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Abstract

Electronic trading algorithms are at the centre of every buy-side equity trading desk. These algorithms
rely often on market impact models, which are stochastic models for the stock prices that account for
the feedback effects of trading. Propagator models are central tools for describing the evolution of
market impact during and after a trade. This thesis extends the linear propagator model by proposing
a new variant that incorporates time-varying liquidity and general decay kernels. To bridge the gap
between theory and practice, we use Robeco’s proprietary order data base to calibrate the model and
validate its performance. The main findings reveal a two-stage decay pattern of market impact, the
absence of a single best admissible decay kernel, and a model performance which is in line with our
expectations based on the low-signal to noise ratio of the data. The main application of the model in
this research is its use in the optimal execution problem, in both a intraday and multiday setting. In
an intraday setting we formulate the problem for a risk aware trader and incorporate short-term alpha
signals. The discrete analogs of these problems are solved analytically and we highlight significant
cost reduction compared to industry benchmarks. In the multiday framework, we quantify the expected
cost of trading two adjacent orders and use this to find optimal multiday execution strategies. In a
final simulation study we quantify the expected cost of rebalancing two similar investment accounts
on consecutive days with a varying number of overlapping stocks. The simulation study accentuate a
significant additional cost for the account trading on the second day, which stresses the importance of
multiday cost management in rebalancing investment accounts.

Keywords: Algorithmic trading • Market impact modeling • Optimal control • Financial mathematics •
Quantitative analysis
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1
Introduction

Trading large orders with minimum market impact is one of the major difficulties buy-side trading desks
are dealing with every day. Robeco is one of these buy-side firms and with over hundred billion euros
AuM in equities, orders arriving at its equity trading desk can be of significant size. Because these
orders can comprise up to 30% of the daily traded volume, the resulting impact on the stock price can
be notable, which makes effective management of market impact a crucial factor in the profitability of its
investment strategies. To reduce market impact, traders split up the order into smaller pieces, so called
child orders, that are gradually traded throughout a certain time interval. The question, academics and
practitioners are trying to solve for many years, is how to allocate an optimal proportion of the total
order to each individual child order such that the market impact is minimized: ”the optimal execution
problem”.

Electronic trading algorithms are at the centre of every equity trading desk. However, it is in many
cases not the trader who decides how to split the order into child orders, but the trading algorithm
selected by the trader. The mathematical foundation for many of these trading algorithms is a market
impact model, which is a stochastic model for the stock price that takes into account the feedback
effects of trading. In the first generation of market impact models, the stock price is only affected in
two ways: a temporary component which only affects the current trade and a permanent component
which represent the lasting change in the price and affect all future trades. These models are based on
the seminal papers by Bertsimas and Lo (1998), Almgren and Chriss (1999) and Almgren and Chriss
(2001). However, more recent research in market microstructure (see e.g., Bouchaud et al. (2003),
Obizhaeva and Wang (2013), Bouchaud et al. (2018)) has shown that temporary impact can further be
decomposed into instantaneous impact and transient impact, in the sense that, each trade causes an
immediate impact and a subsequent decay which “propagates” across time. This leads to the second
generation of market impact models also known as ”propagator models”.

This new wave of market impact models, quantitatively describe the decay of market impact after ev-
ery trade and how future trades are affected by this. One of the pioneering models in this category
is the discrete-time, log-impact model, introduced by Bouchaud et al. (2003). This model is based
on empirical observations of market microstructure and further developed by Bouchaud et al. (2009).
Conversely, Obizhaeva and Wang (2013) proposed a model that derives its dynamics from a simplified
mathematical description of the limit order book. This model is extended by Alfonsi et al. (2008) and
Alfonsi et al. (2010) to incorporate nonlinear price impact on a global level. Gatheral (2010) generalizes
the before mentioned models with general decay and nonlinear instantaneous impact on a local level
such as in the original Bouchaud model.

In this thesis we propose a new variant of the propagator model originally introduced byGatheral (2010).
This new variant is a linear model that combines the concept of time-varying liquidity parameters (see,
Cont et al. (2014) and Fruth et al. (2014)) and general forms for the market impact decay into one
model. The underlying economic idea behind intraday time-varying liquidity is that there is generally
more liquidity available in the end of the trading day then there is at the middle of the day. Therefore,
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2 1. Introduction

trading 100 shares just before the closemakes lessmarket impact than during lunch time when volumes
are the lowest. The time-varying liquidity parameter we use is the intraday volume curve such that the
resulting model is a linear propagator model on the traders participation rate. To ensure the viability of
the model, we derive some conditions in discrete and continuous time such that the model is free of
price manipulation in the sense of dynamic arbitrage (see, Huberman and Stanzl (2004) and Gatheral
(2010)).

A unique aspect of this thesis, is that we have access to Robeco’s proprietary intraday order database.
Up until today, academics have faced a significant challenge in empirically evaluating market impact
models due to the lack of access to proprietary order data. Consequently, much of the existing litera-
ture is focused on analyzing market impact models using public trading data (see, Webster (2023) and
references therein). The availability of Robeco’s data allows for a thorough analysis and validation of
the new introduced linear propagator model specifically applied to its US orders, thereby bridging the
gap between theoretical models and their practical implementation. Notably, Capital Fund Manage-
ment (CFM), a France quantitative asset managers, has provided some insights into this area with the
papers Hey, Bouchaud, et al. (2023) and Hey, Mastromatteo, et al. (2023), but comprehensive access
to proprietary data remains rare. We further provide a detailed methodology to calibrate the model to
intraday order data, where we leverage the method proposed by Neuman et al. (2023) but adapt it to
our own model specifications.

Building on the calibrated linear propagator model, we turn to the optimal execution problem for a
single order. We formulate the associated optimal control problem for a deterministic trading strat-
egy as a mean-variance optimization and extend the objective function to include a short-term alpha
signal, modeled as an Ornstein–Uhlenbeck process. For the discrete-time versions of these optimal
execution problems, we derive analytical solutions using the Lagrange multiplier method. These theo-
retical results are illustrated through realistic examples, in which we execute an order and compare the
performance of different strategies in terms of expected cost and expected impact. These examples
demonstrate the practical applicability of the model in realistic trading scenarios.

The final contribution of this thesis extends the intraday optimal execution setup to a multiday frame-
work, a relatively new research direction with limited existing results (see, Harvey et al. (2022) and Bor-
digoni et al. (2022)). This extension is primarily motivated by the autocorrelation observed in Robeco’s
metaorders. Robeco manages multiple accounts for each investment strategy, necessitating the rebal-
ancing of accounts within the same strategy on consecutive days. As a result, the same stock may be
traded for different accounts over successive days. To quantify it implications, we derive the expected
cost of trading two adjacent orders under the linear propagator model. This not only allows us to calcu-
late optimal multiday execution strategies but more importantly enables us to quantify the hidden costs
of rebalancing similar accounts on two consecutive days. These theoretical results are demonstrated
through a realistic simulation study.

The outline of this thesis is as follows. Chapter 2 delves into the fundamentals of algorithmic trading for
asset managers, starting with an exploration of electronic markets and limit order books. It covers em-
pirical analysis of trading data, including data cleaning, order flow analysis and continues to preliminary
concepts of market impact with an empirical study on the concavity and transient nature of market im-
pact. Chapter 3 introduces the propagator model for market impact, beginning with Bouchaud’s model,
followed by the Obizhaeva and Wang model, before we present the new variant of linear propagator
model. We moreover discuss the viability of the model by deriving the set of admissible kernels, and
outline in detail the calibration process. Numerical results on calibration, decay kernel estimates, and
performance evaluation are also provided.

Furthermore, Chapter 4 focuses on optimal intraday execution strategies, formulating the optimal ex-
ecution problem for the Obizhaeva and Wang model and linear propagator model and discussing the
resulting optimal strategies. It explores minimizing execution costs, mean-variance optimal strategies,
and strategies incorporating short-term alpha signals. Chapter 5 extends the discussion to optimal
multiday portfolio rebalancing, examining the expected cost of trading adjacent metaorders, formulat-
ing optimal multiday execution strategies, and addressing the complexities of rebalancing portfolios
over multiple days. In the conclusion we summarize the key findings and contributions of the the-
sis, while in the discussion section we reflect on the implications of the research and potential future
directions.



2
Preliminaries on algorithmic trading

We start this chapter by introducing general concepts such as electronic equity markets and the limit
order book before we look at some empirical properties of Robeco’s proprietary order database. We
define filters to enhance the data quality and look for statistical patterns in the order flow. Furthermore,
we introduce preliminary concepts on market impact and look at some stylized facts in the data.

2.1. Electronic equity markets and limit order books
Electronic equity market functions through sophisticated systems where orders get matched and exe-
cuted without human intervention. The shift towards automation is driven by the introduction of elec-
tronic communication networks, algorithmic trading and high-frequency trading. These advancements
facilitate the rapid execution of orders and provide enhanced liquidity, which results in more dynamic
and responsive markets. However, these advancements have also led to a shift from traditional central-
ized exchanges, such as the New York Stock Exchange and NASDAQ, to alternative trading venues,
such as dark pools and crossing networks. These venues are introduced to facilitate the execution of
large amounts of shares anonymously, with the aim on reducing market impact and protecting trading
intentions.

For buy-side firms such as asset managers, the shift to electronic trading has brought many advan-
tages. Firstly, it allows them to execute orders more efficiently and discreetly by using dark pools and
crossing networks. Secondly, they are able to deploy algorithmic trading strategies, which allow for a
more systematic and cost-efficient approach to order execution. Common algorithmic trading strategies
used by asset managers are Volume-Weighted Average Price (VWAP), and Implementation Shortfall
(IS) strategies. A VWAP strategy aims to execute orders in line with the historical/predicted volume
curve. IS strategies, also known as arrival price strategies, aim to minimize the difference between
the decision price (price at the time of order placement) and the final volume weighted execution price.
The IS strategy trades more aggressive compared to VWAP to balance the risk of price movements
and market impact. Besides these industry standard strategies, asset managers might also employ
more sophisticated algorithms that dynamically adjust order sizes based on short-term predictions of
the stock price known as alpha signals or exploit different trading venues to capture favorable prices
and volumes.

Orders in electronic equity markets can broadly be categorized into two types: market orders and limit
orders. On the one hand, market orders are executed immediately at the current best bid/ask price,
ensuring immediate execution but with the risk of price slippage by crossing the spread. On the other
hand, limit orders specify a price at which the trader wants to buy or sell, which provides more control
over the execution price but without the guarantee of immediate execution. These orders are routed to
one of the many trading venues where buy and sell orders are matched through their matching engines
and order books. The order book is a real-time, continuously updated list of buy and sell orders, and
displays the quantities and prices at which market participants would like to trade. The matching engine
prioritizes orders based on price and timing, where they often use a first in first out method.

3



4 2. Preliminaries on algorithmic trading

Quotes in the Limit Order Book (LOB) are essentially limit orders containing the price, direction (buy/sell),
and quantity. Figure 2.1 illustrates a LOB, with bid (buy) quotes on the left and ask (sell) quotes on the
right. The highest bid and lowest ask prices are known as the best bid and best ask prices, with the
difference called the bid-ask spread and their average is referred to as the mid-price. A trade in a LOB
exchange occurs when a trader submits a market order, which contains the size and direction. The
market order is than matched with existing limit orders in the LOB.

When a buy market order is placed, multiple outcomes are possible based on the order size of the
market order compared to the volume present on the best ask price:

• If the order size is less than volume quoted on the best ask, the order matches with limit orders
at the best ask price, reducing the volume at this level without changing prices.

• If the order size is equal to the volume quoted on the best ask, the order fully matches all limit
orders at the best ask price, increasing the best ask price afterward.

• If the order size exceeds the volume quoted on the best ask, the order fully matches all limit orders
at the best ask price, and the remaining order size trades at the next best ask price, resulting in
an average price higher than the initial best ask.

This means that a market order can not only raise the price for future trades but also impact the average
price of the current trade by targeting limit orders deeper in the book.

Figure 2.1: Illustration of the limit order book. Source: Bouchaud et al. (2018), Figure 3.1.

2.2. Empirical analysis of trading data
The empirical analysis of trading data is a critical component in the study of market impact and the de-
velopment of market impact models. Therefore, in this section we have a closer look at some properties
of Robeco’s trading data. We define some filters to improve the quality of the data and we investigate
some stylized facts of order flow.

2.2.1. Data cleaning
The dataset consist of all US equity metaorders executed by Robeco between June, 2020, and Septem-
ber, 2023. With a metaorder we mean an order of one stock that is executed within one day. In par-
ticular, for every metaorder we know the aggregated signed fill quantities on 5 minute frequency. To
streamline the analysis, we refer to the aggregated signed fill quantity on a 5 minute frequency as a
child order and every 5 minute interval we call an intraday time bin. Furthermore, the dataset is struc-
tured in such a way that we only have order data and market data on an intraday level without any link
to subsequent days.
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The dataset includes Robeco’s US orders, and only involve stocks that are part of the MSCI US index.
The MSCI US index includes approximately 600 stocks and is designed to measure the performance
of the large and mid-cap segments of the US market. As of January 2024, this index represents around
85% of the market capitalization in the US (see MSCI Inc. (2024)).

To define filters for improving the data quality, we summarize the average trading behaviour in Figure
2.2 by making several diagnostics plots. In the upper left figure we have a histogram of the length of
different metaorders, where we define the length by the difference in time bins between the first and
the last trade. In the upper right figure we see a histogram of the number of child orders per metaorder.
In the lower left corner we have a plot which displays the amount of trades in each intraday time bin.
Lastly, in the lower right corner we see a boxplot of the of the intraday 5 min volatility in bps.

Figure 2.2: Before data filtering, number of metaorders equal to 80393. (Upper left) histogram of the length of every metaorder.
(Upper right) histogram of the number of child orders per metaorder. (Lower left) amount of child orders in each intraday time
bin. (Lower right) boxplot of the intraday 5 min volatility in bps.

In the boxplot of Figure 2.2 we see that there are many outliers in the intraday volatility estimates. This
could be due to some measurement errors or due to some very extreme market conditions. Either way,
these very high intraday volatility estimates do not represent normal market behaviour and adds noise
to the data sample. Therefore, we exclude all trading days from the data sample where the intraday
5 min volatility is above 70 bps. This corresponds to a daily volatility of 6.2%, which equal to 98.9%
annualized.

Furthermore, we see in the upper right plot that we have a large number of metaorders (≈ 25000)
which only have a length of one. These metaorders are mostly corresponding to cash flows. Cash
flows are orders that are executed because a client wants to withdraw cash from its account. The
mandate for these cash flow orders is that they need to be executed as close to the closing price as
possible, because the client always receives the closing price. As a result, these cash flows are most
of the time executed during the closing auction, which means that we can only observe them in one
time bin. This adds noise to the data and therefore we decided to exclude them from the data sample
by setting the minimum length of an order to 3 time bins (15minutes). Note however that this is a proxy
since we can not flag the cash flows individually.
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Moreover, we filter out all metaorders which are in size smaller than 0.01% of the daily volume of the
stock. We do this to reduce the noise in the data set. To summarize, the filters we use to obtain the
final data set are given in Table 2.1.

Table 2.1: Data filters used to improve the quality of the data.

Sort filter Filters

Number of tradings bins (T) 79 (5 min)
Maximum intraday 5 min volatilty 70 bps
Minimum length of order 15 min
Minimum ordersize per metaorder 0.01%
Number of metaorders 48005

The data filters given in Table 2.1 result in the diagnostic plots in Figure C.1 and can be found in
Appendix C. In this figure we visualize the average trading behaviour after applying the filters. The
original data sample included 80393 metaorders, this means that our current sample includes around
60% of the original data. For all our analysis in this thesis we use the cleaned data set.

2.2.2. Analysis of order flow
Empirical studies have shown that returns in financial markets exhibit minimal or no autocorrelation,
implying that price movements are largely random and not easily predictable based on past returns.
This observation is consistent with the Efficient Market Hypothesis (see, Fama (1970)), which states that
stock prices fully reflect all available information. However, for the order flow of institutional investors
this is different.

To investigate the presence of autocorrelation in the order flow at a child order level, we analyze two
key dimensions: trade signs (i.e., buy, sell or no trade) and the number of shares traded. The trade
sign is an integer indicator that captures the direction of the child order, while the number of shares
traded quantifies, the child order’s magnitude. By examining these dimensions, we aim to find statistical
patterns in the trading behaviour.

For this analysis, we construct time series of child order signs (1 for buy, 0 for no trade and -1 for sell)
and number of traded shares per child order. The autocorrelation function (ACF) is then computed
for these time series separately. By averaging the autocorrelation functions across all metaorders, we
capture the average order flow dynamics at the child order level.

In the left and middle plot of Figure 2.3, we compute the average autocorrelation functions for trade
signs and trade volumes over a random sample of metaorders1. In the most right plot we show the
autocorrelation function of the corresponding log returns.

The ACF for trade signs shows minimal autocorrelation. Almost all lags fall within the confidence inter-
val, except lag one. A possible reason for this could be that we are working with integer values, 1 for
buy, 0 for not trading and −1 for selling. Consequently, if we do not trade in every interval and the dis-
tribution of trading and not trading during an metaorder is somewhat random, we get this result.

In contrast, the ACF for the number of shares traded per child order shows more persistence, with
significant autocorrelation in first few lags. This aligns with our earlier observation that buy-side firms
often break metaorders into smaller pieces to mitigate their market impact. Note that the ACF decays
like a power-law or exponential function. This is an important observation as we will see in Chapter
3.

Additionally, the analysis includes the ACF of log returns, which we plot in the right hand side of Figure
2.3. This ACF demonstrates no significant autocorrelation for lags larger than 1, aligning with the
widely accepted notion that log returns follow a random walk behaviour and are not easily predictable.
However, at the first lag, we notice some autocorrelation indicting a short momentum in the returns on
a 5 minute frequency.
1Different random samples do not significantly change the ACFs.
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Figure 2.3: (Left) average autocorrelation function of order signs child orders. (Middle) average autocorrelation function of
number of shares child orders. (Right) average autocorrelation function of log returns. All autocorrelation functions are based
on a random sample of 6000 metaorders.

2.3. Preliminaries on market impact
The economic definition of market impact is that trading causes adverse price movements in the stock
price that otherwise not would have happened. In a simplified setting, we can decompose the mid-price
𝑆 of a stock, into:

𝑆 = 𝐼 + 𝑃,
where 𝐼 is the market impact caused by trading and 𝑃 is the unobserved or unaffected price process.
The unobserved price process is driven by the action of other market participant and external factors.
An illustrative example of this decomposition is given in Figure 2.4. In this example we display the
execution of a 2.3% Average Daily Volume (ADV) buy order in a certain stock and the resulting market
impact calculated using a market impact model. The amount of shares traded in every 5minute interval
of the day is given in the the upper figure. The resulting market impact, i.e. 𝐼 = 𝑆 − 𝑃, the unaffected
price and mid-price are given in the lower figure.

Figure 2.4: (Upper figure) trading schedule in number of shares during an 2.3% ADV buy order. (Lower Figure) illustration of the
decomposition of cumulative log returns in the mid-price and the unaffected price path both given in basis points.

Accurately modelingmarket impact is critical for asset managers for several reasons. Primarily, it allows
for better understanding how trading affects price returns. This way traders can decompose trading cost
into several factors such as market impact cost, alpha cost, spread cost and other types of cost. This
is key in evaluating the effectiveness of trading strategies and identifying areas for improvement. Sec-
ondly, by understanding market impact, traders can design optimal execution strategies that minimize
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market impact when trading large positions. Lastly, regulatory frameworks require asset managers to
demonstrate best execution practices (see e.g. Wagner and Edwards (1993)), and accurate market
impact models provide the necessary documentation and analysis to show that trades were executed
in a manner that minimizes costs and maximizes value for clients.

In the seminal paper by Almgren and Chriss (2001), the authors categorize market impact into two main
types: temporary and permanent. Temporary impact refers to the immediate price movement caused
by the execution of the trade. In contrast, permanent impact represents the lasting change in price,
reflecting the new information perceived by the market. In reality, the permanent impact is hardest to
measure. This is because after the execution of an order the variance scales linearly with time and is
amplified by the volatility of the asset, which means that the signal of the order becomes very weak
and therefore hard to properly measure (see e.g. Brokmann et al. (2015), Bucci et al. (2018), and
references therein).

Bouchaud et al. (2003), Obizhaeva and Wang (2013) and Bouchaud et al. (2009) proposed to split
temporary impact further into two categories: instantaneous impact and transient impact. On the one
hand, instantaneous impact has no memory effect and only effects the current trade. It is for example
caused by crossing the spread and the need to take away liquidity deeper in the order book. On the
other hand, transient impact refers to the impact trajectory between instantaneous and permanent.
This form of impact decays overtime which is due to the resilience effect of prices as we see later in
this section.

To mitigate the adverse effects of market impact, traders often split large metaorders into smaller child
orders (see Figure 2.4). This strategy, known as ”order slicing”, offers several advantages. Smaller
orders are less likely to move the market significantly because they can more easily be matched with
available liquidity, thereby reducing the temporary impact and the likelihood of revealing the traders
trading intentions. Additionally, by spreading orders over time, traders can exploit favorable market
conditions, i.e. executing child order when liquidity is higher and volatility is lower or take advantage of
short momentum.

In the coming two subsections, we empirically investigate two important properties of market impact:
its concavity with respect the order size and the transient nature of market impact. These properties
are important to consider when making modelling choices as we will see in the next chapter.

2.3.1. Concavity of market impact
Order size is the main driver of market impact. It is well documented that the market impact of a
metaorder scales proportional to square root of the order size. (see e.g., Tóth et al. (2011) Bacry et al.
(2015), Bucci et al. (2018)). However, in this thesis we are mostly interested in the relation between
the order size of a child order and the resulting market impact.

To be able to compare different stocks and days in one analysis, we apply multiple normalizations. We
start by normalizing the log returns by subtracting the fair value and divide by the intraday volatility.
With fair value we mean the part of the returns we can attribute to market and sector movements and
for this we use Robeco’s internal fair value model. To normalize the child order sizes by volume we
define two types: a child order size normalized by ADV and a child order size normalized by the total
volume traded in the associated intraday time bin, also called the participation rate.

The reason why we consider the participation rate, is that the intraday volume curve is not constant
over the day. Volume tent to be much higher near the end of the trading day and during the opening
as can be seen in Figure 2.5. Consequently, leading to less market impact when trading the same
amount of shares near the close compared to other parts of the day. Therefore, to be able compare
different child orders equally over the day we divide by the total volume traded by the market in a 5 min
interval.

To investigate the impact of a child order on the mid-price, we consider the volatility and fair value
corrected average signed log return in a intraday time bin. We bucket the normalized child orders in
1000 quantile buckets and make a scatterplot of their mean. To find a pattern in the scatter plot we fit a
power-law and a linear function to the data points with the package scipy.optimize.curve_fit in Python.
In the left hand side of Figures 2.6 we plot the average signed normalized log returns versus the child
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Figure 2.5: Intraday volume curve based on the average volume curves of all the stock in the MSCI US index in 2023.

orders normalized by ADV and in the right hand side figure the average signed normalized log returns
versus participation rate on a log-log scale.

Figure 2.6: Scatterplot of expected signed log return plotted versus the mean of every quantile bucket for different normalizations
of the child orders. We use 1000 buckets and the fitted functions are a linear and power law function. (Left) the normalization
by ADV. (Right) the normalization by the intraday volume.

We see in the left hand side of Figure 2.6 that a power-law function with concavity parameter 0.71
fits the data best. Conversely, the relation between the average signed normalized log returns and
the participation rate is less concave (concavity parameter equal to 0.83) and moves closer to a linear
relation. To link this directly to a functional form of how the instantaneous impact scales with the nor-
malized order size is more subtle. Due to the large autocorrelation in order flow, it is hard to obtain
the isolated instantaneous impact of a child order without the interference of the impact from previous
trades. Therefore, we can only use the relative difference in concavity between the two normalizations
in future analysis.

2.3.2. Transient nature of market impact
The transient nature of market impact is observed on a trade level but mostly on a metaorder level. On
a child order level this is hard to empirically measure because the large autocorrelation in order flow
makes it difficult to isolate the impact of individual child orders. However, on a metaorder level this is
easier to measure and visualize.

To visualize the transient property of market impact on metaorder level, we consider the volatility and
fair value corrected average cumulative signed log return versus the relative length of a metaorder.
To be able to compare different metaorders with different lengths, we use in our analysis the relative
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length, i.e we set the start of the execution to 0, the end of the execution to 1, such that a relative
length of 2 means one order length after the end of the execution. In Figure 2.7 we plot the normalized
average cumulative signed log return during the execution up to one order length after the execution.
We average over 3350 metaorders with an average duration of 45 minutes. Moreover, all metaorder
have similar length.

Figure 2.7: Average signed cumulative log returns versus the relative length of a set of metaorders. We use 3350 metaorders
with an average duration of 45 min.

In Figure 2.7 we see that the average impact trajectory during the execution is a concave function of
time. Directly after the execution of the metaorder the impact reverts and decays like a power-law or
exponential function. This clearly highlights the transient nature of market impact after the execution.
The figure also includes the half-life of the impact trajectory, defined as the time after execution when
half of the maximum impact has reverted. For this sample of orders the half-life is equal to 16 minutes.
Additionally, one order length after the end of execution, 38% of the maximum impact remains. This
suggests a two-stage decay process: an initial rapid and short decay followed by a slow and long
decay.

