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Abstract
Software engineers should be able to apply massive code

refactorings tomaintain large legacy code bases. A key aspect

of developing restructurings is matching and transforming

code snippets using abstract syntax trees (ASTs).

Matching on ASTs is typically done through AST patterns

with holes. AST patterns can be extended to become metap-
atterns, which increase their expressivity. Metapattern exam-

ples include disjunctions, descendant patterns, and patches

where we inline transformations into the pattern itself.

Despite their expressivity, abstract syntax (meta)patterns

can become verbose and require restructuring engineers to

be intimately familiar with the data types that define the

AST. A better approach is to use concrete syntax patterns,
which allows us to denote our patterns in the syntax of the

object language. Previous work has shown that we can use

external black-box parsers of the object language to compile

concrete syntax patterns for arbitrary languages.

In this paper, we scale this compilation method to sup-

port concrete syntax metapatterns, which allows for a more

declarative way of expressing restructurings. We evaluate

this method through an implementation written in Kotlin.

CCS Concepts: • Software and its engineering → Trans-
latorwriting systems and compiler generators;Domain
specific languages.

Keywords: refactoring, restructuring, metaprogramming,

concrete syntax, black-box parsers

ACM Reference Format:
Luka Miljak, Casper Bach Poulsen, and Rosilde Corvino. 2024. Con-

crete Syntax Metapatterns. In Proceedings of the 17th ACM SIGPLAN
International Conference on Software Language Engineering (SLE ’24),
October 20–21, 2024, Pasadena, CA, USA. ACM, New York, NY, USA,

13 pages. https://doi.org/10.1145/3687997.3695637

SLE ’24, October 20–21, 2024, Pasadena, CA, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1180-0/24/10

https://doi.org/10.1145/3687997.3695637

1 Introduction
Software restructuring is important to keep large software

projects maintainable. This can range from small-scale refac-

torings, like renaming a variable, to large project-wide re-

structurings, such as migrating from one API to another

(e.g., switching to a different logging framework). For large

projects, performing manual project-wide restructurings can

be prohibitively expensive. For this reason, modern IDEs

and code transformation tools provide integrated support for

automated refactorings. However, many software projects re-

quire restructurings beyond what IDEs support. Implement-

ing such automated restructurings is expensive, error-prone,

and requires specialist knowledge of metaprogramming.

Implementing restructurings typically involves matching,

traversing, and manipulating abstract syntax trees (ASTs).

With this come two usability concerns. The first concern

relates to matching on ASTs using abstract syntax patterns.

These patterns are represented as terms with metavariables,

which can be verbose and depend on our knowledge of the

data types and constructors defining the abstract syntax

of the object language. The second concern is about how

close our implementation resembles the specification of the

restructuring, i.e., how declarative is our implementation?

This concern can best be illustrated through some example.

Consider a restructuring for some object-oriented language

where we wish to improve our logging messages by prepend-

ing each message with the name of the class surrounding

the log. For example, consider the following C++ program:

class Foo {

void bar() { logger ::log(myMsg); }

};

The myMsg argument supplied to the logger should be updated

to "Foo: " + myMsg after restructuring.

A typical implementation for this restructuring performs

the following steps: (1) Match the input AST on a class decla-

ration pattern, then (2) traverse each AST node in the body

of the class. For each node, (3) if this node matches a call to

log, then (4) rewrite the message argument so that the name

of the matched class is prepended to it. This is an operational
way of thinking and constructing a restructuring.

Concrete syntax patterns. We can mitigate the concern

of verbose patterns using concrete syntax patterns [3, 15].

Rather than using abstract syntax to denote our patterns,

we use the concrete syntax of the object language. Exist-

ing language-parametric tools for restructuring, such as the

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

43

https://orcid.org/0009-0000-3882-7722
https://orcid.org/0000-0003-0622-7639
https://orcid.org/0000-0003-1311-8027
https://doi.org/10.1145/3687997.3695637
https://doi.org/10.1145/3687997.3695637
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3687997.3695637&domain=pdf&date_stamp=2024-10-17


SLE ’24, October 20–21, 2024, Pasadena, CA, USA Luka Miljak, Casper Bach Poulsen, and Rosilde Corvino

1 class@|struct @name {

2 @<... EXPRESSION

3 <<logger ::log(@msg)>> --> <<logger ::log("@name: " + @msg)>>

4 @+ <<logger ::log(@level , @msg)>> --> <<logger ::log(@level , "@name: " + @msg))>>

5 ...>

6 };

Listing 1. A concrete syntax metapattern for a C++ restructuring that prepends the class name before each log message.

Rascal Metaprogramming Language [1, 7] and the Spoofax

Language Workbench [5, 17] already support such concrete

syntax patterns. Internally, these patterns are still compiled

into abstract syntax patterns.

Metapatterns. Addressing the other concern, we make

restructurings more declarative throughmetapatterns. While

normal patterns can be viewed as just terms with metavari-

ables and holes, metapatterns are inlined with more logic.

For example, to handle AST traversals, a descendant pattern

/𝑝 matches an AST node if any of its descendants match 𝑝 .

A disjunctive pattern 𝑝1 |𝑝2 inlines case analyses inside the
pattern. Similarly, we can inline patches 𝑝1 −→ 𝑝2, used to

perform transformations, into a larger pattern. We introduce

these metapatterns in Section 2.

Concrete syntax metapatterns. If we embed these meta-

patterns in the concrete syntax of the object language, we

get concrete syntax metapatterns (CSMPs). For example, we

can represent the logger refactoring using a single CSMP as

shown in Listing 1. The operators @| and @+ are used for case

splitting, @<... ...> is for deep matching, and --> to patch

code that we have matched on. While the exact details of the

syntax and semantics of CSMPs in this example are explained

in the remainder of this paper, we already see that this is a

declarative way of implementing such a restructuring.

Although some existing tools do support some formalism

of metapatterns, there are limitations. For instance, Coc-

cinelle [9] lets us inline patches and disjunctions in the

concrete syntax, but this tool is limited to the C language.

Scala supports disjunctions (pattern alternatives) in case

analyses [11], but is not a metaprogramming language and

thus is not suitable for concrete syntax. Rascal supports con-

crete syntax patterns and the descendant pattern [14], but

the descendant pattern can only be used in abstract syntax.

What we wish for is a tool that is (1) language paramet-

ric (scalable to different programming languages), and (2)

supports CSMPs. To that end, in this paper we present a gen-

eralized technique for compiling CSMPs into abstract syntax

metapatterns. To make this compiler scalable to different pro-

gramming languages without significant effort, we extend

a method by Aarssen et al. [1] to compile concrete syntax

patterns into abstract syntax patterns. Their method depends

on a black-box parser of the object language (Section 3).

We summarize our contributions in this paper as follows:

𝑏 := numbers, strings

𝑐 := constructor name

𝑥 := identifier

𝑝 ::= 𝑏 base pattern

| 𝑐 (𝑝∗) constructor pattern

| 𝑥 metavariable

| 𝑝 |𝑝 disjunctive pattern

| /𝑝 descendant pattern

| 𝑝 −→ 𝑝 patch pattern

Figure 1. Syntax of ASMPs with disjunctive, descendant,

and patch patterns.

• We define four different CSMPs: two variants of the

disjunctive pattern (Section 4 and Section 5), the de-

scendant pattern (Section 6), and patches (Section 7).

