
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 58, NO. 5, MAY 2009 1361

Modified Durbin Method for Accurate Estimation
of Moving-Average Models

Piet M. T. Broersen

Abstract—Spectra with narrow valleys can accurately be de-
scribed with moving-average (MA) models by using only a small
number of parameters. Durbin’s MA method uses the estimated
parameters of a long autoregressive (AR) model to calculate the
MA parameters. Probably all the pejorative remarks on the qual-
ity of Durbin’s method in the literature are based on suboptimal
or wrong choices for the method of AR estimation or for the order
of the intermediate AR model. Generally, the AR order should
considerably be higher than the order of the best predicting AR
model, and it should grow with the sample size. Furthermore, the
Burg estimates for the AR parameters give the best results because
they have the smallest variance of all the AR methods with a
small bias. A modified Durbin MA method uses a properly defined
number of AR parameters, which was estimated with Burg’s
method, and outperforms all the other known MA estimation
methods, asymptotically as well as in finite samples. The accuracy
is generally close to the Cramér–Rao bound.

Index Terms—Autoregressive (AR) models, model error, order
selection, spectral analysis, time series, triangular bias.

I. INTRODUCTION

THE ESTIMATED spectra or autocorrelation functions
are widely used to describe the character of stationary

stochastic observations. Modified periodograms can be used
for the nonparametric spectral estimates. Unfortunately, the
modifications depend on the preferences of the user and cannot
give the spectral quality that can be attained with the time-
series models [1]. Likewise, it is a historical misconception
that the nonparametric lagged-product estimates are based on
firm statistical concepts [2]. It has been proved that most of the
lagged-product autocorrelation estimates are not statistically
efficient [3]. This means that those estimators do not reach
the best possible statistical accuracy for the given data. Fur-
thermore, none of the lagged-product estimates is efficient for
data that can be described with a moving-average (MA) process
[3]. This implies that the computation of q MA parameters
from q estimated lagged-product autocorrelation estimates with
a nonlinear algorithm [4] cannot produce efficient estimates
for the MA parameters. It has been shown in extensive sim-
ulation studies that many MA estimators possess anomalous
properties [5].
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An accurate parametric spectral or autocorrelation estimation
uses three types of time-series models to obtain parsimonious
models for all types of stationary data [6]. Processes with
spectral poles or narrow peaks are preferably described with
autoregressive (AR) models. The MA models are suitable to
describe processes with spectral zeros or narrow valleys with
only a few parameters. The AR models would require many
more parameters to approximate a spectrum with deep val-
leys. Finally, the combined ARMA models may be the best
type for processes with a combination of spectral poles and
zeros [6], [7].

The MA estimation has many difficulties in practice [5]. The
maximum likelihood estimates have convergence problems.
Often, the estimated zeros are precisely found on the unit circle.
This stimulated the search for a robust algorithm to determine
the MA parameters. The constrained optimization of the likeli-
hood function has been tried [8] as well as many other attempts
to find approximate maximum likelihood estimators for the MA
models [9]. Those methods rely on the asymptotic properties
that can be successful in large samples [10]. However, the
approximate nonlinear maximum likelihood estimators failed to
converge in some situations [11]. Recently, the drawbacks of all
the existing methods for MA estimation have been summarized
[12]. For a long time, there has been no decisive answer in the
literature about which MA method is to be preferred.

Durbin’s method for MA estimation replaces a nonlinear
estimation problem by two stages of linear estimation [13].
First, the parameters of a long AR model are estimated from
the data. Afterward, the MA parameters are computed by using
the lagged products of those estimated AR parameters [13].
The MA method of Durbin is based on the theoretical and
asymptotical equivalence of AR(∞) and MA(q) processes. In
practice, estimates of the finite-order AR models have to be
used. A common choice has been to use the parameters of the
best predicting AR model order, or an AR model order that
depends on the number of MA parameters that is estimated
[12]. The asymptotic consequences of using a finite-order AR
model have been investigated for a MA(1) process [14]. It
turned out that the minimal sufficient statistic has the dimension
of the sample size. Furthermore, omitting higher-order contri-
butions has little effect on the estimation variances, but it has
considerable effects on the finite-sample bias [14]. Durbin [13]
concluded that the asymptotic behavior of the AR estimates is
independent of the estimation method, and both the least-square
AR estimates and the Yule–Walker (YW) estimates could be
used in his MA method. Many comments on the old method of
Durbin [13] are based on the choices that he made in his original
contribution. With proper choices for the AR estimation method
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and the AR model order, Durbin’s method for MA estimation
can give accurate outcomes, with all the zeros inside the unit
circle [1].

Different AR methods and intermediate AR orders have been
used in Durbin’s method [12], [15], [16]. The best value to
be chosen for the intermediate AR order has been investigated
[15]. The simulations showed that the best AR order is the one
that gives the best approximation for the sum of the squared
parameters of the extended AR model [16]. Those simulations
used the method of Burg [17] to estimate the AR parameters.
The popular YW method of AR estimation is biased [18], and
its use is strongly discouraged [19]. Is has been concluded that
the results of the method of Durbin can be close to the minimum
achievable Cramér–Rao bound [16]. The other authors used
as the intermediate AR order four times the number of MA
parameters that have to be estimated [12]. They and many other
researchers reached the wrong conclusion that the method of
Durbin gives rather poor results and that the other MA methods
should be developed [12]. The conference paper [16] clearly
showed that some of the poor results of Durbin’s method in the
examples in the literature are due to the wrong choices of the
intermediate AR order.