We must note that this analysis is only based on a small sample of the metaorders (≈ 7%). The reason
for this is that for this subset only, we can measure the decay for more than 1 order length after the end
of the execution. This is because the data contains only intraday returns and the average order length
is 360 minutes.

In summary, we analysed multiple characteristics of order data. We have seen that our order flow
shows a large autocorrelation for the first few lags and decays like a power-law or exponential function,
while we found little to no autocorrelation in the returns. Furthermore, we have shown how market
impact of our child order scales with respect to different normalized order sizes and that the impact tra-
jectory after the execution of a metaorder reverts back over time. To explain and model these empirical
observations, propagator models play an essential role as we see in the next chapter.



3
The propagator model

This chapter begins by presenting the mathematical setup of this thesis. Next, we review two important
propagator models that serve as foundational elements in the literature. Following this, we introduce the
new variant of the linear propagator model which combines a time-varying liquidity process and general
decay kernels. We investigate conditions under which the linear model is free of price manipulation and
other irregularities. Additionally, we outline a two-step optimization approach to calibrate the propagator
model to trading data. Finally, we discuss the numerical results of the calibration.

3.1. Mathematical setup
We start by defining some key processes and common notation that we use throughout the thesis. Let
𝑇 > 0 and consider a filtered probability space (Ω, ℱ, (ℱ𝑡)𝑡∈[0,𝑇], ℙ). We define an admissible trading
strategy as follows:

Definition 3.1.1. (Admissible trading strategy) Define Π = (𝑄𝑡)𝑡∈[0,𝑇] as a trading strategy that de-
scribes the number of shares held by the trader at each time 𝑡 ∈ [0, 𝑇], where 𝑄0 is the initial amount of
shares traded such that 𝑄0 > 0 for a buy order and 𝑄0 < 0 for a sell order. Its variation 𝑑𝑄 describes
the trades.

The trading strategy 𝑄 is considered admissible if it satisfies the following conditions:

(a) 𝑄 is càdlàg (”right continuous with left limits”) and ℱ𝑡-adapted for all 𝑡 ∈ [0, 𝑇];
(b) 𝑄 has finite and ℙ-a.s bounded total variation on any finite interval [0, 𝑇];
(c) There exists 𝑇 > 0 such that 𝑄𝑡 = 0 ℙ-a.s for all 𝑡 ≥ 𝑇.

Furthermore, the strategy can be classified as follows:

• If 𝑄 ∈ 𝒟, then it is a deterministic admissible strategy.

• If 𝑄 ∈ 𝒬, then it is a stochastic admissible strategy.

The practical meaning of the admissibility conditions in the definition above is as follows: The first
condition ensures that the trading strategy relies only on information available up to time 𝑡 and allows
for the possibility of jumps. For the second condition, we note that a general trading strategy 𝑄 might
alternate between buys and sells, and can therefore be decomposed into a nonincreasing sell strategy
(𝑋𝑡)𝑡∈[0,𝑇] and a nondecreasing buy strategy (𝑌𝑡)𝑡∈[0,𝑇], such that 𝑄 = 𝑋 + 𝑌. To allow for such a
representation, 𝑄 must have bounded total variation, which results in the second condition.

The last condition states that the trading strategy concludes within a finite time frame, aligning with
realistic trading scenarios. Furthermore, the last condition implies that the total variation of𝑄 is bounded
by 𝑋0+|𝑌0|. The ℙ-almost sure bound on total variation implies that the total quantities of both buy and
sell orders are constrained. Given that the number of shares for any stock is finite, this assumption is
economically reasonable.

11
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Notice that an admissible trading strategy can exhibit jumps. Therefore, we define a jump as fol-
lows:

Definition 3.1.2. (Jump) Let 𝑄 be a process that exhibits jumps. Then we denote a jump by Δ𝑄𝑡 =
𝑄𝑡 − 𝑄𝑡−, where 𝑄𝑡− = lim𝑠↑𝑡 𝑄𝑠.
To ensure clarity, we define the following process spaces:

Definition 3.1.3. (Process spaces)

• Let 𝒵 be the space of continuous martingales.

• Let 𝒮 be the space of semi-martingales.

All processes in these spaces are adapted to the filtration (ℱ𝑡)𝑡∈[0,𝑇] and take values in ℝ. Note that
both 𝒬 ⊆ 𝒮 and 𝒵 ⊆ 𝒮.
Within this framework we define the following price processes: we define the unobserved price process
by 𝑃 ∈ 𝒮 and the observable mid-price by 𝑆 ∈ 𝒮 such that the market impact 𝐼, caused by trading a
strategy 𝑄, is equal to:

𝐼 = 𝑆 − 𝑃.
We should note that the observable price process 𝑆 depends on the trading strategy 𝑄, while the
unobserved price process 𝑃 is independent of the trading strategy 𝑄. The formulation of the observable
mid-price 𝑆 allows the stock price to become negative with non-zero probability. However, since we
only consider short time scales, this non-zero probability is negligible (see e.g., Almgren and Chriss
(1999) and Almgren and Chriss (2001) for discussion).

In the most general case, the dynamics of the unobserved price process 𝑃 ∈ 𝒮 can be decomposed
in:

𝑑𝑃𝑡 = −𝑑𝛼𝑡 + 𝑑𝑍𝑡 ,
for all 𝑡 ∈ [0, 𝑇], where 𝑍 ∈ 𝒵 is a continuous martingale that accounts for noise introduced by other
market participants or external factors. Furthermore, 𝛼 ∈ 𝒮 is the short-term alpha signal of the stock
and defined as 𝛼𝑡 = 𝔼[𝑃𝑇 −𝑃𝑡 ∣ ℱ𝑡] for all 𝑡 ∈ [0, 𝑇]. This process is often modeled using an Ornstein–
Uhlenbeck process (see Uhlenbeck and Ornstein (1930)) or via machine learning techniques.

In many cases, we start by formulating a model in discrete time before we extend it to continuous time.
To make the derivations more comprehensive, we use the following notation in discrete time:

Definition 3.1.4. (Time discretization) Let 𝑇 > 0 be length of a trading period. Then we discretize time
𝑡 ∈ [0, 𝑇] by an integer 𝑁, such that:

𝑡𝑁𝑛 =
𝑛
𝑁𝑇 = 𝑛Δ𝑡

𝑁 ,

and

𝑄𝑁𝑛 = 𝑄𝑡𝑁𝑛 .

The same notation we use for other processes. Moreover we define the operator Δ𝑛 such that:

Δ𝑛𝑄𝑁 = 𝑄𝑁𝑛 − 𝑄𝑁𝑛−1,

and describes the increments of the discrete variable 𝑄𝑁.

3.2. Foundational propagator models
In this section, we review two propagator models which serve as foundational elements in propagator
model literature: the Bouchaud model introduced by Bouchaud et al. (2003) and the Obizhaeva and
Wang (OW) model by Obizhaeva and Wang (2013). The first model is motivated by empirical obser-
vations of market microstructure, where the second is based on a simplified mathematical description
of the limit order book.
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3.2.1. Bouchaud’s model
Bouchaud et al. (2003) propose the first version of the propagator model in trade time, a different time
measure that counts time in the arrival of market orders. Therefore, in this subsection, we use slightly
different notation than introduced in the previous section.

The model is based on the empirical observation that the sign of market orders have long-term auto-
correlation and decays like a power-law function and price returns do not (see e.g., Bouchaud et al.
(2003), Bouchaud et al. (2006), Brokmann et al. (2015)). Although their observations are on trade level,
in Section 2.2.2 we have made a similar observation for the order flow of our child orders on a 5 minute
frequency.

Bouchaud’s model is based on the reasoning that if the impact of market orders would be constant and
permanent, price returns would show significant autocorrelation. This contradicts empirical observa-
tions and violates the principle of market efficiency. To illustrate their reasoning, we consider a naive
market impact model, in which every trade causes a constant and permanent impact. In this example
we follow the reasoning of Bouchaud et al. (2018) which uses a linear version of the model proposed
in Bouchaud et al. (2003).

Let’s denote 𝑛 by the arrival of the 𝑛-th market order, and define the change in the mid-price between
the arrival of two market orders as follows:

𝑟𝑛 = 𝑆𝑛+1 − 𝑆𝑛 .

Furthermore, assume that each trade has a mean permanent impact of 𝐺. Then, the stock price dy-
namics are:

𝑟𝑛 = 𝐺𝜔𝑛 + 𝜖𝑛 ,
where 𝜔𝑛 is the sign of the market order and 𝜖𝑛 is a noise term, which captures price changes not
related to trading (cancellations). We assume that 𝜖𝑛 are i.i.d random variables with mean zero and
unit variance. Given the mid-price 𝑆0 at some initial time, the mid-price 𝑆𝑛 at some further trade time 𝑛
can be written as:

𝑆𝑛 = 𝑆0 + 𝐺
𝑛

∑
𝑚=1

𝜔𝑚 +
𝑛

∑
𝑚=1

𝜖𝑚 . (3.1)

It is clear from the above model that whatever happened at all previous trade times, is now permanently
incorporated in the price at trade time 𝑛. To investigate the impact of a trade under this model, we define
the response function ℛ. The response function is the expected signed impact on the mid-price and is
given by:

ℛ(ℎ) ∶= 𝔼[𝜔𝑛 ⋅ (𝑆𝑛+ℎ − 𝑆𝑛)],
where ℎ is an arbitrary lag of trade time. Then when the signs of the trades are independent random
variables with mean zero and unit variance, the authors show that the naive model predicts that the
expected impact at lag ℎ is constant and therefore permanent as is expected:

ℛ(ℎ) = 𝐺.

Moreover, the authors show that the mid-price under this model is a diffusion process as is observed
in financial markets for short lags ℎ. However, this naive model ignores the important empirical obser-
vation that the order-sign series 𝜔𝑛 are strongly autocorrelated. If we incorporate the autocorrelation
structure of order signs, i.e. 𝜌(ℎ) ∶= 𝔼[𝜔𝑛𝜔𝑛+ℎ], into the naive model, we get the following autocorre-
lation of the returns:

𝔼[𝑟𝑛𝑟𝑛+ℎ] = 𝐺2𝜌(ℎ),

for arbitrary ℎ > 0. This clearly shows that the returns become autocorrelated as well since it depends
on 𝜌(ℎ). This does not comply with empirical observations and violates the market efficiency principle,
because this makes price returns predictable.

Therefore, Bouchaud et al. (2003) propose a generalisation of the naivemodel. In thismodel, the impact
of market orders is not constant and permanent, but rather a function of trade time . This describes
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how the impact of a market order propagates through time. Consequently, the authors propose the
following model for the stock price:

𝑆𝑛 = 𝑆0 +
𝑛

∑
𝑚=1

𝐺(𝑛 −𝑚)𝜔𝑚 ln(𝑄𝑚) +
𝑛

∑
𝑚=1

𝜖𝑚 ,

where 𝐺(⋅) is the kernel function and describes the time dependent impact of a market order. This func-
tion is assumed to be fixed and non-random that only depends on the time differences. Furthermore,
ln(𝑄𝑛) is the natural logarithm of the aggregated fill quantity at trade time 𝑛. This term comes from
their observation that the impact scales with the natural logarithm of the aggregated fill quantity.

To find a suitable functional form for the kernel function, the authors calculate the response function
under this model for an arbitrary lag ℎ > 0, and show that it is equal to:

ℛ(ℎ) = 𝔼[ln(𝑄𝑚)]𝐺(ℎ) + ∑
𝑚<ℎ

𝐺(ℎ −𝑚)𝜌(ℎ) + ∑
𝑚>0

[𝐺(ℎ + 𝑚) − 𝐺(𝑚)]𝜌(ℎ).

The above computation reveals that the response function’s behavior is influenced by the ACF of or-
der signs (see dependence on 𝜌(ℎ)). The authors show that when the ACF of the order signs decays
following a power-law, the response function grows proportional to ℎ1−2𝛾. Such a growth pattern im-
plies a significant amplification of the impact as the lag ℎ increases, which contradicts the anticipated
decrease in impact over time.

Therefore, the authors propose that the kernel 𝐺(⋅) should decay over time to counterbalance the
amplification effect induced by the order sign’s ACF. To ensure this counterbalancing effect, the authors
suggest a power-law decay as kernel:

𝐺(𝑡 − 𝑠) = 𝜁
(𝜁 + 𝑡 − 𝑠)𝛾 , 0 < 𝛾 < 1 and 𝜁 > 0,

They conclude that if the kernel function 𝐺(⋅) decays according to the above function, the mid-prices
under this model display diffusive behavior, aligning with the principle of market efficiency over short
timescales.

3.2.2. The Obizhaeva and Wang model
The original Obizhaeva and Wang (OW) model is proposed in the paper Obizhaeva and Wang (2013),
however we summarize the model as presented in Webster (2023) because it gives a short and concise
description of the model.

In contrast with Bouchaud’s propagator model, the OW model is a continuous time market impact
model that can be used to model the impact of only one trader. Therefore, we consider a stochastic
admissible trading strategy 𝑄 ∈ 𝒬. In addition to the processes defined in Section 3.1, we define �̃� as
the execution price. It includes the market impact as well as instantaneous transaction cost and we
define the instantaneous transaction cost by �̄� = �̃� − 𝑆.
The OW model is based on some market micro-structure assumptions of the limit order book:

(a) A trader only executes an order at the bid or the ask price. This means that, we ignore the bid-ask
spread and denote 𝑆 by the observed ask price. The model is analog of trading at the bid.

(b) The order book is proportional to the Lebesgue measure when going deeper into the limit order
book. This implies that the limit order book is block shaped, i.e. every quoted price on the ask(bid)
has the same volume.

To introduce the OW model, we first define the model in discrete time using the notation in Definition
3.1.4 before we extend it to continuous time. We start by taking a detailed look at what happens when
a trader executes a fill under these market microstructure assumptions.

Let 1𝜆 be a positive constant and equal to the volume quoted on the ask. When a trader executes an
order of size Δ𝑛𝑄𝑁 > 0 at time 𝑡𝑁𝑛−1, it walks trough the limit order book before reaching the price:

𝑆𝑁𝑛−1 + 𝜆Δ𝑛𝑄𝑁 .
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Then the average execution price per share is:

�̃�𝑁𝑛−1 = 𝑆𝑁𝑛−1 +
𝜆
2Δ𝑛𝑄

𝑁 .

This means that the linear instantaneous transaction cost are equal to �̄�𝑁𝑛 =
𝜆
2Δ𝑛𝑄

𝑁. The order book
remains proportional to the Lebesgue measure for all prices above the lowest ask price and the new
ask price becomes:

𝑆𝑁𝑛 = 𝑆𝑁𝑛−1 + 𝜆Δ𝑛𝑄𝑁 .
We assume that Δ𝑛𝑆𝑁Δ𝑛𝑄𝑁 → 0, such that the trade does not adversely select the limit order book.
We illustrate an order execution under the OW model in Figure 3.1.

Figure 3.1: Illustration of the execution of a fill under the OW model.

Finally, Obizhaeva and Wang (2013) assume that the price dislocation on the ask(bid) reverts expo-
nentially over time such that the market impact becomes:

Δ𝑛𝐼𝑁 = −𝛽𝐼𝑁𝑛−1Δ𝑡𝑁 + 𝜆Δ𝑛𝑄𝑁 .

The authors show that when 𝑁 → ∞, the above difference equation converge uniformly in probability
(see, Protter (2005)) to the continuous time Stochastic Differential Equation (SDE):

𝑑𝐼𝑡 = −𝛽𝐼𝑡𝑑𝑡 + 𝜆𝑑𝑄𝑡 .

For constant values of the liquidity parameters 𝛽, 𝜆 > 0, we can solve the SDE explicitly. We solve the
SDE using the integrating factor method and assume without loss of generality that 𝐼0 = 0. Using the
integrating factor 𝑒𝛽𝑡, we find that the solution is equal to:

𝐼𝑡 = ∫
𝑡

0
𝜆𝑒−𝛽(𝑡−𝑠)𝑑𝑄𝑠 .

This means that we can write the observable stock price under OW model as:

𝑆𝑡 = ∫
𝑡

0
𝜆𝐺(𝑡 − 𝑠)𝑑𝑄𝑠 + 𝑃𝑡 ,

with 𝐺(𝑡 − 𝑠) = 𝑒−𝛽(𝑡−𝑠) and where 𝑃 is the unobserved price process.

One of the major differences between the OW model and Bouchaud’s original propagator model is
the scaling of the traded quantity. In the OW model, instantaneous market impact scales linearly with
traded quantity and logarithmically in Bouchaud’s model.

Later Bouchaud et al. (2009) review empirical properties of Bouchaud’s propagator model and find
evidence that the impact of the traded quantity scales as a power-law function 𝑓(𝑥) ∝ 𝑥𝑐 with 𝑐 ∈
[0.2, 0.5]. This model is also referred to as the locally concave Bouchaud model.

The locally concave Bouchaud model with an exponential kernel can be written as the following differ-
ence equation:

Δ𝑛𝐼𝑁 = −𝛽𝐼𝑁𝑛−1Δ𝑡𝑁 + 𝜆𝑓(Δ𝑛𝑄𝑁),
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where 𝑓(⋅) is a differentiable function and concave on [0,∞).
The transformation above suggest that we by choosing different combinations of the instantaneous
impact function 𝑓(⋅) and the decay kernel 𝐺(⋅), we can find different forms of the propagator model.
This leads to a general version of the propagator model which we introduce in the next section.

3.3. The linear propagator model
The Bouchaud and OW propagator models have a similar structure because in both cases the impact
of a trade propagates trough time by means of a decay kernel. However, their are also some notable
differences. In this section, we bring these two models together by introducing a general version of the
propagator model. The general model serves as foundation for the new variant of the linear propagator
model we propose here. In this model we use clock-time and we consider the actions of only one
trader.

We assume in this section that there is no short-term alpha signal, such that for all 𝑡 ∈ [0, 𝑇], the
unobserved price is given by:

𝑃𝑡 = 𝑆0 + 𝑍𝑡 ,
where 𝑍 ∈ 𝒵 is a continuous martingale. This means that, as long as the trader does not partici-
pate in the market, the prices are determined by the actions of other market participants or external
factors.

To define the general propagator model, we consider a stochastic admissible trading strategy 𝑄 ∈ 𝒬 but
in addition we require the strategy to be continuous, i.e. the strategy can have no jumps. Furthermore,
we let �̇� represent the trading rate (e.g., 20 shares per second), such that 𝑑𝑄𝑡 = �̇�𝑡 𝑑𝑡. Later, when we
introduce the new variant of the linear propagator model, allow the admissible trading strategy to have
jumps again.

Using this mathematical framework, we are able state the general propagator model introduced by
Gatheral (2010):

𝑆𝑡 = 𝑆0 +∫
𝑡

0
𝑓 (�̇�𝑠) 𝐺(𝑡 − 𝑠)𝑑𝑠 + 𝑍𝑡 , (3.2)

where 𝑓(�̇�𝑡) is the instantaneous market impact function of a trade �̇�𝑡 at time 𝑡 and 𝐺(𝑡−𝑠) represents
the decay of the market impact after the execution of every trade. We prefer to present the model in
this form because writing it as a SDE is mathematically involved.

The general propagator model is a generalisation of Bouchaud’s model and the OW model. If we let
𝑓(⋅) be a differentiable and concave on the interval [0,∞) and 𝐺(𝑡 − 𝑠) = 𝜁

(𝜁+𝑡−𝑠)𝛾 , then we find a
continuous time variant of locally concave propagator model:

𝑆𝑡 = 𝑆0 +∫
𝑡

0

𝜁
(𝜁 + (𝑡 − 𝑠))𝛾 𝑓(�̇�𝑠)𝑑𝑠 + 𝑍𝑡 .

However, if we let 𝑓(�̇�𝑡) = 𝜆�̇�𝑡 and 𝐺(𝑡 − 𝑠) = 𝑒−𝛽(𝑡−𝑠), we retrieve a variant of the OW propagator
model1:

𝑆𝑡 = 𝑆0 +∫
𝑡

0
𝜆𝑒−𝛽(𝑡−𝑠)𝑑𝑄𝑠 + 𝑍𝑡 ,

for 𝜆, 𝛽 > 0. Furthermore, Gatheral (2010) shows that the general propagator model is also a general-
isation of the model proposed by Almgren et al. (2005) .

Notice that the integral representation of the market impact 𝐼 can be interpreted as a convolution be-
tween the functions 𝑓(⋅) and 𝐺(⋅):

𝐼𝑡 = [𝑓 ∗ 𝐺](𝑡) = ∫
𝑡

0
𝑓(�̇�𝑠)𝐺(𝑡 − 𝑠)𝑑𝑠,

1This version does not allow for jumps in the trading strategy while the origional OW model does.
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where ∗ denotes the convolution operator. Using this representation, market impact in the propagator
model can be viewed as the accumulated effect of all previous trades. By ”accumulated,” we mean
that the impact of individual trades can be superimposed through convolution to form the total market
impact of an order. For an illustrative example see Figure 3.2. This figure illustrates how the impacts
of individual child orders are stacked on top of each other and how the impact decays after each child
order.

Figure 3.2: (Upper figure) an arbitrary trading strategy in number shares. (Lower figure) the expected market impact during and
after an order calculated using the OW model.

As mentioned earlier the market impact 𝐼 can be decomposed in multiple components. We distinguish
between 3 types of market impact:

• Instantaneous impact: the instantaneous impact of a trade at time 𝑡 is given by 𝑓(�̇�𝑡)𝐺(0). This
type of impact only affect impact cost of the trade at time 𝑡 and not any subsequent orders.

• Permanent impact: the permanent impact is given by 𝑓(�̇�𝑡)𝐺(∞), where 𝐺(∞) ∶= lim𝑡↑∞ 𝐺(𝑡).
This type of impact affects all trades equally.

• Transient impact: everything between instantaneous and permanent impact is called transient
market impact.

Gatheral (2010) shows that the general propagator model allows for price manipulation when the in-
stantaneous impact function 𝑓(⋅) is non-linear in the trading rate. We formally introduce the concept of
price manipulation in the next section but a market impact model that permits price manipulation can be
seen as an asset-pricing model which allows for arbitrage opportunities, making it essential to exclude.
Furthermore, the general propagator model does not have tractable solutions in the optimal execution
problem (see e.g., Curato et al. (2017)). Therefore, we shift our attention to linear models in the trading
rate.

In Figure 2.6 of Section 2.3.1, we observed that child orders normalized by the intraday volume curve
exhibit a more linear relationship compared to those normalized by the average daily volume. This
observation supports the use of the participation rate in a linear model. Furthermore, normalizing by
the intraday volume curve allows the model to account for the varying liquidity throughout the trading
day, a critical factor influencing market impact.

Consequently, we propose a new variant of the linear propagator model by incorporating a time-
dependent liquidity process. Therefore, we introduce the liquidity process Θ = (Θ𝑡)𝑡∈[0,𝑇] such that
𝑓(⋅) ∝ Θ. We assume the liquidity process to be deterministic, positive, continuously differentiable and
equal to:

Θ𝑡 =
𝜎 ⋅ 𝜅𝑡
𝑉𝑡

= 𝜎 ⋅ 𝜅𝑡
ADV ⋅ 𝑣𝑡

, for all 𝑡 ≥ 0,

where 𝜎 is the intraday volatility, and 𝑣𝑡 the intraday volume curve.

In the linear model, we assume that the admissible trading strategy is a stochastic process 𝑄 ∈ 𝒬 which
can exhibit jumps as defined in Definition 3.1.2. We define the new variant of linear propagator model
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with a time-dependent liquidity process and general decay kernel as follows:

𝑆𝑡 = 𝑆0 +∫
𝑡

0
Θ𝑠𝐺(𝑡 − 𝑠)𝑑𝑄𝑠 + 𝑍𝑡 , (3.3)

where 𝐺 ∶ [0,∞) → [0,∞) is a measurable function serving as the decay kernel and 𝐺(0) is equal to
the instantaneous impact of a trade. We assume that 𝐺(⋅) is bounded, to ensure that the integral does
not diverge. Note that, 𝑑𝑄𝑡𝑉𝑡 is the traders participation rate for all 𝑡 ∈ [0, 𝑇].

Lets have a closer look at some properties of the integral representation of the market impact in Equa-
tion (3.3). Given that 𝑄 ∈ 𝒬 ⊆ 𝒮, it can be represented as a semi-martingale. However, since we
assumed that 𝑄 has finite and ℙ-a.s bounded total variation, the local martingale part of 𝑄 vanishes.
Consequently, the integral representation of the market impact is actually a Lebesgue-Stieltjes integral,
which is deterministic.

Given that the data is one a 5 minute frequency and certain derivations are more straightforward in
discrete time, we also define the discrete time version of the linear propagator model with a time-varying
liquidity process using the notation outlined in Definition 3.1.4:

𝑆𝑁𝑛 = 𝑆𝑁0 +
𝑛

∑
𝑚=1

Θ𝑁𝑚𝐺(𝑛 −𝑚)Δ𝑚𝑄𝑁 + 𝑍𝑁𝑛 , (3.4)

where 𝑆𝑁𝑛 is themid-price just before time 𝑡𝑁𝑛 andΘ𝑁𝑛 represents the liquidity in the interval [𝑡𝑁𝑛−1, 𝑡𝑁𝑛 ).

