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This report details the development of a
device that utilises image detection and
machine learning to predict slug
infestation in greenhouses. Increasing
pesticide regulations have led to a rise in
slug infestations, causing significant crop
damage. Although alternatives to
pesticides exist, they are expensive and
labour-intensive to implement across
large greenhouses. The goal of this project
is to reduce labour by automating slug
monitoring through image detection and
machine learning. The focus is narrowed
to detecting the Spanish Earthslug
(Lehmannia Valentiana) in Cut
Cymbidium, a type of orchid, as this
market is particularly affected, and one
slug species makes image detection more
manageable.

Context research and experiments were
done to understand the problem. Slugs
are nocturnal creatures that emerge from
the soil periodically for food. Their activity
is mainly influenced by temperature and
humidity, preferring moist environments
at around 17°C.

Since greenhouse conditions vary by plant
growth stages and change throughout
the year, it is worthwhile to monitor
activity on a longer time scale. Image
detection and computer vision are already
used in pest control and other
applications within greenhouses. For
efficient image detection, the looked after
objects must be clearly identifiable and
the images should preferably be of
consistent quality. 

To achieve this in a greenhouse a good
suggestion would be a controlled
environment with minimal to no leaf
occlusion. In our case, another important
factor is having low data images with a
high contrast between the slug and their
background. This can be achieved by
adjusting lighting conditions, converting
images to black and white, and tracking
changes between images to detect slug
movement. After these results, the
direction was chosen to predict slug
infestation based on environmental data
using counted slugs through image
detection as a reference.
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Based on these insights, a device concept
was developed using a Seeeduino Xiao
ESP32S3 Sense microcontroller and Grove
sensors. The system lures slugs with wheat
bran, a proven bait, and uses a camera to
capture images. Photos are stored on an
SD card along with environmental
measurements, such as temperature and
humidity. Field tests and prototyping
demonstrated that a 12 cm-high container
with four 1 cm-diameter entryways was
effective for attracting slugs and capturing
quality images. To enhance contrast and
prevent mould growth, a white mesh was
placed between the bait and the slugs.
For easy processing and low data images,
the images are processed into binary
images, where pixels are either black or
white, and Hough Circle transform is used
to crop the images around detected
circles.

For slug population prediction, a
regression algorithm was selected, with
environmental variables serving as the
input and slug counts as the output
labels. Spatial interpolation can be used to
estimate environmental values for the
entire greenhouse based on
measurements of the device therefore
getting the data to make predictions for
slug infestation.

The final version of the device, called
Cephal, was tested in the field and used to
build an image detection model. During
field tests, Cephal successfully captured
environmental data and collected over
485 images, although no slugs were
detected, indicating the need for further
research. Additionally, improvements such
as a longer cable for the moisture sensor
and a more accurate DHT sensor are
required.

With Cephal, a dataset of 482 images was
used for machine learning. Reducing the
input size to 64x64 binary images, a CNN
model was made with around 90%
accuracy.

In conclusion, Cephal has the potential to
enhance slug monitoring in greenhouses.
With improvements in sensor
performance and further optimisation of
the machine learning model, Cephal
could accurately predict slug infestation,
helping greenhouse owners implement
timely pest control strategies. Future work
should focus on optimising the electronics
and training and optimising the slug
prediction model based on environmental
values.
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Image 2: Cephal

Image 1: Cymbidium flowers
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In the greenhouse industry, pest control
presents a significant challenge. Due to
increasing pesticide regulations the
effectiveness of some pesticides is
reduced due to limited allowed dosage.
Alternatives either do not exist or have
limitations in effectiveness, efficiency, and
or costs (Han van Tilburg, personal
communication, 19-03-2024). One pest
that has become more prominent in
crops due to these regulations is the slug.
Due to a lack of suitable alternatives to
pesticides slugs have been able to thrive
in certain crops, causing a substantial
amount of damage. One innovative
solution that has recently been
introduced to the market, that I have
been involved in personally, is the use of
slug traps (Aartsen et al., 2022). However,
the maintenance and costs associated
with these traps make it necessary to
apply a selective application strategy to
maximise their efficiency and cost-
effectiveness.

Machine learning could potentially be an
attractive option to prevent the use of
manpower in monitoring damages to
crops by applying selective slug control.
The field of machine learning concerns
the ability of computers to recognise
patterns and learn from data. 

Machine learning models have already
been successfully implemented in
combating other pests such as Trips and
Whitefly (Xia et al., 2015). With the combat
of these pests, the models have learned to
identify pests using images. This specific
part of machine learning falls under the
field of computer vision, which involves
learning information from visual data.
Within computer vision, the main part
that this report will focus on is image
detection, which involves a model being
able to detect several objects within an
image without the need for classification
of the objects. 

1. INTRODUCTION
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This report aims to develop a product that
uses computer vision to identify and
count slugs in a greenhouse setting. The
focus is on creating a product capable of
capturing a large number of images to
train an optimal image detection model.
This model will be designed to accurately
predict slug infestations, providing
greenhouse owners with valuable insights
into where pest control measures are
most needed. The ultimate goal is to offer
a reliable tool for effectively managing
slug populations and minimising crop
damage in greenhouses.

The approach in this report can be put
into 3 separate parts: First, the context of
the slug infestation and machine learning
within greenhouses will be explored.
Simultaneously a series of small
experiments will be done to explore the
possibilities and limitations of image
detection on slugs. The result of phase
one will be a program of requirements
and a design direction. In the next phase,
another series of explorations and
detailing will be done to create a more
detailed concept. At the end of this phase,
the primary working principle and main
device shape should be ready. The final
stage will detail this concept into a
working prototype and detailed design.
After this stage, the design will be detailed
in technical drawings and validated
within the context.

To properly develop a machine learning
algorithm in the greenhouse setting,
some restrictions will be made to keep
the scope of this graduation manageable
during the specific timeframe. The scope
will be limited to monitoring the Spanish
EarthSlug (Lehmannia Valentiana) within
cut-Cymbidium greenhouses. The reason
for this is that within the Netherlands the
Cymbidium market is especially affected
by the slug infestation. They are
specifically bothered by the Spanish
Earthslug which helps as the model only
has to identify one species and colour of
slug.



CONTEXT AND
SOLUTION SPACE

EXPLORATION
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2.1 The Spanish Earthslug
infestation
The Netherlands is well known for its
greenhouse industry. The municipality of
Westland is responsible for a large part of
the Dutch export. One lucrative trade is
the Cymbidium (orchid) market, of which
The Netherlands is the biggest exporter
(“The Orchid Genome”, 2021). However,
this crop is jeopardized by the Spanish
Earthslug (Lehmannia Valentiana). This
small species of slug causes severe
damage to the flowers by eating the soft
parts of the plant (leaves and flowers),
making them unsellable. 

While in the past specific pesticides
aimed at slugs were available (Holger
Nennmann, 2021), due to regulations on
the usage of these pesticides, combating
slugs has become increasingly difficult
(Ministerie van Algemene Zaken, 2024). So
far no suitable alternatives are on the
market.

Methods that were used by greenhouse
owners involved luring the slugs with
cucumber on a dish and catching them
by hand as well as non-lethal slug
detergents. No suitable alternatives to
pesticides were there until a slug trap was
developed which uses wheat bran to lure
and kill the slug (Aartsen et al., 2022). The
trap is reusable therefore eliminating
waste. However, handling the traps is
labour-intensive therefore applying them
on every plant is not effective for
greenhouse owners. The traps are now
used either on their own in sections of the
greenhouse or in combination with the
detergent (Saponin). Traps can also be
applied in the whole of the greenhouse
when a sufficient workforce of high school
students is present but most greenhouses
in the sector do not have that (Han van
Tilburg, personal communication, 19-03-
2024).

2. CONTEXT
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To gain more insight into the slug
monitoring behaviour of greenhouse
owners, a small survey was done amongst
Cymbidium Growers (results in Appendix
A). The monitoring is done exclusively by
the greenhouse owners themselves by
looking at the damages and slime trails
left on the plants. This is done weekly and
is usually done to get a good perception
of the damages done and to see if the
applied pest control is working. While
with good pest control, there is less need
to do this as the effectiveness is known,
with less certainty of good pest control
this requires time and energy of the
greenhouse owner that usually would be
spent on other activities that would
increase revenue.

Slugs are molluscs that come in various
shapes and sizes. The Spanish Earthslug
can go from a couple of millimetres to a
maximum of 8 cm. They can live up to 6
years old and their eggs take 3 weeks to
hatch (Wikipedia contributors, 2023). As
slugs are hermaphrodite they can
therefore quickly spread in greenhouses.
In general, the defining factors that
determine the habitability of an
environment for slugs are moisture and
temperature (Douglas & Tooker, 2012).
They prefer very moist places as slugs lose
moisture constantly (Stephenson, 1968)
and for temperatures, they prefer cool
places. 

The Spanish Earthslug thrives most at 17
degrees Celsius. Besides this, they are
mostly active during the night. In
greenhouses, this means that during the
day, slugs hide in the moist soil, and
during the night they tend to go out to
eat the soft parts of the plant. They don’t
do this every day as slugs usually go for
food once every 5 days (Peter Zwinkels,
personal communication, 08-04-2024).

Image 3: The Spanish
Earthslug (above) 

and the Backie Slug trap
(below) (Aartsen et al., 2022)
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2.2 The Cut-Cymbidium
cultivation
The Cut-Cymbidiums are a species of
orchid where one stem bears multiple
flowers. For harvesting, the stem gets cut
from the plant so a new stem may grow.
In the following chapter, the way of
growing and cultivating these flowers is
described. 

An adult Cymbidium plant can stand in a
greenhouse for multiple years and even
decades. They start out their lifecycle as
saplings in a small vial or pot in a
substrate. After 6 to 8 months they go to a
larger pot of 2l where they remain for
about a year. Afterwards, they go to a 5l
pot where in 2 years they go to a 7/10l pot,
and after 2 more years a 10/12l pot. The
exact moments of transferring and sizes of
pots differ between breeds that bear
flowers earlier in the year and breeds that
bear flowers in the mid/ plate year.

For light conditions in the greenhouse, it
again depends per stage: The sapling
stage takes 20-30k lux with additional
artificial light of 3.5k lux needed in winter
months. When older the plants need at
least 35k lux but with light above 50k
protection is needed to keep additional
light out. The day cycle of a Cymbidium is
at most 16 hours. Greenhouses for
Cymbidium usually use natural light and
no LED lighting. At night the greenhouse
is dark with no light sources present. 

The conditions that have to be
maintained in the greenhouse depend on
the phase in the lifecycle and the season.
During the sapling stage of the plant 18 C
at night and between 20-25 C during the
day is recommended and 16-18 C at night
and 18-20 C during the day in winter
periods. After this, the temperature
depends on the stage in the flowering
cycle. The lowest range for a cycle is 10-13C
and the highest is 20-22 C. The stages are
usually for around 15/20 weeks. 

Figure 1: Growth schedule of
Cymbidium with recommended

temperatures and number of
weeks (Floricultura b.v., 2021)



A humidity between 50-80% should be
upheld. Cymbidium do tend to be hardy
so they can handle a lower relative
humidity for a while but that should not
be the norm.

As the different stages of growth require
different circumstances, the greenhouses
need to have different sections where
those circumstances are maintained.
Every section is equipped to go along with
the different stages of growth. In the
greenhouses, the plants are housed on
trays or beds with an open bottom so the
drain water can flow away freely,
otherwise, mould can develop. For
watering, a drip system is applied where
either rainwater or water from reverse
osmosis is given to the plants. With larger
pots up to 6 drip systems can be applied
per plant. The average man hours needed
per year per hectare to work in the
greenhouse is 800/900 hours. (Floricultura
b.v., 2021)

In conclusion, especially temperature
needs are quite variable in greenhouses
that cultivate Cymbidium. For slug
monitoring, this can indicate that
monitoring on a larger timeframe is
necessary to compare slug density with
temperature fluctuations. Other factors
that can influence slug density are the
humidity, which is generally high but can
fluctuate and soil moisture, which is
directly influenced by the drip system. For
a device that potentially uses a camera it
is good to note the absence of any
artificial light in the greenhouses.
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Image 4: The Cut-Cymbidium
flower (Aartsen et al., 2022)



2.3 Machine learning in
greenhouses
In greenhouses, various applications for
computer vision give us details about
what does and does not work and what to
take into account. One application for
instance is in harvesting robots. Using
computer vision, harvest ripe produce can
be detected and then harvested. However,
a challenging factor that inhibits
commercial application is (partial)
occlusion and clutter of the produce
making detecting and isolating ripe fruits
difficult. Ways to prevent this for instance
has been to move the leaves and plants
with a gripper (Kootstra et al., 2021). 