• We present methods for compiling these CSMPs as

relational definitions using black-box parsers.

• We present an implementation of this compiler in

Kotlin (Section 8).

• We evaluate and discuss the effort required to imple-

ment new CSMPs, support for new languages, perfor-

mance, and expressivity of CSMPs (Section 9).

2 Abstract Syntax Metapatterns
Informally, we call a pattern ametapattern if it contains more

logic than just being a term with metavariables and holes;

logic that otherwise would be contained outside the pattern.

In this section, we look at some metapatterns using abstract
syntax and call them abstract syntax metapatterns (ASMPs).

We informally describe the behavior of these patterns and

leave out their formal semantics to focus more on their em-

bedding in the concrete syntax of the object language.

We define the syntax of ASMPs in Figure 1. “Ordinary”

patterns would be made solely out of constructor patterns

and metavariables, whereas we consider disjunctive patterns,

descendant patterns, and patches to be metapatterns.

A disjunctive pattern 𝑝1 |𝑝2 successfully matches some

AST 𝑎 if either 𝑝1 or 𝑝2 matches 𝑎. For example, the ASMP

FunCall("foo" | "bar", args) represents a function call to

either "foo" or "bar". Ordinarily, this would have required

duplication of the entire pattern, one case for both names,

or replacing the disjunction with a metavariable name and
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then having a separate constraint for the allowed values of

this name. In Section 4, we explore the disjunctive pattern

further in the context of concrete syntax.

The descendant pattern /𝑝 successfully matches some

AST 𝑎 if any descendant node of 𝑎 matches 𝑝 [14]. For ex-

ample, the ASMP FunDef(n, params, /FunCall("f", args))

matches any function definition that contains some function

call to "f". Ordinarily, this would have required capturing

the body inside a metavariable b, then performing some tra-

versal over b which matches each node against the inner

pattern FunCall("f"). We explore this further in Section 6.

A patch "pattern" 𝑝1 −→ 𝑝2 is used for more than match-

ing and getting a substitution for the metavariables. For some

AST 𝑎, the match is a success if 𝑝1 matches 𝑎. The result of the

match will then also yield a patch, which will replace 𝑎 with

𝑝2 when applied. Note that 𝑝2 can only consist of constructor

patterns and metavariables, and each metavariable should

be captured. A patch pattern can be viewed as a rewrite rule
that can be inlined deeper into the pattern. For example,

the ASMP FunCall("foo" −→ "bar", args)will match func-

tion calls to "foo" and replace them with function calls to

"bar". Ordinarily, rewrite rules can only be written on the

top level of the pattern, requiring a near-duplication of the

pattern. Alternatively, we can replace the patch pattern with

a metavariable name and add a separate rewrite rule that is

applied on the name. See Section 7 for more information on

patches in concrete syntax.

In general, these metapatterns aid in making implemen-

tations of restructurings more concise. By allowing us to

inline their logic into the pattern itself, the behavior of our

implementations becomes less scattered.

The three metapatterns presented here (disjunctive, de-

scendant, patch) is not an exhaustive set. However, we argue

that these three make for a representative set of metapatterns

when discussing their embedding into concrete syntax, as

we shall demonstrate in later sections. The support of other

metapatterns is discussed in Section 9.1.

3 Concrete Syntax with Black Box Parsers
Abstract syntax patterns (ASPs) require the user to know the

underlying structure of the AST. Furthermore, ASPs can be

quite verbose, particularly for languages with complex struc-

tures. Therefore, we often use concrete syntax patterns (CSPs)
instead; these patterns can be written using the underlying

concrete syntax of the object language. Internally, CSPs are

still compiled into abstract syntax patterns. For example, the

concrete syntax pattern 5 + @x compiles to Add(Int(5), x).

The @x denotes a metavariable named x.

We define the syntax of CSPs in Figure 2, extended in later

sections to support the metapatterns introduced in Section 2.

Note that we require metavariables to be annotated with

their corresponding syntactic type, e.g., 5 + @<x : Expr>. In

the paper by Aarssen et al. [1], they developed Concretely,

𝑠 := strings

𝑥 := identifiers

𝑡 := syntactic type

cp ::= 𝑠 string

| @<𝑥 : 𝑡> metavariable

| cp cp concatenation

Figure 2. Syntax of CSPs.

a technique for compiling CSPs to ASPs. To perform this

compilation, Concretely requires some black-box parser
of the object language. The compilation process we define

below is directly based on Concretely; we will highlight

the minor differences at the end of this section.

The compilation is split up into three phases.

1. Encoding.We encode our concrete syntax pattern into a

string that the parser can parse.We do this by substitut-

ing each metavariable with some parseable string. For

example, 5 + @<x : Expr> can be encoded into 5 + 0,

where metavariable x encodes to 0.

2. Parsing.We invoke our black-box parser to parse the

encoded pattern into an AST. For example, 5 + 0 be-

comes Plus(Int(5), Int(0)).

3. Decoding. We decode all parts of the AST that orig-

inated from an encoded metavariable, resulting in

an ASP. For example, Plus(Int(5), Int(0)) becomes

Plus(Int(5), x). We identify whether AST nodes orig-

inated from a metavariable using location information.

ASTs. We define an AST 𝑎 as some base term 𝑏 (strings

and numbers) or nodes 𝑐 (𝑎1, ..., 𝑎𝑛) where 𝑐 represents a con-
structor name and 𝑎1, ..., 𝑎𝑛 are the child nodes. AST nodes

𝑎 are always annotated with location information, written
as 𝑎<𝑙> where 𝑙 is a location (𝑖, 𝑛). This is the location of

the substring representing this AST node within the source

string; 𝑖 is the offset, and 𝑛 is the length of the substring. For

example, parsing the string 10+9 yields the AST

Plus(Int(10)<(0,2)>,Int(9)<(3,1)>)<(0,4)>.

We will use location information in the compiler’s decoding

stage to uniquely identify encoded metavariables.

Black-Box Parser. We interface over a black-box parser 𝐵

with a tuple (𝑇, parse, gen, typeof ). Here𝑇 is the set of types

that AST nodes can have.
1
Next is the function parse𝐵 :

𝑇×String ⇁ AST which parses the input string and produces

an AST of type 𝑇 (or potentially fails). The resulting AST

should be annotated with location information. The function

gen𝐵 : 𝑇 → String generates some parseable string from

the given type such that parse(𝑡, 𝑔𝑒𝑛(𝑡)) will not fail. This
function is used in the encoding phase of the compiler. The

typeof : AST → 𝑇 function yields the syntactic type of an

1
Also known as a sort or syntactic category, e.g., Expr or Decl.
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AST node based on its constructor. For example, constructors

Add and Mul would have type Expr. We assume that that the

types have no hierarchy.

Encoding. We describe the encoding process formally

through an inductively defined relation ↓. We write cp ↓𝑖 𝑠, 𝑑
to denote that CSP cp encodes into string 𝑠 . Index 𝑖 tracks

the current offset of 𝑠 . The symbol 𝑑 represents a decoder
generated by the encoding, used in the decoding phase. A

decoder is a set of mappings 𝑙 → cp from locations to CSPs.