3.4. Admissible set of kernels and liquidity processes
In this section, we derive admissible sets for the decay kernel 𝐺(⋅) and the liquidity process Θ using
no-arbitrage principles. In the propagator model we can influence the stock price by trading in the
stock. Therefore, market participants might be able to manipulate the price in their favour by trading
certain strategies. In market impact literature this is also known as price manipulation (see Huberman
and Stanzl (2004)) and it is important to exclude. Before we formally introduce price manipulation, we
derive the expected cost of trading under the linear propagator model.

To define the cost of an admissible trading strategy under the linear model, we first define the cost for a
continuous strategy. For this we use the implementation shortfall originally proposed by Perold (1988).
This means that the cost of a continuous trading strategy without jumps is equal to:

∫
𝑇

0
(𝑆𝑡 − 𝑆0)𝑑𝑄𝑡 = ∫

𝑇

0
∫
𝑡

0
Θ𝑠𝐺(𝑡 − 𝑠)𝑑𝑄𝑠𝑑𝑄𝑡 +∫

𝑇

0
𝑍𝑡𝑑𝑄𝑡

Since 𝑄 ∈ 𝒬, we allow the trading strategy to have jumps. Therefore, we also need to account for the
cost of these jumps. We assume that when there is a jump trade of size Δ𝑄𝑡 the price moves from 𝑆𝑡−
to 𝑆𝑡 = 𝑆𝑡− +Θ𝑡Δ𝑄𝑡𝐺(0), where 𝐺(0) is the instantaneous impact. From this it follows that the average
execution price of a single jump trade is then equal to:

𝑆𝑡− +
Θ𝑡𝐺(0)
2 Δ𝑄𝑡 ,

such that the associated cost of a single jump trade is:

(𝑆𝑡− +
Θ𝑡𝐺(0)
2 Δ𝑄𝑡)Δ𝑄𝑡 .

Notice that the term involving 𝑆𝑡−Δ𝑄𝑡 is already accounted for in the cost calculation for continuous
trading. Therefore, the total cost of all the jump trades is equal to:

𝐺(0)
2 ∑

𝑡∈J

Θ𝑡(Δ𝑄𝑡)2,
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where J is the collection of all time points where 𝑄 jumps. The total cost of an admissible strategy
𝑄 ∈ 𝒬 is then the sum of the continuous trading cost and the costs of all the jump trades, which is then
equal to:

𝐶(Π) = ∫
𝑇

0
(𝑆𝑡 − 𝑆0)𝑑𝑄𝑡 +

𝐺(0)
2 ∑

𝑡∈J

Θ𝑡(Δ𝑄𝑡)2. (3.5)

In the following Lemma we calculate the expected cost of an admissible strategy. We use the reasoning
of Lemma 2.3 from the paper Gatheral et al. (2012) but adapt it to our model specifications.

Lemma 3.4.1. The expected cost of an admissible strategy 𝑄 ∈ 𝒬 is equal to:

𝔼[𝐶(Π)] = 𝔼 [∫
𝑇

0
(𝑆𝑡 − 𝑆0)𝑑𝑄𝑡 +

𝐺(0)
2 ∑

𝑡∈J

Θ𝑡(Δ𝑄𝑡)2]

= 𝔼 [12 ∫
𝑇

0
∫
𝑇

0
Θ̃(𝑡, 𝑠)𝐺(|𝑡 − 𝑠|)𝑑𝑄𝑠𝑑𝑄𝑡] , (3.6)

where we define:

𝑐(Π) ∶= ∫
𝑇

0
∫
𝑇

0
Θ̃(𝑡, 𝑠)𝐺(|𝑡 − 𝑠|)𝑑𝑄𝑠𝑑𝑄𝑡 , (3.7)

with:
Θ̃(𝑡, 𝑠) = 1[0,𝑡)(𝑠)Θ𝑠 + 1[𝑡,𝑇](𝑠)Θ𝑡 .

Proof. First note that:

𝐶(Π) = ∫
𝑇

0
(𝑆𝑡 − 𝑆0)𝑑𝑄𝑡 +

𝐺(0)
2 ∑

𝑡∈J

Θ𝑡(Δ𝑄𝑡)2,

= ∫
𝑇

0
∫
𝑡

0
Θ𝑠𝐺(𝑡 − 𝑠)𝑑𝑄𝑠𝑑𝑄𝑡 +

𝐺(0)
2 ∑

𝑡∈J

Θ𝑡(Δ𝑄𝑡)2 +∫
𝑇

0
𝑍𝑡𝑑𝑄𝑡 .

We observe that:

∫
𝑇

0
∫
𝑡

0
Θ𝑠𝐺(𝑡 − 𝑠)𝑑𝑄𝑠𝑑𝑄𝑡 = ∫

𝑇

0
∫
𝑡

0
Θ𝑠𝐺(|𝑡 − 𝑠|)𝑑𝑄𝑠𝑑𝑄𝑡

= 1
2 ∫

𝑇

0
∫
𝑡

0
Θ𝑠𝐺(|𝑡 − 𝑠|)𝑑𝑄𝑠𝑑𝑄𝑡 +

1
2 ∫

𝑇

0
∫
𝑇

𝑡
Θ𝑡𝐺(|𝑡 − 𝑠|)𝑑𝑄𝑠𝑑𝑄𝑡

− 𝐺(0)2 ∑
𝑡∈J

Θ𝑡(Δ𝑄𝑡)2,

To ensure causality we have:

= 1
2 ∫

𝑇

0
∫
𝑇

0
(1[0,𝑡)(𝑠)Θ𝑠 + 1[𝑡,𝑇](𝑠)Θ𝑡)𝐺(|𝑡 − 𝑠|)𝑑𝑄𝑠𝑑𝑄𝑡 −

𝐺(0)
2 ∑

𝑡∈J

Θ𝑡(Δ𝑄𝑡)2.

Combining gives:

𝐶(Π) = 1
2 ∫

𝑇

0
∫
𝑇

0
Θ̃(𝑡, 𝑠)𝐺(|𝑡 − 𝑠|)𝑑𝑄𝑠𝑑𝑄𝑡 +∫

𝑇

0
𝑍𝑡𝑑𝑄𝑡 ,

where:
Θ̃(𝑡, 𝑠) = 1[0,𝑡)(𝑠)Θ𝑠 + 1[𝑡,𝑇](𝑠)Θ𝑡 .
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It remains to show that 𝔼 [∫𝑇0 𝑍𝑡𝑑𝑄𝑡] = −𝑍0 𝔼[𝑄0] = 0. Using Ito’s product rule we find (see e.g., Shreve
et al. (2004)):

∫
𝑇

0
𝑍𝑡 𝑑𝑄𝑡 = 𝑍𝑇𝑄𝑇 − 𝑍0𝑄0 −∫

𝑇

0
𝑄𝑡 𝑑𝑍𝑡

Since 𝑍 is a continuous martingale and 𝑄 has finite and ℙ-a.s bounded total variation, the stochastic
integral ∫𝑇0 𝑄𝑡 𝑑𝑍𝑡 is a martingale starting from zero and has an expected value of zero. Additionally,
since 𝑄𝑇 = 0 ℙ-a.s:

𝔼 [∫
𝑇

0
𝑍𝑡 𝑑𝑄𝑡] = 𝔼 [𝑍𝑇𝑄𝑇 − 𝑍0𝑄0 −∫

𝑇

0
𝑄𝑡− 𝑑𝑍𝑡]

= 𝔼 [0 − 𝑍0𝑄0 − 0]
= −𝑍0𝔼[𝑄0]

Since 𝑍0 = 0, we find the required result.

In the next subsection we use this lemma to exclude price manipulation from the model.

3.4.1. Excluding price manipulation
In this subsection, we formally introduce the concept of price manipulation. Furthermore, to prevent
price manipulation in the linear propagator model, we derive conditions for the decay kernel 𝐺(⋅) and
the liquidity process Θ to satisfy.

To define the notion of price manipulation, we first introduce the concept of a round trip trade. A round
trip trade is a strategy 𝑄 such that:

∫
𝑇

0
𝑑𝑄𝑡 = 0.

The integral above can be interpreted as the total net change in the trader’s position over the interval
from 0 to 𝑇.
Price manipulation has multiple definitions with different strengths (see, Definition 1,2 and 3 in Huber-
man and Stanzl (2004)). To exclude price manipulation in the propagator model we use its weakest
form. Gatheral (2010) defines this form as dynamic arbitrage:

Definition 3.4.1. (Dynamic arbitrage) Dynamic arbitrage is a round trip trade such that the expected
cost of trading is negative.

Using the notion of dynamic arbitrage we define price manipulation as follows:

Definition 3.4.2. (Price manipulation) Amodel admits price manipulation if and only if it admits dynamic
arbitrage, i.e. there exist a round trip trade such that the expected cost of trading is negative.

Gatheral (2010) investigates when dynamic arbitrage is possible under the general propagator model
and finds that it depends on specific functional forms of the instantaneous impact function 𝑓(⋅) and
the decay kernel 𝐺(⋅). For example in Lemma 4.1, he concludes that if the impact function is nonlin-
ear in the trading rate and the decay kernel is an exponential function, price manipulation is always
possible.

We deduce from Equation (3.6) that the linear propagator model is free of price manipulation whenever
𝑐(Π) ≥ 0 (refer to Equation (3.7)). For a constant liquidity process, this can be characterized by an
extension of Bochner’s theorem (see Bochner (1932)) and is proofed by Gatheral et al. (2012) in Propo-
sition 2.6. We summarize their result in the following theorem which we present without proof.

Theorem 3.4.1. Assume the liquidity process Θ to be constant. If the decay kernel 𝐺(⋅) is positive
definite then 𝑐(Π) ≥ 0, and if 𝐺(⋅) is strictly positive definite then 𝑐(Π) > 0, where 𝑐(Π) is defined in
Equation (3.7). In other words, for every positive definite decay kernel, the linear propagator model is
free of price manipulation.
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The theorem above provides a general characterisation on the decay kernel such that the linear prop-
agator model with a constant liquidity process does not admit any price manipulation in the sense of
dynamic-arbitrage. Note that a class of strictly positive definite functions are given by the class of
bounded non-increasing convex functions.

In general, the liquidity process dependents on the intraday volume curve. Because the intraday vol-
ume changes over time (volume tends to be higher near the open and just before the close), price
manipulation opportunities could occur. For example, one could move the price up by buying during an
ill-liquid period and selling during a liquid period and therefore possibly making a round-trip trade with
negative cost. To prevent this from happening we define some restrictions on the liquidity process Θ
and in particular, the volume process 𝑉 = (𝑉𝑡)𝑡∈[0,𝑇].
To the best of our knowledge, for general decay kernels in continuous time this has not been solved.
However, for an exponential linear propagator model with time-dependent liquidity process, it is possible
to find a condition. In the following theorem we follow the reasoning of Isichenko (2021) but adapt it to
our model specifications.

Theorem 3.4.2. Consider a continuous admissible trading strategy 𝑄 ∈ 𝒬. Consider the linear prop-
agator model with an exponential decay kernel and assume that the liquidity process Θ is a positive
continuous differentiable and deterministic process. Then the model is free of price manipulation when
the following inequality is satisfied:

Θ̇𝑡
Θ𝑡
> −2𝛽, ∀𝑡 ≥ 0, (3.8)

where Θ̇𝑡/Θ𝑡 is the percentage change of the process at time 𝑡 and 𝛽 is the exponential decay param-
eter. In particular, when Θ𝑡 = (𝜆𝜎)/𝑉𝑡, with 𝜆 > 0 and 𝜎 > 0 then:

�̇�𝑡
𝑉𝑡
< 2𝛽, ∀𝑡 ≥ 0,

Proof. Consider the dynamics of the market impact 𝐼 in the linear propagator model with an exponential
kernel, which can be written as the SDE:

𝑑𝐼𝑡 = −𝛽𝐼𝑡𝑑𝑡 + Θ𝑡𝑑𝑄𝑡

We start with expressing the dynamics of the impact in the trading rate �̇�:

𝑑𝐼𝑡 = −𝛽𝐼𝑡𝑑𝑡 + Θ𝑡𝑑𝑄𝑡

�̇�𝑡 =
̇𝐼𝑡 + 𝛽𝐼𝑡
Θ𝑡

.

Then the cost of trading can be rewritten by repeatedly integrating by parts:

∫
𝑇

0
𝑆𝑡𝑑𝑄𝑡 = ∫

𝑇

0
𝐼𝑡�̇�𝑡𝑑𝑡

= ∫
𝑇

0
𝐼𝑡
̇𝐼𝑡 + 𝛽𝐼𝑡
Θ𝑡

𝑑𝑡

= ∫
𝑇

0

𝐼2𝑡
2Θ2𝑡

(Θ̇𝑡 + 2𝛽Θ𝑡)𝑑𝑡.

For the cost of trading to be positive, we need above integral to stay positive:

Θ̇𝑡 + 2𝛽Θ𝑡 > 0
Θ̇𝑡
Θ𝑡
> −2𝛽,
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for all 𝑡 ≥ 0. In particular, when Θ𝑡 = (𝜆𝜎)/𝑉𝑡, with 𝜆 > 0 and 𝜎 > 0 then:

Θ̇𝑡 = 𝜆𝜎
𝑑
𝑑𝑡 (

1
𝑉𝑡
) = −𝜆𝜎�̇�𝑡

𝑉2𝑡
,

and:
−𝜆𝜎�̇�𝑡
𝑉2𝑡

𝑉𝑡
𝜆𝜎 > −2𝛽

�̇�𝑡
𝑉𝑡
< 2𝛽,

for all 𝑡 ≥ 0.

From Theorem 3.4.1 and Theorem 3.4.2, we conclude that even when the decay kernel is positive def-
inite, for some instances of the liquidity process the model allows for price manipulation. Furthermore,
for general decay kernels, no restriction on the liquidity process have been derived yet. To work around
this issue, we switch to discrete time version of the model to find a restriction on the liquidity process
and decay kernel combined, to prevent price manipulation.

Therefore, consider the discrete time linear propagator model from Equation 3.4. The expected cost of
trading under this model is derived in the following lemma for which the proof can be found in Appendix
A.

Lemma 3.4.2. Consider the discrete time version of the linear propagator model with time-dependent
liquidity process:

𝑆𝑁𝑛 = 𝑆𝑁0 +
𝑛

∑
𝑚=1

Θ𝑁𝑚𝐺(𝑛 −𝑚)Δ𝑚𝑄𝑁 + 𝑍𝑁𝑛 .

Then for a discrete admissible trading strategy Π𝑁 = 𝑄𝑁, the expected cost of trading in discrete time
equals:

𝔼[𝐶(Π𝑁)] = 𝔼 [12

𝑁

∑
𝑛=1

𝑁

∑
𝑚=1

Θ𝑁min(𝑛,𝑚)𝐺(|𝑛 − 𝑚|)Δ𝑚𝑄𝑁Δ𝑚𝑄𝑁] , (3.9)

which in matrix-vector notation is equal to:

𝔼[𝐶(Π𝑁)] = 𝔼 [q𝑇ΦΦΦq] = 𝔼 [q𝑇 (12Θ̃ΘΘ⊙G)q] , (3.10)

where 𝑞𝑛 = Δ𝑛𝑄𝑁, Θ̃𝑛,𝑚 = Θmin(𝑛,𝑚), 𝐺𝑛,𝑚 = 𝐺(|𝑛 − 𝑚|) and the operator ⊙ means the Hadamard
product between the matrices Θ̃ΘΘ andG. Notice that Θ̃ΘΘ andG are both symmetric matrices. For simplicity
we defineΦΦΦ = 1/2 ⋅ ΘΘΘ⊙G, which is a symmetric matrix as well.

Remark 3.4.1. Please note that in the discrete-time case, we assume that we trade uniformly in a time
interval such we pay the average instantaneous impact. However, this could easily be adjusted by
adding a multiple of the diagonal to the matrix ΦΦΦ. This is also a way to regularize the matrix ΦΦΦ.
Using the expected cost of trading derived in lemma above, we are able to find a sufficient condition
such that the discrete model is free of price manipulation. This result is formalized in the following
theorem.

Theorem 3.4.3. Consider the discrete time version of the linear propagator model:

𝑆𝑁𝑛 = 𝑆𝑁0 +
𝑛

∑
𝑚=1

Θ𝑁𝑚𝐺(𝑛 −𝑚)Δ𝑚𝑄𝑁 + 𝑍𝑁𝑛 .

Then for a discrete admissible trading strategy Π𝑁 = 𝑄𝑁, the model is free of price manipulation when
the expected cost of trading is non-negative. That is when the matrix ΦΦΦ is positive definite, i.e. for all
q ∈ ℝ𝑁:

q𝑇ΦΦΦq ≥ 0.
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Proof. Follows directly from the definition of positive definiteness.

Using Theorem 3.4.3 we define the set of admissible liquidity processes such that the model is free of
price manipulation.

Definition 3.4.3. (Admissible liquidity processes) Consider the discrete time version of the linear prop-
agator model with a positive definite decay kernel. Then we define the set of admissible liquidity pro-
cesses L by all processes Θ𝑁 such thatΦΦΦ = 1/2 ⋅ ΘΘΘ⊙G is positive definite, i.e. the set:

L ∶= {Θ𝑁|ΦΦΦ = 1/2 ⋅ ΘΘΘ⊙G positive definite }

Theorem 3.4.3 also provides a usefully check for price manipulation when we have a positive definite
decay kernel and an arbitrary liquidity process Θ𝑁. In the next chapter we use the derived expected
cost of trading to find optimal trading strategies.

3.4.2. Transaction-triggered price manipulation
In this subsection we move back to the continuous time model and consider a different type of price
manipulation. Alfonsi et al. (2012) investigate the viability of a linear propagator model beyond price
manipulation, and have discovered a new class of irregularities referred to as transaction-triggered
price manipulation:

Definition 3.4.4. (Transaction-triggered pricemanipulation)Amarket impact model admits transaction-
triggered price manipulation when the expected cost of trading of a sell (buy) strategy can be decreased
by intermediate buy (sell) trades.

The mandate of an institutional investors typically prohibits the use of intermediate opposite-side trad-
ing. Furthermore, alternating between large buy and sell trades to influence prices in your favour, might
even be seen as market manipulation, which is illegal. Therefore, transaction-triggered price manipu-
lation is important to exclude. To investigate when transaction-triggered price manipulation occurs and
what conditions are necessary to exclude it, the authors consider a discrete version of the propagator
model. Gatheral et al. (2012) and Alfonsi and Schied (2013) generalized the results of Alfonsi et al.
(2012) to continuous time. Because this is the most general form of the model we discuss these results
in more detail.

We consider the linear propagator model but we take a constant liquidity process Θ. To the best of our
knowledge, no results on transaction-triggered price manipulation have been proven in case of a time
dependent liquidity process. To dive into transaction-triggered price manipulation we shortly turn to the
optimal execution problem.

The optimal execution problem can be formalized in many different ways and we formally introduce it
in the next section. At this point we are not seeking to obtain optimal strategies which can be used
in industrial execution algorithms. Therefore, Gatheral et al. (2012) note that it is enough to consider
a simplified version of the optimal execution problem to characterize irregular solutions. In particular,
we consider the problem in which we minimize the expected cost for a risk-neutral trader that buys or
liquidates 𝑄0 number of shares within a given time frame 𝕋 = [0, 𝑇]. This problem is not well-defined
when the model admits price manipulation. We therefore assume the decay kernel to be positive
definite.

An immediate consequence of Equation (3.7) is that every admissible strategy that minimizes the ex-
pected cost must have a path in𝒟. This means that it is sufficient to only consider deterministic admissi-
ble strategies to characterize irregular solutions. This significantly simplifies the derivations. Therefore,
we assume for the remaining of this chapter that every admissible trading strategy 𝑄 ∈ 𝒟 is determin-
istic.

The first main results of Gatheral et al. (2012) is Theorem 2.11 and it states that the optimal strategies
are solutions of a generalized Fredholm integral equation of the first kind. We summarize the result in
the following theorem which we present without proof.

Theorem 3.4.4. Suppose that the decay kernel 𝐺(⋅) is positive definite. Then there exist an optimal
solution 𝑄∗ ∈ 𝒟 that minimizes 𝑐(Π) if and only if there exist a constant 𝜑 such that 𝑄∗ solves the
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generalized Fredholm integral equation:

∫𝐺(|𝑡 − 𝑠|)𝑑𝑄∗𝑠 = 𝜑 ∀𝑡 ∈ 𝕋.

In this case, 𝐶(𝑄∗) = 𝜑𝑄0
The above theorem gives us a characterization of the optimal solution for minimizing the expected cost.
Using this characterization Gatheral et al. (2012) proves their second main result. We summarize the
result in the following theorem, which we present without prove.

Theorem 3.4.5. Let the decay kernel 𝐺(⋅) be convex, non-increasing and non-constant. Then there
exist a unique optimal strategy 𝑄∗ ∈ 𝒟. Moreover, the optimal solution 𝑄∗ is free of transaction-triggered
price manipulation. This means that the optimal strategy does not alternate between buying and selling.

Using this theorem we define a set of what we call admissible kernels:

Definition 3.4.5. (Set of admissible kernels) Consider the decay kernel 𝐺(⋅) of the linear propagator
model. Then we define the set of admissible kernels by all the decay kernels for which the linear
propagator model with constant liquidity process, is free of price manipulation and transaction-triggered
price manipulation. That is, all decay kernels 𝐺(⋅) in the set:

G ∶= {𝐺(⋅)|Convex, non-increasing and non-constant} (3.11)

Note that the decay functions:

𝐺(𝑡 − 𝑠) = 𝜁
(𝜁 + 𝑡 − 𝑠)𝛾 and 𝐺(𝑡 − 𝑠) = 𝜆𝑒−𝛽(𝑡−𝑠) 𝛾, 𝛽 > 0

are in the admissible set of kernels. The structure of the admissible set of decay kernels suggest
that there also exist nonparametric kernels. With nonparametric we mean kernels which satisfy the
constraints in the set G without specifying their functional form.

3.5. Calibrating to trading data
In this section we use a two-step approach to calibrate the linear propagator model to intraday trading
data and project a general kernel onto the set of admissible kernels. This method is similar to the one
discussed by Neuman et al. (2023) but we adapt it to our model specifications.

We consider the situation in which we executes a metaorder into smaller child orders. We let a trader’s
inventory during the execution of the metaorder be given by 𝑄𝑁, which describes the number of shares
held by the trader at each point in time. Moreover, we assume that there is no short-term alpha signal
and we subtract the fair value 2 from the unaffected price process and the observed mid-price such
that:

𝑆𝑁𝑛 = 𝐼𝑁𝑛 + 𝑃𝑁𝑛 = 𝑆𝑁0 + 𝐼𝑁𝑛 + 𝑍𝑁𝑛 ,
where 𝑆𝑁 represents the fair value corrected mid-price cumulative log return in each intraday time bin
𝑛. Additionally, we set Θ𝑁𝑛 = 𝜎/𝑉𝑁𝑛 for all 𝑛 ∈ [1, 𝑇], which describes the liquidity in every time bin 𝑛,
and we assume that the martingale 𝑍𝑁 is equal to 𝑍𝑛 = ∑

𝑛
𝑚=1 𝜎 𝜖𝑚, where 𝜖 are i.i.d standard normal

random variables.

To calibrate the model we use the discrete time linear propagator model defined in Equation 3.4 :

𝑆𝑁𝑛 = 𝑆𝑁0 +
𝑛

∑
𝑚=1

Θ𝑁𝑚𝐺(𝑛 −𝑚)Δ𝑚𝑄𝑁 + 𝑍𝑁𝑛 ,

𝑆𝑁𝑛 = 𝑆𝑁0 +
𝑛

∑
𝑚=1

𝜎
𝑉𝑁𝑚
𝐺(𝑛 −𝑚)Δ𝑚𝑄𝑁 + 𝜎

𝑛

∑
𝑚=1

𝜖𝑁𝑚 ,

𝑆𝑛 = 𝑆0 + 𝜎
𝑛

∑
𝑚=1

𝐺(𝑛 −𝑚)𝑈𝑚 + 𝜎
𝑛

∑
𝑚=1

𝜖𝑚 ,

2We use Robeco’s internal fair value model
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where we omit the superscript 𝑁 and define 𝑈𝑛 = Δ𝑛𝑄/𝑉𝑛 to simplify the notation. Furthermore, we let
𝑆0 be the the fair value corrected mid-price cumulative log-return just before our first trade.

To calibrate the model, we use intraday trading data which is divided into 𝑛 = 1,⋯ , 𝑇 time bins. We
assume that each metaorder is executed within a single day, and our participation rate in each time
bin from the start to the end of the execution is given by the sequence {𝑈𝑚 ∶ 𝑚 = 1,⋯ ,𝑀}. During the
execution of the order, it is possible that we may not participate in certain time bins, resulting in 𝑈𝑚 = 0
or those time bins 𝑚 where no trading occurs.