A different research in the same use case
developed a model to detect cherry fruits
(Gai et al., 2021). They used an algorithm
named YOLO-v4 (You Only Look Once)
with a Densenet-based structure. With a
dataset of 400 photos of which 50 were
non-cherry and with augmenting the
dataset (editing the photos to get more
training data) they got an accurate model
that was able to deal with occlusion.
Another research found that changing the
shape of the boundary box from a
rectangle to a circle helped increase the
accuracy in detecting tomatoes (Liu et al.,
2020).

Another use of computer vision in farming
is selecting fruit based on surface defects
and blemishes. In this application, there
are various possibilities for cameras that
have their pros and cons. For instance, a
widely used instance is colour cameras
however blemishes outside of the visible
light spectrum can not be spotted.
Monochrome cameras using non-linear
light alleviate this issue, but the photos
produced by these cameras tend to have
darker edges which can sometimes result
in false diagnostics. Lighting setups can
help this but it does give an increase in
costs. Also removing the edges may work
but this is at the risk of losing possible
blemishes and therefore also cause false
diagnostics. A 3D-based solution is
structured light, where parallel lines get
projected on a surface and the curvature
of the lines is what gets measured (Li et al.,
2014). 
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Image 5: Monochromatic camera
used in detecting blemishes in

fruits (Li et al., 2014)



When it comes to pest control, computer
vision is also used already. For instance, by
capturing flying animals with sticky traps
and then counting them with computer
vision (Xia et al., 2015). In this study from
2015, they used the watershed algorithm
to build a model that was able to
distinguish Aphids, Thrips and Whitefly.
They found that the YCrBr colour space
was the best way to distinguish the
animals from the yellow background of
the sticky trap. Also ironically enough a
low resolution of the input image resulted
in higher accuracy of the model as high-
resolution images provided additional
noise that caused inaccurate predictions
of the model.

 For slugs specifically research (Kozłowski
et al., 2016) has been done that was able
to track their movements in a controlled
lab environment in 3 stages: Movement
detection, object detection and
movement tracking. The movement
detection was done by making a grid of
the images and taking the average pixel
value in grayscale per square. This was
compared frame by frame and differences
in values were taken as movement. Then
after a classifier identified the slugs using
image detection, a so-called CamShift was
used to track the movements. Here the
centre of an object gets identified and
then the results of the next frames get
compared to construct a trajectory. 
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Image 6: Motion detection phase using a grid (Kozłowski et al.,
2016)



In conclusion, computer vision has a
variety of uses in greenhouses. What is
important to take into consideration is the
circumstances for your specific use case.
In a controlled environment, such as with
the glue strips to count flying pests, it is
easier to deal with factors such as
occlusion and methods such as finding
the mean differences in pixel values
between frames will also become more
applicable.
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 If computer vision is necessary to use in
the greenhouse itself outside of a
controlled environment, then make sure
factors such as occlusion become less of a
problem by either influencing the
environment through grippers or by using
an optimal algorithm to build your model.
Another thing that is important to note is
what camera/ lighting setup is to be used,
some will reduce computing power but
might come at an increased cost.
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To reiterate: the goal for the assignment
is to make a device that is able to provide
a valid dataset that serves as training for a
model that can predict slug infestation in
a greenhouse. The chosen field for this is
computer vision, where a model can
detect the contents of an input image. 

In the context of greenhouses, computer
vision will bring some complications as
mentioned earlier, such as occlusion of
leaves and the absence of light sources at
night when the slugs are active as these
factors prevent you from taking a good
photo for your dataset. As well, you want
to provide data to an algorithm that is not
too big and can easily be interpreted
(Supervised Learning, n.d.). To explore the
solution space, a variety of small
experiments were done.

3.1 Data compression
In order to save computation time and
space, the photos will need to be properly
compressed while still maintaining
enough details for a model to recognise
the slugs. To do so a proper proximity to
the slug must be maintained to get them
on the photo big enough to not be
reduced to a couple of pixels. In practice,
this is hard to do if a slug must be located
within a plant.

A possible method that was designed was
to do object detection in a larger image
that contains one or more slugs. Based on
the findings, cutouts can be taken from
the image where the slugs are supposedly
located. These can then be compressed
and processed. Originally objects that
belonged to a certain colour with a
minimal area of 2000 pixels were
selected. On simple images with high
contrast, this worked very well, but with
more complex objects such as slugs,
colour was not a sufficient measure to
make the distinction as slugs were
frequently missed in photos where other
objects were misidentified. (Code in
Appendix B.) Therefore instead, a machine
learning-based model is a better use for
this purpose. 

 

3. SOLUTION SPACE
EXPLORATION
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Image 7: The result of the blue detection algorithm



Another way to compress the data is to
take a sequence of images and deduct all
of the pixels that are different from each
other. This way you will only register any
moving objects. Using this, if the camera is
in a stable environment the slugs can be
registered when moving, using the
difference in the images as an input for
the model. Using the test setup for the
light test, recordings of slugs moving have
been made on a 1x1 cm grid

. Two screenshots were made from that
video and used as input for a program.
The resulting image was compressed to a
224x224 pixel image and thresholded to
black-and-white values for even easier
processing. The result could be used for a
model (code in Appendix C). One
downside to this method is that it will not
be easy to track different slugs this way.
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Image 8: Movement data of the slug and resulting difference
image



3.2 Adjusting colour values
A way to make slugs more recognisable in
a photo of a plant is by manipulating the
colour values of an image. This was done
by manipulating the values in the
application Procreate of images shot in a
greenhouse environment. It was during
the daytime with photos of slugs placed
on leaves. Changing the hue towards
magenta on the spectrum made the slugs
green on a blue leaf which could improve
recognizability. 

The downside to this method is that you
are still working with coloured images,
therefore being larger in data than binary
images (images of solely black and white
pixels). This method can therefore be
useful if coloured images provide a more
beneficial tradeoff compared to binary
images. (Images are in Appendix D.)
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Image 9: Slug image with altered
magenta values



3.3 The first dataset
For the first iteration of a machine
learning model based on image
detection, a model from the internet was
used as a basis to train a new model. This
model is based on a convolutional neural
network (CNN) and has been trained on a
dataset of stock photos of both slugs and
other pests frequent on farms such as
beetles and caterpillars.

 In order to enrich the dataset, photos of
the Spanish Earthslug have been taken in
varied contexts, shapes and sizes. For this,
the slug was photographed in the
greenhouse with varying visibility, the
focus of the image and the amount of
slugs in a photo. As well, photos without
slugs have also been taken. Besides this,
photos were taken in a photo studio and
outside. To get more data, the dataset
including the original slug dataset was
then subjected to image augmentation,
where the brightness of the photo was
heightened and lowered and the images
were also rotated at various angles. The
model was meant to be retrained with
this dataset.

Due to a change in the direction
mentioned later on in the report, this
model alongside the dataset was not
necessary anymore. However, the
direction of image augmentation to get a
larger dataset is still very useful for later
use. (Model in Appendix E and Dataset in
Appendix F.)
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3.4 Light test
The intention is to process slugs using a
computer vision algorithm. As slugs are
most active at night, when there is no
light source in the greenhouse (Han van
Tilburg, personal communication, 27-03-
2024) a solution must be found to get the
slugs photographed. One option is to use
a light source on the visible spectrum to
provide light in a traditional manner. In
order to see what different light sources
do with the visibility of slugs on camera a
specific test setup was built (Appendix G).
This setup is meant to provide a clean and
stable photo of the slug while it is
exposed to different wavelengths. 

The lights used were: Red, yellow, blue,
green and white configurations of a 12V
LED spot with a GU5.3 fit. The photos were
taken with an iPhone 13 pro. Based on the
results, white light captures the details of
the slugs best followed by the yellow light.
The other light sources tend to give the
slugs a more black appearance. 
Higher details might give more for an
algorithm to properly identify a slug in
comparison to other elements in a photo,
whereas with a black slug the processing
of an image might go more flawlessly if
there is enough contrast between the slug
and the background. Therefore a tradeoff
can be made between more detail and
processing. (Photos in Appendix H.) 
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Image 10: Schematics for the light
test setup and test setup + result
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Based on the findings of the prototyping
and context research, the following design
requirements can be formed.

The device should function with
temperatures varying between 10-22C
The device should function with a
humidity between 50-80%
The device needs to function with a
drip watering system
The device should be able to operate
at night with no artificial lighting
The device should be able to operate
during the day with no artificial
lighting with values of 20-50k lux

A slug should be able to be detected
regardless of occlusion by plants
The data given to the ML model
should be as low in storage space as
possible
The device should capture trends over
a larger time scale (years)
The device should not disrupt
greenhouse operations

4. REQUIREMENTS
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Looking at the aforementioned
requirements and the habit of slugs to
only come out once every couple of days
for food and their ability to go for months
without food (Peter Zwinkels, personal
communication, 08-04-2024), a survey of
just one night will not give an accurate
estimation of the slug infestation within a
greenhouse. Instead, a timeframe of 3 to 5
days monitoring one plant is more
feasible. Also, the occlusion of leaves and
the small size of a slug provide a serious
obstacle for an image detection model to
recognise slugs in photos taken from
plants. 

The difficulty of finding slugs mechanically
for a machine learning model gives us the
need to predict slug infestation another
way. A way that can indicate slugs is by
looking at the damage on a plant, such as
eaten leaves and slime trails on the stems
and leaves of the plant. However, this
requires an automated system that
checks every plant thoroughly, which can
be resource-intensive. Two environmental
factors that have been deemed most
important in determining slug activity are
moisture and temperature, as slugs prefer
cool and moist places (Gerard van Wijk,
personal communication, 08-04-2024).
These can be used to make predictions for
slug activity, as a couple of measurement
points can be used to make predictions
for the rest of the crops.

Taking the above findings into account,
the environmental factors of temperature
and moisture can be used to predict slug
activity while physically counting the slugs
in plants can be a way to confirm the
predictions.

 Therefore the new direction will be to
make a device that measures the
environmental factors and counts the
slugs to then predict slug density based
on those factors. In order to accurately
count slugs without the hindrance
described in the text above, one could
lure slugs to a separate location to count
them there. 

As mentioned earlier greenhouse owners
already do this using cucumber to lure
slugs to a dish and then catch them from
there (Peter Zwinkels, personal
communication, 08-04-2024). The
direction will therefore be to make a
construction similar to the dish with some
wheat bran, as this is a similarly effective
slug bait with a longer expiration date
(Peter Zwinkels, personal communication,
08-04-2024). Once lured, the slugs will be
counted using Image Detection and a
camera, as this is in line with the learning
objectives of  the assignment. For
measuring the temperature a sensor can
be used that also takes humidity into
account, and for soil moisture, a sensor
needs to be inserted in the soil (see Figure
3).

In the following stage of the project, this
concept will be explored and elaborated
on. In this process, 3 different trajectories
can be distinguished: the design of the
algorithm that predicts the slug density in
the greenhouse, the design of the physical
device that lures slugs to the photo-taking
area and the image detection itself. 

5. DESIGN
DIRECTION
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Figure 3: A quick sketch of the new
direction with the specific hardware

components

Figure 2: Envisioned user journey of
the new direction



CONCEPT
CREATION



6.1 Building electronic prototype 
For the device, it is important to have an
easily modifiable prototype that can be
used for various tests. As well for machine
learning to work, a dataset needs to be
built with the device for training, testing
and validating the performance of the
model. 

To start out with this, a device is being
constructed that uses a camera to take
periodic photos of the device for slug
count and saves it to an SD card. To make
sure the dataset does not get filled with
unnecessary data and to save battery time
the camera will take a photo once every 3
minutes as this is deemed a sufficient
time frame based on the speed and
feeding habits of slugs (Aartsen et al.,
2022). Besides this, a soil moisture meter
and a temperature and humidity sensor
are also present. Simultaneously with the
photos, these values get written to a CSV
file that is to be used for machine learning
later. 

To start out, a Seeedstudio XIAO
(nRF52840) was chosen with a Grove
shield, DHT20, Grove vision AI module and
a moisture sensor as a system. The reason
for this is that a Grove module has plug-
and-play sensors that are very easy to
program and implement. Besides this, the
XIAO meets the requirements for the
performance of the device while
simultaneously using significantly less
power than for instance a Raspberry Pi.
Due to compatibility, the XIAO was
eventually replaced alongside the AI
module with a Seeedstudio XIAO ESP32S3
sense for a better camera module and the
possibility for wifi connectivity (Martin
Verwaal, personal communication, 01-05-
2024).

