and a
cryptographically secure hash function H:

HMAC(K,m) = H((K ′ ⊕ opad)||H((K ′ ⊕ ipad)||m))

K ′ = H(K)if K is larger than the block size, elseK

opad and ipad are fixed values: opad is the byte 0x5c repeated to fit the size of the secret, and ipad
is the byte 0x36 repeated. An attacker cannot append an arbitrary message anymore, as the message
value is inside the inner hash function, not outside. Likewise, he cannot recover the value of the secret,
since that requires breaking the hash function which is, by definition, secure.

7.5.3. Target Application Analysis
The target application chosen to validate the effectiveness of this analysis was an implementation of
SecureBoot compiled for RISC-V processors.

The SecureBoot implementation used is a simple bootloader that checks whether an application
has a valid signature before executing it. This signature is calculated based on a HMAC authentication
scheme, using SHA256 as the base hash function, and if it matches the one stored in ROM, the
processor begins executing the application. If, on the other hand, the check fails, the application is not
executed, and the processor enters an infinite loop. A memory map of the whole ROM binary image is
reported in Table 7.1.

The source code for the application is shown in Figure 7.7. As shown, the core function verify_signature()
first calculates the values of the key XOR’d with the outer and inner pads, then calculates the inner
hash (hash of the inner pad concatenated with the application data) and finally computes the outer
hash (hash of the outer pad concatenated with the inner hash), returning TRUE or FALSE depending
on whether the signature matches.

Assuming that the secret key resides in a memory region inaccessible to an attacker, the only way
for the bootloader to validate and execute an arbitrary application is to ensure that the signature of the
new application matches that of the old code, which is infeasible due to the cryptographic hash function
being used. There is, however, another weak point that could be attacked, outside of the verification
function.

7.5. Application Layer 55

Figure 7.7: SecureBoot source code

Looking at the disassembly of the code that will be simulated on the CPU (Figure 7.8), it can be
seen that the last step in the verification process is a branch instruction, which either causes the
program counter to jump to the application’s entry point, or enter an infinite loop. If the left branch is
executed, at address 0x760, the processor writes 0xCAFEBABE to memory location 0x6000 and enters
an infinite loop. If the right branch is executed, at address 0x778, the processor loads the entry point
of the application into register $a5 and then jumps to it.

Rather than attacking the core cryptographic function, all an attacker has to do is to change the
value returned by it from FALSE to TRUE for the main function to jump to the opposite branch, allowing
execution. This was the vulnerability targeted at the application level.

Success can be reliably determined by checking the value of the program counter after branching.
A value of 0x778 implies that the application will be executed, a value of 0x760 indicates that the check
failed and the application will not run.

7.5.4. Results
Since it is easier to cause an application to fail the signature check when it should succeed rather
than the opposite (after all, there is only one correct signature and many incorrect ones), the first
proof-of-concept involved using the developed tools to cause a valid application to not execute.

If the application-level fault injection analysis was to be performed on an unknown application, or
one where identifying a single point of failure would not have been obvious, it would have had to run
on the entire trace. There is no intrinsic limitation in the approach described that would prevent this
from succeeding, but given the limited time devoted to optimizing the application-level analysis, this
would have taken a considerable amount of time, more than was available at the time. Without loss
of generality, the analysis was therefore started 250ns before the target branch instruction’s execution.
This limitation means that there could be more, undetected glitches that cause the signature check to

56 7. Fault Injection

Figure 7.8: SecureBoot disassembly: the highlighted branch determines whether the target application runs

Figure 7.9: SecureBoot trace: correct signature, no glitches

fail, although the probability decreases the further back in time the glitch occurs.
Figure 7.9 shows the critical section of the execution trace, when the signature-dependent branch

is executed. Note the value of picorv32_core.reg_pc at the position of the yellow marker, which is
0x778 at t = 1546.23us indicating that the signature check passed.