This paper prescribes the AR estimation method and the AR
order that have to be used in the modified Durbin method for
MA estimation [16]. A new derivation and theoretical support
is given for the choices that have to be made. It gives an
unambiguous answer to the quality of the modified Durbin
method, asymptotically and in finite samples. Examples from
the literature [12] where Durbin’s method seemed to be in-
accurate have already been used to investigate the influence
of the method of AR estimation and of the intermediate AR
order [16]. Measures for the quality of spectra are discussed.
An objective error measure that is based on the logarithm
of the spectral density is used to compare the estimated MA
models with the minimum achievable Cramér–Rao bound. If
the accuracy is close to that bound, no better methods can
be found. The MA processes with a range of zeros at equal
radii show the performance. This example is known to be a
severe test for MA estimation if the zeros are close to the unit
circle.

II. TIME-SERIES MODELS

A parametric spectral or autocorrelation estimator is com-
puted as a function of the estimated parameters of a time-series
model. The time-series theory has three different model types,
i.e., AR, MA, and combined ARMA. An ARMA(p, q) process
xn can be written as [1], [6], [7]

xn + a1xn−1 + · · · + apxn−p = εn + b1εn−1 + · · · + bqεn−q

(1)

where εn is a purely random white noise process with zero
mean and variance σ2

ε . This ARMA(p, q) process becomes AR
for q = 0 and MA for p = 0. In theory, any stationary stochas-
tic process with a continuous spectral density can exactly be
written as an AR(∞) process. This is the theoretical fundament
for Durbin’s MA algorithm [13]. In practice, only finite-order

models can be used, and no examples have been found where
this is not sufficient. The roots of the AR and MA polynomials
A(z) and B(z) are denoted, respectively, by the poles and zeros
of the ARMA(p, q) process as

A(z) = 1 + a1z
−1 + · · · + apz

−p

B(z) = 1 + b1z
−1 + · · · + bqz

−q. (2)

Here, z is known as the shift operator [7]. The processes are
called stationary if all the poles are strictly within the unit circle,
and they are invertible if all the zeros are within the unit circle.

The parametric power spectrum h(ω) of the ARMA(p, q)
model is computed for −π < ω ≤ π with [1], [6], [7]

h(ω) =
σ2

ε

2π

∣∣B(ejω)
∣∣2

|A(ejω)|2
=

σ2
ε

2π

∣∣∣∣1 +
q∑

i=1

bie
−jωi

∣∣∣∣
2

∣∣∣∣1 +
p∑

i=1

aie−jωi

∣∣∣∣
2 . (3)

All the lags of the infinitely long true autocorrelation function
of an AR(p) process are determined by p true AR parameters
with the YW relations that are given by

ρ(k) + a1ρ(k − 1) + · · · + apρ(k − p) = 0, k ≥ 1

ρ(−k) = ρ(k) (4)

where the normalized autocorrelation ρ(k) at lag k is the
expectation r(k)/r(0) of xnxn+k/σ2

x. The Levinson–Durbin
recursion is a computationally efficient algorithm to derive the
p AR parameters from the first p YW equations with the first
p autocorrelations [6]. Equation (4) is used for indexes greater
than p to extrapolate the autocorrelation function. The length
with nonzero values of the autocorrelation function of an AR(p)
process is infinite [7].

The autocorrelation function of an MA(q) process has the
finite length q [7]. The parametric description is given by

ρ(k) =
q−k∑
i=0

bibi+k

/ q∑
i=0

b2
i , 0 ≤ k ≤ q

ρ(k) = 0, k > q

ρ(−k) = ρ(k). (5)

Furthermore, explicit parametric expressions for the auto-
correlation function of an ARMA(p, q) process have been
derived [1].

The lagged-product estimator for the autocorrelation func-
tion of N observations xn is for lag k given by

ρ̂LP (k) =
r̂LP (k)
r̂LP (0)

=

1
N

N−k∑
n=1

xnxn+k

1
N

N∑
n=1

x2
n

. (6)
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The lagged-product estimator for the autocovariance has a
triangular bias 1 − k/N of

E [r̂LP (k)] =
1
N

N−k∑
n=1

xnxn+k

=
N − k

N
E[xnxn+k]

= r(k)
{

1 − k

N

}
. (7)

None of the lagged-product estimates (6) is a statistically
efficient estimator for the autocorrelation function of an MA
process [3]. Moreover, the lagged-product estimates are not
sufficient statistics, which means that they do not contain all
the relevant information in the data with respect to the MA pa-
rameters [20]. Theoretically, this means that using the lagged-
product estimates (6) to estimate the MA parameters [4] cannot
be efficient either. None of the many attempts to use them as
basic ingredients for an MA estimator has produced an efficient
result in practice [10]. This fact and the observed poor finite-
sample behavior of the maximum likelihood MA estimates
[8] are good reasons to investigate the possible improvements
of Durbin’s method [13] that is based on the AR estimates,
which have no theoretical problems with statistical efficiency
or sufficiency.