6. PHYSICAL
DESIGN
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Image 11: Prototype hardware version 1
with the XIAO nRF52840, soil moisture
sensor, DHT20 and the Grove Vision AI

module 



For power supply, a 3.7V battery with a
capacity of 1200mh was chosen. With the
system, it was able to last for 8 hours. Two
separate tests have been conducted with
the system, one with a photo taken every
minute and one for every five minutes. The
battery duration remained unchanged
throughout both tests. To increase battery
power either a sleeper module could be
implemented or the device could be
connected to a power bank. (Arduino
code in Appendix I.)

As stated in the requirements, the device
should be operable at night without any
light source present. The prototype utilises
a regular camera for simplicity and
availability. For this purpose, a light source
needs to be present to make sure the
photos are properly lit. As to not disturb
the usual activities of the slugs the light
should only go on periodically when a
photo gets taken. For this purpose, a
WS2813 mini LED ring was chosen and
implemented into the design.

To make the housing, first, a set of cable
boxes was selected, as the waterproof
design would be beneficial for the
electronics in a greenhouse setting. After
exploring however it became clear that
the height of the boxes was too low to
match with the focal length of the
camera. After measuring it showed that
about 2 times the height of the box would
be necessary for a sufficient photo of the
bottom side of the box. So as a
replacement, a plastic food container was
picked with a bottom area of 100 cm^2
and a height of 12 cm. This container
provided sufficient footage but still mostly
of the centre. Therefore the wheat bran
must be laid out in the middle. The
container was then modified to have entry
holes of 1 cm in diameter, lined out in a
way that improves airflow and luring
(Aartsen et al., 2022).
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Image 12: Prototype hardware version 2, mounted
on the container with the XIAO ESP32s3 Sense,

WS2813 mini and the battery



6.2 Testing the bait used
The bait to be used is wheat bran, which is
a long-lasting and effective bait to catch
slugs (Aartsen et al., 2022). As a proof of
concept, the container that was used for
the electronic prototype was placed in an
enclosure with slugs for a week with
wheat bran inside. After a week no slugs
were present in the container, however,
due to slug slime in the container it was
clear that slugs had been inside the
container. But there was also significant
mould growth in the container. This is
most likely due to the moisture of the
slugs interacting with the usually dry bran
(Aartsen et al., 2022).

 A way to solve this is by placing a mesh
between the bait and the slugs. To verify
that the effectivity of the bait is not
negatively impacted by the mesh the
mesh was taken into account in the
experiment that is described in the next
paragraph.
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Image 13: Mould buildup on the bran (left) and the
mesh solution (right)



6.3 Device shape experiment
Method
The principle of using 4 holes of 1cm in
diameter as an entryway for slugs into the
device is based on previous research in
the development of the slug trap (Aartsen
et al., 2022). The slug trap uses 3 holes
starting from 1cm in diameter and then
decreasing in radius to make it hard for
slugs to come back in from the way they
came. However, as the application now is
different to the intended purpose of the
trap, the decreasing radius does not have
to be implemented as slugs should not be
trapped or killed by the device. To see
how well the design can lure slugs, it was
compared with different configurations in
a greenhouse context.

 In this test setup, a grand total of 14 lures
among 7 different designs were deployed
in slug-infested areas and consequently
compared. The different designs that were
compared were: A completely open
container, a container with 4 holes drilled
out of 1 cm diameter and a container with
larger slots cut out. Each design has a
version with accessible wheat bran and
the bran behind a mesh to compare bran
quality after a set amount of days. As a
control, an open dish with cucumber is
left out, as this is what was used to catch
slugs by hand.

The lures were checked at two moments:
within 24 hours after placement and 96
hours after placement. These moments
were picked as slugs are usually active at
night (Peter Zwinkels, personal
communication, 08-04-2024). 
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Image 14: The 3 configurations of entryways (left)
and a container with and without mesh (right)
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Figure 4: Table with the different lure
configurations



Results
After 24 hours 5 lures contained a low
number of slugs, 4 did not contain any
slugs but did have evidence of slug
presence (slime trails slime in the wheat
bran) and 5 remained presumably empty.
After 96 hours half of the lures contained
slugs and half were empty but did contain
evidence of activity. 

Looking at the data in more detail some
interesting facts could be found:

Some lures contained fewer slugs at
the second checkup than at the first
checkup, indicating some slugs
escaped.
Some slugs also escaped when I made
a second round past the lures directly
after the first checkup.
The mesh lures generally contained no
slugs but did contain evidence of
activity.
The bran under the mesh was
generally unaffected unless there was
a way for the slugs to go under the
mesh due to improper attachment of
the mesh.
There was no massive difference
between types of entries when it came
to slug presence in the lures.

Additional findings were that the lures
were hard to deploy in the foliage, as the
foliage can be quite dense and the boxes
were 10.7x 7.7x 3.5 cm which is a bit too
large to properly place in the plant. (Table
with slug count in Appendix J.)
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Image 15: Test results showing a slug under the mesh (left),
evidence of slug damage on the control (middle) and the

effect of slugs on wheat bran (right)



Conclusion
From these results, it became clear that
slugs are able to escape all of the designs,
which is not necessarily bad as the main
objective of the device is to monitor slugs.
The mesh still attracts slugs while saving
the bait but makes the slugs less
interested in staying at the lure.  

Also, a completely open design makes it
again easy for slugs to escape and they
tend to be more inclined to. Lastly, it is
important not to disturb the lures,
especially at night, as interference tends
to scare the slugs off. 
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 As mentioned earlier, due to the scope of
the assignment, the counting of the slugs
within the device will be done using a
camera and a machine learning model.
For this purpose, it is important that the
data (images) provided give a very clear
indication of a slug being present while
also being as low in data size as possible
for faster computing. This tradeoff can be
made by modifying the images digitally as
well as by modifying the environment in
which the photo is taken.

7.1 Corner detection
With image detection, it is useful to
provide not only small images but also
consistent images to make identifying
patterns easier. To further help this
function it also helps to eliminate any
unnecessary elements in the photos that
could otherwise be taken into account
during the model-making process. To
achieve this, it is possible to crop the
image to just show the area where the
slugs are attracted to rather than the
entire device. 

To get photos which are always cropped
in the same way, a program has been
developed that detects Aruco markers
and then crops the image around those
markers. Aruco markers are small black-
and-white symbols that can be detected
and identified on camera (Wolf Song,
personal communication, 07-06-2024).
The reason for these markers is that they
are predefined and labelled with a certain
number. Therefore it is very easy to crop
every image the same way as each marker
is labelled and identifiable. 
To apply this in the prototype, a small
graphic was made that employs the
markers labelled from 0-3 which could be
laid on the bottom. After one trial, the
markers were moved closer to the centre
so that they could always be found by the
camera. (Cropping code in Appendix K.)

7. IMAGE DETECTION
SYSTEM
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Figure 5: The bottom plate for the
electronic prototype with Aruco

markers implemented



One very real problem with these markers
is the fact that slugs can cover these
markers by sliding over them and causing
occlusion. A possible solution is to keep
the slugs separate from the markers by
making the bait and the entry towards
the bait a separate entity from the
markers. Therefore making sure the slugs
don’t come close.

However, this also gives rise to new
possibilities of image processing. By
making this entity circular, one could also
use Hough circle transform (Wolf Song,
personal communication, 19-06-2024).
This is an operation that detects circular
shapes within the photo and is able to
crop the image around that. 
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Figure 6: An example of Hough
circle transform with an additional
border of pixels to make sure the

circle is fully captured in the
image



7.2 Image processing
To count the slugs within the device, the
intention is to use image detection on
camera footage obtained from the device.
In order to achieve this, a model needs to
be trained on images from the device
with and without slugs. To train this
model, a simple dataset has been made
using the container used for the
prototype, an iPhone with flash function
and the base template with the Aruco
markers. In total, 3 versions were made,
one with just the slugs and the wheat
bran, one with the mesh (as per the
redesign) and one with the mesh
repainted to white to test if this would
increase the contrast between the slugs
and the surrounding environment
(Appendix L).

As a result, the plain version had slugs that
were harder to recognise, as they took a
lot of the bran with them on their bodies,
camouflaging themselves. The normal
mesh made it easier as the slugs were
elevated above the bran and the bran
became less easy to photograph, creating
a more controlled environment. The white
mesh worked the best as the contrast of
the slug against the background was by
far the largest.

Next, a series of augmentations were
made to make the images lower in data
and even easier to process and recognise
(Appendix L). As found in the earlier
research, images with merely black and
white pixel values (binary images) in a low
resolution can be achieved and are
desirable. This is more favourable than
merely adjusting the colour values of an
image as with a binary image the amount
of data is significantly less. The following
steps were used to increase the contrast
between the slug and the background
and consequently convert the image to a
binary image:

Convert the image to grayscale
Apply histogram equalisation to
enhance the contrast
Apply Gaussian blur to smoothen the
image
With thresholding the image becomes
binary (either black or white pixel
value)

After these steps, again the white mesh
provided the images with the highest
contrast between the slugs and the
background. This can be explained by the
fact that the white mesh obscures the
wheat bran better, therefore providing
less clutter in the image.
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Image 16: Results of the dataset
tests with augmentations



To train a model with the purpose of
predicting slug density in a greenhouse,
an algorithm is necessary to develop this
model. When selecting an algorithm,
there are various factors to take into
consideration.

Two distinct ways of machine learning are
supervised versus unsupervised learning.
With supervised learning, the dataset used
for training is labelled, meaning that the
model assigns a label to new data based
on what it has learned from the training
dataset. Two important kinds of
supervised learning are regression and
classification. With regression, the labels
are continuous values and are regularly
used for the prediction of values. With
classification, the labels can be
categorised in several classes that get
predicted based on the input data. 
Looking at unsupervised learning, the data
does not contain labels, and it is up to the
algorithm to find patterns in the data. This
can for instance be done by making
clusters of the data based on similarity in
features. (Supervised Learning, n.d.)

In the use case of the device, the main
purpose is to make a prediction of slug
density in several locations in the
greenhouse. For this purpose, a supervised
regression algorithm makes the most
sense. This however does mean that a lot
of data will be needed and that training
will take a lot of time. Looking at what to
label the data with, a choice can be made
to either compute a new value of slug
probability based on the slugs counted in
the device and the environmental values
or the slug count itself can be used (with
maybe a margin added to account for
slugs not counted in the device.) This
means that the environmental values will
be the data used to make a prediction.
Now to get the environmental values of
the data points not counting slugs we
could either compute the variables or put
small sensors there.

8. ALGORITHM
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A possibility for computing the
environmental values is by using spatial
interpolation (Wolf Song, personal
communication, 07-06-2024) where
missing values in a grid can be computed
by looking at the existing values. This
would allow for a drastic decrease in
measurement stations needed in the
greenhouse. To employ this, the devices
can be placed in a certain grid within a
greenhouse and the values for the plants
in between the ones with a device can be
computed using spatial interpolation. 

Using the DHT20 sensor and the soil
moisture sensor of the electronic
prototype described earlier, a series of
measurements were made in one section
of the greenhouse in a variety of locations
to get a better idea of the performance of
the sensor and the distribution of the
temperature and humidity.
Measurements were made on the left,
right and middle sides of the greenhouse
with additional measurements being
taken on the front and back sides on the
middle line. As well, on the left side of the
greenhouse, a total of 5 measurements
were done to see the fluctuation in
measurements.

Looking at humidity, the variation is quite
high, with an average humidity on the left
side of 57.166%, in the middle it is 71.002%
and the measurement on the right is
64.100%. The temperature on average was
20.02 C with a median value of 20.12 C.
The variation from front to back is 0.60 C
and from left to right 0.37 C. 

However, looking at the accuracy it is
apparent that especially in humidity there
is some fluctuation (See Figure 7). It is
therefore important to take that into
account when looking at the data and to
perhaps take multiple measurements per
point and take the average to get a more
accurate reading. 