Running the application-level analysis resulted in 18263 faults reported as successful, with the first
one occurring at t = 1545.98us. This amounts to around 3% of all possible injections during the 250ns
timeframe. Simulation-based fault injection was then used to verify the results of each individual glitch
reported, to validate whether they had the expected effects. Multiple glitches did not, but the first one
to cause the application to fail the signature check was a glitch on wire _141_ at time t = 1546.12us.
The resulting trace is shown in Figure 7.10: at t = 1546.23us the program counter is 0x760, hence the
signature check failed.

Figure 7.10: SecureBoot trace: correct signature, glitch on wire _141_ at t=1546.12us

Many of the faults reported had a different effect when simulated, resulting in either non-faulty
behaviour, or different states being affected at the time the target branch was executed. The main
reason is that the framework, as it currently stands, has no way to simulate devices attached to top-
level ports in the design, including ROM and RAM. If a glitch affects the address bus at a timestamp

7.5. Application Layer 57

previous to the one used for success-failure classification, the data read from or written to memory
would be different, possibly causing the entire execution trace to diverge. The analysis tool, however,
has no way of knowing what this data would be, and assumes that it will be the same as in the non-
faulty trace.

The next attempt was to boot an application with the wrong signature. This is more in line with what
an attacker would attempt: to load unsigned code and trick SecureBoot into executing it.

A different application was compiled for the target, and the binary loaded into memory at simulation
time was edited so that the target application section contained the new, unsigned binary. The source
code for the new application can be found in section A.4. The signature section of ROM was unchanged
compared to the original binary, so it did not match the code in the application section of the binary.
This meant that the signature check performed by the bootloader would fail, and the application not
run, under nominal operating conditions.

The target instruction and success conditions were kept the same as in the previous attempt, as
the goal in both cases was to cause the branch instruction to execute the wrong jump, changing the
address of the instruction accessed after the branch. The only difference was that the analysis was
run on a different trace, where the modified binary was executed.

Figure 7.11: SecureBoot trace: wrong signature, no glitches

Compared to the previous trace, the timestamp at which the target instruction executed was 1538050ns,
as shown in Figure 7.11. The time difference compared to the previous experiment’s baseline is due
to the different number of instructions in the target application, which affects the time taken to hash the
application. Once again, note the value of picorv32_core.reg_pc equal to 0x760 after the aforemen-
tioned timestamp, indicating that the check failed.

The application layer script was adjusted to check for the success condition at the updated times-
tamp, and then run against the given trace. Once again, to reduce the time necessary to obtain the
results, the analysis was started 250ns before the target branch instruction.

The first reported successful injection was at t = 1537.8us, which is the first time step at which
fault analysis was performed. In total, 16623 successful injections were reported in the given time
period, which is around 2% of the total number of possible injections during that timeframe. As with
the previous results, many of these were false positives, or resulted in different wires being glitched
compared to the ones reported, since the framework cannot simulate external devices at this time.

Figure 7.12: SecureBoot trace: wrong signature, glitched wire _10034_ at t=1537.98us

To validate the results and remove false positives, a traditional simulation-based analysis was per-
formed afterwards, injecting only where the analysis indicated that the glitch would be successful. The
first glitch that resulted in a success condition was performed on wire _10034_ at time t = 1537.89us,
and generated the trace shown in Figure 7.12.

In order to verify that no glitches outside of the given subset were successful at causing the Se-
cureBoot check to succeed with the wrong signature, a random set of possible glitches outside of it
were injected, and none of them resulted in the success state being reached. An exhaustive search
would have definitely proven the soundness of the analysis performed, but was not feasible due to time
limitations.

58 7. Fault Injection

7.6. Discussion
The results obtained on the target platform indicate that static analysis allows existing simulation tools
to achieve full fault injection coverage (for the limited timeframe chosen) by only checking a small
subset of all possible glitches, greatly reducing the time necessary to obtain results.

Moreover, the netlist-level analysis described above can be used on its own to guide preliminary
hardening against hardware faults, as it provides insight into which nets and which flip-flops are more
susceptible to this kind of attacks. While the application-level analysis algorithm is sound, and success-
fully identified faults that achieved a given goal, further optimization is required to achieve a significant
performance advantage over blind simulation.

