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Introduction

Aviation plays a big role in the current society. Even though it brings a lot of good to the world, unfortunately,
it brings quite some negative consequences with it as well. 2.5% of the total global CO2 emissions are due
to aviation [19]. As emissions from aviation continue to increase, solutions need to be found to counteract
this. Historically, solutions were mostly sought in the airborne phase of a flight, however among onground
operations are areas with huge potential as well. Multiple solutions have been found to electrify the taxiing
of aircraft from and to the runway, one of which being the TaxiBot solution by Smart Airport Systems (SAS).
However, as this solution is quite a novel concept, lots of technical and operational challenges arise. The rout-
ing and scheduling of all aircraft on the runways and taxiways is quite a complex puzzle to solve, especially
with the addition of TaxiBots, increasing the total number of vehicles driving around. This research specif-
ically focuses on the external electric taxiing solution, TaxiBot, and the implementation of it at an airport.
Developments of such ET solutions are underway, however as they are a novel research direction, practical
implications on the implementation of it arise. This research tries to fill that gap by strengthening the re-
search in the field of TaxiBot routing and scheduling.

Next to that, as these ground phases take place at an airport, the surrounding environment directly ben-
efits from this. Airports which seek to improve their sustainability benefit from such ETS. Royal Schiphol
Group, the owner of Amsterdam Airport Schiphol (AAS) has set its mission to become emission free on the
airport by 20301. All ground bound vehicles ought to be driving on electricity or hydrogen, which includes
the towing vehicles used. One of the ways Schiphol tries to reach this goal is to team up with SAS, one of the
developers of the TaxiBot. Tests conducted in the first half of 2020 on the feasibility of TaxiBots on Schiphol
resulted in the Proof of Concept of TaxiBot at Schiphol, however further research is necessary.

Important to note is that TaxiBot is used in many settings in this report. TaxiBot is the brand of the electric
taxiing solution by SAS, however TaxiBot is also used as generic term for such a type of solution.

This thesis report is organized as follows. In Part I, the scientific paper is presented. Part II contains the
relevant Literature Study that supports the research. Finally, in Part III, some additional results are presented.

1https://www.schiphol.nl/nl/schiphol-als-buur/pagina/emissievrij-in-2030/, accessed on 24-12-2020
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A greedy approach to the minimisation of deviations of the dynamic
vehicle routing problem with electric taxiing systems

Author: B.J.L. Tindemans∗,
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Faculty of Aerospace Engineering, Delft University of Technology, HS 2926 Delft, The
Netherlands

Abstract

In order to reduce aircraft emissions during on-ground operations, electric taxiing systems (ETS) have
been intensively researched to take over or assist in part of the taxiing phase of a flight. One of these ETS is
the TaxiBot, deployed by Smart Airport Systems (SAS). While a number of papers have been researching this
vehicle routing problem (VRP) in order to minimise costs, fuel consumption or another metric, most research
uses deterministic input data. However, sudden changes are inevitable, disrupting the resulting schedule.
In this paper, we propose both a strategic model and a tactical model for airport surface movement, taking
into account stochastic delays to the flight schedule. The subsequent tactical schedule can be produced
with only little deviations from the strategic schedule. The tactical model can be generated in the order
of seconds, making it useful for real-life traffic management decision support systems. We found that the
tactical schedule does not worsen remarkably. Still 47.9% of the flights can be towed by a TaxiBot, which
was 48.5% in the strategic schedule. Different case studies have been performed in order to determine the
effect of e.g. the size of the flight schedule and the number of TaxiBots used, on the aircraft taxiing coverage
and TaxiBot efficiency. With this, both busy and calm days, now and in the near future are assessed and
the optimum number of TaxiBots necessary can be determined. An upper limit is reached at an asymptote
starting from 34 TaxiBots, while a lower limit is dependent on a trade-off between flight coverage and spare
TaxiBot capacity.

Keywords: Electric Taxiing Systems, TaxiBot, VRP, FSA, Greedy Approach, Dynamic & Stochastic, Disruption
Management

1 Introduction
Most research on the reduction of pollutants emitted by aircraft tends to focus on the airborne phase of the
flight, however, sustainable improvements in aircraft efficiency often are found in the range of only small per-
centages. Moreover, aircraft are not continuously in the air, but rather also use their engines on the ground for
a part of the mission. During these phases of the flight, the on-ground taxiing phase more specifically, larger im-
provements can be gained. During this phase, the engines of the aircraft are used, which is not optimal."During
idle mode, an engines performance is less efficient due to the low combustor temperature. This induces higher
fuel consumption, and emissions of hydrocarbon and CO," according to [Ithnan et al., 2013, p. 2]. As engines
are not designed for this stage, relatively high fuel consumption and emissions occur which should be reduced
as much as possible. Next to that, on the ground, many more options are present to make sure an aircraft is
moved to its desired position. One such viable option is via electric taxiing systems (ETS). By using electrical
energy for the taxiing phase instead of jet fuel, a big step can be taken towards a more sustainable solution.
One of these ETS is the TaxiBot, designed by Smart Airport Systems (SAS), which is the only operational
option at the moment of writing [Hospodka, 2014b].

As TaxiBots are a novel concept in airport operations, lots of technical and operational challenges arise when
such systems are implemented at an airport. TaxiBots are yet another type of vehicles introduced at the apron,
which should all be managed in a certain way. As aircraft and TaxiBots will make use of the runways and
taxiways of an airport, ATC has control over these vehicles to make sure safety is maintained. Careful routing
will need to be considered and strategic scheduling is needed for that. Therefore, a routing and scheduling
solution needs to be found to make sure conflicts and collisions are avoided while making sure taxi time ([Roling
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et al., 2015]), and all its other linked parameters, such as fuel consumption, are minimised ([Roling, 2009]).

The objective of the strategic schedule hence is the minimisation of total taxi time. However, sudden changes
will always be present. A planning is ought to be made robust, however limitations are always present. There-
fore, when for example an arriving aircraft is delayed, the old schedule might not be feasible anymore and a
new, tactical (i.e. continuously monitoring) schedule needs to be developed. As an airport usually has to make
instantaneous decisions, such a new schedule has to be generated within a reasonable time. Only then, airport
operations can continue with no or limited disruptions. The objective of this research is to include disruptions
into this deterministic problem, making it more stochastic and thus realistic.

The objective of the tactical schedule is focused on Disruption Management, reacting on deviations from
the original flight schedule [Dorndorf et al., 2007]. Aircraft can be earlier or later than planned, resulting in
an infeasible vehicle routing and towing assignment schedule. Dorndorf et al. present two objectives for this
context. One is the maximisation of profits, which is equivalent to the minimisation of costs, and the other one
is to return to the original plan as soon as possible. The first one will be used as general objective in both the
strategic and tactical model. The second one can be motivated by the implicit costs emerging when changing
the schedule and the customer dissatisfaction resulting from the possibly longer waiting times. [Dorndorf et al.,
2007] This second objective will be implemented by use of penalties in the tactical model.

This paper is structured as follows. An overview of the relevant literature is given in section 2. Then, we
give a description of the problem in section 3, followed by a description of the case studies in section 4. In
section 5 we present the results of the different case studies. Lastly, section 6 presents our conclusions and
recommendations for future work.

2 Literature Review
Different types of problems can be distinguished in the field of optimisation. Two relevant problem types used
in airport operations research are the Vehicle Routing Problem (VRP) and the Fleet Scheduling Assignment
(FSA). Extensive research has been done already in both fields, which has been summarised by [Atkin et al.,
2010] for VRP and by [Dorndorf, 2005] for FSA. These problems have been extended over time by research in
different subfields. [Schiffer and Walther, 2017] tried to expand to the different objective functions that can be
used for the VRP, [Yan-Du et al., 2014] and [Smeltink et al., 2004] tried to minimise the computation time and
[Sirigu, 2017], [Sirigu et al., 2018]. FSA problems mainly focus on assigning the aircraft to gates, however if
the fields of VRP and FSA are combined and the set of vehicles is not limited to aircraft but also other ground
vehicles, FSA can be reframed as the scheduling of aircraft to ground vehicles.

A number of different sustainable taxiing solutions have been researched, of which we consider the electrical
solutions. In general, a split can be made between on-board and on-ground electric taxiing systems (ETS), next
to single-engine taxiing. Each of these systems have been thoroughly compared (e.g. [Fordham et al., 2016],
[Guo et al., 2014], [Hospodka, 2014a], [Ithnan et al., 2013], [Lukic et al., 2018], [Lukic et al., 2019] and [Pan
et al., 2017]). As concluded by [Lukic et al., 2018], TaxiBot was at the moment of writing the only certified
system and already used commercially. TaxiBots are electrified towing tractors able to taxi aircraft over a long
distance from gate to runway or vice versa. A TaxiBot operates differently than conventional towing trucks and
thus makes it possible to tow aircraft over longer distances [Hospodka, 2014b]. The aircraft fleet needs to be
assigned to TaxiBots and routed over the airport surface. [Guillaume, 2018] developed a routing and scheduling
model in order to optimise the number of automated guided towing vehicles for aircraft taxiing with respect
to taxiing costs. Later on, [van Baaren, 2019] developed a similar VRP model which focused on optimising
the number of ETS with respect to fuel consumption, emissions and energy usage. Van Baaren defined three
towing vehicle designs, closely resembling the TaxiBot, which in turn have been used by [Kroese, 2021]. Kroese
combined the VRP with a fleet scheduling assignment (FSA) resulting in a schedule of a fleet of TaxiBots,
taking into account charging of the batteries.

The models used in these four studies are mixed-integer linear programming (MILP) models, which search
for a global optimum. Other types of models used in literature are Genetic Algorithms (GA) [Jiang et al., 2013]
or via Neural Networks (NN) [Sirigu et al., 2018], [Gotteland et al., 2001]. GA do not guarantee to give the
optimal solution, moreover an approximation of the solution is not always guaranteed. However, computation
times tend to be distinctly shorter than MILP or NN models. Long computation times for MILP and NN bring
problems to airports as they are usually seeking to make decisions within a few minutes.
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Previous models mainly made use of an MILP strategy in search of a global optimum, however as we de-
veloped a dynamic scheduling model we decided to develop a local optimisation model. In real life airport
operations, a global optimum is never reached due to the lack of information about the future and moreover
the fact that devations are expected. Therefore, a greedy approach is used which tries to find a local optimum.
Furthermore, using an MILP model forces you to set all parameters, such as aircraft delays beforehand. This
can be partially solved by using time windows, providing you with multiple moments to add new informa-
tion. Examples are a runway configuration change or changes in the crew availability. However, as new flight
data can arrive at any moment in time and not only in time windows, a local optimisation model is better suited.

Aforementioned VRP models try to minimise either costs, total taxiing time or emissions. The research
focuses on deterministic airport operations. However, in real life operations sudden changes happen continuously.
Aircraft arrive earlier or later than expected which will result in the defined schedule being disrupted. [Evertse
and Visser, 2017] developed an MILP model in which the departure times are not deterministic, but rather
allowed to deviate slightly from the scheduled time of departure. Slightly, in the sense that departure order
and gate allocation is not changed. A number of papers have been written about dynamic VRPs ([Pillac et al.,
2013], [Psaraftis et al., 2016], [Tas et al., 2013]). [Pillac et al., 2013] defined a taxonomy for VRP based on
information evolution and quality as can be seen in Figure 1.

Figure 1: Taxonomy of VRP by information evolution and information quality [Pillac et al., 2013].

Aforementioned MILP models can be classified as static and deterministic. The work from [Evertse and
Visser, 2017] can be seen as static and stochastic. In [Dorndorf et al., 2007], the authors focused on disruption
management in flight gate scheduling. Adding disruptions to the schedule is recommended by [Yan-Du et al.,
2014] as well, along with [Zaninotto et al., 2019] who recommended implementing a tactical planning module,
adjusting input parameters, such as taxi routes and schedules, dynamically.
Our research will focus on dynamic and stochastic models. The dynamic aspect refers to the information evolu-
tion in which flight arrival/departure times will only be known at a certain moment in time and thus not all input
data will be known beforehand. The stochastic aspect refers to the generation of the flight arrival/departure
times. The input flight schedule will be generated from probability density functions.

Disruption management in the airline industry has been thoroughly investigated. Many sources for disruption
can be thought of, such as severe weather conditions, corrective maintenance or gate or aircraft breaking down
[Dorndorf et al., 2007]. Solutions found by [Su et al., 2021] which are used for flight scheduling, but can be
used for ETS scheduling as well, are delaying, cancelling, swapping, or reallocating flights or using reserve
equipment/crew. [Pei et al., 2021] constructed a quantitative scoring system for recovery suggestions. Six
domains, part of a decision tree, were scored based on interviews, questionnaires, and operational data. These
six domains are the following: flight density, aircraft properties, reasons for delay, route unavailability reasons,
passenger properties, and delay severity. The decision tree then performed appropriate recovery actions, such
as changing gates or crew, when the threshold values were exceeded, while complying with the order of priority
of the six domains.
In this paper we combine aforementioned three fields of research: VRP, ETS and disruption management.

3 Methodology
The model consists of two separate parts, one to generate the strategic schedule and a second to generate a
tactical schedule. The strategic schedule can be made some time before the day of operations, e.g. a couple of
months beforehand, while the tactical schedule is continuously run on the day of operations itself. A functional
flow diagram of the model set is shown in Figure 2. The block structure of three on the left represents the
generation of the strategic schedule used as reference on the day of operation. The newly estimated times
of arrival and departure, and the strategic schedule, are inputs to the tactical schedule, which is a continous
monitoring process. A decision tree in the tactical model is used whenever an aircraft is delayed or early to
determine the optimal solution, resulting in an updated planning. Finally, this will result in a tactical routing
schedule, which can be used throughout the rest of the day of operation. A following aircraft will probably have
a different time or arrival/departure as well, resulting in the need of a new tactical schedule for the remaining
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time of the day. Both models will be explained later on.

We consider the directed nodal network G with the set of nodes N and the set of edges E, so that G = (N ;E)
and we consider two sets of vehicles; a set of aircraft AC and a set of TaxiBots TB. To this, time is added
with the set of timestamps t. The aforementioned vehicles in the sets AC and TB can be present in the model
in three different combinations. Table 1 gives an overview of these vehicle combinations. A description of all
model sets and variables is the following:

Model sets

• G = (N ;E) Nodal network with nodes n ∈ N and edges e ∈ E.

• n ∈ N = {1, ..., ntotal} Set of nodes in the nodal network, represented by either n or m.

• e ∈ E = {...n ·m...} Set of edges in the nodal network, in which node n ̸= m and with speed ve.

• ac ∈ AC = {1, ..., actotal} Set of aircraft arriving and departing. ac = 0 means no aircraft is attached in
the aircraft-vehicle combination.

• tb ∈ TB = {1, ..., tbtotal} Set of TaxiBots. tb = 0 means no TaxiBot is attached in the aircraft-vehicle
combination.

• ACcurrent ⊂ AC Set of aircraft currently present in the nodal network

• ACfuture ⊂ AC Set of aircraft which will be present in the nodal network in the near future, i.e. next five
minutes

• ACwatchlist ⊂ AC Set of aircraft which will be present in the nodal network in the further future, i.e. next
half an hour

• TBpool ⊂ TB Set of TaxiBots available to be called for a towing task

• t ∈ {0, ..., ttotal} Set of time stamps, with a ∆t as a time step of 10 seconds, for one day of operations.

Model variables

• F Flight schedule input , as defined in section 3.3.

• F ′ Updated flight schedule with the actual times of arrival/departure, as defined in section 3.3.

• S Strategic schedule, output from the strategic model.

• S′ Tactical schedule, output from the tactical model.

• Pwait Penalty for certified aircraft per minute of waiting [min−1].

• Pswitching Penalty for certified aircraft when switching to a different TaxiBot than scheduled [-].

• Pno TB Penalty for certified aircraft when taxiing without a TaxiBot [-].

• Ppeak Penalty for certified aircraft during peak hours [-].

• ∆t Time step between two time stamps ti and ti+1.

• Tresponse Time between the actual emerge time of aircraft and starting up TaxiBots to move towards the
starting node, set to five minutes.

• Tmax wait Maximum waiting time threshold for certified aircraft before they will taxi without a TaxiBot.

Table 1: Vehicle combinations.

AC TB State
ac = {1...actotal} tb = {1...tbtotal} TaxiBoting
ac = {1...actotal} tb = {0} Taxiing
ac = {0} tb = {1...tbtotal} Traversing
ac = {0} tb = {0} Not Applicable
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Figure 2: Functional flow diagram of the integration of strategic and tactical models. Figure adapted from
[Dorndorf et al., 2007].

The Greedy Vehicle Routing and Scheduling Problem (GVRSP) is defined on a nodal network, where nodes
can be a gate, runway or taxiway node and edges can be taxiways or service roads. Runway and gate nodes can
connect to both taxiways and service roads, connecting the two different node structures. Each edge (n,m) ∈ E
has a travel time dependent on the distance and maximum speed. The number of vehicles AC and TB are
known beforehand. The number of AC is based on the flight schedule, the number of TB is fixed within case
studies, as described in section 4.

The goal of the strategic GVRSP is to locally minimise the total travel times, for all vehicle combinations.
Next to that, it is aimed to let the aircraft that are certified to be towed by TaxiBot, make use of the TaxiBots
as much as possible. The first goal is achieved by letting the vehicles move from begin to end node via the
shortest path. The two shortest path algorithms that work for this type of weighed nodal network, having
different distances and speeds, searching for the shortest path between one starting point and one ending point
are Dijkstra’s algorithm and the Bellman-Ford algorithm. According to [Abusalim et al., 2020] Dijkstra’s is best
suited for nodal networks such as the one considered here due to lower computation time and higher efficiency
when solving the shortest path problem.

The goal of the tactical GVRSP is to locally minimise the deviations of the tactical model with respect to
the strategic model, while also adhering to the goal of the strategic model. A greedy approach is used as a local
heuristic. In real-life operations, the vehicle routing and scheduling problem cannot be globally optimised as
changes in the flight schedule happen constantly and thus actual daily flight schedules cannot be fully known
beforehand, due to the dynamic and stochastic aspect of the tactical model. Hence, the tactical model can only
optimise locally by using the information that is known at that moment in time. As mentioned before, time is
split into timestamps in order to go over the course of time and updates of the model are made at every time
stamp. The model can be run for a full period of 24 hours, but can also be split in time windows if only specific
hours are to be investigated. These can be set manually in the model. Both strategic and tactical model will
be explained in the following subsections. Each of the parameters mentioned are set and do not differ between
the models or any of the case studies explained later on.

3.1 Strategic Model
First the algorithm of the strategic model will be explained by means of a pseudocode, which can be found in
Algorithm 1. The time starts at t = 0 (algorithm code line 2), which corresponds with 02:00. This time is
chosen, rather than starting at 00:00 as at this hour the activities at the airport are at the lowest. Following
this fact, it is assumed that this day of operations is independent from the previous day. Two sets of aircraft
are continuously updated, a future set of aircraft ACfuture and a current set of aircraft ACcurrent, which are
initally set empty (line 3).
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ACfuture contains all aircraft that will emerge in the coming five minutes, named response time Tresponse.
Emerging refers both to arrival at the runway exit and departure from the gate, after which the taxiing proce-
dure takes place. Following this, the respective end nodes of both procedures are at the gate and ending at the
runway entrance respectively. This default value of five minutes for the response time is taken as most of the
TaxiBots called upon will be present within these five minutes before arrival or departure. According to 200
simulation runs, the mean traversing time lies around five minutes, and the median lies around 3 minutes. This
default value is thus balanced between being on time and not waiting too long at a gate/runway.

ACcurrent contains all aircraft that are currently moving around at the airport. At every time stamp, the
flight schedule F is checked (line 9) and if an aircraft is scheduled to emerge in the near future, it is added to
ACfuture and the nearest TaxiBot will be requested (lines 10 to 13). Aircraft can either be certified to be towed
by TaxiBots or not. If an aircraft is not certified, it will taxi from its starting node to its end node, i.e. from
gate to runway or vice versa following the normal sequence of operations. If the aircraft is certified, the free
TaxiBot closest by will be called upon and will drive towards the starting node five minutes before the actual
emerging time. A maximum is set in order to make sure certified aircraft will not wait too long. If after the
maximum time Tmax wait of five minutes, still no TaxiBot has been assigned, the certified aircraft will travel
without one.

Once the aircraft emerges, it will be added to ACcurrent and deleted from ACfuture and again corresponding
actions will follow, such as determining the shortest path in the Nodal Network G (lines 14 to 18). Here, it
is assumed that runways only have one entrance/exit, the runway configuration is known upfront and runway
sequencing is not taken into account. As soon as the TaxiBot is present, coupling will take place and the
aircraft-TaxiBot combination will taxi to its end node (lines 19 to 22). The assumption is made here that
(un)coupling can take place at the gate or runway which have sufficient space for these operations. As soon
as the aircraft reaches its end node, the aircraft is deleted from ACcurrent and the TaxiBot is free to be used
again, if applicable (lines 23 to 29). While free, the TaxiBot will drive to one of the three waiting nodes,
numbered 5, 108 & 110, dependent on which one is closest by. These three nodes are based on the strategic
parking locations as defined by [Kroese, 2021] and are assumed to have sufficient space to fit all TaxiBots waiting.

Each time stamp, all ac in ACcurrent and all tb in TB are moved forward with a distance equal to the edge
speed multiplied with ∆t (lines 6 & 8). The speeds of the vehicles ar assumed to be equal to the maximum
velocity and acceleration or deceleration is not taken into account. If the end of the edge is reached, the vehicle
moves towards the next edge, until the end of the last edge sequence is reached. Collision and conflict avoidance
takes places at each time stamp (line 7). Only aircraft are subject to this as it is assumed that TaxiBots can
maintain safe distance between each other. If all actions have taken place, the time is set forward with ∆t,
specified to be 10 seconds, based on [Roling et al., 2015] (line 32). This value limits computation time while
still obtaining sufficient accuracy in the model. In the end, all aircraft and TaxiBot properties throughout the
day will be returned, as well as the strategic routing schedule S.

3.2 Tactical Model
Secondly, the algorithm of the tactical model will be explained by means of a pseudocode, which can be found
in Algorithm 2. The input for this model is the same input as for the strategic model, however now the new
flight schedule F ′ is updated at every time stamp. Next to that, the strategic schedule S is used as input for
the model (line 1).

The model structure is the same as before, however now there are three sets of aircraft. Next to the ACcurrent

and ACfuture, use is made of a watch list ACwatchlist, all set empty at first (line 3). The very first time an
aircraft comes into sight can be at two moments (line 9). The first one is at a set amount of time before the
scheduled time of arrival/departure, which happens if the aircraft is either on time or delayed. The second one
is when ATC finds out that the aircraft is earlier than scheduled. 30 minutes before arrival and 5 minutes before
departure, the exact time is known and fixed. 30 minutes is taken for arrival, roughly based on the time it takes
to land after entering Amsterdam Flight Information Region (FIR). As all the different operations happening
just before aircraft departure, i.e. baggage loading, passengers taking place etc, are difficult to predict, only a
5-minute future outlook is used, which is the lower limit used by [Evertse and Visser, 2017]. In other words,
only 5 minutes before the actual departure, this exact time is known.

If the aircraft is earlier or just in time, it is directly added to ACfuture, whereafter the aforementioned
corresponding actions follow (lines 13 to 20). One of these is the penalty decision tree chosing which TaxiBot is
best to use (line 17), which will explained in section 3.2.1. If the aircraft is delayed, it is not known yet at what
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time exactly it will emerge and thus it is placed in ACwatchlist (lines 10 to 12). At every following time stamp,
ACwatchlist is checked and as soon as the actual time of emergence is known, it will be added to ACfuture and
removed from ACwatchlist again. Four examples of this process can be seen in Table 2. Again, if the aircraft
actually emerges, it will be added to ACcurrent and deleted from ACfuture and the corresponding actions follow
again (lines 21 to 29).

Table 2: Four examples of the process using aircraft sets.

Scenario Earliest
update time

Information known at
earliest update time Starting set Second Set Third set

Arriving aircraft (early)
Scheduled time: 14:00
Actual time: 13:57

13:27 Aircraft is earlier
Arrival time: 13:57

Future set
13:27

Current set
13:57 -

Arriving aircraft (delayed)
Scheduled time: 14:00
Actual time 14:01

13:30 Aircraft is delayed
Departing time: unknown

Watch list
13:30

Future set
13:31

Current set
14:01

Departing aircraft (on-time)
Scheduled time: 14:00
Actual time: 14:00

13:55 Aircraft is exactly on time
Departing time: 14:00

Future set
13:55

Current set
14:00 -

Departing aircraft (delayed)
Scheduled time: 14:00
Actual time: 14:12

13:55 Aircraft is delayed
Departing time: unknown

Watch list
13:55

Future set
14:07

Current set
14:12

3.2.1 Penalties

Penalties are given in the tactical model only. As soon as the aircraft is added to ACfuture, the situation will be
compared with the strategic model. The decision flow works as follows. The TaxiBot data used in the strategic
model is retrieved. Then, three possible options will follow. The aircraft either travels with the same TaxiBot
as was scheduled (Option 1), the aircraft will travel with a different TaxiBot, one that is closest by, (Option 2)
or the aircraft will taxi without a TaxiBot (Option 3). The option that introduces the smallest penalty will be
chosen by the model. If these options have the same penalty, option 1 is preferred over option 2 and option 2
is preferred over option 3. For each of these three options, a number of suboptions arises, of which only one
is possible. The options are summed up below, followed by a visualisation of the options and their associated
penalties in Figure 3. Different penalties apply for each of the three options, which are both fixed penalties and
variable penalties based on the time such an action takes. Next to that, in order to make the decision tree a
bit more complex, the flight density has been added to the scoring system. Whenever the airport experiences a
busy period, currently set to a minimum of ten aircraft on the grid, penalties are scored double (Ppeak). With
this, busy and calm days can be modelled in a more realistic way, as penalties weigh heavier for busier days.

Choose the same TaxiBot as was scheduled (Option 1)

• The same TaxiBot as was scheduled is directly available (penalty is zero)

• The same TaxiBot first finishes its task (either towing or traversing and towing) and then travels to pick
up the waiting aircraft (penalty for every minute the certified aircraft has to wait)

Choose another TaxiBot (Option 2)

• Another TaxiBot is directly available (penalty for switching and penalty for every minute the certified
aircraft has to wait)

• The same TaxiBot as was scheduled is currently on his way for a taxiing task, but this task is cancelled
and this TaxiBot goes to the waiting aircraft that needs a new TaxiBot instead. Another free TaxiBot is
redirected to the other aircraft that had been waiting already for the initially assigned TB (penalty for
waiting and penalty for every minute one of the certified aircraft has to wait)

• All TaxiBots are currently in use, so wait until one becomes available and couple with that one (penalty
for switching and penalty for every minute the certified aircraft has to wait)

Taxi without a TaxiBot (Option 3)

• If all TaxiBots are currently in use and none will become available in the coming time within the threshold
(Tmax wait), the aircraft will taxi without a TaxiBot (penalty for taxiing without a TB)
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Figure 3: Visualisation of the options with its possible scenarios and the corresponding penalties.