III. SPECTRAL ACCURACY MEASURES

Two classes of spectral measures can be distinguished, i.e.,
absolute and relative. The absolute measures are based on the
spectral density itself and the relative measures on its logarithm.
The relative measures are related to the prediction error of the
time-series models and to the cepstral distance between the
autocorrelation functions [1]. The absolute spectral errors have
no special theoretical background for the discrete-time signals.
They are related to the sum of the squared differences between
the spectral and autocorrelation estimates.

The absolute errors are concentrated in strong parts of the
spectral density. The difference of between 1 and 1.01 con-
tributes the same to an absolute measure as the difference of
between 0.001 and 0.011. Relative errors attribute weight to
all spectral errors, absolute measures primarily to errors in
strong parts. Substituting the value zero for the weakest spectral
parts produces a small absolute error but, at the same time, an
infinite relative error. The continuous-time processes have an
infinite frequency range, with a decreasing spectral density at
high frequencies. In that case, the absolute measures could be
favorable because they give emphasis to the interesting low-
frequency part.

Generally, the estimation in time-series models attempts to
minimize the squared residuals in some sense. Roughly speak-
ing, that is realized if the correlation between the residuals
is removed. This implies that the spectrum of the residuals is
whitened by the time-series estimation over the whole discrete-
time frequency range. The weak and strong spectral ranges are
equally important, which requires a relative quality measure.

The spectral distortion (SD) is a relative integral spectral
error measure that has been defined as [1]

SD =
0.5
2π

π∫
−π

{
ln h(ω) − ln ĥ(ω)

}2

dω

=
0.5
2π

π∫
−π

{
ln

h(ω)

ĥ(ω)

}2

dω (8)

where h is the true spectral density, and ĥ denotes the estimated
spectral density. In the weak spectral parts, the SD is much
more informative than the average squared spectral error, but
this latter measure is still often used for discrete-time processes
in the literature [12].

The usual accuracy measure for the time-series models is the
squared error of prediction PE, which can be computed by using
the estimated parameters to predict a fresh realization of xn.
The fresh or new data are the data that have not been used
to estimate the parameters. Both the true and the estimated
parameters have a priori known or computed values in the
simulations. For those special situations of the PE, a theoretical
derivation has been given [1]. The PE can be computed with (3)
without generating new data by using [1]

PE =
σ2

ε

2π

π∫
−π

h(ω)

ĥ(ω)
dω

=
σ2

ε

2π

π∫
−π

∣∣∣∣B(ejω)
A(ejω)

∣∣∣∣
2
∣∣∣∣∣ Â(ejω)
B̂(ejω)

∣∣∣∣∣
2

dω (9)

where Â and B̂ denote the estimated time-series polynomials.
If the quotient of h and ĥ is close to 1, then the logarithm of
1 + δ in (8) can be approximated by δ. This indicates that there
is a strong relation between (8) and (9). The differences are
mainly in scaling and an additional constant. In particular, for
models with small disturbances, the use of PE and SD is almost
equivalent.

This PE measure can be used to compare the accuracies
of the AR and MA models of the same data by substituting
Â = 1 if the MA models are considered and B̂ = 1 for the AR
models. The model error ME has been defined by scaling the
PE, subtracting a constant, and multiplying with the sample
size as

ME = ME

[
B̂

Â
,
B

A

]
= N

(
PE − σ2

ε

σ2
ε

)
. (10)

The arguments of the ME are left if no confusion is possible.
The minimum value of the expectation of the ME for the
efficiently estimated unbiased models of orders p′ and q′ greater
than or equal to the true ARMA orders p and q is equal to
p′ + q′. The variance of each estimated parameter contributes
at least 1 to the minimal ME expectation.

The Cramér–Rao lower bound for the parameters of the
time-series models can easily be expressed in the relative ME
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measure. It only applies to unbiased models. This requires,
for an estimated ARMA(p′, q′) model, an ARMA(p, q) process
where p′ ≥ p and q′ ≥ q. Therefore, the Cramér–Rao lower
bound for the ME of an MA(q) process is given by q. It follows
with (9) that this Cramér–Rao bound is relevant for the spectral
accuracy. The invariance property of the maximum likelihood
estimation is the reason that the unbiased model with the best
parameter accuracy is at the same time the best model for
the spectral and autocorrelation accuracies. No derivation of
a lower accuracy bound expressed in an absolute measure is
known.

IV. THEORY FOR INTERMEDIATE AR ORDER

The influence of the AR model order M on the accuracy of
the MA models in Durbin’s method has been studied before,
with the simulations as a function of M [1], [15]. The true
order of the AR process C∞(z) that is exactly equivalent
with an MA(q) process is always ∞. The infinite number of
parameters ci can in principle be computed with the polynomial
representation of (2) from the equivalence

C∞(z) = 1/Bq(z). (11)

The infinite order of C∞(z) gives the exact representation if the
polynomial Bq(z) is known.