There were numerous false positives in the final application level analysis, more than one might
expect at first. The reason is quite simple: while the application analysis itself was thorough, the
simulation of the processor was less so: external peripherals, including the memory where code and
data reside, could not be included in the simulation. The result was that, if a glitch reached the address
bus, it would not affect the data retrieved at the next clock cycle, while in reality it did. Nonetheless, the
number of possible faults that had to be verified with an external simulator was greatly reduced, and
so was the time required to find vulnerabilities in the design.

8
Conclusion

8.1. Summary
Simulation-based fault injection is a cost-effective way to catch hardware vulnerabilities in a design,
and has a much shorter turnaround time compared to purely hardware-based approaches. The main
downside is that each new injection test takes a considerable amount of time, so an exhaustive search
cannot be performed, and compromises have to be made.

The abstraction gap between netlist and RTL, which makes implementing mitigations more cum-
bersome, can be somewhat bridged by recovering annotations from the RTL into the netlist, tying
individual cells to the lines of code that generated them. This can be performed by means of equiva-
lence checking, although more research is required to increase the number of annotations recovered
above the 1% figure reported.

By statically analyzing the effects of each fault on the hardware first, results can be re-used across
runs, and the number of test cases necessary to achieve 100% coverage is greatly reduced. This is
also more insightful compared to a purely simulation-based approach, as parts of the analysis are only
dependent on the hardware, and mitigations derived from this analysis will be effective regardless of
the software run on the board.

Chapter 1 introduced the concept of hardware fault injection, describing how its importance has
grown in recent years. It presented some existing solutions to identify possible weak points in a hard-
ware product during the design stage, and highlighted the pros and cons of each approach. It also
presented a list of the products of the work in terms of contributions, which were described further in
detail in the following chapters.

Chapter 2 gave a brief overview of formal verification: what it is, why it is important, and how it is
usually integrated in a development workflow. It highlighted its major differences when compared to
validation, focusing on why formal verification is necessary alongside simulation-based validation, and
why they are both necessary to ensure that a design satisfies a given set of design constraints. It then
described an aspect of formal verification named equivalence checking, which was used in Chapter
4 to perform source annotation recovery. It briefly described what equivalence checking is, and two
possible ways to implement it on a design.

Chapter 3 described hardware attacks, the typical classification system used to sub-divide attacks
based on their features, and then introduced multiple examples of fault injection techniques performed
by attackers in the field, classifying them and describing the effects each one can have on the targeted
device. Finally, it introduced the concept of fault profiles, which are formal models used to describe the
effects a fault injection attack has on a device in an abstract way.

Chapter 4 introduced the basic concepts most commonly encountered when applying optimization
techniques: computational complexity and NP-completeness. These ideas were used extensively in
the development phases of the work, due to the inherent problems of working with boolean functions
and the limited computational power available.

Chapter 5 gave an overview of the framework developed during the thesis, and of the target used
as a case study.

59

60 8. Conclusion

Chapter 6 described the first part of the thesis work: reconstructing links between netlist cells and
RTL lines of code. It described the algorithms used to perform this step, the different optimization tech-
niques that were attempted to accelerate the equivalence checking process, and the results obtained
in the final implementation.

Chapter 7 focused on the second part of the work: performing fault injection at the netlist level
efficiently. It described the different layers of abstraction that were used to reduce the complexity
of the task into multiple sub-tasks, followed by a description of the workflow envisioned using these
abstraction layers. It then described the two layers implemented: the netlist layer and the application
layer. In both cases, the core algorithm was described, as well as the failed attempts encountered along
the way, and then showed the results for each abstraction layer. In the case of the netlist layer, different
statistics were presented to indicate how vulnerable the PicoRV32 design was to hardware attacks. For
the application layer, on the other hand, a SecureBoot binary was used as a proof-of-concept, showing
how the framework could be used to bypass the signature checking algorithm implemented in it.

8.2. Future work
In this section, a list of possible extensions that could be made to the presented framework is high-
lighted, ranging from pure optimizations to new features that could improve the results obtained.

• Equivalence checking comparison points: results have shown that name-based matching was
not enough to map all flip-flops in the RTL to flip-flops in the netlist. This limited the effectiveness
of the approach, since some of the logic cones could not be compared to each other. The solution
would be to find another function to map the remaining flip-flops. Commercial tools can overcome
this issue, demonstrating that it is possible, but their algorithms are not publicly available.