(↓-string)
𝑠 ↓𝑖 𝑠, ∅

(↓-metavar)
𝑠 = gen𝐵 (𝑡)

@<𝑥 : 𝑡>↓𝑖 𝑠, {(𝑖, |𝑠 |) → @<𝑥 : 𝑡>}

(↓-conc)
cp

1
↓𝑖 𝑠1, 𝑑1 cp

2
↓𝑖+|𝑠1 | 𝑠2, 𝑑2

cp
1
cp

2
↓𝑖 𝑠1 𝑠2, 𝑑1 ∪ 𝑑2

When encoding a metavariable @<𝑥 : 𝑡>, we use the gen𝐵
function to generate an encoding. This creates a correspond-

ing decoder from the current location to themetavariable. For

example, encoding the CSP 5+@<x:Expr> yields string 5+0 (if

we define gen𝐵 (Expr) = 0) and decoder {(2, 1) → @<𝑥 : 𝑡>}

Decoding. We describe the decoding process formally

through an inductively defined relation ↑. We write 𝑎, 𝑑 ↑ 𝑝
to denote that AST 𝑎 decodes into ASP 𝑝 using decoder 𝑑 .

Each mapping in 𝑑 has to be used once, which ensures that

every metavariable that has been encoded will be decoded.

(↑-base)
𝑏<𝑙>, ∅ ↑ 𝑏

(↑-metavar)
typeof 𝐵 (𝑎) = 𝑡

𝑎<𝑙>, {𝑙 → @<𝑥 : 𝑡>} ↑ 𝑥

(↑-nomatch)
𝑎1, 𝑑1 ↑ 𝑝1 ... 𝑎𝑛, 𝑑𝑛 ↑ 𝑝𝑛

𝑐 (𝑎1, ..., 𝑎𝑛)<𝑙>, 𝑑1 ∪ ... ∪ 𝑑𝑛 ↑ 𝑐 (𝑝1, ..., 𝑝𝑛)

The rule ↑-metavar is applied when we have an AST node

with a location found in the decoder, meaning that this lo-

cation likely originated from an encoded metavariable and

we have to decode it. Rules ↑-base and ↑-metavar require the

decoder to be empty and a singleton set respectively, which

enforces our requirement that each mapping in 𝑑 has to be

used once. For the inductive case ↑-nomatch, we split the

decoder into 𝑛 parts 𝑑1 ∪ ... ∪𝑑𝑛 to enforce this requirement.

The ↑-metavar rule has a premise that requires the type

of the AST node to match the type of the metavariable. This

solves a problem where location information is not a unique
attribute of AST nodes; multiple AST nodes can have the

same location. This is the case when there are injections in
the language. For example, in many imperative languages,

declarations like int x = 0; are also statements. Parsing

this as a statement might give the AST DeclStmt(Init(...))

where both the DeclStmt and Init nodes have the same lo-

cation. If this location is in the decoder, which node should

be decoded? To resolve this ambiguity, we require the type

of the AST node we are decoding to match the type of the

encoded metavariable. We assume that the combination of

location and type is unique for each node.

Example: Let Plus(Int(5)<(0,1)>,Int(0)<(2,1)>)<(0,3)>

be an AST obtained by parsing an encoded string. Let {(2, 1)
→ @<x : Expr>} be the corresponding decoder. Decoding

yields the ASP Plus(Int(5), x).

Compiler. Finally, we describe the compilation of CSPs

to ASPs formally through a relation⇒. We write 𝑡, cp ⇒ ap
if CSP cp of type 𝑡 compiles to ASP 𝑝 .

(CSP2ASP)
cp ↓0 𝑠, 𝑑 parse(𝑡, 𝑠), 𝑑 ↑ 𝑝

𝑡, cp ⇒ 𝑝

Note that the top-level type 𝑡 of the pattern is part of the

input that should be provided by the user.

Difference with Concretely. The key change we made

to the work by Aarssen et al. [1] is that we use location

information to uniquely identify AST nodes, whereas Con-

cretely requires the encoded string from gen𝐵 to be unique

itself. We opted to use location information as it provides a

stronger guarantee for uniqueness, as also remarked upon

by Aarssen et al.’s discussion of their own work. Locations

will also be necessary when inferring the type of certain

metapatterns, as will be shown in later sections. A downside

of our approach is that we limit ourselves to external parsers

that are able to provide this location information. Other than

location information, the compilation process presented in

this section is analogous to their implementation.

4 Context-Free Disjunctive Patterns
We will extend our compiler from Section 3 to also support

disjunctive patterns as introduced in Section 2. Disjunctive

patterns reduce duplicate code and makes it more concise.

For example, if we want to match function calls to both foo

and bar, without using disjunctive patterns, we could write

the following (pseudo)code:

match(a, `foo(@<args : ExprList >)`)
| match(a, `bar(@<args : ExprList >)`)

Here match is a function that takes an AST node a and returns

true if it matches the CSP on the right (delimited using

backticks). The two calls to match are mostly duplicate code.

Alternatively, we could have written the following:

match(a, `@<n : Name >(@<args : ExprList >)`)
& (match(n, `foo `) | match(n, `bar `))

This uses one pattern to capture the name of the function call,

then performs matches on the name separately. While this

removes the duplicate code, the pattern itself became less
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readable. Instead, if we inline the disjunction in the pattern

itself using some operator @+, it becomes more concise:

match(a, `<foo@+bar >(@<args : ExprList >)`)

The usage of the operator indicates we are matching on

both foo and bar. We call this the context-free disjunction.
This disjunction assumes that the disjuncts can be parsed

independently, i.e., for cp
1
@+ cp

2
both cp

1
and cp

2
must be

compilable CSPs. In Section 5 we will also introduce the

context-dependent disjunction, which uses the @| operator,

where disjuncts need not be independently compilable.

We will show two approaches for compiling the context-

free disjunction; the first using type hints (Section 4.1 and

the second through type inference (Section 4.2).

4.1 Context-Free Disjunction with Type Hints
The first approach to compiling the context-free disjunction

is similar to how we compile metavariables in Section 3. We

let the user annotate the pattern with its syntactic type 𝑡 and

then call gen𝐵 (𝑡) to encode this pattern. We extend the syn-

tax of CSMPs to include this disjunction: cp ::= cp @+ cp @: 𝑡 .

Reusing our previous example, it would look as follows:

<foo @+ bar @: Name>(@<args : ExprList>).2

We extend our encoding ↓ as follows:

(↓-cf-disj)
𝑠 = gen𝐵 (𝑡)

cp
1
@+ cp

2
@: 𝑡 ↓𝑖 𝑠, {(𝑖, |𝑠 |) → cp

1
@+ cp

2
@: 𝑡}

Similarly, the decoding ↑ is extended with the following rule:

(↑-cf-disj)
typeof 𝐵 (𝑎) = 𝑡 𝑡, cp

1
⇒ 𝑝1 𝑡, cp

2
⇒ 𝑝2

𝑎<𝑙>, {𝑙 → cp
1
@+ cp

2
@: 𝑡} ↑ 𝑝1 |𝑝2

Like ↑-metavar, this rule is applied when the location of the

AST node is in the decoder and the type of the node matches

the provided type hint. When this rule is applied, the left-

and right-disjuncts of the pattern get compiled recursively.