The calculation of the penalties goes as follows. Suppose ack has a scheduled time of arrival of 12:00, hence
as explained before, at 11:30 ack comes into play for the first time. Suppose ack has an actual time of arrival
of 12:15, meaning that it will first be placed on ACwatchlist, until 11:45, when it will be placed on ACfuture. 5
minutes before arrival, the tactical model looks at the strategic schedule S and finds that the scheduled TaxiBot
was tbu. First option 1 is assessed. Suppose tbu is currently busy with another acj in ACcurrent and this
operation will approximately take 6 minutes. As this calculation takes place 5 minutes before arrival, these 5
minutes spare are subtracted from these 6 minutes, meaning that the aircraft probably has to wait for 1 minute
before tbu will be present. The penalty for option 1 then becomes 1min · 10min−1(Pwait) = 10. Suppose plenty
of other TaxiBots are available, and the one closest by, tbv only needs 2 minutes to be at the correct pick up
node. As this is less than 5 minutes, no penalty will be allocated for waiting, however the penalty for switching
does apply, resulting in 0min · 10min−1(Pwait) + 50(Pswitching) = 50. As the aircraft does not have to wait
5 minutes before any TaxiBot will be present, option 3 is not applicable. As option 1 is lower than option 2
(10 < 50), option 1 will be chosen, even though ack has to wait for one minute after arrival and tbu will be
chosen. A visualisation of this decision can be seen in Figure 4

Figure 4: Visualisation of the decision proces for one certified aircraft to be taxied by a TaxiBot.
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Algorithm 1 Simplified pseudocode of greedy vehicle routing problem: strategic model
1: Input Nodal network G with nodes N and edges E, Flight schedule F with aircraft AC
2: Set t=0
3: Set ACcurrent = ∅, ACfuture = ∅, current set of TB = 20
4: while t is in time window do
5: Close crossing nodes in case of runway closure
6: Move each ac in ACcurrent on edge n,m in shortest path with speed ve
7: For each ac in ACcurrent, ensure conflict and collision avoidance
8: Move each tb in the current set of tb on edge (n,m) with speed ve
9: Check for new emerging ac in the near future in F

10: if ac will emerge (arrival/departure) within Tresponse then
11: Add ac to ACfuture

12: Let tb already go to the starting node (runway/gate) if possible
13: end if
14: if ac arrives/departs then
15: Add ac to ACcurrent

16: Delete ac from ACfuture

17: Determine Dijkstra’s shortest path from starting node to end node
18: end if
19: if newly emerged ac is certified and TBpool>0 then
20: Couple with tb
21: TBpool -= 1
22: end if
23: if ac in ACcurrent reaches the end node (gate/runway) then
24: Delete ac from ACcurrent

25: if ac is certified then
26: Uncouple ac and tb
27: TBpool += 1
28: end if
29: end if
30: Move to next time window if end of current time window is reached
31: print new ac and tb positions
32: t += ∆t
33: end while
34: Return Aircraft and TaxiBot properties
35: Output Strategic routing schedule S
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Algorithm 2 Simplified pseudo code of greedy vehicle routing problem: tactical model
1: Input Nodal network G with nodes N and edges E, Updated flight schedule F ′ with aircraft AC, Strategic

schedule S
2: Set t=0
3: Set ACcurrent = ∅, ACfuture = ∅, ACwatchlist = ∅, current set of TB = 20
4: while t is in time window do
5: Close crossing nodes in case of runway closure
6: Move each ac in ACcurrent on edge (n,m) with speed ve
7: For each ac in ACcurrent, ensure conflict and collision avoidance
8: Move each tb in the current set of tb on edge n,m with speed ve
9: Check for the first time if ac will emerge on time or will be delayed in F ′

10: if ac is delayed then
11: Add ac to ACwatchlist

12: end if
13: if ac will emerge (arrival/departure) within Tresponse then
14: Add ac to ACfuture

15: Delete ac from ACwatchlist

16: For each ac in ACfuture, determine the different scenarios based on the strategic schedule S
17: Determine the penalties per scenario and choose the one with the lowest penalty
18: Let tb already traverse to the starting node (runway/gate) if possible
19: penaltysum += penalty
20: end if
21: if ac emerges (arrival/departure) then
22: Add ac to the ACcurrent

23: Delete ac from ACfuture

24: Determine Dijkstra’s shortest path from starting node to end node
25: end if
26: if newly emerged ac is certified and TBpool>0 then
27: Couple with tb
28: TBpool -= 1
29: end if
30: if ac in ACcurrent reaches the end node (gate/runway) then
31: Delete ac from ACcurrent

32: if ac is certified then
33: Uncouple ac and tb
34: TBpool += 1
35: end if
36: end if
37: Move to next time window if end of current time window is reached
38: print new ac and tb positions
39: t += ∆t
40: end while
41: Return Aircraft and TaxiBot properties
42: Output Strategic routing schedule S’, penaltysum, penaltymax, Penalty information P

3.3 Model Input
We consider a number of sets of input data. The nodal network, flight schedule, runway configuration, set of
certified aircraft, penalties and operational (un)coupling times.

Nodal Network
The nodal network is adapted from [Guillaume, 2018] and represents Amsterdam Airport Schiphol (AAS).
The fact that feasibility tests with the TaxiBot have been performed here during Q1 to Q3 2020 make this
a reasonable choice [Schiphol, 2020]. Figure 5 shows the nodal network G with its nodes N and edges E and
Figure 6 visualises the nodal network by overlaying it over AAS.
Each node contains the following attributes: its relative position, the nodes it is connected to and its node
function. The latter refers to either service roads or taxiway roads and the specific function of end nodes,
such as gates and runway entrances/exits. Light blue nodes 0 to 11 represent gates, nodes 94 to 99 represent
the runway entrances/exits. Figure 7 visualises the gates associated with each of the gate nodes. Edges have
the following attributes: the maximum driving speeds and the lengths. Blue edges represent service roads,
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only accessible for traversing TaxiBots, grey edges represent taxiway roads, accessible for aircraft and TaxiBots
towing aircraft. The thick grey lines represent the six runways. Note that runway 18R-36L is not fully shown
due to formatting purposes. Edge velocities, as adapted from [Guillaume, 2018], are the average speeds driven
by aircraft, as analysed by [Roling et al., 2015]. These velocities were derived from real track data provided by
AAS and ATC the Netherlands. Speeds around the apron are the maximum allowed speeds. As can be seen,
no edges connect to runway 04-22 as this runway is not used in our model because only a minimal number
of commercial flights (1.2% of total yearly flights) make use of this runway. A total of 110 nodes are used to
construct the nodal network. Nodes are strategically placed on turns and to limit the edge length. This is as to
maximise certain edge lengths of taxiway roads as conflict and collision avoidance is based on this edge length.
Lastly, a restriction is set on runway crossing whenever this runway is in use.

Figure 5: Nodal Network representing AAS, adapted from [Guillaume, 2018].

Figure 6: Overlay of the nodal network on a satellite
image of Amsterdam Airport Schiphol. Figure 7: Gates associated to each of the gate nodes,

adapted from [Kroese, 2021].
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Conflict and collision avoidance is only applicable to taxiways and is based on a minimum separation of 60
meters [Kroese, 2021], [Gotteland et al., 2001]. Some edges in the nodal network have a length smaller than 60
meters, however as these locations represent a complex intersection, aircraft will already arrive with a slower
speed than usual, justifying this 60 meters. At the airport apron, even lower taxiing speeds are common, hence
[Salihu et al., 2021] suggests separation distances of 15m to 30m. As this separation will be ensured during
normal operations by careful driving operations, conflict and collision avoidance is not required in this area.

Flight Schedule
The second input set is the flight schedule, which is taken from an online data collecting website1. A sample
set is given in Table 3. The aircraft type is used to determine if the flight is certified to be towed by a TaxiBot.
Aircraft that are certified are all types of Airbus A320 and Boeing B737 [Hospodka, 2014b], [TLD, 2019]. The
TaxiBot deploying company SAS has the ambition to have all types of Airbus A220, Boeing B757, the current
Embraer E-jet family and the COMAC family certified within the foreseeable future. Other types of data used
are the gate the flight is scheduled to and the flight status, being arrival (A) or departure (D). Lastly, two sets
of times are given. These arrival/departure times are the Scheduled Time of Arrival (STA) and Actual Time
of Arrival (ATA) or Scheduled Time of Departure (STD) and Actual Time of Departure (ATD). For future
reference, only STA and ATA will be used, which refers to both. The STA is the time as it is scheduled in
advance, while the ATA is the actual time of arrival/departure determined after the action has taken place.
The STA is used for the strategic schedule, while the ATA is used for the tactical schedule. If multiple aircraft
are scheduled to use the same runway at one moment in time, it is assumed that appropiate runway sequencing
takes place.

Table 3: Sample flight schedule input data.

ID Aircraft type Gate Flight nr. STA ATA Flight Status Certified
0 BOEING 737-800 WINGLETS C7 KL590 06:50 06:49 A C
1 AIRBUS A350-900 D42 HV 6871 06:50 07:32 D -

Runway Configuration
The third set of input is the runway configuration, taken from the website DutchPlaneSpotters1 as well. This
configuration is used for both the strategic and tactical schedule. When the strategic schedule is planned, this
runway configuration is not known yet, as this is defined on the day itself, however it is assumed to be known.
The reason for this is to compare the strategic with the tactical schedule with only one variable subject to
change. When keeping the runway configuration the same while changing the arrival and departure times, a
qualitative comparison can be made. The preference list as defined by the MER commission sets the combi-
nation 18R (and 18C in case two runways are used at the same time) for landings and 24 (and 18L in case
two runways are used at the same time) for departures as the second favourable option, justifying this runway
configuration used [Gordijn, 2016].

Penalty Parameters
Next to that, the penalty factors used can be found in Table 4. The base value for penalties Pwait is set
arbitrarily to 10. The penalty for waiting is defined as the penalty base value times the number of minutes the
aircraft has to wait. If a TaxiBot other than previously scheduled will taxi the aircraft, the penalty base value
is multiplied by 5, resulting in a penalty of 50, in case of an aircraft being earlier than scheduled. If the aircraft
decides to taxi without a TaxiBot, the penalty will be 100. As delayed aircraft have a higher priority to finish
their route as soon as possible, the penalties for switching and taxiing for delayed aircraft are considered to
be less important. For delayed aircraft, we prioritise arriving at their respective end node as fast as possible,
resulting in lower penalty multiplication factors, respectively 4x and 8x. In practice, for early aircraft this
means that the threshold value for switching of TaxiBots lies at 50/10 = 5 minutes, which means that after
5 minutes, the option of switching is most favourable. Following that same logic, the threshold for taxiing
without a TaxiBot lies at 10 minutes. The penalty multiplication factors for delayed aircraft are relatively
lower, meaning that the threshold values are lowered as well. As a default value, 5x is chosen as this is matching
with the 5 minutes future outlook that is used for departing aircraft as the amount of time before the actual
departure time is fixed. The default value of 10x for taxiing without a TaxiBot is set to be twice the previous
value. For delayed aircraft these values are reduced with one minute (4x), and then doubled respectively (8x).
As these penalty parameters are set rather arbitrarily, a sensitivity analysis on these parameters will follow in
section 5.3.2.

1 https://schiphol.dutchplanespotters.nl
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Table 4: Overview of penalty factors used in the model.

Penalty - Early Aircraft Value Penalty - Delayed Aircraft Value
Waiting on a TaxiBot - Pwait (min−1) 10 Waiting on a TaxiBot Pwait (min−1) 10
Switching of TaxiBot - Pswitching (5x) 50 Switching of TaxiBot - Pswitching (4x) 40
Taxiing without a TaxiBot - Pno TB (10x) 100 Taxiing without a TaxiBot - Pno TB (8x) 80

Operational (Un)coupling Times
As TaxiBots have a different method of operations than the usual towing trucks, the operation times significantly
differ. For example, as TaxiBots will drive on the taxiway roads when coupled to the aircraft, ATC clearance is
necessary beforehand. The different tasks for (un)coupling of towing trucks at airport operations, are summed
to get to a total operation time, as can be seen in Table 5. Some of these task lengths are taken from [Kroese,
2021], however the TaxiBot deploying company SAS has the ambitions to minimise the task lengths as specified
in the table.
A distinction can be made between certified and non-certified aircraft and arriving and departing aircraft. For
each of these four situations, operational time is needed before and after the taxiing has taken place. No tasks
take place for arriving non-certified aircraft after they have taxied to their respective end node, hence 0 seconds.
The upper part of Table 5 represents the current way of operation when using towing trucks, the lower part
represents the way of operations when using TaxiBots. Engine cool down time (ECDT) and engine start-up
time (ESUT) are both set to be 5 minutes (300s) [Kumar et al., 2008] [Deonandan and Balakrishnan, 2010].
As engines must be sufficiently warmed up prior to departure and cooled down after arrival, this must be taken
into account when calculating the time needed for the taxi operations. Therefore, for aircraft taxiing without a
TaxiBot, take-off is postponed until the engines have warmed up sufficiently. However, in all other cases, this
ECDT and ESUT is masked by other operations. Note however, that taxi-in must take at least five minutes
in order to make sure the engines have cooled down sufficiently. For arriving aircraft, the ECDT can take
place either during taxiing or when coupled to a TaxiBot. For departing aircraft, ESUT can take place while
the TaxiBot taxies to the runway. The same assumption regarding a minimum taxi-out time applies here as
well. From the simulation runs, it can be seen that the number of times the taxi-in and out times were shorter
than five minutes is in the range of 1%, verifying this assumption. Lastly, pre-flight time, used to go over the
pre-flight checklist, is assumed to be 45 seconds, however it is masked as well by general aircraft operating
activities.
As can be seen from Table 5, taxi-in operations are four times longer for the aircraft-TaxiBot combination (240s
with respect to 60s). On the other hand, taxi-out takes half as long for the aircraft-TaxiBot combination (405s
with respect to 720s).

Table 5: Four different scenarios for coupling and uncoupling times taking place before and after taxiing, as
defined for certified and non-certified aircraft.

Non-Certified Aircraft
Arrival Departure

Before After Before After

ATC clearance before taxi in (60s) ECDT (masked)

Pre-flight time (masked)
Pushback loading (45s)
ATC clearance before pushback (60s)
Pushback time (90s)
Pushback unloading (105s)
ESUT (300s)
ATC clearance before taxi out (60s)

ATC clearance for line up (60s)

60 0 660 60Total [s]: 60 720
Certified Aircraft

Arrival Departure
Before After Before After

Coupling time (45s)
ATC clearance before taxi in (60s)
ECDT (masked)

Decoupling time (135s)

Pre-flight time (masked)
Coupling time (45s)
ATC clearance before pushback (60s)
Pushback time (90s)
Command transfer (15s)
ATC clearance before taxi out (0s)

ESUT (masked)
Decoupling time (135s)
ATC clearance for line up (60s)

105 135 210 195Total [s]: 240 405

Assumptions

• As one of the six runways, Oostbaan 04/22, is not used often throughout the year, this runway is omitted
from the nodal network and any applicable arrivals or departures here are deleted from the flight schedule.
This assumption is justified as only 6058 of the total 497303 flights (1.2%) used this runway in 2019
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[Bewoners-Aanspreekpunt-Schiphol, 2020].

• It is assumed that runways only have 1 runway entrance/exit at the beginning/end of the track.

• If more than 1 runway is used for arrival or departure, flights are alternately scheduled, following that
multiple flights can arrive/depart at one moment in time.

• Runway sequencing and the subsequent minimum time separation between two arriving/departing aircraft
is not taken into account.

• The runway configuration is assumed to be known for the strategic schedule.

• Coupling and uncoupling at the runway takes place on the runway node. It is assumed that such a holding
node has sufficient space for aircraft and TaxiBot to (un)couple, while other aircraft and/or TaxiBots might
pass meanwhile.

• The vehicles are assumed to be driving either at the maximum speed at that specific edge or are at
standstill. Acceleration or deceleration hence is not taken into account.

• The number of TaxiBots is variable for different scenarios.

• We assume that TaxiBots have sufficient power to operate a full day and do not need charging throughout
the day. It is assumed that charging takes place during lean hours and is not modelled.

• There will be sufficient operating personnel in order to use all TaxiBots throughout a day of operations.

• All cockpit crew are assumed to be familiar with the TaxiBot operations and are allowed to operate them.

• All other crew of operating parties are trained to operate all TaxiBot procedures, and no delays or
inconsistencies will occur due to incompetence.

• No conflict and collision avoidance is necessary for TaxiBots that are driving on the service roads. Next
to that, these TaxiBots can pass each other on these roads as well.

• If a runway is in use, runway crossing is not allowed.

• Conflict and collision avoidance for aircraft only takes places at taxiways and not at gates and runways.
A minimum separation of 60m is guaranteed, which is not based on the size of both aircraft.

• At edges where service roads cross taxiway roads, it is assumed that appropriate right of way order is kept
between aircraft and TaxiBots.

• The time span of one simulation takes exactly one day. These simulations are assumed to be independent
of previous or future days.

• Once the actual time of arrival/departure is known a set time before, this time does not change anymore.

• As most recent flight schedules are affected by the Covid-19 crisis, input data from 2019 will be used, as
this data is deemed more relevant than data from 2020.

• It is assumed that no cancellations or any other abnormal activities such as go-arounds take place.

• Delays can be maximum negative or positive 3 hours with respect to the scheduled time of arrival/departure.
Only 56 of the 10335 flights assessed in the two weeks around the busy day go over this limit due to ex-
ceptional reasons. In order to limit the problem to realistic scenarios, this maximum is set.

4 Description of the Case Studies
First a case study regarding different scenarios follows in section 4.1, after which a case study regarding a
sensitivity analysis follows in section 4.2.
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4.1 Scenarios
We have solved the GVRSP for different scenarios, as can be seen in Table 6. The number of TaxiBots neces-
sary is dependent on the number of aircraft certified to be taxied, which in turn is dependent on the number
of aircraft arriving and departing and the list of aircraft types certified to be towed. The number of aircraft
arriving and departing is not constant throughout a year but rather fluctuates. Summer periods tend to be
busier and winter periods are calmer.

Table 6: Different scenario case studies performed.

ID Scenarios Nr of Aircraft Of which
certified Nr of TaxiBot Nr of Runs

#1 Busy day + Current set of certified aircraft
+ random A/D times (base scenario) 1427 757

(53.0%) 30 100

#2 Calm day + Current set of certified aircraft
+ random A/D times 954 499

(52.3%) 30 100

#3 Busy day + Future set of certified aircraft
+ random A/D times 1427 1138

(79.7%) 45 100

#4 Calm day + Future set of certified aircraft
+ random A/D times 954 721

(75.6%) 45 100

Busy vs. Calm Scenario
Four scenarios have been studied, two with a busy schedule (schedules 1 & 3) and two with a calm schedule
(scenarios 2 & 4). Busy days are interesting as they showcase the maximum capacity and thus the maximum
number of TaxiBots needed. A calm day will show the minimum number of TaxiBots needed at the airport.
Hence, the number of TaxiBots needed fluctuates as well, resulting in a set of spare TaxiBots in the winter,
while having a scarcity in the summer. The number of TaxiBots used in the schedule is set to 30 for the base
scenario. The selection of this parameter is based on experimental results, as will be explained in section 4.2.
The choice represents a scenario in which 90% of the runs the number of TaxiBots was sufficient to perform
all tasks without having aircraft to wait for an available TaxiBot. The effect of changing this variable will be
explained in the parametric study in section 5.3. This number is fixed for both busy and calm days in order to
limit the number of variables. In real-life, this number of TaxiBots available is specified beforehand as not only
variable but also fixed costs, such as personnel costs, are associated with the operability of a TaxiBot. Hence,
one might expect to have only 2/3 of the TaxiBot fleet available on calm days.

The flight schedule as explained before in section 3.3 for the busy day used in the case studies is taken from
August 8th 2019, which was one of the busiest days in that year, accompanied by other busy days in the weeks
before and after. The latter is important as the probability density function (PDF) used in the model to set
the ATA and ATD is derived from the actual delays of all flights in these two weeks around the assessed day.
The reason why a PDF is used to randomly determine delays, instead of using multiple days as input, is to
change only one variable at the time while keeping the rest fixed, i.e. only delays can vary, while the runway
configuration, the number of aircraft etc stay the same. The flight schedule from the calm day used in the case
studies is taken from January 26th 2019, which was the calmest day of the year. The percentage of certified
aircraft is approximately the same for busy and calm days.

Current vs. Future Set of Certified Aircraft Types
As discussed before, the set of aircraft types that are certified to be towed will be extended in the near future.
Hence, the case studies have been split up in a time period representing the current scenario (scenarios 1 & 2)
and one representing the near future (scenarios 3 & 4). The percentage of certified aircraft is higher for the
near future scenarios, however note that the current flight schedule is used still. It might be the case that in
the near future, a higher number of certified aircraft will be used by airlines as the list of certified types in
the near future contains newly designed aircraft as well. Therefore, this percentage might be higher and thus
even more TaxiBots might be necessary as well. The number of TaxiBots used in these two scenarios are set to
30 · 1.5 = 45, as one and a half times more certified aircraft are scheduled to arrive and depart.

The ATA and ATD taken from the flight schedules represent the actual flight times on the day of operations,
however this represents only one run for the tactical model. As arrival and departure delays are probabilistic, a
set of multiple tactical model runs need to be performed in order to draw informed conclusions. This is based
on a proper estimate of the distribution of the total sum of penalties, taken as the main output variable to
base on. Based on the stabilisation of the coefficient of variation, as suggested by [Lorscheid et al., 2012], the
number of runs necessary is 100.
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In order to generate a different set of ATA and ATD for each run, we drew random delays for each flight
from a lognormal probability density function. This distribution fits the data set best, based on literature.
This distribution is selected as well by [Novianingsih and Hadianti, 2014] and [Lan et al., 2006], who both
statistically tested gamma, lognormal, Rayleigh and Weibull distributions. Delay data is taken from all arrival
and departure delays from the 14 days around the chosen busy and calm days (sample size 10000). These two
weeks, one before and one after the actual chosen day, are similar in terms of number of arrivals and departures,
composition of aircraft types and timewise distribution, resulting in a large and reliable data set. Sources for
delays vary and thus different distributions can be drawn for various selections. In this paper, we focus on a split
between arrivals and departures, which show a great difference in both mean and standard deviation. Figure 8
shows lognormal probability density functions for arrival and departure delays on a busy day. As noted before,
the functions are cut at negative and positive delays of 180 minutes or three hours in order to keep the problem
realistic. As can be seen, the PDF for arrival delays tend to shape more like a normal distribution, while the
PDF for departure delays almost fully encompasses only positive delays. Arriving flights have the possibility to
fly faster than scheduled or have a deliberately longer flight time scheduled, resulting in early arrivals, however
for departing aircraft it is practically very difficult to leave before the scheduled time.

Figure 8: Lognormal probability density functions for arrival and departure delays on a busy day.

4.2 Sensitivity Analysis
A sensitivity analysis is used to evaluate the sensitivity of two model parameters. These parameters are the
number of TaxiBots used and the penalty multiplication factors. The parameters and their upper and lower
boundaries are shown in Table 7. As mentioned before, the number of TaxiBots necessary is dependent on
multiple factors and results in different costs. For example, one might want to schedule the bare minimum
number of TaxiBots required on a calm day in order to minimise personnel costs. Therefore, it is of paramount
importance to find the optimum value for this parameter and the model’s sensitivity to change. A range of 10
to 50 is chosen to cover all values used in the four scenarios and to use realistic values used on both calm and
busy days. The results for this can be found in section 5.3.1 A second important input parameter is the relative
penalties given to a schedule change. The penalty multiplication factors play an important role in determining
the selected penalty option based on the thresholds. For example, the default penalty for switching of TaxiBot
is 50, while the default penalty for waiting is 10 per minute. In other words, the threshold value for waiting
lies on 50/10 = 5 minutes before the model decides to go for the switching option. Following on that, the
threshold for taxiing without a TaxiBot lies on 100/10 = 10 minutes. Changing these relative multiplication
factors will result in different decisions taken by the model. Finding the sensitivity of the model with respect
to this parameter will be investigated as well, as found in section 5.3.2

Table 7: Different sensitivity analysis case studies performed. Bold values represent the base scenario.

Sensitivity Analysis Scenarios Parameter to Change Range [-]
Busy day + Current set of certified aircraft
+ ATA A/D times Nr of TaxiBots 10,12,...,30,...50

Busy day + Current set of certified aircraft
+ ATA A/D times

Penalty Multiplication factors
Pswitching/Pno TB

Early aircraft
Delayed aircraft
Relative factor

10/20
8/16
2x

- 10/15
- 8/12
- 1.5x

- 5/10
- 4/8
- 2x

- 5/7.5
- 4/6
- 1.5x

- 2.5/7.5
- 2/6
- 3x

- 2.5/10
- 2/8
- 4x
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5 Results
The results can be split in three sections. First a comparison of the strategic and tactical model output will
follow in section 5.1. Here, the base scenario described in Table 6 is used for the development of the results.
A comparison with the other scenarios follows in section 5.2. Lastly, a parametric study on the base scenario
is described in section 5.3. All GVRSP models were written in Python 3.7 and were executed with a 1.8GHz
Intel Core i7 8565U processor with 16GB DDR4 RAM.

5.1 Base Scenario Analysis
A number of output metrics can be taken from both the strategic and tactical model in order to compare the
resulting schedules. For this, the base scenario, corresponding with scenario #1 as explained in section 4. A
comparision with the other three scenarios will follow in section 5.2. A set of taxiing metrics can be found in
Table 8. As can be seen, the parameters do not differ much, which is the objective of the model. Due to the
delays occurring on the day of operations, a schedule which is not optimal anymore will be followed, resulting
in shorter TaxiBot towing times for the tactical schedule with respect to the strategic schedule. The total taxi
time of all aircraft combined decreases from 328.5 hour to 317.9 hour. This is due to different routes taken
throughout the day or different conflict and collision avoidance actions. This could be for example due to closure
of runway-crossing roads, resulting in different routes. The total taxi time can be split up in total taxi time
for certified (159.7 hr) and non-certified aircraft (168.9 hr). This split is necessary to compare with the total
summed time of aircraft taxiing with a TaxiBot (159.5 hr). In the strategic schedule, one certified aircraft could
not be towed by a TaxiBot due to too long waiting times, resulting in a coverage of 99.9% of all certified flights.
In other words, almost all certified aircraft have been towed by a TaxiBot. This coverage of certified aircraft
being taxied is slightly decreased in the tactical schedule. More certified aircraft have to wait too long before a
TaxiBot would be available and have to taxi without a TaxiBot, resulting in a coverage of only 99.2%. Overall,
for almost half of the total taxi time (48.5% and 47.9% for the strategic and tactical schedule respectively) a
TaxiBot tows the aircraft from its respective starting to ending node. In other words, in almost 50% of the
time, aircraft taxi without using their engines. For the strategic schedules in the two calm scenarios a coverage
of 100% is reached. As these taxiing parameters do not differ much between the strategic and tactical schedule,
the rest of this paper will show plots of the tactical model to analyse. The plots of the strategic schedule closely
resemble the plots shown.