Suppose we have executed 𝑘 = 1,⋯ ,𝐾 metaorders on not necessary the same stock. Then we have
𝐾 different price trajectories. We can then write the cumulative log returns for a given metaorder 𝑘 in a
specific intraday time bin 𝑛 after the start of the execution as follows:

𝑆(𝑘)𝑛 = 𝑆(𝑘)0 + 𝜎(𝑘)
𝑛

∑
𝑚=1

𝐺(𝑘)𝑛−𝑚𝑈(𝑘)𝑚 + 𝜎(𝑘)
𝑛

∑
𝑚=1

𝜖(𝑘)𝑚

1
𝜎(𝑘) (𝑆

(𝑘)
𝑛 − 𝑆(𝑘)0 ) =

𝑛

∑
𝑚=1

𝐺(𝑘)𝑛−𝑚𝑈(𝑘)𝑚 +
𝑛

∑
𝑚=1

𝜖(𝑘)𝑚

1
𝜎(𝑘) (𝑆

(𝑘)
𝑛 − 𝑆(𝑘)0 ) =

𝑛

∑
𝑚=1

𝑈(𝑘)(𝑛+1)−𝑚𝐺
(𝑘)
𝑚−1 +

𝑛

∑
𝑚=1

𝜖(𝑘)𝑚 where 𝐺(𝑘)𝑛−𝑚𝑈(𝑘)𝑚 = 𝑈(𝑘)𝑛−𝑚𝐺(𝑘)𝑚

The formal proof of the equality 𝐺(𝑘)𝑛−𝑚𝑈(𝑘)𝑚 = 𝑈(𝑘)𝑛−𝑚𝐺(𝑘)𝑚 can be found in Appendix A. For every 𝑛 ∈ [1,𝑀],
the equation above can we written in matrix-vector notation in the following way:

y𝑘 = U𝑘g𝑘 +𝜖𝜖𝜖𝑘 ,

where g𝑘 = [𝐺(𝑘)0 , ⋯𝐺(𝑘)𝑀−1]T ∈ ℝ𝑀. Furthermore, the other matrix and vectors are equal to:

y𝑘 = [

1
𝜎(𝑘) (𝑆

(𝑘)
1 − 𝑆(𝑘)0 )
⋮

1
𝜎(𝑘) (𝑆

(𝑘)
𝑀 − 𝑆(𝑘)0 )

] ∈ ℝ𝑀 , U𝑘 =
⎡
⎢
⎢
⎢
⎣

𝑈(𝑘)1 0 ⋯ 0
𝑈(𝑘)2 𝑈(𝑘)1 ⋯ 0
⋮ ⋮ ⋱ ⋮

𝑈(𝑘)𝑀 𝑈(𝑘)𝑀−1 ⋯ 𝑈(𝑘)1

⎤
⎥
⎥
⎥
⎦

∈ ℝ𝑀×𝑀 , 𝜖𝜖𝜖𝑘 = [
𝜖(𝑘)1
⋮

∑𝑀𝑚=1 𝜖
(𝑘)
𝑀

] ∈ ℝ𝑀 ,

where U𝑘 is a lower-triangular Toeplitz matrix.

We aim to find a universal kernel for a set of metaorders. This means that the decay kernel vector
g𝑘 should be independent of the metaorder 𝑘. However, we cannot simply drop the dependence on 𝑘
because each metaorder has a different length 𝑀(𝑘), and the dimensions of the matrix-vectors should
align to find a universal kernel.

To address this, we specify the length of the kernel vector g beforehand. In our case, we set the
length of the kernel vector equal to the number of intraday time bins 𝑇, i.e., g = [𝐺0, ⋯ , 𝐺𝑇−1]T ∈ ℝ𝑇.
Consequently, all other matrix-vectors must match the dimension of the decay kernel. We achieve
this by appending 𝑇 − 𝑀 zeros to the sequence {𝑈𝑚 ∶ 𝑚 = 1,⋯ ,𝑀}. The matrix-vector notation then
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changes in the following way:

U𝑘 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑈(𝑘)1 0 ⋯ ⋯ ⋯ ⋯ ⋯ 0
𝑈(𝑘)2 𝑈(𝑘)1 0 ⋯ ⋯ ⋯ ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋮ ⋮ ⋮ ⋮

𝑈(𝑘)𝑀 ⋯ 𝑈(𝑘)2 𝑈(𝑘)1 0 ⋮ ⋮ ⋮
0 𝑈(𝑘)𝑀 ⋯ 𝑈(𝑘)2 𝑈(𝑘)1 0 ⋮ ⋮
⋮ 0 ⋱ ⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋮ ⋱ 𝑈(𝑘)𝑀 ⋯ 𝑈(𝑘)2 𝑈(𝑘)1 0
0 0 ⋯ 0 𝑈(𝑘)𝑀 ⋯ 𝑈(𝑘)2 𝑈(𝑘)1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ ℝ𝑇×𝑇 ,

y𝑘 =

⎡
⎢
⎢
⎢
⎢
⎣

1
𝜎(𝑘) 𝑟

(𝑘)
1
⋮

1
𝜎(𝑘) 𝑟

(𝑘)
𝑛
⋮

1
𝜎(𝑘) 𝑟

(𝑘)
𝑇

⎤
⎥
⎥
⎥
⎥
⎦

∈ ℝ𝑇 , 𝜖𝜖𝜖𝑘 =

⎡
⎢
⎢
⎢
⎢
⎣

𝜖(𝑘)1
⋮

∑𝑛𝑖=1 𝜖
(𝑘)
𝑖

⋮
∑𝑇𝑖=1 𝜖

(𝑘)
𝑖

⎤
⎥
⎥
⎥
⎥
⎦

∈ ℝ𝑇 ,

where U𝑘 remains a lower-triangular Toeplitz matrix. Additionally, we let 𝑟(𝑘)1 , ⋯ , 𝑟(𝑘)𝑇 represent the
fair value and volatility corrected cumulative mid-price log returns in each time bin 𝑛 after the start
of execution. We use normalized log returns to ensure comparability of stocks both across the cross-
section and over different days. Note that if𝑀 < 𝑇, we have that 𝑟(𝑘)𝑀 , ⋯ , 𝑟(𝑘)𝑇 are all equal to zero.

Using this matrix-vector representation, we use a two-step approach to find the optimal admissible
decay kernel g∗ ∈ G :

1. First, solve the following least-squares problem to find the optimal non-projected kernel:

g̃ = argmin
g

𝐾

∑
𝑘=1

‖y𝑘 − U𝑘g‖
2 . (3.12)

This optimization problem is a convex quadratic optimization problem with an analytical solution
given in Theorem 3.5.1.

2. Second, project the analytical solution onto the set of admissible kernels by solving:

g∗ = argmin
g∈G

‖g− g̃‖2. (3.13)

We solve this optimization problem using scipy.optimize.curve_fit in Python for a parametric ker-
nel. For a nonparametric kernel, we use the ”SLSQP” solver within the scipy.optimize.minimize
package to enforce necessary constraints.

The optimal admissible decay kernel of length 𝑇 is then given by g∗ = [𝐺∗0, ⋯ , 𝐺∗𝑇−1]T. Since this
kernel function acts as a convolution kernel, we can measure the decay up to 𝑇 time bins after
the execution of the last child order.

This approach is advantageous because it is efficient: the first and computationally the most intensive
step has an analytical solution, which significantly speeds up the process. Additionally, the analytical
solution provides valuable insights into the underlying structure of the data.

The analytical solution of the least-squares problem of Equation (3.12) is given in the theorem be-
low.

Theorem 3.5.1. (Analytical solution least-squares) For an arbitrary decay kernel g, the least-squares
problem:

min
g

𝐾

∑
𝑘=1

||y𝑘 − U𝑘g||2,
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has the following analytical solution:

g̃ = (W)−1
𝐾

∑
𝑘=1

UT
𝑘y𝑘 ,

where:

W =
𝐾

∑
𝑘=1

UT
𝑘U𝑘 .

Moreover, the standard errors of the solution are given by:

se(g̃)𝑛 = √�̂�2 (W−1)𝑛,𝑛 , (3.14)

for all 𝑛 = 1,⋯𝑇, with

�̂�2 = 1
𝐾 − 𝑝 − 1

𝐾

∑
𝑘=1

||y𝑘 − U𝑘g̃||2,

where 𝑝 is the number of predictors which is in our case equal to 𝑇.

Proof. The analytical solution of the least-squares problem can be found in the following way:

min
g

𝐾

∑
𝑘=1

||y𝑘 − U𝑘g||2 =min
g

𝐾

∑
𝑘=1
(y𝑘 − U𝑘g)T(y𝑘 − U𝑘g),

Taking derivative w.r.t g and setting to zero then gives:

𝜕
𝜕g (

𝐾

∑
𝑘=1
(y𝑘 − U𝑘g)T(y𝑘 − U𝑘g)) = 0

𝐾

∑
𝑘=1

UT
𝑘y𝑘 −

𝐾

∑
𝑘=1

UT
𝑘U𝑘g = 0

𝐾

∑
𝑘=1

UT
𝑘U𝑘g =

𝐾

∑
𝑘=1

UT
𝑘y𝑘 .

Lastly, solving for g then gives the optimal solution:

g̃𝑁 = (
𝐾

∑
𝑘=1

UT
𝑘U𝑘)

−1 𝐾

∑
𝑘=1

UT
𝑘y𝑘 ,

= (W)−1
𝐾

∑
𝑘=1

UT
𝑘y𝑘 .

Because the objective function is convex and quadratic, the solution is a global minimizer.

To find the associated standard errors, we start with calculating the covariance matrix of the solution.
In case of our this is equal to:

Cov(g̃) = 𝔼 [(g̃− 𝔼[g̃])(g̃− 𝔼[g̃])T] = 𝔼 [(W−1
𝐾

∑
𝑘=1

UT
𝑘𝜖𝜖𝜖𝑘)(W−1

𝐾

∑
𝑘=1

UT
𝑘𝜖𝜖𝜖𝑘)

T

]

= 𝜎2W−1.
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Then the standard errors of the least-squares problem are given by:

se(g̃)𝑛 = √�̂�2Cov(g̃)𝑛,𝑛 = √�̂�2 (W−1)𝑛,𝑛 ,

for all 𝑛 = 1,⋯ , 𝑇. Furthermore, the variance �̂�2 has to be estimated using the sample variance of the
prediction error in the following way:

�̂�2 = 1
𝐾 − 𝑝 − 1

𝐾

∑
𝑘=1

||y𝑘 − U𝑘g̃||2,

where 𝑝 is the number of predictors which is in our case equal to 𝑇.

3.6. Numerical results calibration
In this section, we calibrate the linear propagator model to intraday trading data using the two-step
approach outlined in the previous section. First, we find the non-projected decay kernel and then
project it onto the admissible set of kernels. Next, we evaluate the kernels based on predefined metrics.
Finally, we compare the performance of the linear propagator model with industry standards.

In this section, we evaluate the parameter uncertainty using parametric standard errors as defined in
Equation (3.14) and nonparametric bootstrapped standard errors (see, Efron and Tibshirani (1994)).
Both confidence intervals should be of similar magnitude.

Furthermore, to evaluate the model on performance and accuracy, we use respectively the Root Mean
Squared Error (RMSE):

RMSE = √ 1
𝑇 ⋅ 𝐾 + 1

𝑇⋅𝐾

∑
𝑖=1
(𝑦𝑖 − �̂�𝑖)2,

and the centered R-squared:

𝑅2𝑐 = 1 −
∑𝑇⋅𝐾𝑖=1(𝑦𝑖 − ̂𝑦𝑖)2

∑𝑇⋅𝐾𝑖=1(𝑦𝑖 − 0)2
.

We assume that the price dynamics, in the absence of trading, follow an arithmetic Brownian motion.
Therefore, we use the centered R-squared with the mean set to zero, which we refer to simply as the
R-squared.

In the calculation of the RMSE and the R-squared we combine all observations and predictions for
every metaorder 𝑘 such that we get one number for each measure instead of one for every metaorder
𝑘 separately.

3.6.1. The analytical kernel estimate
Solving the least-squares problem defined in Equation (3.12) results in the non-projected kernel, as
shown on the left side of Figure 3.3. In this figure, we plot the analytical solution along with the corre-
sponding confidence interval. On the right side of Figure 3.3, we display the bootstrapped version of
the analytical solution using 20 bootstrap samples.

We see in Figure 3.3 that the instantaneous impact 𝐺(0) is around 2.49 bps as fraction of the the intraday
5 min volatility. To put this into perspective, suppose the 5 min volatility is 15 bps and we participate
10% in a 5 min interval, we make 2.49 ⋅ 0.10 ⋅ 15 = 3.73 bps instantaneous market impact. Moreover,
we find that the half-life is only 2 time bins. The half-life represents the duration after execution over
which the impact has decayed to half of its maximum impact. So in our case the non-projected kernel
estimate suggests that after 10 minutes the impact has already decayed to half of its maximum.

In addition, we see in the figure that after 50 ⋅ 5 = 250 min, the impact has reverted to almost zero.
However, we should note that after time bin 50, the measurements become unreliable as can be seen
in the bootstrapped estimate . The reason for this is that there are not a lot of orders in the data set for
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Figure 3.3: (Left) the analytical solution of the least-squares problem in Equation (3.12) based on the calibration sample defined
in Table 2.1. (Right) the bootstrapped non-projected kernel estimates using 20 bootstraps.

which we can measure the decay for more than 50 intervals after the execution of a child order (see,
Figure C.1).

When comparing the decay of the non-projected kernel with the decay of the total impact of a metaorder,
as visualized in Figure 2.7, we observe some similarities. Both exhibit a two-stage decay: an initial
short, fast decay followed by a long, slow decay. Additionally, the half-life of the decay is similar in both
cases. However, a notable difference is that the non-projected kernel shows no evidence of permanent
impact, as it fully reverts back to zero, whereas the decay in Figure 2.7 suggests a non-zero limit.
Notice, that the analytical solution is not globally convex, monotonic decreasing and non-negative.
Therefore, we still have to project this function on the set of admissible kernels.

To estimate the non-projected kernel we use a least-squares approximation. To make sure that the
least-square approximation gives the best unbiased solution to the problem, some assumptions need
to be satisfied (see Stock and Watson (2020)). Which regression assumptions apply in this special
case and whether they are satisfied is further investigated in Appendix B.1.

The predictor of the least-square regression is the participation rate of every child order. Therefore,
it is likely that the model performance depends on the participation rate of a metaorder as well. Here
we define the participation rate during the order as the number of shares traded during the whole
order divided by the total of shares traded by the market during the execution of the metaorder. To
investigate how the model performances changes with respect to this predictor, we make a scatterplot
of the RMSE vs the participation rate during the order. We use the RMSE because it is more robust
for outliers than the R-squared for individuals metaorders. Since we have many observations we use a
linear spline regression (see Hastie (1986)) with the associated confidence intervals to find a pattern.
The scatterplot with the linear spline regression for the participation rate per metaorder is present in
Figure 3.4.

In Figure 3.4, we see that the RMSE decreases when the participation rate increases. The strongest
decrease is after a participation rate of 0.001We can explain this observation as follows. If the partici-
pation rate per order increases, then it is more likely that we notably influence the price by taking away
liquidity from the market. This results in a higher signal to noise ratio and therefore also in a better
model fit.

An important explicit assumption in the linear propagator model is that the system is time invariant. This
means that the shape of the decay kernel does not change over time. Properly testing this assumption
is challenging due to the identification problem. This problem refers to the difficulty in distinguishing
between the instantaneous impact and the decay of impact in a sequence of child orders. We leave
this issue for future research.

3.6.2. Projecting on the admissible set
We proceed by projecting the analytical solution onto the set of admissible kernels by solving the opti-
mization problem in Equation (3.13). We consider two functions for the decay kernels: an exponential
function and a power-law function. However, we use a slight variation of the power-law function be-
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Figure 3.4: Scatterplot of participation rate and RMSE with linear spline regression in the knots:
{0.0002, 0.001, 0.005, 0.01, 0.025, 0.05, 0.01}.

cause it is a better fit for our data. The decay kernels we use are defined as follows:

𝐺1(𝑡; 𝜁, 𝛾) =
𝜁

(1 + 𝑡)𝛾 , 𝜁, 𝛾 > 0 and 𝐺2(𝑡; 𝜆, 𝛽) = 𝜆𝑒−𝛽𝑡 , 𝜆, 𝛽 > 0.

By construction, these functions are within the set of admissible kernels, so we do not need to impose
any constraints on the optimization problem. We solve this optimization problem for the parameters
𝜁, 𝛾 and 𝜆, 𝛽 using a numerical solver in Python. We use scipy.optimize.curve_fit, which is ideal for
fitting nonlinear functions to data. We do not apply any bounds or constraints and initialize the solver
with [1, 0.1]. To calculate the standard errors for the parameters, we use the covariance matrix of the
estimates, which is directly returned by the solver.

To find the nonparametric decay kernel, we need to impose constraints on the optimization problem
to ensure it belongs to the set of admissible kernels. For this, we use the ”SLSQP” solver within
the scipy.optimize.minimize function in Python, as it is well-suited for handling constrained optimization
problems. We initialize the solver with the analytical solution of the least-squares problem. To determine
the confidence intervals for the nonparametric kernel, we bootstrap the estimates.

Solving the projections for the parametric and nonparametric kernels result in Figure 3.5. In these
figures we plot the analytical solution of the least-squares problem with their admissible projections.
The bootstrapped nonparametric kernel can be found is Figure C.2 in Appendix B. A detailed overview
in terms of parameters and accuracy of these projections are present in Table 3.1. In this table we give
the parameter sets, half-lifes and standard errors.

Figure 3.5: (Left) the analytical solution of the least-squares problem plotted with the estimated exponential and power-law decay
function with the corresponding confidence intervals. (Right) the estimated nonparametric decay kernel.

From Table 3.1 we find that the exponential kernel has the lowest standard errors for the parameter
estimates. Even though, the instantaneous and the half-life deviates most from the analytical solution.
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Table 3.1: Parameters, standard errors (se) and half-lifes for the analytical solution, the exponential, power-law and nonpara-
metric decay kernel estimates

Function Estimates se half-life (min)
Non-projected 𝐺𝑁(0) = 2.4908 - 10
Exponential 𝜆 = 1.7635 0.0738 34
Exponential 𝛽 = 0.1022 0.0063 34
Power-law 𝜁 = 2.6913 0.1015 8
Power-law 𝛾 = 0.7578 0.0242 8
nonparametric 𝐺∗𝑁(0) = 2.4908 - 10

Furthermore, from Figure 3.5 we find that the power-law kernel seems the best fit in the first few buckets.
The instantaneous impact and the half-life are closed to the non-projected kernel estimate but after the
fifth bucket it starts to deviate. Also, we should note that the power-law kernel does not fully revert to
zero within the given time frame, where the others does. The nonparametric kernel seems the best
overall fit for the analytical solution. It perfectly matches the analytical solution and belongs to the set of
admissible kernels. However, this is also what is expected because it has the most degrees of freedom
to fit the analytical solution.

3.6.3. Performance evaluation
To measure the predictive power of the model with the estimated decay kernels we look at the in/out-of-
sample RMSE and in/out-of-sample R-squared. Therefore, we perform a 5 fold moving window cross
validation and calculate the average RMSE and the average R-squared with corresponding standard
errors for the different time windows. The results are present Table 3.2.

Table 3.2: In-sample and out-of-sample RMSE and R-squared calculated based on the moving window cross validation frame-
work. All metrics are calculated for the model with exponential, power-law and nonparametric decay kernels.

Function In-sample RMSE s.e Out-sample RMSE s.e
Exponential 6.5176 0.1956 6.5185 0.1957
Power-law 6.5175 0.1956 6.5185 0.1957
nonparametric 6.5174 0.1964 6.5184 0.1957
Function In-sample 𝑅2(%) s.e (10−3) Out-sample 𝑅2(%) s.e (10−3)
Exponential 0.217 0.1987 0.212 0.2008
Power-law 0.219 0.2134 0.210 0.2186
nonparametric 0.222 0.2084 0.214 0.2141

From Table 3.2 we find that the overall in-sample performance is best for the model with nonparametric
decay kernel. Again this is as expected since it has more degrees of freedom compared to parametric
kernels. In addition, the model with the nonparametric decay kernel is also the best out-sample fit. This
is maybe a bit surprising since we would expect that it might over-fit on the training sets. In general
all evaluation metrics are really close which makes it impossible to conclude which kernel is the best
performing one.

The R-squared for the model on the whole data set is 0.24%. An R-squared of 0.24% means that
we can only explain 0.24% of the variance around its mean, which is in this case zero. During most
orders our signal to noise ratio is very small since our average execution time 360 minutes and the
average participation rate of our child orders is 0.047%. To get an idea how much R-squared we can
expected with our data, we run a Monte Carlo simulation. We assume that the market behaves like the
linear propagator model and we simulate cumulative log returns from this model for every order. We
do this 256 times per order and compare the simulated paths with the predicted paths. The result is an
empirical distribution for the R-squared and is given in Figure 3.6.

In Figure 3.6 we see that the calculated R-squared based on the actual cumulative log returns (point
estimate) falls within the empirical distribution of the simulated data and is almost equal to the mean.
This means that the R-squared is as expected based on the low signal to noise ratio of the data. We
have done this Monte Carlo simulation because their are no performance resultd available in the lit-
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Figure 3.6: Empirical distribution of the R-squared based of a Monte Carlo simulation of the linear propagator model with simu-
lated unaffected price paths. Per metaorder we use 256 realizations. The point estimate is the calculated R-squared based on
the actual cumulative log returns.

erature. The only result which gives a bit of inside of the model performance of a propagator model
calibrated proprietary order data is by Hey, Bouchaud, et al. (2023). In the paper the authors cali-
brated the OW-model on CFM’s metaorder data and found an R-squared of approximately 0.5% (See
Figure 3(c) of Hey, Bouchaud, et al. (2023)). However, we should note that CFM’s dataset has other
characteristics.

The new variant of the propagator model is a linear model based on the participation rate. In Appendix
B.2, we demonstrate that this model achieves a higher R-squared compared to a linear propagator
model using the number of shares normalized by ADV. Additionally, we show that it performs compa-
rably to a locally concave model that also uses the number of shares normalized by ADV.

We conclude this section by showing that the expected market impact and expected cost are in line
with results from the literature. We start with calculating the expected market impact and the decay of
a metaorder. This gives an idea how the model predicts the market impact trajectory and how we can
use this model further in transaction cost analysis. To calculate the expected cost of a trading strategy
we use the expected implementation shortfall (IS) to make the cost comparable across models. The
IS for the linear propagator model is defined by (see Lemma 3.4.1):

𝔼[𝐼𝑆(Linear propagator model)] = ∫
𝑇

0
∫
𝑡

0

𝜎
𝑉𝑡
𝐺(𝑡 − 𝑠)𝑑𝑄𝑠𝑑𝑄𝑡 ,

and we benchmark it against the power-law model for market impact Bouchaud et al. (2018). This
model is often used by practitioners to get a pre-trade estimate of the implementation shortfall and is
defined as:

𝔼[𝐼𝑆(power-law model)] = 𝛼 ⋅ 𝜎 ⋅ ( 𝑄0
𝐴𝐷𝑉)

𝛿
,

where 𝜎 is the annualized volatility, 𝑄0 is the order size and 𝐴𝐷𝑉 is the average daily volume. Further-
more, 𝛼 and 𝛿 are parameters than need to be calibrated to data 3.

For illustration, we calculate the expected impact and expected IS of a 5% average daily volume (ADV)
order using a VWAP strategy. We assume that the annualized volatility is equal to 21%, and we use the
power-law decay kernel. The result is displayed in Figure 3.7. In Figure 3.7 we see that the maximum
impact of a 5% ADV order is approximately 16 bps and that the expected IS is approximately 13 bps.
The expected IS using the power-law model is equal to 15 bps. This is a difference of 2 bps with the
expected IS using the propagator model.

Furthermore, we see in the figure that the impact has not fully reverted before the end of the next trading
day. This is also what is expected when looking at the shape of the power-law kernel. However, we
3We use internally calibrated parameters
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Figure 3.7: (Upper figure) evolution of the participation rate during a VWAP trading strategy which takes a whole day to execute.
(Lower Figure) expected impact trajectory during and after execution of the metaorder with associated confidence interval. The
black dotted lines represents the expected IS of the execution.

should note that this is just an extrapolation because the kernel is only estimated on intraday data.
Furthermore, how market impact behaves during the closing and overnight session is still an open
question and we leave it to further research.

To show how the linear propagator model behaves in terms of expected IS on a metaorder level, we
calculate the expected IS for different order sizes. To calculate the IS for the linear propagator model we
use VWAP strategies which take the whole day to execute. Moreover, we assume a 21% annualized
volatility, which correspond with an average US stock. To benchmark expected IS we also plot the
square-root model with internally calibrated parameters and fit a spline regression to the data. This is
displayed in Figure 3.8

Figure 3.8: Expected implementation shortfall of a metaorder executed over the whole day using a VWAP strategy for multiple
order sizes as percentage of ADV and 21% annualized volatility. As benchmark we use the calibrated power-law model and a
spline regression to represent the data.

We see in the Figure 3.8 that also on the metaorder level the propagator model has a linear relation
between cost and order size. Comparing it with the square-root model, we find that the propagator
model underestimates the cost for smaller order sizes and over estimates for order sizes above 7%
ADV because the data shows a concave relation as already mentioned. To tackle this issue Alfonsi
et al. (2010) introduced the globally concave propagator model, also known as the AFS model.