4.2 Inferred Context-Free Disjunction
Requiring the user to annotate each disjunction with type

hints makes the CSMP less readable and puts effort on the

user to know this type. The type hint is required to generate

a valid encoding for the pattern, but we can alternatively

generate some encoding by encoding either the left- or right-

disjunct. This means we can drop this type entirely. The

syntax for this new inferred context-free disjunction is cp ::=

cp
1
@+ cp

2
, which excludes the type.

Before extending our encoder ↓, we introduce a new func-

tion to our black-box parser interface: trimlayout𝐵 : String →
String × N, which trims whitespace and other layout infor-

mation (like comments) from the input string depending on

the object language. In the result (𝑠′, 𝑘), 𝑠′ represents the
trimmed string, and 𝑘 is the amount of characters that have

been trimmed on the left-hand side of the string. We will

2
To avoid ambiguities, we use angled brackets to delimit blocks of code.

need this to provide accurate location information to the

decoder, which we will explain in a later example.

We extend our encoding ↓ as follows:

(↓-icf-disj)
cp

1
↓𝑖 𝑠, _ trimlayout𝐵 (𝑠) = 𝑠′, 𝑘

cp
1
@+ cp

2
↓𝑖 𝑠, {(𝑖 + 𝑘, |𝑠′ |) → cp

1
@+ cp

2
}

This rule uses the left-disjunct cp
1
to generate an encoding.

3

The following example shows why we need trimlayout:

</*hello*/ 5 - @<x : Expr >> @+ 5

This generates the encoding /*hello*/ 5 - 0. After parsing,

we get the AST Sub(Int(5), Int(0)), which will be anno-

tated with location (10, 5) and only covers the substring

5 - 0 of our encoding. The layout /*hello*/ gets ignored. If

our encoder would not use the trimmed encoding to compute

the location information, the decoder would include location

(0, 15) and the compiler will fail to decode the parsed AST.

Now that we have extended the encoder, we also add the

following rule to the decoder:

(↑-icf-disj)

typeof 𝐵 (𝑎) = 𝑡

𝑡, cp
1
⇒ 𝑝1 𝑡, cp

2
⇒ 𝑝2

𝑎<𝑙>, {𝑙 → cp
1
@+ cp

2
} ↑ 𝑝1 |𝑝2

Notice that we now infer the type 𝑡 by retrieving the type of

the corresponding AST node.

Location ambiguity. This relational definition of the de-

coding now holds an ambiguity if two AST nodes have the

same location. Consider the following line of code that is

both a statement and a declaration if in the context of a

function body: int x = 0;. This gives an AST of the form

DeclStmt(Init(...)), where the outer DeclStmt node has

type Stmt, and the inner Init node has type Decl. Both nodes

hold the same location. We used to disambiguate this by

checking whether the type of the AST node matches the

given type hint, but we no longer have a type hint.

The solution is to decode the outermost node, as it rep-
resents the “most-general” type. For example, in the CSMP

<int x = 0;> @+ <println(0);>, both disjuncts have type

Stmt, but only the left-disjunct has type Decl. If we infer

the type of this disjunct using the inner node (Decl), the

compilation of the right-hand disjunct fails.

5 Context-Dependent Disjunction
Using the context-free disjunction, suppose we have a CSMP

for C++ <class @+ struct> Foo {};, matching classes and

structs. Compiling this might fail for two reasons: Keywords

class or struct are not represented as individual nodes in

the AST, or the black-box parser might not provide locations

for these nodes. For example, the Eclipse CDT parser for

C/C++ [13] does not retain locations for keywords.

If we allowed disjunctions to be context-dependent, we
would have support for such cases. A context-dependent

3
Using cp

2
would also have worked to generate an encoding.
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disjunction cp
1
@| cp

2
wraps around the entire outer CSMP.

We can compare it to the context-free disjunction as follows:

𝐶 [cp
1
@| cp

2
] = 𝐶 [cp

1
] @+ 𝐶 [cp

2
],

where 𝐶 [. . . ] represents the entire context.
In Section 5.1 we extend the compiler to support context-

dependent disjunctions. This will show that these disjunc-

tions incur a significant performance cost. In Section 5.2 we

discuss this cost and the trade-offs between the context-free

and context-dependent disjunction.

5.1 Compiling Context-Dependent Disjunction
We extend the syntax of CSMPs with the context-dependent

disjunction: cp ::= cp @| cp. When compiling this disjunc-

tion, we must consider the entire context surrounding the

disjunction. Compiling CSMP <class @| struct> Foo {};

means compiling class Foo {}; and struct Foo {}; sepa-

rately, then merging the resulting ASMPs into a disjunc-

tive pattern. If we have multiple context-dependent disjunc-

tions like in <a @| b><c @| d>, we would have to consider all

combinations ac, ad, bc, and bd. This causes an exponential

blowup resulting in 2
𝑛
combinations, where 𝑛 represents the

amount of disjunctions. This assumes a worst-case scenario

where all disjunctions are disjoint (not nested in one another).

We will discuss the implication of this in Section 9.2.

Updating the Encoder. For some CSMP cp, our encoder
will no longer yield one encoding and decoder, but a set of

encoding results 𝐸, where in a result (𝑠, 𝑑) ∈ 𝐸, the encoding

is represented by 𝑠 and the decoder by 𝑑 . We update most

previous rules (↓-string, ↓-metavar, ↓-cf-disj, and ↓-icf-disj)
by yielding a singleton set. To illustrate, we give the updated

↓-string rule, the other rules would be updated analogously:

(↓-string)
𝑠 ↓𝑖 {(𝑠, ∅)}

When encoding context-dependent disjunctions, we recur-

sively encode both disjuncts and take the union of the en-

coding results. For example, encoding a @| b yields two en-

coding results {(a, ∅), (b, ∅)}.

(↓-cd-disj)
cp1 ↓𝑖 𝐸1 cp2 ↓𝑖 𝐸2
cp

1
@| cp

2
↓𝑖 𝐸1 ∪ 𝐸2

The ↓-conc rule needs to consider all possible combinations

of the left- and right-hand sides. For example, <a @| b>c

yields two encoding results {(ac, ∅), (bc, ∅)}.

(↓-conc)

cp
1
↓𝑖 𝐸1

𝐸 = {(𝑠1 𝑠2, 𝑑1 ∪ 𝑑2) | (𝑠1, 𝑑1) ∈ 𝐸1, (𝑠2, 𝑑2) ∈ 𝐸2

where cp
2
↓𝑖+|𝑠1 | 𝐸2}

cp
1
cp

2
↓𝑖 𝐸

Note that there is not a single set of encoding results 𝐸2 of

cp
2
, but that we have one for each encoding in 𝐸1.

Finally, we update our top-level compilation rule to con-

struct a top-level disjunctive pattern from all decodings:

(CSP2ASP)

cp ↓0 𝐸
𝑃 = {𝑝 | (𝑠, 𝑑) ∈ 𝐸, parse(𝑡, 𝑠), 𝑑 ↑ 𝑝}

𝑃 = {𝑝1, ..., 𝑝𝑛}
𝑡, cp ⇒ 𝑝1 |...|𝑝𝑛

5.2 Comparison with Context-Free Disjunction
There seems to be a clear trade-off between the two dis-

junctive variants. The context-dependent disjunction has no

restrictions on where in the CSMP it can be used. This has

clear benefit in that the user can write shorter and more con-

cise patterns that internally get compiled to complex ASMPs,

but also that the user requires no knowledge of the underly-

ing AST structure. However, there are obvious performance

drawbacks: This disjunction causes an exponential blowup

in compilation time depending on the amount of disjunctions

in the pattern, whereas the context-free disjunction remains

linear. The amount of top-level disjunctions in the output

pattern also rises exponentially, which in turn slows down

the matching of the ASMP against an AST.