When it comes to evaluating moisture the
measurements varied greatly, giving
frequent measurements that amounted
to 0. This can be explained by the fact
that the soil was not always accessible
and therefore on some occasions the
sensor was put between the leaves of the
plant. Therefore it is very important that
the soil is reached by the sensor to give
adequate readings. (Dataset in Appendix
M.)
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Figure 7: Fluctuations in both the
temperature and humidity

measurements in one row of plants



With the research done in this stage of the
project, it is wise to revisit the program of
requirements. As it is seen no requirement
needs updating after the new findings yet
it would be wise to add some additional
requirements to make it easier to see
what the device must adhere to. Therefore
the requirements are now the following:

The device should function with
temperatures varying between 10-22C
The device should function with a
humidity between 50-80%
The device needs to function with a
drip watering system
The device should be able to operate
at night with no artificial lighting
The device should be able to operate
during the day with no artificial
lighting with values of 20-50k lux

A slug should be able to be detected
regardless of occlusion by plants
The data given to the ML model
should be as low in storage space as
possible
The device should capture trends over
a larger time scale (years)
The device should not disrupt
greenhouse operations
The device should not grow mould
during regular use
The device should let slugs move freely
and not be aimed at trapping them
The device should be able to function
for 3 days without charging

9. UPDATE
REQUIREMENTS
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With the findings surrounding the
physical design and the image detection
system, an intermediary design has been
made that integrates the most important
design elements and can be used for
testing in the final design stage of the
project. The designed part is meant to be
placed into the prototype container made
earlier, separating the slugs from the rest
of the container therefore giving the
opportunity to use the Aruco markers
without occlusion. However, due to the
circular shape, Hough circle transform can
also be used to crop the images. The
wheat bran is separated by the mesh with
a good distance between the slugs and
the bran to prevent mould growth. As
well, the mesh has been made white to
ensure maximum contrast between the
slug and the environment. The slugs enter
through the 4 entry tubes with a 1 cm
diameter. Finally, a transparent window
can be added on the top for the camera
to photograph the slugs. 

With a physical 3D printed prototype of
the device (Image 17), a first dataset has
already been made that is to be cropped
using the Hough circle method. One
problem was that the circular shape of
the device where it was originally
attached to the print bed was not
completely even. Causing the Hough
circle method to not always recognise
that particular circle and cropping the
image accordingly. (Code in Appendix N
and Dataset in Appendix O.)

These findings will be taken into the next
stage of the project where the final shape
and details of the device will be
established.

10. INTERMEDIARY
CONCEPT
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Image 17: Physical model of the new
concept

Figure 8: Drawing of the new model



DESIGN
DETAILING



11. SHOWCASE

In the final chapter, we will elaborate on
the final version of the device. First, the
device itself will be introduced to then go
more into detail about the process of
creating the definite features of the
device. 

Introducing Cephal, the AI-powered slug
measuring device. Cephal refers to the
feature of slug eyes being located inside of
the head, only extracting when used. Just
like a slug eye, this device has an internal
camera which forms one of the main
features of the device. 

The main purpose of the device is to
gather data on several locations within
your greenhouse to then predict slug
density for other areas within the
greenhouse. It does so by gathering
temperature and humidity data using a
DHT sensor and a moisture sensor gathers
the moisture levels of the soil. This data
will then be used as parameters for
machine learning against the data label
slug count. The slug count will be
measured by luring slugs to a wire mesh
located over wheat bran where a picture
will be taken every 3 minutes. From there
the images get compressed and
processed to 64x64 binary images which
serves as input for a machine learning
model which is meant to count the slugs.

In the greenhouse, multiple Cephal
devices must be deployed to gather data
over several locations in the greenhouse.
Then, using spatial interpolation, the soil
moisture, temperature and humidity will
be estimated over the entire greenhouse.
Using the measured data by Cephal, a
machine learning model is created that
estimates slug count for the estimated
environmental values.
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Image 18: Cephal
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Image 19: Render of Cephal



The product is based on parts that are
easily available and allow for rapid
prototyping. The main housing consists of
a bran container, a holder for the mesh,
the middle part that hosts the entries for
the slug and the housing for the
electronics.

On the electronics front, the parts that
were used earlier have been reused in the
final model. These parts mainly revolve
around the Seeed Studio XIAO ESP32s3
sense with the provided camera.
Alongside this is a DHT20 sensor, a
moisture sensor for the environmental
values, a 3.7 V battery for power and an
LED light to provide consistent photos
throughout the night. The data for now
gets saved on a 32 GB SD card where the
data can get processed later on a separate
pc (product schematics on Appendix P). 

In the coming chapters there will be
documentation on the forming of the final
shape, the image detection and
deployment in the field. 
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Image 20: Parts list



12. FINAL SHAPE
DESIGN

To come up with the final shape of
Cephal, some iterations were made to
determine the optimal shape and
dimensions of the device. Firstly, the
electronic prototype and the 3D printed
intermediary design were combined, as
the idea was that the electronics are
mounted on the outer container and the
slugs mainly interact with the internal
design. From here it quickly became
apparent that the bran was hard to access
for  the user, as well the internal structure
was not properly aligned to provide high-
quality photos.

To remedy this, a new more open device
was made where the mesh was placed
underneath a cardboard frame, made to
fit into the container and leave a circular
shape with the mesh underneath to
attract the slugs and for Hough circle
transform to properly crop the images.
Making several iterations in a trial and
error fashion made it clear that a diameter
of 6 cm for the mesh and a height for the
camera of 10 cm was optimal for making
quality images. This model was also used
to explore the first proper dataset with
slugs, more on that later.
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Image 21: The old prototype (left) And
the new prototype alongside a previous

iteration (right)



From here, quickly some sketches were
made that were used as the basis for a
Solidworks design (sketches on Appendix
Q). The main principle was to make a
device of several parts that are to be
stacked on top of each other. The body of
the device is the middle part, where the
slug entryways are located and the mesh.
The entryways are slots, as the results from
the field testing in chapter 6 pointed out
that while all the designs of entryways
attracted the slugs, the more open your
design the easier the access for the slugs.
Therefore the middle part is housed with
4 slots with a height of 1 cm. 

The mesh is placed between two discs
and lodged firmly in the bottom of the
middle part just below the entries. The
upper disk is slanted towards the mesh for
a better connection between the mesh
and the disk and the diameter of the
exposed mesh is 6 cm. The whole
construction is then mounted on the bran
container, which is filled with the bait for
the slugs but can’t be accessed by the
slugs themselves to keep the bait fresh for
longer. One feature of the earlier model
that has been omitted from the final
device was the adding of a transparent
barrier between the part accessible by
slugs and the camera. This is because the
barrier could give a reflection of the LED
ring, reducing the visibility and quality of
the images.
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Image 22: Subassembly of the mesh
between the top and the lower half



At the top of the device is the electronics
housing which is made of two parts. The
bottom part houses the XIAO, LED ring,
battery and camera. The camera is
located in the middle of the device and
can access the inner part of the device
through a hole which fits the camera lens.
On the other side of the housing is the
LED ring which is hot glued to the device.
The wiring connects through a hole to the
rest of the device which needs to be
sealed off to prevent slugs and other
external factors accessing the electronics.
Due to the dimensions of the shell to
which the XIAO is connected the
diameter of the total device is 12 cm.
Earlier research pointed out the benefit of
having smaller devices for ease of
placement in foliage. With a small test, it
is clear that the device can still be placed
in the foliage but further research could
be done to reduce the size.

The top part of the housing shields the
electronics but also houses the DHT20
sensor which is screwed on. As well, it also
connects the moisture sensor to the rest
of the electronics. The moisture sensor is
not secured to the device but instead
needs to be connected via a 100 cm cable
to ensure free placement into the soil. 
These factors resulted in the shaping of
Cephal, a robust device that is able to
function freely on the battery for a couple
of hours. If needed for longer
measurements, a power bank can be
connected to the xiao through a USB-c
cable. 

In the following two pages, the assembly
instruction of Cephal is given.
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Image 23: Exploded view of the housing,
alongside a render of the XIAO and
battery mounted inside the housing
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Image 24: Assembly instructions



13. TRAINING IMAGE
DETECTION

As mentioned in the previous chapter,
Cephal is using image detection to count
the number of slugs within the device. To
construct and validate this, a dataset has
been made with both the prototype
Cephal as well as the actual device. Next,
these datasets were processed and
labelled and used as input for a machine
learning model based on a Convolutional
Neural Network. 

The first dataset was a small one made
with the prototype of Cephal based on a
food container. With this device, a dataset
was made with a total of 56 usable
images of which 36 contained slugs
(dataset on Appendix R). These slugs were
placed manually to ensure a varied
dataset. Using this dataset, it was found
that the photos made using the
electronics also used in the final devices
were of good enough quality to provide
clear identifiable data after processing. To
double verify this, the device also shot
photos in a dark environment with no
light source except its own and provided
photos with the same quality that was
indistinguishable from the ones shot in
daylight.

Using the processing and Hough circle
transform, it also became clear that
Hough circle transform provided cropping
of sufficient quality, even if there was
(partial) occlusion of the circle due to
slugs covering it the cropping was still
done. By including an additional border of
50 pixels the circle is always fully visible in
the image. 

This dataset was used as input for a
machine learning model, of which the
base code was taken from Kaggle
(Rmishra, 2020). Here it was found that
the computational time was too large for
practical use, this was both due to the
images being too big (uncropped the
images were 1600x1200) and the neural
network for training being too large and
too complex for a smaller dataset. With
the small dataset and the long
computation time, the result was a rather
inaccurate model (Code on Appendix S).
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Image 25: Photo from the first dataset
before and after processing. Look how
the circle is partially occluded yet the

cropping still works



With the new device constructed, a larger
dataset was made to get a more accurate
model. This dataset consisted of 322
usable images, of which 30 contained
slugs. As this ratio is not very suitable for
machine learning, some augmentation
was done on the photos with slugs to
create more instances of the images. This
was rotation and mirroring and created 5
clones of each image, resulting in a total
dataset of 482 images which were
subsequently cropped and processed.

 To make machine learning possible, the
images were compressed to 64x64 pixels
and the network has been simplified to
contain fewer layers and take smaller
input data (code on Appendix T). After
these steps, a model with around 90%
accuracy has been trained on the new
dataset, showing the possibilities for
training a proper model based on the
data gathered by Cephal (dataset on
Appendix R).
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Figure 9: steps of the image processing

Figure 10: Model performance trained
with the Cephal dataset



14. FIELD TESTING

With the prototype of Cephal constructed
the device should be tested in context to
see if it can provide suitable data over a
longer time period. To do this a test setup
was made to verify the ability of Cephal.

Method
Cephal has been placed within a plant
with a reported high slug activity. The
bran container has been filled with wheat
bran and the device has been set to take a
photo every 3 minutes. The interval was
picked based on the fact that in the final
product, this interval would save crucial
battery time and data while still providing
a reliable overview. For the test, the device
was connected to a power bank of 25000
mAh.The device was placed for a total
timespan of 24 hours to visualise both
night and day. The photos are then taken
and analysed to see any slug activity and
observe the environmental values. To
compare the environmental values, the
owner of the greenhouse has also made
their own measurements available for that
section of the greenhouse (Han van
Tilburg, personal communication, 05-09-
2024).
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Image 26: Test setup 



Results
Looking at the results a couple of things
have become clear. First of all, no slugs
have visited the device unfortunately.
Furthermore, the moisture sensor did not
give any successful measurements as the
cable was originally 50 cm long. This
proved to still be too short to reach the
soil of the plant due to the larger
dimensions of the device. 

Despite these findings, the device did
successfully generate a database of 485
images with the corresponding
environmental measurements. The
environmental data that was found with
Cephal compared to the measured data is
found in Figure 11.

As seen there is some discrepancy in the
data as the measured temperature by
Cephal seems to be higher then what was
measure by the greenhouse while the
humidity level seems to be lower than the
humidity level measured by the
greenhouse owner. Despite this, what can
also be seen by looking at the graphs is
that the trends in temperature and
humidity throughout time do seem to
match with both measurements with
both stations depicting a spike in
temperature and drop in humidity right
around the 3 pm mark (results on
Appendix U).
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Figure 11: Table with measured values
compared to greenhouse values
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Figure 12: Measured values (top 2 graphs) compared to
greenhouse values (bottom graph) with blue being

humidity and red being temperature. The 20.000 second
mark corresponds with 15:00 on Wednesday

(Han van Tilburg, personal communication, 05-09-2024)



Interpretation
Looking at the device's performance it is
safe to assume that the device is able to
gather data and capture the trends
present in the greenhouse. The big
difference between the measurements of
the greenhouse and of Cephal when it
comes to humidity and temperature
however does indicate that there might
be an issue with the performance of the
sensor or that there is a large fluctuation
of environmental values throughout the
greenhouse that causes the average to be
vastly different from locally measured
values. 

Besides this, it is interesting that there
were no slugs found in the device. This
can most likely be explained that while
the plant generally showed slug activity in
the past, as of late the slug activity may
have died down. As well the device had a
layer of paint on it which may have
masked the scent of the wheat bran.