• Retiming detection: during synthesis, long combinational paths could be broken down into
smaller paths separated by buffer flip-flops, so that timing requirements are met. This breaks
the RTL logic cones into smaller cones, and they are no longer recognized as equivalent in the
netlist by the framework in its current state. Adding retiming detection logic can resolve this
issue, increasing the number of matches in the combinational paths and, in turn, the number of
annotations recovered. This could be done, for instance, by removing the added flip-flops, and
extending the logic cones up to the original flip-flops instead.

• Different fault profiles: only single event upsets were analyzed in this framework. Implementing
other faults, such as stuck-at or delay faults, can be performed by changing the netlist and appli-
cation layer analysis. This could also be extended by modeling different fault profiles, if flipping
individual bits is unrealistic.

• Multiple faults: simulating more than one fault on the same execution path would have resulted
in exponentially increasing computational complexity (O(nk) where n is the number of possible
faults and k is the number of faults per execution path). This was infeasible because of poor
optimization, but it could be performed if the framework was ported to a compiled language.
Further optimizations to the algorithm could take advantage of the constraint system in place:
if a glitch cannot propagate due to a constraint not being satisfied, it could be possible to inject
another glitch that causes the constraint to be satisfied, and the original glitch to succeed.

• Peripheral simulation: as mentioned in the application-level analysis, many of the reported
faults caused the processor to behave differently in simulation compared to what the static analy-
sis predicted. The main reason is that the framework currently cannot emulate external devices,
the output of which changes depending on the values presented on their inputs by the processor.
If a glitch affects one of these inputs, the output of the peripheral could change as well (e.g. if the
peripheral is a ROM and the address bus changes, the data at its outputs will change as well).
Emulating this behaviour will reduce the amount of false positives reported.

A
Code Listings

A.1. YoSYS synthesis script
Import cell library
read_liberty -lib -ignore_miss_dir -setattr blackbox ../../ osu018_stdcells.lib
setundef -zero

Read main verilog source
read_verilog ../ picorv32/picorv32.v

Synthesize
synth -top picorv32_axi -run begin
write_ilang 0_postbegin.ilang
synth -top picorv32_axi -run coarse
write_ilang 1_postcoarse.ilang
opt -fast -full
write_ilang 2_postopt.ilang
memory_map
techmap
opt -fast
write_ilang 3_posttechmap.ilang
opt -fast
write_ilang 4_postopt.ilang
abc -fast
opt -fast

Map FFs
dfflibmap -liberty ../../ osu018_stdcells.lib
write_ilang 5_postlibmap.ilang

Optimize
opt
write_ilang 6_postopt.ilang

Map combinational cells
abc -keepff -liberty ../../ osu018_stdcells.lib -script +strash;scorr;ifraig;retime ,{D};

strash;dch ,-f;map ,-M,1,{D}
write_ilang 7_postabc.ilang

Flatten hierarchy
flatten
write_ilang 8_postflatten.ilang

Cleanup
clean -purge
write_ilang 9_postclean.ilang

Final optimization and cleanup
opt
clean

61

62 A. Code Listings

rename -enumerate

write_ilang netlist.ilang
write_verilog netlist.v

A.2. PyEDA modification: modified ast2expr() in pyeda/boolalg/-
expr.py

def ast2expr(ast):
""" Convert an abstract syntax tree to an Expression."""
if ast[0] == ’const’:

return _CONSTS[ast [1]]
elif ast [0] == ’var’:

return exprvar(ast[1], ast [2])
elif ast [0] == ’lit’:

return _LITS[ast [1]]
else:

xs = [ast2expr(x) for x in ast [1:]]
return ASTOPS[ast [0]](*xs, simplify=False)

A.3. Original, signed SecureBoot target application
#include <stddef.h>
#include <stdint.h> #include <stdio.h>

volatile uint32_t *result = (uint32_t *) 0x6000;

int main(void) {
result [0] = 0x8badf00d;

}

A.4. Modified, unsigned SecureBoot target application
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>

volatile uint32_t *result = (uint32_t *) 0x6000;

int main(void) {
uint32_t f1 , f2 , tmp;
int i;

result [0] = 0x8BADF00D;

/* Filler code: Fibonacci sequence */
f1 = f2 = 1;
for (i=0; i<32; i++) {

tmp = f1 + f2;
f1 = f2;
f2 = tmp;

result [0] = f1;
}

}

Bibliography

[1] Amba 4 axi4-stream protocol specification. URL https://zipcpu.com/doc/axi-stream.pdf.