This is not applicable if the AR parameters have to be esti-
mated from the measured data. Generally, the best approximat-
ing time-series model depends on the intended application [21].
Furthermore, depending on the purpose, at least two different
optimal model orders can be defined for the long estimated
polynomial approximations in the linear regression theory [22].
The first is the order to obtain the best possible predictions,
and the other is the order with the best parameter accuracy. For
many applications, the order with the most accurate prediction
of future observations will be an optimal choice. For the time-
series models, it is the model order with the smallest PE or ME,
which would be selected by the order selection criteria in ideal
circumstances. With the spectral accuracy measures (8) and (9),
it follows that a model with a small PE has at the same time a
good relative spectral accuracy.

However, for the application in Durbin’s method, it is the
equivalence of the polynomials Bq(z) and C∞(z) in (11) that
is important. This completely depends on the parameter values
in the estimated polynomials. Therefore, the best order for an
estimated long AR model in Durbin’s method is the order with
the best parameter accuracy.

Suppose that the true parameters ci of the polynomial C∞(z)
in (11) are regularly decreasing for higher orders. In that case,
it is easy to determine which model order L can be expected to
give the best predictions with the estimated parameters ĉi. It is
the highest order for which

c2
L ≥ 1/N. (12)

According to the mathematical expectations, that order L will
be selected from the measured data with the Akaike information
criterion (AIC) for order selection [23]. The estimation variance
of the small parameters is equal to 1/N [1]. The expectation of

the squared value of an estimated parameter ĉ2
L is given by the

true value c2
L with the additional variance contribution 1/N .

Parameters with squared true values greater than 1/N are to be
included. The penalty factor for the additional parameters is 2
in AIC [23]. This agrees with selecting parameters for which
the estimated values obey

ĉ2
L ≥ 2/N (13)

with an additional 1/N in comparison with (12) for the vari-
ance. This derivation uses the asymptotic expression for the
variance of the estimated parameters. If the order L is greater
than N/10, it would become more accurate to apply the finite-
sample theory [1], [18].

In Durbin’s MA method, the theoretical equivalence (11) be-
tween the MA(q) and AR(∞) models is based on the parameter
values and not on the model predictions. Therefore, it is evident
that the model order with the best parameter approximation is
the best choice in this case. This order can be computed for a
process C∞(z) with known true parameters [22]. Using asymp-
totical theory, it is the lowest order for which the remaining sum
of the squared true parameters is less than 1/N . Therefore, that
order depends on N . The parameter accuracy of an estimated
AR model ĈM (z) of the MA process is defined as the infinite
sum of the squared differences between the true and estimated
parameters. For the model ĈM (z), only the first M parameters
ĉi are estimated, and the higher-order parameter estimates are
set equal to zero. This gives the squared parameter error (SPE)

SPE
[
ĈM (z)

]
=

M∑
i=0

(ci − ĉi)2 +
∞∑

i=M+1

c2
i . (14)

The best order M for ĈM (z), with the smallest SPE for a given
true MA polynomial Bq(z), has theoretically been derived, and
it is asymptotically given by [22]

∞∑
i=M+1

c2
i < 1/N (15)

where N is the number of observations. It has been verified in
the simulations for a variety of MA processes with different
sample sizes that (15) determines the order with the best
parameter accuracy SPE of (14) [1]. Furthermore, it was also
the best intermediate AR order for the modified method of
Durbin for a given MA(q) process [1]. This is precise if the
order M is less than N/10, because the asymptotical theory for
the variance of the estimated parameters is accurate then [1].

It is easy to approximate the sum of squares in (15) for the
given true values of ci. However, the asymptotical variance
of each estimated parameter ĉi is in the theory given by 1/N
for the small true values of ci. The variance of one estimated
parameter above order M is equal to the total limiting sum of
all the squared true values in (15). This critical value of 1/N for
omitting an infinite number of very small parameters is equal to
the estimation variance of each individual estimated parameter.
Therefore, it will not be possible to derive the limiting value M
in (15) for the sum of squares from the estimated parameters,
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which all already contribute their variance 1/N to the sum of
squares.

To find out what the best choice could be, different interme-
diate AR orders have been used in the simulations to estimate
the MA(q) model [1], [15]. The result was that a rather flat
variation of the MA(q) accuracy is obtained as a function of the
AR order, which is around the optimal AR order M that gives
the best accuracy. However, taking much lower or much higher
intermediate AR orders instead of M considerably gives less
accuracy in the finally estimated MA(q) model [1]. The ME
can then become much higher, particularly if too low orders are
used. A comparison of (12) and (15) shows that the best order
M cannot be less than K, but it can be equal or much higher.