Furthermore, even when ignoring performance, there is a

slight semantic difference between the two disjunctions. This

is where the terms context-free and context-dependent come

into play. The former will recursively compile its disjuncts,

regardless of context surrounding the disjunction, whereas

context-dependent disjunctions do take the context into ac-

count. This difference becomes visible when considering an

example that involves operator precedence.
Consider the two CSMPs <1 @+ 1+2>*3 and <1 @| 1+2>*3.

The former will first be encoded into some string 0*3, which

gets parsed and decoded into

Mul(<1 @+ 1+2>, Int(3)).

Both disjuncts will then be recursively compiled into

Mul(Int(1) | Add(Int(1), Int(2)), Int(3)).

The latter will be encoded into two strings 1*3 and 1+2*3,

both parsed and decoded separately. This will yield the ASMP

Mul(Int(1),Int(3)) | Add(Int(1), Mul(Int(2),Int(3))).

The two ASMPs are different because the context-dependent

disjunction took the context surrounding the disjunction into

account, where operator precedence comes into play. Con-

versely, the context-free disjunction sees no such behavior;

as if we had placed brackets around disjunction.

This phenomenon also causes some problems for the in-
ferred context-free disjunction where the inference will fail.

Suppose we have CSMP <1+2 @+ 1>*3. Because our encoding

rules specify that we take the left-disjunct for encoding, the

encoding will be 1+2*3. Because multiplication takes prior-

ity, the substring 1+2 will not have a corresponding node in

the AST after parsing. This means that we will be unable to

decode the AST and the compilation will fail.
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6 Descendant Pattern
The descendant pattern is used to inline deep AST traversals

into patterns. Consider an example in pseudocode where we

wish to find all recursive calls of some function foo:

match(a, `fun foo() {

@<body : StmtList >

}`)
for (n := traverse(body )):

match(n, `foo()`)
yield n

Instead, with a descendant pattern we would get a more

concise pattern as follows:

match(a, `fun foo() {

@<... Expr foo() ...>

}`)

In a similar process to how we introduced the compilation of

the context-free disjunction in Section 4, we will first show

the compilation of the descendant pattern with type hints

(Section 6.1) and then show how we can remove the type

hint and infer it instead (Section 6.2).

6.1 Descendant Pattern with Type Hints
We extend the syntax of CSMPs to include the descendant

pattern with cp ::= @<𝑡1 . . . 𝑡2 cp . . .>. This pattern requires

the programmer to provide two types. Type 𝑡1, the outer type,
represents the type of the entire metapattern. In the example

from the beginning of this section, this would be StmtList as

the body of a function is represented as a list of statements.

The second type 𝑡2 is the inner type, which represents the

type of the inner metapattern. This would be an Expr in the

example, as function call foo() is an expression.

We need the outer type to encode the entire descendant

pattern, and the inner type for recursively compiling the

inner pattern. Extending the encoding ↓ and decoding ↑
relations follows a similar process to metavariables and the

context-free disjunctions with type hints.

(↓-desc)
𝑠 = gen𝐵 (𝑡1)

@<𝑡1 . . . 𝑡2 cp1 . . .>↓𝑖
{(𝑠, {(𝑖, |𝑠 |) → @<𝑡1 . . . 𝑡2 cp1 . . .>})}

(↑-desc)
typeof 𝐵 (𝑎) = 𝑡1 𝑡2, cp1 ⇒ 𝑝

𝑎<𝑙>, {𝑙 → @<𝑡1 . . . 𝑡2 cp1 . . .>} ↑ /𝑝
The ASMP /𝑝 is a descendant pattern as in Section 2 [14].

6.2 Inferred Descendant Pattern
The type hint approach requires the user to annotate each

descendant pattern with two type hints, so we would like to

infer these types if possible. Unfortunately, inference is not

as feasible here as we would like.

In particular, the inner type 𝑡2 might be any type, because

the inner pattern cp
1
will be matched against all descendants

of the AST node we are matching, which can take on a wide

range of types. We can try to brute force the compilation

of cp
1
by attempting all possible values for 𝑡2. Apart from

the obvious performance drawbacks, this approach is also

highly ambiguous. For example, in @<... x ...>, the inner

pattern x could have type Expr, but also type Name.

Similarly, there exists no principled method to infer the

outer type 𝑡1. However, guessing its type is not as infeasible

as with guessing the inner type 𝑡2. Firstly, we do not really

need to guess the type itself, we only need to generate some

encoding that will successfully pass through the parser. Sec-

ondly, while ambiguities with guessing the outer type are

still present, they are not as prominent as with the inner

type as we shall discuss below. We will therefore design the

inferred descendant pattern such that we still need to specify

the inner type, but no longer need to know the outer type.

Guessing the outer type. We extend the syntax of CSMPs

with the inferred descendant pattern cp ::= @<. . . 𝑡2 cp . . .>.
To “guess” possible encodings for the pattern, we extend our

black-box parser interface 𝐵 with a new field guess𝐵 ; a set of
strings representing possible encodings.

In our approach, we compile some CSMP cp by substitut-

ing each inferred descendant pattern with some 𝑠 ∈ guess𝐵 .
If after the encoding phase of the compiler, the parsing phase

fails, we re-run the encoder using some different substitution

from guess𝐵 . We extend our encoder and decoder as follows:

(↓-idesc)
𝑠 ∈ guess𝐵

@<. . . 𝑡2 cp1 . . .>↓𝑖
{(𝑠, {(𝑖, |𝑠 |) → @<. . . 𝑡2 cp1 . . .>})}

(↑-desc)
𝑡2, cp1 ⇒ 𝑝

𝑎<𝑙>, {𝑙 → @<. . . 𝑡2 cp1 . . .>} ↑ /𝑝
The encoding rule is now explicitly ambiguous through the

guess of 𝑠 ∈ guess𝐵 . An implementation of this should be

able to generate all potential encodings and find at least one

for which the parsing phase succeeds.

The amount of encodings blows up exponentially depend-

ing on the size of the guess𝐵 set and the amount of descendant

patterns in our CSMP. If 𝑛 = |guess𝐵 | and𝑚 is the amount

of disjoint descendant patterns (not nested in one another),

then we get 𝑂 (𝑛𝑚) encodings. Nested descendant patterns

have a linear increase, as they are compiled independently.

Determining the guess set. A complete guess𝐵 set should

cover each type 𝑡 ∈ 𝑇 . We can generate this as follows:

guess𝐵 = {gen𝐵 (𝑡) | 𝑡 ∈ 𝑇 }. To increase performance, we can

shorten the guess𝐵 set by limiting types that are supported.

We can limit it those types that are commonly used for de-

scendant patterns in the object language. This would make

our inference less complete, but improve performance.

A second approach is to find encodings that cover multiple

types. For example, in many C-like languages, the encoding

int x; covers (sequences of) statements and (sequences of)
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declarations. Similarly, x covers both names and expressions.

These types are also some of the most common in C-like

languages. Therefore, the set guess𝐵 = {int x; , x} would
be quite a complete set, while only having a size of two.