Conclusion
Looking at the findings the following
conclusions can be drawn: First of all in
order to be secure about the
environmental measurements more tests
should be done on multiple locations to
compare it to the measurements of the
greenhouse to look for any trends and
differences. As well it would be wise to
compare different sensors and look at the
performance of sensors over time. As well,
the moisture cable needs to be even
longer, 100 cm should suffice. Lastly, it
would be a good idea to deploy
unpainted models, printed in white
filament, on multiple plants with recorded
high slug intensity over a couple of days
and compare it as well to the lure designs
tested earlier in this research to look at
the performance.
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15. CONCLUSION
Looking back, the original purpose of this
report was to design a device capable of
generating an image dataset meant to
train an image detection algorithm with
the purpose of predicting slug infestation
in a greenhouse. Through research of the
context and exploratory experiments, it
became clear that a device was needed
that was capable of predicting slug
behaviour by environmental values while
also being capable of luring and
identifying slugs using image detection.
While doing so the device should be
capable of measuring the environmental
values generally present in a greenhouse.
As well the device should be operable
during day and night in the dark
regardless of occlusion by plants all the
while providing low-volume data suitable
for machine learning.

With the creation of Cephal it has shown
to be possible for a device to gather this
type of data in a greenhouse suitable for
image detection based machine learning
resulting in a model of about 90%
accuracy. This is done by luring slugs using
wheat bran and taking photos periodically
with a flash function to keep consistent
data through day and night. By converting
the photos to a 64x64 pixels binary image
the model is able to quickly and efficiently
estimate the number of slugs on the input
image and use this as a label for the
environmental data gathered with the
other sensors on Cephal. With the dataset
generated by Cephal, it should be possible
to make a machine learning model
capable of predicting slug density in a
greenhouse and converting that to a heat
map indicating where control is needed.
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15.1 Limitations and
recommendations 
Due to the time constraints and scope of
the assignment there are a couple of
limitations and suggestions for further
research to improve on the concept of
Cephal. The selection of the electronics
was partially based on the requirements
but also on availability. Given that these
are off-the-shelf components it gives room
for further optimization. For instance, a
camera could be picked with a more
suitable focal length to decrease the
required height of Cephal and
simultaneously a custom pcb could
reduce the required diameter of the
device. 
Likewise, the battery can be improved if
the program successfully works with a
sleeper module to increase the runtime of
the device. Lastly there should be more
research on the sensors to critically
evaluate the performance both on short
term runtime and longer runtime.

machine learning to predict slug density
invites further research in order to gain an
efficient model. To do this, there should
be research to determine the optimal
density and distribution of the Cephal
measuring stations in order to provide
enough data while also being able to give
a reliable prediction of the rest of the
environmental values through spatial
interpolation. With those values known
and enough data gathered a regression
model should be trained and optimised
that is capable of prediction.

To recap and summarise, Cephal has
shown the potential of a ML based slug
measuring station that could benefit from
further optimization and invites for the
training of a regression based model.
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Appendix



Appendix A- Questionnaire results



Results:
https://docs.google.com/spreadsheets/d/1V13V2YxCpkg1yqJXH8ALBuPpVON82n_
nzQ0oTlhA9IM/edit?usp=sharing

https://docs.google.com/spreadsheets/d/1V13V2YxCpkg1yqJXH8ALBuPpVON82n_nzQ0oTlhA9IM/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1V13V2YxCpkg1yqJXH8ALBuPpVON82n_nzQ0oTlhA9IM/edit?usp=sharing


Appendix B - Object detection code using colour



import cv2
import numpy as np

def compress_image(image, max_width=800):
"""Compresses the input image to a maximum width."""
height, width = image.shape[:2]
if width > max_width:

ratio = max_width / width
new_height = int(height * ratio)
return cv2.resize(image, (max_width, new_height))

return image

def isolate_brown_objects(image):
"""Isolates brown objects in the input image."""
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
lower_brown = np.array([5, 50, 50]) # Adjusted lower

threshold for brown
upper_brown = np.array([30, 255, 255]) # Adjusted upper

threshold for brown
mask = cv2.inRange(hsv, lower_brown, upper_brown)

# Morphological operations to fill gaps and smooth edges
kernel = np.ones((5, 5), np.uint8)
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)

# Dilate the mask to include nearby pixels of the same
color

mask = cv2.dilate(mask, kernel, iterations=1)

brown_objects = cv2.bitwise_and(image, image, mask=mask)
return brown_objects, mask

def find_contours(mask, min_area=100):
"""Finds contours in the binary mask."""
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_SIMPLE)

# Filter contours based on area
large_contours = [cnt for cnt in contours if

cv2.contourArea(cnt) > min_area]



return large_contours

def is_slug(contour, aspect_ratio_thresh=0.2,
solidity_thresh=0.7):

"""Checks if the contour has slug-like characteristics."""
# Calculate the bounding rectangle and aspect ratio
x, y, w, h = cv2.boundingRect(contour)
aspect_ratio = w / h

# Calculate the area of the contour and its convex hull
area = cv2.contourArea(contour)
hull = cv2.convexHull(contour)
hull_area = cv2.contourArea(hull)

# Calculate the solidity (contour area / convex hull area)
solidity = area / hull_area

# Check if aspect ratio and solidity meet slug-like
criteria

return (aspect_ratio > aspect_ratio_thresh) and (solidity >
solidity_thresh)

def crop_objects(image, contours):
"""Crops brown objects from the original image."""
cropped_images = []
for i, contour in enumerate(contours):

x, y, w, h = cv2.boundingRect(contour)
cropped_images.append(image[y:y + h, x:x + w])

return cropped_images

def main(input_image_path):
# Load input image
original_image = cv2.imread(input_image_path)

# Compress the image for easier processing
compressed_image = compress_image(original_image)

# Isolate brown objects
brown_objects, mask =

isolate_brown_objects(compressed_image)



# Find contours of brown objects
contours = find_contours(mask, min_area=2000) # Adjust

min_area as needed

# Filter contours for slug-like shapes
slug_contours = [contour for contour in contours if

is_slug(contour)]

# Crop slug-like objects from the original image
cropped_images = crop_objects(original_image,

slug_contours)

# Save cropped images
for i, cropped_image in enumerate(cropped_images):

cv2.imwrite(f"slug_{i}.jpg", cropped_image)

if __name__ == "__main__":
input_image_path = input("Enter path to the input image: ")
main(input_image_path)



Appendix C - Difference in image computation code



import cv2
import numpy as np

def image_difference(image1, image2):
# Read the images
img1 = cv2.imread(image1)
img2 = cv2.imread(image2)

# Check if images are loaded successfully
if img1 is None or img2 is None:

print("Error: Could not read the images.")
return

# Convert images to grayscale
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)

# Calculate absolute difference
diff = cv2.absdiff(gray1, gray2)

# Thresholding to keep only pixel values above 200
_, thresholded = cv2.threshold(diff, 100, 255,

cv2.THRESH_BINARY)

# Resize the image to 224x224
resized_image = cv2.resize(thresholded, (224, 224))
#resized_image = cv2.resize(diff, (224, 224))
return resized_image

def main():
# Path to the input images
image1_path = 'D:\Afstudeer documenten\Afstudeer

documenten\Images\slug1.PNG'
image2_path = 'D:\Afstudeer documenten\Afstudeer

documenten\Images\slug2.PNG'

# Compute the difference between the two images
difference_image = image_difference(image1_path,

image2_path)

# Display the difference image



cv2.imshow('Difference Image', difference_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.imwrite('D:\Afstudeer documenten\Afstudeer

documenten\Images\BLOB.jpg', difference_image)

if __name__ == "__main__":
main()



Appendix D - Playing with images











https://drive.google.com/drive/folders/1kFyPD8XML3BwzGo6AF9uAMMCQEirttxO?u
sp=sharing

https://drive.google.com/drive/folders/1kFyPD8XML3BwzGo6AF9uAMMCQEirttxO?usp=sharing
https://drive.google.com/drive/folders/1kFyPD8XML3BwzGo6AF9uAMMCQEirttxO?usp=sharing


Appendix E - First ML model



# Import Data Science Libraries
import numpy as np
import pandas as pd
import tensorflow as tf
from sklearn.model_selection import train_test_split
import itertools
import random

# Import visualization libraries
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import cv2
import seaborn as sns

# Tensorflow Libraries
from tensorflow import keras
from tensorflow.keras import layers,models
from tensorflow.keras.preprocessing.image import
ImageDataGenerator
from tensorflow.keras.layers import Dense, Dropout
from tensorflow.keras.callbacks import Callback,
EarlyStopping,ModelCheckpoint
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.applications import MobileNetV2
from tensorflow.keras import Model
from tensorflow.keras.layers.experimental import preprocessing
from keras.layers import Dense, Flatten, Dropout,
BatchNormalization

# System libraries
from pathlib import Path
import os.path

# Metrics
from sklearn.metrics import classification_report,
confusion_matrix

#extra help: Import series of helper functions for our
notebook



from helper_functions import create_tensorboard_callback,
plot_loss_curves, unzip_data, compare_historys,
walk_through_dir, pred_and_plot

# Seed Everything to reproduce results for future use cases
def seed_everything(seed=42):

# Seed value for TensorFlow
tf.random.set_seed(seed)

# Seed value for NumPy
np.random.seed(seed)

# Seed value for Python's random library
random.seed(seed)

# Force TensorFlow to use single thread
# Multiple threads are a potential source of

non-reproducible results.
session_conf = tf.compat.v1.ConfigProto(

intra_op_parallelism_threads=1,
inter_op_parallelism_threads=1

)

# Make sure that TensorFlow uses a deterministic operation
wherever possible

tf.compat.v1.set_random_seed(seed)

sess =
tf.compat.v1.Session(graph=tf.compat.v1.get_default_graph(),
config=session_conf)

tf.compat.v1.keras.backend.set_session(sess)

sns.set(style='darkgrid')

seed_everything()

BATCH_SIZE = 32
TARGET_SIZE = (224, 224)

# Walk through each directory
dataset = "./data/"
walk_through_dir(dataset)

def convert_path_to_df(dataset):



image_dir = Path(dataset)

# Get filepaths and labels
filepaths = list(image_dir.glob(r'**/*.JPG')) +

list(image_dir.glob(r'**/*.jpg')) +
list(image_dir.glob(r'**/*.png')) +
list(image_dir.glob(r'**/*.PNG'))

labels = list(map(lambda x:
os.path.split(os.path.split(x)[0])[1], filepaths))

filepaths = pd.Series(filepaths,
name='Filepath').astype(str)

labels = pd.Series(labels, name='Label')

# Concatenate filepaths and labels
image_df = pd.concat([filepaths, labels], axis=1)
return image_df

image_df = convert_path_to_df(dataset)

# Check for corrupted images within the dataset
import PIL
from pathlib import Path
from PIL import UnidentifiedImageError

path =
Path("/kaggle/input/grape-disease-dataset-original").rglob("*.
jpg")
for img_p in path:

try:
img = PIL.Image.open(img_p)

except PIL.UnidentifiedImageError:
print(img_p)

label_counts = image_df['Label'].value_counts()

plt.figure(figsize=(10, 6))
sns.barplot(x=label_counts.index, y=label_counts.values,
alpha=0.8, palette='rocket')
plt.title('Distribution of Labels in Image Dataset',
fontsize=16)
plt.xlabel('Label', fontsize=14)
plt.ylabel('Count', fontsize=14)



plt.xticks(rotation=45)
plt.show()

# Display 16 picture of the dataset with their labels
random_index = np.random.randint(0, len(image_df), 16)
fig, axes = plt.subplots(nrows=4, ncols=4, figsize=(10, 10),

subplot_kw={'xticks': [], 'yticks':
[]})

for i, ax in enumerate(axes.flat):
ax.imshow(plt.imread(image_df.Filepath[random_index[i]]))
ax.set_title(image_df.Label[random_index[i]])

plt.tight_layout()
plt.show()

def compute_ela_cv(path, quality):
temp_filename = 'temp_file_name.jpeg'
SCALE = 15
orig_img = cv2.imread(path)
orig_img = cv2.cvtColor(orig_img, cv2.COLOR_BGR2RGB)

cv2.imwrite(temp_filename, orig_img,
[cv2.IMWRITE_JPEG_QUALITY, quality])

# read compressed image
compressed_img = cv2.imread(temp_filename)

# get absolute difference between img1 and img2 and
multiply by scale

diff = SCALE * cv2.absdiff(orig_img, compressed_img)
return diff

from PIL import Image, ImageChops, ImageEnhance

def convert_to_ela_image(path, quality):
temp_filename = 'temp_file_name.jpeg'
ela_filename = 'temp_ela.png'
image = Image.open(path).convert('RGB')
image.save(temp_filename, 'JPEG', quality = quality)
temp_image = Image.open(temp_filename)

ela_image = ImageChops.difference(image, temp_image)

extrema = ela_image.getextrema()



max_diff = max([ex[1] for ex in extrema])
if max_diff == 0:

max_diff = 1

scale = 255.0 / max_diff
ela_image =

ImageEnhance.Brightness(ela_image).enhance(scale)

return ela_image

def random_sample(path, extension=None):
if extension:

items = Path(path).glob(f'*.{extension}')
else:

items = Path(path).glob(f'*')

items = list(items)

p = random.choice(items)
return p.as_posix()