[2] Cadence conformal overview. URL https://www.cadence.com/en_US/home/tools/
digital-design-and-signoff/conformal-overview.html.

[3] Focused ion beam - litography and patterning. URL https://www.nffa.eu/offer/
lithography-patterning/installation-1/fib/.

[4] Gcc, the gnu compiler collection. URL https://gcc.gnu.org/.

[5] Genus synthesis solution. URL https://www.cadence.com/en_US/home/tools/
digital-design-and-signoff/synthesis/genus-synthesis-solution.html.

[6] Laser cutting. URL https://www.semitracks.com/reference-material/
failure-and-yield-analysis/failure-analysis-die-level/laser-cutting.php.

[7] Semiconductor wafer mask costs. URL https://anysilicon.com/
semiconductor-wafer-mask-costs/.

[8] Test generation principles in dft. URL https://technobyte.org/
test-generation-principles-dft-vlsi/.

[9] Risc-v specifications. URL https://riscv.org/technical/specifications/.

[10] Vivado design suite user guide. URL https://www.xilinx.com/support/documentation/sw_
manuals/xilinx2019_2/ug901-vivado-synthesis.pdf.

[11] Yosys open synthesis suite. URL http://www.clifford.at/yosys/.

[12] J. Arlat, Y. Crouzet, and J.-C. Laprie. Fault injection for dependability validation of fault-tolerant
computing systems. In [1989] The Nineteenth International Symposium on Fault-Tolerant Com-
puting. Digest of Papers, pages 348–355, 1989. doi: 10.1109/FTCS.1989.105591.

[13] Aspencore. 2019 embedded systems market study. URL https://www.embedded.com/
wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf.

[14] Dr Bhavanam and Vasujadevi Midasala. Implementation of fpga based fault injection tool (fito)
for testing fault tolerant designs. International Journal of Web Engineering and Technology, 4:
522–526, 10 2012. doi: 10.7763/IJET.2012.V4.424.

[15] Jakub Breier and Dirmanto Jap. Testing feasibility of back-side laser fault injection on a microcon-
troller. In Proceedings of the WESS’15: Workshop on Embedded Systems Security, WESS’15,
New York, NY, USA, 2015. Association for Computing Machinery. ISBN 9781450336673. doi:
10.1145/2818362.2818367. URL https://doi.org/10.1145/2818362.2818367.

[16] Randal E. Bryant. Graph-based algorithms for boolean function manipulation. 1986. URL https:
//www.cs.cmu.edu/~bryant/pubdir/ieeetc86.pdf.

[17] J. V. Carreira, D. Costa, and J. G. Silva. Fault injection spot-checks computer system depend-
ability. IEEE Spectr., 36(8):50–55, August 1999. ISSN 0018-9235. doi: 10.1109/6.780999. URL
https://doi.org/10.1109/6.780999.

[18] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. Introduction to
Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001. ISBN 0070131511.

63

https://zipcpu.com/doc/axi-stream.pdf
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/conformal-overview.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/conformal-overview.html
https://www.nffa.eu/offer/lithography-patterning/installation-1/fib/
https://www.nffa.eu/offer/lithography-patterning/installation-1/fib/
https://gcc.gnu.org/
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://www.semitracks.com/reference-material/failure-and-yield-analysis/failure-analysis-die-level/laser-cutting.php
https://www.semitracks.com/reference-material/failure-and-yield-analysis/failure-analysis-die-level/laser-cutting.php
https://anysilicon.com/semiconductor-wafer-mask-costs/
https://anysilicon.com/semiconductor-wafer-mask-costs/
https://technobyte.org/test-generation-principles-dft-vlsi/
https://technobyte.org/test-generation-principles-dft-vlsi/
https://riscv.org/technical/specifications/
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug901-vivado-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug901-vivado-synthesis.pdf
http://www.clifford.at/yosys/
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://doi.org/10.1145/2818362.2818367
https://www.cs.cmu.edu/~bryant/pubdir/ieeetc86.pdf
https://www.cs.cmu.edu/~bryant/pubdir/ieeetc86.pdf
https://doi.org/10.1109/6.780999

