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Distributions for wave overtopping parameters for stress
strength analyses on flood embankments

Myron van Damme
Delft University of Technology, Department of Hydraulic Engineering, Stevinweg 1, 2600 GA

Delft, The Netherlands

Abstract

A process based assessment of the probability of failure of a flood embankment,
as well as an assessment of the consequences of failure of an embankment re-
quire insights into the stresses on the landside slope of an embankment. These
assessments are hindered by the empirical nature of the wave overtopping param-
eters. Failure initiation is often linked to an allowable mean overtopping discharge
which forms the input for the overtopping volumes distribution. The high level of
uncertainty associated with predicting the mean overtopping discharge therefore
leads to high levels of uncertainty in predicting wave overtopping volumes. The
mean overtopping discharge is thereby not directly related to run-up parameters.
This paper addresses these issues by presenting new distributions for the veloc-
ity, discharge, depth, volume, and shear stresses at the crest for those waves that
overtop which have been derived from the wave run-up parameters. The proposed
distributions are independent on the mean wave overtopping discharge and the
large inaccuracies associated with predicting this. The proposed method has the
added benefit of being able to express overtopping parameters in terms of each
other. The paper also provides a method for determining the change in these ran-
dom overtopping values along the landside slope, thereby facilitatating a direct
comparison between wave overtopping events and overflow events.

Keywords: Wave overtopping, distribution, volumes, discharge, shear stresses,
run-up, embankment

1. Introduction

Decisions on investments in flood protection are based on flood risk analy-
sis (Hall et al., 2003; Environment Agency, 2009; Gouldby et al., 2010; Kuijken,
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2015). The risk of an embankment failing is determined by the probability of the
embankment failing multiplied by the consequences of this failure. The proba-
bility of failure usually follows from a stress strength analysis. Failure is thereby
defined as the moment whereby the embankment is no longer able to fulfill its
design function. The consequences of failure are amongst others a function of the
rate at which an embankment breaches. Embankment breach models have been
developed to assess damage formation, and hence the residual strength of em-
bankments as a function of loading due to overflow (Macchione, 2008; Wu, 2013;
Singh et al., 1988; Zhu, 2006), but few methods have yet been developed to assess
the damage formation of embankments due to wave overtopping (D’Eliso, 2007).

An accurate assessment of the probability of failure due to overflow or wave-
overtopping, starts with a detailed assessment of the stresses exerted on the em-
bankment in relation to the strength of the embankment. The probability of failure
of an embankment under overflow has been studied in detail. For example, for a
grass covered embankment, the initiation of failure has been given by relating the
stresses on the grass cover to the change in strength of a grass cover with time
(Dean et al., 2010; Hughes, 2011). However in the case of wave overtopping
a more empirical approach is used whereby a maximum allowable mean over-
topping discharge is given which has been determined experimentally. The scale
parameter of the Weibull distribution used for describing the overtopping volumes
is thereby a function of the mean overtopping discharge.

On the other side of the spectrum research has been performed to the wave
run-up heights, velocity, depth and discharge. Van Gent (2002) attempted to re-
late the wave overtopping volume to wave run-up parameters but did not compare
the results with the overtopping volumes that follow from the Weibull distribu-
tions. This paper relates the overtopping volume to wave run-up parameters like
the run-up depth, height, and velocity. The outcome could be used to relate the
overtopping volumes to stress parameters, making a process based stress strength
analysis analysis possible.

The analysis presented in this paper works from the assumption that the wave
overtopping volume and mean overtopping discharge are directly related to wave
run-up parameters like the run-up depth, height, and velocity. It thereby assumes
that the incoming waves are Rayleigh distributed. Where possible the newly de-
rived distributions have been validated against data, among which the CLASH
database (Steendam et al., 2004) which consists of a collection of outcomes of
wave overtopping experiments. Probability distributions for the peak velocity,
depth, discharge, overtopping volume and shear stress are derived in Section 3.
The means by which each of these parameters has been determined are discussed
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Figure 1: Definitions used in describing wave run-up (for explanations parameters see text)

in Section 2 whereby in Section 2.6 methods are discussed for converting the peak
shear stress at the crest to peak shear stresses at any point along the landside slope.

2. Wave Run-up parameters

The run-up discharge [m3/s/m], velocities [m/s], depths [m], and hence vol-
ume [m3/m], and shear stresses [N/m2] are related to the wave run-up height
(Schüttrumpf and Oumeraci, 2005). The run-up height is here defined as the
vertical distance above the still water line over which a wave travels up the as-
sumed infinitely long waterside slope. Hunt (1959) related the run-up height of an
overtopping regular wave to the wave height according to

R =
tanαH√

2πH
gT 2

(1)

where R is the wave run-up height measured in the ẑ direction and α is the wa-
terside slope angle of the embankment (see Figure 1). Furthermore H [m] is the
deterministic wave height of a regular wave, g [m/s2] the gravitational constant,
and T [s] the deterministic wave period. The wave run-up height, velocity, and
discharge are given for a specific location (x∗, z) on the waterside slope, where x∗

and z are respectively the distance in the horizontal x̂ direction, and the vertical ẑ
direction relative to the interface of the Still Water Level (SWL). As a wave runs
up the waterside slope it may reach the point (xR, R), measured relative to the in-
tersection of the waterside slope with the still water level. Battjes (1974) showed
that for deep foreshores, the wave run-up height for relatively smooth slopes is
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Rayleigh distributed. Battjes (1974) adapted the Hunt run-up formula to irregular
waves, to arrive at a new methodology to be used in the Netherlands for calculat-
ing the 2% wave run-up heights for plunging breakers. This equation was later
incorporated in the current standard in respectively the Netherlands and Europe,
the TAW2002 (Van der Meer, 2002) and the EurOtop manual (EurOtop, 2007), as

R2%

Hs

= min

{
1.65γbγfγβξm−1,0, γfγβ

(
4.0− 1.5√

ξm−1,0

)}
(2)

Here R2% refers to the run-up height exceeded by 2% of Rayleigh distributed
incoming waves, Hs [m] is the significant wave height, ξm−1,0 is the breaker pa-
rameter tanα√

Hs/L0

where α is the waterside slope angle, and L0 [m] is the deep

water wave length given by
gT 2
m−1,0

2π
. Here Tm−1,0 [s] refers to the spectral period.