A compromise M ∗ for the best AR order in Durbin’s method
for practical data has been suggested before [1]. It should
depend on N and be greater than the best selected predicting
AR order that is denoted by K and also greater than the MA
order q. However, many authors used a fixed model order, e.g.,
M ∗ = 4q [12]. The best AR order theoretically depends on N
in (15). This casts doubt on many conclusions in the literature
about the quality of Durbin’s MA method. Fixed model orders
like M ∗ = 4q can at best be optimal in a certain example for
one specific value of N . Other sample sizes give other values of
M in (15). All of the rules for the choice of the intermediate AR
order that uses fixed values for M ∗ are inevitably suboptimal.
Moreover, the use of (15) supposes the a priori knowledge of
the true MA order q, and it cannot be used for the analysis of
the MA data with an unknown model order.

It is known from the simulations that the accuracy of the
MA(q′) model is not very sensitive to the intermediate AR order
[1], [15]. From (12) and (15), it follows that the AR order must
always at least be as high as the best AR order for the prediction.
Furthermore, it would be difficult or impossible to estimate q′

MA parameters from less than q′ AR parameters. Based on
trying different values like K + q′, 2K + q′, and 3K + q′, the
value

Msw = 2K + q′ (16)

has been suggested for the intermediate AR order [1]. It is under
all of the circumstances at least as high as the order of the
estimated MA model and higher than the AR order. The order
Msw is called a sliding window order because it varies with
the sample size and with the order q′ of the MA model that is
computed.

The best order K for the prediction with an AR model
can be selected with a variety of selection criteria, but the
combined information criterion (CIC) is preferred because of
its performance in finite samples [1]. This practical value (16)
for Msw is used in a freely available automatic Matlab program
for the spectral estimation with the time-series models [24]. The
AR models are computed with the method of Burg [17], and
the order is selected with CIC. For N that is less than 2000,
the program computes the MA models from the order q′ = 1
until N/5, with the sliding window order given by (16). For a
greater N , the maximum MA candidate order is limited to 400.
Afterward, it automatically selects the order of the best-fitting
MA model without the interference of the user.

V. MODIFIED DURBIN ALGORITHM

The original derivation of Durbin [13] used the maximum
likelihood theory for the normally distributed data to derive
the MA algorithm. Here, the ME will be used for a new
formulation of the modified Durbin method. Define ĈMsw(z)
as the polynomial with the estimated parameters ĉi of a high-
order AR(Msw) model of the data. It will be considered as the
true AR process whose spectrum should be approximated by an
MA(q′) model. Hence, the estimates of the method of Durbin
for the MA(q′) parameters for an arbitrary MA order q′ can now
be written as the solution of (9) that gives the smallest value for

PE =
σ2

ε

2π

π∫
−π

∣∣∣∣∣ 1
ĈMsw(ejω)

∣∣∣∣∣
2 ∣∣∣∣ 1

Bq′(ejω)

∣∣∣∣
2

dω. (17)

The smallest possible value for the monic polynomials
ĈMsw(z) and Bq′(z) is given by σ2

ε [20], which is found for
the denominator product

ĈMsw(z)Bq′(z) = 1. (18)

The equality in (18) can only exactly be obtained for the
infinite model orders. It can be approximated either by letting
Bq′(z) be an approximation of 1/ĈMsw(z) or by looking for
an approximation 1/Bq′(z) of ĈMsw(z). The first formulation
computes the MA parameters for a given long AR model. This
is a difficult and nonlinear calculation. The second formulation
can be interpreted as looking for the best AR model with
the parameter polynomial Bq′(z) to approximate a given long
MA model with the parameter polynomial ĈMsw(z). The roles
of the AR and MA polynomials are interchanged here for
computational reasons. This interchange is possible because the
product of the polynomials should only be as close as possible
to 1 in (18). It is well known that the computation of the AR
parameters is a simple linear operation, which is in contrast
with the MA parameters that require nonlinear iterations [4].
Therefore, the second formulation is preferred. In terms of the
ME of (9), the solution can be written as

B̂q′(z) = arg min
B̃q′ (z)

{
ME

(
1

B̃q′(z)
,
ĈMsw(z)

1

)}
. (19)

This can computationally be interpreted as looking for an
AR(q′) model that gives the best fit to the MA(Msw) model
with the parameters of ĈMsw(z). Those parameters ĉi are
substituted in an adapted version of the MA autocorrelation
relation (5) as

ρ̂(k) =
Msw−k∑

i=0

ĉiĉi+k

/ Msw∑
i=0

ĉ2
i , 0 ≤ k ≤ q′. (20)

Finally, the q′ MA parameter estimates are found with a modi-
fied YW polynomial (4) as the solutions of

ρ̂(k) + b̂1ρ̂(k − 1) + · · · + b̂q′ ρ̂(k − p) = 0, 1 ≤ k ≤ q′

ρ̂(−k) = ρ̂(k). (21)
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This algorithm guarantees that the roots of the estimated MA
polynomial are always within the unit circle [1].

The modified Durbin method has the following prescribed
stages for AR estimation, AR order selection, and estimation of
the MA parameters of an arbitrary order q′.

1) Compute the AR models of orders 0, 1, . . . , N/2 with
Burg’s method [17]. The highest AR model order may
be limited to 1000 for N > 2000.

2) Select the AR order K with the minimum of the order
selection criterion CIC [1].