Table 8: Comparison of taxi parameters between the strategic and tactical schedule, based on the base scenario
for one day of operations with 1427 aircraft and 30 TaxiBots.

Parameter Strategic Schedule Tactical Schedule
Total taxi time [hr] 328.5 317.9
Of which certified ac/non-certified ac [hr (%)] 159.7 (48.6%) / 168.9 (51.4%) 153.6 (48.3%) / 164.3 (51.7%)
Total towing time with a TaxiBot [hr] 159.5 152.3
Of certified ac taxi time/total taxi time [%] 99.9% / 48.5% 99.2 % / 47.9 %
Certified aircraft taxied without a TaxiBot [-] 1 7

Figure 9 and Figure 10 show the waiting times before a certified aircraft is picked up by a TaxiBot and
the taxiing times of both certified and non-certified aircraft respectively. The waiting times are shown on a
normalised logarithmic scale, taken from 100 simulation runs. The maximum waiting time for certified aircraft
before they got picked up by a TaxiBot is 8 minutes, however in most cases the aircraft do not have to wait at
all as the TaxiBot will be readily available. Three other peaks can be seen, at 140s, 200s and 380s. These peaks
result from the three most used routes, which start at the three waiting nodes for TaxiBots. The taxiing times
for certified and non-certified aircraft are shown on a normalised scale, taken from 100 simulation runs. As can
be seen, the most peaks for certified aircraft can be found around seven and a half minute and eleven and a
half minute, which is equivalent to the most used routes plus the coupling and uncoupling operation times for
arriving and departing flights. The same observation cannot be made distinctively for non-certified aircraft, as
the operation time for arriving non-certified aircraft is 60 seconds, which is not distinctively clear due to all
other taxiing times in the same range. The peak around 15 minutes is quite clear, of which 12 minutes is for
operations in case of departing aircraft. Logically, the taxi times of certified aircraft tend to be shorter than
the ones from non-certified aircraft, which can be largely assigned to the difference in coupling and uncoupling
times and the presence or absence of ESUT and ECDT.
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Figure 9: Normalised logarithmic histogram of the
waiting times of certified aircraft before pickup in the
tactical schedule, for 100 simulation runs with 30 TB.

Figure 10: Normalised histogram of the taxiing times
for both aircraft taxied with a TaxiBot (certified) and

aircraft taxiing without one (non-certified) in the
tactical schedule, for 100 simulation runs with 30 TB.

Next, the occupation of the TaxiBots is shown via Figure 11, Figure 12 & Figure 13. Figure 11 shows the
occupation of each TaxiBot, divided into waiting, traversing and towing as a percentage of the total time. As
can be seen, the first eight TaxiBots are in use for over 50% of the time, however the latter four TaxiBots are
only used for 10% of the time. As the model searches for the TaxiBot closest by, a TaxiBot with a higher
number could be called upon before a TaxiBot with a respective lower number if that former TaxiBot is closer
by. However, as the model uses a greedy approach, overall the percentage of waiting increases over the sequence
of TaxiBots. During a day of operations there are moments in which little or no aircraft arrive or depart,
resulting in the TaxiBots being stationary at the waiting locations. This explains the fact that even the most
used TaxiBot is waiting for approximately a quarter of the time. A corresponding figure, Figure 12, shows the
number of TaxiBots in use, either traversing or towing, at each moment in time. 100 simulations have been
plotted, with the thick black line showing the average. In 10% of the cases, this number of 30 TaxiBots was
not sufficient to cover all aircraft immediately, and some aircraft had to wait for some time before being picked
up. The waiting times as shown in Figure 9 hence is mostly due to on-route congestion, but als partly due to
the TaxiBot fleet size. The same trend can be seen in Figure 13, which shows the number of aircraft present on
the airport surface at each moment in time. This includes waiting on a TaxiBot and taxiing with or without
a TaxiBot. During the first few hours, only a small number of aircraft arrive and depart, resulting in only a
few TaxiBots in use. As soon as the day of operations starts to get busy, the number of aircraft on the airport
surface and the number of TaxiBots in use start to grow. During lean hours, both decrease, while during peak
hours, both values increase. The differences between the number of TaxiBots used for the 100 simulations is
explained by the changing moments of congestion during the day caused by the different delays. The same can
be said for the differences in the number of aircraft present on the airport surface.

Figure 11: Occupation of each TaxiBot (30) for 100 simulation runs of the tactical schedule, divided into
waiting, traversing and taxiing, split up for the 24 hours of operation.
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Figure 12: The number of TaxiBots that are in use at
each moment in time for 100 simulation runs of the

tactical schedule with 30 TB.

Figure 13: The number of aircraft that are present on
the airport surface at each moment in time for 100
simulation runs of the tactical schedule with 30 TB.

Lastly, penalty parameters are shown in Figure 14 and Figure 15. Figure 14 shows the delays of each flight,
paired with the option that was chosen for this flight in the tactical model. As can be seen, the three options
show the same output, meaning that the length of the delay does not automatically decide which option will
be chosen and so the three histograms look exactly the same. This choice of option is situation specific as it
depends on the combination of i.e. the location of the TaxiBots, the number of TaxiBots available, the number
of aircraft that just arrived or departed etc. Figure 15 shows the heights of the penalties and their relative
occurrences, for each of the three options. As can be seen the heights of the penalties when option 1 is chosen
are generally lower than the penalties when option 2 is chosen. Logically, option 2 has higher penalties due
to the addition of the penalty multiplication factor Pswitching. The highest peak occurs at 0, which means no
change of TaxiBot is necessary and the aircraft does not have to wait. This peak is the most favourable one
with respect to the goal of minimising deviations from the strategic schedule. For option 3, only two green
peaks can be seen, at 160 (Ppeak · Pwait · Pno TB − delayed) and 200 (Ppeak · Pwait · Pno TB − early). As option
3 is only dependent on the multiplication factor Pno TB , only two peaks can occur dependent on early or late
delays. For a wide range of penalty heights between approximately 40 and 180, all three options can occur,
meaning that the specific penalty height does not automatically result in a specific option to be chosen.

Figure 14: Normalised histogram of delays when
selected penalty option 1 (scheduled TB), 2

(different TB) or 3 (no TB) over 100 simulation runs
with 30 TB. All three histograms have the same shape.

Figure 15: Normalised logarithmic histogram of the
penalties when selected penalty option 1 (scheduled

TB), 2 (different TB) or 3 (no TB) over 100 simulation
runs with 30 TB.

5.2 Scenario Case Studies
We use the four different combinations of input data to generate the tactical schedules of the four scenarios as
presented in Table 6. Table 9 provides an overview of the penalty parameters to compare. As in the calm days
the number of scheduled flights is only 2/3 of the size of the busy days, fewer certified aircraft will need to be
taxied, and thus the sum of penalties for scenarios 2 and 4 are approximately 2/3 of the sum of penalties for
scenarios 1 and 3. Furthermore, as in the future 1.5 times more aircraft are certified, the sum of penalties are
approximately 1.5 times higher for 3 and 4 when compared to 1 and 2. However, when normalising these values
with respect to the total number of certified aircraft taxied by a TaxiBot, the relative differences become clear.
Penalties are lower for calmer days, which is as expected, however the comparison between the current and
future scenarios reveals less. This is explained by the fact that more TaxiBots are used in the future scenarios
(45) as opposed to the current scenarios (30) and therefore a proper comparison is difficult. However, scenarios
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1 and 2 using 30 TaxiBots resemble scenarios 3 and 4 with 45 TaxiBots.

The different options for penalties show that during calmer days, the selection of option 1 is more often
possible. Again, the comparison with the future scenarios results in the same conclusions. The percentage for
selected option 1 is slightly lower for scenario 3 when compared to scenario 1. Next to that on average over
12 certified aircraft had to taxi without a TaxiBot because it took too long before one was available or would
arrive. This value is higher than the average of just over 7 in scenario 1. Both observations suggest that 45
TaxiBots for the future scenarios is slightly less efficient when compared to using 30 TaxiBots in the current
scenarios.

The same type of conclusions can be drawn for the output parameters as shown in Figure 10, Figure 12 and
Figure 15. The taxi times, use of TaxiBots and penalties for option 1 and 2 respectively tend to be generally
lower for the calm scenarios, as expected. Penalties for option 3 do not even occur in the calm scenarios.

Table 9: Comparison of penalty parameters between the four scenarios with different number of (certified)
aircraft and TaxiBots.

Parameter [-] #1 #2 #3 #4
Number of Aircraft (of which certified) 1427 (53.0%) 954 (52.3%) 1427 (79.7%) 954 (75.6%)
TaxiBot fleet size 30 30 45 45
Sum of penalties 66510 40051 103731 57646
Normalised penalty per flight 88.4 80.4 91.6 80.1
Option 1 selected 51.5% 54.9% 50.6% 55.8%
Option 2 selected 48.4% 45.1% 49.4% 44.2%
Option 3 selected 0.1 % 0.0% 0.0% 0.0%
Certified aircraft taxied without a TaxiBot 7.16 3.53 12.18 6.36
Computation time [s] 59 30 55 23

5.3 Sensitivity Analysis
We have done two parametric studies on the base scenario as was described in section 4. Two parameters are
of importance, the number of TaxiBots used and the penalty multiplication factors.

5.3.1 Number of TaxiBots

Ranging the number of TaxiBots from 10 to 50 and doing 100 simulation runs for each, the conclusion can be
drawn that the number of TaxiBots necessary on AAS reaches an asymptote from approximately 34 TaxiBots
on. This analysis can be taken from two types of output data, penalty parameters and TaxiBot occupation
parameters. Starting with the former, the normalised penalties with respect to the number of certified aircraft
for different sizes of the TaxiBot pool can be found in Figure 16 and the division of the penalties given to
each certified aircraft can be found in Figure 17. The average minimum penalty given to a certified aircraft
goes towards 80, which is in approximately half of the times coming from option 1. This same asymptote is
reached from 34 TaxiBots on as well, which lies around 55%. Theoretically, this asymptote would go to 100%
if sufficient TaxiBots are used, however due to the greedy approach of the strategic model, it does not take
global scheduling into account. If an infinite amount of TaxiBots would be used, each certified aircraft could be
scheduled to a different TaxiBot, which would always result in option 1. However, as the model does not solve
to find a global optimum, this theoretical scenario would not take place with sufficient number of TaxiBots,
causing this asymptote.

20



Figure 16: Normalised sum of penalties per certified
aircraft for different TaxiBot pool size. Lorem ipsum

dolor sit amet

Figure 17: Division of penalty options 1 (scheduled
TB), 2 (different TB) and 3 (no TB) for different

TaxiBot pool size.

Combining this fact with two occupation parameters, a better insight in the number of TaxiBots necessary
can be made. Figure 18 shows the percentage of the total time using TaxiBots. These percentages are based
on the total taxi time of certified aircraft and the total taxi time of both certified and non-certified aircraft.
Figure 19 shows the percentage of time the last TaxiBot in the pool is waiting and thus not performing any
actions. This means that TaxiBot #10 only waits for approximately 45% of the time when only 10 TaxiBots are
used, while TaxiBot #50 is waiting for 98% of the time in case of a TaxiBot pool size of 50. These two figures
show that the same asymptote is reached, however the minimum number required can be better determined.
In case of a relatively small TaxiBot pool size, some certified aircraft have to taxi without a TaxiBot, resulting
in the TaxiBot towing time being smaller than the total taxi time for all certified aircraft. This percentage
does not have to be 100%, but rather should be based on the expected amount of coverage of flights and the
balance between busy and calm days. Related to that is the analysis drawn from Figure 19. When using a
larger TaxiBot pool size, more and more TaxiBots will be solely occupied with waiting, which reduces the usage
efficiency. Going for a smaller TaxiBot pool size will result in the last TaxiBot in the sequence being used more
often. However, careful consideration is needed to make sure efficiency of TaxiBot usage with respect to towing
and waiting and spare capacity of the number of TaxiBots is balanced.

Figure 18: Percentage of time taxiing for certified
aircraft has been performed by a TaxiBot (blue) and
percentage of time taxiing for all aircraft has been

performed by a TaxiBot (orange) for different TaxiBot
pool size.

Figure 19: Percentage of time the last TaxiBot in the
pool is occupied with waiting for different TaxiBot
pool size. Lorem ipsum dolor sit amet, consectetur

adipiscing elit, sed do eiusmod tempor incididunt ut
labore et dolore magna aliqua

5.3.2 Penalty Multiplication Factors

A second analysis has been performed on the penalty multiplication factors Pswitching and Pno TB . The default
values are 5x and 10x respectively. Both the height of these factors and their relative ratio are changed, as
can be seen in Table 7. The height of Pswitching affects the normalised penalty per certified aircraft most, the
relative ratio has only little effect, as can be seen in Figure 20. The latter is due to the fact that only a small
portion of the penalties are selected with option 3. The effect on the division of penalties, however, is very
little, as can be seen in Figure 21. Both changes do not result in a different division of penalties, resulting in
the conclusion that the penalty multiplication factors do not impact the model drastically.
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Figure 20: Normalised sum of penalties per certified
aircraft for different penalty multiplication factors.

Figure 21: Division of penalties options 1 (scheduled
TB), 2 (different TB) and 3 (no TB) for different

penalty multiplication factors.

5.3.3 Validation

Lastly, a validation of the model and its output is ensured. A comparison with other VRP models using ETS
on the other hand reveals that the number of aircraft capable to be taxied per ETS are in the range of 16
to 42 ([Kroese, 2021], [Guillaume, 2018] & [van Baaren, 2019]). Our model suggests a value of 25 certified
aircraft/TaxiBot in case the default value of 30 TaxiBots is used, which is within the aforementioned range.

6 Conclusions
This paper proposes a model consisting of a strategic and tactical approach to solve the Greedy Vehicle Routing
and Scheduling Problem (GVRSP). The model uses a strategic routing schedule and a stochastic flight schedule
to find a tactical schedule, while minimising the deviations from the strategic routing schedule. The objective of
this study was to develop a real-time airport operations planning tool which can be part of an integral planning
and forecasting system.
The first main finding is the following: a comparison between the strategic and tactical schedule showed that
only little had to be given in with respect to taxiing of certified aircraft when delays cause the flight schedule
to change (99.9% of certified aircraft coverage in the strategic schedule with respect to 99.2% in the tactical
schedule), even though a greedy approach was used, hence the efficiency of TaxiBots only decreased a little.
Reasons for selecting a specific option in the tactical model were not based on the delay duration, but rather
on the specific turn of events.
Next to that, a second main finding is the sizing of the number of TaxiBots. An upper limit is determined by an
asymptote, which does not change any of the assessed output metrics, starting from 34 TaxiBots on. The lower
limit, however, is up to the airport operations strategy to decide. This decision is dependent on the percentage
of certified aircraft coverage is wanted, but also the balance between busy and calm days, which will affect the
efficiency of the TaxiBots used and the spare capacity, mostly relevant for busy days.
Changing the flight schedule with respect to the number of flights showed that calmer days result in a more
flexible schedule, however the selection of the favourable option 1 did not considerably increase. The reason for
this is the greedy character of the model which does not take global scheduling into account. Enlarging the set
of certified aircraft to be taxied by a TaxiBot did not result in a different conclusion, provided that the size of
the TaxiBot pool is proportionally sized.

A parametric study was carried out to explore the features of the aircraft coverage and efficiency of the
TaxiBots for a wide range of the TaxiBot pool size and penalty multiplication factors. The former resulted
in an asymptote demonstrating an upper limit to the number of TaxiBots necessary on a day of operations.
It is up to airport operators to determine a lower limit to the number of TaxiBots necessary based on the
desired coverage of taxiing certified aircraft. The latter parametric study revealed that the size of the penalty
multiplication factors can be adjusted accordingly with respect to the airport operations strategy, while their
relative ratios play only a minor role. The division of the options is only slightly affected when changing this
parameter.
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Determining the optimal number of TaxiBots necessary on a specific day of operations needs some precaution
nevertheless. As mentioned before, an asymptote is reached for the choice of option 1 at around 50%. However
this is largely due to the structure of the greedy model, as theoretically eventually 100% ought to be reached.
As the greedy model seeks to find a local optimum, rather than a global one, future choices are not taken into
account. Further limitations in the model make this trade-off more difficult. The assumption that TaxiBots
have unlimited power and can be charged throughout the night results in an underestimation of the number
of TaxiBots necessary. In real-life operations, charging throughout the day might be inevitable, lowering the
operational time. Furthermore, careful consideration is needed when setting the relevant thresholds in the
model. For example, lowering Tresponse or increasing Tmax wait would both result in a decreased availability of
the TaxiBots as their percentage of waiting time would increase, affecting their throughpout with respect to
towed aircraft again.

7 Recommendations
Further research could focus on expanding the stochasticity of the model for the different options to select.
Currently, the delays in the flight schedule are used as deviations occurring throughout a day of operations,
however multiple other possible changes can occur. Examples are gate alterations, TaxiBots being delayed or
breaking down, the cancellation of flights or emergency flights added to the flight schedule, or errors made by
the cockpit crew or operating crew.
Moreover, the penalty scoring system can be further investigated in order to go to a complete decision-support
system in the future. Now, the waiting time and flight density are taken into account, however, as mentioned
in section 2, decision parameters such as the follow-up missions of TaxiBots and reasons for delays could be
added to the penalty decision system in order to make it more comprehensive. By weighing different types of
penalties, the output decisions can be made more all-inclusive based on the different types of changes [Pei et al.,
2021].
Next to that, as TaxiBots are a novel concept, future research could focus on improving the VRP in both the
strategic and tactical models to better mimic real-life operations by improving the model and its parameters.
Further TaxiBot operations feasibility tests will reveal challenges to be implemented in the model. Coupling
and uncoupling locations of the certified aircraft are now situated at the runway or gate, however this will not
be possible on the airport surface. Therefore, dedicated (un)coupling locations should be designated, at which
other aircraft would not be hindered in their taxiing sequence and thus sufficient space is present. Determining
the optimal locations is another recommended research direction.
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1
Abstract

The following literature review is focused on the implementation of TaxiBots, electric taxiing vehicles, on Am-
sterdam Airport Schiphol and on the development of a reactive model to cope with sudden changes in the
routing and scheduling of vehicles at the apron due to aircraft delays. As emissions from aviation continue
to increase, solutions need to be found to counteract this. Historically, solutions were mostly sought in the
airborne phase of a flight, however among on-ground operations are areas with huge potential as well. Mul-
tiple solutions have been found to electrify the taxiing of aircraft from and to the runway, one of which being
the TaxiBot solution by Smart Airport Systems (SAS). However, as this solution is quite a novel concept, lots
of technical and operational challenges arise. The routing and scheduling of all aircraft on the runways and
taxiways is quite a complex puzzle to solve, especially with the addition of TaxiBots, increasing the total num-
ber of vehicles driving around.

Similar research on the routing and scheduling, named the vehicle routing problem, on airports with
the addition of TaxiBots and other electric taxiing solutions has been focusing on minimising any of the key
performance indicators, such as fuel consumption, emissions and/or costs. One common aspect in the liter-
ature is the use of deterministic input data. However, real-life situations always bring uncertainty and sudden
changes will always occur. Therefore, general recommendations suggest to incorporate disruption manage-
ment into the problem. One way of doing so is the make schedules more robust to sudden changes, the other
one is by dynamically modelling solutions with interactive input changes. A split can be be made in strategic
(defined a set time before the actual operation) or tactical (defined during the day of operation) solutions, as
is recommended by SESAR Joint Undertaking as well. Therefore, the research aim of this thesis is defined as
follows:

To determine the effect of probabilistic aircraft departure and arrival delays on a vehicle rout-
ing schedule at Amsterdam Airport Schiphol which includes the use of an electric taxiing system, viz TaxiBot,
to schedule the routing of aircraft and TaxiBots with near real-time updates on arrival and departure times,
by creating a reactive optimisation routing and scheduling model which can reiterate the planning based on
the new received non-deterministic time information while trying to minimise the deviations from the initial
schedule.

In order to reach this aim, a main research question is formulated as follows:
What is the effect of probabilistic aircraft arrival and departure delays on the time-space plan-

ning of the vehicle routing problem with electric taxiing systems at Amsterdam Airport Schiphol? Sub-questions
that follow are focused on defining how such a strategic and tactical optimisation should look like.

The literature study consists of a review of current taxiing methods, but also other external and on-board
solutions. Examples are single-engine taxiing, electric landing gear systems and the TaxiBot. Each of these
solutions is compared with the current method, based on a different set of criteria such as fuel consumption,
emissions and costs. The TaxiBot itself is discussed as well. Recent tests at Schiphol show new insights that
will be used in future research. The company structure, technical specifications and implementation con-
siderations of this system are elaborated. As not all specifications of the TaxiBot vehicle are known, previous
literature has designed a simplistic set of taxiing vehicles themselves, mimicking the TaxiBot.
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32 1. Abstract

Different methods to model such operations at an airport are discussed. One main split can be made
between mixed-integer linear programming, finding an optimal solution, or meta-heuristics, trying to find a
near-optimal solution in a shorter computation time. The first one is split up in the two most used problems,
vehicle routing problems and fleet assignment problems. Time-space diagrams and rolling windows are the
two relevant aspects taken from literature, which has been summarised extensively based on their model ob-
jectives, output and other characteristics. Fleet assignment problems result in the scheduling of TaxiBots to
tasks planned. The conclusion can be drawn that both problems can be combined as well, resulting in an
optimal routing and planning solution. The other type of models, meta-heuristics contains amongst others
genetic algorithms or other artificial intelligence methods, which have been used to solve above problems as
well. However, as an exact solution ought to be found, MILP are favoured.
A case study on the routing of vehicles at AAS follows. Different VRP modelling aspects, airport networks,
flight schedules, TaxiBot specifications and aspects regarding operational time uncertainty are discussed.
For each of these subjects, the most suitable option is selected to be used in the case study to be developed
in the thesis.

A discussion on the scientific research gaps follows. The first one mentions the research on the TaxiBot
battery. The sizing of the battery itself, the charging capacity on an airport and the number and location of
charging stations are all aspects that can be optimised. Different strategies such as battery swapping should
be researched as well. A second gap is to pursue a feasibility study of TaxiBots at an airport. Many different
parameters come into play when determining if the implementation of TaxiBots is feasible with respect to
costs and/or sustainability parameters. Such parameters could be the airport structure, local temperature
or maintenance possibilities. The relative importance but also the range of parameters could be determined
which will be of use when determining the implementation of TaxiBots. Each of these research gaps can also
be explored for other types of electric taxiing solutions, such as on-board systems.

The model that will be built will consist of three parts, each resulting in a routing and scheduling solution.
First, a vehicle routing problem will be developed containing necessary aspects and with unlimited TaxiBots
and unlimited energy capacity. Then, in the second step, this number of TaxiBots is decreased up to the point
where a minimal number is used while still reaching a feasible solution. This strategic solution will consist of
among others a time-space diagram. Then, the third part will have randomised aircraft delays, both positive
and negative, which will be incorporated dynamically. The tactical solution found can then be compared to
the strategic solution. Requirements for this model have been established and a fitting experimental setup
has been defined. The input, output and verification and validation aspects are covered as well. Above mod-
els and planning are visualised in a functional flow diagram and a Gantt chart respectively.

To conclude, due to the increasing need in the aviation sector, new electric solutions have been developed.
In order to correctly implement these in the current operations, particular routing and scheduling solutions
are needed. However, with the always present chance of sudden changes, the optimal schedule will almost
never be exactly followed. In order to still find a feasible solution, new optimal tactical solutions have to be
found on the spot, which should not deviate too much from the original. With the implementation of such
models, vehicle routing schedulers can find new fitting solutions in a reactive way just after such a change is
needed.

The reviewed literature provides insights into the TaxiBot and its implementation, but also compares this
with other ETS present. Different modelling methods are used in order to research the implementation of
TaxiBots, and different perspectives can be found on the aim of the research. On a higher level, research
is done in vehicle routing problems, but also fleet scheduling assignments and determining the optimum
number of TaxiBots to implement. On a lower level, each of these research direction has different objectives.
Focus is laid on the minimisation of emissions, which are correlated to fuel consumption, however costs is an
important objective as well. Looking at defining the case study, different angle of approaches come forward
as well, each with their reasoning based on the aim of the research. As this specific research has a different
objective, careful selection of the appropriate resources is necessary.
One general consensus found in above literature is the defining of a model in a deterministic way. This result
in correct theoretical models, however lots of recommendations are focused on researching stochastic or
dynamically updated models. This research tries to fill this gap. With that, TaxiBot schedules can be generated
on a tactical level. Hence, a future recommendation is to incorporate such a reactive model in the tactical
planning of airport operations in order to minimise deviations from the defined strategic schedule.



2
Introduction

Aviation plays a big role in the current society. Even though it brings a lot of good to the world, unfortunately,
it brings quite some negative consequences with it as well. 2.5% of the total global CO2 emissions are due to
aviation [19]. Next to that, the aviation industry is expected to grow the coming years. Predictions made in
2018 by IATA estimated the global number of air travellers to reach 8.2 billion by 2037 1. However, as the world
finds itself in the midst of a global pandemic, predictions will need to altered. As it is unknown yet how this
crisis and the subsequent effects will evolve in the coming years, Eurocontrol predicts a number of scenarios,
of which the most plausible predicts that 2024 will be the year in which the number of flights will reach the
previous 2019 levels 2. Even in the worst-case scenario, the aviation industry would be back on track by 2029.
Concluding from this, the aviation industry will continue to play a large role in the global environmental pol-
lution and this will even continue to increase after the current dip.

In order to counteract such negative environmental impacts, each of the different parties in the aviation
industry are trying to reach more sustainable solutions. Examples are alternative fuels for aircraft engines
such as biofuel [23] or new aircraft concepts, such as the recently developed flying V3. The best case scenario
would be to reduce emissions in absolute numbers, however that would mean that the percentual decrease
in emissions should be larger than the increase in air travel. However, sustainable improvements in aircraft
efficiency tend to be only small percentages. In other words, not enough improvement can be achieved in
aircraft in order to counteract the increasing usage of jet fuel, which leads to an increase of emissions. As
noted by Lukic et al. [39] improvements in fuel efficiency are mostly focused on the airborne phase of a flight.
However, aircraft are not continuously in the air, but rather also use their engines on the ground for a part of
the mission. At these phases of the flight, the on-ground taxiing phase more specifically, larger improvements
can be gained. During these phase, the engines of the aircraft are used, which is not optimal. These engines
are not designed for these settings and thus produce more pollutants than during cruise. Next to that, on the
ground, many more energy options are present to make sure these aircraft are moved to their desired posi-
tion. One such viable option is via electric taxiing systems (ETS). By using electrical energy for the taxiing
phase instead of jet fuel, a big step can be taken towards a more sustainable solution.