64 Bibliography

[19] M. Davis. Computability and Unsolvability. Dover Books on Computer Science. Dover Publica-
tions, 2013. ISBN 9780486151069. URL https://books.google.it/books?id=nbOqAAAAQBAJ.

[20] Maurice Dawson, Darrell Burrell, Emad Rahim, and Stephen Brewster. Integrating software assur-
ance into the software development life cycle (sdlc). Journal of Information Systems Technology
and Planning, 3:49–53, 01 2010.

[21] Charles Drake. Python eda documentation. URL https://pyeda.readthedocs.io/en/latest/.

[22] Morris Dworkin, Elaine Barker, James Nechvatal, James Foti, Lawrence Bassham, E. Roback,
and James Dray. Advanced encryption standard (aes), 2001-11-26 2001.

[23] Stephen Williams et al. Icarus verilog, . URL http://iverilog.icarus.com/.

[24] Wilson Snyder et al. Verilator, . URL https://www.veripool.org/verilator/.

[25] Jędrzej Fulara and Krzysztof Jakubczyk. Practically applicable formal methods. In In SOFSEM
’10: Proceedings of the 36th Conference on Current Trends in Theory and 143 of Computer
Science, pages 407–418. Springer, 2010.

[26] Subramani Ganesh. A gentle introduction to formal verification. URL https://www.
systemverilog.io/gentle-introduction-to-formal-verification.

[27] Zion Research Group. Security for embedded electronics. URL https://semiengineering.com/
security-for-embedded-electronics/.

[28] Ian Grout. Chapter 2 - electronic systems design. In Ian Grout, editor, Digital Systems Design
with FPGAs and CPLDs, pages 43–121. Newnes, Burlington, 2008. ISBN 978-0-7506-8397-5.
doi: https://doi.org/10.1016/B978-0-7506-8397-5.00002-7. URL https://www.sciencedirect.
com/science/article/pii/B9780750683975000027.

[29] U. Gunneflo, J. Karlsson, and J. Torin. Evaluation of error detection schemes using fault injec-
tion by heavy-ion radiation. In [1989] The Nineteenth International Symposium on Fault-Tolerant
Computing. Digest of Papers, pages 340–347, 1989. doi: 10.1109/FTCS.1989.105590.

[30] Clemens Helfmeier, Christian Boit, Dmitry Nedospasov, and Jean-Pierre Seifert. Cloning physi-
cally unclonable functions. In 2013 IEEE International Symposium on Hardware-Oriented Security
and Trust (HOST), pages 1–6, 2013. doi: 10.1109/HST.2013.6581556.

[31] Roland Höller, Dominic Haselberger, Dominik Ballek, Peter Rössler, Markus Krapfenbauer, and
Martin Linauer. Open-source risc-v processor ip cores for fpgas — overview and evaluation. In
2019 8th Mediterranean Conference on Embedded Computing (MECO), pages 1–6, 2019. doi:
10.1109/MECO.2019.8760205.

[32] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly ex-
ponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001. ISSN
0022-0000. doi: https://doi.org/10.1006/jcss.2001.1774. URL https://www.sciencedirect.com/
science/article/pii/S002200000191774X.

[33] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson. Fault injection into vhdl models: the
mefisto tool. In Proceedings of IEEE 24th International Symposium on Fault- Tolerant Computing,
pages 66–75, 1994. doi: 10.1109/FTCS.1994.315656.

[34] Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, New York, NY, USA. Springer, Boston, MA. URL https://doi.org/10.1007/
978-1-4684-2001-2_9.