3) Take as the intermediate AR order Msw = 2K + q′.
4) Use (20) and (21) to compute the MA(q′) parameters.

This modified Durbin method has been developed and tested
in many simulation studies and with real-life data [1], [15]. It
is numerically robust in finite samples and has excellent prop-
erties if more data are available. Then, the results are always
close to the Cramér–Rao lower bound, which is characterized
by ME = q for a true MA(q) process. No counter examples
have been found where the modified Durbin method performed
poorly as long as the required sample size M in (15) is less than
about N/4. M may become greater if some zeros of the MA
process are close to the unit circle for the given sample size.
The influence of N will be investigated in the next section.

In practice, the true MA order q is not known a priori. It must
be selected from the data. Then, several values of q′ are used
to compute the MA candidate models. The AIC can be used to
select a model order for the MA data. However, an asymptotical
generalized information criterion (GIC) with penalty function 3
for order selection gives better results for MA data [1]. This
criterion is obtained by changing the constant 2 in the AIC
criterion [23] to the value of 3.

So far, the modified Durbin method has not been used by the
other authors, and all the remarks about the quality of Durbin’s
method in the literature do not apply to the new modified
Durbin method. The modified version has been compared [16]
with the two newly developed MA methods [12] for a critical
example where the original method of Durbin [13] performed
poorly because wrong choices were applied. It has been shown
that the results of the modified Durbin method were rather
close to the Cramér–Rao bound [16]. Those results will not be
repeated here, but new examples will be evaluated. Simulations
are required to verify the applicability of the approximations
that have been applied in the derivation of the modified Durbin
algorithm.

VI. SIMULATIONS WITH ZEROS CLOSE TO UNIT CIRCLE

Processes with zeros that are close to the unit circle are
challenging examples for the MA estimation methods [12].
Poor results for Durbin’s method have been reported for some
examples [12], but a better choice of the order of the AR
polynomial in the modified Durbin method considerably im-
proved the accuracy. It has been shown in the MA(3) processes
that using the intermediate AR order M , as defined in (15),
produced the best results for the MA models [16].

The Monte Carlo simulations will be reported here with
an MA(5) process where the five zeros are all at the same
radius r = 0.95. The data are generated with a MA(5) poly-

Fig. 1. True spectrum, true spectrum with the triangular YW bias, and two
spectra estimated with the Durbin method from 100 MA(5) observations with
r = 0.95. The AR estimates of the Burg and YW methods have been used,
with the value M = 35 computed with (15).

nomial that is constructed from the zeros at r exp±(jπ/2),
r exp±(j3π/4), and r exp−(jπ).

First, the accuracies of the MA models of the MA(5) data
have been studied for the intermediate YW [6] and Burg
[17] estimates for the AR parameters. High-order AR models
ĈMsw(z) are the basic elements for Durbin’s method. It may
be expected that more bias in the AR models has a negative
influence on the accuracy of the resulting MA models. The Burg
AR models have a negligible bias, but the YW models can have
a significant bias if the zeros for the MA data are not far from
the unit circle. The results of using YW and Burg estimates
for the intermediate AR models were only close as long as r
is smaller than 0.5 for N greater than about 100. Otherwise,
Burg gives better results. For r = 0.9, N should be greater
than 7500 to have no significant bias contributions in the YW
estimates. The AR YW estimates are asymptotically unbiased,
and the differences between the AR estimation methods of
Burg and YW will eventually become smaller and disappear
for increasing sample sizes [18] for all values of r.

Fig. 1 shows the true and estimated spectra of the MA(5)
models. The AR models estimated with the YW method have
a strong bias in the weak high-frequency part of the spectrum
for this example with r = 0.95. The true biased spectrum
is computed as the Fourier transform of the autocorrelation
function multiplied with the triangular bias 1 − k/N (7). The
accuracies for the MA(5) models are the following: true biased
spectrum without estimation, ME = 44.3; using AR Burg M ,
ME = 3.9; and finally using AR YW M , ME = 66.1. The
estimated model with the YW method is close to the true
biased expectation because both have the triangular bias. In this
example, the MA(5) spectrum obtained with an intermediate
AR YW model is poor. This is clearly visible in the logarithmic
plot, but it would hardly be noticed in a linear presentation of
the power spectral density. Burg M is close to the Cramér–Rao
bound, which is 5 for an MA(5) process. Due to statistical
variations, a single realization can give an ME value that is
even smaller than the expectation 5. It has been verified that
the estimated ARMAsel model [24], which was obtained from
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Fig. 2. Average ME of the AR models of order M , MA(5) models estimated
from the AR(M) model, and scaled SPE for 1000 runs of 100 observations of
the MA(5) process with r = 0.95 for all zeros.

the data without using any a priori knowledge, is close to the
Burg M and to the true spectrum. The ME was 5.4 for the
MA(5) model that was automatically selected by the ARMAsel
algorithm from many MA and AR candidate models [1].