Next to that, as these ground phases take place at an airport, the surrounding environment directly ben-
efits from this. Airports which seek to improve their sustainability benefit from such ETS. Royal Schiphol
Group, the owner of Amsterdam Airport Schiphol (AAS) has set its mission to become emission free on the
airport by 20304. All ground bound vehicles ought to be driving on electricity or hydrogen, which includes
the towing vehicles used. One of the ways Schiphol tries to reach this goal is to team up with SAS, one of the
developers of the TaxiBot. Tests conducted in the first half of 2020 on the feasibility of TaxiBots on Schiphol
resulted in the Proof of Concept of TaxiBot at Schiphol, however further research is necessary.

1https://www.iata.org/en/pressroom/pr/2018-10-24-02/, accessed on 24-12-2020
2https://www.eurocontrol.int/publication/eurocontrol-five-year-forecast-2020-2024, accessed on 24-12-2020
3https://www.tudelft.nl/lr/flying-v/, accessed on 24-12-2020
4https://www.schiphol.nl/nl/schiphol-als-buur/pagina/emissievrij-in-2030/, accessed on 24-12-2020
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This research specifically focuses on the external electric taxiing solution, TaxiBot, and the implemen-
tation of it at an airport. Developments of such ET solutions are underway, however as they are a novel
research direction, practical implications on the implementation of it arise. This research tries to fill that gap
by strengthening the research in the field of TaxiBot routing and scheduling.

Important to note is that "TaxiBot" is used in many settings in this report. TaxiBot is the brand of the elec-
tric taxiing solution by SAS, however taxibot is also used as generic term for such a type of solution. Continu-
ing on that, many synonyms are used for "Electric Taxiing Solutions/Systems (ETS)". These systems represent
all different types of solutions, both external and on-board. External solutions are also identified as "Electric
Taxiing Vehicles" or ETV.

This report is structured as follows: First a research framework is given in chapter 3 which states what will
be investigated and what will not. The research questions and research aim will be given as well. Then, a
literature review follows in chapter 4. This chapter covers the different taxiing methods and compares these
with respect to the current situation. Secondly, the TaxiBot in particular is discussed, providing the necessary
information to model it correctly. The different modelling methods found in literature are also covered in
this chapter. Literature on a case study will provide all necessary information to model a specific case. Lastly,
the four scientific gaps found in literature are discussed as well. chapter 5 provides the method that will be
followed in order to model the use case necessary to answer the research question. The experimental setup
and expected results will be covered as well. Finally, an overview of the planning of the thesis will be given in
chapter 6. All of this will be covered in the conclusion in chapter 7.



3
Research Framework

This chapter gives a framework for the research that will be conducted. The initial problem for this project
will first be covered in section 3.1. After that, the research aim and questions of the thesis will be discussed in
section 3.3 and section 3.4 respectively. The scope of the project will be clearly set in section 3.5. Finally, the
research framework will be summarised in the contribution work in section 3.6.

3.1. Problem Statement
While there are multiple different taxiing methods assessed and even developed, there is one consensus
reached on the problem statement; pollutant emissions need to be reduced.
"During idle mode, an engines performance is less efficient due to the low combustor temperature. This induces
higher fuel consumption, and emissions of hydrocarbon and CO," according to Ithnan et al. [28, p. 2]. As en-
gines are not designed for this stage, relatively high fuel consumption and emissions occur which should be
reduced as much as possible. Next to that, emissions are proportionate to the taxi time and taxi times tend to
increase over the past couple of years [16],[17] [22]. Furthermore, Guo et al. [22] mention the taxi time to be
10-30% of the total flight time and the excess fuel burn during taxi-out phases to be 75 kg per flight. Overall,
the aviation industry is one of the fastest-growing contributors of greenhouse gas emissions and with the in-
crease of air travel this trend will continue the coming years.
Next to these two growing problems, the price of jet fuel seems to steadily rise as well, according to Lukic et
al. [39] and Guo et al. [22]. Hence, there is an urgent need to more eco-friendly and fuel-efficient solutions.
These solutions have been sought after in the aircraft development, however lots of progress is to be found
in the ground operations as well. Therefore, multiple solutions have been brought forward which could all
lead to substantial decreases in fuel consumption and emissions while being ready in the near future. This
combination of both makes this field in interesting one to explore further.

Concerns from the direct surroundings of airports have been growing and as solutions for this problem
will be tackled mostly directly at the airport, the emitted pollutants in the airport neighbourhood will be
decreased. Improving taxiing operations at an airport can reduce CO2 emissions up to 70% , hence much
potential can be gotten out of these solutions. [44]

As TaxiBots are a novel concept on airport, lots of technical and operational challenges arise when such
systems are implemented at an airport. TaxiBots are yet another type of vehicles introduced at the apron,
which should all be managed in a certain way. As aircraft and TaxiBots will make use of the runways and
taxiways of an airport, ATC has control over these vehicles to make sure safety is secured. Careful routing
will need to be considered and strategic scheduling is needed for that. Therefore, a routing and scheduling
solution needs to be found to make sure conflicts and collisions are avoided while making sure taxi time,
and all its other linked parameters, such as fuel consumption, are minimised. However, sudden changes will
always be present. A planning is ought to be made robust, however limitations are always present. Therefore,
when for example an arriving aircraft is delayed, the old schedule might not be feasible anymore and a new
tactical schedule needs to be developed. As an airport usually has to make real-time decisions, such a new
schedule has to be be generated within a reasonable time. Only then, airport operations can continue with
no or limited disruptions.
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3.2. Similar Research
Research has been done on vehicle routing problems with electric taxiing solutions with varying output re-
quirements. Literature on this topic starts in 2015 with the paper by Sillekens [55], who analyses the effect
of on-board ETS on the VRP with respect to capacity, average taxi times and other KPI’s. in 2017, Yan Du
[67] continues on this topic by defining a VRP model, while focusing on low computation times. This paper
focuses on planning the ET vehicles at an airport more efficiently while looking a mixed fleet with vehicles
routing to multiple depots and multiple trips respecting time windows. Guillaume [21] developed a routing
and scheduling model in order to optimise the number of automated guided vehicles for aircraft taxiing with
respect to taxiing costs in 2018. Later on in 2019, Van Baaren [64] developed a similar VRP model which fo-
cused on optimising the number of electric taxiing systems with respect to fuel consumption, emissions and
energy usage. Van Baaren defined three towing vehicle designs, mostly resembling the TaxiBot, which in turn
have been used by Kroese in 2021 [31]. Kroese combined the VRP with a fleet scheduling assignment (FSA)
resulting in a scheduling of the ET vehicle, taking into account charging of the batteries.

As will be thoroughly explained in section 4.3, the VRP and FSA are often combined. Dorndorf et al.
(2007a) [12] review the state-of-the-art flight gate scheduling literature and conclude their findings with rec-
ommendations regarding the solution methods. These classes are called "a priori, interactive and a posteriori
methods" and is based on when the applicable decision maker, being either the programmer or a random al-
locator, intercedes in the running program. Most of above research has been performed a priori, specifying
the input characteristics beforehand. The second class, interactive interventions during the execution, is
what will be done in this research. Similar research is done by Dorndorf et al. (2007b) [13], which focused on
disruption management in flight gate scheduling. Each iteration of the problem will result in a non-optimal
solution, as the input change will result in a different optimisation, however it is important to minimise any
deviations from the previous optima [12]. Adding disruptions to the schedule is recommended by Yan Du et
al. [67] as well, along with Zaninotto et al. [68] who recommended to implement a tactical planning module,
adjusting input parameters, such as taxi routes and schedules, dynamically.

Lastly, the need for the development of airport operations planning with ETS is also adopted by the SESAR
Joint Undertaking partnership, as projects in this topic are being developed1. The three research directions
that will be developed are the following:

• Overall aircraft engine-off navigation concept of operations, detailing how the three eco-friendly solu-
tions above may combine in the airport surface management process both at strategic and tactical level
in order to minimise fuel consumption and emissions without impacting arrival and departure flight
schedules

• Business model to help airports and/or airlines evaluate their benefits in the implementing these tech-
nologies

• Real-time evaluation of environmental indicators to support decision-making, conflict free routing for
all vehicles, reallocation of techniques to adapt to in real time.1

Especially the first item, developing VRP models that focus both on the strategic and tactical level aligns with
the research of this thesis.

3.3. Research Aim
In order to fill the research gap with respect to the problem stated above, the following research aim has been
formulated:

To determine the effect of probabilistic aircraft departure and arrival delays on a vehicle rout-
ing schedule at Amsterdam Airport Schiphol which includes the use of an electric taxiing system, viz TaxiBot,
to schedule the routing of aircraft and TaxiBots with near real-time updates on arrival and departure times,
by creating a reactive optimisation routing and scheduling model which can reiterate the planning based on
the new received non-deterministic time information while trying to minimise the deviations from the initial
schedule.

1 https://www.sesarju.eu/news/green-promise-aircraft-taxiing-technologies, accessed on 27-01-2021
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Effect: There will be two different schedules generated, one strategic and one tactical. The effects will not
only be determined by the visualisation of a time-space diagram, but other KPI’s will be compared as well.
Probabilistic aircraft departure and arrival delays: Aircraft operations are tightly planned, but do not always
follow that schedule. Therefore, there will be a difference between the planned and actual departures and
arrivals, in which the delays are drawn from a probability density function.
Vehicle routing schedule: The aircraft and TaxiBots will move over the airport, and with such a schedule the
location of each vehicle at every moment in time is known.
ETS, viz TaxiBot: There are multiple different electric taxiing solutions, such as on-board systems, but this
research focuses on the external towing vehicle TaxiBot.
near real-time updates: Every couple of minutes, a new time interval is assessed in which the operations
starting in this interval will be known and fixed. In real-world operations, data retrieval is continuous, as at
every moment in time new information can arrive. Here, it is discretised in small time intervals.
Reactive: The model will take the new information from each time interval and use it to reiterate in order to
find a new optimum schedule.
optimisation: The routing and scheduling of aircraft and TaxiBots will be done while minimising the total
taxi time, which links to minimum fuel consumption, emissions and delays.
Reiterate: Every time interval, the new schedule for the coming part of the day will be scheduled, while the
past time intervals are fixed for the rest of the day.
New received: Each time interval, a draw from the probability density function takes place for all aircraft
that have their delay range in said time interval and thus only at this specific interval the new information is
revealed.
Non-deterministic: The delays will be drawn from a probability density function and thus will differ every
time the model is run.
Minimise deviations: The difference between the strategic and tactical schedule needs to be as small as
possible in order to cause as little disruption as possible to the rest of the schedule.
Initial schedule: A strategic schedule will be generated before the tactical one in the same model, however in
real-life such a strategic schedule could be developed a couple of weeks or months before the actual start of
that period.
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3.4. Research Questions
Based on the aforementioned research aim together with the problem statement, one main research ques-
tions can be formulated:

What is the effect of probabilistic aircraft arrival and departure delays on the time-space plan-
ning of the vehicle routing problem with electric taxiing systems at Amsterdam Airport Schiphol?

In order to accurately answer this question, a set of sub-questions are formulated as follows:

1. How should the strategic optimisation model of a vehicle routing problem of an electric taxiing system,
viz TaxiBot, look like in order to be able to find an optimal airport routing solution which can be used
as input for the tactical optimisation model?

(i) How does the vehicle routing problem of aircraft and TaxiBots have to be modelled at Amsterdam
Airport Schiphol?

(ii) How should the conflict and collision avoidance of both aircraft and TaxiBots at AAS be modelled?

(iii) How should the airport routing nodal network of AAS look like?

(iv) What are the TaxiBot specifications to be used in the model?

(v) What is the minimum number of TaxiBots needed to attain a feasible solution?

(vi) What would be the best output, both in terms of visualisation and metrics for the optimal routing
schedule?

2. How should the tactical optimisation model of a vehicle routing problem of an electric taxiing system,
viz TaxiBot, look like in order to be able to find a new optimal schedule taking into account probabilistic
aircraft arrival and departure delays?

(i) How are the probabilistic aircraft delays for arrivals and departures modelled?

(ii) How should deviations from the strategic schedule be minimised?

(iii) What is the best time interval for the iteration of the problem taking into account the average time
aircraft delays are known beforehand by ATC and the model computation time?

(iv) What would, next to the time-space schedule, be the best output KPI’s in order to determine the
effect of the probabilistic input data?

3.5. Research Scope & Assumptions
In order to answer the research questions set, clear boundaries have to be set to define the research scope. In
order to scope the framework, limitations in the research come forward, which are shaped by the following
set of assumptions:

• The output of the tactical optimisation model will be a schedule for only one day. Even though aircraft
operations continue around the clock, the number of night operations is substantially lower than the
number of operations during the day. Therefore, it is assumed that days are independent from each
other and the events and schedules from one day do not affect the next day. In reality, some personnel
will continue to work at night or any other activities will continue over multiple days. However the
available time span will be divided in 24hour periods. Aircraft that have a different arrival and departure
day will be split up and thus it might occur that only the departure or only the arrival of one aircraft
turnaround is assessed.

• As some of the specifications of the TaxiBot by SAS are confidential, some parameters will be taken from
academic literature.

• In order to limit computation time, the strategic schedule will be computed for the length of one day
as explained above. Usually, such a strategic schedule will be generated in terms of years, however as
the tactical schedule will be compared with the strategic one, there is no need to compute a full year
schedule. On the other hand, different types of days will be assessed, i.e. the busiest and calmest days
throughout the year, in order to determine differences in daily schedules.
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• Only aircraft delays will be taken into account as changing variables. Secondary options are delays in
the TaxiBots or other sudden changes, such as runway configuration changes.

• It is assumed that all cockpit crew is able to handle TaxiBots. According to [5], cockpit crew needs
training before it can operate TaxiBots, however as these TaxiBots have not been implemented widely,
the number of cockpit crew members allowed to operate TaxiBots is limited to none. As aircraft from
various countries and airlines arrive at AAS, it is impractical to gather data on which cockpit crew is
allowed to operate with TaxiBots and which is not, hence this assumption is purely practically based.

• Next to that, it is also assumed that there will be enough operating crew able to operate TaxiBots. As
operating crew is airport-based, the probability that enough crew is present to operate all TaxiBots
makes this assumption more sound.

• Even though specifications of the TaxiBot can be altered for the purpose of this research, e.g. by means
of a sensitivity analysis, technical alterations are not researched.

• The model will be based on VRP models from other literature as is explained in section 4.4, hence their
assumptions will be taken over.

• Even though, data from 2020 will be available and would not be out-dated, data from 2019 will be
used. As the current COVID-19 pandemic has altered flight schedules and aviation in general com-
pletely throughout the whole 2020, 2019 would be a more realistic scenario for the coming years, as
was mentioned in chapter 2.

• As SAS is in the process of certification, a TaxiBot is not allowed to tow all aircraft types yet. Therefore,
only certified aircraft will be towed by the TaxiBots.

• The number of TaxiBots is fixed per day, however variable for different days to be assessed.

• Even though only certified aircraft can be towed by the TaxiBots, all aircraft can experience delays in
their operations.

• As this model focuses on the probabilistic effects of delays, the VRP model does not include an energy
assessment of the TaxiBots. Therefore, an unlimited battery capacity is assumed for the TaxiBots.

3.6. Contribution
As the overall trend with making aviation more sustainable continues to intensify, new solutions tend to coun-
teract the increasing greenhouse gas emissions emitted by the aviation sector. Electric taxiing solutions such
as TaxiBot offer novel solutions for this problem, which need to be integrated into the airport operations.
Vehicle routing problems with integrated TaxiBots have been researched, however all input data is determin-
istic. As lots of parameters tend to be not fixed in real life operations, this research tries to set a first step into
combining the VRP with integrated ETS with the probabilistic aircraft delays which occur at airport opera-
tions. Below, the status quo and contributions of this research are stated.

Status Quo

• optimisation of a vehicle routing problem with ETV for costs, fuel consumption and emissions

• Determining the optimal number of ETV necessary at an airport based on costs, fuel consumption and
emissions.

Contribution

• optimisation of a tactical vehicle routing problem with ETV including probabilistic aircraft delays.

• Effect of probabilistic aircraft delays on a time-space planning of a VRP with ETS.





4
Literature Review

The electric taxiing system, such as the TaxiBot application, touches many fields. Research on this topic is
described in this literature review. TaxiBot is not the only eco-friendly taxiing method, many others have
been investigated and developed as well. These are described in section 4.1. TaxiBot itself is described in
section 4.2.
Ground operations have been modelled extensively with different optimisation methods, and in light of the
research framework as described in chapter 3, the scope of the model design choice will be elaborated on in
section 4.3. Above fields are combined in a literature review on a case study in section 4.4. Lastly, all open
research fields will be discussed in section 4.5.

4.1. Taxiing Methods
Currently, taxiing of aircraft is done using the engines of the aircraft itself. Towing vehicles are extensively
used already nowadays, however these have the sole purpose of push back. This push back is only a small
part of the entire taxi phase. A number of environmental friendly taxiing methods have been described in
literature, most being electrically powered. A differentiation can be made between operational and technical
solutions, in which the latter can be split in on-board and on-ground systems. This categorisation can be seen
in Figure 4.1 [39]. The three solutions highlighted in green present electric taxiing systems (ETS) which are
further discussed below. This section is started with the reason for the extensive research in different taxiing
methods.

Figure 4.1: The proposed categorisation of alternative taxiing solutions [39].
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4.1.1. Current Situation
Aircraft do not have a reverse gear, hence push-back vehicles are needed in order for the aircraft to leave the
parking spot backwards [22]. After this procedure, aircraft are decoupled from the towing vehicle and the
engines are started. Purely on engine-power, the aircraft taxi to the runway before the take-off. During taxi-
ing, engine settings are not at 100%, but rather at lower throttle around 7%, which is the prevailing number
according to the sources in the report by Ithnan [28]. As previously discussed, a high number of pollutants
are emitted during taxi phase and taxi times range from only a couple of minutes to an hour, with outliers of
longer taxi times. The longest average taxi-out time in the USA are experienced at New York JFK, with 37.1
minutes. The average taxi-out times was 16.7 minutes in the USA in 2007. [17] This time depends on many
factors, e.g. the size of the airport hub, the efficiency of the ATC or the distance between gate and runway.

Operational measures such as the ones in Figure 4.1 are already implemented in many ways. Active rout-
ing and advanced queue management are optimisation models, which will be explained further in section 4.3.
Single-engine taxiing is the method of simply using less engines during taxiing. By shutting down 1 or more
engines, still enough thrust is produced to move forward, however less emissions will be generated. Even
though, this seems a straightforward solution, it is not widely adopted according to Vaishnav [63]. Guo et al.
[22] lists a number of obstacles of this solution. The most prominent is the added responsibility of this pro-
cedure to the pilots and its airlines. Secondly, this solution cannot be executed during special circumstances,
which are uphill slopes, slippery surfaces and deicing operations and sharp turns. Hence, pilots tend to not
perform a single-engine taxi operation if they are unfamiliar with the taxiing route. This could be because
either they do not know the airport or there is no standard routing for aircraft at the airport [9]. A third ob-
stacle that is brought forward is the increased risk of foreign object damage and jet blast, which is higher due
to the fact that one engine now has to account for the thrust provided instead of, for example, two and thus
a higher power is necessary. One last concern is of a broader scope and does not only relate to single-engine
taxiing. Engines need a warm-up and cool-down period in which the engines are gradually prepared for their
respective new state. General values used for these times are 2-5 minutes. [22] [33] This means that, from the
total taxi time, there will always be a portion at which the aircraft engines are on. The longer the total taxi time
is, the smaller this percentage is, however a 100% decrease cannot be reached. Research in a whole different
direction is necessary in order to find alternative methods on how this engine warm up and cool down could
be performed with shutting off the engines, as recommended by [64]. Only then, a decrease of 100% can be
reached.

4.1.2. On-board Taxiing Systems
One of the solutions provided are on-board systems in which an electrical motor is installed in the landing
gear, either the nose landing gear (NLG) or main landing gear (MLG). This motor is powered by the auxiliary
power unit and thus the engines do not have to used anymore for taxiing. Furthermore, this makes the air-
craft fully autonomous on the ground, as push back vehicles are not needed anymore as well. Lukic et al.
[39] mention that the main drawback however is that these systems need to be added to the aircraft, which
brings a lot of operational work as well as an increase on the aircraft weight. The former is explained as all
the changes and adjustments necessary to the aircraft architecture, which is something aircraft manufactur-
ers do not prefer. The latter means the addition of the electric motor weight, which could in the end nullify
the decrease in taxi fuel by the increase of fuel flow during the airborne phase. However, another effect to
be taken into account is that the reserve fuel allocated for unexpected delays during taxiing can be removed
from the aircraft, reducing the total weight again [28]. Guo et al. [22] start the discussion on some studies
performed on global fuel saving with on-board ETS. They mention two studies in which such a comparison
analysis resulted in global fuel reductions. The first one is for mid-sized aircraft with a 500 kg on-board taxiing
system, which shows savings up to 2.5% [46], the second one shows savings between 1.1% and 3.9% based on
USA domestic flights in 2007 with an on-board solution weighing around 1000kg. A careful comparison will
be given in subsection 4.1.4.
The trade-off between an electric motor on the NLG or MLG is based on multiple criteria. As the NLG has
a larger space available, more freedom in terms of design is possible. However, as the MLG carriers around
90% of the aircraft weight, traction forces would be higher in this case, hence less strict design criteria come
forward. Next to that, the number of wheels is higher on the MLG, hence more, and thus smaller, motors
can be installed here. More requirements for the design of such a system are described by Lukic et al. [39].
Another important consideration is thermal management, according to Re [46], as the electric motor and the
brakes are close to each other. These brakes can reach high temperatures and thermal influence to the motor
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is to be separated.

Two companies who are in the frontier of this solution development are Wheeltug and EGTS [28], [30] [39].
Wheeltug is an electrical solution to be placed on the nose gear of an aircraft. It has been tested thoroughly
already and is certified for the B737 aircraft [28]. The systems weighs 130 kg and is able to gain speeds up
to 9 knots or 16.7 km/h. Wheeltug has collaborated with the German Aerospace Centre DLR and Lufthansa
Technik as well for further development of such a solution.
Another solution named Electric Green Taxiing System or EGTS is developed by Safran Landing Systems and
Honeywell Aerospace. This system would be incorporated in the MLG and was designed to reach higher
speeds. According to a presentation given by Messier-Bugatti-Dowty and Honeywell [41], the following re-
quirements were stated:
"1) to achieve a maximum speed of 20 knots (37 km/h) for a time-window of 90 s;
2) to obtain a speed of 10 knots (18.5 km/h) in 20 s during active runway crossing;
3) to develop breakaway torque at full MTOW on a taxiway with 1.5% slope." [39, p. 7]
This project was terminated in 2016, however Safran continued on this project through its involvement in the
Clean Sky 2 framework. [39]

The general idea behind all solutions presented is to shorten the time the engines are running, whenever
this is possible. As mentioned before, the warm-up and cool-down phase result in the fact that not a full
100% electric taxiing operation can take place. The ground operation sequence as presented by Safran can be
found in Figure 4.2. Even though this image is based on the EGTS system, this can be expanded to all other
taxiing solutions as well.

Figure 4.2: Visual representation of the different taxiing phases during ground operations, from Safran [53].

4.1.3. Electric Energy Storage Systems
In order to design such an electrical taxi system, both structural and energy systems come into play. Struc-
tural considerations for on-board systems could for example include prerotations of wheels before landing
[27]. For ground solutions, the grasping mechanism to attach the nose wheel to the towing vehicle is one of
such considerations. The latter will be further explained in section 4.2.

Overall design considerations that come into play are the energy mechanisms needed to actually trans-
port the aircraft. As for on-board solutions, the amount of energy storage is relatively limited because of
space and weight limitations. Placing an energy storage system next to the wheels will result in the addition
of weight, while making sure this system fits in the landing gear. At the moment, electrical energy storage
systems (EESS) such as batteries are still relatively heavy compared to other energy sources. Hence, other op-
tions are looked into as well. Battipede et al. [3] looked into the use of hydrogen as energy source for towing
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vehicles. Such autonomous tractors, called CHAT (Clean Hydrogen Autonomous Tractor), contain hydrogen
storage tanks and would able to lift all types of aircraft, up to the super heavy class, including Airbus A380’s.
Asensio et al. [1] even looked into a combination of hydrogen and batteries and simulated such a system
in order to size the electrical generation system on-board of an aircraft in an optimal way. Next to that, the
operation methodology on energy recovery resulted in the sizing of the optimal system.

Lukic et al. have been investigating EESS both in sizing and optimisation of such systems in different
papers. Lukic et al. first modelled an on-board electric taxiing system containing two traction motors on
the main landing gear of a mid-sized commercial aircraft, such as a Boeing B737 and Airbus A320 [38]. This
model included power electronics, an electrical machine and a mechanical drivetrain. After analysis, val-
ues on the acceleration performance, power and energy load profiles, as well as the energy harvesting stages
were determined. This is done via a case study on an actual taxiing mission profile of a B737-400 aircraft.
This resulted in the determination of the energy requirements for such an electrical system. Both taxi-out
and taxi-in procedures were analysed and it was found that per one of the two motors 11.34kWh of energy is
consumed. However, Lukic et al. estimated that 1.5 kWh could be regenerated, which equals to 13.2%. During
the taxi-in phase, only 2.1kWh is consumed. In this case, 17% of energy could be recovered due to braking
energy recovery methods. This equals to 0.35kWh.

On the other hand, Lukic et al. continued on these findings in another paper [37]. Taxi-out procedures
at Amsterdam Schiphol Airport and taxi-in procedures at London Heathrow Airport are considered as a case
study. From this, different energy requirements are determined for the local energy storage system (LESS),
which can be seen in Figure 4.3. T-O and T-I stand for taxi-out and taxi-in respectively. the r-value is defined
as the maximum potential regenerated energy Er eg over the total energy consumption Etot . As taxi-out times
are usually longer and the aircraft is heavier during this phase, the energy needed is higher compared to the
taxi-in phase. Next to that, the power values are higher as well, which is explained due to the fact that the
aircraft already has an initial taxiing speed during taxi-in and thus less break-away power is needed. In order
to correctly size the LESS, the maximum depth of discharge is set to 80% and the efficiency is set to 90%. This
results in an energy capacity of 18.7 kWh and a discharge power of 81.1 kW. One other important feature of
the LESS is the charging time, which could be stringent for the planning. The LESS should be completely
charged in between the itineraries in which the solution taxies one or more aircraft in and/or out.

Figure 4.3: Energy characteristics of the taxiing case study by Lukic et al. [37].

The second part, as discussed by Lukic et al. [37], is the type of energy storage device. Batteries and
electrochemical capacitors are discussed and compared, as well as three different LESS topologies. Battery-
only configurations, HLESS and a combination of LESS and APU is a third possible configuration. The first
two options result in the electric taxiing power system to be completely autonomous from the rest of the
power system of the aircraft. The latter option, however, results in a lower total weight as parts of the power
of the APU could be used for taxiing. This last option is further analysed by Recalde et al. [47]. Here, a power
distribution optimisation is determined in order to minimise fuel consumption. In the case study performed,
only off-the-shelf batteries are used and three different energy management strategies were analysed.