# View random sample from the dataset
p = random_sample('./data/ants')
orig = cv2.imread(p)
orig = cv2.cvtColor(orig, cv2.COLOR_BGR2RGB) / 255.0
init_val = 100
columns = 3
rows = 3

fig=plt.figure(figsize=(15, 10))
for i in range(1, columns*rows +1):

quality=init_val - (i-1) * 8
img = compute_ela_cv(path=p, quality=quality)
if i == 1:

img = orig.copy()
ax = fig.add_subplot(rows, columns, i)
ax.title.set_text(f'q: {quality}')
plt.imshow(img)

plt.show()

train_df, test_df = train_test_split(image_df, test_size=0.2,
shuffle=True, random_state=42)



train_generator = ImageDataGenerator(

preprocessing_function=tf.keras.applications.efficientnet_v2.p
reprocess_input,

validation_split=0.2
)

test_generator = ImageDataGenerator(

preprocessing_function=tf.keras.applications.efficientnet_v2.p
reprocess_input
)

# Split the data into three categories.
train_images = train_generator.flow_from_dataframe(

dataframe=train_df,
x_col='Filepath',
y_col='Label',
target_size=(224, 224),
color_mode='rgb',
class_mode='categorical',
batch_size=32,
shuffle=True,
seed=42,
subset='training'

)

val_images = train_generator.flow_from_dataframe(
dataframe=train_df,
x_col='Filepath',
y_col='Label',
target_size=(224, 224),
color_mode='rgb',
class_mode='categorical',
batch_size=32,
shuffle=True,
seed=42,
subset='validation'

)

test_images = test_generator.flow_from_dataframe(
dataframe=test_df,
x_col='Filepath',
y_col='Label',



target_size=(224, 224),
color_mode='rgb',
class_mode='categorical',
batch_size=32,
shuffle=False

)

# Data Augmentation Step
augment = tf.keras.Sequential([
layers.experimental.preprocessing.Resizing(224,224),
layers.experimental.preprocessing.Rescaling(1./255),
layers.experimental.preprocessing.RandomFlip("horizontal"),
layers.experimental.preprocessing.RandomRotation(0.1),
layers.experimental.preprocessing.RandomZoom(0.1),
layers.experimental.preprocessing.RandomContrast(0.1),
])

# Load the pretained model
pretrained_model =
tf.keras.applications.efficientnet_v2.EfficientNetV2L(

input_shape=(224, 224, 3),
include_top=False,
weights='imagenet',
pooling='max'

)

pretrained_model.trainable = False

# Create checkpoint callback
checkpoint_path = "pests_cats_classification_model_checkpoint"
checkpoint_callback = ModelCheckpoint(checkpoint_path,

save_weights_only=True,
monitor="val_accuracy",
save_best_only=True)

# Setup EarlyStopping callback to stop training if model's
val_loss doesn't improve for 3 epochs
early_stopping = EarlyStopping(monitor = "val_loss", # watch
the val loss metric

patience = 5,
restore_best_weights = True) #

if val loss decreases for 3 epochs in a row, stop training

#model training



inputs = pretrained_model.input
x = augment(inputs)

x = Dense(128, activation='relu')(pretrained_model.output)
x = Dropout(0.45)(x)
x = Dense(256, activation='relu')(x)
x = Dropout(0.45)(x)

outputs = Dense(12, activation='softmax')(x)

model = Model(inputs=inputs, outputs=outputs)

model.compile(
optimizer=Adam(0.00001),
loss='categorical_crossentropy',
metrics=['accuracy']

)

history = model.fit(
train_images,
steps_per_epoch=len(train_images),
validation_data=val_images,
validation_steps=len(val_images),
epochs=100,
callbacks=[

early_stopping,
create_tensorboard_callback("training_logs",

"pests_cats_classification"),
checkpoint_callback,

]
)

results = model.evaluate(test_images, verbose=0)

print(" Test Loss: {:.5f}".format(results[0]))
print("Test Accuracy: {:.2f}%".format(results[1] * 100))

accuracy = history.history['accuracy']
val_accuracy = history.history['val_accuracy']

loss = history.history['loss']
val_loss = history.history['val_loss']



epochs = range(len(accuracy))
plt.plot(epochs, accuracy, 'b', label='Training accuracy')
plt.plot(epochs, val_accuracy, 'r', label='Validation
accuracy')

plt.title('Training and validation accuracy')
plt.legend()
plt.figure()
plt.plot(epochs, loss, 'b', label='Training loss')
plt.plot(epochs, val_loss, 'r', label='Validation loss')

plt.title('Training and validation loss')
plt.legend()
plt.show()

# Predict the label of the test_images
pred = model.predict(test_images)
pred = np.argmax(pred,axis=1)

# Map the label
labels = (train_images.class_indices)
labels = dict((v,k) for k,v in labels.items())
pred = [labels[k] for k in pred]

# Display the result
print(f'The first 5 predictions: {pred[:5]}')

# Display 25 random pictures from the dataset with their
labels
random_index = np.random.randint(0, len(test_df) - 1, 15)
fig, axes = plt.subplots(nrows=3, ncols=5, figsize=(25, 15),

subplot_kw={'xticks': [], 'yticks':
[]})

for i, ax in enumerate(axes.flat):

ax.imshow(plt.imread(test_df.Filepath.iloc[random_index[i]]))
if test_df.Label.iloc[random_index[i]] ==

pred[random_index[i]]:
color = "green"

else:
color = "red"



ax.set_title(f"True:
{test_df.Label.iloc[random_index[i]]}\nPredicted:
{pred[random_index[i]]}", color=color)
plt.show()
plt.tight_layout()

y_test = list(test_df.Label)
print(classification_report(y_test, pred))

'''
make_confusion_matrix(y_test, pred, list(labels.values()))

# Display the part of the pictures used by the neural network
to classify the pictures
fig, axes = plt.subplots(nrows=3, ncols=5, figsize=(15, 10),

subplot_kw={'xticks': [], 'yticks':
[]})

for i, ax in enumerate(axes.flat):
img_path = test_df.Filepath.iloc[random_index[i]]
img_array = preprocess_input(get_img_array(img_path,

size=img_size))
heatmap = make_gradcam_heatmap(img_array, model,

last_conv_layer_name)
cam_path = save_and_display_gradcam(img_path, heatmap)
ax.imshow(plt.imread(cam_path))
ax.set_title(f"True:

{test_df.Label.iloc[random_index[i]]}\nPredicted:
{pred[random_index[i]]}")
plt.tight_layout()
plt.show()
'''



Appendix F - First Dataset



Dataset:
https://drive.google.com/drive/folders/11lHlUdlFV5KnFr8rLp2jXUUR9Wg9rxbO?usp=
sharing

https://drive.google.com/drive/folders/11lHlUdlFV5KnFr8rLp2jXUUR9Wg9rxbO?usp=sharing
https://drive.google.com/drive/folders/11lHlUdlFV5KnFr8rLp2jXUUR9Wg9rxbO?usp=sharing


Appendix G - Light test setup













Appendix H - Light test dataset



Dataset:
https://drive.google.com/drive/folders/1RQjN-kAGb2qiAHHtXvUOLtOxjr6Ndwrc?usp
=drive_link

https://drive.google.com/drive/folders/1RQjN-kAGb2qiAHHtXvUOLtOxjr6Ndwrc?usp=drive_link
https://drive.google.com/drive/folders/1RQjN-kAGb2qiAHHtXvUOLtOxjr6Ndwrc?usp=drive_link


Appendix I - Arduino code electronic prototype



#include <DHT20.h>
#include <Grove_Temperature_And_Humidity_Sensor.h>
#include <Wire.h>
#include <DHT.h>
#include "FS.h"
#include "SD.h"
#include "SPI.h"
#include "esp_camera.h"
#include "Adafruit_NeoPixel.h"
#include "esp_sleep.h"

#define CAMERA_MODEL_XIAO_ESP32S3 // Has PSRAM
#include "camera_pins.h"

#define DHTTYPE DHT20 // DHT 20
#define SD_CS_PIN 21 // SD card CS pin for ESP32-S3

#define PIN 2 // NeoPixel pin
#define NUMPIXELS 16 // Number of NeoPixels

DHT dht(DHTTYPE); // DHT10 DHT20 don't need to define Pin
Adafruit_NeoPixel pixels = Adafruit_NeoPixel(NUMPIXELS, PIN, NEO_GRB +
NEO_KHZ800);

int sensorPin = A0;
int sensorValue = 0;
String deviceID;

unsigned long lastCaptureTime = 0; // Last shooting time
int imageCount = 1; // File Counter
bool camera_sign = false; // Check camera status
bool sd_sign = false; // Check SD status

// Function declarations
void writeFile(fs::FS &fs, const char *path, uint8_t *data, size_t len, bool append =
false);
void writeToCSV(float humidity, float temperature, int moisture);
String generateRandomID();
void photo_save(const char *fileName);
void lightUpLEDs();
void turnOffLEDs();
void goToDeepSleep();



void setup() {
Serial.begin(115200);
while (!Serial); // Wait for serial monitor to open
pinMode(LED_BUILTIN, OUTPUT);
Wire.begin();
dht.begin();

// Initialize NeoPixel
pixels.setBrightness(255);
pixels.begin();

// Generate a random ID for the device
deviceID = generateRandomID();

// Initialize SD card
if (!SD.begin(SD_CS_PIN)) {
Serial.println("Card Mount Failed");
return;

}
uint8_t cardType = SD.cardType();
if (cardType == CARD_NONE) {
Serial.println("No SD card attached");
return;

}

Serial.print("SD Card Type: ");
if (cardType == CARD_MMC) {
Serial.println("MMC");

} else if (cardType == CARD_SD) {
Serial.println("SDSC");

} else if (cardType == CARD_SDHC) {
Serial.println("SDHC");

} else {
Serial.println("UNKNOWN");

}

sd_sign = true; // SD initialization check passes

// Create and write header to CSV file if it doesn't exist
if (!SD.exists("/sensor_data.csv")) {
String header = "ID,Time (s),Humidity (%),Temperature (C),Moisture\n";
writeFile(SD, "/sensor_data.csv", (uint8_t *)header.c_str(), header.length());

}



// Camera configuration
camera_config_t config;
config.ledc_channel = LEDC_CHANNEL_0;
config.ledc_timer = LEDC_TIMER_0;
config.pin_d0 = Y2_GPIO_NUM;
config.pin_d1 = Y3_GPIO_NUM;
config.pin_d2 = Y4_GPIO_NUM;
config.pin_d3 = Y5_GPIO_NUM;
config.pin_d4 = Y6_GPIO_NUM;
config.pin_d5 = Y7_GPIO_NUM;
config.pin_d6 = Y8_GPIO_NUM;
config.pin_d7 = Y9_GPIO_NUM;
config.pin_xclk = XCLK_GPIO_NUM;
config.pin_pclk = PCLK_GPIO_NUM;
config.pin_vsync = VSYNC_GPIO_NUM;
config.pin_href = HREF_GPIO_NUM;
config.pin_sscb_sda = SIOD_GPIO_NUM;
config.pin_sscb_scl = SIOC_GPIO_NUM;
config.pin_pwdn = PWDN_GPIO_NUM;
config.pin_reset = RESET_GPIO_NUM;
config.xclk_freq_hz = 20000000;
config.frame_size = FRAMESIZE_UXGA;
config.pixel_format = PIXFORMAT_JPEG; // for streaming
config.grab_mode = CAMERA_GRAB_WHEN_EMPTY;
config.fb_location = CAMERA_FB_IN_PSRAM;
config.jpeg_quality = 12;
config.fb_count = 1;

// Camera initialization
esp_err_t err = esp_camera_init(&config);
if (err != ESP_OK) {
Serial.printf("Camera init failed with error 0x%x", err);
return;

}

camera_sign = true; // Camera initialization check passes

Serial.println("Initialization done.");
}

void loop() {
float temp_hum_val[2] = {0};
// Read DHT20 temperature and humidity



if (!dht.readTempAndHumidity(temp_hum_val)) {
Serial.print("DHT20 Humidity: ");
Serial.print(temp_hum_val[0]);
Serial.print(" %\t");
Serial.print("Temperature: ");
Serial.print(temp_hum_val[1]);
Serial.println(" *C");