4
Optimal intraday execution strategies

This chapter begins with an introduction to optimal control problems and applying this framework to
the OW model. Subsequently, we derive the optimal execution problem for the new introduced linear
propagator model with general decay kernels and time-varying liquidity process. Furthermore, we
extend the optimal execution problem to a mean-variance optimization problem and incorporate short-
term alpha signals. We solve all discrete-time versions of the optimal execution problems analytically
and illustrate the results by means of realistic examples.

4.1. Optimal control problems
Optimal control problems are present in various domains of quantitative finance, with portfolio opti-
mization problems, such as the one solved by Merton (1975), serving as classical examples. The
general goal of an optimal control problem is to maximize (minimize) an expected profit (cost) function
by identifying a strategy that influences the dynamics of an underlying stochastic process.

For example in Merton’s problem, an agent seeks to maximize his expected (discounted) wealth by
trading in a risky asset and a risk-free bank account. The agent actions affect his wealth, but the asset
dynamics also impact this wealth. Thus, the optimal allocation depends on both the agent’s wealth
process and the asset dynamics combined, creating a complex optimization problem.

Mathematically, optimal control problems are formulated as follows. Let (𝑄𝑡)𝑡≥0 denote the control
process and (𝑋𝑡)𝑡≥0 the state variable influenced by 𝑄. For instance, 𝑋 could be modeled by an Ito
diffusion process:

𝑑𝑋𝑡 = 𝜇(𝑡, 𝑋𝑡 , 𝑄𝑡)𝑑𝑡 + 𝜎(𝑡, 𝑋𝑡 , 𝑄𝑡)𝑑𝑊𝑡 ,

where 𝑊 represents Brownian motion. The optimal control problem, in its general form, is given
by:

sup
𝑄∈𝒜

𝔼 [𝐻(𝑋𝑇) + ∫
𝑇

0
𝐹(𝑡, 𝑋𝑡 , 𝑄𝑡)𝑑𝑡] ,

where𝒜 is a set of admissible controls, 𝐻 is a terminal reward or penalty depending on the final state of
𝑋, and 𝐹 is a running reward or penalty possibly dependent on time, the state variable, and the control
variable. The objective function may also be subject to constraints.

The interpretation of this general formulation is that an agent aims to maximize the terminal reward
𝐻 and the running reward 𝐹 by determining an optimal control process 𝑄. The agent’s actions influ-
ence the dynamics of the state variable 𝑋, meaning past actions affect future states, necessitating an
adaptive strategy to account for this feedback.

Various methods exist to solve optimal control problems. The simplest approach involves transforming
the problem into a pointwise (myopic) optimization problem, which is solvable via numerical or analytical
techniques. However, only a subset of optimal control problems can be addressed this way.
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More sophisticated methods include the dynamic programming principle (DPP) and the associated
Hamilton-Jacobi-Bellman (HJB) equation, also known as the dynamic programming equation (DPE)
(see, e.g., Bertsekas (2012), Cartea et al. (2015)). This approach converts the optimal control problem
into a series of time-indexed optimization problems, from which a DPP can be derived. The infinites-
imal form of DPP leads to a DPE, whose solution provides a tentative solution to the original control
problem.

Other techniques involve the Pontryagin maximum principle (see, e.g., Yong and Zhou (2012)), back-
ward stochastic differential equations, and reinforcement learning. In this chapter, we focus on trans-
forming optimal control problems into pointwise optimization problems.

4.2. Optimal execution for the OW model
To introduce the optimal execution problem, we revisit the OW model from Section 3.2.2. Following
the reasoning of Webster (2023), we formulate the optimal execution problem from the perspective of
a trader aiming to maximize their profit and loss position.

We first formulate the problem in discrete time before extending it to continuous time. We use the
notation defined in Definition 3.1.4 and the processes described in Section 3.1 and 3.2.2 but for the
remainder of this chapter we only consider deterministic admissible trading strategies 𝑄 ∈ 𝒟. Addition-
ally, we introduce two new processes. The trader’s cash position is defined as the stochastic process
𝐶𝑁, which satisfies:

Δ𝑛𝐶𝑁 = −�̃�𝑁𝑛−1Δ𝑛𝑄𝑁 ,

where �̃�𝑁𝑛−1 is the execution price of a trade, Δ𝑛𝑄𝑁 is the number of shares traded and 𝐶𝑁0 is the initial
cash position. Furthermore, we define a trader’s fundamental profit and loss (P&L) position by the
process 𝑋𝑁, which satisfies:

𝑋𝑁𝑛 = 𝑃𝑁𝑛 𝑄𝑁𝑛 + 𝐶𝑁𝑛 ,

where 𝑃𝑁 is the unobserved price process. Using these processes we are able to define the discrete
self-financing equation. The discrete fundamental P&L process 𝑋𝑁 satisfies the following self-financing
equations:

Δ𝑛𝑋𝑁 = 𝑋𝑁𝑛 − 𝑋𝑁𝑛−1 = 𝑃𝑁𝑛 𝑄𝑁𝑛 + 𝐶𝑁𝑛 − 𝑃𝑁𝑛−1𝑄𝑁𝑛−1 + 𝐶𝑁𝑛−1
= 𝑄𝑁𝑛−1Δ𝑛𝑃𝑁 + 𝑃𝑁𝑛−1Δ𝑛𝑄𝑁 + Δ𝑛𝑆𝑁Δ𝑛𝑄𝑁 − Δ𝑛𝐶𝑁

= 𝑄𝑁𝑛−1Δ𝑛𝑃𝑁 + (𝑃𝑁𝑛−1 − �̃�𝑁𝑛−1)Δ𝑛𝑄𝑁 + Δ𝑛𝑆𝑁Δ𝑛𝑄𝑁
= 𝑄𝑁𝑛−1Δ𝑛𝑃𝑁 − 𝐼𝑁𝑛−1Δ𝑛𝑄𝑁 − �̄�𝑁𝑛−1Δ𝑛𝑄𝑁 + Δ𝑛𝑆𝑁Δ𝑛𝑄𝑁 .

Note that these self-financing equations are different from the Black-Scholes self-financing equations
(see, Hull (2016)), in the sense that we have lifted the frictionless trading assumption. This means the
observable price and the execution price are not the same.

Every term in the final version of the self-financing equation has a specific interpretation. Lets have a
closer look:

(a) 𝑄𝑁𝑛−1Δ𝑛𝑃𝑁 represents the change in value of the inventory.

(b) −𝐼𝑁𝑛−1Δ𝑛𝑄𝑁 is the price impact of the trade Δ𝑛𝑄𝑁

(c) −�̄�𝑁𝑛−1Δ𝑛𝑄𝑁 is the transaction cost the trader has to pay or receives.

(d) Δ𝑛𝑆𝑁Δ𝑛𝑄𝑁 is the adverse selection of the trading book.

To find the fundamental P&L process under the OW model we include the OW market microstructure
assumptions: the linear instantaneous transaction cost and no adverse selection assumption. This
means that �̄�𝑁𝑛−1Δ𝑛𝑄𝑁 =

𝜆
2 (Δ𝑛𝑄

𝑁)2 and that Δ𝑛𝑆𝑁Δ𝑛𝑄𝑁 → 0. The fundamental P&L process under the
OW model then becomes:

Δ𝑛𝑋𝑁 = 𝑄𝑁𝑛−1Δ𝑛𝑃𝑁 − 𝐼𝑁𝑛−1Δ𝑛𝑄𝑁 −
𝜆
2(Δ𝑛𝑄

𝑁)2.
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Webster (2023) shows that as 𝑁 → ∞, the discrete P&L converges to the continuous time limit:

𝑑𝑋𝑡 = 𝑄𝑡𝑑𝑃𝑡 − 𝐼𝑡𝑑𝑄𝑡 −
𝜆
2𝑑[𝑄, 𝑄]𝑡 ,

where 𝑑[𝑄, 𝑄]𝑡 is the quadratic variation of 𝑄. Note that this term is non-zero since the trading strategy
can exhibit jumps.

Recall that the impact process under the OW model with a deterministic strategy 𝑄 ∈ 𝒟 is given by the
Ordinary differential equation (ODE):

𝑑𝐼𝑡 = −𝛽𝐼𝑡𝑑𝑡 + 𝜆𝑑𝑄𝑡 .

Then substituting this into the quadratic variation term, we find that the simplified fundamental P&L
process:

𝑑𝑋𝑡 = 𝑄𝑡𝑑𝑃𝑡 − 𝐼𝑡𝑑𝑄𝑡 −
1
2𝑑[𝑄, 𝐼]𝑡 ,

where 𝑑[𝑄, 𝐼]𝑡 denotes the quadratic covariation between the processes 𝑄 and 𝐼. Using the funda-
mental P&L process defined above, we are able to define the optimal execution problem for the OW
model.

Suppose we would like to trade a position 𝑄0 ≠ 0 such that 𝑄𝑇 = 0, then the goal is to maximise the
fundamental P&L process 𝑋 by choosing a deterministic admissible strategy Π = (𝑄𝑡)𝑡∈[0,𝑇] ∈ 𝒟. Then
we define the optimal execution problem under the OW model as:

sup
𝑄∈𝒟

𝔼 [∫
𝑇

0
𝑄𝑡𝑑𝑃𝑡 −∫

𝑇

0
𝐼𝑡𝑑𝑄𝑡 −

1
2[𝐼, 𝑄]𝑇] (4.1)

s.t 𝑄𝑇 = 0

This control problem can be solved explicitly by using an important insight from Fruth et al. (2014).
They exploit the one-to-one map between the control variable 𝑄 and the state variable 𝐼 in the OW
model. The authors prove in Lemma 8.6 that the optimal control problem can be solved by inverting
this relationship. We summarize the result in the following theorem which we present with proof.

Theorem 4.2.1. (Solution to the OW optimal execution problem) Let the unaffected price process 𝑃 be
equal to the continuous martingale 𝑍 ∈ 𝒵. Furthermore, consider a deterministic admissible strategy
𝑄 ∈ 𝒟 and the OW optimal execution problem:

sup
𝑄∈𝒟

𝔼 [∫
𝑇

0
𝑄𝑡𝑑𝑃𝑡 −∫

𝑇

0
𝐼𝑡𝑑𝑄𝑡 −

1
2[𝐼, 𝑄]𝑇] (4.2)

s.t 𝑄𝑇 = 0

Then the optimal trading strategy is given by:

𝑑𝑄∗𝑡 = {
− 𝛽𝑄0
2+𝛽𝑇𝑑𝑡, ∀𝑡 ∈ (0, 𝑇)

− 𝑄0
2+𝛽𝑇 , 𝑡 = 0, 𝑡 = 𝑇

Proof. We start by rewriting the dynamics of the OW model:

𝑑𝑄𝑡 =
1
𝜆(𝛽𝐼𝑡𝑑𝑡 + 𝑑𝐼𝑡).

Then by substituting this into the control problem we find for the expression in the expectation:

∫
𝑇

0
𝑄𝑡𝑑𝑃𝑡 −∫

𝑇

0
𝐼𝑡𝑑𝑄𝑡 −

1
2[𝐼, 𝑄]𝑇 = ∫

𝑇

0
𝑄𝑡𝑑𝑃𝑡 −

1
𝜆 ∫

𝑇

0
𝐼𝑡(𝛽𝐼𝑡𝑑𝑡 + 𝑑𝐼𝑡) −

1
2𝜆 [𝐼, 𝐼]𝑇

= ∫
𝑇

0
𝑄𝑡𝑑𝑃𝑡 −

1
𝜆 ∫

𝑇

0
𝛽𝐼2𝑡 𝑑𝑡 −

1
𝜆 ∫

𝑇

0
𝐼𝑡𝑑𝐼𝑡 −

1
2𝜆[𝐼, 𝐼]𝑇 .
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Then using Ito’s lemma (see e.g., Shreve et al. (2004)) with 𝑓(𝑡, 𝐼𝑡) =
1
2 𝐼
2
𝑡 and without loss of generality

we let 𝐼0 = 0, we find that the integral ∫𝑇0 𝐼𝑡𝑑𝐼𝑡 equals:

∫
𝑇

0
𝐼𝑡𝑑𝐼𝑡 =

1
2𝐼
2
𝑇 −

1
2𝐼
2
0 −

1
2 ∫

𝑇

0
𝑑[𝐼]𝑡

= 1
2𝐼
2
𝑇 −

1
2[𝐼, 𝐼]𝑇

Substituting the above into the original expression and simplifying, we obtain:

∫
𝑇

0
𝑄𝑡𝑑𝑃𝑡 −

1
𝜆 ∫

𝑇

0
𝛽𝐼2𝑡 𝑑𝑡 −

1
2𝜆𝐼

2
𝑇 ,

and the transformed optimal control problem becomes:

sup
𝐼
𝔼 [∫

𝑇

0
𝑄𝑡𝑑𝑃𝑡 −

1
𝜆 ∫

𝑇

0
𝛽𝐼2𝑡 𝑑𝑡 −

1
2𝜆𝐼

2
𝑇]

s.t 𝐼𝑇 +∫
𝑇

0
𝛽𝐼𝑡𝑑𝑡 = −𝜆𝑄0,

By assumption we have that the unaffected price process 𝑃 is a continuous martingale 𝑍. Therefore,
the optimal control problem simplifies in:

inf
𝐼
1
𝜆 𝔼 [∫

𝑇

0
𝛽𝐼2𝑡 𝑑𝑡 +

1
2𝐼
2
𝑇]

s.t 𝐼𝑇 +∫
𝑇

0
𝛽𝐼𝑡𝑑𝑡 = −𝜆𝑄0,

because integrating w.r.t a martingale has expectation zero. The above control problem is much eas-
ier to solve than the original problem because we can solve it using the Lagrange multiplier method.
Introducing a Lagrange multiplier 𝜈 ∈ ℝ for the constraint, the Lagrangian for the problem is formulated
as

ℒ(𝐼𝑡 , 𝜈) = ∫
𝑇

0
𝛽𝐼2𝑡 𝑑𝑡 +

1
2𝐼
2
𝑇 − 𝜈 (𝐼𝑇 +∫

𝑇

0
𝛽𝐼𝑡 𝑑𝑡 + 𝜆𝑄0) .

We then find the optimal trajectory by taking partial derivatives of ℒ with respect to 𝐼𝑡 for all 𝑡 ∈ (0, 𝑇)
and 𝐼𝑇 and setting them to zero. This yields the conditions:

𝜕ℒ
𝜕𝐼𝑡

= 2𝛽𝐼𝑡 − 𝜈𝛽 = 0,

𝜕ℒ
𝜕𝐼𝑇

= 𝐼𝑇 − 𝜈 = 0.

From the above conditions, we deduce that the optimal trajectory is given by:

𝐼∗𝑡 =
𝜈
2 , for 𝑡 ∈ (0, 𝑇),

𝐼∗𝑇 = 𝜈.

The linear constraint is then used to solve the Lagrange multiplier 𝜈. The constraint can be rewritten
into:

𝜈 + ∫
𝑇

0
𝛽𝜈2𝑑𝑡 = −𝜆𝑄0

𝜈 + 𝛽𝜈2𝑇 + 𝜆𝑄0 = 0.
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Solving for 𝜈 results in:
𝜈 = − 2𝜆𝑄0

1 + 𝛽𝑇 .

Finally, using the one-to-one mapping between 𝐼 and 𝑄 given by the dynamics 𝑑𝑄𝑡 =
1
𝜆 (𝛽𝐼𝑡𝑑𝑡 + 𝑑𝐼𝑡),

we obtain the optimal strategy for 𝑄𝑡 for all 𝑡 ∈ (0, 𝑇):

𝑑𝑄∗𝑡 =
1
𝜆(𝛽𝐼

∗
𝑡𝑑𝑡 + 𝑑𝐼∗𝑡 )

= − 𝛽𝑄0
2 + 𝛽𝑇𝑑𝑡.

The optimal solution of the OW optimal execution problem calculated in Theorem 4.2.1 is visualized in
Figure 4.1. In this figure we visualize the block trades at the beginning and and the end of the order
with two dots and the continuous trading with a solid line. In this example we take the whole day to
execute 10000 shares.

Figure 4.1: Optimal trading strategy under the continuous-time OW model. 𝑄0 = 10000, 𝑑𝑡 = 5 min and we trade from the start
till the end of the trading day.

4.3. Optimal execution for the linear propagator model
In this section, we formally introduce the optimal execution problem for the new variant of linear propa-
gator model incorporating a time-dependent liquidity process. We begin with the discrete-time formula-
tion before we extend it to continuous time. We illustrate the theoretical findings by means of a realistic
example.

To derive a general optimal control problem, we consider the discrete self financing-equations again
from previous section:

Δ𝑛𝑋𝑁 = 𝑄𝑁𝑛−1Δ𝑛𝑃𝑁 − 𝐼𝑁𝑛−1Δ𝑛𝑄𝑁 − �̄�𝑁𝑛−1Δ𝑛𝑄𝑁 + Δ𝑛𝑆𝑁Δ𝑛𝑄𝑁 .
To derive the control problem for the linear model, we need to make some market microstructure as-
sumptions. The first assumption we make is that there is no adverse selection in the order book, i.e.
Δ𝑛𝑆𝑁Δ𝑛𝑄𝑁 → 0. Furthermore, since we consider the linear propagator model with time dependent
liquidity process, we assume that the average execution price is:

�̃�𝑁𝑛−1 = 𝑆𝑁𝑛−1 +
𝐺(0)
2 Θ𝑁𝑛Δ𝑛𝑄𝑁 ,

such that the instantaneous transaction cost equal to:

�̄�𝑁𝑛−1Δ𝑛𝑄𝑁 =
𝐺(0)
2 Θ𝑁𝑛 (Δ𝑛𝑄𝑁)2.
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Note that this complies with the calculation of the cost of trading in Section 3.4. The fundamental P&L
process 𝑋𝑁 under the linear propagator model becomes:

Δ𝑛𝑋𝑁 = 𝑄𝑁𝑛−1Δ𝑛𝑃𝑁 − 𝐼𝑁𝑛−1Δ𝑛𝑄𝑁 −
𝐺(0)
2 Θ𝑁𝑛 (Δ𝑛𝑄𝑁)2.

By taking 𝑁 → ∞, we find the continuous time limit:

𝑑𝑋𝑡 = 𝑄𝑡𝑑𝑃𝑡 − 𝐼𝑡𝑑𝑄𝑡 −
𝐺(0)
2 𝑑[Θ𝑄, 𝑄]𝑡 .

The goal is to maximize the traders P&L process. Using the definition of quadratic variation, and
inserting the linear propagator model with time-varying liquidity, we rewrite this into:

𝔼 [∫
𝑇

0
𝑄𝑡𝑑𝑃𝑡 −∫

𝑇

0
∫
𝑡

0
Θ𝑠𝐺(𝑡 − 𝑠)𝑑𝑄𝑠𝑑𝑄𝑡 −

𝐺(0)
2 ∑

𝑡∈J

Θ𝑡(Δ𝑄𝑡)2] ,

where J is the set of all time points where 𝑄 jumps. In the second and third term we recognize the cost
due to respectively continuous and discrete trading. Using Lemma 3.4.1, the general control problem
becomes:

sup
𝑄∈𝒟

𝔼 [∫
𝑇

0
𝑄𝑡𝑑𝑃𝑡 −

1
2 ∫

𝑇

0
∫
𝑇

0
Θ̃(𝑡, 𝑠)𝐺(|𝑡 − 𝑠|)𝑑𝑄𝑠𝑑𝑄𝑡] , (4.3)

s.t. ∫
𝑇

0
𝑑𝑄𝑡 = 𝑄0,

where we take the supremum over the set of deterministic admissible strategies. In the coming sub-
sections we extend this objective function such that we can incorporate a risk measure and include a
alpha signal.

If we assume that the unaffected price process is equal to a martingale 𝑍 ∈ 𝒵, maximising the traders
P&L process is equivalent to minimizing the expected cost of trading:

sup
𝑄∈𝒟

𝔼 [∫
𝑇

0
𝑄𝑡𝑑𝑍𝑡 −

1
2 ∫

𝑇

0
∫
𝑇

0
Θ̃(𝑡, 𝑠)𝐺(|𝑡 − 𝑠|)𝑑𝑄𝑠𝑑𝑄𝑡] ,

= inf
𝑄∈𝒟

𝔼 [12 ∫
𝑇

0
∫
𝑇

0
Θ̃(𝑡, 𝑠)𝐺(|𝑡 − 𝑠|)𝑑𝑄𝑠𝑑𝑄𝑡] ,

which is equal to the expected cost of trading by Lemma 3.4.1. Therefore, the optimal execution prob-
lem to minimize the expected cost of trading when trading a position 𝑄0 ≠ 0 such that 𝑄𝑇 = 0 be-
comes:

inf
𝑄∈𝒟

1
2 ∫

𝑇

0
∫
𝑇

0
Θ̃(𝑡, 𝑠)𝐺(|𝑡 − 𝑠|)𝑑𝑄𝑠𝑑𝑄𝑡 (4.4)

s.t. ∫
𝑇

0
𝑑𝑄𝑡 = 𝑄0.

Solving this problem in continuous time is mathematically complex. Therefore, we revert to the dis-
crete time linear propagator model from Equation 3.4. This approach enables us to find an analytical
optimal execution strategy using the Lagrange multiplier method, which we present in the following
theorem.

Theorem 4.3.1. Consider the discrete time linear propagator model from Equation 3.4 for which we
derived the expected cost of trading in Lemma 3.4.2. Then the corresponding discrete time optimal
execution problem to minimize the expected cost of trading a position 𝑄𝑁0 ≠ 0 such that 𝑄𝑁𝑇 = 0 is
equal to:

min
q∈𝒟

q𝑇ΦΦΦq

s.t. 1𝑇q = 𝑄𝑁0 .
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This is a quadratic optimization problem with optimal solution equal to:

q∗ = 𝑄𝑁0ΦΦΦ−11
1𝑇ΦΦΦ−11 .

Proof. Let ℒ(q, 𝜈) be the Lagrangian for this problem, given by:

ℒ(q, 𝜈) = q𝑇ΦΦΦq+ 𝜈(𝑄𝑁0 − 1𝑇q).

Taking the gradient of ℒ with respect to q and setting it to zero yields:

2ΦΦΦq− 𝜈1 = 0.

Solving for q gives us:

q = 𝜈
2ΦΦΦ

−11.

Applying the constraint 1𝑇q = 𝑄𝑁0 , we have:

1𝑇 (𝜈2ΦΦΦ
−11) = 𝑄𝑁0 ,

which simplifies to:

𝜈 = 2𝑄𝑁0
1𝑇ΦΦΦ−11 .

Substituting this value of 𝜈 back into the expression for q, we obtain the optimal solution:

q∗ = 𝑄𝑁0ΦΦΦ−11
1𝑇ΦΦΦ−11 .

This solution is a global minimizer since the objective function is quadratic and convex and ΦΦΦ is sym-
metric positive definite (SPD).

To demonstrate that the OW optimal execution problem coincides with the discrete time optimal execu-
tion problem for the linear propagator model with an exponential kernel and a constant liquidity process,
we compare the solutions. We use a small grid size, 𝑑𝑡 = 𝑇/𝑁 = 79/1000, and trade 𝑄𝑁0 = 10000
shares over the course of the entire day. The solution for the OW model is calculated using Theorem
4.2.1, while the solution for the discrete linear propagator model is calculated using Theorem 4.3.1.
The resulting optimal strategies are present in Figure 4.2, in which we see that both solutions to the
optimal execution problems align perfectly.

To visualize the solutions to the optimal execution problem with a time-varying liquidity process in this
and the forthcoming sections, we assume that for all 𝑛 ∈ [1, 𝑇]:

Θ𝑁𝑛 =
𝜎
𝑉𝑁𝑛

= 𝜎(5 min)
ADV ⋅ 𝑣𝑁𝑛

,

where 𝜎(5 min) is the average 5 min intraday volatility in bps, ADV the average daily volume of a stock
and we let 𝑣𝑁 be the intraday volume curve. As predictor for 𝑣𝑁 we take the average volume curve of
all stocks in the MSCI US index in 2023, which can be found in Figure 2.5 of Section 2.3.1. However,
in practice more sophisticated methods can be considered as well.

Furthermore, we let the average daily volume (ADV) be equal to 1000000 shares and assume that the
intraday 𝜎(5 min) = 15 bps. This corresponds with an annualized volatility of 21%. Moreover, we trade
a 5% ADV order which takes the whole day to execute and use the calibrated power-law kernel for
illustration.

To make sure that the resulting model does not admit any price manipulation with this specific forecast
for the liquidity process Θ𝑁, we use the result from Theorem 3.4.3. Using the calibrated power-law
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Figure 4.2: Optimal trading strategy under OWmodel and discrete linear propagator model with exponential kernel and constant
liquidity process. 𝑄𝑁0 = 10000 and 𝑑𝑡 = 79/1000.

kernel, we find that the matrixΦΦΦ is positive definite which means that Θ𝑁 ∈ L and the model is free of
price manipulation. If this were not the case, we could add a regularization term to the diagonal of the
matrixΦΦΦ to ensure it becomes positive definite. This regularization term represents additional costs on
the instantaneous impact, such as spread costs (see Remark 3.4.1).