4.1.4. Systems Comparison
Lots of research has been done on the comparison between all different electric taxiing solutions ([10] [15]
[22] [25] [28] [36] [39] [43]). These analyses consist of technical; fuel consumption and emissions; and costs
comparisons.
A quantitative analysis of all different solutions is done by Lukic et al. [36], [39], as can be seen in Figure 4.4.
This paper has compared seven different criteria from six different ETS. Each of these solutions have been
described before, however Lektro is another company focusing on electric pushback (EP) towing vehicles. As
can be seen, the specifications of external solutions (especially the TaxiBot) differ from on-board solutions.
The general trade-off between these two types of solutions is the choice between the most important factors,
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Figure 4.4: Quantitative comparison of the existing electric taxiing solutions [39].

being weight, power, costs, operations and possession. External solutions do not bring any on-board weight
and have high power capabilities. However, these systems are bought by an airport for relatively high costs,
and are thus only deployable on that specific airport. Airlines have to consider if adapting and licensing their
aircraft is profitable, which mainly depends on the frequency of flights to this airport. On the other hand on-
board solutions are cheaper to to buy and operate and are owned by airlines, while providing less power and
having extra on-board weight. These systems, however, can be used at practically any airport by the airline. It
is to be noted however, that different sources are given and thus the units of these specifications might differ.
A proper comparison should not be read from this table one-to-one, rather a proper conversion to the same
units should be done in order to quantitatively compare the different solutions.

The technical comparison done by Ithnan et al. [28] was based on two case studies performed at Amster-
dam Airport Schiphol and Kuala Lumpur International Airport. Calculations done on the fuel consumption
and emissions resulted in a comparison of single-engine taxiing, operational towing and electrical nose gear
with respect to conventional taxiing. It should be noted however that operational towing was not fully electric
and still produced pollutants.

The results for Schiphol can be found in Figure 4.5. The percentual changes for Kuala Lumpur Interna-
tional Airport were less, which could be explained by the fact that taxi distances and thus taxi times were
shorter. In the table, the comparison is based on the same specifications and units, hence a clear comparison
stands. Single-engine taxiing is relatively the worst solution, even though it reduces fuel consumption and
emissions with approximately 26%, which is in line with the calculations shown in [9]. Operational towing
and electrical nose gear perform better than single-engine taxiing, and electrical nose gear seems to even
win this comparison. However, as mentioned before, not fully electrical operational towing is taken into con-
sideration, hence these percentages for an electric solution can be higher than any of these three proposed
solutions. Bresser and Prent [8] did calculations on sustainable operational towing and calculate the savings
at ground level to be between 50-85%. Moreover, they calculate the savings per taxiing minute to be 95%.

Continuing on the fuel consumption and emissions analysis Guo et al. [22] and Pan et al. [43] both have
compared different ETS. Guo et al. [22] has analysed ten different airports and four different taxiing meth-
ods. Each of these airports were located in the USA. Large reductions in fuel consumption and emissions are
visible, in which either a towing solution or on-board solution performs best, depending on the evaluation
criterion. The reductions, mainly in fuel burn, HC and CO emissions are very large; decreases of over 90% are
present. Again, the towing solution considered is seen as a hybrid diesel-electric vehicle. In the case of fully
electrical powered, reductions would be even higher and this solution is expected to outperform on-board
solutions on all four evaluation criteria.

Lastly, Pan et al. [43] performed a quantitative and qualitative analysis of the different solutions. The quan-
titative analysis is composed of calculations based on all flights during one week at Beijing Capital Interna-
tional Airport. Again, reductions in mainly CO2 and CO reach over 90% in decrease.
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Figure 4.5: Results of the taxiing strategy performance and percentage change compared to strategy A at Amsterdam Schiphol Airport
[28].

Table 4.1: Overview of literature on ETS comparison.

Paper
Type of
comparison

Characteristics

Lukic et al. [39] Technical
Comparison of 7 ETS systems.

The data is taken from various different sources, hence the units or the way of
generation might differ. Absolute comparison might need conversion beforehand.

Lukic et al. [39]
Pollution,
fuel consumption,
time and money

These figures have been collected via the combination of studies
from multiple papers.
The TaxiBot considered uses diesel as energy source and thus an all-electric

TaxiBot is not considered. The latter might reduce the presented criteria in
percentages even more.
Same note on absolute comparison as above.
Reductions are given for various different pollutants, but all show high reductions.

Ithnan et al. [28]
Pollution and
fuel consumption

The research is done via VRP case studies on Amsterdam Airport Schiphol
and Kuala Lumpur International Airport.
Here the diesel version of the TaxiBot is used as well.
Fuel consumption and emissions reduction for all other scenarios from 25 to 50%.

Guo et al. [22]
Pollution and
fuel consumption

10 different airports have been considered in this research, all located in the USA.
The TaxiBot is considered as a hybrid diesel-electric vehicle.
Decreases of over 90% for fuel consumption, HC and CO.

Pan et al. [43]
Pollution and
fuel consumption

Research based on a case study on Being Capital International Airport.
Reductions in CO2 and CO of over 90% compared to the conventional scenarios.

Pan et al. [43] Pros and cons
Advantages and disadvantages of three ETS are given.
Common features of ETS are given as well.
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4.1.5. Cost Analysis

Hospodka [25] has made a cost and benefit analysis of electric taxiing systems. As not all of these ETS work
in the same manner, it should be noted that this analysis is mostly fitted to on-board electrical solutions,
however appropriate costs and benefits can be added or removed in order to perform such an analysis on
ground solutions such as the TaxiBot. The benefits of such an electric taxiing solution are fuel savings, push
back savings, time savings, fuel savings resulting from smaller quantities of the transported taxi fuel, engine
life and maintenance savings, foreign object damage savings, lower emissions savings or any other special
savings [25]. This could include better usage of space, reduced airport fees and noise reduction. On the other
hand, such solutions also cause added costs. The added weight of the on-board solution will lead to an in-
crease of fuel consumption. Other costs are additional tyre wear-out, additional maintenance costs, delay
costs as well as one-time expenses. Hospodka also performed a case study in which all costs and benefits for
a conservative set of parameters are put together. These savings per flight cycle are determined for different
turn around times (TOT) and flight times and are plotted in Figure 4.6. As can be seen, such electric taxiing
solutions result in savings if the taxi time is at least 5 minutes. As a TaxiBot does not increase the aircraft
weight and is ought to use electrical energy, the savings are expected to be even higher. Lastly, Wijnterp et al.
[66] have analysed the costs and benefits of electric taxiing systems in a broader sense. Via a value operation
methodology the impact of such ETS on a number of other value drivers is investigated. Here it is concluded
that fuel and emissions, maintenance, time benefits, ground operations are important value drivers. Operat-
ing times is seen as the most important utilization driver.

Figure 4.6: Cost savings (in euros), without any direct savings or any direct costs, per flight cycle for different turn around times (TOT)
and flight times [25].

Important to note is that the cost findings by Hospodka might give a distorted picture. As the direct sav-
ings or direct costs are not taken into account, the final cost benefit might turn out remarkably higher. delay
costs might be as high as 20 to 40 dollars per minute [59] and energy costs can differ as well. Kerosine, elec-
tricity or even biofuels1 all have different costs, so result in different savings as well. As biofuels are expected
to be more costly than conventional fuel, the gain for airlines and airports with using TaxiBots becomes even
higher. Soltani [59] has determined these overall costs based on Montreal airport, which are in the range of
tens of thousands to millions. The total costs when using two different number of TaxiBots when compared
to using no TaxiBots over a time period of 7 years can be found in Figure 4.7. Defining these scenarios are
based on finding the minimum total costs, as is explained in subsection 4.2.2.

1https://boeing.mediaroom.com/2021-01-22-Boeing-Commits-to-Deliver-Commercial-Airplanes-Ready-to-Fly-on-100-Sustainable-
Fuels, accessed on 26-02-2021
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Figure 4.7: Total costs of operation for three different scenarios over a 7 year time period for Montreal airport.
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4.2. TaxiBot
Each of the electric taxiing systems have been elaborately discussed, however the most prominent solution
for electric taxiing systems is the TaxiBotő, developed by Smart Airport Systems SAS2. The development of
this product is originated after the collaboration of different companies. Israel Aerospace Industries IAI owns
the concept and has developed most of the software, while Teleflex Lionel-Dupont (TLD) is the industrial
partner and manufacturer. SAS is, while being the architect of this product, the joint venture of these two
companies [4]. Furthermore, collaborations with aircraft manufacturers (Airbus, Boeing), airports (Frank-
furt am Main Airport, Amsterdam Airport Schiphol, New Delhi International Airport) and airlines (Lufthansa
Leos, KLM, Transavia, EasyJet, Corendon) lead to extensive testing3. The latest test that has been performed
took place at Schiphol in Q1 to Q3 of 20204. A photo of the TaxiBot taxiing an aircraft at Schiphol can be seen
in Figure 4.8 [5]. Over 150 missions have been performed, of which nine were actual live flights. Other mis-
sions that have been performed were training missions and the testing and validation of uncoupling points.
Hence, the testing consisted of determining the feasibility of TaxiBots in the whole of ground operations at
Schiphol. Therefore, apart from the airlines involved, other essential parties were present as well. LVNL as Air
Traffic Control party, ground handler parties such as KLM Ground Services, Dnata and Schiphol Operations,
and governmental parties such as the ministry of infrastructure and water management and the human envi-
ronment and transport inspectorate were all involved as well. Preliminary conclusions drawn from this proof
of concept test were the following [5, p. 16]:

• Staff required: Big effort of both airlines and ground handlers is needed;

• Dimensions of TaxiBot: Too wide for service roads;

• Infrastructure: Service roads too small for TaxiBot;

• Procedures: Hard to reach places throughout the airport due to one-way traffic;

• Procedures 2.0: TaxiBot technology is relatively new so airport operations are not adapted to its use;

• Procedures 3.0: Disconnection points leading to changes in airport flow [5, p. 16]

These conclusions can be split up in two, where the first part considers the structure of the airport, which
has multiple limiting factors due to the constraining layout. The second part considers the operational side,
where it is concluded that the procedures for all involved parties are not working well yet and need to be im-
proved. The final goal of Schiphol is to combine the use of TaxiBots with an automated process [11]. Vehicle
routing problems come into play for efficient routing, which will be explained in section 4.3. Furthermore,
based on previous tests, SAS claims to cause positive effects in fuel consumption, emissions and other bene-
ficial effects5:

• Up to 85% reduction of fuel consumption during taxiing;

• Up to 85% reduction of CO2 and other noxious emission during taxiing;

• 60% reduction in noise pollution;

• 50% reduction of FOD per takeoff;

• Improves gate efficiency through the reduction of wasted time during engine start-up at the gate area,
which not only affects the gate used, but also the nearest airplanes to the gates.4

These figures tend to comply with the general findings from literature as described in subsection 4.1.4. The
recent tests conducted at Schiphol will contribute to composing above effects with more significance.

2https://www.smart-airport-systems.com/solutions/TaxiBot/, accessed on 03-12-2020
3https://www.TaxiBot-international.com, accessed on 03-12-2020
4https://news.schiphol.com/schiphol-and-partners-to-begin-sustainable-aircraft-taxiing-trial/, accessed on 03-12-2020
5 https://www.smart-airport-systems.com/solutions/TaxiBot/, accessed on 03-12-2020
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Figure 4.8: TaxiBot taxiing an aircraft at Schiphol during the Proof-of-Concept test in 2020 [5].

4.2.1. Technical Specifications
Currently, normal push back vehicles tow the aircraft from the gate to a position in which the aircraft can taxi
to the runway on its own, however a TaxiBot can extend this towing procedure and can take the aircraft from
the gate all the way to the runway or the other way around. At first, it seems that a normal push back truck
could do the same, however constraints regarding the nose landing gear come into play. As Dirk en Bresser
say, these tractors can move a full plane over a very short distance, or an empty aircraft over a long distance. But
a combination of the two a full aircraft over a long distance at speed is not permitted, because it would damage
the aircrafts nose wheel. [10] Such a landing gear cannot cope with high forces exerted because of continuous
accelerating and braking. The reason TaxiBot is able to perform such procedures is the difference in control
compared to conventional taxiing. The TaxiBot lifts the nose landing gear (NLG) slightly and clamps it onto a
freely rotatable platform, as can be seen in Figure 4.9 [26]. In this way, the pilot of the aircraft is able to steer
and brake its own aircraft which is translated to movements of the TaxiBot. The clamping platform senses
both rotational and longitudinal motions via a set of sensors, which is then transformed into control signals.
These pulling and pushing forces are continuously monitored to not exceed the maximum loads on the nose
gear in order to extend its life time. [46] In other words, TaxiBot can be seen as an external propulsion system.
Even though the pilot controls the TaxiBot during taxiing, a driver is present in the vehicle to control it when-
ever no aircraft is coupled. [10]

Two versions of the TaxiBot are developed, one for narrow-body (NB) aircraft and one for wide-body (WB)
aircraft. Only the NB version has been completed yet. Van Baaren [64] has defined three different towing
vehicles. The specifications of these vehicles have been determined by calculating the necessary energy re-
quirements. These requirements are based on the power demand in order to accelerate and move the aircraft
forward and the kinematic forces that come into play during these manoeuvres. Energy required for precon-
ditioned air and engine start up is also taken into consideration [49]. Technical specifications of these three
versions can be found in Table 4.2. The weight of the medium version complies with the actual specifica-
tion of the TaxiBot-NB weight, according to its official specifications sheet [61]. This is logical, as the defined
aircraft that can be towed for this version are aircraft up to the A320 and B737 series [49]. The NB TaxiBot
already received its certification for the towing of these two aircraft types [26]. As mentioned before, SAS only
developed two versions of the TaxiBot and the wide-body version is said to be able to tow heavy aircraft such
as the A380 [26], which complies with the super heavy version which is designed for the B747 and A380. The
heavy version vehicle thus is an intermediate version, which is designed for aircraft up to the A340 [49].

The speed with which these TaxiBot drive when coupled to an aircraft is important, as it determines for
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Figure 4.9: The four steps in which the NLG enters the vehicle turret and gets clamped securely in position [26].

Table 4.2: Specifications of the three defined TaxiBot versions. Adapted from Van Baaren [64, p. 31].

Medium Heavy Super-heavy
Total mass [kg] 25,000 45,000 60,000
Battery type [-] LiFe LiFe LiFe

Battery mass [kg] 7,000 14,000 21,000
Battery volume [m3] 3.82 7.64 11.45

Battery capacity [kWh] 840 1,680 2,520
Maximum power [kW] 1,400 2,800 4,200

Maximum ASU/PCA power [kW] 436 783 783
Drive train [-] 4x4 6x6 6x6

a large part the difference in throughput and delays. Various sources mention speeds between 20 knots
(10.3m/s) and 23 knots (11.8m/s). Hospodka [26] mentions a design speed of 20 knots, while TLD itself [61],
Lukic et al. [39] and Hospodka [26] mention a maximum speed of 23knots. In comparison, conventional taxi
speeds reach 30 knots(15m/s) [39] or even 31 knots (16m/s) [50]. Therefore, it is important to have both taxi
speeds clear in order to perform a qualitative comparison.

4.2.2. Implementation considerations
The strategy of implementing a TaxiBot becomes relevant as soon as the taxi times are relatively long. As the
aircraft engines still need their warm-up and cool-down phase, the taxi times should at least be longer than
that. Advantages of this solution are the reduction in fuel consumption, emissions, field noise, operational
time and costs. This latter can be sought after in maintenance, FOD risk and jet blast risk. [28] A disadvantage
however is that the towing vehicle on the other hand can still produce pollutant emissions. Therefore, TaxiBot
is, next to a diesel power engine, also convertible to a hybrid or even full-electric vehicle. As discussed in sub-
section 4.1.4, towing vehicles are already a better solution than the conventional taxiing on aircraft engines,
however fully electrical vehicles will be highly beneficial and result in being the best solution compared to all
others as discussed in subsection 4.1.4. [28] One real disadvantage could be the price of a TaxiBot, which is
around 1.5 or 3 million for the narrow-body and wide body versions respectively [39].

These costs are taken into account when determining the number of TaxiBots necessary on an airport. As
the acquisition costs of these TaxiBots are relatively high when compared to other ETS or towing vehicles, a
sound analysis on the necessary number of TaxiBots is required. As analysed by Soltani [59], the total costs of
operations at an airport, both the on-time capital expenditures and the yearly operating expenditures, do not
only go down when acquiring more TaxiBots. This trend would show a negative parabola, meaning that the
minimum costs can be found for a specific number of TaxiBots. At first, when only a couple of TaxiBots will
be acquired, not all flights can be handled and the fuel costs and delays will still be high. Every added TaxiBot
will result in a decrease in costs as the marginal benefits will outweigh the marginal costs. However, up to
a certain point these marginal benefits are becoming less than the costs as the purchasing and operational
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costs become too high. The moment the marginal benefits and costs equal each other, the optimal number
of TaxiBots is reached.

Determining the necessary number of TaxiBots can also be done in different ways, rather than minimum
costs. Operational-wise, the necessary number is determined by the minimum needed to attain a feasible so-
lution. The question, however, is when such a feasible solution is reached. One can aim at providing TaxiBots
to all arriving and departing aircraft on the busiest day on the year, however this number will probably be
too high for any other day. So if costs are considered together with feasibility, one might dislike this number.
Vice versa, aiming at the calmest day in the year will only be feasible for one day in the year, however might
be cheapest option. Hence the optimal number should be found considering multiple, or all, days of a year
and considering feasibility and costs. Practically, many more aspects come into play when determining the
number of necessary TaxiBots, such as the number of available operating crew, airport layout etc.

Another disadvantage of the implementation of these TaxiBots is the added movements on the airport.
These vehicles have to move in between tows and such additional vehicle movements lead to an increase in
risk of accidents.[26] Therefore, collision and conflict avoidance needs to be considered for these vehicles as
well. TaxiBots could also make use of the service roads next to the taxiways. However, this option is airport
dependent, as TaxiBots are wider than conventional cars or other airport vehicles and thus might not fit on
these roads.
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4.3. Modelling Methods
In order to optimise electric taxiing operations at an airport, different modelling methods can be used. Two of
which are generally used in literature [2]. Mixed-integer linear programming (MILP) is the most used method
in literature. The second method is meta-heuristics, this will be further explained in subsection 4.3.3. A MILP
problem is often formulated in a mathematical way. A generalisation of this is the following: [21, p. 8]

maxi mi se/mi ni mi se cT x
Sub j ect to Ax ≤ B
and x ≥ 0

The first line represents the objective function which either should be maximised or minimised. x represents
the decision variables and cT are the constants. The second line represents the constraints the objective
function has to adhere to and the third line shows the constraints given to the decision variables to be non-
negative integers.
Two distinct problems can be solved using MILP, which are both used to model airport operations. The first
one is the vehicle routing problem (VRP). This problem addresses the way vehicles, such as aircraft or towing
vehicles, move around a defined area. Space is an important parameter in these types of problems. The
second problem is focused on time. The second problem is called a gate assignment problem (GAP) or fleet
scheduling assignment (FSA). Here the scheduling of two or more entities is optimised. This could be for
example the scheduling of departing aircraft to towing vehicles or coupling arriving aircraft to an empty gate
or even combined. Another method is using heuristics, which does not per se search for an optimal solution,
but rather tries to find a reasonable solution in a shorter computation time. Each of these modelling methods
are discussed below.

4.3.1. Vehicle Routing Problem
The first type of problem is based on scheduling the routing of vehicles over an airport. Plenty of literature
has been written about this subject, all with their own type of objectives and characteristics. An overview of
literature on VRP can be found in Table 4.3. The general idea behind all of these problems is to find the most
optimal routing schedule by minimizing any of the relevant parameters. These parameters are all connected.
Often times the taxi times and/or holding times are to be minimised, which can directly be related to the
taxi distances. The longer the taxi times and distances, the more fuel consumption and emissions. Overall,
each of these aspects can be monetized. Hence, a minimisation of one parameter often directly causes the
minimization of another parameter.
Even though each paper performs such an optimisation problem differently, some general aspects can be
seen. Next to the aforementioned objective functions, the outputs generated consist of a time-space diagram
(as can be seen in Figure 4.10) and the comparison of the same parameter in the objective with respect to
the conventional taxiing methods. Fuel consumption, emissions, delays, costs or number of conflicts. Some
papers generate some particular outputs. Schiffer and Walther [54] for example compare their developed
model with the Solomon benchmark instances.6 These benchmarks are predefined problems and are often
used to compare computation times of different algorithms. Lastly, one general finding in literature is the
trade-off between the advantages of the reduction in fuel consumption and emissions with the disadvantage
of the decrease in throughput. Because of the lower taxi speeds of the TaxiBot, taxi times take longer and
the throughput of the airport is reduced. Roling, Sillekens and Curran [51] determine these delays per flight
for different scenarios at AAS which can be in the order of minutes. There are some scenarios in which the
implementation of TaxiBots does not decrease the throughput. Only in the cases in which one or more con-
ditions are met, the capacity does not decline, according to Guillaume [21]. If TaxiBots are able to use service
roads at the airport in order not to hinder the other aircraft or if TaxiBots are able to make up for the extra
time necessary for the additional operations, the same capacity can be guaranteed. In the extreme case when
the time interval cannot be reached or the costs become higher than the benefits, mentions Guillaume, the
conventional taxi procedure in which the aircraft uses its main engines can be performed.

One other important aspect noted is the comparison of different TaxiBot versions implemented. Van
Baaren [64], Guillaume [21] and Kroese [31]. Here, either two or three versions of the TaxiBot are assessed.
The other related aspect is the number of TaxiBots. Some use a fixed number as input, while others try to
determine the optimal number via the model. A third approach, which can be seen as a combined approach,

6 http://www.bernabe.dorronsoro.es/vrp/index.html?/results/resultsSolom.html, accessed on 08-12-2020
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compares two or three scenarios in which the number of TaxiBots is varied. Soltani [59] for example compares
the scenarios in which no, a part and all flights are towed by TaxiBots. With this, the advantages of TaxiBots
with respect to the conventional methods can be compared, however the exact number of TaxiBots necessary
cannot be determined from that.

Lastly, Atkin et al. [2] summarise the literature on VRP. Both MILP and genetic algorithm (GA) methods
are described and compared qualitatively. Frequent objectives and constraints are elaborated on. The ob-
jectives mentioned do not differ from the ones above, however a new insight is given in the multi-objective
problems. Next to the minimisation of taxi times, a second objective such as penalising deviations from a
previous schedule is mentioned as example. Even more objective functions can be combined and weighted
accordingly. Constraints include among others considerations in the route taken, where the routes can be
predetermined up to a complete free map. Secondly, constraints in the separation of aircraft and aircraft
moving speeds can limit the problem as well. Next to that, timing constraints for arrivals and departures are
mentioned. Gates but also towing vehicles have to be vacant in order to handle these aircraft, however air-
craft have to reach the runway at a certain time as well. [2]. As mentioned in Table 4.3, six future directions
have been described. The first one, consistency and comparability, tries to harmonize all approaches. This
is attempted by setting up a repository with data sets for these vehicle routing problems. Secondly, three
additions to the current models are proposed, being integration of other airport operations, uncertainty in
the input data and environmental changes such as more gradual moving without constant accelerating and
decelerating. These directions do make the model more complex, however also more realistic. Lastly, two
restrictions are proposed. The first one is to add restricted stopping positions to the model, based on real life
operations at an airport. Secondly, last-minute changes will always occur, and even though, one can make
a more robust schedule, not every aspect can be taken into account beforehand. Therefore, Atkin et al. [2]
mention to consider models in which changes are limited.

Figure 4.10: Time-space diagram output from Soltani et al. [59]. Each line represents an aircraft that moves in between the nodes and
avoids conflicts.
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Rolling Windows
These VRP models are quite extensive and the proposed future directions make them even more elaborated.
Therefore, computation times can become relatively long and tend to increase even more with such additions.
Multiple solutions have been used in order to decrease this computation time, however one algorithm has
been widely used in literature. VRP problems can be solved all at once, however as these problems tend to
follow a chronological timeline, they can also be split up in time windows. This reduces the large problem
into a set of multiple smaller problems, which have a reduced computation time. The exact method to do so
can consist of a rolling window or sliding window or any other algorithm. Smeltink et al. [58] propose three
different versions of this method.

1. First, the total period is split up in a number of intervals. Each iteration, one of such intervals is solved in
a chronological order. All aircraft with the starting time in the specific interval are scheduled and fixed,
even if the total routing time of these aircraft overlap with the next interval. In Figure 4.11, aircraft a
and c are completely fixed in the middle interval and only aircraft d would be scheduled.

2. The second variant looks like the first one, however now the aircraft are split up if they occupy multiple
intervals. Hence, this breaks aircraft a into a1 and a2 for example. This means, less (parts of) of the
routes of aircraft are fixed, so in Figure 4.11 aircraft parts a2, c2 and d would be rescheduled.

3. Thirdly a sliding window variant is proposed. Here, the problem is not split up in time intervals, but
rather all aircraft are split up in aircraft batches, with size m. In every iteration, aircraft 1 up to m are
scheduled after which the whole window slides one up, meaning that in the second iteration aircraft
2 up to m + 1 are considered. Here, it is important to choose a batch size m that is small enough to
decrease computation time considerately, however large enough in order to ensure aircraft separated
by long enough period become almost independent. In other words, if the size m is too small, aircraft
separated by only a small time interval can be dependent on each other, resulting in a not optimal
schedule. [58]

Figure 4.11: Schematic example used for the explanation of the two versions of the rolling windows, taken from Smeltink et al. [58].



56 4. Literature Review

Table 4.3: Overview of literature on Vehicle Routing Problems using MILP.

Source Year Model objective Airport Output

Van Baaren and Roling [49]
Van Baaren [64]

2019 Minimum fuel consumption AAS & RTM
Difference in taxi duration, fuel
consumption and energy consumption

Three types of TaxiBots have been defined for the towing tasks.
The fleet size has been determined based on fuel consumption.

Roling, Sillekens and
Curran [51]

2015 minimise delay times AAS
The delays per routed aircraft
for different taxi speeds

The effect of different maximum speeds on the taxi times and possible delays for different aircraft types.
A number of different aircraft had to find the most optimal and where able to be rerouted.

Guillaume [21]
2018 minimise taxiing costs AAS

General taxi-out information and
time-space graph

Two full days have been analysed
Two TaxiBot versions for NB and WB have been implemented
Both fixed and flexible number of TaxiBots have been analysed

Schiffer and Walther [54]
2017 minimise total driven distance

Solomon
benchmark
instances

A comparison with respect to
the Solomon benchmark instances 60

Five different models are compared; each having one or more constraints added to the model:
Electric Location Routing Problem (ELRP) and Electric Vehicle Routing Problem (EVRP) with
Time Windows (TW) and Partial Recharging (PR) are introduced.

Roling and Visser [50]
2008

minimise total taxi time and
total holding time

example
airport

Time-space table

An example airport with one-way routes has been used to determine the shortest path,
with the option of rerouting.
A sample flight planning with limited number of aircraft has been used.