Furthermore γb is a factor to account for the effects of a berm, γf is a factor to
account for the roughness on the slope, and γβ is a factor to account for the angle
of incipient wave attack.

Relationships have been developed for the wave run-up velocities, depths, dis-
charges, and volumes based on the run-up height R exceeded by n% of the waves,
whereby n is often set at 2. The 2% run-up level alone however does not necessar-
ily provide sufficient information on whether the scale parameter of the Rayleigh
distribution is a function of normalized parameters, or a constant. Hence for the
purpose of the analysis outlined in this paper the Rayleigh distribution has been
fitted against wave run-up data for several exceedance probabilities to determine
how the scale parameter changes for different exceedance probabilities (see Fig-
ure 2). The data was made available by Van Steeg (2015). The normalized run-up
height was found to approximate a Rayleigh distribution with scale parameter
0.658, which results in the generic expression for the wave run-up height given by

Rn%

εHs

= 0.93 (−ln (P ))
1
2 (3)

for

ε = min

{
ξm−1,0γbγβγf ,

γfγβ
1.65

(
4.0− 1.5√

ξm−1,0

)}
(4)

Here subscript n refers to the percentage of waves exceeding the run-up height
R [m], and P refers to the probability that run-up exceeds the level represented
by Rn% [m]. Based on the Rayleigh distribution for the normalized wave run-up
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Figure 2: Fit of data against a cumulative Rayleigh run-up probability distribution (for parameters,
see text))
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height, relationships have been developed for the normalized wave run-up ve-
locity, run-up depth, run-up and overtopping discharge, and run-up volume. A
relationship for the run-up shear stress has also been developed using the run-up
velocity and run-up depth. In the following sections each of these parameters will
be discussed starting with the normalized wave run-up velocity.

2.1. Wave run-up velocity
The wave run-up velocity is defined as the peak velocity on the waterside slope

measured at an arbitrary height z above the still water level during a single run-up
event. The run-up velocity denoted by un% [m/s] refers to the peak run-up velocity
exceeded by n% of the incoming waves. As a wave runs up a slope, kinetic energy
is transferred into potential energy and dissipated due to friction and turbulence.
The run-up height is therefore related to the wave run-up velocity of the front of
the wave. This is moreover the peak velocity of the wave during a run-up event
(Schüttrumpf and Oumeraci, 2005). The wave run-up velocity un% exceeded by
n% of the incoming waves as a function of the n% run-up height is given by

un%

cu,n%

√
gHs

=

√
Rn% − z
Hs

. (5)

Here z is an arbitrary height on the slope below the n% run-up height Rn% (see
Figure 1). The left hand side denotes the normalized run-up velocity exceeded by
n% of the incoming waves at height z relative to the still water level. Equation 5
is based on the energy balance equation whereby the loss in energy is indicated by
the cu,n% parameter. An energy balance analysis has been performed to determine
how cu,n% changes with the run-up exceedance percentage n.

500 million normalized run-up values have been sampled from a Rayleigh
distribution with scale parameter 0.658, which equals to

√
0.932/2 (see Equations

3 and 4). From the samples the conditional expected values for the run-up were
calculated for those waves that exceed the Rn% level. Hence for the 2% run-up
level this coincides with the mean potential energy of the waves that exceed the
2% run-up level (R2%). The results are indicated by the line ’Samples’ in Figure
3. An analytical fit for this conditional distribution is given by

E

εHs

=
[
−0.88ln

( n

100

)
+ 0.62

] 1
2

(6)

where ε follows from Equation 4, and E [m] refers to the expected value for the
potential energy of those waves that exceed the n% run-up height. The values for
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Figure 3: Expected values for the potential energy E
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(for parameter description, see text)
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E that follow from Equation 6 have been normalized by dividing by the left hand
side of Equations 3 for n = 2. This gives an expression for E

R2%
. The square

root of this expression multiplied by
√

2 gives
√

2 E
R2%

which corresponds with
empirical based relationships for cu,2% given in the EurOtop manual. A graphical
representation of this expression is denoted by the label ’Fit’ in Figure 4 in which
also the empirical values for cu,2% from the EurOtop manual are given. The fit in

n/100
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Figure 4: Empirical values versus an energy based relationship for cu,n% (for parameter descrip-
tion see text)

Figure 4 is given by

cu,n% =

√
2

R2%

[
−0.88ln(

n

100
) + 0.62

] 1
2

(7)

As can be seen from Figure 4 the fit given by Equation 7 lies well within the
bounds of uncertainty identified by the EurOtop manual. The values for cu,10% and
cu,50% slightly exceed the values according to the fit whereas the value for cu,2%
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is slightly lower. The line indicated by ’Fit’ resembles the frictionless situation
whereby no energy is lost. Hence any value below this line indicates a lack of
kinetic energy available for reaching the required run-up height. Based on this
analysis it is possible to state that the effects of friction on the run-up velocity are
minor and that the run-up velocity for each individual wave is well described by a
direct transformation of kinetic energy into potential energy.

Equation 5 describes the peak flow velocity at the front of the wave. When
z is replaced by the crest height the peak velocity at the crest can be determined.
As the wave passes over the crest the flow velocity decreases. Hughes (2011)
proposed to describe the local deceleration of a wave with

v(t) = vN

(
1− t

TO

)a
(8)

where vN [m/s] denotes the peak velocity during an individual wave overtopping
event. where TO [s] is the total overtopping time per wave, t [s] is a time on the
interval [0, TO], and a is a calibration parameter. Means of determining TO and a
are discussed later in this paper. The next parameter that will be discussed is the
wave run-up depth.