Location ambiguity. Similar to the inferred disjunction,

we consider ambiguities in the decoding phase if two AST

nodes hold the same location. Suppose we have the CSMP

class Foo { @<...Expr "hello" ...> }; where int x; is a

successful guess for the descendant pattern. This parses to
4

Class("Foo", ClassBody ([Field (...)]))

where nodes ClassBody and Field have the same location.

Decoding this yields either one of the following patterns:

Class("Foo", /String ("hello "))

Class("Foo", ClassBody ([/ String ("hello ")]))

There exists a large semantic difference between these two

patterns: The first pattern finds all strings "hello" anywhere

inside the body of class Foo. The second pattern will match

class Foo only if the body has exactly one declaration, and

then finds all strings "hello" in that declaration.

To resolve this ambiguity, we always decode the outermost

AST node that matches the location, as this is always the

“most-general” option. If we were to choose the inner AST

node, our pattern might become too “dependent” on the

guessed encoding. In the example above, nothing from our

CSMP indicates that we are expecting the body of class Foo

to be a single declaration. This was completely dependent on

our choice of encoding int x;. It would have been entirely

possible to make other guesses such as int x; int y;which

would have resulted in a body with two declaration.

Multiple successful guesses. While we only want one
guess for which the encoding successfully parses, how likely

is it for two different guesses to be correct? If we assume that

guess𝐵 has minimal overlap of types between the different

encodings, we estimate these ambiguities to be rare.

If the ambiguous guesses have the same type after the

parsing phase, their decoding will be equivalent and thus do

not pose a problem. However, we can come up with some

contrived examples that do pose a problem, which we will

call context ambiguities. Consider some fictional language

that allows us to print both expressions and statements, e.g.,

both print(x) and print(x = 0;) are allowed. If these two

variants of printing are represented in the AST with different

constructors (e.g., PrintExpr and PrintStmt), then we have

a serious ambiguity if these are two possible encodings. We

call this a context ambiguity because the difference lies not

in the encoded descendant pattern, but in the context (parent

constructor) of the descendant pattern. This would result

in two possible decodings PrintExpr(/p) and PrintStmt(/p)

(where /p is our descendant pattern).

A more likely and less contrived parser of such a lan-

guage, where the this problem would not occur, would have

4
We use the notation [𝑎1, ..., 𝑎𝑛 ] to represents lists in the AST.

a single constructor for both variants of the print statement.

The argument given to this constructor would have infor-

mation on whether this is a declaration or expression (e.g.,

Print(PExpr(...)) and Print(PStmt(...))).

7 Patches
While pattern matching on ASTs is an important aspect

of software restructuring, we should also be able to make

transformations on those ASTs and unparse the result. One
approach is to construct a set of patches 𝑃 . A patch is a pair

(𝑙, 𝑠), where 𝑙 is a location representing a part of the source

code and 𝑠 is a replacement string. Applying a patch means

replacing the substring at the location with the replacement

string. In pseudocode, this would look as follows:

P = {}

for (match(a, `class Foo {

@<... Expr

@<s : "hello">

...>

}`)):
P += {(s.loc , `"world"`)}

applyPatches(a.source , P)

This transformation replaces each occurrence of the string

literal "hello" in class Foowith "world". We use a descendant

pattern, iterating over every occurrence of the string hello

and capturing this in a metavariable s.5 For each occurrence

we add a patch to replace s with "world". This method of

patching has been used on a larger scale restructuring by

Schuts et al. [12] for migrating legacy C/C++ test code.

We can make patching more declarative by introducing a

patch pattern that lets us inline this patch into the pattern:

P = match(a, `class Foo {

@<... Expr

"hello" --> "world"

...>

}`))
applyPatches(a.source , P)

We extend the syntax of CSMPs to include the patch pattern

with cp ::= cp
1
−→ cp

2
.
6
The right-hand side pattern cp

2

may only contain strings, (captured) metavariables, and con-

catenations of those. We could compile this pattern using

type hints. However, similar to the context-free disjunction,

we can infer this by recursively encoding cp
1
.

(↓-patch)
cp

1
↓𝑖 𝑠, _ trimlayout𝐵 (𝑠) = 𝑠′, 𝑘

cp
1
−→ cp

2
↓𝑖 {(𝑠, {(𝑖 + 𝑘, |𝑠′ |) → cp

1
−→ cp

2
})}

(↑-patch)

typeof 𝐵 (𝑎<𝑙>) = 𝑡

𝑡, cp
1
⇒ 𝑝1 𝑡, cp

2
⇒ _

𝑎<𝑙>, {𝑙 → cp
1
−→ cp

2
} ↑ 𝑝1 −→ cp

2

5
A pattern @<𝑥 : 𝑝> captures the node that 𝑝 matches into metavariable 𝑥 .

6
In code listings we will denote the arrow with -->.
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We have seen most of the ideas behind this method in Sec-

tion 4.2 on the inferred disjunctive pattern. One surprise in

the ↑-patch rule is that the output ASMP uses the concrete-

syntax pattern cp
2
as its right-hand side, whereas we origi-

nally defined patches in Section 2 to be fully abstract syntax.

The advantage that we get here is that because cp
2
uses con-

crete syntax, there is no need for an unparser of our language,
which allows us to keep the black-box parser interface sim-

ple. The compilation of cp
2
pattern is unnecessary, as we can

directly construct a replacement string by substituting each

metavariable in cp
2
for its assigned value, then concatenat-

ing each part together. The premise 𝑡, cp
2
⇒ _ exists only to

ensure that cp
2
has the same type as cp

1
.

Similar to other metapatterns we have seen before, the

decoding is ambiguous if two AST nodes have the same

location. For reasons equal to the inferred descendant pattern

(Section 6.2), we always decode the outermost AST node.

8 Implementation
Based on the methods presented in this paper, we imple-

mented a compiler from CSMPs to ASMPs in Kotlin and

applied it using a black-box parser for C++ based on Eclipse

CDT [13]. The compiler supports the main metapatterns in-

troduced in the previous sections. That is, both variants of

the disjunction, the descendant pattern, and patches.

Listing 2 shows an example restructuring implemented

using this library. We introduced this example before in the

introduction (Listing 1). This example restructuring ensures

that logged messages in the code get prefixed with the name

of the class or struct they are contained in.

We will go through the example from Listing 2 on a step-

by-step bases. On line 2, we initialize the C++ parser. This

CDTParser uses Eclipse CDT internally and implements our

black-box parser interface BBP. On the next line, we initialize

our CSMP compiler using this black-box parser. The CDTType

class represents the syntactic types of C++.

We create our CSMP on lines 5-12, represented as a multi-

line string. Using the context-dependent disjunction @| we

match on both classes and structs. By default, these meta-

operators are delimited by whitespace; we can optionally

delimit blocks of code with double-angled brackets << . . . >>.

In the body of the class or struct, we have a descendant

pattern where we search for expressions. Using the context-

free disjunction @+, we specify that either we want to match

on logger::log(@msg), or logger::log(@level, @msg). On a

successful match, we patch these messages so that they are

prefixed with the name of the class or struct. Note that the

patch operator --> takes precedence over the @+ operator.

On lines 13-15 we specify the syntactic type hints for each

metavariable in the pattern. Inspired by Coccinelle [9],

we do this outside of the pattern to leave the pattern itself

cleaner, and to avoid duplicate type hints if a metavariable

is used more than once in the pattern.