Roling [48]
2009

minimise total taxi time and
total holding time

AAS
Time-space table and number
of conflicts over time

Based on previous paper by Roling and Visser [50] as described above

Yan Du, Brunner and
Kolisch [67]

2014 minimise operating costs
unknown
airport

CGH is better than a manual schedule
The importance of selecting the right vehicles

Column generation heuristic (CGH) has been used to decrease computation time.
The number of TaxiBots, flights, depots and trips are fixed.
The model combines time windows, mixed fleet, multiple depots and multiple trips.

Soltani et al. [60]
2020

minimise fuel consumption and
maximise the desired service quality

YUL, Montreal
Time-space diagram
Optimum number of TaxiBots

Collision of conflict avoidance has been taken into account in the model.
Two cases with unlimited and limited number of TaxiBots are analysed.
The optimum number of TaxiBots with respect to costs is determined as well.

Evertse and Visser [14]
2017

minimise weighted combination of
offset time, taxi time and emissions

AAS
Comparison in fuel
consumption and emissions

The model can update every 15s, hence unforeseen disturbances can be mitigated in time.
Results were given for scenarios in which the weights of the objective function where changed.

Sillekens [55]
2015 - AAS

Visual simulation which showed a
capacity decrease and fuel savings

A predefined model named "SMARTlab" developed by Honeywell was used for this research.
This model was based on the on-board ETS EGTS, which is different from the other literature described.

Kroese [31]
2021

minimise total taxi time and
maximise number of tasks and
minimise battery charging

AAS
optimised routing schedule and
TaxiBot fleet schedule with
battery charging schedule

The research consists of two parts, first a VRP and then a FSA.
Input parameters on the TaxiBot are taken from Van Baaren [64].
Sensitivity analysis performed on the number of flights, taxi velocity, battery capacity
and location of charging stations.
An adaptation is proposed in which the charging time is limited

Soltani [59]
2019 minimise operating costs YUL, Montreal A hybrid solution is the optimum
Three scenarios covering null, part and all flights are towed are analysed and compared.
The optimum number of towing vehicles with respect to costs is found by seeking the minimum.
Multiple types of costs (fuel, energy, emissions, delay, purchasing and operation) are taken into account.

Smeltink et al. [58]
2004 minimise waiting times while taxiing AAS

Delay results and most suitable
rolling window algorithm

Three different types of rolling windows are addressed.
One busy day with a real schedule has been used as input.

Sirigu [56]
2017 minimise energy consumption

TRN, Turin
MXP, Milan
AAS, Schiphol

Comparison of different models,
airports and algorithms

The different models have been defined, one having continuous time and one having discrete time evolution.
Different types of algorithms haven been used, being a particle swarm optimisation and a tree search heuristic.

Atkin, Burke and Ravizza [2]
2010

various papers on the airport
ground movement problem

- Important future directions

Thirteen different papers on VRP using MILP (8) and GA (5) are described, analysed and compared.
Important future directions are described, being: consistency & comparability, integration of other
airport operations, robustness and uncertainty, restricted stopping positions, environmental
considerations in taxiing and limiting changes.
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4.3.2. Fleet Assignment Problem
The second type of problem is based on a time structure and does not per se take space into account. Lots
of literature is written about the assignment problem in general, however the following literature only assess
this problem on an airport level. Different types of assigning entities have been found.

The first is assigning aircraft to specific gates. This problem has been around for quite some time already,
as the literature by Mangoubi [40] and Bihr [7] dates back to 1980 and 1990 respectively. Both try to minimise
the average walking distance per passenger by assigning one aircraft per gate, where the aircraft and gate
times are known in prior. More recent literature has been summarised by Dorndorf et al. [12], which provides
four other possible objectives:

• The number of un-gated (open) aircraft activities has to be minimised;

• Preferences of certain aircraft for particular gates have to be maximised;

• The deviation of the current schedule from a reference schedule has to be minimised in order to increase
schedule attractiveness and passenger comfort;

• The number of expensive aircraft towing procedures (that otherwise decrease the available time for some
ground service operations on the ramp as well as in the terminal) has to be minimised. [12, p. 327]

These objectives can be labelled as comfort for passengers or convenience for airport services. Dorndorf et al.
discuss various problem classifications (slot models, types of objectives and mathematical models) as well as
state-of-the-art algorithms (mathematical programming techniques and rule based expert systems). Recent
developments include among others multi-objective models. The authors present two models with different
combinations of objectives and conclude with two open ends. The first is the development of solution tech-
niques for such multi-objective models, the second is the investigation and development of robust or stable
models that can handle uncertainty or perturbations, either deterministic or stochastic. [12] This will be fur-
ther evaluated in subsection 4.4.6.

This problem can be extended with the addition of ETS. As mentioned in section 4.2, TaxiBots are allowed
to tow an aircraft for a longer period of time or over a longer distance compared to conventional push back.
This opens up the possibility for pit stops of aircraft which do not need to be at a gate specifically as explained
by Roling et al. [52]. By towing these aircraft, which are delayed due to for example occupied departure slots,
or occupied en-route and/or arrival slots, to buffer locations, the gates will be less congested and the uti-
lization of the gates and aircraft increases. Other reasons for delay could be last-minute baggage loading or
last-minute maintenance. Each of these does not require the aircraft to be at a gate and such pit stop op-
erations could add a maximum of 25% extra flights scheduled with a pit stop [52]. This value is based on a
minimum turn-around time of 170 minutes before a pit stop will take place and only 10% extra flights are
planned on top of the normal planning. This maximum value of 25% goes down when more extra flights are
scheduled, due to saturation of the gate schedule. One extra advantage of such operations is the possible de-
crease of push back time, which could be up to 1:50 minutes, according to Roling et al. [52]. Van Lingen [65]
also concludes that pit stops increase the gate utilization, however at the costs of increased delays. Here, the
average delay was determined for three different number of gates (4, 6 and 8) and three different turn around
times (80, 100 and 120 minutes). Only for the highest turn around time, an increase in utilization was noticed.

A second problem is assigning towing vehicles to arriving aircraft. Van Baaren [64] assessed this problem
after the optimisation of a vehicle routing problem. The objective set is to minimise the total fuel consump-
tion of towed and non-towed vehicles and outputs are the differences in travel time, fuel consumption and
energy used between conventional taxiing and fully electric towing. This problem resulted in the determi-
nation of the number of towing vehicles necessary as the marginal fuel reduction and power consumption
was plotted per towing vehicle added. This analysis has been performed for two different cases; Amsterdam
Airport Schiphol and Rotterdam-The Hague airport. Furthermore, analysis at AAS is done for three aircraft
types; medium, heavy and super heavy. One day with full operations has been selected for the optimisation
model, this day consisted of respectively 1273, 173 and 27 flights for the three different aircraft types. No clear
breaking point was visible in the plot to determine the optimal number of electrical towing vehicles for the
medium category as the lines gradually reach an asymptote, however the number ranges between 32-36. For
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the heavy and super heavy category this optimal number lies between 10-12 and 4-5 respectively.

Kroese [31] also researched this problem and combined the two MILP problems as well. First, a VRP model
is produced based on Schiphol airport, which defines the optimal taxi routes of all towed aircraft within a
flight schedule. Two days have been selected for this optimisation problem, one of the busiest and one of
the calmest days of 2019. The total taxi times are minimised while the assumption states that there is an
indefinite number of TaxiBots available for all operations for the first part. The output of this optimisation
problem provides, per time stamps of 10 seconds, the location of each TaxiBot version. Here, the same ver-
sion definitions as described by Van Baaren [64] are used. The second problem consists of a fleet scheduling
assignment in which the number of necessary TaxiBots is determined. All tasks in the schedule need some
energy to perform this, hence the battery level is considered as well. With this, any recharging periods are
scheduled as well. A visualisation of such a schedule can be found in Figure 4.12. In total 77, 17 and 3 Taxi-
Bots of the medium, heavy and super-heavy category respectively are necessary for these operations on one
of the busiest days of 2019. 45, 13 and 2 TaxiBots are necessary on one of the calmest days of 2019. The charg-
ing stations necessary for the recharging of the batteries are placed at three tactically chosen locations on
Schiphol, however the number and location of these charging stations has not been found to be optimised.
This finding is more elaborately discussed in section 4.5. One other sensitivity test performed by Kroese is the
size of the batteries. Logically, if the battery size is decreased, charging goes a lot faster, and due to less battery
volume and thus weight, the TaxiBot might be able to reach higher speeds as well. However, the drawback
is that less towing tasks can be performed per itinerary and more charging periods are necessary. The other
way around, increasing the battery size reduces the number of times charging is necessary and might even
extend the battery size such that only charging at night is necessary. By this, the towing tasks would consist
out of just one itinerary in a day. However, taxi speeds might go down and charging times might become too
long. Hence a trade-off is necessary to find the optimal battery size. This is discussed in the research gaps in
section 4.5 as well.

Figure 4.12: Schedule from the Fleet Assignment Problem developed by Kroese. [31]
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As can be seen from the previous subsections on the two problems, a clear distinction is not always
present, and often times both problems are combined, either in two separate steps or as a combined op-
timisation problem. Hiermann et al. [24] introduces the Electric Fleet Size and Mix Vehicle Routing Problem
with Time Windows and Recharging Stations (E-FSMFTW), which is a combination of multiple optimisation
problems based on a VRP. Each of these variants add new constraints to the VRP problem, the electric vehi-
cles need charging, hence time and power constraints are added to the problem. Subsequently, the recharg-
ing stations necessary need to be placed strategically in the network. The location and number of stations
is constraining the problem as well. A mixed fleet size changes the parameters of the problem set as well,
resulting in different analyses for the mixed fleet. Lastly, time windows will make sure the vehicles are on the
right place on the right time, ensuring even more time constraints.

One last subject that comes forward in literature on these two problems is the size of the fleet used in the
models. The number of TaxiBots necessary for such operations is either set beforehand [21], or determined
in the optimisation model ([20], [31], [59], [64]). The latter does this optimisation based on either maximum
utilization ([31]), minimum fuel consumption ([64]) or minimum total costs ([59], [20]). How to find the
optimal when looking at the total costs has been described already in subsection 4.2.2.

4.3.3. Meta-Heuristics
A second type of models that could be found in literature is the heuristic approach. While MILP tries to find
the optimal model, heuristics does not necessarily end up with the global optimum as a solution, but rather
finds a local optimum or an approximation. Different approaches used within this type are variable neigh-
bourhood search (VNS), iterated local search (ILS) or adaptive large neighbourhood search (ALNS) [24]. This
latter approach is used by Hiermann [24] in order to solve the electric fleet size and mix vehicle routing prob-
lem with time windows and recharging stations. Moreover, this approach was a hybrid solution method as it
was combined with an embedded intensification mechanism. The results showed a solution which deviation
from the best known solution with a gap of around 1%.

These aforementioned search methods can be subdivided into specific fields as well, as can be found in
lots of literature as well, as is summarised by Dorndorf et al. [12]. Branch and bound and Tabu search are the
two most used fields of search algorithms.

Genetic Algorithms
One other specific field of algorithms within meta-heuristics is genetic algorithms (GA). This approach is
based on the process of natural selection, in which the population evolves and gradually becomes better over
the course of multiple generations. Atkin et al. [2] summarise literature in which three approaches for GA are
proposed, as summarised by Guillaume [21, p. 10]:

1. GA determines for each aircraft initial delay/hold time prior to push-back.

2. GA determines a delay during movement, which is not restricted to a delay/hold time at the start of
taxiing. It determines when and where delay should be applied.

3. GA investigates the possibility to prioritize aircraft instead of directly hold the aircraft. Priority deter-
mines the sequence of aircraft movement when there are conflicts. [21, p. 10]

For each of these three approaches the GA delays and/or routes are allocated to each aircraft. The first ap-
proach lets the GA assign both a route and delay to the aircraft, while the second method is more freely with
respect to when the delay will be assigned. The third approach focuses on placing the aircraft in the right or-
der rather than allocating delays and is the most used approach in literature. [2] One other aspect Atkin et al.
write about is the comparison of MILP and GA. GA do not guarantee to give the optimal solution, moreover
an approximation of the solution is not always guaranteed. However, as MILP usually have a longer compu-
tation time, this brings problems to airports as they are usually seeking for a solution with real-time decisions.

Multiple papers apply GA on a vehicle routing problem, as is combined in the literature review by Kroese
[31]. One paper that applies GA on a vehicle routing problem and also compares it to other algorithms is
Gotteland et al. [18]. The defined model tries to minimise both the total rolling time and the extra time spent
for rerouted trajectories. This combination is used so that the extra time for longer routes is taken twice, giving
this a penalty which is twice as high than waiting in queues. The GA is compared to the A* algorithm and a
third version combines these two methods. Then this model is run for two airports in France, Roissy Charles
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De Gaulle and Orly airport and both airports result in the mixed solution being the best option. Furthermore,
it could be found that GA outperform the A* algorithm in this model. Important to note is that this model only
schedules aircraft without any ETS solution. Just like previous examples, Jian et al. [29] use genetic algorithms
as well on a scheduling optimisation model. This VRP model is focused on aircraft priority and resulted in a
decrease in taxi time. One can thus conclude that aircraft routing can be optimised with GA, however it needs
to be determined if the implementation of this specific VRP with TaxiBots and probabilistic sudden changes
can be optimised as well resulting in the global optimum or if a near-optimal solution would be sufficient as
well.

Artificial intelligence
One other solving approach is the use of artificial intelligence. In order to solve a VRP for autonomous taxi
operations, Sirigu et al. [57] propose four different solution mechanisms in order to determine which per-
forms better. Two neural networks are proposed, the Hopfield neural network and a modified version of it.
Next to that, two graph theory approaches are presented, Dijkstra’s algorithm and A* algorithm. The different
routes at the airport of Turin, Italy are used for ’on the fly’-generation of towing vehicles routings. The results
show that all methods approach to the same optimum shortest path, except for the modified Hopfield neural
network, which is slightly longer. However, the graph theory methods only need 0.01 s computation time,
while the neural networks need a computation time in the order of 100s or even 1000s of seconds, making
them several orders less efficient. [57]

4.3.4. Conclusion on Modelling Methods
The first approach is the mathematical optimisation via MILP, which has been split up in the VRP and FAP.
Both problems have been modeled numerous times in order to find optimal solutions for electrical taxi sys-
tems. Often times, both problems are combined and even extended with other constraints based on time,
charging etc. As said before, heuristics does not necessarily reach the optimal solution, but rather finds an
approximation of the problem. However, when comparing the computation time of both approaches, big
differences can be found. MILP usually has a lot of variables, in the order of thousands up to even billions,
with a lot of constraints as well, in the order of hundreds to hundred thousands in general. As the solver has
to go over each of these, or parts if special methods such as column generation based algorithms are used,
the computation time can get impractically high. On the other hand, meta-heuristic methods do not cover
all possible options, but rather explore interesting areas or directions. Therefore, computation times can go
drastically down.
Concluding, the trade-off between the two approaches is based on the choice between reaching an optimal
solution or having a low computation time. The model design choice can be found in section 5.2.
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4.4. Defining the Case Study
In order to model the vehicle routing problem as defined in chapter 3, different information sources regarding
daily apron operations need to be reviewed. This information will be used as input data for the model to be
developed, focusing on a case study on Amsterdam Schiphol Airport. Therefore, first literature on each of the
following topics will be reviewed, after which the most suitable option will be assessed for the specific case at
AAS. First, different VRP modelling choices will be discussed in subsection 4.4.1, after which the input data
for the nodal network, flight schedule and TaxiBot specifications will be assessed in subsection 4.4.2, subsec-
tion 4.4.3 and subsection 4.4.4 respectively. Lastly, literature on operational time uncertainty and scheduling
robustness are two topics that come forward in the case study in subsection 4.4.5 and subsection 4.4.6.

4.4.1. VRP modelling
As is described in subsection 4.3.1 objective functions of a VRP tend to differ with respect to the decision
variable to be assessed, while each of them are connected in some way. The most fundamental objective is
to minimise travelling times, which implies the minimisation of fuel consumption, [49], emissions [14] and
costs [67] [21] in turn. However, as the focus of this research is on the differences of the strategic and tactical
solutions and the minimum deviations between these, the minimisation of taxi times is the most suitable
objective to focus on. Next to that, the minimisation of deviations is an important objective function to take
into account for the tactical VRP model. This can be done by minimising the costs received as penalties for
deviations [60]. However, other non-cost parameters would be suitable as well. Other metrics that come for-
ward in a time-space planning are for example the number of rerouting via different nodes or the increase in
taxi time. Penalties could be set for such changes in metrics.
Using penalties to minimise is one way of doing so, however this brings one inherent problem with it. Even
though penalties are to be minimised, a number of changes might still be present, depending on which met-
rics are used. If some small rerouting with a limited delay causes another rerouting with another limited
delay, the overall delay and thus penalties is little, however two changes were needed. If the model focuses on
the specific route to be rerouted only, only one change is necessary causing no other effects to the rest of the
schedule, albeit that this change might result in a large delay for this specific vehicle. Therefore, a trade-off is
necessary that focuses on minimising the total penalties or minimising the total number of changes neces-
sary.

Next to that, the constraints necessary for such a VRP can be split up in their respective type as follows
amongst others. [49]

1. Flow constraints: make sure that vehicles move from node to node and and use only one node at the
time. Next to that, following travel directions are addressed here.

2. Conflict and collision avoidance constraints: make sure that vehicles keep a safe distance from each
other and do not use the same node at moment in time. Next to that, they make sure vehicles do not
travel towards each other on an edge.

3. End node constraints: make sure that vehicles start and end at respective nodes, such as gates and
runways.

4. Time constraints: ensure that vehicles can only move in their respective time window.

5. TaxiBoting constraints: make sure that TaxiBots can only tow one vehicle at the time and one time
maximally during a task.

6. Aircraft specific constraints: include among others the prohibited driving on service roads and taxi-
ways.

Yan Du et al. [67] added the column generation algorithm to the model, which results in shorter compu-
tation times. However, in order to do so, a split is needed between a master problem and a sub-problem. This
leads to the creation of another objective function and appropriate constraints. A pricing problem needs to
be solved in the sub-problem which determines if another iteration is necessary in order to find the optimum
in the master problem.
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4.4.2. Airport Network
As can be seen from Table 4.3, many different airports have been used to model a VRP. AAS will be analysed
in the case study, which reduces the literature slightly. Different nodal networks in terms of accuracy and
comprehensiveness come forward. The airport can be split up in different layout parts. The runways and the
apron and terminal with its gates are usually the start and ending positions of the routing. Runways contain
multiple entering and leaving positions which all require a node. However, at the apron, gates from a specific
service area or terminal can also be combined into one starting node. Taxiways are the connecting ways be-
tween these end points for taxiing aircraft and service roads can be used by other airport vehicles. Each edge
connecting two nodes has a certain length and a certain maximum speed. Moreover, it might be the case
that certain edges only allow one-way traffic, as can be seen in Figure 4.14. The network used by Smeltink et
al. [58] has a simplistic taxiway structure, connecting the apron and terminal via 9 nodes, as can be seen in
Figure 4.13. Both contain around 100 nodes.

Kroese [31] uses in his model the taxiway nodal network, but makes its model more complex by also in-
corporating another nodal network for the service roads. This network, containing around 50 nodes, can be
used by ET vehicles in his approach. The validity of the assumption that the ET vehicles can drive on the ser-
vice roads can be questioned, as the preliminary results of the TaxiBot feasibility test at AAS show that these
service roads might be too small for the TaxiBot [5]. Schiphol has announced to expand on and build new
service roads suitable for TaxiBots. Using the taxiways for TaxiBots as well as aircraft might not be feasible as
well. Increasing the traffic on taxiways might be undesirable as ATC controls these roads, making the work
load unbearable. However, as mentioned in section 4.2, Schiphol is aiming to have a full autonomous system
in the end. With a dedicated fleet management system all TaxiBots can be controlled, i.e. allocated to an air-
craft, control the speed and communication between the TaxiBots themselves. Concluding this, on the short
term, service roads are used as well as taxiways in case the service roads do not suffice. This will increase the
workload for ATC, however this will be decreased in the long term due to the addition of new service roads as
well as the implementation of a fleet management system.

Van Baaren [64] has a nodal network of approximately 120 nodes. This model is slightly more extensive
as it has nodes for multiple entering and leaving locations of the runways. All other literature assumes one
entering or leaving node at each end of the runway, however the model by Van Baaren tends more to reality
as runways have multiple entries and exits which are used dependent on the necessary runway length for
take-off and departure. Adding these extra runway entries makes the model more complex as more nodes
are necessary and information regarding the runway length needed per aircraft is needed. Therefore, the
assumption is made that aircraft enter and exit the runway via one entrance/exit, i.e. one node.

Guillaume [21] uses a model that fits in between the previous discussed networks, as its nodal network
contains 120 nodes of which approximately 20 refer to service road nodes. Moreover, this nodal network con-
tains one more unexplained parameter. Some nodes are characterised as "holding nodes", at which aircraft
and TaxiBots can wait without disturbing other vehicles. As this nodal network is the most suitable one re-
garding all aforementioned characteristics, it will be used in the case study. A visualisation of this network
can be seen in Figure 4.15.

AAS consists of six runways in total, whereas the nodal network consists of only 5 runways. The Oostbaan
04-22 at the east part of the airport, as can be seen in Figure 4.14, is not taken into account. The reason for
that is that this runway is used merely by general aviation and private jets and only in emergencies interna-
tional flights are allowed here.7 The number of international flight operations at the Oostbaan was in 2019
6058 flights (6023 landings and only 26 take-offs), while the overall number of flight operations concluded
497.303 in that year, resulting in a percentage of 1.2%.8 Therefore, considering this slim percentage of use of
this runway, it it not taken into account in the nodal network and therefore avoiding an unnecessarily more
complex problem.

All parameters of the nodes in the nodal network are listed below:

• Node ID: Unique ID number per node

• Position The relative position in x- and y-coordinates, where the reference point lies approximately in
the middle below the airport.

7https://www.schiphol.nl/nl/schiphol-als-buur/pagina/vliegroutes-en-baangebruik/, accessed on 19-02-2021
8https://bezoekbas.nl/wp-content/uploads/2020/02/Baangebruikcijfers_2019.pdf, accessed on 19-02-2021
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• Connecting Node: Each node can have up to a maximum of four connecting nodes via the edges.

• Distance Node: Each of these edges from a node has a certain distance.

• Speed Node: Next to that, each of these edges from a node has a certain maximum speed.

• Gate: Each node has a binary value stating if the node is connecting to a gate or not.

• Holding Node: Each node has a binary value stating if the node is a holding node or not. At these
holding notes, vehicles can wait while not interrupting other vehicles passing by.

• Runway: Each node has a binary value stating if the node is connecting to a runway.

• Service Road: Each node has a binary value stating if the node is a service road node or not. Each edge
connected to a service road node is a service road.

Next to that, two other parameters necessary for the nodal network are the following:

• Each gate at the airport is connected to a certain gate node.

• Each runway entry and exit is connected to a certain runway.

Figure 4.13: Simplistic nodal network used by
Smeltink et al. [58] Figure 4.14: Detailed taxiway nodal network used by Kroese [31].
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Figure 4.15: Visualisation of the chosen nodal network containing taxiways (green lines) and service roads (dotted blue lines), as well as
travel direction (towards the thicker green line) by Guillaume [21].

4.4.3. Flight Schedule
Literature on VRP uses different sources for collecting the flight data. Data sources used are OAG, a global
travel data provider9 ([21]), FlightStats by FlightGlobal10 ([64]), the website DutchPlaneSpotters11 ([28]) or
directly from AAS Flight API12 ([31]). The parameters that are shown per source range from only the flight
number and arrival time and other important parameters, up to a set of 35 parameters in the Flight API con-
taining for example baggage belt or even check-in information. As the latter is the most complete and also
directly available from Schiphol, it is the most suitable source to use. The most important parameters to be
used from this source will be the following:

• Flight Direction: States if the aircraft is arriving or departing.

• Flight Name: Gives an unique ID to each flight.

• Scheduled Time: Gives the predefined time of operation.

• Actual Time: Gives the actual time of operation. In the model, this parameter will be determined via a
probability density function, however in order to verify the model, fixed actual operating times will be
used.

• Service Type: States the type of service of a flight, such as passengers, cargo or charter.

9https://www.oag.com/historical-flight-data, accessed on 10-02-2021
10https://www.flightstats.com/v2/flight-tracker/search, accessed on 10-02-2021
11https://schiphol.dutchplanespotters.nl, accessed on 10-02-2021
12https://developer.schiphol.nl/applications, accessed on 10-02-2021
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• Aircraft Type: refers to the the aircraft brand and type such as B737. From this, the weight and certifi-
cation can be distilled.

• Gate: Refers to which gate the aircraft goes and leaves from.

• Airline: This information might be useful when looking at the operability of the TaxiBot for the type of
aircraft.

• Status: Gives the status of the flight. Cancelled or redirected flights to other airports are not taken into
account.

Related to this data is the runway usage over time. By keeping track of which runways are used for arrival and
departure, the arriving and departure runway and thus adjacent node of each flight can be derived.

Decisions on which day of the year should be analysed differ in literature. Kroese [31] focuses on one of
the busiest and one of the calmest days of the year. Multiple reasons are give for this selection. A busy day
shows the maximum capacity of the TaxiBots needed, in order to cover all other less busy days. A relatively
calm day will be used as most certainly, TaxiBots will be introduced on such a quiet day. An important as-
pect to take into account could be the year assessment of such operations. The busiest and calmest days
will reflect the minimum and maximum capacity needed, however the actual number of TaxiBots needed for
a full year of operations to minimise the total costs might most certainly differ from the actual number of
TaxiBots needed to minimise fuel consumption and emissions. Moreover, the average might not be exactly
in the middle, but the weight of calm days might be higher than that of busy days. Therefore, an analyses of
multiple days throughout the year can determine the capacity in a better way. Guillaume [21] analysed two
different days in the month May, and two different time intervals of an hour. The reason why these specific
days and time intervals have choosen is not made clear in the paper. Van Baaren [64] focuses on one day
in October, being described as an average day. Smeltink et al. [58] on their turn focus on half a day in the
month of September, characterised as a busy day as well. One other aspect Kroese looked at was the runway
availability. The two days were specifically choosen as multiple runways had been in use.

To conclude assessing multiple days with different parameters will result in a broader analysis of opera-
tions. Both busy and calm days will be assessed as well as other days throughout the year will be taken into
account.

4.4.4. TaxiBot Specifications
As not all detailed specifications of the TaxiBot are publicly known, past literature has tried to mimic such a
vehicle design. Van Baaren [64] has designed three versions of the TaxiBot by taking into account operational
and technical design requirements, such as design weight, power demand, energy demand and kinematic
performance. This design has been taken over by Kroese [31], which in turn improved the design by com-
bining parameters from multiple sources. Kroese also compared parameters of electric taxiing with those of
conventional taxiing. Lastly, the recent test of the TaxiBot at AAS resulted in new insights on relevant param-
eters [5]. Each of these sources will be used to model the vehicles in the VRP.