2.2. Wave run-up depths
The wave run-up depth is defined as the peak depth measured during a single

overtopping event at location (x∗, z) relative to the intersection between the still
water level and waterside slope. The run-up depth denoted by dn% [m] refers
to the peak run-up depth at height z exceeded by n% of the incoming waves.
Schüttrumpf and Oumeraci (2005) approximated the run-up depth dn% as a linear
function of the horizontal component of the wave run-up xR [m] exceeded by n%
of the incoming waves, and the horizontal component of the position x∗ [m] on the
waterside slope (Schüttrumpf and Oumeraci, 2005) (see Figure 1). For a straight
waterside slope, the run-up depth exceeded by n% of the incoming waves can be
described in terms of run-up height as (EurOtop, 2007)

dn%

Hs

tanα
cd,n%

=
Rn% − z
Hs

(9)

The left hand side here denotes the normalized run-up depth exceeded by n% of
the incoming waves at height z [m]. To verify whether the run-up depth can be
described by a linear function, an analysis was performed on data from a Delta
flume experiment whereby run-up measurements were obtained at a rate of 50Hz
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Parameter Value
Hm0 0.95m
Tp 7.31s
Tm−1,0 6.37s
Tm 5.07s
sop 0.011
ξm−1,0 3.1

Table 1: Parameters wave experiment (for parameter description see text)(Hofland et al., 2015)

using a laser scanner (Hofland et al., 2015). The flume had a length of 240m, a
width of 5m, and a depth of 7m. The slope consisted of a smooth impermeable
concrete layer up to 2.0m above the flume bottom, a block revetment up to 5.5m
above flume bottom, and a permeable placed block revetment up to 8.3m above
the flume bottom. In total 739 waves were generated from a Pierson Moskowitz
spectrum for a total duration of 3770s. The vertical range covered by the laser
was 2.8m. The analysed data corresponds with the test for which the parameters
are given in Table 1. Here Hm0 refers to the spectral wave height, Tp refers to
the peak period, Tm to the mean wave period, and sop to the wave steepness cor-
responding to the peak period. Using the laser scanner those moments in time
were identified for which the wave run-up was maximum. At those times the gra-
dient in water surface slope was determined per wave by dividing the difference
in run-up depth between two measurement locations by the horizontal distance
between the two measurement locations. As shown in Figure 5, the run-up depth
gradient fluctuated around the value of 0.0751 with a standard deviation of 0.032.
The difference with the gradient of 0.055 given by the EurOtop manual (EurOtop,
2007) could be attributed to the increased roughness of the block revetment. It
can also be seen that near the wave front the slope decreases. Due to significant
amounts of noise in the measurements those depth values below the 0.03m were
eliminated from the depth database. Nonetheless these values have been used to
determine the maximum run-up level (Hofland et al., 2015). The mean depth gra-
dient near the top of the wave, between the measured maximum run-up level and
the level where the depth 0.03m, was found to be 0.013 with a standard devia-
tion of 0.0065. Despite the level of noise this shows that the run-up depth did
not vary linearly with the height but appeared to be slightly concave for this case.
Although the water level gradient could be obtained quite accurately using the
approach, no information could be obtained with regards to a minimum value for
the depth at maximum run-up due to the noise. The strong reduction in slope near
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the wave front may indicate a minimum depth. and a more box shaped front of the
wave instead of a triangular shape. As this data confirmed that the depth gradients
at maximum run-up are relatively constant, for further analysis in this paper the
linear approximation from the EurOtop manual was deemed satisfactory whereby

dn(x∗)

Hs

tanα
cd

=
Rn − z
Hs

(10)

where Rn [m] is the wave run-up height of the nth up-running wave, and cd ≈
0.055, as follows from the relation between the d2% with the R2%.

Similarly to the velocity distribution the overtopping depth at the intersection
of the crest and waterside slope is found by replacing z by the waterside slope.
Hughes et al. (2012) discovered that the overtopping depth decreases over time
per wave cycle as given by

d(t) = dN

(
1− t

TO

)b
(11)

where dN [m] denotes the peak depth during an individual wave overtopping
event. Hughes et al. (2012) found that for b = 1 a reasonable approximation
could be obtained. In the next section the run-up velocity and run-up depth rela-
tionships are combined in discussing the wave run-up discharge and overtopping
volume.

2.3. Wave run-up discharge and mean overtopping discharge
The wave run-up discharge is defined as the peak discharge measured during

the passing of an up-running wave. Schüttrumpf and Oumeraci (2005) found the
maximum wave run-up depth to approximately coincide with the maximum wave
run-up velocity giving a maximum wave run-up discharge near the wave front.
This is also the basis of the wave overtopping simulator, which releases a large
amount of water from a basin under gravity (Van der Meer et al., 2006, 2008). The
sudden release of water from the basin results in a wave for which the velocity and
water depth are initially maximum and then decrease. Hence it is to be expected
that a factor for the unit wave run-up discharge approximates the product of the
factor for the wave run-up velocity cu,n%, and wave run-up depth cd,n%. The n%
unit wave run-up discharge is given by

qn%tanα
cq,n%

√
gH3

s

=

(
Rn% − z
Hs

)1.5

(12)
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Here, the left hand side denotes the normalized run-up discharge. For n = 2,
Van Gent (2002) found cq,2% = 0.2 which is a close approximation of the product
of cd,2% and cu,2%. This indicates that there is indeed a strong correlation between
the overtopping velocity and overtopping depth. For the remainder of this paper
it has been assumed that cq,n% = cd,n% × cu,n%. Substituting the crest height
for z gives the peak overtopping discharge. The overtopping discharge given by
Equation 12 is the peak overtopping discharge. The discharge reduces with time as
the wave passes. Similar to Equations 8 and 11 Hughes et al. (2012) approximated
the change in overtopping discharge with time as

q(t) = qN

(
1− t

TO

)a+b

(13)

where qN [m3/s/m] denotes the peak discharge during an individual wave overtop-
ping event.

The peak overtopping discharge depends on the normalized run-up height to
the power of 1.5. As the run-up height is linearly dependent on the breaker pa-
rameter, the mean overtopping discharge is expected to have a similar correlation
with the breaker parameter. However the EurOtop manual (EurOtop, 2007) and
the TAW2002 (Van der Meer, 2002) give the following relationship for the mean
overtopping discharge q [m3/s/m]

q√
gH3

s

=
0.067

tanα
γbξm−1,0exp

(
−4.75

hc
ξm−1,0Hsγbγfγβγv

)
(14)

with a maximum of

q√
gH3

s

= 0.2exp
(
−2.6

hc
Hsγfγβ

)
(15)

where hc [m] denotes the crest height. These relationships both show a linear
dependence on the breaker parameter ξm−1,0. In Section 3 a different formula is
proposed for the mean overtopping discharge with a dependence on the breaker
parameter to the power 1.5, which is shown to be well correlated with data from
the CLASH database (Steendam et al., 2004).