We are now able to compile our pattern on line 16. The

compiler also needs to know the top-level syntactic type

of the pattern, which in this case is a TRANSLATIONUNIT. The

compiled pattern is an ASMP (abstract syntax metapattern).

After we obtain the AST of our source code that wewish to

restructure (lines 19-21), we use the match function to match

this input AST against our ASMP (line 23). The output of

match is an iterable of MatchResults. A single MatchResult

contains a substitution (a map from metavariables to the

AST node they matched), and patches (a map from locations

to replacement strings). Because we used a descendant pat-

tern, we will get a number of matchresults depending on the

amount of logger::log calls found.

Finally, on line 24, we apply all patches on the source

code using the patchAll function. This function includes

checks that the locations we are patching are not accidentally

conflicting. As we only patch those locations in the source

string that are subject to replacement, all layout in other

parts of the source code get preserved. Layout preservation

has been a prominent topic in research, as a traditional way

of obtaining restructured code is by unparsing the AST at

the cost of losing layout [2, 4, 16].

9 Evaluation and Discussion
In this section we will evaluate and discuss various aspects

of CSMPs and our method of compilation. In Section 9.1 we

discuss the effort it would require to support new metapat-

terns save the ones discussed in this paper. We analyze and

discuss the exponential blowup problem in Section 9.2. In

Section 9.3, we evaluate the expressivity of CSMPs. Finally,

we discuss the effort required to implement the black-box

parser interface in Section 9.4.

9.1 Supporting New Metapatterns
The metapatterns our implementation currently supports are

not an exhaustive set of metapatterns. However, we do argue

that it takes little effort to extend the compiler to support

new metapatterns, as we can reuse the techniques already

developed for the previous metapatterns. We have seen four

different compilation techniques.

(1) Type Hints. If we let the user annotate a CSMP with a

type hint, we can use the gen𝐵 function to encode this CSMP,

then use location information to decode this metapattern.

We applied this technique on metavariables, and a variant of

the context-free disjunction and descendant pattern.

(2) Simple Inference. Some metapatterns have at least one

direct child that can be used to encode the pattern. For ex-

ample, we can use either the encoding of 𝑝1 or 𝑝2 to encode

𝑝1 @+ 𝑝2. Similarly, we use 𝑝1 to encode patches 𝑝1 −→ 𝑝2.

(3) Guess Inference. If such a direct child is not present, like

with the descendant pattern, we can instead try to guess the

encoding through a guess𝐵 set. This however should be used

sparingly as it comes at the cost of an exponential blowup.

51



SLE ’24, October 20–21, 2024, Pasadena, CA, USA Luka Miljak, Casper Bach Poulsen, and Rosilde Corvino

1 fun main() {

2 val blackBoxParser: BBP <CDTType > = CDTParser ()

3 val compiler: CSMPCompiler <CDTType > = CSMPCompiler(blackBoxParser)

4

5 val pattern = """

6 class@|struct @name {

7 @<... EXPRESSION

8 <<logger ::log(@msg)>> --> <<logger ::log("@name: " + @msg)>>

9 @+ <<logger ::log(@level , @msg)>> --> <<logger ::log(@level , "@name: " + @msg))>>

10 ...>

11 };

12 """

13 val metaVars: Map <String , CDTType > = mapOf("name" to NAME.get(),

14 "msg" to EXPRESSION.get(),

15 "level" to EXPRESSION.get())

16 val compiledPattern: ASMP = compiler.compile(TRANSLATIONUNIT.get(), pattern , metaVars)

17 ?: throw RuntimeException ("Could not compile pattern ")

18

19 val source: String = /* source code (string) we wish to refactor */

20 val sourceAST: AST = blackBoxParser.parse(TRANSLATIONUNIT.get(), source)

21 ?: throw RuntimeException ("Could not parse source ")

22

23 val matchResults: Iterable <MatchResult > = match(compiledPattern , sourceAST , source)

24 val restructuredCode: String = patchAll(source , matchResults)

25

26 println ("Found ${matchResults.toList (). size} match(es).")

27 println (" Restructured code:\n $restructuredCode ")

28 }

Listing 2. Example refactoring for C++ using the Kotlin implementation of concrete syntax metapatterns. The refactoring

ensures that logged messages in the code get prefixed with the name of the class or struct they are contained in.

(4) "Wild" Metapatterns. A wild CSMP does not follow the

typical encoding and decoding scheme. Instead, we use it

to generate multiple metapatterns that can all be compiled

individually. Then they are merged together into one large

abstract (disjunctive) pattern. The context-dependent dis-

junction is the prime example of this. Wild metapatterns

also come at the risk of an exponential blowup.

To illustrate the reusability of these four methods, we

will consider two more metapatterns we have not yet dis-

cussed: list patterns and permutation patterns. List patterns,

or sequence patterns, are patterns that specifically match

on (sub)lists in the abstract syntax tree. For example, the

ASMP [s1*, Print(Str("s")), s2*] will match lists con-

taining a statement printing "s", where s1 and s2 are se-

quence metavariables that match on sublists. Using concrete

syntax, we could rewrite this to @s1* print("s"); @s2*. To

encode this, we can use the type hint approach by specifying

that this pattern represents a StmtList. However, a cleaner

approach would be to use simple inference by encoding any

of the child patterns; in this case print("s"); would be a

valid encoding for the CSMP.

Permutation patterns, or set patterns, are patterns that

match on sets; this can also be interpreted as matching on

lists where the order is irrelevant. One example use case

is for languages that support passing keyword arguments

to function calls (e.g., foo(a = 0, b = 1) in Python). Be-

cause the order of arguments is irrelevant, the permutation

pattern {KwArg("a", Int(0)), KwArg("b", Int(1))} would

match all desired cases. An argument can be made for design-

ing these in concrete syntax such that we have a context-free

and context-dependent variant like how we designed the

disjunctive pattern. In C++ for instance, the order of modi-

fiers added to function declarations is often irrelevant; both

virtual void foo(); and void virtual foo(); are equiva-

lent. If the keywords have no location information in the AST,

we would need a wild (context-dependent) variant of the

permutation pattern. E.g., @{public virtual void} foo();

would generate six encodings; one for each permutation.
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Figure 3. Runtime performance of compiling a CSMP mea-

sured against the number of disjoint metapatterns.

9.2 Performance of Exponential CSMPs
In the sections on context-dependent disjunctions (5) and

the inferred descendant pattern (6.2), we predicted an expo-

nential increase in the compile-time performance based on

the number of these patterns present. To quantify at which

point this blowup becomes problematic, we ran some simple

experiments and visualized their results in Figure 3.

In the experiments, we ran the compiler with a black-box

parser for C++ on CSMPs with varying amounts of disjoint
context-dependent disjunctive patterns or descendant pat-

terns. The results displayed in Figure 3 were obtained by

compiling each pattern at least ten times (for a minimum

of one second), and taking the average of those runs. The

CFD and CDD graphs respectively plot the number of context-

free and context-dependent disjunctions against the compile

time. The DESC-𝑛 graphs plot number of descendant patterns,

where 𝑛 refers to the size of the guess𝐵 set. The CSMPs are

artificially constructed as follows: For CDD we used

int foo() {

return 0

+ 0 @| 1 + 0 @| 1 ... ;

}

with increasing number of disjunctions. CFD follows the same

pattern, replacing the @| operator with the context-free ver-

sion @+. Similarly, for DESC-𝑛 we used the pattern

int foo() {

return 0

+ @<... Expr 0...> + @<... Expr 0...> ... ;

}

with increasing number of descendant patterns. We designed

the guess𝐵 set for a worst-case scenario where we force the

compiler to try every guess before finding the correct one.