} else {
Serial.println("Failed to get DHT20 temperature and humidity value.");

}

// Read moisture sensor
sensorValue = analogRead(sensorPin);
Serial.print("Moisture: ");
Serial.println(sensorValue);

// Write to CSV
writeToCSV(temp_hum_val[0], temp_hum_val[1], sensorValue);

// Capture photo
char fileName[37];
sprintf(fileName, "/%s_image%d.jpg", deviceID.c_str(), imageCount);
photo_save(fileName);
Serial.println("Photo saved.");

// Increment image count
imageCount++;
digitalWrite(LED_BUILTIN, HIGH);
delay(1000);
digitalWrite(LED_BUILTIN, LOW);

// Go to deep sleep
goToDeepSleep();

}

void writeFile(fs::FS &fs, const char *path, uint8_t *data, size_t len, bool append) {
Serial.printf("Writing file: %s\r\n", path);

// Open file for writing (append if specified)
File file;
if (append) {
file = fs.open(path, FILE_APPEND);

} else {
file = fs.open(path, FILE_WRITE);



}

if (!file) {
Serial.println("Failed to open file for writing");
return;

}
if (file.write(data, len) == len) {
Serial.println("File written");

} else {
Serial.println("Write failed");

}
file.close();

}

void writeToCSV(float humidity, float temperature, int moisture) {
// Get current time
unsigned long currentTime = millis();

// Convert time to seconds
unsigned long seconds = currentTime / 1000;

// Create CSV line
String dataLine = deviceID + ", " + String(seconds) + ", " + String(humidity) + ", " +

String(temperature) + ", " + String(moisture) + "\n";

// Write to SD card in append mode
writeFile(SD, "/sensor_data.csv", (uint8_t *)dataLine.c_str(), dataLine.length(),

true);
}

String generateRandomID() {
String alphabet =

"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789";
String ID = "";
for (int i = 0; i < 8; ++i) {
ID += alphabet[random(alphabet.length())];

}
return ID;

}

void photo_save(const char *fileName) {
// Take a photo
camera_fb_t *fb = esp_camera_fb_get();
if (!fb) {



Serial.println("Failed to get camera frame buffer");
return;

}
// Save photo to file
writeFile(SD, fileName, fb->buf, fb->len);

// Release image buffer
esp_camera_fb_return(fb);

}

void lightUpLEDs() {
for (int i = 0; i < NUMPIXELS; i++) {
// pixels.Color takes RGB values, from 0,0,0 up to 255,255,255
pixels.setPixelColor(i, pixels.Color(255, 255, 255)); // Moderately bright white

color
}
pixels.show(); // This sends the updated pixel color to the hardware

}

void turnOffLEDs() {
for (int i = 0; i < NUMPIXELS; i++) {
pixels.setPixelColor(i, pixels.Color(0, 0, 0)); // Turn off LED

}
pixels.show(); // Update the hardware to turn off LEDs

}

void goToDeepSleep() {



Appendix J - Slug count table





Appendix K - Aruco cropping code



import cv2 as cv
import numpy as np

# Load the image file
image_path ='D:\\Afstudeer documenten\\Afstudeer
documenten\\Images\\New Aruco\\image5.JPG' # Replace with
your image file path
# Replace with your image file path
frame = cv.imread(image_path)

# Check if the image was successfully loaded
if frame is None:

print(f"Error: Unable to load image from path
{image_path}")

exit()

# Convert the image to grayscale
gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)

# Load the predefined dictionary
dictionary =
cv.Aruco.getPredefinedDictionary(cv.Aruco.DICT_4X4_50)
parameters = cv.Aruco.DetectorParameters()
detector = cv.Aruco.ArucoDetector(dictionary, parameters)

# Detect the markers in the image
markerCorners, markerIds, rejectedCandidates =
detector.detectMarkers(gray)

# Check if 4 markers are detected
if markerIds is not None and len(markerIds) == 4:

# Sort the markers based on their ids to get them in a
consistent order

ids = markerIds.flatten()
sorted_indices = np.argsort(ids)
sorted_corners = [markerCorners[i] for i in sorted_indices]

# Flatten the sorted_corners list and extract the points
pts_src = np.array([corner[0] for marker in sorted_corners

for corner in marker], dtype='float32')

# Define the coordinates for the desired output
width, height = 800, 600 # Define your output size



pts_dst = np.array([[0, 0], [width - 1, 0], [width - 1,
height - 1], [0, height - 1]], dtype='float32')

# Compute the homography matrix
h_matrix, _ = cv.findHomography(pts_src, pts_dst)

# Warp the image using the homography matrix
warped_image = cv.warpPerspective(frame, h_matrix, (width,

height))

# Display or save the result
cv.imshow('Warped Image', warped_image)
cv.waitKey(0)
cv.destroyAllWindows()
cv.imwrite('output_image.jpg', warped_image)

else:
print("Could not detect exactly 4 corner markers.")



Appendix L - Datasets with image processing



No mesh:
https://drive.google.com/drive/folders/1v4W0Dt1VDq0PpESQU2y4fQ6GsuWWjqqH?
usp=drive_link

Black mesh:
https://drive.google.com/drive/folders/1HBmsKUhZC6_ymivxu_on5J-pQj5yQVKK?us
p=drive_link

White mesh:
https://drive.google.com/drive/folders/1HBmsKUhZC6_ymivxu_on5J-pQj5yQVKK?us
p=drive_link

No mesh augmented:
https://drive.google.com/drive/folders/1CnUFxlLwUhnZ6W8ITaVTrAam2BQVK9mB?
usp=drive_link

Black mesh augmented:
https://drive.google.com/drive/folders/1XSX8y7c7V5ST0wQwgNU-heZ_AfW5uKOv?
usp=drive_link

White mesh augmented:
https://drive.google.com/drive/folders/1QHRNPAcwDlA0fyp-VmCinclUr1ta3wzS?usp
=drive_link

https://drive.google.com/drive/folders/1v4W0Dt1VDq0PpESQU2y4fQ6GsuWWjqqH?usp=drive_link
https://drive.google.com/drive/folders/1v4W0Dt1VDq0PpESQU2y4fQ6GsuWWjqqH?usp=drive_link
https://drive.google.com/drive/folders/1HBmsKUhZC6_ymivxu_on5J-pQj5yQVKK?usp=drive_link
https://drive.google.com/drive/folders/1HBmsKUhZC6_ymivxu_on5J-pQj5yQVKK?usp=drive_link
https://drive.google.com/drive/folders/1HBmsKUhZC6_ymivxu_on5J-pQj5yQVKK?usp=drive_link
https://drive.google.com/drive/folders/1HBmsKUhZC6_ymivxu_on5J-pQj5yQVKK?usp=drive_link
https://drive.google.com/drive/folders/1CnUFxlLwUhnZ6W8ITaVTrAam2BQVK9mB?usp=drive_link
https://drive.google.com/drive/folders/1CnUFxlLwUhnZ6W8ITaVTrAam2BQVK9mB?usp=drive_link
https://drive.google.com/drive/folders/1XSX8y7c7V5ST0wQwgNU-heZ_AfW5uKOv?usp=drive_link
https://drive.google.com/drive/folders/1XSX8y7c7V5ST0wQwgNU-heZ_AfW5uKOv?usp=drive_link
https://drive.google.com/drive/folders/1QHRNPAcwDlA0fyp-VmCinclUr1ta3wzS?usp=drive_link
https://drive.google.com/drive/folders/1QHRNPAcwDlA0fyp-VmCinclUr1ta3wzS?usp=drive_link


Appendix M - Environmental values





Appendix N - Image processing with Hough circle transform



import cv2
import numpy as np
import os

def crop_image_around_circle(image, circle, border=20):
x, y, r = circle
h, w = image.shape[:2]

# Calculate the cropping boundaries with the border
x_min = max(x - r - border, 0)
x_max = min(x + r + border, w)
y_min = max(y - r - border, 0)
y_max = min(y + r + border, h)

# Perform the cropping
cropped_image = image[y_min:y_max, x_min:x_max]

return cropped_image

def detect_circle(image):
# Resize the image if it is too large
max_dimension = 800
scale_factor = min(max_dimension / image.shape[0],

max_dimension / image.shape[1], 1)
if scale_factor < 1:

image = cv2.resize(image, (int(image.shape[1] *
scale_factor), int(image.shape[0] * scale_factor)))

# Convert image to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# Apply GaussianBlur to reduce noise
blurred = cv2.GaussianBlur(gray, (9, 9), 2)

# Apply Hough Circle Transform
circles = cv2.HoughCircles(blurred, cv2.HOUGH_GRADIENT,

dp=1, minDist=50,
param1=100, param2=30,

minRadius=10, maxRadius=0)

if circles is not None:
circles = np.round(circles[0, :]).astype("int")
if len(circles) > 0:



return circles[0] # Return the first detected
circle

return None

def process_image(image_path, output_path):
# Load the image
image = cv2.imread(image_path)

# Convert to grayscale
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# Apply histogram equalization to enhance contrast
equalized_image = cv2.equalizeHist(gray_image)

# Apply Gaussian blur to smooth the image
blurred_image = cv2.GaussianBlur(equalized_image, (5, 5),

0)

# Apply adaptive thresholding to create a binary image
thresh_image = cv2.adaptiveThreshold(blurred_image, 255,

cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV,

11, 2)

# Use morphological operations to remove small noise and
fill gaps

kernel = np.ones((3, 3), np.uint8)
morph_image = cv2.morphologyEx(thresh_image,

cv2.MORPH_CLOSE, kernel, iterations=2)

# Detect circle on the original image
circle = detect_circle(image)

# Crop image around the detected circle with a border if
circle is detected

if circle is not None:
processed_image = crop_image_around_circle(morph_image,

circle, border=20)
else:

processed_image = morph_image # If no circle is
detected, use the morph_image

# Save the final processed image



cv2.imwrite(output_path, processed_image)

def process_images_in_folder(input_folder, output_folder):
# Create output folder if it doesn't exist
os.makedirs(output_folder, exist_ok=True)

# Loop through all files in the input folder
for filename in os.listdir(input_folder):

if filename.lower().endswith(('.png', '.jpg', '.jpeg',
'.bmp', '.tiff')):

input_path = os.path.join(input_folder, filename)
output_path = os.path.join(output_folder,

f"processed_{filename}")

# Process the image
process_image(input_path, output_path)
print(f"Processed {filename}")

# Example usage
input_folder = "D:\\Afstudeer documenten\\Afstudeer
documenten\\Datasets\\Circular slugtrap" # Replace with your
input folder path
output_folder = "D:\\Afstudeer documenten\\Afstudeer
documenten\\Datasets\\Circular slugtrap_augmented with Hough"
# Replace with your output folder path
process_images_in_folder(input_folder, output_folder)



Appendix O - Hough dataset



Base dataset:
https://drive.google.com/drive/folders/17ElXY771hFRsk3CIt9ebt5TTTzEBy9dZ?usp=
drive_link

Augmented dataset:
https://drive.google.com/drive/folders/1YqBjZM0Cg0x723u_0ttlNfhzROhLtYOB?usp=
drive_link

https://drive.google.com/drive/folders/17ElXY771hFRsk3CIt9ebt5TTTzEBy9dZ?usp=drive_link
https://drive.google.com/drive/folders/17ElXY771hFRsk3CIt9ebt5TTTzEBy9dZ?usp=drive_link
https://drive.google.com/drive/folders/1YqBjZM0Cg0x723u_0ttlNfhzROhLtYOB?usp=drive_link
https://drive.google.com/drive/folders/1YqBjZM0Cg0x723u_0ttlNfhzROhLtYOB?usp=drive_link


Appendix P - Product schematics
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Appendix Q - Design sketches











Appendix R - Machine learning datasets



Small dataset:
https://drive.google.com/drive/folders/1P-OKDYjgZbbY1q7W8p0tWC-sP-dD4E7J?us
p=sharing

Labels small dataset:
https://drive.google.com/file/d/1iz6hiDF7lr5A3qahwStMBcC718LAPdWh/view?usp=s
haring

Full dataset:
https://drive.google.com/drive/folders/1-sLMDJ45svZ-uY_eULruB2cqz5tPzAk2?usp=
sharing