2.4. Wave overtopping volume
By combining the overtopping discharge function (see Equation 13) with an

expression for the overtopping volume an expression for the overtopping time
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can be found. Van Gent (2002) provided a relationship for the normalized wave
overtopping volume which is given by

Vn%

cV n%H2
s

=

(
Rn% − z
Hs

)2

(16)

The overtopping volume V [m3/m] per wave follows from integrating Equation
13 with respect to time from t = 0 to t = TO (Hughes et al., 2012). Hofland et al.
(2015) validated the hypothesis that the wave overtopping volume per wave can
be described by the integral of the triangular surface area above the crest level and
under the wave front at the time the wave reaches the maximum run-up height.
This results in the following relationship for the overtopping volume per incident
wave N , VN [m3/m]

VN
H2
s

= max
(
cd

cosα
fV sin2α

RN − hc
H2
s

, 0

)
(17)

where fV is a shape factor for the front of the wave. For a triangular shaped wave
that reduces to a zero depth fV = 2. Equation 17 approximates the relationship
found by Van Gent (2002).

Hughes et al. (2012) found a best fit for the volume of an individually over-
topping V wave against the overtopping duration which is given by

V 1.16
N = 0.43qNTO (18)

where V [m3/m] is the volume of an overtopping wave, the coefficient 0.43 has
units [m0.16], qN [m2/s] is the discharge at its maximum during an overtopping
event, and TO [s] is the overtopping time. The left hand side denotes the normal-
ized overtopping volume. Combining Equation 18 and 16 gives

a+ b = 2.33V 0.16
N − 1 (19)

This suggests that the shape of the overtopping discharge function (See Equation
13) becomes more concave with increase in wave volume. Hughes et al. (2012)
hypothesized that more forward momentum is carried over the crest in the case
of higher volumes, indicating that the power a in Equation 8 increases for larger
overtopping volumes. However for small volumes (a + b < 2) this gives an
unrealistic convex shape. Hence, a minimum value of 2 was recommended to be
used for a + b. Hughes thereby indicated to use a maximum value of a + b =

14



4. When b = 1 for an assumed linear decrease in water depth with time (See
Equation 11), a = min (max(2.33V 0.16

N − 2, 1), 2).
The equation of Manning shows that the bed shear stress is a function of the

hydraulic radius, here replaced by the water depth, and the velocity. Based on the
relationships for the run-up velocity and run-up depth a relationship for the run-up
bed shear stress has been derived.

2.5. Shear stress
In deriving a relationship for the bed shear stress it has been assumed that the

main velocity component is parallel to the embankment surface and that the im-
pact of other mean velocity components are negligible small in comparison. It
should be noted that this may not be the case everywhere along the landside slope
as due to high flow velocities the waves may separate from the landside slope.
The aim behind deriving overtopping shear stress relationships is to facilitate a di-
rect comparison between failure initiation due to overflow and wave overtopping.
This comparison can be used to identify the effect of other stress components on
damage initiation. For the purpose of this paper the bed shear stress is described
by the following form of Manning’s equation

τ =
ρwv

2n2

d
1
3

(20)

where n [s/m
1
3 ] is the Manning coefficient, v [m/s] is the main velocity compo-

nent parallel to the embankment surface, and d [m] has been substituted for the
hydraulic radius. To arrive at an expression for the run-up shear stress it has been
assumed that the Manning equation is piece-wise valid at each instant or location.
The peak shear stress can now be described as a function of the wave run-up as

τn%

ρwn2gH
2/3
s (tanα)

1
3 cτ,n%

=

(
Rn% − z
Hs

) 2
3

(21)

where cτ,n% ≈
c2
u,n%

c
1/3
d,n%

is the calibration parameter for the shear stress. The left hand

side of Equation 21 denotes the normalized shear stress. For a stress strength
analysis, or for comparing overflow with overtopping events, the parameter that is
important is the excess shear stress which is defined here as the bed shear stress
minus the critical shear stress. In order to arrive at a duration for which the bed
shear stress exceeds the critical bed shear stress the bed shear stress has been
expressed as a function of time.
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Hughes et al. (2012) used Equation 18 to relate the overtopping volume and
overtopping time TO [s]. The normalized run-up parameters are related to the

normalized run-up
(
R−z
Hs

)j
, where j is a power coefficient. Replacing z with the

crest height hc [m] and expressing the values for the normalized discharge and
volume in terms of normalized shear stress gives for TO as the function of the
peak shear stress

TO =
τ 1.23
N (tanα)0.59

ρ1.23
w n2.46g1.730.43c1.23

τ,n%cq,n%

(22)

Here τN [N/m2] is the peak shear stress at the intersection of the waterside slope
and the crest level. According to Equation 18 the overtopping time is solely a
function of the overtopping volume and the peak discharge qN [m3/s/m]. Once a
wave overtops the volume does not change. The power that indicates the change
in discharge with time is solely dependent on the volume and hence constant in
space. It should be noted that this is a simplification as for an infinitely long
landside slope the length of an overtopping wave will stretch out due to differences
in velocity at the wave front and the tail of the wave. However, provided the
assumption is reasonable this indicates that the peak discharge remains constant
along the landside slope and hence that the overtopping time TO [s] is constant.
For relatively short slopes this approximation seems justifiable although further
studies to the validity range of this approximation are recommended.