[35] Maha Kooli and Giorgio Di Natale. A survey on simulation-based fault injection tools for complex
systems. In 2014 9th IEEE International Conference on Design Technology of Integrated Systems
in Nanoscale Era (DTIS), pages 1–6, 2014. doi: 10.1109/DTIS.2014.6850649.

[36] Andreas Kuehlmann and Cornelis A J Eijk. Combinational and sequential equivalence checking.
In Logic Synthesis and Verification, pages 343–372. Springer US, Boston, MA, 2002.

https://books.google.it/books?id=nbOqAAAAQBAJ
https://pyeda.readthedocs.io/en/latest/
http://iverilog.icarus.com/
https://www.veripool.org/verilator/
https://www.systemverilog.io/gentle-introduction-to-formal-verification
https://www.systemverilog.io/gentle-introduction-to-formal-verification
https://semiengineering.com/security-for-embedded-electronics/
https://semiengineering.com/security-for-embedded-electronics/
https://www.sciencedirect.com/science/article/pii/B9780750683975000027
https://www.sciencedirect.com/science/article/pii/B9780750683975000027
https://www.sciencedirect.com/science/article/pii/S002200000191774X
https://www.sciencedirect.com/science/article/pii/S002200000191774X
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9

Bibliography 65

[37] Andreas Kuehlmann and Florian Krohm. Equivalence checking using cuts and heaps. In
Proceedings of the 34th Annual Design Automation Conference, DAC ’97, page 263–268,
New York, NY, USA, 1997. Association for Computing Machinery. ISBN 0897919203. doi:
10.1145/266021.266090. URL https://doi.org/10.1145/266021.266090.

[38] Benoit Lasbouygues, Robin Wilson, Nadine Azemard, and Philippe Maurine. Temperature- and
voltage-aware timing analysis. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 26(4):801–815, 2007. doi: 10.1109/TCAD.2006.884860.

[39] L. Lavagno, G. Martin, and L. Scheffer. Electronic Design Automation for Integrated Circuits
Handbook - 2 Volume Set. Industrial Information Technology. Taylor & Francis, 2006. ISBN
9780849330964. URL https://books.google.it/books?id=y4RrnQAACAAJ.

[40] Alan Mishchenko. Abc: A system for sequential synthesis and verification. URL https://people.
eecs.berkeley.edu/~alanmi/abc/.

[41] Olga Ohrimenko, Peter J. Stuckey, and Michael Codish. Propagation = lazy clause generation.
In Proceedings of the 13th International Conference on Principles and Practice of Constraint
Programming, LNCS. Springer-Verlag, 2007.

[42] Sebastien Ordas, Ludovic Guillaume-Sage, Karim Tobich, Jean-Max Dutertre, and Philippe Mau-
rine. Evidence of a larger em-induced fault model. 11 2014. ISBN 978-3-319-16762-6. doi:
10.1007/978-3-319-16763-3_15.

[43] Athanasios Papadimitriou, David Hely, Vincent Beroulle, Paolo Maistri, and Regis Leveugle. A
multiple fault injection methodology based on cone partitioning towards rtl modeling of laser at-
tacks. pages 1–4, 03 2014. doi: 10.7873/DATE2014.219.

[44] Richard Quinnell. Risc-v initiative leverages standard plat-
form for custom designs, 2019. URL https://www.embedded.com/
risc-v-initiative-leverages-standard-platform-for-custom-designs/.

[45] Russel J. Bradford Saif Al-Kuwari, James H. Davenport. Cryptographic hash functions: recent
trends and security notions. Cryptology ePrint Archive, 2011.

[46] V. Sieh, O. Tschache, and F. Balbach. Verify: evaluation of reliability using vhdl-models with
embedded fault descriptions. In Proceedings of IEEE 27th International Symposium on Fault
Tolerant Computing, pages 32–36, 1997. doi: 10.1109/FTCS.1997.614074.

[47] Sergei P. Skorobogatov and Ross J. Anderson. Optical fault induction attacks. In Burton S. Kaliski,
çetin K. Koç, and Christof Paar, editors, Cryptographic Hardware and Embedded Systems - CHES
2002, pages 2–12, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg. ISBN 978-3-540-36400-
9.