The large bias for the AR YW estimates has been described
before for the MA data [16] and for the AR data [18]. Further-
more, the bias asymptotically disappears, and it will become
negligible for very large sample sizes or for a small radius
r. However, in those situations, the accuracy of the final MA
model is about the same as the accuracy of the model obtained
from the Burg AR estimates. Summarizing, the Burg method
for the intermediate AR model can give the same accuracy as
the YW method for the finally obtained MA models, or Burg
gives a better accuracy. It is never worse. Therefore, YW is not
further studied, and Burg is used for all the data.

Fig. 2 used the same process parameters as in Fig. 1. The ME
of the AR models reaches its minimum at order 11, which is the
outcome of (12) for this example. The value of the AR order
with the minimum of the SPE as computed with (14) would be
M = 35. There is a slight local bend in the line at that order.
However, the order should be less than about N/10 to allow
the asymptotical theory to be accurate. The finite-sample result
in Fig. 2 gives the best MA(5) accuracy for the AR order 18
for N = 100. It is clear that the accuracy of the MA models
is better than that of the AR models because the ME of the
MA models is smaller. Models of the MA type are required to
compute the accurate spectra for this type of data. The accuracy
of the MA models is poor if the AR order is too low, and it
becomes slightly worse if too high AR orders are used. The
minimum of the SPE and the MA(5) accuracy are reached for
the same order 18. Both curves have a local minimum at order
26. Using the sliding window order Msw, as defined in (16),
mostly results in AR order 27 for the MA(5) model, which is
a good value in this example. The results like in Fig. 2 heavily
depend on the sample size and the radius of the zeros. They
demonstrate the importance of a good choice of the AR order
in Durbin’s MA method. For larger sample sizes, the accuracy
ME of the MA(5) model will be about 5 for a rather wide

range of intermediate AR orders, and the appearance of the MA
accuracy as a function of the AR order will become smoother.

VII. MA(5) SIMULATIONS

Monte Carlo simulations have been carried out with the
MA(5) processes, where four zeros are at the same radius
r, and the fifth zero is at the constant −0.95. The last fixed
radius is chosen rather close to the unit circle to make sure
that the presence of at least one significant zero gives the
overall spectrum an MA character for every value of r. The
MA(5) parameters are computed from zeros at r exp±(jπ/2),
r exp±(j3π/4), and at −0.95. The MA polynomials B(z)
are invertible if r < 1. All of the data have been generated
with σ2

ε = 1. The radius r and the sample size N have been
varied. The behavior of the estimates as a function of the AR
model order is rather irregular in Fig. 2. Therefore, the results
for the fixed AR and MA model orders that give the optimal
accuracy will be compared with the results that are completely
automatically obtained with the AR and MA orders selected
from the available observations. This will give an indication
about the additional error that is made if no a priori information
whatsoever is used in the spectral estimation. The model orders
and the model type are selected from the given data with the
automatic algorithm ARMAsel [24].

The average results for 100 observations of the fixed true
order estimated MA(5) processes are presented in Table I, in the
columns denoted Burg. As a comparison, the ME of the com-
pletely automatically estimated and selected ARMAsel model
is given [24]. The ARMAsel model is estimated and automat-
ically selected from many AR, MA, and ARMA candidates
with the ARMASA Matlab toolbox [24]. The intermediate AR
order, the model type, and the model order of the ARMAsel
model are automatically selected from the data at hand without
any influence of the data analyst. In most runs, the MA(5)
model with the true model type and order was selected from
the 50 AR, 20 MA, and ten ARMA candidate models that
were computed from the 100 observations in each simulation
run. The column-modified Durbin gives the average ME of the
modified Durbin method, as described in Section V, including
the effect of selection of the MA order. In all of the simulations,
the selection from only MA candidates gives a smaller average
ME than the free selection from all of the model types with
ARMAsel. The reason is that sometimes other model types are
selected for the rather small sample size N = 100 that was
used here.

The other columns in Table I used the knowledge of the true
process to compute the best intermediate AR order M with (13)
and L with (12), and to estimate the MA(5) process. In practice,
L was computed with the AIC criterion [23], with the penalty
factor 1 applied to the truncated true AR models of increasing
order and with the parameters of C∞(z). This can deal with the
irregular behavior of the AR models as a function of the model
order, as presented in Fig. 2. The Cramér–Rao bound for an
MA(5) process is 5. This is never attained for N = 100, but it
would be found for much greater sample sizes. The accuracy
here is less than twice higher, which is still considered to be
reasonably accurate. The results in the column with the Burg
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TABLE I
AVERAGE ME IN 1000 SIMULATION RUNS OF THE ARMAsel MODEL