Although the peak discharge and volume do not change along the crest and
landside slope, the depth does change. The change in depth gives a change in
velocity due to local conservation of mass. From Mannings’ equation follows that
the shear stress τ [N/m2] is therefore a function of the location along the crest or
landside slope. How the peak shear stress changes along the crest and landside
slope will be discussed in Section 2.6. First the change in shear stress with respect
to time will be discussed which is described by

τ(x̂, t) = τN(x̂)

(
1− t

T0

)m
(23)

whereby τ , and τN , are functions of the location, whereby x̂ refers to the location
along the crest x or landside slope χ. Hereby x = 0 at the interface of the crest
and waterside slope, and χ = 0 at the interface of the crest and landside slope.
The parameter m follows from rewriting the volume V in Equation 19 in terms of
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shear stress gives

a+ b ≈ max

2, 2.33c1.16
V,n%

τ
1
2

n%

ρ
1
2
wngH

1
3
s c

1
2

τ,n%(tanα)
1
6

− 1

 (24)

Under the assumption that the depth decreases linearly with time the power
coefficient of the shear stress is approximated as

m = 2a− 1

3
b = min

max

4.66c1.16
V,n%

τ
1
2

n%

ρ
1
2
wngH

1
3
s c

1
2

τ,n%(tanα)
1
6

− 4.33,
5

3

 ,
10

3


(25)

whereby m is constant along the crest and landside slope as the volume V does
not change.

For failure analysis the time domain is of importance during which the shear
stress exceeds the critical shear stress. This time, denoted by t1 [s], is given by

t1(x̂) = −TO
(

τc
τp(x̂)

) 1
m

+ TO. (26)

Here τp(x̂) [N/m2] is the peak shear stress at any point on the crest or landside
slope. With a change in flow velocities along the crest or landside slope the shear
stress τp(x) also changes. Hence t1 is also a function of location. To assess the
average shear stress per overtopping wave the shear stress function needs to be
integrated from t = 0 to t = t1 which leads to∫ t=t1

t=0

τ(x̂, t)dt = − T0

m+ 1
τp(x̂)

(
τc

τp(x̂)

)1+ 1
m

+ (27)

τcT0

(
τc

τp(x̂)

) 1
m

− τcT0 +
T0

m+ 1
τp(x̂)

The overtopping volume and peak overtopping discharge are independent of
the location along the landside slope or crest. However the peak depth, peak
velocity, and peak shear stresses are a function of the location along the crest or
landside slope as is discussed in the following section

2.6. Changes as a function of location
As the wave runs down the landside slope the peak bed shear stress under the

wave front changes spatially due to spatial changes in peak velocity vN [m/s] and
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Figure 6: Run-up profile over the crest

peak depth dN [m]. The latter follows from a depth integrated momentum balance
equations. Schüttrumpf and Oumeraci (2005) provided a function that describes
the change in depth along the crest and landside slope. In their derivation of
this function Schüttrumpf and Oumeraci (2005) applied a steady state approxi-
mation. Inherent to this approximation the discharge is assumed constant in time
and space along the landside slope. Provided mass is conserved, any change in
velocity along the crest and landside slope is inversely proportional to the change
in depth. Hence, effects of the local deceleration of a wave overtopping event
are ignored in the derivation of Schüttrumpf and Oumeraci (2005). A second
assumption made by Schüttrumpf and Oumeraci (2005) was that the pressure gra-
dient term in x-direction is 0 at the free surface. In doing so, the pressure gradient
term was removed from the momentum balance equation prior to integrating the
equation over the height. Hence in the analysis of Schüttrumpf and Oumeraci
(2005) the water level gradient was removed from the momentum balance equa-
tion in determining the analytical solution for the spatial change in depth. Below
an attempt was made to improve on the relationship given by Schüttrumpf and
Oumeraci (2005) by accounting for the local change in discharge with time, and
the depth integrated pressure gradients. The starting point of the analysis are the
generic one-dimensional Shallow Water Equations for a steady state flow, which
for a unit width, slip conditions at the sides, an hydraulic radius equal to the depth,
and a landside slope with angle β, are given by

∂q

∂t
+

∂

∂d

(
q2

d
+ gcosβ

1

2
d2

)
∂d

∂x̂
− gdsinβ + cf

q2

d2
− Sq = 0, (28)

where d [m] is the depth, q [m3/s/m] the breadth averaged discharge component
parallel to the bed, h [m] the water level, g [m/s2] the gravitational constant, cf is a
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friction factor, and S is a source term given by S = 1
ρw

dρw
dt

[s−1]. x̂ is the direction
perpendicular to the embankment whereby x̂ = x for a flow over the crest and
x̂ = χ for a flow down the landside slope (see Figure 6). For the analysis no mass
is assumed to be lost during the flow over the crest. For simplicity, the shear stress
has been determined by

τ = cf
q2

d2
(29)

Manning’s equation can be found by substituting cf ≈ gn2

d1/3
. The magnitude of

the discharge component q is assumed to match the breadth averaged discharge.
Taking the water depth perpendicular to the embankment surface leads to the fol-
lowing differential equation for the water depth on the crest (β = 0)

∂d

∂x
=
−cfq2 − d2

(
∂q
∂t
− Sq

)
−q2 + gd3

(30)

Under the assumption that the local change in discharge with time remains con-
stant it is possible to define an artificial depth da [m] as

d2
a = − cfq

2

qt − Sq
(31)

whereby qt = ∂q
∂t

[m3/s2/m]. Also a critical depth dc [m] is defined as

d3
c =

q2

g
. (32)

For small deviations of the depth from the artificial depth da [m] the depths could
be approximated by d = da + ∆d, which gives for Equation 30

∂∆d

∂x
=

(2da∆d(qt − Sq) +O (∆d2))(
gd̃3

a − gd̃3
c + 3gd2

a∆d+O(∆d̃)2
) (33)

For small deviations from the artificial depth da, the terms of O∆d2 can be ig-
nored, leading to. (

g
d3
a − d3

c

∆d
+ 3gd2

a

)
d∆d = 2da(qt − Sq)dx (34)

or

exp
(

3da∆d

d3
a − d3

c

)
∆d = exp

(
2da(qt − Sq)∆x
g (d3

a − d3
c)

)
(35)
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Working this out and using the Taylor expansion of ∆dea∆d around 0, and apply-
ing the boundary condition that d = da + d0 at x = x0 one gets the following
approximation with an error of the order ∆d2

d(x) = da + d0exp
(

2da(qt − Sq)(x− x0)

g (d3
a − d3

c)

)
(36)

where x0 is the location where the water depth d(x) [m] matches the run-up depth
on top of the waterside slope. This derivation differs from that of Van Gent (2002)
and Schüttrumpf and Oumeraci (2005) in the sense that it accounts for the effects
of the local deceleration of an overtopping wave. The effect of this is that the water
depth increases along the crest unless the source term multiplied by the discharge
exceeds the acceleration term (Sq > qt). Both for S = 0 and S < 0 the flow
velocities decrease which corresponds with the description given in the EurOtop
manual. (EurOtop, 2007).