Ignoring the context-free disjunction, the results clearly

demonstrate an exponential blowup. Even at low amounts,

we reach compile times that could be considered problem-

atic. For example, 8 context-dependent disjunctions give a

compile time of roughly 100 ms, and 12 disjunctions give a

compile time of one second. As a comparison, for the context-

free disjunction @+ it took over 70 operators to reach this 100

ms average (not visible in the graph).

From these results we infer that context-dependent dis-

junctions and the inferred descendant patterns should be

used sparingly. Luckily, in most practical cases we can actu-

ally use the context-free disjunction instead of the context-

dependent disjunction. We require the context-dependent

disjunction only in those cases where the disjuncts will not

be represented in the AST (with location information). To fur-

ther defend the context-dependent disjunction, we must also

take into account that the expressivity it provides is impossi-

ble to obtain with ordinary concrete syntax patterns. There

is no generalizable alternative to the context-dependent dis-

junction that does not involve a combinatorial explosion.

For descendant patterns, we conjecture that it is rare in

practice to use many disjoint amounts in one CSMP. Fur-

thermore, the performance blowup can be avoided with type

hints or by splitting up the pattern into smaller patterns.

9.3 Expressivity of CSMPs
To evaluate the expressivity of CSMPs, we looked at an exist-

ing C++ refactoring by Schuts et al. [12] and partially rewrote

their refactoring to instead use CSMPs and our Kotlin tool.

The original refactoring, implemented in Rascal and using

abstract syntax patterns, migrates C/C++ test code from the

STX testing framework to the GoogleTest framework. We

only modified the code snippets which involved C++ (the

original refactoring also targets C and CMake). We also ig-

nored C++ preprocessing directives. We have successfully

rewritten the five relevant code listings from their paper,

going from 116 source lines of code (SLOC), to 92.

We utilized all CSMPs introduced in our paper, which

reduced often reduced the SLOC. In particular, the original

refactoring manually built and kept track of a change set to
patch the code, which we now replace with the patch pattern.
A limitation of our Kotlin tool is that it requires verbose

solutions for any task where our CSMPs are not expressive

enough, such as checking equality between two metavari-

ables from different patterns. We have to manually get the

substitution of a match and retrieve the metavariable from

this substitution. These cases resulted in a higher SLOC

count. To avoid this in future work, the CSMP language

should be embedded into a proper DSL for metaprogram-

ming (such as Rascal).

Another downside of using CSMPs involves keywords. The
original refactoring could use holes _ in the pattern, abstract-

ing over keywords. As mentioned in Section 5, sometimes

keywords lack location information and can not be replaced
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with metavariables in concrete syntax. This means that the

CSMP will either be verbose or not as generic as the abstract

counterpart. Using the context-dependent disjunction we

mitigate some of this. For example, with static @| /*...*/

we optionally match on the static keyword.

9.4 Effort in Implementing the Black-Box Parser
By utilizing external black-box parsers, our approach is gen-

eralizable to many languages. But what is the effort required

to implement this black-box parser interface? We reaffirm

the conclusion by Aarssen et al. [1] that the work load is

most prominent in marshalling of the native ASTs from the

external parser to our internal representation of ASTs in

Kotlin, which is tedious and error-prone to write manually.

In comparison, the other elements of the black-box parser

interface (gen, typeof, trimlayout, and guess) need little effort.

10 Related Work
Previous work on supporting concrete syntax patterns in a

language-parametric setting often relies on the existence of a

syntax specification of the language in some formalism. The

ASF+SDF system [6, 15] supports rewrite rules, where the

syntax and parser of these rules is dynamically constructed

based on the syntax definition of the object language and a

user-defined syntax for metavariables, giving rise to concrete

syntax patterns. Both Spoofax [5, 17] and Rascal [7] support

concrete syntax patterns using a similar method. Aarssen

et al. [1] remark that this approach, which requires a syntax

specification for the object language in the respective system,

is costly. As an alternative, they present Concretely, a tech-

nique for using external black-box parsers of the object lan-

guage to support concrete syntax patterns. Our compiler for

CSMPs is an extension to this technique, with the difference

that we use location information to decode metavariables

rather than assuming that encodings are unique.

Additionally, Aarssen et al. [1] introduced Tympanic, a

DSL for mapping Java class hierarchies to Rascal’s algebraic

data types. This tool significantly reduces the effort required

to write mapping from ASTs generated by external black-

box parser (that are Java-based) to their internal definition of

ASTs. We have not created such a DSL for our Kotlin library.

Abstract metapatterns supported by Rascal include regular

expressions for matching strings, multi-variable patterns for

sequences, and the descendant pattern [14]. However, the

support for these metapatterns in concrete syntax is limited.

The C program transformation tool Coccinelle [9], ap-

plied extensively on Linux Kernel code [8], uses a semantic

patch language SmPL which lets users express transforma-

tion using concrete syntax with line-based patch patterns.

On a successful match, lines in the pattern prefixed with -

will be removed, and lines prefixed with + are added. Our

definition of a patch pattern uses an arrow --> instead. SmPL

also introduces the ellipsis “...” metapattern, which matches

any control-flow path from a term matching the pattern be-

fore the “...” to a term matching the pattern after the “...”.

Their other metapatterns include disjunctions |, optionals ?,

and conjunctions &. We consider Coccinelle to be a quin-

tessential example of a restructuring tool with fundamental

support for CSMPs. Its widespread use is an inspiration for

our work, which lays a groundwork for generalizing tools

such as Coccinelle to any programming language.

11 Conclusion
Concrete syntax metapatterns (CSMPs) are patterns written

using the concrete syntax of some object language, and con-

tain logic that is more expressive than regular patterns with

metavariables and holes, which allows for more declarative

implementations of software restructurings. In this paper,

we introduced techniques to compile CSMPs to abstract syn-
tax patterns. Extending the work by Aarssen et al. [1], these

methods require some external black-box parser of the ob-

ject language, making the compiler scalable to multiple lan-

guages. Specifically, we defined a compiler for disjunctions,

descendant patterns, and patches.

To spare users from annotating each CSMP with syntactic

type annotations, we employed methods to infer the type

instead (through simple or guess inference). Furthermore,

for the disjunction we support a context-dependent variant

which can be used at any position in the code, regardless

of whether it represents a singular AST node or not. Some

of these methods have an exponential blowup in runtime

performance, however, we conjecture that in practical cases,

the amount of these “exponential CSMPs” required is not

significant enough to cause real problems.

We implemented our compiler as a library in Kotlin, to-

gether with some infrastructure to implement restructurings.

While our implementation comes with support for C++, sup-

porting new languages requires an implementation of the

black-box parser interface. To extend the compiler with new

CSMPs, we argued that we can mostly reuse the methods

presented for the existing CSMPs.

Directions for futurework include the embedding of CSMPs

in a metaprogramming DSL, finding optimization techniques

in the compilation process, and a study on the usability of

CSMPs and their applicability in practice.
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