4.4.5. Operational Time Uncertainty
In previous literature on VRP, deterministic data is used in solving the problem, however this does not reflect
real-life operations. Deterministic input is used both for the sake of keeping the problem away from unnec-
essary complex methods as well as the large uncertainty in operational times. Arrival and departure delays
are not uncommon and aircraft taxi times are difficult to predict as well. Novianingsih and Hadianti [42] try to
model flight departure delay into probability distribution functions, while Ravizza et al. [45] try to model sta-
tistically predict aircraft taxi times for A/D without the inclusion of delays. The latter proposes to include this
prediction of taxi times into a VRP. If a conflict occurs in the routing of the aircraft, some delay or rerouting
with a foreknown taxi time can be added to the problem, in order to accurately predict the new travelling time.

The third part of the model will take into account the uncertainty in arrival and departure times. This will
be done by letting the operational times follow a probability density function. Novianingsih and Hadianti try
to find such a PDF for aircraft departures, however aircraft arrivals do not necessarily have to follow the same
PDF. As different operations occur before the arrival and departure, the PDF tend to look differently. One
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other difference that is noted in the paper is the distribution of departure delay duration and the distribution
of departure delay-time. The first one assesses the delays per aircraft, however the latter focuses at the dis-
tribution of delays occurring over a period of time, e.g. one day. [42] Other parameters to filter on could be
for example airline, aircraft type or even airport specific. In the paper, the optimal PDF is found by letting a
GA maximise for the log-likelihood function and minimise for the sum of the squared error. It is concluded
that of the three best options, Log-normal, Rayleigh and Gamma, Log-normal is the best suitable one. This
conclusion is drawn as well by Lan et al. [34], who statistically tested gamma, log-normal and Weibull distri-
butions. However, as previously noted, this PDF depends on many different parameters. Therefore, it would
be most realistic if empirical data from AAS is used. Moreover, the presented paper only addressed departures
from Garuda Indonesia Airline. By getting all scheduled and actual operational times, the number of delays
can be plotted per small time interval of eg. 2 minutes and converted into a PDF. A split can be made between
arrival and departure and investigation is necessary if even more different PDF’s with more detailed divisions
are worthwhile.
An important note to make is that above PDF derived from Novianingsih and Hadianti are on an infinite
range, which makes the problem impractical. Therefore, the assumption will have to be made to truncate
such PDF into a finite range. Extreme delay values that are located in the tail of a PDF, e.g. outside the 95%
confidence range will be regarded as outliers and assumed to have a probability of zero instead of a very slim
probability.

4.4.6. Scheduling Robustness
In order to minimise any deviations from the strategic schedule in the tactical one, the first one can be made
more robust. By this, small deviations would not affect the schedule that much and operations can continue
as planned. Lots of literature is available regarding robustness methods, which is summarised by Kumar and
Bierlaire [32] to include flexible buffer times between operations, use stochastic delays as explained before in
subsection 4.4.5 or use time windows. The buffer times in their paper are set by maximising the gate rest in
between operations. This is done by accounting the kth percentile delay of empirical delay data and adding
this to the gate rest. The maximum of both arrival and departure at the specific gate is chosen and added if
feasible. [32] Dorndorf et al. [13] proposed two other methods. The first one is making sure that there are
overlapping operation slots which can be swapped if necessary, the second method makes use of a fuzzy set
approach.

4.5. Scientific Research Gaps
Following from the literature review, a number of scientific gaps can be pointed out. Previous literature can
always be improved, however new research directions can also be determined. Some of the most important
ones are discussed below.

The first research direction refers to the battery of the TaxiBot. Next to ongoing research on battery im-
provements, making TaxiBots more powerful and capable of carrying more tasks, research in the battery size
should also be considered. Many different aspects come into play when sizing the battery. The total energy
capacity, charging time and charging capacity are some of the most stringent one. The first two aspects are
related. One can size the battery of the TaxiBot relatively large, which makes sure that a large extend of the
operations at an airport can be carried out, however the downside to it are the long charging times. Vice
versa, one can opt for short charging times, however only a limited number of operations can be carried out
in such a scenario. Following on that, charging capacity at an airport may be limited, which can obstruct the
possibility to charge all TaxiBots at once, for example during calmer night times. A more spread out charging
schedule might be necessary, resulting in another constraint for the battery sizing.

Continuing on battery capacity, charging stations needed for the charging of TaxiBots can be a limiting
factor as well. Too few stations can result in waiting times for the TaxiBot before they can be charged or in
too long distances for the TaxiBot to realize charging in time. Hence, charging stations location placement
is a different optimisation problem which has to be solved. A solution for the stringent battery constraints
could be battery swapping. A concept in which the TaxiBots and the batteries are separated, a higher number
of batteries can be acquired, while a lesser number of TaxiBots is necessary. Spare batteries can be charged
and swapped with empty batteries if necessary. optimisation in the planning of these operations is a different
research direction to pursue.
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One different research direction to pursue is the feasibility study of TaxiBots at an airport. As determined
before, large airport hubs benefit from the addition of ETS, looking at cost and sustainability parameters.
However, smaller airports or structurally complicated airports might not obtain any advantages. Airports
which are located in relatively cold regions might have temperatures too low for a TaxiBot to properly func-
tion. Hence, a study regarding the feasibility with respect to all relevant parameters is an interesting direction.
Not only will the determined which parameters are important to take into account when considering imple-
menting ETS, the range and relative importance are important aspects to look at as well. These parameters
might be structural considerations, such as the layout of service roads or the distance to runways, but also
operational ones, such as the availability of certified operating crew, maintenance possibilities or even the
aircraft types that usually land or take off from the specific airport. Such a feasibility study can be done in a
generic way, but also specifically tailored on an airport to be considered.

Each one of these scientific gaps can be explored with the view focused on TaxiBots as these type of ETS
turned out to be the best, according to the comparisons mentioned in subsection 4.1.4. However, TaxiBots
do have its limitations as well, therefore exploring further into the implementation of other electric taxiing
systems is a final scientific gap that can be concluded.





5
Methodology

In order to adhere to the research aim set, a computer model will be built which will consist of three parts,
containing two types of optimisation models. First, an explanation of the model is given in section 5.1, which
is visualised with a functional flow diagram in section 6.1. Thereafter, the model design choice, experimental
setup and expected results are discussed in section 5.2, section 5.3 and section 5.4 respectively.

5.1. Model Explanation
The first part will be a vehicle routing problem on the routing of taxibots on Amsterdam Airport Schiphol. The
VRP will have only fixed inputs as are shown in Table 5.1 and a set of requirements as specified in section 5.2.
The objective of the model will be to minimise the taxi time between the origin and destination, e.g. from gate
to runway or vice versa. The taxi time depends on the velocity of the taxibots and on the distance between
nodes. Only certified aircraft can be towed by the TaxiBot, other aircraft will taxi in the conventional way. The
input of the problem will consist of a fixed nodal network of AAS, in which the taxiways, gates and runways
of AAS will be configured. Next to that, a fixed flight schedule, based on real-world data will be used for the
planning of one day of operations. The TaxiBots present will not be of any limiting factor in the first part of
the problem, as a sufficient number of TaxiBots will be present, which are assumed to have unlimited battery
power. The second part of the problem is focused on finding the lowest number of TaxiBots necessary to be
still able to find a feasible solution. This output will be reached by lowering the number of TaxiBots through
iteration. Then, in the third part, whenever the amount of TaxiBots has been defined a strategic and deter-
ministic solution has been found. Then, on the day of operation, a tactical VRP will be run. Aircraft arrival and
departure times become probabilistic and the expected arrival time will have a normal distribution around
the scheduled arrival time. The shape of the probability distribution will be the split up as was explained in
subsection 4.4.5. The day is split up in time intervals of e.g. 5 minutes. The optimal time interval has to be
determined based on a suitable iteration time and the amount of time such arrival/departure information is
normally known in advance by ATC. The model iterates through these time intervals and reruns the problem
for every next interval. In each interval, the input flight schedule might be altered as follows. As soon as a
part of the probability distribution falls in this 5 minute interval, the actual delay is determined by a random
draw and fixed. Deviations in the arrival or departure time will occur and the updated flight schedule will
result in a new vehicle routing solution. This actual arrival time might be in the current 5 minute interval but
might also be in the next or second next interval. After this fixation of the exact time arrival, the new schedule
is calculated for the rest of the day in which deviations are minimised. Hence, if all aircraft arrive at the ex-
pected time of arrival, the schedule will not change, but a deviation can alter the schedule slightly or severely,
based on the added positive or negative delay. These schedule changes are made on a tactical decision level.
A visual example is given in section 6.1.

5.2. Model Design Choice
As is mentioned in subsection 4.3.4, the choice on the model design being MILP or GA lies on a trade-off
between reaching an optimal solution or having a low computation time. Preferably, both advantages would
have been implemented, however as that is not possible, another solution has to be found. Inherent to this
specific problem, it is of utter importance to have a model which can generate a new model which is exactly
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the same, or as close as possible to the previous schedule in order for it to be practically useful. In other
words, the schedule should be reproducible and thus finding the global optimum every run. As GA might
find only a near-optimal solution, this is unwanted. This can be resolved by letting the GA run the problem
multiple times, which would eventually lead to the global optimum. However then computation time con-
straints come into play again. MILP allows for easier implementation and will find a global optimum and is
therefore the preferred method. This only holds if the computation time constraints are met.

Last but not least, one argument regarding the computation time needs to be addressed. Because VRP
problems tend to be NP-hard, computation times tend to rise quickly [35]. Therefore, even though GA cannot
be used, other methods for decreasing the computation time should be used. The aforementioned rolling
windows in Figure 4.3.1 are such an algorithm to be used in the model. As a rolling window algorithm might
result in a near-optimal solution instead of an optimal solution when computing a whole day of operations at
once, this method can be justified as follows. As in the tactical model deviations in the schedule are to occur,
there is no need to compute the rest of the daily schedule. As relatively long-term schedules tend to change,
it is logical to focus on short-term deviations with the rolling windows. Hence, optimising for the whole day
is not necessarily needed for this tactical model.

Therefore, the best way to answer the research questions is to model an optimisation problem and try
to find the optimal solution. As such a research problem has thousands of variables and should adhere to
a number of constraints, a vehicle routing problem is the most suitable MILP. The goal is to make a general
model that can be applied to many various airports, however in order to test its validity, a case study will be
performed in which data and information from one specific airport will be used, which will be Amsterdam
Airport Schiphol. The reason why this airport has been chosen is because of its complexity. AAS has a lot
of variables to take into account, making this an interesting airport to consider. There are multiple runways
in use simultaneously, it is an important hub airport in Europe and the fact that tests with the TaxiBot have
been performed here before make this a reasonable choice. Other literature has considered this airport in
their models as well [21] [31] [64].

The initial strategic optimisation model and the reactive tactical optimisation model are part of one pro-
gram, however their methodologies differ and thus their functional requirements are to be separated. First
the requirements for the initial model are given. For this, state-of-the-art literature on MILP problems de-
scribed by Dorndorf [12] are used as reference.

• The flight schedule used in the model shall match a real flight schedule of AAS.

• Conflict and collision avoidance of both vehicle types shall be in place.

• The airport nodal network model shall match the real airport structure of AAS.

• The TaxiBot specifications shall be as close to reality as possible.

• TaxiBots will have a central resting location and are always charged enough to perform the next task.

• The model’s objective shall be a fitting optimisation function.

• The output of the model shall be given in visual graphs and textual tables .

• The output of the model shall have such a format so that it can be used as input for the tactical optimi-
sation model.

Secondly, the requirements for the tactical optimisation model are the following:

• The model’s objective shall be to minimise any deviations from the initial schedule.

• the input variable delays shall represent real-world occurrences.

• The model shall be able to generate results within the length of the set time interval of the iterations.

• The output of the model shall ensure the possibility of a proper comparison with the input of the model.
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Concluding, the model will be designed to cover a lot of aspects. The random aspect makes this research
different from deterministic optimisation problems in previous works [21] [31] [64]. On the other hand, the
case study on AAS will try to cover the depth of the experiment as well by applying the model on an existing
and complex airport. As an MILP optimisation algorithm will be used, the problem will be a deterministic
one. The sudden changes in the variables, however, can be predefined or randomly generated. By making the
initial schedule generated by the initial VRP more robust, random probability distributions on one or more
input variables will have less effect on schedule changes.

5.3. Experimental Setup
The model will be written with Python 3.7 as programming language and Spyder as integrated development
environment. Next to that, the commercial optimisation solver Gurobi version 9.1 will be added as software
package.1 This package is able to solve linear programming (LP), quadratic programming (QP), mixed-integer
linear programming (MILP), mixed-integer quadratic programming (MIQP) and mixed-integer quadratically-
constrained programming (MIQCP).1 The reason why these three options have been chosen is the level of ex-
perience in each of these three software programs. The advantage of python and spyder is that both are free
and open-source, making them easily available to use. Gurobi however is an commercial software package,
but offers free academic licenses if used for research or educational purposes.
The model will need a number of input data and give a set of output results. The set of input data can be
found in Table 5.1. Specifically for the tactical optimisation model, the bottom right input comes into play.
This data will be gathered from their respective sources, e.g. AAS, SAS or LVNL2, bas3. The optimal routing
schedule will be referenced from previous VRP models. This will be either one or more outcomes from Ta-
ble 4.3.

Table 5.1: Input parameters with their respective sources.

Parameter Source Parameter Source
Airport structure information AAS, online open sources Gate scheduling over time AAS, online open sources
Runway configuration over time LVNL2, bas3 Aircraft flight schedule over time AAS API
Airport routing network Guillaume [21] Certified aircraft information SAS

Aircraft taxiing specifications VRP literature Taxibot specifications
SAS, TaxiBot
literature, VRP literature

Aircraft specifications Online open sources Aircraft A/D delays AAS API

5.4. Expected Results
As the program consists of two optimisation models, two sets of outcomes will be generated as well. The
strategic optimisation model will have a vehicle routing schedule as output. All vehicles are tracked over the
airport at each moment in time. This does include the aircraft, the TaxiBots towing any aircraft but also the
movement of TaxiBots between gates and runways when not taxiing. This schedule will both be visual in
the form of a time-allocation graph and a quantitative output in the form of a textual schedule. This latter is
important as this output in turn should be used as input for the next model. Then, the second set of outcomes
generated by the tactical optimisation model should consist of multiple output types. The first and foremost
one is a new vehicle routing schedule which should have exactly the same format as the previous schedule. By
this, a proper comparison can take place. Next to that, descriptive statistics of both schedules will be needed
in order to quantitatively compare the results and find the effects of probabilistic delays on the schedule.
Such descriptive statistics will consist of the following aspects:

• Efficiency of TaxiBot utilisation

• Average taxi time per vehicle type

• Number of rerouted vehicles

• Quantitative total number of changes

1 https://www.gurobi.com/products/gurobi-optimiser/, accessed on 28-12-2020
2 https://www.lvnl.nl/omgeving/baangebruik, accessed on 22-01-2021
3 https://bezoekbas.nl, accessed on 22-01-2021
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• Quantitative range of changes

• Range of delays causing no/limited effects or problems

• Number of iterations with schedule changes necessary

• Differences in above metrics between different days

Such descriptive statistics will be used to verify the models. First of all, the input schedule given to the
tactical optimisation model should give the exact same output schedule if no sudden change is occurring.
Next to that, if a sudden change is occurring, the relative changes on the new schedule will be in line with the
relative change of the sudden occurrence. In other words, if the changing parameter only concerns a small
effect, such as a delay of a couple of minutes, the output schedule might only show a small change with re-
spect to the initial schedule. However, when large alterations will be seen, such as a change in the runway
configuration, large deviations are expected in the output schedule as well.
Other ways of verifying the model are the standard unit and block tests, and the use of a simplified data set of
which the outcome can be verified by hand. Furthermore, checks can be added to the code to visualize errors
when they might occur. Lastly, all constraints in the problem can be individually added or removed from the
program, from which the effects of this can be analysed and should be in line with expected correlations. In
other words, removing apparent limiting constraints would result in a more relaxed schedule and vice versa.

A thorough sensitivity analysis on critical input parameters will be used to validate the model. The two
sets of parameters, the ones used as input for the initial optimisation model and the variables resulting in
a sudden change will have a range of possible attributes, based on real-life circumstances. By covering the
whole range of these parameters in a sensitivity analysis, both the elasticity and sensitivity of the model pa-
rameters will be tested. So, both conclusion validity and internal validity will be used [62]. Conclusion valid-
ity refers to the question if there is a relationship. This will be tested by looking at the difference between the
strategic and tactical solutions. Secondly, internal validity aims to answer the question what type of relation-
ship is present. This will be determined via the proposed sensitivity analysis.
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Project Planning

This chapter provides an overview of the planning of the thesis. The first part discusses the functional flow
diagram of the programming model that will build, the second part contains the Gantt chart, elaborating the
precise time-wise planning of this project.

6.1. Functional Flow Diagram
Figure 6.1 gives an overview of how the model will be build up. Figure 6.2 below gives a simplified version of
this functional flow diagram. The connection and direction of flow can be seen here. Input data is represented
by parallelograms, output is visualised via circles. All the functions are put in a rectangle box. A description
of each dashed block is given below:

As explained in section 5.2, the model consists of three parts, which is visualised by the three dashed
blocks. Each part has an aircraft routing solution as output, visualised with the circles, which can be labelled
as preliminary, strategic and tactical optimal solutions. Each of these solutions has a time-space diagram as
output, however the last part also contains KPI’s on the effects of probabilistic aircraft delays, after comparing
the strategic and tactical solutions.

The first part collects all necessary raw input to create an airport routing nodal network, an aircraft flight
schedule and all necessary parameters of all vehicles, being aircraft and TaxiBots. These three sets of struc-
tured input data will be used to create a vehicle routing problem, together with the notion that a sufficient
amount of TaxiBots will be at hand for this preliminary VRP. Practically, this could be defined as an equal
number of TaxiBots as the number of arriving and departing aircraft. This VRP will be ran in order to optimise
for a minimum total taxi duration resulting in the aforementioned optimal solution.

Then, this output will be used as input for the second block. The same VRP problem is used, however
now an iteration takes place to determine the minimum number of TaxiBots necessary while maintaining a
feasible solution. The box "Decrease the Number of TaxiBots" makes sure that at every iteration this number
is lowered. Theoretically, this number should be lowered by one at every iteration, however for the sake of
computation time, large steps can be taken in the beginning. Only whenever a predefined threshold will be
reached, iterations should decrease as slowly as possible. This threshold will be taken from literature in which
the optimal number of TaxiBots has been defined for other goals. Whenever a non-feasible solution will be
encountered for the first time, the number of TaxiBots used at that iteration will be increased by 1 in the "Add
1 for the Minimum Number of TaxiBots" box in order to find the minimum number necessary. This results in
a strategic solution.

Lastly, the third part of the model tries to find an optimal solution after probabilistic delays occur. These
delays are modelled as follows:

• Probability Distribution Function Aircraft Delays: Aircraft delays will follow a probability distribution
function (PDF), in which the probability of positive delays (late arrivals/departures) and negative delays
(early arrivals/departures) are both possible. The function will be constrained to a finite range in order
to practically work with it.
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• Randomly Select Actual A/D Time: Each aircraft, whether arriving or departing, will be randomly allo-
cated a delay from this PDF, resulting in a new operation time.

• Random Aircraft Arrival/Departure Time: This new operation time will be different from the original
input time, however this difference might be negative, zero or positive. This is then used as input to the
VRP.

The last iteration travels through time, discretised with time intervals. The iteration process works as follows:

• Move Through Time Intervals: A day of operations is discretised from its continuous process into time
intervals of to be defined lengths. Preliminary analysis shows an time span of 5 to 10 minutes. Prac-
tically, the calmest point of the day in the middle of the night is the boundary between two days of
operation, so the first interval would start e.g. at 4:00 am. to 4:05 am.

• Fix all Aircraft A/D Times Starting in this Specific Time Interval: All aircraft that have the beginning
of the range of the probability of A/D in the specific time interval to be assessed will fix their particular
operational time, which might be within the current time interval but also in e.g. the third next time
interval. So, if flight F001 has an expected arrival time of 4:15, but the probability of arrival will lie
between 4:03 and 4:30, then in this specific time interval of 4:00-4:05, this flight’s F101 actual arrival
time will be drawn from the PDF. This might be 4:04, but can be 4:28 just as well. The latter, meaning
that the aircraft will be scheduled in the time interval 4:25-4:30, makes sure that aircraft can be too early
as well, and the model wouldn’t be "too late" scheduling this flight as well.

• VRP The next two blocks represent the aforementioned VRP modelling boxes. One alteration is the
optimisation objective which, next to the minimisation of total taxi duration, has been combined with
the minimisation of deviations from the original schedule.

• Are all A/D Times Fixed? This decision box determines if the iteration is terminated (if all aircraft have
been fixed and scheduled in the same round) or continued (if there are still flights to be fixed).

• Slide to Next Time Interval: If the decision is no, the next interval is considered and the process starts
over again. In aforementioned example, this new time interval would become 4:05-4:10.

Only when the decision is yes, the tactical optimal aircraft routing solution is found. This solution consists of
a time-space diagram showing the position of all vehicles at each moment in time, but also a comparison of
the tactical solution with the strategic solution. KPI’s on the effect of probabilistic delays will be output.

This method is visualised in Figure 6.3. The top figure shows the fixed schedule where the vehicles, taxi-
bots and aircraft move over time. Two vehicles colored red and blue are visualised here. Three flights have a
PDF for their arrival time. The grey time period is the current period to be assessed. F101 arrived exactly at
its planned time, so no deviations in the schedule occurred. F102 and F103 have an arrival time later than the
expected time so there might be a change in the schedule needed. Firstly, the PDF (i.e. range of arrival times)
of F103 ranges four time spans and as the beginning of the PDF is located in the selected time span, the exact
arrival time will be selected now. If it turns out this arrival time will lay ahead of the current time span, it is
not considered yet and will only be in a later time span, the next one in this case. If it turns out the drawn
arrival time will be in the current time span, such as is the case for F102, the new schedule will be generated,
taking into account this change from the expected time. In this case, F102 had been fixed already one time
interval before. As the actual arrival time of F102 is different from the expected time, a change in the schedule
had to be made. Therefore, the new routing for the red line is displayed with the dashed red line.
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Figure 6.1: Functional flow diagram of the model to be built.
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Figure 6.2: Simplified version of the functional flow diagram of the model to be built.

Figure 6.3: Visual simplified example of one iteration of the reactive model.



6.2. Gantt Chart 77

6.2. Gantt Chart
The project planning of the thesis is visually represented via a Gantt chart, as can be seen in Figure 6.4. The
tasks on the left have been separated in their respective phase of the project. Green diamonds represent de-
liverables, grey tasks are holidays, arrows show the dependencies of some tasks.

Figure 6.4: Gantt chart visualising the project planning.





7
Conclusion

TaxiBots are a promising solution to help defeat the continuously increasing pollutants emitted by the avia-
tion sector. Even though multiple other electric taxiing solutions have been researched and even developed,
TaxiBot has been found to be the most promising. The industry has an increasing interest in this novel con-
cept and thus Amsterdam Airport Schiphol has performed a Proof of Concept test. From this test, among
others, it has become clear that implementation brings some practical concerns, which have to be resolved.
One of these problems is the scheduling of TaxiBots and taxiing aircraft at the airport apron. Such a problem
has to be solved exactly, hence from the various methods found in literature, a vehicle routing problem, a
type of mixed-integer linear programming, is found to be the most suitable. Therefore, this research tries to
fill that gap by strengthening the research in the field of TaxiBot routing and scheduling.

The second research aspect that arose is the need to be able to regenerate a new schedule in the case
of sudden changes. As a lot of parameters are involved in the planning, one small change can easily occur,
however can disrupt the schedule entirely. Therefore, the tactical optimisation model should be able to solve
this problem in order to generate a new feasible solution. Algorithms found in literature, such as rolling win-
dows or column generation heuristic, can help decreasing computation time. In order to answer the research
question set a model performing a case study will be build. Literature on the case study to be performed
at AAS is used to determine the most suitable VRP modelling aspects as well as most fitting nodal networks
and flight schedules. The latter will also be used to define the most suiting probability density functions of
aircraft delays. TaxiBot specifications from various sources will be combined and lastly literature on robust
scheduling will be used in the comparison as well.

All in all, with this model, the research will be able to determine the effect of probabilistic aircraft depar-
ture and arrival delays on a vehicle routing schedule at Amsterdam Airport Schiphol which includes the
use of an electric taxiing system, viz TaxiBot, to schedule the routing of aircraft and TaxiBots with near real-
time updates on arrival and departure times, by creating a reactive optimisation routing and scheduling
model which can reiterate the planning based on the new received non-deterministic time information
while trying to minimise the deviations from the initial schedule.

With such a model, TaxiBot schedules can be generated on a tactical level. Hence, a future recommenda-
tion is to incorporate such a reactive model in the tactical planning of airport operations in order to minimise
deviations from the defined strategic schedule.
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1
Input Data

Table 1.1 gives an overview of the runways used throughout the day of operations of the busy day, 8 August
2019. A similar table is used on the calm day of operations, 26 January 2019, as can be seen in Table 1.2.
A represents the runway(s) used for arrivals, D is for departures. Table 1.3 and Table 1.4 provide the nodal
network nodes, including x and y positions, connected nodes, distances and speeds on these edges with
the connected nodes and its attributes with respect to node functions. Table 1.5 shows all gates that are
connected with the gate nodes and Table 1.6 show all the runways that are connected with the runway nodes.
Table 1.7 lists all types of aircraft that are certified now and in the near future.

Table 1.1: Runway configuration, 8 August 2019.

From Till A D
02:00:00 06:49:00 27 24
06:50:00 07:04:00 18R 24, 18L
07:05:00 07:49:00 18R, 18C 24, 18L
07:50:00 09:24:00 18R, 18C 24
09:25:00 10:59:00 18R 24, 18L
11:00:00 11:39:00 18R, 18C 24
11:40:00 11:54:00 18R 24
11:55:00 12:44:00 18R 24, 18L
12:45:00 13:29:00 18R, 18C 24, 18L
13:30:00 14:14:00 18R 24
14:15:00 15:14:00 18R 24, 18L
15:15:00 16:14:00 18R, 18C 24
16:15:00 16:34:00 18R, 18C 24
16:35:00 17:19:00 18R 24, 18L
17:20:00 18:44:00 18R 24
18:45:00 19:34:00 18R, 18C 18L
19:35:00 20:34:00 18R 24
20:35:00 21:29:00 18R 24, 18L
21:30:00 23:59:00 18R 24
00:00:00 01:59:00 27 24

Table 1.2: Runway configuration, 26 January 2019.

From Till A D
02:00:00 06:39:00 18R 24
06:40:00 07:44:00 18R, 18C 24, 18L
07:45:00 09:24:00 18R, 18C 24
09:25:00 10:29:00 18R 24, 18L
10:30:00 11:54:00 18R, 18C 24, 18L
11:55:00 12:19:00 18R 24, 18L
12:20:00 13:44:00 18R, 18C 24, 18L
13:45:00 14:29:00 18R 24, 18L
14:30:00 15:24:00 18R, 18C 24, 18L
15:25:00 16:14:00 18R, 18C 24
16:15:00 17:39:00 18R 24, 18L
17:40:00 17:49:00 18R 24
17:50:00 19:39:00 18R, 18C 24
19:40:00 20:19:00 18R, 27 24
20:20:00 22:19:00 27 36L, 24
22:20:00 23:04:00 18R 24
23:05:00 23:59:00 18C 24
00:00:00 01:04:00 18C 24
01:05:00 01:59:00 18R 24

83



84 1. Input Data

Table 1.3: Nodal Network input data, adapted from Guillaume [21], Part 1.