For the flow along the landside slope (β > 0), a χ, γ coordinate system has
been defined such that χ is parallel along the landside slope and γ is normal to χ
as given in Figure 6. With a water depth d̃ measured perpendicular to the landside
slope, a flow velocity component ṽ parallel to the slope, and q̃ = d̃ṽ[m3/s/m], the
following differential equation is found from the 1D momentum balance equation

∂d̃

∂χ
=
−cf q̃2 + gd̃3sinβ − d̃2q̃t(

cosβgd̃3 − q̃2
) (37)

It has thereby been assumed that the other velocity components are negligibly
small compared to the main velocity component. For the derivation of the analyt-
ical solution an artificial depth, d̃a [m] has been derived given by

gd̃3
asinβ − q̃td̃2

a = cf q̃
2 (38)

For a steady state flow qt = 0 and da becomes equal to the normal depth. The
critical depth d̃c is defined as

d̃3
c =

q̃2

gcosβ
(39)

Substitution of d̃ = d̃a + ∆d̃ gives for Equation 37

∂∆d̃

∂χ
=
gsinβ

(
3d̃2

a∆d̃+O(∆d2)
)
− q̃t

(
2d̃a∆d̃+O(∆d̃2)

)
−gcosβd̃3

c + gcosβ
(
d̃3
a + 3d̃2

a∆d̃+O(∆d̃2)
) (40)
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For small deviations from the artificial depth d̃a [m], the term O∆d̃2 can be ig-
nored, leading to

gcosβ
[(
d̃3
a − d̃3

c

)
ln
(

∆d̃
)

+ 3d̃2
a∆d̃

]
=
(

3gsinβd̃2
a − qtd̃2

a

)
χ (41)

Working this out and using the Taylor expansion of ∆d̃ea∆d̃around 0, substituting
that d̃ = d̃a+∆d̃, and applying the boundary condition that d̃ = d̃a+ d̃0 at χ = χ0

the following approximation is found for the depth as a function of χ with an error
of the order ∆d̃2

d̃(χ) = d̃a + d̃0exp


(

3gsinβd̃2
a − qtd̃2

a

)
(χ− χ0)

d̃3
a − d̃3

c

 (42)

Here χ0 is the location where the water depth d(χ) matches the depth d̃a+ d̃0. The
EurOtop manual gives for the terminal velocity for an overtopping wave along the
landside slope

ṽb =

√
2gd̃bsinβ

f
(43)

where ṽb is the terminal velocity, d̃ is the corresponding water depth measured
perpendicular to the slope, and f is a friction parameter with an approximate
value of 0.22. multiplying the left and right side by the depth d̃b gives after some
manipulation

d̃3
b =

q2f

2gsinβ
(44)

Comparing Equation 44 with Equation 38 shows that for da = db, the effects
of deceleration (qt < 0) result in higher friction values. Equation 43 inherently
assumes the effects of deceleration to be negligible whereas this leads to a sig-
nificant underestimation of the shear stresses on the embankment surface. For a
landside slope gradient of 1/3 and a peak discharge of 1.3m3/s a manning pa-
rameter of 0.025s/m1/3 gives the same terminal velocity and depth as a manning
parameter of 0.054 s/m1/3 when flow deceleration is accounted for. As the shear
stress is quadratically dependent on the Manning coefficient, this gives a 4.6 times
higher shear stress prediction when accounting for the deceleration effects and
when these are ignored.

Assuming that the peak discharge along the crest and the landside slope re-
mains constant the change in velocity is inversely proportional to the change in
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depth. The shear stress at any point along the crest and landside slope is now
found by multiplying the shear stress by a depth dependent factor. According to
Manning’s Equation the shear stress is proportional to

τ ::
u2

d̃
1
3

(45)

and hence as the depth decreases along the landside slope the maximum value for
the shear stress increases according to

τN(x̂) =

(
d̃N,0

d̃(x̂)

) 7
3

τN,0 (46)

where τN,0 [N/m2] and d̃N,0 [m] are respectively the peak shear stress and peak
depth at x̂ = 0.

With relationships for the velocity, depth, discharge, volume, and shear stress
in place, distributions have been developed for each of these parameters assum-
ing Rayleigh distributed incoming waves. The following paragraph describes the
development of these distributions.

3. Distribution of wave overtopping parameters

The different wave parameters given in Section 2, have been described by the
generic equation

N =

(
Rn% − hc

Hs

)j
(47)

where N is a normalized wave overtopping parameter. For j = 1
2
, N describes

the normalized run-up velocity at crest level, for j = 2
3

the normalized run-up
bed shear stress at crest level, for j = 1 the normalized run-up depth at crest
level, for j = 1.5 the normalized run-up discharge at crest level, and for j = 2
the normalized unit overtopping volume (See Equations 5, 9, 12, 16, and 21).
These variables are respectively denoted by Up, Tp, Dp, Qp, and V . Besides the
significant wave height Hs, the run-up height is also a function of the parameter

ε = min

{
ξm−1,0γbγβγf ,

γfγβ
1.65

(
4.0− 1.5√

ξm−1,0

)}
(48)
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Hence, any distribution describing the wave overtopping parameters is a function
of Equation 48. The cumulative distribution function of the Rayleigh distribution
is given by

F (x, σ) = 1− exp
(
− x2

2σ2

)
for x > 0 (49)

The run-up is Rayleigh distributed and follows from R = Hsεx, or x = R
Hsε

.
Substituting this expression in the Rayleigh distribution gives

F (R, σ) = 1− exp
(
− R2

2σ2ε2H2
s

)
for R > 0 (50)

whereby σ =
√

0.932

2
= 0.658, which follows from Equation 3. Equation 50 is the

general cumulative distribution function for up-running waves.
The overtopping volume can be approximated by the amount of up-running

water that exceeds the crest level. The length over which water runs up is given
by R−hc

sinα . Assuming that the depth decreases linearly with the run-up height the
total volume V follows from