However, it is still possible that optimal solution admits transaction-triggered price manipulation, i.e.
alternating between buy and sell trades to decrease the expected cost of trading. When this occurs,
we use a solver to find a optimal schedule which is restricted to one way trading. The solver we use
is cvxpy in Python. In addition, we restrict the solver to buy/sell more than 20% of the volume in
a 5 min interval. We do this such that the restricted solution found by the optimizer is realistic and
implementable by a trader. In summary, when we use a solver we add the following constraint to the
optimization problem:

𝑞𝑛 ≥ 0 and 𝑞𝑛 ≤ 0.2𝑉𝑁𝑛 , ∀𝑛 ∈ [1, 𝑇].
Calculating the optimal execution strategy with the before mentioned parameters using Theorem 4.3.1
and the solver results in Figure 4.3. As benchmark we use a VWAP strategy and we plot the traders
participation rate in every 5 minute interval.

Figure 4.3: Optimal risk-neutral trading strategies with VWAP as benchmark. We trade a 5% ADV order with a power-law kernel
and plot the traders participation rate in every 5 min interval.

We see in Figure 4.3 that the optimal analytical solution deviate quite a bit from the restricted solution.
The analytical solution would like to take a large short position to buy it back near the end of the trading
day. Asset managers are typically not allowed to follow such a strategy when execution an order.
Therefore, we also calculate the optimal solution via a solver which is restricted to one way trading.
However, this results in a sub-optimal solution in terms of cost compared to the analytical solution
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because we restrict the solution space. To find out how material this difference is we calculate the
evolution of the impact and expected cost of trading for these strategies. These are displayed in in
Figure 4.4.

Figure 4.4: (Left) the evolution of the expected impact in bps for the optimal, restricted and VWAP strategies. (Right) the evolution
of the expected cost in bps for the optimal, restricted and VWAP strategies.

In the left hand side of Figure 4.4 the evolution of the market impact in bps is plotted for the different
strategies. We see that the VWAP and restricted solution both reach a similar final impact state while
the analytical solution also has a negative impact because it take a large intermediate short position.
In the right hand side plot of Figure 4.4 we see that the analytical solution has the lowest expected
cost and VWAP the largest. Moreover, we conclude from this figure that the analytical solution admits
transaction-triggered price manipulation because this strategy decreases its expected cost by trading
in the opposite way.

To get a better understanding how material the difference is in terms of cost, we calculate the relative
difference in the following table.

Table 4.1: Expected cost of trading a 5% ADV order and relative out-performance in % compared with a VWAP strategy for the
power-law kernel.

Strategy Expected cost (bps) 0ut-performance (%)
VWAP 12.13 0
Optimal restricted 7.69 −36.639
Optimal analytical 5.19 −57.175

We see in Table 4.1 that the difference in cost is high. The restricted solution is already 37 % cheaper in
terms of expected cost than the VWAP strategy and the analytical solution even more. If the restricted
solution is really implementable remains a question because targeting 20% of the volume in the first
and last time bins of the day might not be realistic.

Furthermore, we should note that comparing strategies on the expected cost alone is not fair. As with
everything in financial markets, extra reward comes with extra risk, which in our case means, lower cost
comes with a higher risk. Therefore, in the next section we dive into the cost/risk trade off of trading
strategies.

4.4. Mean-variance optimal
In this section we extend the optimal execution problem by adding a risk measure to the objective
function. In this setting the optimal execution problem can be viewed as a mean-variance optimiza-
tion.

In general, a trader would like to minimize the expected cost but also tries to manage his risk exposure.
For example, when a trader takes a long time to execute an order, the risk that the price moves against
him increases. Therefore, a risk measure is important to consider in realistic trading settings.

There are multiple ways to manage the risk exposure in calculating optimal strategies (see e.g. Cartea
et al. (2015) and Lehalle and Neuman (2019)). One way is to add the following penalty term to the
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objective function:

sup
𝑄∈𝒟

𝔼 [∫
𝑇

0
𝑄𝑡𝑑𝑃𝑡 −

1
2 ∫

𝑇

0
∫
𝑇

0
Θ̃(𝑡, 𝑠)𝐺(|𝑡 − 𝑠|)𝑑𝑄𝑠𝑑𝑄𝑡 − 𝜓(∫

𝑇

0
𝑃𝑡𝑑𝑄𝑡 −∫

𝑇

0
𝔼[𝑃𝑡]𝑑𝑄𝑡)

2

] .

This penalty term is the variance of the cost trading and is derived in the lemma below.

Lemma 4.4.1. Consider the total cost of a deterministic admissible strategy 𝑄 ∈ 𝒟 under the linear
propagator model (refer to Equation 3.5). Then the variance of the total cost is equal to:

𝑉𝑎𝑟(𝐶(Π)) = 𝔼 [(∫
𝑇

0
𝑃𝑡𝑑𝑄𝑡 −∫

𝑇

0
𝔼[𝑃𝑡]𝑑𝑄𝑡)

2

] .

In particular, if the unaffected price 𝑃 is equal to the martingale 𝑍𝑡 = ∫
𝑡
0 𝜎𝑠𝑑𝑊𝑠 where 𝑊 is a Brownian

motion and 𝜎𝑡 is a time dependent volatility. Then the variance of the total cost of trading is equal to:

𝑉𝑎𝑟(𝐶(Π)) = ∫
𝑇

0
(∫

𝑇

𝑡
𝜎𝑠𝑑𝑄𝑠)

2

𝑑𝑡. (4.5)

For a discrete deterministic admissible strategy Π𝑁 under the discrete linear propagator model, the
variance of the total cost in matrix-vector notation equals:

𝑉𝑎𝑟(𝐶(Π𝑁)) = q𝑇ΣΣΣq,

where:

ΣΣΣ = LSL𝑇 ,

and L a matrix filled with ones on and below the diagonal and zeros above the diagonal, and S is a
matrix with the variances 𝜎2𝑛 of each of the periods 𝑛 ∈ [1, 𝑇] on the diagonal. If the volatility is constant,
i.e. 𝜎𝑛 = 𝜎 for all 𝑛 ∈ [1, 𝑇], we have:

ΣΣΣ = 𝜎2 ⋅
⎡
⎢
⎢
⎢
⎣

1 1 1 ⋯ 1
1 2 2 ⋯ 2
1 2 3 ⋯ 3
⋮ ⋮ ⋮ ⋱ ⋮
1 2 3 ⋯ (𝑇 − 1)

⎤
⎥
⎥
⎥
⎦

Proof. Consider the total cost of an deterministic admissible strategy 𝑄 ∈ 𝒟:

𝐶(Π) = ∫
𝑇

0
(𝑆𝑡 − 𝑆0)𝑑𝑄𝑡 +

𝐺(0)
2 ∑

𝑡∈J

Θ𝑡(Δ𝑄𝑡)2.

Using results from the proof of Lemma 3.4.1, we know that:

𝐶(Π) = ∫
𝑇

0
(𝑆𝑡 − 𝑆0)𝑑𝑄𝑡 +

𝐺(0)
2 ∑

𝑡∈J

Θ𝑡(Δ𝑄𝑡)2,

= ∫
𝑇

0
𝑃𝑡𝑑𝑄𝑡 +

1
2 ∫

𝑇

0
∫
𝑇

0
Θ̃(𝑡, 𝑠)𝐺(|𝑡 − 𝑠|)𝑑𝑄𝑠𝑑𝑄𝑡 .



4.4. Mean-variance optimal 45

Then from the definition of variance we get:

𝑉𝑎𝑟(𝐶(Π)) = 𝔼[(𝐶(Π) − 𝔼[𝐶(Π)])2]

= 𝔼 [(∫
𝑇

0
𝑃𝑡𝑑𝑄𝑡 +

1
2 ∫

𝑇

0
∫
𝑇

0
Θ̃(𝑡, 𝑠)𝐺(|𝑡 − 𝑠|)𝑑𝑄𝑠𝑑𝑄𝑡

− 1
2 ∫

𝑇

0
∫
𝑇

0
Θ̃(𝑡, 𝑠)𝐺(|𝑡 − 𝑠|)𝑑𝑄𝑠𝑑𝑄𝑡 − 𝔼 [∫

𝑇

0
𝑃𝑡𝑑𝑄𝑡])

2

] ,

= 𝔼 [(∫
𝑇

0
𝑃𝑡𝑑𝑄𝑡 −∫

𝑇

0
𝔼[𝑃𝑡]𝑑𝑄𝑡)

2

] .

Let 𝑃𝑡 = ∫
𝑡
0 𝜎𝑠𝑑𝑊𝑠, then:

𝔼 [(∫
𝑇

0
𝑃𝑡𝑑𝑄𝑡)

2

] = 𝔼 [(∫
𝑇

0
∫
𝑡

0
𝜎𝑠𝑑𝑊𝑠𝑑𝑄𝑡)

2

] ,

= 𝔼 [(∫
𝑇

0
(∫

𝑇

𝑡
𝜎𝑠𝑑𝑄𝑠)𝑑𝑊𝑡)

2

] ,

= ∫
𝑇

0
(∫

𝑇

𝑡
𝜎𝑠𝑑𝑄𝑠)

2

𝑑[𝑊]𝑡 ,

= ∫
𝑇

0
(∫

𝑇

𝑡
𝜎𝑠𝑑𝑄𝑠)

2

𝑑𝑡,

where in the second to last line we used Ito’s isometry and in the last line we used that the quadratic
variation of a Brownian motion is equal to 𝑡.
For the discrete time case consider a deterministic admissible strategy Π𝑁 under the discrete linear
propagator model. Then using the notation in Definition 3.1.4, we discretize the above continuous
version to obtain the variance of the total cost of trading:

𝑉𝑎𝑟(𝐶(Π𝑁)) =
𝑇

∑
𝑛=1

(
𝑇

∑
𝑚=𝑛

𝜎𝑚Δ𝑚𝑄𝑁)

2

.

Since the variance is bilinear in 𝑄𝑁 (see, Busseti and Lillo (2012)), we can express it in matrix-vector
notation as follows:

𝑉𝑎𝑟(𝐶(Π𝑁)) = q𝑇ΣΣΣq,

where we have that 𝑞𝑛 = Δ𝑛𝑄𝑁 for all 𝑛 = 1,⋯ , 𝑇 and:

ΣΣΣ = LSL𝑇 ,

and L a matrix filled with ones on and below the diagonal and zeros above the diagonal, and S is a
matrix with the variances 𝜎2𝑛 of each of the periods 𝑛 ∈ [1, 𝑇] on the diagonal. If the volatility is constant,
i.e. 𝜎𝑛 = 𝜎 for all 𝑛 ∈ [1, 𝑇], we have

ΣΣΣ = 𝜎2 ⋅
⎡
⎢
⎢
⎢
⎣

1 1 1 ⋯ 1
1 2 2 ⋯ 2
1 2 3 ⋯ 3
⋮ ⋮ ⋮ ⋱ ⋮
1 2 3 ⋯ (𝑇 − 1)

⎤
⎥
⎥
⎥
⎦

This concludes the proof.
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Using the lemma above with a constant volatility, the optimal execution problem with the variance of
the total cost of trading as risk measure becomes:

inf
𝑄∈𝒟

1
2 ∫

𝑇

0
∫
𝑇

0
Θ̃(𝑡, 𝑠)𝐺(|𝑡 − 𝑠|)𝑑𝑄𝑠𝑑𝑄𝑡 + 𝜓∫

𝑇

0
(∫

𝑇

𝑡
𝜎𝑑𝑄𝑠)

2

𝑑𝑡, (4.6)

s.t. ∫
𝑇

0
𝑑𝑄𝑡 = 𝑄0.

where 𝜙 is a risk aversion parameter. Note, that this formulation of the optimal execution problem
is equal to a quadratic mean-variance optimization. Again as in the previous section we switch to
discrete time to find an analytical solution. Solving the problem in continuous time is mathematically
complex.

The analytical solution of the discrete time variant is derived in the following proposition and the proof
is a direct consequence of the proof of Theorem 4.3.1.

Proposition 4.4.1. Consider the discrete time linear propagator model from Equation 3.4 for which we
derived the expected cost of trading in Lemma 3.4.2 and the variance of the cost in Lemma 4.4. Then
the discrete version of the optimal execution problem in Equation (4.6) can be formalized in matrix-
vector notation as follows:

min
q∈𝒟

q𝑇(ΦΦΦ+ 𝜓ΣΣΣ)q

s.t. 1𝑇q = 𝑄𝑁0 ,

This is a quadratic optimization problem with optimal solution equal to:

q∗ = 𝑄𝑁0 (ΦΦΦ+ 𝜓ΣΣΣ)−11
1𝑇(ΦΦΦ+ 𝜓ΣΣΣ)−11 .

Proof. Direct consequence of Theorem 4.3.1, sinceΦΦΦ+ 𝜓ΣΣΣ is symmetric.

The optimal strategies for a risk aware trader are visualized in Figure 4.5. In this figure we plot the
traders participation rate in every 5 minute interval for the analytical solution and the solution calculated
with the solver. Because we are risk-averse with respect to the variance of our expected trading cost,
which is driven by the volatility of the asset, we are front loading our strategies compared to risk neutral
strategies. This means that we want to achieve a higher order completion in the beginning of the order
compared to the risk neutral one.

Figure 4.5: Optimal risk-aware trading strategies with VWAP as benchmark. We trade a 5% ADV order with a power-law kernel
and plot the traders participation rate in every 5 min interval.

We see in Figure 4.5 that the analytical solution and the restricted solution are more similar than in
the risk neutral case. However, the analytical solution still wants to sell some shares in the end of the
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day to buy it back just before the closing auction. Furthermore, we see that both strategies are front
loading their strategies. This comes with a cost because we deviate from the optimal risk-neutral trading
strategy. In Figure 4.6 we visualize the evolution of the impact and the cost of the strategy.

Figure 4.6: (Left) The evolution of the expected impact in bps for the optimal, restricted and VWAP strategies. (Right) The
evolution of the expected cost in bps for the optimal, restricted and VWAP strategies.

If we compare Figures 4.4 and 4.6, we find that the risk aware strategy makes more impact in the
beginning and less in the end and has a higher total cost than the risk neutral strategy. Since we are
able to calculate the variance of the cost of trading, we can construct an efficient frontier between the
standard deviation of the cost and the expected cost of trading. In Figure 4.7 we plot the efficient frontier
for the analytical and restricted solutions.

Figure 4.7: Efficient frontier of the analytical and restricted solutions for a 5% ADV order. As benchmark, we plot the VWAP
strategy and the risk aware strategies we calculated in Figure 4.5.

In Figure 4.7, we see that there is a trade-off between the expected cost of trading an the standard
deviation of the cost. Additionally, we see that the restricted solutions are indeed sub-optimal to the
analytical solutions, for the same standard deviation the analytical solution has a lower cost. However,
the analytical solutions are not implementable. Moreover, we find that for the same standard devia-
tion as a VWAP strategy we are able to choose an optimal strategy with a lower cost. The efficient
frontier enables a trader to choose a point on the frontier and retrieves the optimal strategy a desired
combination of risk and cost.

4.5. Optimal strategies with alpha signals
In this section we extend the objective function further by including a short-term alpha signal. An alpha
signal is an estimation of how the unaffected price changes in the near further. Mathematically, we
define an alpha signal as a stochastic process that models:

𝛼𝑡 = 𝔼[𝑃𝑇 − 𝑃𝑡|ℱ𝑡].
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Using this definition of an alpha signal, the dynamics of the unaffected price process 𝑃 ∈ 𝒮 is a semi-
martingale and equal to:

𝑑𝑃𝑡 = −𝑑𝛼𝑡 + 𝑑𝑍𝑡 ,
where we assume that 𝑍 ∈ 𝒵 is a continuous martingale and equal to 𝑍𝑡 = 𝔼[𝑃𝑇|ℱ𝑡] for all 𝑡 ∈ [0, 𝑇].
Furthermore, without loss of generality we assume 𝑍0 = 0.
To incorporate the alpha signal, we consider the general objective function:

sup
𝑄∈𝒟

𝔼 [∫
𝑇

0
𝑄𝑡𝑑𝑃𝑡 −

1
2 ∫

𝑇

0
∫
𝑇

0
Θ̃(𝑡, 𝑠)𝐺(|𝑡 − 𝑠|)𝑑𝑄𝑠𝑑𝑄𝑡 − 𝜓(∫

𝑇

0
𝑃𝑡𝑑𝑄𝑡 −∫

𝑇

0
𝔼[𝑃𝑡]𝑑𝑄𝑡)

2

] ,

and we use the following identity:

Lemma 4.5.1. Let 𝑃 ∈ 𝒮 be the unaffected price process which has the following dynamics:

𝑑𝑃𝑡 = −𝑑𝛼𝑡 + 𝑑𝑍𝑡 ,

where 𝛼𝑡 = 𝔼[𝑃𝑇 −𝑃𝑡|ℱ𝑡], 𝑍 ∈ 𝒵 is a martingale and 𝑄 ∈ 𝒟 a deterministic admissible trading strategy.
Then

𝔼 [∫
𝑇

0
𝑄𝑡𝑑𝑃𝑡] = 𝔼 [∫

𝑇

0
𝛼𝑡𝑑𝑄𝑡]

Proof. By Ito’s product rule we have:

𝛼𝑇𝑄𝑇 = ∫
𝑇

0
𝛼𝑡𝑑𝑄𝑡 +∫

𝑇

0
𝑄𝑡𝑑𝛼𝑡 + [𝛼, 𝑄]𝑇 ,

0 = ∫
𝑇

0
𝛼𝑡𝑑𝑄𝑡 −∫

𝑇

0
𝑄𝑡𝑑𝑃𝑡 +∫

𝑇

0
𝑄𝑡𝑑𝑍𝑡 + [𝛼, 𝑄]𝑇 ,

∫
𝑇

0
𝑄𝑡𝑑𝑃𝑡 = ∫

𝑇

0
𝛼𝑡𝑑𝑄𝑡 +∫

𝑇

0
𝑄𝑡𝑑𝑍𝑡 + [𝛼, 𝑄]𝑇 .

Since 𝑄 is deterministic we have [𝛼, 𝑄]𝑇 = 0 and 𝛼𝑇𝑄𝑇 = 0 because 𝑄𝑇 = 0 ℙ-a.s. Taking expectations
we find:

𝔼 [∫
𝑇

0
𝑄𝑡𝑑𝑃𝑡] = 𝔼 [∫

𝑇

0
𝛼𝑡𝑑𝑄𝑡] ,

which concludes the proof.

Using the identity derived in the lemma abovewe find that the general objective function becomes:

sup
𝑄∈𝒟

𝔼 [∫
𝑇

0
𝛼𝑡𝑑𝑄𝑡 −

1
2 ∫

𝑇

0
∫
𝑇

0
Θ̃(𝑡, 𝑠)𝐺(|𝑡 − 𝑠|)𝑑𝑄𝑠𝑑𝑄𝑡 − 𝜓(∫

𝑇

0
(𝑍𝑡 − 𝛼𝑡)𝑑𝑄𝑡 +∫

𝑇

0
𝔼[𝛼𝑡]𝑑𝑄𝑡)

2

] .

This is the most general objective function we consider. It includes the cost of trading, a risk aversion
term and a stochastic alpha signal. Abi Jaber and Neuman (2022) address a similar objective function
in continuous time but without the liquidity process Θ and a different measure of risk. They demonstrate
that the solution can be explicitly determined by solving a linear Volterra equation using an ”operator-
valued Riccati equation.” For the complete details, we refer to their paper.

In optimal execution literature an alpha signal is often modelled as a mean reverting stochastic process.
Therefore, we assume that the alpha signal follows a Ornstein–Uhlenbeck process:

𝑑𝛼𝑡 = −𝜅(𝜇 − 𝛼𝑡)𝑑𝑡 + 𝜍𝑑𝑊′
𝑡 .

The solution of this process is given by:

𝛼𝑡 = 𝛼0𝑒−𝜅𝑡 + 𝜇(1 − 𝑒−𝜅𝑡) + 𝜍∫
𝑡

0
𝑒−𝜅(𝑡−𝑠)𝑑𝑊′

𝑠 ,
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and
𝔼[𝛼𝑡] = 𝛼0𝑒−𝜅𝑡 + 𝜇(1 − 𝑒−𝜅𝑡).

Assume that 𝑍𝑡 = ∫
𝑡
0 𝜎𝑑𝑊𝑠 such that𝑊 and𝑊′ are independent Brownian motions. Then the objective

functions becomes:

sup
𝑄∈𝒟

𝔼 [∫
𝑇

0
𝛼𝑡𝑑𝑄𝑡 −

1
2 ∫

𝑇

0
∫
𝑇

0
Θ̃(𝑡, 𝑠)𝐺(|𝑡 − 𝑠|)𝑑𝑄𝑠𝑑𝑄𝑡 − 𝜓(∫

𝑇

0
(𝑍𝑡 − 𝛼𝑡)𝑑𝑄𝑡 +∫

𝑇

0
𝔼[𝛼𝑡]𝑑𝑄𝑡)

2

] ,

= sup
𝑄∈𝒟

𝔼 [∫
𝑇

0
𝛼𝑡𝑑𝑄𝑡 −

1
2 ∫

𝑇

0
∫
𝑇

0
Θ̃(𝑡, 𝑠)𝐺(|𝑡 − 𝑠|)𝑑𝑄𝑠𝑑𝑄𝑡 − 𝜓(∫

𝑇

0
𝑍𝑡𝑑𝑄𝑡−

∫
𝑇

0
(𝛼0𝑒−𝜅𝑡 + 𝜇(1 − 𝑒−𝜅𝑡) + 𝜍∫

𝑡

0
𝑒−𝜅(𝑡−𝑠)𝑑𝑊′

𝑠 )𝑑𝑄𝑡 +∫
𝑇

0
𝛼0𝑒−𝜅𝑡 + 𝜇(1 − 𝑒−𝜅𝑡)𝑑𝑄𝑡)

2

] ,

= sup
𝑄∈𝒟

𝔼 [∫
𝑇

0
𝛼𝑡𝑑𝑄𝑡 −

1
2 ∫

𝑇

0
∫
𝑇

0
Θ̃(𝑡, 𝑠)𝐺(|𝑡 − 𝑠|)𝑑𝑄𝑠𝑑𝑄𝑡 − 𝜓(∫

𝑇

0
𝑍𝑡𝑑𝑄𝑡 +∫

𝑇

0
𝜍 ∫

𝑡

0
𝑒−𝜅(𝑡−𝑠)𝑑𝑊′

𝑠 𝑑𝑄𝑡)
2

] ,

= sup
𝑄∈𝒟

𝔼 [∫
𝑇

0
𝛼𝑡𝑑𝑄𝑡 −

1
2 ∫

𝑇

0
∫
𝑇

0
Θ̃(𝑡, 𝑠)𝐺(|𝑡 − 𝑠|)𝑑𝑄𝑠𝑑𝑄𝑡 − 𝜓1 (∫

𝑇

0
𝑍𝑡𝑑𝑄𝑡)

2

−𝜓2 (𝜍∫
𝑇

0
∫
𝑡

0
𝑒−𝜅(𝑡−𝑠)𝑑𝑊′

𝑠 𝑑𝑄𝑡)
2

] ,

where without loss of generality we split the risk aversion parameter into two separate parameters. 𝜓1
for the variance of the cost and 𝜓2 for the risk aversion w.r.t the alpha signal. We set the risk aversion
w.r.t alpha signal equal to zero such that the control problem becomes:

sup
𝑄∈𝒟

𝔼 [∫
𝑇

0
𝛼𝑡𝑑𝑄𝑡 −

1
2 ∫

𝑇

0
∫
𝑇

0
Θ̃(𝑡, 𝑠)𝐺(|𝑡 − 𝑠|)𝑑𝑄𝑠𝑑𝑄𝑡 − 𝜓1∫

𝑇

0
(∫

𝑇

𝑡
𝜎𝑠𝑑𝑄𝑠)

2

𝑑𝑡] (4.7)

s.t. ∫
𝑇

0
𝑑𝑄𝑡 = 𝑄0.

The discrete-time version of the above problem we solve analytically. The solution is derived in the
following theorem.

Theorem 4.5.1. Consider the discrete time linear propagator model from Equation 3.4 for which we
derived the expected cost of trading in Lemma 3.4.2 and the variance of the cost in Lemma 4.4. Then
the discrete version of the optimal execution problem in Equation (4.7) can be formalized in matrix-
vector notation as follows:

min
q∈𝒟

q𝑇(ΦΦΦ+ 𝜓ΣΣΣ)q−𝛼𝛼𝛼𝑇q

s.t. 1𝑇q = 𝑄𝑁0 ,
where the vector 𝛼𝛼𝛼 contains the alpha signal which is in this case equal to 𝔼[𝛼𝑛] for all 𝑛 ∈ [1, 𝑇].
This is a quadratic optimization problem with optimal solution equal to:

q∗ = 1
2(ΦΦΦ+ 𝜓ΣΣΣ)

−1 (𝛼𝛼𝛼 − 1
1𝑇(ΦΦΦ+ 𝜓ΣΣΣ)−11 (1

𝑇(ΦΦΦ+ 𝜓ΣΣΣ)−1𝛼𝛼𝛼 − 2𝑄𝑁0 ))

Proof. We solve the above problem using the Lagrange multiplier method. Let ΩΩΩ = (ΦΦΦ + 𝜓ΣΣΣ) The
Lagrangian ℒ(q, 𝜈) is given by:

ℒ(q, 𝜈) = q𝑇ΩΩΩq−𝛼𝛼𝛼𝑇q+ 𝜈(1𝑇q− 𝑄𝑁0 ).
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Calculating the partial derivatives and setting it to zero, we find:

𝜕ℒ
𝜕q = 2ΩΩΩq−𝛼𝛼𝛼 + 𝜈1 = 0,

𝜕ℒ
𝜕𝜈 = 1

𝑇q− 𝑄𝑁0 = 0.