WITH SELECTED ORDER AND TYPE, THE MODIFIED DURBIN MODEL

WITH SELECTED MA ORDER, AND THE MA(5) MODELS ESTIMATED

FROM THE BURG AR(M), AR(L), AND AR(N/2) MODELS, AS A

FUNCTION OF THE RADIUS r OF THE MA(5) PROCESS FOR

N = 100. THE FINAL COLUMNS GIVE THE VALUES M
OF (15) AND L OF THE BEST PREDICTING AR MODEL

TABLE II
AVERAGE ME IN 1000 SIMULATION RUNS OF THE ARMAsel MODEL

WITH SELECTED ORDER AND TYPE, THE MODIFIED DURBIN MODEL

WITH SELECTED MA ORDER, AND THE MA(5) MODELS ESTIMATED

FROM THE BURG AR(M), AR(L), AND AR(N/2) MODELS, AS A

FUNCTION OF N . FURTHER, M AND L ARE GIVEN.
THE RADIUS r OF THE MA(5) PROCESS IS 0.95

estimates for the long AR(M) model are almost always the
most accurate, except for r = 0.9, where Burg L was slightly
better. This type of small sample effects can be expected if
the curves as a function of the AR order are as irregular as
in Fig. 2. The result for r = 0.98 shows that the analysis in
Section IV loses its theoretical accuracy if the best parameter
order is greater than N/2. However, the results for the modified
Durbin column with selected MA order stay close to the best
MA estimates that are found with the prescribed model order. It
is clear that this example requires more observations to obtain
accurate spectral estimates.

The results in Table I demonstrate the finite-sample behavior
of the modified Durbin method. It includes the effects of
automatically choosing the AR order from the data and of
selecting the MA order. Table II gives the results for increasing
the sample sizes.

For N > 500, the fixed-order MA(5) column of Burg M
is close to the Cramér–Rao bound 5. In addition, it has been
verified that it converges in many different examples with var-
ious true orders. It is clear that use of the order M gives better
results than L or N/2. In the last two rows, the maximum AR
order in the column N/2 has for computational reasons been
limited to 661 and 740 for N = 2000 and 5000, respectively.
This explains the lower values in that column and is indicated
by a ∗ sign in Table II. The ME results for ARMAsel and the

Fig. 3. Estimated mean squared errors of prediction of the 197 chemical
process concentration readings [25] after two times differencing of the data.
The MA models of low orders are most suitable for these data, but the MA
models with about 20 parameters also give good models. The ARMA and low-
order AR models are less accurate here.

modified Durbin converge to the same values. The reason is
that all of the AR and ARMA models have too much bias for a
greater N in comparison with the MA models, and they are
never selected. Therefore, selection from the MA candidates
only and from all the possible candidates converges to the
same average ME value. The difference between the modified
Durbin column and the Burg M column can be attributed to the
cost of order selection. This cost is about 1 if only candidates
of the true model type and too high model order are serious
competitors [1]. Hardly any difference can be seen between
the true spectrum and the estimated spectra for N greater than
1000. The asymptotical loss in the average ME value due to
selecting the AR and MA orders from the data is about 1,
independent of the true MA process. This has been verified in
various examples with true orders of between 1 and 13.

VIII. CHEMICAL CONCENTRATIONS

The modified Durbin algorithm has been tested on real-life
data. An example with 197 chemical process concentration
readings from the literature [25] is presented here. The AR-
MAsel [24] selected the ARMA(2,1) model for the data, the
MA(1) model was at the boundary of statistical significance
for the data after differencing once, and the MA(4) model
was selected after twice differencing of the data. Taking the
difference xn − xn−1 is often used to improve the stationarity
of the economic data [25], but it has a strong influence on the
spectrum. The estimated model accuracies of all the models that
have been estimated by the ARMAsel program for the data after
differencing twice are shown in Fig. 3. The squared error of
prediction of all the estimated models has a strong relation with
the selection of the model order and type in ARMAsel [1].

The MA(4) model is selected here, but Fig. 3 shows that
many other MA models are also good candidates for the data,
with a small estimated model accuracy. The AR(13) model
is the best of all the AR candidates, but it is not selected
here because it requires more parameters to obtain almost the
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Fig. 4. Estimated power spectral density of the MA(4) model of the
197 chemical process concentration readings [25] after two times differencing
of the data. The sampling period was 2 h.

same accuracy. The ARMA models are less accurate for these
data. Although the AR models are often the most accurate
for practical data, this example shows that sometimes the MA
models can be preferable.

The power spectral density of the MA(4) model is shown in
Fig. 4. Taking the differences of data removes most of the low-
frequency part of the spectrum. This explains why the spectrum
in Fig. 4 increases with the frequency.

IX. CONCLUDING REMARKS

To obtain good results with Durbin’s MA method, an inter-
mediate AR model has to be estimated with Burg’s method.
The intermediate AR model order must be high enough and can
automatically be selected for the given data. The theoretical op-
timal AR order can be computed for the known MA processes
as the order with the best parameter accuracy.

The modified Durbin method prescribes the use of twice the
selected AR order plus the number of MA parameters that has
to be estimated as the intermediate sliding window order. All
the unfavorable judgments of Durbin’s method in the literature
that are known to the author are based on the wrong choices
for the intermediate AR order. No examples have been found
or encountered with a poor performance if the AR order is
properly chosen. The final MA results are always close to the
Cramér–Rao bound for the MA model of the true order if
enough data are available for the estimation.

It is very unfortunate that the simple and very robust MA
method of Durbin, with the proper implementation, is not
generally known to be close to the Cramér–Rao bound. No
better methods for the MA estimation in finite samples have
been described in the spectral estimation literature.
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