V

H2
s

= max

(
cd
fV

cosα
sin2α

(R− hc)2

H2
s

, 0

)
(51)

from which follows that

R =

(
fV sin2α

cosαcd
V

) 1
2

+ hc for R > hc (52)

Substituting this expression for R in Equation 51 gives the survivor function for
the overtopping volume V

F (V, σ) = P (V > V ) = exp

−
(
fV sin2α
cosαcd

)
V + 2hc

(
fV sin2α
cosαcd

V
) 1

2
+ h2

c

2σ2H2
s ε

2

 (53)

Equation 53 describes the probability P of individual waves overtopping the crest
level hc and exceeding the overtopping volume V . Because not every wave reaches
the crest level the integral of Equation 53 does not integrate to 1. Hence to arrive
at the cumulative distribution function for the wave overtopping volume for those
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waves that do overtop it is necessary to normalize Equation 53 by the probability
that the run-up level exceeds the crest level. This is is given by

F (R > hc) = exp
(
− h2

c

2σ2H2
s ε

2

)
(54)

Dividing Equation 53 by Equation 54 gives the cumulative distribution function
for overtopping waves which is equal to

F (V, σ) = 1− exp

−
(
fV sin2α
cosαcd

)
V + 2hc

(
fV sin2α
cosαcd

V
) 1

2

2σ2H2
s ε

2

 (55)

The distribution shape given by Equation 55 was compared against the overtop-
ping volume distributions from the EurOtop manual and the improvements made
by Zanuttigh and Lamberti (2007). Both assume that the wave overtopping Vol-
ume is Weibull distributed whereby the scale factor follows from a = 0.84Tm

q
Pot

.
Here Tm is the mean wave period, q is the mean wave overtopping discharge, and
Pot is the probability of overtopping. The mean overtopping discharge parameter
used in these distributions was obtained from Equations 14 and 15. In the EurO-
top manual the shape factor is set to 0.75, whereas Zanuttigh and Lamberti (2007)

suggested a shape factor b given by b = 0.73 + 55
(

q
gHsTm−1,0

)0.8

. Hence both
these methods are dependent on the mean wave overtopping discharge q. The
standard deviations of the exponents in respectively Equation 14 and 15 are 0.5
and 0.35 (Zanuttigh and Lamberti, 2007). The coefficient of variance correspond-
ing with predictions of the mean overtopping discharge (see Equations 14 and 15)
was determined from the CLASH database for those cases with negligible friction
losses, normally incoming waves, and no berm. This results in a coefficient of
variance of 2. Unlike the current state of the art relationships for the overtopping
volume, Equation 55 is independent on the mean overtopping discharge and hence
independent on the uncertainties associated with the mean overtopping discharge.

The overtopping volume predictions have been plotted against the probability
of exceedance for normally incoming Rayleigh distributed waves with a signifi-
cant wave height of 0.95m, a friction parameter of 1, and a breaker parameter of
3.1 . Figures 7 and 8 respectively show the comparison between the results from
Equation 55, the method from the EurOtop Manual (EurOtop, 2007), and the im-
provements on the EurOtop method by Zanuttigh and Lamberti (2007) for respec-
tively a crest level equal to the 2% run-up level, and 50% run-up level. As shown

24



Overtopping volume [m3/m]

0 0.5 1 1.5 2

P
ro

ba
bi

lit
y 

of
 o

cc
ur

re
nc

e

10-4

10-3

10-2

10-1

100

Zanuttigh & Lamberti
New distribution
EurOtop 2007 

Figure 7: Comparison of the overtopping volumes as a function of probability of overtopping for
a design crest level with a 2% overtopping probability
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Figure 8: Comparison of the overtopping volumes as a function of probability of overtopping for
a design crest level with a 50% overtopping probability
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in the Figure 7, the newly developed method gives a higher prediction for the over-
topping volume for low probability events. Differences in the general shape of the
distribution follow from the differences between shape of the distribution given by
Equation 55 and the Weibull distribution. Figure 8 shows a similar trend at first
but as the probability decreases further the predictions from the proposed method
become lower than the volume predictions following from the method by Zanut-
tigh and Lamberti (2007). The assumptions underlying these plots are that the
depth decreases linearly with the run-up height according to Equation 10, and that
the overtopping volume is given by the fraction of a prism shaped run-up volume
that exceeds the crest level. Lower predictions for the overtopping volume would
be found when it is assumed that part of the volume, for which the wave run-up
exceeds the crest level, flows back down the waterside slope. Hence Equation 55
gives an upper limit for the overtopping volume for waves whose run-up depth
decreases linearly with the run-up height. Hence regions for which Equation 55
under-predicts the wave overtopping volumes, indicate that the assumption of a
linear reduction in run-up depth may be invalid, or that the coefficient cd,n% is dif-
ferent for different probability events. However as the ratio in predictions given in
Figures 7 and 8 is smaller than the coefficient of variance of 2 corresponding with
the shape factors of the Weibull distributions it would be challenging to determine
the source of errors in the predictions given by Equation 55.

Based on the analysis above a more general form of Equation 53 could be
created for overtopping parameters like the overtopping depth, velocity, discharge
and shear stress. Starting from Equation 50, the generic substitution equation is
then given by

R = cXX
1
j + hc (56)

Substituting this expression in Equation 50 and correcting the equation for those
waves that do overtop gives

F (X, σ) = 1− exp
(

h2
c

2σ2H2
s ε

2

)
exp

−
[
(cXX)

1
j + hc

]2

2σ2H2
s ε

2

 (57)

The values for cX depend on the parameter of interest and are given by Table 2.
The dependance between the overtopping velocity and crest height j = 0.5

follows directly from the energy balance. However the linear dependance between
the overtopping depth and crest height (j = 1) is purely determined empirically.
The overtopping discharge follows from the overtopping depth multiplied by the
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Parameter symbol cX
Overtopping velocity Up

1
cu
√
g
≈ 1√

2g

Overtopping shear stress Tp 1
ρwn2gtanαcτ

Overtopping depth Dp
tanα
cd
≈ tanα

0.055

Overtopping discharge Qp
tanα
cd
√
g
≈ tanα

0.055
√
g

Overtopping Volume V fV sin2α
cosαcd

≈ 2sin2α
0.055cosα

Table 2: Parameters for the Weibull distribution for the normalized depths of overtopping waves(
R−hc