Solving the first equation for q, we find:

q = 1
2ΩΩΩ

−1(𝛼𝛼𝛼 − 𝜈1).

Substituting the above in the second equation we find:

1𝑇 (12ΩΩΩ
−1(𝛼𝛼𝛼 − 𝜈1)) − 𝑄𝑁0 = 0,

1𝑇ΩΩΩ−1𝛼𝛼𝛼 − 𝜈1𝑇ΩΩΩ−11− 2𝑄𝑁0 = 0.

Solving for 𝜈, we find:

𝜈 = 1
1𝑇ΩΩΩ−11 (1

𝑇ΩΩΩ−1𝛼𝛼𝛼 − 2𝑄𝑁0 )

Substituting this in the expression for q, we find that the optimal solution is equal to:

q∗ = 1
2ΩΩΩ

−1 (𝛼𝛼𝛼 − 1
1𝑇ΩΩΩ−11 (1

𝑇ΩΩΩ−1𝛼𝛼𝛼 − 2𝑄𝑁0 )) ,

Substituting ΩΩΩ = ΦΦΦ + 𝜙ΣΣΣ concludes the proof. The solution is a global minimizer since the objective
function is convex and quadratic.

The solution of the optimal execution problem where we include the risk aversion w.r.t alpha signal can
be found in Corollary A.3.1 in Appendix A.

To visualize the optimal strategy in the presence of a short-term Ornstein–Uhlenbeck (OU) alpha signal,
we simulate a OU process with 𝛼0 = 50 bps, 𝜅 = 0.1, 𝜇 = 0 and 𝜍 = 3 bps in a 5 min interval. A number
of OU realization and their mean in displaced in the right hand side of Figure 4.8. This short-term alpha
signal represents for example a lower opening of a stock where we expect it to revert to some mean
value. The optimal strategy with the power-law kernel in the presence of this alpha signal is given in
the left hand side of Figure 4.8. We also plot the restricted solution and the risk neutral solution as
benchmark.

Figure 4.8: (Left) optimal alpha targeting trading strategies and the risk-neutral strategy as benchmark. (Right) 20 realisation of
an Ornstein–Uhlenbeck (OU) alpha signal with parameters 𝛼0 = 50 bps, 𝜅 = 0.2, 𝜇 = 0 and 𝜍 = 3 bps in a 5 min interval .

We see in the left hand side of Figure 4.8 that the restricted and optimal solution front-load their strate-
gies compared with the risk neutral one. This is also what it expected since in the beginning we can
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gain the most alpha. We should note that the unrestricted optimal solution again admit transaction-
triggered price manipulation, because it sells some shares in the middle of the day to buy them back
later.

Before the introduction of the alpha signal the expected cost where only driven by the impact cost. How-
ever, in the presence of an alpha signal, the expected cost are also driven the alpha decay. Therefore,
in Figure 4.9 we plot the evolution of the market impact and give the decomposition of the cost.

Figure 4.9: (Left) The evolution of the expected impact in bps for the alpha optimal, alpha restricted and risk-neutral strategy.
(Right) the decomposition of the expected cost where we include VWAP as benchmark.

We see in the right hand side of Figure 4.9 that there is an trade-off between cost due to market
impact and the cost due to the alpha decay. If we compare the risk neutral restricted and alpha optimal
restricted than we see that the risk neutral restricted has a lower market impact cost but higher alpha
cost. The unrestricted alpha optimal solution has the lowest total cost but is not comparable with the
other strategies because it admits transaction-triggered price manipulation.





5
Optimal multiday portfolio rebalancing

In this chapter we extend the single day optimal execution setup to optimizing the execution strategy
for a pair of sequential metaorders over two time horizons. This setup is motivated by the large auto-
correlation in metaorders of asset managers. We start by defining the expected cost of trading a pair
of sequential metaorder, where after we use this as object function to find optimal multiday strategies.
Using these results, we quantify the hidden slippage of trading one stock on two consecutive days.
Lastly, we run a simulation study to quantify the performance decrease when rebalancing two similar
accounts the day after each other.

5.1. The expected cost of trading two adjacent metaorders
We start with quantifying the expected cost of trading for two adjacent metaorders. To the best of our
knowledge this is a new research area and we mostly follow the reasoning of Bordigoni et al. (2022)
but adapt it to our model specifications. The multiday setup is a interesting extension because single
day optimal solutions have the property that they reach a high final impact state, which continues to
decay afterwards. Therefore, this should be taken into consideration when calculating the expected
cost of trading of the the second metaorder. An illustration of this set up is given in Figure 5.1.

Figure 5.1: Illustration of the evolution of multiday expected impact of two adjacent metaorders.

For simplicity, we only consider the case where the execution of the first metaorder has to be completed
before we start trading the second order. Moreover, we assume that we are always trading the same
sign because this is in line with what we observe in the data. Lastly, we assume that during the overnight
session, i.e. between the closing an opening auction on the next day, the impact does not decay. This
is a strong assumption and should be taking into consideration when interpreting the results.

In this chapter, we use the framework of Section 3.3, where we consider the new variant of the linear
propagator model with a time-varying liquidity process:

𝑆𝑡 = 𝑆0 +∫
𝑡

0
Θ𝑠𝐺(𝑡 − 𝑠)𝑑𝑄𝑠 + 𝑍𝑡 ,

53
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where 𝑍 ∈ 𝒵 is a continuous martingale. Even though, we derive all theoretical results in continu-
ous time, we solve the optimal execution problems using their discrete-time analogs with a Python
solver.

The multiday setup is as follows: the first metaorder trades a quantity of 𝑄[0,1] over the period [𝑇0, 𝑇1]
and the second order trades a quantity of 𝑄[1,2] over the period [𝑇1, 𝑇1]. For the second order we
differentiate between 2 cases: The case that 𝑄[1,2] is known at 𝑇0 and the case that 𝑄[1,2] only becomes
known at 𝑇1, i.e. after the first metaorder is executed. In the latter, 𝑄[1,2] is then treated as exogenous
random variable for all time 𝑡 < 𝑇1, and independent of both the observed mid-price as the unaffected
price process.

To derive the expected cost of trading for the two-period problem, we start by the total cost of trading
for one period which is derived in Equation (3.5):

𝐶(Π) = ∫
𝑇

0
(𝑆𝑡 − 𝑆0)𝑑𝑄𝑡 +

𝐺(0)
2 ∑

𝑡∈𝒥
Θ𝑡(Δ𝑄𝑡)2.

Extending the total cost function to a two-period cost function requires an appropriate benchmark price
of the second trade. There are two possibilities: benchmark against the price at 𝑇0, which we call
the Two Trade One Cost (TTOC) problem. Or the price at 𝑇1, which we call the Two Trade Separate
Cost (TTSC) problem. The price at 𝑇1 corresponds with the price just before we start executing the
second metaorder. The price against which we benchmark depends on the moment the order size
𝑄[1,2] becomes known.

Bordigoni et al. (2022) also defines the Two Trade Hybrid Cost approach (TTHC). In this framework, the
authors divide the second order size 𝑄[1,2] into a predictable part (known at 𝑇0) which is benchmarked
against 𝑆0 and a random part (becomes known at 𝑇1) which is benchmarked against 𝑆𝑇1 . We do not go
into this and leave it for future research.

Suppose at time 𝑇0, we know the order size 𝑄[1,2] what we are going to trade between [𝑇1, 𝑇2], then
we are in the TTOC scenario. In the following proposition, we derive the total cost of the TTOC prob-
lem.

Proposition 5.1.1. The total expected cost of deterministic admissible strategies Π[0,1] = (𝑄[0,1]𝑡 )𝑡∈[0,𝑇1]
and Π[1,2] = (𝑄[1,2]𝑡 )𝑡∈[𝑇1 ,𝑇2] for the TTOC is given by:

𝔼[𝐶𝑇𝑇𝑂𝐶(Π[0,1], Π[1,2])] = 𝔼 [∫
𝑇1

0
(𝑆𝑡 − 𝑆0)𝑑𝑄[0,1]𝑡 + 𝐺(0)2 ∑

𝑡∈𝒥1

Θ𝑡 (Δ𝑄[0,1]𝑡 )
2
+∫

𝑇2

𝑇1
(𝑆𝑡 − 𝑆0)𝑑𝑄[1,2]𝑡

+ 𝐺(0)
2 ∑

𝑡∈𝒥2

Θ𝑡 (Δ𝑄[1,2]𝑡 )
2
]

= 1
2 ∫

𝑇1

0
∫
𝑇1

0
Θ̃(𝑡, 𝑠)𝐺(|𝑡 − 𝑠|))𝑑𝑄[0,1]𝑠 𝑑𝑄[0,1]𝑡 + 12 ∫

𝑇2

𝑇1
∫
𝑇2

𝑇1
Θ̃(𝑡, 𝑠)𝐺(|𝑡 − 𝑠|)𝑑𝑄[1,2]𝑠 𝑑𝑄[1,2]𝑡

+∫
𝑇2

𝑇1
∫
𝑇1

0
Θ𝑠𝐺(𝑡 − 𝑠)𝑑𝑄[0,1]𝑠 𝑑𝑄[1,2]𝑡

Proof. For deterministic strategies we know by Lemma 3.4.1 that the first expression in the expectation
is equal to:

𝔼 [∫
𝑇1

0
(𝑆𝑡 − 𝑆0)𝑑𝑄[0,1]𝑡 + 𝐺(0)2 ∑

𝑡∈𝒥1

Θ𝑡 (Δ𝑄[0,1]𝑡 )
2
] = 1

2 ∫
𝑇1

0
∫
𝑇1

0
Θ̃(𝑡, 𝑠)𝐺(|𝑡 − 𝑠|)𝑑𝑄[0,1]𝑠 𝑑𝑄[0,1]𝑡 .

For the second expression, we have to look carefully at the representation of the stock price. This is
because the stock price for 𝑡 > 𝑇1 exist of two parts: the decay of the previous trade and the impact of
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the new trade. For 𝑡 > 𝑇1, we write the stock price as:

𝑆𝑡 = ∫
𝑇1

0
Θ𝑠𝐺(𝑡 − 𝑠)𝑑𝑄[0,1]𝑠 +∫

𝑇2

𝑇1
Θ𝑠𝐺(𝑡 − 𝑠)𝑑𝑄[1,2]𝑠 + 𝑍𝑡 ,

where 𝑍 is a martingale. Substituting this into the total cost of trading for the second order we find:

𝔼 [∫
𝑇2

𝑇1
(𝑆𝑡 − 𝑆0)𝑑𝑄[1,2]𝑡 + 𝐺(0)2 ∑

𝑡∈𝒥2

Θ𝑡 (Δ𝑄[1,2]𝑡 )
2
]

= ∫
𝑇2

𝑇1
(∫

𝑇1

0
Θ𝑠𝐺(𝑡 − 𝑠)𝑑𝑄[0,1]𝑠 +∫

𝑇2

𝑇1
Θ𝑠𝐺(𝑡 − 𝑠)𝑑𝑄[1,2]𝑠 )𝑑𝑄[1,2]𝑡 + 𝐺(0)2 ∑

𝑡∈𝒥2

Θ𝑡 (Δ𝑄[0,1]𝑡 )
2

= 1
2 ∫

𝑇2

𝑇1
∫
𝑇2

𝑇1
Θ̃(𝑡, 𝑠)𝐺(|𝑡 − 𝑠|)𝑑𝑄[1,2]𝑠 𝑑𝑄[1,2]𝑡 +∫

𝑇2

𝑇1
∫
𝑇1

0
Θ𝑠𝐺(𝑡 − 𝑠)𝑑𝑄[0,1]𝑠 𝑑𝑄[1,2]𝑡 ,

where the last line follows from Lemma 3.4.1. Combining gives the desired result.

The proposition above enables us to calculate the hidden cost or slippage in the expected trading cost
of the second order as is illustrated by the dotted line in Figure 5.1. The hidden slippage for the second
order is then equal to:

∫
𝑇2

𝑇1
∫
𝑇1

0
Θ𝑠𝐺(𝑡 − 𝑠)𝑑𝑄[0,1]𝑠 𝑑𝑄[1,2]𝑡 ,

and represents final impact and the decay of the first order. Total expected cost of trading for the second
metaorder in the TTOC framework becomes:

𝔼[𝐶𝑇𝑇𝑂𝐶(Π[1,2])] =
1
2 ∫

𝑇2

𝑇1
∫
𝑇2

𝑇1
Θ̃(𝑡, 𝑠)𝐺(|𝑡 − 𝑠|)𝑑𝑄[1,2]𝑠 𝑑𝑄[1,2]𝑡 +∫

𝑇2

𝑇1
∫
𝑇1

0
Θ𝑠𝐺(𝑡 − 𝑠)𝑑𝑄[0,1]𝑠 𝑑𝑄[1,2]𝑡 (5.1)

However, suppose that the order size of the second order becomes known that time 𝑇1. Then we are
in the TTSC scenario and we benchmark the cost of the second trade against the price at time 𝑇1. We
know from previous results that the price at 𝑇1 depends on the impact of the trade in the period [𝑇0, 𝑇1].
Therefore, we find:

𝔼[𝑆𝑇1] = ∫
𝑇1

0
Θ𝑠𝐺(𝑇1 − 𝑠)𝑑𝑄[0,1]𝑠

Using this result we find the the total expected cost of trading in the TTSC scenario:

Proposition 5.1.2. The total expected cost of deterministic admissible strategies Π[0,1] = (𝑄[0,1]𝑡 )𝑡∈[0,𝑇1]
and Π[1,2] = (𝑄[1,2]𝑡 )𝑡∈[𝑇1 ,𝑇2] for the TTSC is given by:

𝔼[𝐶𝑇𝑇𝑆𝐶(Π[0,1], Π[1,2])] = 𝔼 [∫
𝑇1

0
(𝑆𝑡 − 𝑆0)𝑑𝑄[0,1]𝑡 + 𝐺(0)2 ∑

𝑡∈𝒥1

Θ𝑡 (Δ𝑄[0,1]𝑡 )
2
+∫

𝑇2

𝑇1
(𝑆𝑡 − 𝑆𝑇1)𝑑𝑄

[1,2]
𝑡

+𝐺(0)2 ∑
𝑡∈𝒥2

Θ𝑡 (Δ𝑄[1,2]𝑡 )
2
]

= 1
2 ∫

𝑇1

0
∫
𝑇1

0
Θ̃(𝑡, 𝑠)𝐺(|𝑡 − 𝑠|)𝑑𝑄[0,1]𝑠 𝑑𝑄[0,1]𝑡 + 12 ∫

𝑇2

𝑇1
∫
𝑇2

𝑇1
Θ̃(𝑡, 𝑠)𝐺(|𝑡 − 𝑠|)𝑑𝑄[1,2]𝑠 𝑑𝑄[1,2]𝑡

+∫
𝑇2

𝑇1
∫
𝑇1

0
Θ𝑠𝐺(𝑡 − 𝑠)𝑑𝑄[0,1]𝑠 𝑑𝑄[1,2]𝑡 − 𝑄[1,2]∫

𝑇1

0
Θ𝑠𝐺(𝑇1 − 𝑠)𝑑𝑄[0,1]𝑠

Proof. Direct consequence of Proposition 5.1.1.
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The difference between the TTOC and the TTSC frameworks lie in the handling of the final impact
state of the first metaorder. Because in the TTSC scenario the expected cost of the second order is
benchmarked against 𝑆𝑇1 , the final impact state of the first metaorder and the benchmark price 𝑆𝑇1
cancels out. Therefore, the TTSC only includes the decay starting form zero. The result is that, when
trading the same order size, the second metaorder has a lower expected cost than the first order due
to the expected reversion. This should be carefully taken into consideration when using the TTSC
framework.

5.2. Optimal multiday execution strategies
In this section, we propose different optimal multiday execution strategies that minimize the expected
cost of trading two adjacent metaorders in different ways. These strategies are illustrated by means of
a realistic example.

In TTOC problem, we benchmark the two adjacent metaorders against the arrival price of the first order.
This means that the order size of the second trade is known at time 𝑇0 but can not be executed till 𝑇1. To
execute two adjacent metaorders in the TTOC framework, we propose the following strategies:

• Separately optimal: Find strategies that minimizes the cost for each order separately.

• Impact optimal: Minimize cost for the first metaorder and include the final impact and decay of
the first order as short-term alpha signal in the optimization of the second order.

• Combined optimal: Minimize the cost for both orders combined.

The reason why we consider three different strategies is that all of them deal differently with the impact
decay of the first order. The first two strategies can also be used in the TTSC problem but not the last
one. The combined optimization strategy is only possible when we know the order size of the second
order at 𝑇0.

Since the optimal execution problem for two adjacent metaorders is a new research direction, to the best
of our knowledge, no results are yet proven to exclude price manipulation from the model. To exclude
any possibilities of a round trip trade during the execution, we restrict the solver to only one way trading.
In addition, we set the maximum participation rate to 20%, as in the previous section.

To find the optimal solutions for the ’separately optimal’ strategy, one should solve the optimal execution
problem in Equation (4.4) twice for both periods:

min
𝑄∈𝒬

1
2 ∫

𝑇

0
∫
𝑇

0
Θ̃(𝑡, 𝑠)𝐺(|𝑡 − 𝑠|)𝑑𝑄𝑠𝑑𝑄𝑡

s.t. ∫
𝑇

0
𝑑𝑄𝑡 = 𝑄0, 𝑄𝑡 ≥ 0 and 𝑄𝑡 ≤ 0.2𝑉𝑡 ∀𝑡 ∈ [0, 𝑇].

For the ’impact optimal’ strategy, we propose a two-step approach: first, solve the optimal execution
problem above for the first order. Then, use the final impact state of the first order and its subsequent
decay in the optimization of the second order. In this approach, weminimize the expected cost of trading
for the second metaorder as derived in Equation (5.1). The optimization problem for the second order
in the ’impact optimal’ strategy becomes:

min
𝑄[1,2]∈𝒬

1
2 ∫

𝑇2

𝑇1
∫
𝑇2

𝑇1
Θ̃(𝑡, 𝑠)𝐺(|𝑡 − 𝑠|)𝑑𝑄[1,2]𝑠 𝑑𝑄[1,2]𝑡 +∫

𝑇2

𝑇1
∫
𝑇1

0
Θ𝑠𝐺(𝑡 − 𝑠)𝑑𝑄[0,1]𝑠 𝑑𝑄[1,2]𝑡 (5.2)

s.t. ∫
𝑇

0
𝑑𝑄[1,2]𝑡 = 𝑄[1,2], 𝑄[1,2]𝑡 ≥ 0 and 𝑄[1,2]𝑡 ≤ 0.2𝑉𝑡 ∀𝑡 ≥ 0.

We solve the discrete version of this problem using the solver scxpy in Python.

For ’combined optimal’ strategy one should use Proposition 5.1.1 as objective function and solve for
𝑄[0,1], 𝑄[1,2] combined. The minimization problem is then given by:
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min
𝑄[0,1] ,𝑄[1,2]∈𝒬

1
2 ∫

𝑇1

0
∫
𝑇1

0
Θ̃(𝑡, 𝑠)𝐺(|𝑡 − 𝑠|))𝑑𝑄[0,1]𝑠 𝑑𝑄[0,1]𝑡 + 12 ∫

𝑇2

𝑇1
∫
𝑇2

𝑇1
Θ̃(𝑡, 𝑠)𝐺(|𝑡 − 𝑠|)𝑑𝑄[1,2]𝑠 𝑑𝑄[1,2]𝑡

+∫
𝑇2

𝑇1
∫
𝑇1

0
Θ𝑠𝐺(𝑡 − 𝑠)𝑑𝑄[0,1]𝑠 𝑑𝑄[1,2]𝑡 (5.3)

s.t. ∫
𝑇1

0
𝑑𝑄[0,1]𝑡 = 𝑄[0,1], ∫

𝑇2

𝑇1
𝑑𝑄[1,2]𝑡 = 𝑄[1,2], 𝑄[0,1]𝑡 ≥ 0, 𝑄[1,2]𝑡 ≥ 0,

𝑄[0,1]𝑡 ≤ 0.2𝑉𝑡 and 𝑄[1,2]𝑡 ≤ 0.2𝑉𝑡 ∀𝑡 ≥ 0.

We solve the discrete version of this problem using the solver ”SLSQP” within scipy.optimize.minimize
in Python.

To illustrate these theoretical results, we calculate the optimal strategies using the before mentioned
solvers in Python. For this we use the same settings as in the previous chapter. We use the same
intraday volume curve as in Figure 2.5, assume 𝜎 = 15 bps in a 5 min interval and we let ADV be equal
to 1000000 shares. Furthermore, both orders are 5% ADV orders and we use the power-law kernel for
the calculations. The result in displayed in Figure 5.2.

Figure 5.2: Optimal multiday execution strategies using a power-law decay kernel. (Upper left) VWAP strategy. (Upper right)
Separately optimal strategy. (Lower left) Impact optimal strategy. (Lower right) Combined optimal strategy.

We see in Figure 5.2 that the combined optimal strategy has a lower participation rate in the last bin
of the first day and does not trade in the first bin of the second day. The optimizer aims to let the
impact for the first day decay before starting to trade the second order. A similar result holds for the
’impact optimal’ strategy, where the optimal solution for the second order shows similar behaviour. The
evolution of the expected impact and expected cost are displayed in Figure 5.3 and 5.4.



58 5. Optimal multiday portfolio rebalancing

Figure 5.3: Evolution of multiday expected impact for different strategies using a power-law decay kernel.

Figure 5.4: Evolution of multiday expected cost for different strategies using a power-law decay kernel.

In Figure 5.3 we see the evolution of the impact during the execution of the two adjacent metaorders.
As the optimal solution for the combined and impact optimal strategies already suggested, the optimizer
tries to minimize the impact at the end of the first day and the beginning of the second day. Since we do
not trade on the third day, we not care about the high impact state at the end of the second day.

The evolution of the cost is displayed in Figure 5.4. In this figure we see that the VWAP strategy has
the highest expected trading cost and the combined optimal the lowest. However, the ’impact optimal’
strategy is very close to the combined optimal with only 0.5 bps difference.
To get a better understanding of the expected cost of each strategy and their relative difference, we
compare them in Table 5.1. In the ’out-performance’ column we compare the cost of each strategy with
the cost of the VWAP strategy. Moreover, in the ’𝑄2 vs 𝑄1’ column we compare the cost of trading a
strategy in the second period with trading the optimal strategy in the first period.

In Table 5.1 we make the following two important observations. In the ’𝑄2 vs 𝑄1’ column, we see
that it is on average average 20% more expensive to trade an optimal strategy on the second day
compared with an optimal strategy in the first period and even 80% when using a VWAP strategy. This
is significant but as expected because we compare the cost with initial price 𝑆0. The second important
observation is that it is possible to decrease the cost significantly by trading market impact optimal
strategies. Compared with VWAP, we can decrease the cost by 34%.

We should note that the combined optimal solution is not really a realistic strategy in the sense that in
most cases we do not know the order size of the second trade a day before. Furthermore, it is very
difficult for a trader to exactly follow the given optimal schedule for two days in a row.

However, the ’impact optimal’ strategy seems a good alternative, it has almost the same cost as the
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Table 5.1: Expected cost calculation for the first and second metaorder in the first columns. Relative difference in cost in the
second and third column.

Strategy 𝑄[0,1] Expected cost 𝑄[0,1] (bps) Out-performance (%)

VWAP 12.12 0.0
Separately Optimal 7.685 -36.639
Impact Optimal 7.685 -36.639
Combined Optimal 7.688 -36.614

Strategy 𝑄[1,2] Expected cost 𝑄[1,2] (bps) Out-performance (%) 𝑄[1,2] vs 𝑄[0,1] (%)

VWAP 13.933 0.0 81.80
Separately Optimal 9.832 -29.430 27.94
Impact Optimal 9.116 -34.567 18.62
Combined Optimal 9.110 -34.611 18.54

combined optimal strategy but it allows for more flexibility. Moreover, since it is possible to incorporate
the realized impact of previous trades, it also allows to intraday re-optimization. For example, a trader
tries to follow an optimal participation schedule but halfway he realizes that the realized schedule devi-
ates significantly from the pre-determined strategy. This optimization procedure allows to re-optimize
with a different volatility and volume prediction such that the overall cost of the order w.r.t arrival price
is minimized.

5.3. Optimal multiday portfolio rebalancing
In this section, we delve into the complexity of managing multiple investment accounts within a single
strategy. Through a simulation study, we aim to quantify the performance decrease for an account that
consistently trades a day after a similar account.