Labels full dataset:
https://drive.google.com/file/d/1LtrPevKzlzyqt4DzqJNAQ-ZpEgR4Shic/view?usp=sha
ring

https://drive.google.com/drive/folders/1P-OKDYjgZbbY1q7W8p0tWC-sP-dD4E7J?usp=sharing
https://drive.google.com/drive/folders/1P-OKDYjgZbbY1q7W8p0tWC-sP-dD4E7J?usp=sharing
https://drive.google.com/file/d/1iz6hiDF7lr5A3qahwStMBcC718LAPdWh/view?usp=sharing
https://drive.google.com/file/d/1iz6hiDF7lr5A3qahwStMBcC718LAPdWh/view?usp=sharing
https://drive.google.com/drive/folders/1-sLMDJ45svZ-uY_eULruB2cqz5tPzAk2?usp=sharing
https://drive.google.com/drive/folders/1-sLMDJ45svZ-uY_eULruB2cqz5tPzAk2?usp=sharing
https://drive.google.com/file/d/1LtrPevKzlzyqt4DzqJNAQ-ZpEgR4Shic/view?usp=sharing
https://drive.google.com/file/d/1LtrPevKzlzyqt4DzqJNAQ-ZpEgR4Shic/view?usp=sharing


Appendix S - Adapted code from Kaggle



import os
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g.
pd.read_csv)
import seaborn as sns
import matplotlib.pyplot as plt
import shutil
from sklearn.model_selection import train_test_split
import tensorflow as tf
from sklearn.model_selection import train_test_split

# Ensure the checkpoints directory exists
checkpoint_dir = 'checkpoints'
if not os.path.exists(checkpoint_dir):

os.makedirs(checkpoint_dir)

# %%
# getting the labels corresponding to the image
label_df = pd.read_csv('C:/Users/baart/University/Afstudeer
documenten/Machine Learning/Labels dataset p2 test -
Blad1.csv')
label_df.columns = ['index', 'slug count']
print(label_df.head())
# %%
# loading the images in vector format
img = np.load('C:/Users/baart/University/Afstudeer
documenten/Machine Learning/images.npy')
print(img.shape)
# %%
labels = np.array(label_df['slug count'])
print(labels)
# %%
# setting features and target value

x_train, x_test, y_train, y_test = train_test_split(img,
labels, test_size=0.1)
print(x_train.shape[0])
print(x_test.shape[0])
# %%
"""
x_train, x_test = x_train / 255.0, x_test / 255.0
"""
# %%
# create model



model = tf.keras.Sequential([
tf.keras.layers.InputLayer(input_shape=(1200, 1600, 1)), #

Input layer
tf.keras.layers.Conv2D(32, (3, 3), activation='relu'),
tf.keras.layers.MaxPool2D(2, 2),
tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),
tf.keras.layers.MaxPool2D(2, 2),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(1)

])

model.compile(loss=tf.keras.losses.Huber(),
optimizer=tf.keras.optimizers.Adam(), metrics=['mae'])
model.summary()

# %%
# add a learning rate monitor to get the lr with smoothest
prediction

lr_monitor = tf.keras.callbacks.LearningRateScheduler(
lambda epochs: 1e-8 * 10 ** (epochs / 20))

# Adding EarlyStopping callback
early_stopping = tf.keras.callbacks.EarlyStopping(

monitor='val_loss', # Monitor the validation loss
patience=10, # Number of epochs with no improvement after

which training will be stopped
restore_best_weights=True # Restore model weights from the

epoch with the best validation loss
)

# Adding ModelCheckpoint callback for saving the best model
and checkpoints every 5 epochs
checkpoint_best = tf.keras.callbacks.ModelCheckpoint(

os.path.join(checkpoint_dir, 'best_model.keras'), # Save
in the "checkpoints" folder

monitor='val_loss', # Monitor the validation loss
save_best_only=True, # Save only the model with the best

validation loss
verbose=1 # Print a message when the model is saved

)



checkpoint_interval = tf.keras.callbacks.ModelCheckpoint(
os.path.join(checkpoint_dir,

'model_epoch_{epoch:02d}.keras'), # Save in the "checkpoints"
folder

save_freq=5 * x_train.shape[0] // 32, # Save every 5
epochs; adjust batch size

verbose=1 # Print a message when the model is saved
)

# %%
# train the model

history = model.fit(x_train, y_train, validation_data=(x_test,
y_test), epochs=50, batch_size=32,

callbacks=[lr_monitor, early_stopping,
checkpoint_best, checkpoint_interval])

# %%
# plot mae
plt.semilogx(history.history['lr'], history.history['loss'])
plt.axis([np.min(history.history['lr']),
np.max(history.history['lr']),
np.min(history.history['loss']), 15])
plt.show()

# %%
np.max(history.history['lr'])

# %%
# change the learning rate to 1e-5 and re-run the model

model.compile(loss=tf.keras.losses.MeanSquaredError(),
optimizer=tf.keras.optimizers.Adam(lr=1e-6), metrics=['mae'])
model.summary()

# %%
# train the model with early stopping and checkpoints

history = model.fit(x_train, y_train, validation_data=(x_test,
y_test), epochs=100, batch_size=32,

callbacks=[early_stopping, checkpoint_best,
checkpoint_interval])



# %%
# plot mae
plt.plot(history.history['mae'])
plt.plot(history.history['val_mae'])
plt.legend(['mae', 'val_mae'])
plt.ylim(1, 4)
plt.xlim(0, 50)

plt.xticks(np.arange(0, 50, 5))

plt.xlabel('epochs')
plt.ylabel('mean absolute error')
plt.title('Mae in every epoch')
plt.show()

# %%
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import ImageGrid

# set figure size

fig = plt.figure(figsize=(15, 15))
grid = ImageGrid(

fig, 111,
nrows_ncols=(2, 2),
axes_pad=0.5

)

for x in range(0, 4):
grid[x].set_title('Number of people => ' + str(labels[x]))
grid[x].imshow(img[x])



Appendix T - Final code for training



#%%-------
import os

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

from sklearn.model_selection import train_test_split

from tensorflow.keras.models import
Sequential,Model,Sequential
from tensorflow.keras.layers import
Dropout,Conv2D,MaxPooling2D,Flatten,Dense
from tensorflow.keras import regularizers
from tensorflow.keras.preprocessing.image import
ImageDataGenerator
from tensorflow.keras.metrics import categorical_crossentropy
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.layers import Input, Conv2D,
MaxPooling2D, Conv2DTranspose, concatenate,
GlobalAveragePooling2D, Dense
from tensorflow.keras.layers import Conv2D, MaxPooling2D,
Dropout, Flatten, Dense, BatchNormalization
from tensorflow.keras.callbacks import
ReduceLROnPlateau,EarlyStopping

#%%function for data augmentation, use once before everything
def image_augmentation():

# 1. Load your image data
images = np.load("images_newest.npy") # Shape (482, 64,

64, 1)

# 2. Create an ImageDataGenerator for augmentation
datagen = ImageDataGenerator(

rotation_range=30, # Rotate images by up to 30
degrees

width_shift_range=0.2, # Shift the image width by up
to 20% of the width

height_shift_range=0.2, # Shift the image height by
up to 20% of the height

zoom_range=0.2, # Zoom in/out by up to 20%
horizontal_flip=True, # Randomly flip images

horizontally



vertical_flip=False # Set vertical_flip=True if
applicable

)

# 3. Fit the data generator (optional)
datagen.fit(images)

# 4. Augment the images in batches and collect all
augmented images

augmented_images = [] # List to hold augmented images

# Total number of iterations needed to cover all images
once

steps_per_epoch = len(images) // 32 + 1

# Loop through the batches of augmented images
for i in range(steps_per_epoch):

augmented_batch = next(datagen.flow(images,
batch_size=32, shuffle=False))

augmented_images.append(augmented_batch)

# Concatenate all augmented batches into a single numpy
array

augmented_images = np.concatenate(augmented_images, axis=0)

# Save the augmented dataset to a .npy file
np.save('augmented_images.npy', augmented_images)

#%% get data
def get_data():

# 1. Load the image data and label data
images = np.load("images_newest.npy") # Assuming shape is

(482, 64, 64, 1)

# Load the labels from the CSV file
df = pd.read_csv('Label full compressed dataset -

Blad1.csv')
labels = df.to_numpy()[:, 1].reshape(-1, 1) # Extract

second column and reshape

# 2. Convert labels to one-hot encoding for multi-class
classification

num_classes = 4



labels_one_hot = to_categorical(labels,
num_classes=num_classes)

# 3. Perform train-test split
x_train, x_test, y_train, y_test = train_test_split(images,

labels_one_hot, test_size=0.2, random_state=42)

return x_train, y_train, x_test, y_test
#%% Define a simple sequential model
def cnn_model(input_shape=(64, 64, 1), num_classes=4):

model = Sequential()

# First block
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu',

padding='same', input_shape=input_shape))
model.add(Dropout(0.5))

model.add(BatchNormalization())
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu',

padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.5))

# Second block
#model.add(Conv2D(64, kernel_size=(3, 3),

activation='relu', padding='same'))
#model.add(BatchNormalization())
#model.add(Conv2D(64, kernel_size=(3, 3),

activation='relu', padding='same'))
#model.add(MaxPooling2D(pool_size=(2, 2)))
#model.add(Dropout(0.3))

# Flatten and Dense layers
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

model.compile(loss='categorical_crossentropy',
optimizer='adam', metrics=['accuracy'])

return model



def unet_model():

input_shape = (64, 64, 1)
num_classes = 4

inputs = Input(shape=input_shape)

# Encoder
conv1 = Conv2D(64, (3, 3), activation='relu',

padding='same')(inputs)
conv1 = Conv2D(64, (3, 3), activation='relu',

padding='same')(conv1)
pool1 = MaxPooling2D((2, 2))(conv1)

conv2 = Conv2D(128, (3, 3), activation='relu',
padding='same')(pool1)

conv2 = Conv2D(128, (3, 3), activation='relu',
padding='same')(conv2)

pool2 = MaxPooling2D((2, 2))(conv2)

# Bottleneck
conv3 = Conv2D(256, (3, 3), activation='relu',

padding='same')(pool2)
conv3 = Conv2D(256, (3, 3), activation='relu',

padding='same')(conv3)

# Decoder
up4 = Conv2DTranspose(128, (2, 2), strides=(2, 2),

padding='same')(conv3)
up4 = concatenate([up4, conv2])
conv4 = Conv2D(128, (3, 3), activation='relu',

padding='same')(up4)
conv4 = Conv2D(128, (3, 3), activation='relu',

padding='same')(conv4)

up5 = Conv2DTranspose(64, (2, 2), strides=(2, 2),
padding='same')(conv4)

up5 = concatenate([up5, conv1])
conv5 = Conv2D(64, (3, 3), activation='relu',

padding='same')(up5)
conv5 = Conv2D(64, (3, 3), activation='relu',

padding='same')(conv5)

# Classification head



gap = GlobalAveragePooling2D()(conv5)
output = Dense(num_classes, activation='softmax')(gap)

model = Model(inputs=inputs, outputs=output)

model.compile(optimizer='adam',
loss='categorical_crossentropy', metrics=['accuracy'])

return model

#%% plot
def plot_loss_accuracy(history):

# Plot training & validation accuracy values
plt.figure(figsize=(12, 5))

plt.subplot(1, 2, 1)
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('Model Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend(['Train', 'Validation'])
plt.grid(True)

# Plot training & validation loss values
plt.subplot(1, 2, 2)
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend(['Train', 'Validation'])
plt.grid(True)

plt.tight_layout()
plt.show()

#%% main ----------------------

batch_size = 128
no_epochs = 100
verbosity = 1



# data
x_train, y_train, x_test, y_test = get_data()

# model
model = cnn_model()

#
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.5,
patience=3, min_lr=1e-6)
early_stopping = EarlyStopping(monitor='val_loss', patience=5,
restore_best_weights=True)

# train
history = model.fit(x_train, y_train,

validation_data=(x_test, y_test),
batch_size=batch_size,
epochs=no_epochs,
verbose=verbosity,
callbacks=[early_stopping, reduce_lr])

# Evaluate the model on the test set
test_loss, test_accuracy = model.evaluate(x_test, y_test,
verbose=verbosity)
print(f"Test Loss: {test_loss}")
print(f"Test Accuracy: {test_accuracy}")

# plot
plot_loss_accuracy(history)

# save the model
model.save('slug_model.keras')



Appendix U - Results from fieldtesting



Results folder:
https://drive.google.com/drive/folders/1vnZFcf3hsVARlnu4J1-5pbnIGQs8pO87?usp=
sharing

https://drive.google.com/drive/folders/1vnZFcf3hsVARlnu4J1-5pbnIGQs8pO87?usp=sharing
https://drive.google.com/drive/folders/1vnZFcf3hsVARlnu4J1-5pbnIGQs8pO87?usp=sharing


Appendix V - Sketches from notebook
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