Hs

)
for a 10% crest level

overtopping velocity, and hence depends on the accuracy with which the run-up
depth is described. Because the new distributions have been derived by expressing
the overtopping parameters in terms of the Rayleigh distributed run-up, the over-
topping parameters can also be expressed in terms of each other. Comparing the
relationship for the peak overtopping volume with the peak overtopping discharge
gives (

sin2α

cosαcd
V

) 1
2

=

(
cd
√
g

tanα
qp

) 2
3

(58)

Equation 58 shows that the peak overtopping discharge is proportional to overtop-
ping volume according to

q ::
√
gV

3
4 (59)

which was also found empirically by Hughes et al. (2012). Assuming that the
peak overtopping discharge and mean overtopping discharge are fully correlated
the dependencies of the overtopping parameters on the run-up height have been
evaluated using the mean overtopping discharge predictions given by the CLASH
database. The current mean overtopping relationships given by Equation 14 and
15 show a correlation with the data from the CLASH database of 0.88 for those
cases whereby the berm widths are 0, the angle of wave attack is normal to the
levee, and the friction losses are negligible. The peak overtopping discharge dis-
tribution for those waves that overtop is given by

P = exp

−
[
(cqq)

2
j + 2hc (cqq)

1
j

]
2σ2H2

s ε
2

 (60)

For P = 0.8 the peak overtopping discharges were found to match empirically
the averaged overtopping discharge during overtopping events qot [m3/s/m]. The
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value of P = 0.8 indicates that 80% of the overtopping discharges exceed the
predicted value. The CLASH database (Steendam et al., 2004) contains values on
the mean overtopping discharge defined as the total overtopping volume divided
by the total experimental time. Hence normalizing qot by the probability of an
overtopping event results in the mean overtopping discharge q [m3/s/m] given by

q = qotexp
(
− h2

c

2σ2H2
s ε

2

)
(61)

The relationship between the prediction from Equation 61 and the CLASH database
has been depicted in Figure 9 together with the fit between the data and the pre-
diction obtained from Equations 14 and 15. Equation 61 gives a correlation with
the data of 0.86 whereas Equations 14 and 15 give a correlation with the data of
0.88 indicating that a similar good match can be obtained using this approach.
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Figure 9: Comparison of the calculated mean overtopping discharges with the measured mean
overtopping discharges from the CLASH database
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4. Discussion

Over the past years much experimental research has been performed on wave
run-up and overtopping. The test parameters and mean overtopping discharge
measured during these tests have been collected in the CLASH database. The co-
efficient of variance of the current state of the art prediction methods for the mean
overtopping discharge is 2, indicating a high level of uncertainty. The scale pa-
rameters of the Weibull shaped overtopping volume distributions (EurOtop, 2007;
Zanuttigh and Lamberti, 2007) are linearly dependent on the mean overtopping
discharge predictions transferring this high level of uncertainty to the wave over-
topping volume predictions.

This paper provides new distributions for a variety of overtopping parame-
ters by expressing the overtopping parameters in terms of the Rayleigh distributed
run-up height and thereby making them independent on the mean overtopping
discharge. Coefficients for use in the distributions (See Table 2) have been de-
rived by analyzing theory and data (Hofland et al., 2015). The theoretical analysis
shows that for smooth slopes the effects of friction are small when determining
wave run-up velocities. The data analysis shows that the water level gradient at
maximum run-up levels is approximately constant over a large range but appears
to decrease near the wave front. Based on this, empirical coefficients are given
for the distributions of the overtopping discharge, overtopping volume, and over-
topping shear stress. Because each of these overtopping parameters are described
in terms of the normalized difference between run-up levels and crest level, the
parameters are expressible in terms of each other. The proportionality between
the wave overtopping volumes and peak overtopping discharge found this way
corresponds with the proportionality found by Hughes et al. (2012).

The ratio between predictions following from the developed distribution for
wave overtopping volumes (Equation 55) and the Weibull distribution (EurOtop,
2007) is small compared to the coefficient of variance associated with the mean
overtopping discharge parameter on which the scale parameters of the Weibull
distribution (EurOtop, 2007) are linearly dependent. The match in proportionality
with the findings of Hughes et al. (2012) combined with the relative small differ-
ence in predictive capabilities with the current state of the art Weibull distribution
indicates the viability of the new method. The proposed distributions are thereby
likely to have a coefficient of variance which is smaller than the ones dependent
on the mean overtopping discharge. A second benefit of the new distributions is
that each wave overtopping parameter is easily expressed in terms of the others,
an example of which has been given in Equation 58. The shear stress distribution
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could directly be used for comparing the shear stresses at crest level during wave
overtopping events with the shear stresses at crest level during overflow events.

A process based analysis has been performed to derive equations that describe
the change in overtopping parameters as a function of the location along the crest
or landside slope. When developing these equations it was noted that the local
acceleration term has a significant effects on the equilibrium depth prediction, or
shear stress prediction. Accounting for the deceleration in the momentum balance
equations results in a significantly higher bed shear stress prediction. Before using
these equations it should furthermore be noted that the flow is assumed as one-
dimensional. When waves overtop the embankment the flow could separate from
the landside slope near the landside end of the crest. Until the wave has reattached
with the embankment surface the equations describing the change in depth profile
are invalid as the processes conflict with the underlying assumption of having a
hydrostatic pressure distribution.

5. Conclusions

The analysis presented in this paper has led to several new distributions for
describing respectively the overtopping depth, velocity, discharge, shear stress,
and volume at crest level. These distributions have been derived by expressing
overtopping parameters in terms of wave run-up parameters. Coefficients for use
in the distributions have also been given. The new distribution are independent
on the mean overtopping discharge and hence the coefficient of variance of the
mean wave overtopping discharge relationships are not transferred into the shape
or scale parameters of the distribution. The distributions proposed in this paper
thereby allows for easy transformation of one overtopping parameter in another.
Equations for the spatial change in parameters have also been derived. Together
these provide a good initial means of comparing the stresses on embankments dur-
ing overflow and overtopping events, and for performing a stress/strength analysis.
Further study to the validity range of these equations is however recommended.
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