Node
ID

posx posy
Connecting nodes Distance (m) Speed (m/s)

Gate Runway
Service
Road1 2 3 4 1 2 3 4 1 2 3 4

0 1906 1721 11 0 0 0 100 0 0 0 8 0 0 0 TRUE FALSE FALSE
1 1410 2843 13 0 109 2 100 0 1000 220 4 0 14 8 TRUE FALSE FALSE
2 1805 2860 15 0 1 3 100 0 220 300 4 0 8 8 TRUE FALSE FALSE
3 2135 2869 16 17 2 4 149 220 300 180 4 4 8 8 TRUE FALSE FALSE
4 2600 2895 18 115 3 5 112 45 180 50 4 8 8 8 TRUE FALSE FALSE
5 2718 2790 19 0 4 6 102 0 50 70 4 0 8 8 TRUE FALSE FALSE
6 2699 2500 21 0 5 7 102 0 70 50 4 0 8 8 TRUE FALSE FALSE
7 2684 2270 22 0 6 8 102 0 50 50 4 0 8 8 TRUE FALSE FALSE
8 2559 2060 24 117 7 9 141 500 50 70 4 8 8 8 TRUE FALSE FALSE
9 2426 1934 26 25 8 10 108 118 70 200 4 4 8 8 TRUE FALSE FALSE
10 2186 1793 27 0 9 11 108 0 200 320 4 0 8 8 TRUE FALSE FALSE
11 1906 1621 28 0 10 108 108 0 320 1518 4 0 8 14 TRUE FALSE FALSE
12 855 2920 0 51 13 0 0 100 545 0 0 10 10 0 FALSE FALSE FALSE
13 1400 2943 0 50 14 1 0 100 295 100 0 10 10 4 FALSE FALSE FALSE
14 1695 2956 0 49 15 0 0 100 100 0 0 10 10 0 FALSE FALSE FALSE
15 1795 2960 0 48 16 2 0 100 230 100 0 10 10 4 FALSE FALSE FALSE
16 2025 2969 0 47 17 3 0 100 340 149 0 10 10 4 FALSE FALSE FALSE
17 2365 2983 0 46 18 3 0 169 285 220 0 10 10 4 FALSE FALSE FALSE
18 2650 2995 0 45 19 4 0 100 281 112 0 9 9 4 FALSE FALSE FALSE
19 2818 2770 20 43 0 5 145 100 0 102 7 7 0 4 FALSE FALSE FALSE
20 2809 2625 21 0 0 0 145 0 0 0 7 0 0 0 FALSE FALSE FALSE
21 2799 2480 22 41 0 6 230 100 0 102 7 7 0 4 FALSE FALSE FALSE
22 2784 2250 23 40 0 7 204 100 0 102 7 7 0 4 FALSE FALSE FALSE
23 2756 2048 24 38 0 0 131 138 0 0 7 7 0 0 FALSE FALSE FALSE
24 2659 1960 25 37 0 8 147 105 0 141 7 7 0 4 FALSE FALSE FALSE
25 2533 1884 26 36 0 9 84 105 0 118 10 10 0 4 FALSE FALSE FALSE
26 2466 1834 27 35 0 9 278 105 0 108 10 10 0 4 FALSE FALSE FALSE
27 2226 1693 28 0 34 10 329 0 105 108 10 0 10 4 FALSE FALSE FALSE
28 1946 1521 29 33 0 11 278 105 0 108 10 10 0 4 FALSE FALSE FALSE
29 1706 1381 30 32 0 0 557 105 0 0 10 10 0 0 FALSE FALSE FALSE
30 1226 1099 31 61 0 0 105 450 0 0 10 10 0 0 FALSE FALSE FALSE
31 1280 1009 0 30 32 0 758 105 557 206 0 10 10 0 FALSE FALSE FALSE
32 1760 1291 0 29 33 0 0 105 278 320 0 10 10 0 FALSE FALSE FALSE
33 2000 1431 0 28 34 0 0 105 329 0 0 10 10 0 FALSE FALSE FALSE
34 2280 1603 0 35 0 27 0 278 320 105 0 10 10 10 FALSE FALSE FALSE
35 2520 1744 0 26 36 0 0 105 84 0 0 10 7 0 FALSE FALSE FALSE
36 2587 1794 0 25 37 0 0 105 147 216 0 10 7 0 FALSE FALSE FALSE
37 2713 1870 0 24 38 0 0 105 171 221 0 7 7 0 FALSE FALSE FALSE
38 2860 1958 0 23 39 94 0 138 88 206 0 7 7 7 FALSE FALSE FALSE
39 2910 2030 0 23 40 0 0 155 221 242 0 7 7 0 FALSE FALSE FALSE
40 2884 2250 0 22 41 0 0 100 230 0 0 7 7 0 FALSE FALSE FALSE
41 2899 2480 0 21 42 0 0 100 145 0 0 7 7 0 FALSE FALSE FALSE
42 2909 2625 0 0 43 0 0 0 145 0 0 0 7 0 FALSE FALSE FALSE
43 2918 2770 19 0 44 0 100 0 335 0 7 0 7 0 FALSE FALSE FALSE
44 2750 3060 45 0 93 0 115 0 347 0 9 0 9 0 FALSE FALSE FALSE
45 2640 3095 46 18 0 0 415 100 0 360 10 10 0 0 FALSE FALSE FALSE
46 2225 3078 47 17 0 0 210 169 0 244 10 10 0 0 FALSE FALSE FALSE
47 2015 3069 48 16 0 0 230 100 0 0 10 10 0 0 FALSE FALSE FALSE
48 1785 3060 49 15 0 0 100 100 0 279 10 10 0 0 FALSE FALSE FALSE
49 1685 3056 50 14 0 0 295 100 0 0 10 10 0 0 FALSE FALSE FALSE
50 1390 3043 51 13 0 0 545 100 0 0 10 10 0 0 FALSE FALSE FALSE
51 845 3020 67 96 0 12 220 211 0 100 10 10 0 10 FALSE FALSE FALSE
52 425 1679 97 0 62 0 218 0 105 0 10 0 10 0 FALSE FALSE FALSE
53 433 1792 52 71 0 63 113 189 0 105 10 10 0 10 FALSE FALSE FALSE
54 451 2042 53 0 0 64 251 220 0 105 11 0 0 11 FALSE FALSE FALSE
55 474 2375 54 0 65 0 334 409 105 0 11 0 11 0 FALSE FALSE FALSE
56 512 2917 55 0 66 0 543 0 105 0 11 0 11 0 FALSE FALSE FALSE
57 521 3043 56 0 0 0 126 0 336 0 11 0 0 0 FALSE FALSE FALSE
58 562 3625 57 82 0 68 583 189 0 105 11 10 0 11 FALSE FALSE FALSE
59 613 4354 58 0 0 69 731 0 247 105 11 0 0 11 FALSE FALSE FALSE
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Table 1.4: Nodal Network input data, adapted from Guillaume [21], Part 2.

Node
ID

posx posy
Connecting nodes Distance (m) Speed (m/s)

Gate Runway
Service
Road1 2 3 4 1 2 3 4 1 2 3 4

60 648 4854 59 98 70 0 502 189 105 0 11 11 11 0 FALSE FALSE FALSE
61 877.5 1383 62 30 0 0 449.5 450 0 0 10 10 0 10 FALSE FALSE FALSE
62 529 1667 52 72 63 61 105 364 113 449.5 10 10 10 10 FALSE FALSE FALSE
63 537 1780 0 64 53 0 0 251 105 0 0 10 10 0 FALSE FALSE FALSE
64 555 2030 0 65 54 0 0 334 105 0 0 11 11 0 FALSE FALSE FALSE
65 578 2363 0 66 55 0 0 543 105 0 0 11 11 0 FALSE FALSE FALSE
66 616 2905 0 67 0 12 0 126 0 239 0 11 0 11 FALSE FALSE FALSE
67 625 3031 0 68 57 51 0 583 105 220 0 11 11 11 FALSE FALSE FALSE
68 666 3613 0 69 58 0 0 731 105 0 0 11 11 0 FALSE FALSE FALSE
69 717 4342 0 70 59 0 0 501 105 0 0 11 11 0 FALSE FALSE FALSE
70 752 4842 0 85 60 0 0 428 105 0 0 12 12 0 FALSE FALSE FALSE
71 245 1813 0 75 0 53 0 189 0 189 0 10 0 10 FALSE FALSE FALSE
72 350 1350 62 73 0 0 364 364 0 0 10 10 0 0 FALSE FALSE FALSE
73 -11 1304 72 74 0 0 364 304 0 0 10 10 0 0 FALSE FALSE FALSE
74 41 1604 0 0 97 75 71 0 189 231 0 0 10 10 FALSE FALSE FALSE
75 57 1834 0 77 71 0 0 105 189 0 0 10 10 0 FALSE FALSE FALSE
76 -63 1616 73 74 0 0 316 105 0 0 10 10 0 0 FALSE FALSE FALSE
77 -47 1846 76 0 0 0 231 0 0 0 10 0 0 0 FALSE FALSE FALSE
78 -15 2304 0 77 0 0 0 500 0 0 0 14 0 0 FALSE FALSE FALSE
79 17 2762 78 0 0 0 410 0 0 0 14 0 0 0 FALSE FALSE FALSE
80 49.5 3220.5 0 79 0 0 0 500 0 0 0 14 14 0 FALSE FALSE FALSE
81 82 3679 80 82 86 0 410 294 621 0 14 10 12 0 FALSE FALSE FALSE
82 374 3646 0 0 81 58 0 0 294 189 0 0 10 10 FALSE FALSE FALSE
83 124 4489 81 0 0 0 812 0 0 0 12 0 0 0 FALSE FALSE FALSE
84 167 5300 83 0 0 0 812 0 0 0 12 0 0 0 FALSE FALSE FALSE
85 750 5270 0 84 0 0 0 584 0 0 0 12 0 0 FALSE FALSE FALSE
86 -365 4110 81 87 0 0 621 621 0 0 12 12 0 0 FALSE FALSE FALSE
87 -812 4542 88 0 86 0 313 0 621 0 12 0 12 0 FALSE FALSE FALSE
88 -1000 4792 89 90 0 0 221 151 0 0 10 10 0 0 FALSE FALSE FALSE
89 -1166 4938 91 0 0 0 140 0 0 0 10 0 0 0 FALSE FALSE FALSE
90 -1125 4708 0 88 87 0 0 151 354 0 0 10 10 0 FALSE FALSE FALSE
91 -1291 4875 0 92 0 90 486 278 0 235 0 10 0 10 FALSE FALSE FALSE
92 -1480 5041 99 91 0 0 217 278 460 0 10 10 0 0 FALSE FALSE FALSE
93 2880 3320 0 44 0 95 0 347 0 443 0 9 0 9 FALSE FALSE FALSE
94 2960 1778 0 38 0 116 0 206 0 200 0 7 0 10 FALSE TRUE FALSE
95 3160 3610 93 113 0 0 443 670 0 0 9 14 0 0 FALSE TRUE FALSE
96 830 3230 51 110 0 0 211 150 0 0 10 10 0 0 FALSE TRUE FALSE
97 229 1583 74 0 52 106 189 0 218 380 10 0 10 10 FALSE TRUE FALSE
98 460 4875 118 60 0 0 400 189 0 0 10 11 0 0 FALSE TRUE FALSE
99 -1624 5188 100 0 92 0 500 0 217 0 14 0 10 0 FALSE TRUE FALSE
100 -1100 4990 101 0 99 0 1500 0 500 0 14 0 14 0 FALSE FALSE TRUE
101 0 3879 102 112 100 0 250 1470 1500 0 10 14 14 0 FALSE FALSE TRUE
102 200 3860 103 0 101 0 250 0 250 0 10 0 10 0 FALSE FALSE TRUE
103 170 3500 104 110 102 0 250 580 250 0 10 10 10 0 FALSE FALSE TRUE
104 -30 3520 105 0 103 0 2300 0 250 0 14 0 10 0 FALSE FALSE TRUE
105 -185 1200 106 0 104 0 350 0 2300 0 10 0 14 0 FALSE FALSE TRUE
106 200 1200 107 105 97 0 700 350 380 0 14 10 10 0 FALSE FALSE TRUE
107 600 1400 108 0 106 0 460 0 700 0 10 0 14 0 FALSE FALSE TRUE
108 650 2000 109 11 107 0 380 1518 460 0 10 14 10 0 FALSE FALSE TRUE
109 700 2600 108 1 110 0 380 1000 1100 0 10 14 14 0 FALSE FALSE TRUE
110 750 3450 109 103 96 111 1100 580 150 1870 14 10 10 14 FALSE FALSE TRUE
111 860 5350 110 112 118 0 1870 650 160 0 14 14 10 0 FALSE FALSE TRUE
112 70 5380 111 0 101 0 650 0 1470 0 14 0 14 0 FALSE FALSE TRUE
113 2720 3250 114 0 95 0 570 0 670 0 10 0 14 0 FALSE FALSE TRUE
114 2600 3050 115 0 113 0 85 0 570 0 10 0 10 0 FALSE FALSE TRUE
115 2600 2930 4 0 114 0 45 0 85 0 8 0 10 0 FALSE FALSE TRUE
116 2960 2000 117 0 94 0 200 0 200 0 10 0 10 0 FALSE FALSE TRUE
117 2700 2060 8 0 116 0 500 0 200 0 8 0 10 0 FALSE FALSE TRUE
118 600 5250 111 0 98 0 160 0 400 0 10 0 10 0 FALSE FALSE TRUE
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Table 1.5: Gates per node.

Node Gates
1 H1,H2,H3,H4,H5,H6,H7,M1,M2,M3,M4,M5,M6,M7,G1,G3,G5,G7,G9,G11,G13,G15,G17
2 G2,G4,G6,G8,G10,G12,G14,G16,F1,F3,F5,F7,F9
3 E1,E3,E5,E7,E9,E11,E13,E15,E17,E19,E21,E23,E25,F2,F4,F6,F8,F10,F12
4 E2,E4,E6,E8,E10,E12,E14,E16,E18,E20,E22,E24
5 E2,E4,E6,E8,E10,E12,E14,E16,E18,E20,E22,E24

6
D3,D5,D7,D41,D43,D45,D47,D49,D51,D53,D55,D57,D59,D61,D63,D71,D73,D75,D77,D79,
D81,D83,D85,D87,D89,E2,E4,E6,E8,E10,E12,E14,E16,E18,E20,E22,E24

7 D23,D25,D27,D29,D31,D42,D44,D46,D48,D50,D52,D54,D56,D74,D76,D78,D80,D82,D84,D86
8 D2,D4,D6,D8,D10,D12,D14,D16,D18,D20,D22,D24,D26,D28,D60,D62,D64,D66,D68
9 C1,C3,C5,C7,C9,C11,C13,C15,C17,C19,C21,C23,C25

10
B1,B3,B5,B7,B9,B11,B13,B15,B17,B19,B21,B23,B25,B27,B29,B31,B33,B35,B37,B39„C2,C4,
C6,C8,C10,C12,C14,C16,C18,C20,C22,C24

11 B2,B4,B6,B8,B10,B12,B14,B16,B18,B20,B22,B24,B26,B28,B30,B32,B34,B36

Table 1.6: Runways per node.

Nodes Runways
94 06,24
95 18L,36R
96 09,27
97 36C
98 18C
99 18R,36L

Table 1.7: List of certified aircraft and future certified aircraft.

Certified ac Certified ac Future Certified ac
AIRBUS A319-111 BOEING 737MAX-8 BOEING B757-300 WINGLETS
AIRBUS A320-200 BOEING 737-500 BOEING 757-200 Winglets
AIRBUS A320-100 (Sharklets) BOEING 737-400 BOEING B757-300
AIRBUS A320 NEO BOEING 737-700 BOEING 757-200 PASSENGER
AIRBUS A318 BOEING 737MAX-9 BOEING 757-200PF FREIGHTER
AIRBUS A319 NEO BOEING 737-500 Winglets BOEING 757-200 MIXED CONFIGURATION
AIRBUS A321 NEO BOEING 737-300 AIRBUS A220-300
AIRBUS A320 Passenger BOEING 737-800 WINGLETS AIRBUS A220-100
AIRBUS A321-100/200 BOEING 737-900/Winglets EMBRAER170
BOEING 737-700 Winglets BOEING 737-600 EMBRAER175(170-200 STD)
BOEING 737MAX-7 BOEING 737-800 Freighter (Winglets) EMBRAER 190 (IGW)
BOEING 737-800 PASSENGER BOEING 737-400 FREIGHTER EMBRAER 195 ERJ 190-200
BOEING 737-300 Winglets BOEING 737- 300 FREIGHTER EMBRAER 175-E2
BOEING 737-200/200C ADVANCED PASS. BOEING 737-200/200C/200QC PASSENGER EMBRAER 190-E2

EMBRAER E190-E2 (ERJ190-300)
EMBRAER ERJ-195-E2 (190-400STD)
COMAC ARJ21
COMAC C919
COMAC C929
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Descriptive Statistics

Table 2.1 gives an overview of the number of arrivals and departures at each runway in the year 2019. As can
be seen, some runways are very little used for specific operations, which resulted in the nodal network being
adapted to this runway use. Figure 2.1 shows the aerodrome of Amsterdam Airport Schiphol used to develop
and validate the nodal network.

Table 2.1: Number of arrivals and departures per runway in 2019 [6].

Runway Arrivals Departures
Schiphol-Oostbaan (04) 3 11
Schiphol-Oostbaan (22) 6029 15
Kaagbaan (06) 39174 46
Kaagbaan (24) 553 79325
Buitenveldertbaan (09) 0 13392
Buitenveldertbaan (27) 22484 1993
Polderbaan (18R) 95759 0
Polderbaan (36L) 1 61293
Zwanenburgbaan (18C) 38891 10427
Zwanenburgbaan (36C) 14609 19565
Aalsmeerbaan (18L) 0 62575
Aalsmeerbaan (36C) 31158 0
Total Arrival/Departure 248661 248642
Total 497303
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Figure 2.1: Aerodrame Chart of Amsterdam Airport Schiphol, which is the basis of the nodal network.
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Figure 2.2 and Figure 2.3 show the number of ac arriving and departing on the busy and calm days as-
sessed respectively. From this, the peak and lean hours throughout the day become clear.

Figure 2.2: Number of aircraft arriving and departing per hour;
08-08-2019, busy scenario.

Figure 2.3: Number of aircraft arriving and departing per hour;
26-01-2019, calm scenario.

Figure 2.4 and Figure 2.5 represent the delays including both arrival and departure delays for the busy and
calm day respectively. The delays on the busy day are on average around 0 minutes, however delays on the
calm day tend to average out in negative delays, meaning that aircraft are earlier than planned. Figure 2.6 and
Figure 2.7 show the delays for arriving flights only on both busy and calm days respectively. As can be seen,
almost all delays, except for the outliers, are negative, i.e. earlier than expected. Most outliers can be found to
have positive delays, i.e. are later than expected. On the other hand, Figure 2.8 and Figure 2.9 show the delays
for aircraft that depart from Schiphol. Here, almost all delays are larger than 0, with very few outliers below 0.
This means that almost all aircraft departed later than scheduled. Important to note is that the delays from
these six figures are measured from the actual times of arrival with respect to the scheduled times of arrival.
The probability density function is not used here yet.

This probability density function is determined from the delays from the busy and calm day respectively,
including all delays from flights from one week before to week after this actual date. The PDFs for arrivals and
departures for both busy and calm days can be seen in Figure 2.10 and Figure 2.11 respectively. As concluded
before, most delays for arriving flights tend to be negative, while departing flights tend to be positive. The
departure PDF is higher and narrower, meaning less variance. Figure 2.12 and Figure 2.13 show the same
arrival delays as before in above two figures, however with this, a better visual comparision can be given. As
can be seen, the probability for high delays is lower on calm days, while the general shapes of the PDFs look
alike. The same can be said for the PDFs of departures in Figure 2.14 and Figure 2.15 for busy and calm days.
The probability of high delays is lower on calm days, while the probability of 0 delay is higher as this peak is
higher on calm days with respect to busy days.
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Figure 2.4: Delays [min] with respect to STA, both arrival and
departure flights; 08-08-2019, busy scenario.

Figure 2.5: Delays [min] with respect to STA, both arrival and
departure flights; 26-01-2019, calm scenario.

Figure 2.6: Delays [min] with respect to STA, for arriving flights;
08-08-2019, busy scenario.

Figure 2.7: Delays [min] with respect to STA, for arriving flights;
26-01-2019, calm scenario.

Figure 2.8: Delays [min] with respect to STA, for departing flights;
08-08-2019, busy scenario.

Figure 2.9: Delays [min] with respect to STA, for departing flights;
26-01-2019, calm scenario.
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Figure 2.10: Lognormal probability density function for delays for
both arriving and departing flights; 08-08-2019, busy scenario.

Figure 2.11: Lognormal probability density function for delays for
both arriving and departing flights; 26-01-2019, calm scenario.

Figure 2.12: Lognormal probability density function for delays for
arriving flights; 08-08-2019, busy scenario.

Figure 2.13: Lognormal probability density function for delays for
arriving flights; 26-01-2019, calm scenario.

Figure 2.14: Lognormal probability density function for delays for
departing flights; 08-08-2019, busy scenario.

Figure 2.15: Lognormal probability density function for delays for
departing flights; 26-01-2019, calm scenario.
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The coefficient of variation cv is the fraction σ(penal t ysum )
µ(penal t ysum ) in which σ(penal t ysum) is the standard devia-

tion of the sum of penalties and µ(penal t ysum) is the mean value of the sum of penalties. A stabilization of
this coefficient means that sufficient number of iterations have taken place in order to draw reliable conclu-
sions.

Figure 2.16: Coefficient of variation cv of the sum of penalties over 200 simulation runs.

The time before the actual emerging time of aircraft to start up TaxiBots to move towards the starting node,
Tr esponse , is set to 5 minutes. This value is based on the average traversing time for TaxiBots. A histogram of
all traversing times for TaxiBots to move from their respective location towards the starting node, either gate
or runway, of the aircraft they are going to pick up can be seen in Figure 2.17. This figure shows that most of
the traversing times lie around 3 minutes with some outliers around 6.5, 7.5 and 11 minutes. Five minutes
is chosen to incorporate the high peak around 3 minutes while also making sure the TaxiBots do not wait
too long after arriving at the starting node. If a higher value, i.e. around 12 was chosen, then most of the
time the TaxiBot would have traversed all the way to the starting node within Tr esponse , however then the
TaxiBot would have to wait at this starting node for 11−3 = 8 minutes in most times, which is a waste of time.
Therefore, 5 minutes is a good balance between being on time and not waiting too long.

Figure 2.17: Histogram of traversing times for TaxiBots over 200 simulation runs.
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Output Figures

First, section 3.1 shows visualisations of the strategic schedule from the base scenario. Followed by that,
section 3.2 shows supplementary information regarding the comparison of the scenarios.

3.1. Base Scenario Analysis

Figure 3.1: Screenshot of the animation video showing all vehicles on the airport.
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Figure 3.2: Visual representation of the scheduling of each certified aircraft to the pool of TaxiBots for the base scenario, part 1.
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Figure 3.3: Visual representation of the scheduling of each certified aircraft to the pool of TaxiBots for the base scenario, part 2.
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Figure 3.4: Part of the time-space diagram showing the routes of the vehicles, via the nodes over time, part 1.
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Figure 3.5: Part of the time-space diagram showing the routes of the vehicles, via the nodes over time, part 2.
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Figure 3.6: Occupation of each TaxiBot in the strategic schedule,
divided into waiting, traversing and taxiing.

Figure 3.7: Occupation of each TaxiBot for 100 simulation runs of
the tactical schedule, divided into waiting, traversing and taxiing.

Figure 3.8: The number of aircraft that are present on the airport at
each moment in time for the strategic schedule.

Figure 3.9: The number of aircraft that are present on the airport at
each moment in time for 100 simulation runs of the tactical

schedule.

Figure 3.10: The number of TaxiBots that are in use at each moment
in time for the strategic schedule.

Figure 3.11: The number of TaxiBots that are in use at each moment
in time for 100 simulation runs of the tactical schedule.
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3.2. Scenario Case Studies

Table 3.1: Comparison of taxi parameters between strategic and tactical schedule, based on the base scenario #1.

Parameter Strategic Schedule Tactical Schedule
Total taxi time [hr] 328.5 317.9
Of which certified/non-certified [hr] 159.7 (48.6%) / 168.9 (51.4%) 153.6 (48.3%) / 164.3 (51.7%)
Total towing time [hr] 159.5 152.3
Of certified/total taxi time [-] 99.9% / 48.5% 99.2 % / 47.9 %
Aircraft taxied without a TaxiBot 1 7

Table 3.2: Comparison of taxi parameters between strategic and tactical schedule, based on scenario #2.

Parameter Strategic Schedule Tactical Schedule
Total taxi time [hr] 215.4 209.2
Of which certified/non-certified [hr] 105.5 (49.0%) / 109.9 (51%) 102.6 (49.1%) / 106.6 (50.9%)
Total towing time [hr] 105.5 102.0
Of certified/total taxi time [-] 100.0% / 49.0% 99.4 % / 48.8 %
Aircraft taxied without a TaxiBot 0 4

Table 3.3: Comparison of taxi parameters between strategic and tactical schedule, based on scenario #3.

Parameter Strategic Schedule Tactical Schedule
Total taxi time [hr] 318.4 304.8
Of which certified/non-certified [hr] 248.1 (77.9%) / 70.3 (22.1%) 234.9 (77.1%) / 69.8 (22.9%)
Total towing time [hr] 246.4 232.8
Of certified/total taxi time [-] 99.3% / 77.4% 99.1 % / 76.4 %
Aircraft taxied without a TaxiBot 12

Table 3.4: Comparison of taxi parameters between strategic and tactical schedule, based on scenario #4.

Parameter Strategic Schedule Tactical Schedule
Total taxi time [hr] 210.1 202.6
Of which certified/non-certified [hr] 156.6 (74.5%) / 53.5 (25.5%) 149.7 (73.9%) / 53.0 (26.1%)
Total towing time [hr] 156.6 148.6
Of certified/total taxi time [-] 100.0% / 74.6% 99.3 % / 73.3 %
Aircraft taxied without a TaxiBot 0 6

Figure 3.12: The number of TaxiBots that are in use at each moment
in time for 100 simulation runs of scenario 1.

Figure 3.13: The number of TaxiBots that are in use at each moment
in time for 100 simulation runs of scenario 2.



100 3. Output Figures

Figure 3.14: The number of TaxiBots that are in use at each moment
in time for 100 simulation runs of scenario 3.

Figure 3.15: The number of TaxiBots that are in use at each moment
in time for 100 simulation runs of scenario 4.
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