[48] Ningfang Song, Jiaomei Qin, Xiong Pan, and Yan Deng. Fault injection methodology and tools.
In Proceedings of 2011 International Conference on Electronics and Optoelectronics, volume 1,
pages V1–47–V1–50, 2011. doi: 10.1109/ICEOE.2011.6013043.

[49] Bart Stevens. Fault injection attacks: a growing plague. URL https://www.eeweb.com/
fault-injection-attacks-a-growing-plague/.

[50] Pavan Talluri. Fault classification and vulnerability analysis of microprocessors, 2020.

[51] Andrew Waterman. Improving energy efficiency and reducing code size with risc-v compressed.
Master’s thesis, EECS Department, University of California, Berkeley, May 2011. URL http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-63.html.

[52] Clifford Wolf. Picorv32 - a size-optimized risc-v cpu, . URL https://github.com/cliffordwolf/
picorv32.

[53] Clifford Wolf. Yosys manual, . URL http://www.clifford.at/yosys/files/yosys_manual.pdf.

https://doi.org/10.1145/266021.266090
https://books.google.it/books?id=y4RrnQAACAAJ
https://people.eecs.berkeley.edu/~alanmi/abc/
https://people.eecs.berkeley.edu/~alanmi/abc/
https://www.embedded.com/risc-v-initiative-leverages-standard-platform-for-custom-designs/
https://www.embedded.com/risc-v-initiative-leverages-standard-platform-for-custom-designs/
https://www.eeweb.com/fault-injection-attacks-a-growing-plague/
https://www.eeweb.com/fault-injection-attacks-a-growing-plague/
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-63.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-63.html
https://github.com/cliffordwolf/picorv32
https://github.com/cliffordwolf/picorv32
http://www.clifford.at/yosys/files/yosys_manual.pdf

66 Bibliography

[54] Ben Wood. Computability and the halting problem, 2015. URL https://cs.wellesley.edu/
~cs251/f20/notes/halt.html.

[55] L. et al. Yifei Q., Zhaojun. Clock glitch fault injection attacks on an fpga aes implementation. In
Journal of Electrotechnology, Electrical Engineering and Management, 2017.

https://cs.wellesley.edu/~cs251/f20/notes/halt.html
https://cs.wellesley.edu/~cs251/f20/notes/halt.html

	Introduction
	Motivation
	State-of-the-art
	Contributions
	Thesis Organization

	Hardware Attacks and Fault Injection
	Attack Classification
	Fault Injection Techniques
	Practical Fault Injection Examples
	Optical Fault Injection Attack
	Clock Glitching Attack
	Focused Ion Beam Attack

	Fault Profiles

	Formal Verification
	Hardware Development Process
	Simulation-Based Validation and Formal Verification
	Equivalence Checking

	Algorithm Optimization
	Computational Complexity
	Case Study: Insertion Sort
	 Notation
	O Notation
	 Notation

	P and NP
	Reducibility
	NP-Completeness and Circuit Satisfiability

	Framework Overview
	Functional components
	External tools
	YoSYS
	PyEDA
	Icarus Verilog

	Target description
	RISC-V ISA
	PicoRV32

	Netlist to RTL Backtracking
	Implementation
	Algorithm optimization
	Equivalence checking with Conformal
	Binary Decision Diagrams

	Results
	Evaluation parameters
	Tool output

	Discussion

	Fault Injection
	Outcome Characterization
	Abstraction Layers
	Netlist Layer
	ISA Layer
	Application Layer

	Workflow
	Netlist Layer
	Implementation
	Static Instruction set Analysis
	Semi-static Instruction Set Analysis
	Simulation Optimization
	Results

	Application Layer
	Implementation
	Hash Functions and HMAC
	Target Application Analysis
	Results

	Discussion

	Conclusion
	Summary
	Future work

	Code Listings
	YoSYS synthesis script
	PyEDA modification: modified ast2expr() in pyeda/boolalg/expr.py
	Original, signed SecureBoot target application
	Modified, unsigned SecureBoot target application

	Bibliography