Major asset managers like Robeco offer a variety of investment strategies to their clients. For the
quantitative investment side of Robeco these including factor strategies, conservative strategies, and
enhanced indexing strategies. When a large institutional client decides to invest in one of these strate-
gies, a new account is created, customized to the client’s requirements but generally adhering to the
chosen strategy.

To ensure that the accounts remain aligned with the strategies, Robeco performs monthly rebalancing.
This process involves determining which stocks to buy or sell, guided by a stock ranking system. The
ranking is primarily driven by long-term alpha signals (spanningmore than threemonths) and is updated
daily.

Robecomanagesmultiple accounts for each strategy. Consequently, accounts within the same strategy
may need to be rebalanced on consecutive days. Due to the reliance on long-term alpha signals, the
stock ranking is unlikely to change significantly overnight. This situation could lead to recommendations
to buy or sell the same stocks on successive days. For this reason we compare all cost against 𝑆0. As
a result, due to the hidden slippage, we always obtain a higher expected cost of trading for the second
order as is shown in Table 5.1.

When a strategy has only a limited number of accounts one could just put the rebalances as far a part
as possible. However, when a strategy has many accounts (> 20), it is not possible to separate the
rebalances anymore and one should consider more sophisticated approaches:

1. Stock selection level: do not rebalance the same stocks but use different stocks with almost the
same ranking. Or include the impact of the previous execution as penalty in the objective function
for the stock selection.

2. rebalance schedule level: randomize the days on which accounts are rebalanced.

3. Execution level: optimize the execution strategies by incorporating the impact from the previous
trade.
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In this section, we do a simulation study to see the effect of using the second and third approach
in portfolio rebalancing. In particular, we quantify the hidden total cost when rebalancing two similar
accounts on consecutive days. We leave the first approach for future research.

The simulation setting is as follows:

• Universe: the universe are 609 stock from the MSCI US index. Each stock has its own intraday
volatility and ADV based on historical data from 2023 but use the same intraday volume curve
which has the same shape as Figure 2.5.

• Accounts: We consider two accounts that rebalance on consecutive days. Both accounts rebal-
ance 50 stocks, with 20 stocks overlapping between them. Additionally, we vary the number of
overlapping stocks in subsequent analyses. During the two rebalances, we maintain constant
intraday volatility and ADV.

• Orders: We sample the order sizes from a exponential distribution which is fitted to the observed
order sizes. This means that for the non-overlapping stocks, each one gets his own order size
and are different for both accounts. The order sizes for the overlapping stocks are also different
but the same between the two accounts. The simulated order sizes are given in Figure 5.5. Note
that both distributions look similar but that the average order size deviate a little. Moreover, with
the black dotted line we indicate the average order size of the overlapping orders.

• Scenarios: We compare two cases in the simulation study. The first is the base case and repre-
sent the the expected trading cost when we separate the rebalances. That is when we have more
than one day in between and this is our benchmark. The second scenario is when the accounts
are rebalanced right after each other.

• Execution strategies: we use the execution strategies discussed in the previous section except
the combined optimal strategy because this strategy is not implementable in reality.

Figure 5.5: Histograms of 50 simulated order sizes for the rebalance simulation. The first account on the left and the second on
the right. The orders are drawn from an exponential distribution fitted to our historical order sizes.

In the simulation study we assume that the stock-ranking does not change overnight due to long-term
alpha signals such that we can use the TTOC framework to quantify the hidden slippage. Therefore, to
calculate the cost of trading on the first day we use Equation (3.7). For trading on the second day, right
after the execution of the first order we use Equation (5.1), since we need to account for the impact
state and decay of the previous execution.

In Table 5.2 we calculate the cost of rebalancing the two accounts. The cost measure we use is the
average expected cost of trading per stock in bps. The first column ’Expected Cost [𝑇0, 𝑇1] (bps) ’ can
be seen as the benchmark cost and represents trading on the first day or when we have separated
the rebalance. The second column ’Expected Cost [𝑇1, 𝑇2] (bps) ’ represents trading on the second
day directly after the first rebalance. Lastly, the ’Difference’ column shows how much more expensive
trading on the second day is compared with trading an optimal strategy on the first day.

In Table 5.2, we see that the cost of the rebalance is lowest in the benchmark scenario, i.e. when we
separate the rebalances such that there is minimal one day in between or if the rebalance happens on
the first day. Furthermore, we see that if the rebalance happens on the second day, directly after the
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Table 5.2: Expected cost analysis of rebalancing two accounts right after each other. Cost measure is the average expected
cost of trading per stock in bps.

Account 1 Expected Cost [𝑇0, 𝑇1] (bps) Expected Cost [𝑇1, 𝑇2] (bps) Difference (%)

VWAP 2.870 3.008 65.83
Separately optimal 1.816 1.981 9.07
Impact optimal 1.816 1.923 5.91

Account 2 Expected Cost [𝑇0, 𝑇1] (bps) Expected Cost [𝑇1, 𝑇2] (bps) Difference (%)

VWAP 2.327 2.464 67.40
Separately optimal 1.472 1.637 11.19
Impact optimal 1.472 1.580 7.29

first rebalance we always incur a higher cost (≈ 0.1 to 0.2 bps). This also what is expected since we
have 20 overlapping stocks that are traded on two consecutive days.

The expected cost are approximately 5% to 10% higher in case we use an optimal strategy and even
65% in case we use a VWAP strategy. Zooming in on the different execution strategies used, we find
that VWAP is always the most expensive one. Therefore, it is possible to drastically decrease the
expected cost by trading optimal strategies. This is also what is expected from Table 5.1. We should
note however that we assume that during the overnight session, the impact of the previous order does
not decay. This could lead to overestimating the cost of the second order.

In the above simulation study we used a fixed number of overlapping stocks (20%), however the hidden
slippage is a function of the overlapping stocks. Therefore, we run a Monte-Carlo (MC) simulation but
this time we vary the number of overlapping stocks to quantify the absolute increase in cost per order.
We use a MC simulation to make sure that on average the average order sizes for the two accounts
are equal. We compare the cost with the case that there are zero overlapping stocks which also
corresponds to the case in which we separate the rebalances. We refer to this case as the base case.
In this simulation we compare the VWAP strategy with the impact optimal strategy. The results are
shown in Figure 5.6.

Figure 5.6: The average expected cost in bps per order for different percentages of overlapping stocks. The average order size
is around 1% ADV and we use 50 MC samples.

In Figure 5.6 we find that for both strategies the cost increases linearly when the percentage of overlap-
ping stocks increases. The increase is fastest in case of the VWAP strategy. Therefore, we conclude
from this figure that the impact optimal strategy performs best on two fronts. In absolute terms the
average cost is lowest but also the increase in cost when the number of overlapping stocks increases
is slowest.
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An interesting observation is that when we trade 100% of the same stocks, the cost increases by only
approximately 20% for the impact optimal case. This aligns with the results shown in the ’𝑄2 vs 𝑄1’
column of Table 5.1. The primary reason for this is the sharp and rapid reversion of the impact on the
second day, along with the absence of any permanent impact.

The simulation assumes that the rankings does not change due to new information. When the raking
is only based on long-term signals this is a valid assumption and this simulation study shows that the
hidden slippage can lead to significant under performance. However, when the raking does change
a lot over night, it is not realistic to benchmark the second metaorder against 𝑆0. In this scenario,
we should use the TTSC framework because there exist no sequential trade cost anymore. This also
allows us to use the decay of the previous impact as alpha signal in the optimization.

In conclusion, our simulation study demonstrates that rebalancing an account the day after a similar
account trading the same stocks results in a significant hidden cost for the second account. This cost
can be substantially reduced by employing an optimal trading strategy. However, even with the ’impact
optimal’ strategy, there can still be an additional cost of up to 20%, depending on the overlap of stocks
traded. In practice, this hidden slippage is often not observed in transaction cost analysis because
costs are typically benchmarked against the stock price just before execution begins. Consequently,
when trading the same stock on consecutive days, the second order may even appear to have a lower
expected cost due to the reversion of the first order’s impact. Therefore, it’s crucial to consider this
factor in transaction cost analysis, especially when dealing with sequential metaorders, and when the
stock ranking remains unchanged overnight due to reliance on long-term signals.

Returning to the three proposed approaches for rebalancing multiple similar accounts, namely, stock
selection, optimizing the rebalance schedule, and execution strategies, we believe the most significant
gains can be achieved at the stock selection level. By calculating the final impact state of orders
executed on a given day and incorporating this as a penalty in the stock selection algorithm’s objective
function, we can avoid selecting stocks with a high impact state.

Moreover, if consecutive orders do arrive at the trading desk, traders can handle these by considering
the impact reversion as a short-term alpha signal in their strategy. This approach allows for more
effective management of the hidden costs associated with trading the same stocks on consecutive
days. However, addressing the issue at its root, through careful stock selection, remains the most
effective solution.



6
Conclusion

This thesis provides a comprehensive examination of the propagator market impact model and its as-
sociated optimal execution problem in both intraday and multiday settings. By exploring the theoretical
foundations and practical implementations of these models, and leveraging Robeco’s proprietary intra-
day order database, this thesis bridges the gap between academia and practice. The extensive review
of existing literature and thorough examination of the order data led to the consideration of the propa-
gator model as a suitable market impact model. It captures the significant autocorrelation in order flow
and the transient nature of market impact observed in our data. The propagator model serves as the
foundation for all applications discussed in this thesis.

In this thesis we introduced a new variant of the linear propagator model, which combines a general
decay kernel with a time-varying liquidity process. We use a linear model because a non-linear model
in the trading rate allows for price manipulation and makes the optimal execution problem intractable.
Additionally, we introduce a time-varying liquidity process because the instantaneous impact scales
less concave and more linearly with the participation rate, then it does with the usual normalization by
the average daily volume. This time-varying liquidity process better reflects the variations in intraday
liquidity, leading also to a better model fit. Within this framework, we derive sufficient conditions on
the decay kernel and the liquidity process to ensure that the model is free of price manipulation in the
sense of dynamic arbitrage.

To bridge the gap between theory and practice, we calibrated the model using Robeco’s proprietary
intraday order database. This is achieved through a two-step calibration approach. This method is
particularly efficient because the first andmost computationally intensive step has an analytical solution,
which significantly speeds up the process and provides valuable insights into the underlying structure
of the data. Additionally, access to Robeco’s proprietary intraday order database enables detailed
analyses of the model’s behavior on proprietary order data. These results are rarely available in the
literature, because it is not possible to identify the origin of an order in publicly available datasets.

From the detailed analysis of the calibrated model, we made several important observations. Firstly,
regarding the estimates of the decay kernel, we found out that the non-projected decay kernel exhibits
a two-stage decay: an initial rapid decay followed by a prolonged, slower decay. This pattern results
in a short half-life of the impact. Additionally, we found no evidence of permanent market impact in the
estimates. We also conclude that there is no single best admissible projection of the kernel estimate, as
all projections have different characteristics and perform almost equally. As for the model performance,
we found a R-squared value that is consistent with our expectations based on the low signal-to-noise
ratio of our data.

Building on the new variant of the linear propagator model, we addressed its associated optimal execu-
tion problem. Starting from the self-financing equation, we demonstrated that maximizing the trader’s
expected profit and loss is equivalent to minimizing the expected cost of trading. Furthermore, we
showed that the solution of the OW optimal execution problem coincides with the solution of the op-
timal execution problem under the discrete linear propagator with an exponential kernel and constant
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liquidity process. To make the optimal execution problem applicable in more realistic settings, we ex-
tended the problem by formulating it as a mean-variance optimization problem and incorporate short-
term alpha signals modeled as a Ornstein–Uhlenbeck process. The analytical solutions derived for
the discrete analogs of these optimization problems are supported with realistic examples. In these
examples, we additionally used a solver to restrict the solution space to prevent two-way trading, which
is typically prohibited for asset managers. Although this approach leads to sub-optimal solutions, it still
significantly outperforms the VWAP strategy in mean-variance framework.

We extended the intraday optimal execution framework to a multiday framework, motivated primarily
by the significant autocorrelation in the order flow of metaorders. This extension is particularly relevant
for asset managers with a large number of investment accounts following the same strategy, making
consecutive-day trading of the same stock sometimes unavoidable. To address this, we developed a
framework to calculate the expected cost of trading adjacent metaorders, which we used to determine
optimal execution strategies in a multiday setup. Additionally, we quantified the hidden cost of trading
the same stock on consecutive days. We extended this analysis to the portfolio level, where we examine
the hidden cost of rebalancing similar accounts as a function of overlapping stocks.

The final simulation study highlights that rebalancing an account the day after a similar account trading
the same stocks results, in a significant hidden costs for the second account. Even with an ”impact
optimal” strategy, additional costs of up to 20% may still occur due to the overlap in stocks. These
costs are often overlooked in transaction cost analysis as they are benchmarked against the stock
price before execution. To address the issue of rebalancing similar accounts on consecutive days, we
proposed three approaches. Among these, we argued that the most significant gains can be achieved
at the stock selection level. By calculating the final impact state of executed orders and incorporating
it as a penalty in the stock selection algorithm, we can avoid high impact stocks and select those with
similar rankings but lower hidden costs. Additionally, traders can manage consecutive orders more
efficiently by considering impact reversion as a short-term alpha signal.



7
Discussion and future research

The discussion section of this thesis delves into some of the implications and limitations of the results
presented. Additionally, we provide some suggestions for further research. We start by highlighting
some limitations of our dataset. The data is constructed such that we only have intraday returns without
any relation to other days. This limitationmeans we cannot measure the decay of trades executed in the
last trading bin into the next day. Consequently, while there appears to be some evidence of permanent
impact (see Figure 2.7), we cannot measure it because many metaorders have child orders close to
the end of the day (see Figure C.1). As a result, our estimates of decay after the end of the metaorder
and into a new day are extrapolations of the intraday decay observed after a child order. Additionally,
this extrapolation might not accurately reflect reality, because our kernel estimate is for the continuous
session, excluding the opening and closing auctions. The market behaves differently during these
auction sessions, and thus the kernel might not be the same. Further research is needed to explore
how a kernel can be simultaneously calibrated for both the continuous session and the auctions and
whether there are notable differences between the estimates.

We continue with the limitations of the linear propagator model with a time-varying liquidity process
introduced in this thesis. A key modeling choice was the use of linear scaling for the participation
rate of every child order. While we extensively discussed its local-level implications in Appendix B.2,
we did not explore its global-level impact. Empirical observations indicate that the impact or cost of
a metaorder scales concavely with respect to order size. However, in our linear model based on the
participation rate, this scaling is linear (see Figure 3.8). As a result, the model tends to underestimate
the total impact for small orders and overestimate it for large orders. This discrepancy highlights a key
limitation of the linear approach and suggests incorporating a global concave scaling, similar to the AFS
model (see, Alfonsi et al. (2012)). In particular, the paper by Hey, Mastromatteo, et al. (2023) provides
some promising results as it combines global connectivity with multiple exponential decay parameters
and time dependent liquidity parameter, while the optimal execution problem remains tractable.

Another important assumption in the propagator model is that the decay kernel is time-invariant, mean-
ing the decay kernel estimate remains constant throughout the day. Testing the validity of this assump-
tion for a general decay kernel is challenging due to identification issues. Therefore, further research is
needed to find out whether this assumptions holds. When this assumption is violated, the model might
under of over estimate the impact. Consequently, affecting the solutions to the corresponding optimal
execution problems. Possible solutions to mitigate this include: the introduction of a correction factor
in the liquidity process or using volume time instead of regular clock time.

Moving on to the optimal execution problem, we solved all problems analytically using their discrete
time analogs. We demonstrated that the solution to the OW optimal execution problem coincides with
the solution of the discretized optimal execution problem for the linear model with an exponential kernel
and constant liquidity process. However, we did not explicitly show that the optimal execution problem
for the continuous time model with a time-varying liquidity process is the continuous time limit of its
discrete version. Therefore, deriving analytical solutions in continuous time for the linear propagator
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model with a general decay kernel and time-varying liquidity process would be interesting for future
research, despite its complexity. Additionally, it would be interesting to extend the problem to include a
stochastic trading strategies, which includes the uncertainty of immediate execution or finding a block
trade in a crossing network. Or one that dynamically adapts to a stochastic alpha signal. This could
potentially be achieved using machine learning methods, such as reinforcement learning.



A
Appendix A: Additional proofs

A.1. Proof Lemma 3.4.2
Lemma. Consider the discrete time version of the linear propagator model:

𝑆𝑁𝑛 = 𝑆𝑁0 +
𝑛

∑
𝑚=1

Θ𝑁𝑚𝐺(𝑛 −𝑚)Δ𝑚𝑄𝑁 + 𝑍𝑁𝑛 ,

where 𝑆𝑁𝑛 is the mid-price just before time 𝑡𝑁𝑛 . Then for a discrete admissible trading strategy Π𝑁 = 𝑄𝑁,
the expected cost of trading in discrete time equals:

𝔼[𝐶(Π𝑁)] = 𝔼 [q𝑇 (12Θ̃ΘΘ⊙G)q] = 𝔼 [q𝑇ΦΦΦq] ,

where 𝑞𝑛 = Δ𝑛𝑄𝑁, Θ̃𝑛,𝑚 = Θmin(𝑛,𝑚), 𝐺𝑛,𝑚 = 𝐺(|𝑛 − 𝑚|) and the operator ⊙ means the Hadamard
product between the matrices Θ̃ΘΘ andG. Notice that Θ̃ΘΘ andG are both symmetric matrices. For simplicity
we defineΦΦΦ = 1

2ΘΘΘ⊙G, which is a symmetric matrix as well.

Proof. We derive the expected cost of trading for a discrete admissible trading strategy Π𝑁 = (𝑄𝑁𝑛 )𝑁𝑛=0
in a similar way as in Lemma 3.4.1. The total cost of trading is given by:

𝐶(Π𝑁) =
𝑁

∑
𝑛=1
(𝑆𝑁𝑛 − 𝑆𝑁0 )Δ𝑛𝑄𝑁 .

Substituting the discrete model, we find:

𝐶(Π𝑁) =
𝑁

∑
𝑛=1

𝑛

∑
𝑚=1

Θ𝑁𝑚𝐺(𝑛 −𝑚)Δ𝑚𝑄𝑁Δ𝑛𝑄𝑁 +
𝑁

∑
𝑛=1

𝑍𝑁𝑛 Δ𝑛𝑄𝑁 .

Then for the first part we observe that:
𝑁

∑
𝑛=1

𝑛

∑
𝑚=1

Θ𝑁𝑚𝐺(𝑛 −𝑚)Δ𝑚𝑄𝑁Δ𝑛𝑄𝑁 =
𝑁

∑
𝑛=1

𝑛

∑
𝑚=1

Θ𝑁𝑚𝐺(|𝑛 − 𝑚|)Δ𝑚𝑄𝑁Δ𝑛𝑄𝑁 ,

which is equal to:

= 1
2

𝑁

∑
𝑛=1

𝑛−1

∑
𝑚=1

Θ𝑁𝑚𝐺(|𝑛 − 𝑚|)Δ𝑚𝑄𝑁Δ𝑛𝑄𝑁 +
1
2

𝑁

∑
𝑛=1

𝑁

∑
𝑚=𝑛+1

Θ𝑁𝑛𝐺(|𝑛 − 𝑚|)Δ𝑚𝑄𝑁Δ𝑛𝑄𝑁

+
𝑁

∑
𝑛=1

Θ𝑁𝑛𝐺(0) (Δ𝑛𝑄𝑁)
2
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To be consistent with the continuous case, we assume that we trade uniformly in a time interval such
we pay the average instantaneous impact. This results in:

= 1
2

𝑁

∑
𝑛=1

𝑛−1

∑
𝑚=1

Θ𝑁𝑚𝐺(|𝑛 − 𝑚|)Δ𝑚𝑄𝑁Δ𝑛𝑄𝑁 +
1
2

𝑁

∑
𝑛=1

𝑁

∑
𝑚=𝑛+1

Θ𝑁𝑛𝐺(|𝑛 − 𝑚|)Δ𝑚𝑄𝑁Δ𝑛𝑄𝑁

+ 12

𝑁

∑
𝑛=1

Θ𝑁𝑛𝐺(0) (Δ𝑛𝑄𝑁)
2 .

Ensuring causality and simplifying gives:

= 1
2

𝑁

∑
𝑛=1

𝑁

∑
𝑚=1

Θ𝑁min(𝑛,𝑚)𝐺(|𝑛 − 𝑚|)Δ𝑚𝑄𝑁Δ𝑛𝑄𝑁 ,

such that the cost of trading is equal to:

𝐶(Π𝑁) = 1
2

𝑁

∑
𝑛=1

𝑁

∑
𝑚=1

Θ̃𝑁𝑛,𝑚𝐺(|𝑛 − 𝑚|)Δ𝑚𝑄𝑁Δ𝑛𝑄𝑁 +
𝑁

∑
𝑛=1

𝑍𝑁𝑛 Δ𝑛𝑄𝑁 ,

where Θ̃𝑁𝑛,𝑚 = Θ𝑁min(𝑛,𝑚). Then using that 𝑄 is adapted and 𝑍 a martingale, we find that the expected
cost of trading equals:

𝔼[𝐶(Π𝑁)] = 𝔼 [12

𝑁

∑
𝑛=1

𝑁

∑
𝑚=1

Θ̃𝑁𝑛,𝑚𝐺(|𝑛 − 𝑚|)Δ𝑚𝑄𝑁Δ𝑚𝑄𝑁] ,

which in matrix-vector notation is equal to:

𝔼[𝐶(Π𝑁)] = 𝔼 [q𝑇 (12Θ̃ΘΘ⊙G)q] ,

where 𝑞𝑛 = Δ𝑛𝑄𝑁, Θ̃𝑛,𝑚 = Θmin(𝑛,𝑚), 𝐺𝑛,𝑚 = 𝐺(|𝑛 − 𝑚|) and the operator ⊙ means the Hadamard
product between the matrices Θ̃ΘΘ andG. Notice that Θ̃ΘΘ andG are both symmetric matrices. For simplicity
we defineΦΦΦ = 1

2ΘΘΘ⊙G, which is symmetric as well.

A.2. Proof Lemma A.2.1
Lemma A.2.1. Let g = [𝑔0, 𝑔1, … , 𝑔𝑀−1]T and u = [𝑢0, 𝑢1, … , 𝑢𝑀−1]T be vectors, and let G and U be
their corresponding lower triangular Toeplitz matrices. Then Ug = Gu.

Proof. The matrices G and U can be represented as:

G =
⎡
⎢
⎢
⎣

𝑔0 0 ⋯ 0
𝑔1 𝑔0 ⋯ 0
⋮ ⋮ ⋱ ⋮

𝑔𝑀−1 𝑔𝑀−2 ⋯ 𝑔0

⎤
⎥
⎥
⎦
,

U =
⎡
⎢
⎢
⎣

𝑢0 0 ⋯ 0
𝑢1 𝑢0 ⋯ 0
⋮ ⋮ ⋱ ⋮

𝑢𝑀−1 𝑢𝑀−2 ⋯ 𝑢0

⎤
⎥
⎥
⎦
.

For the matrix-vector multiplication Ug, the 𝑖-th element of the resulting vector is:

(Ug)𝑖 =
𝑖

∑
𝑗=0
𝑢𝑗𝑔𝑖−𝑗 , for 𝑖 = 0, 1, … ,𝑀 − 1.
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Similarly, for Gu, the 𝑖-th element of the resulting vector is:

(Gu)𝑖 =
𝑖

∑
𝑗=0
𝑔𝑗𝑢𝑖−𝑗 , for 𝑖 = 0, 1, … ,𝑀 − 1.

To show that these two expressions are equivalent, observe the structure of the lower triangular Toeplitz
matrices. In both matrices, the 𝑖-th row contains elements that are a reverse sequence of the first 𝑖 + 1
elements of the vector. Specifically, in Ug, the 𝑖-th element is a dot product of the 𝑖-th row of U with g,
and in Gu, it is the dot product of the 𝑖-th row of G with u.

Since the order of multiplication in the dot product is commutative, we have:

(Ug)𝑖 =
𝑖

∑
𝑗=0
𝑢𝑗𝑔𝑖−𝑗 =

𝑖

∑
𝑘=0

𝑢𝑘𝑔𝑖−𝑘 =
𝑖

∑
𝑗=0
𝑔𝑗𝑢𝑖−𝑗

= (Gu)𝑖 .

Since this equality holds for each 𝑖 = 0, 1, … ,𝑀 − 1, we conclude that:

Ug = Gu.

This completes the proof.

A.3. Proof Corollary A.3.1
Corollary A.3.1. Consider the general continuous time optimal execution problem from Equation (4.7)
including the risk aversion term w.r.t the OU alpha signal:

sup
𝑄∈𝒟

𝔼 [∫
𝑇

0
𝛼𝑡𝑑𝑄𝑡 −

1
2 ∫

𝑇

0
∫
𝑇

0
Θ̃(𝑡, 𝑠)𝐺(|𝑡 − 𝑠|)𝑑𝑄𝑠𝑑𝑄𝑡 − 𝜓1 (∫

𝑇

0
𝑍𝑡𝑑𝑄𝑡)

2

−𝜓2 (𝜍∫
𝑇

0
∫
𝑡

0
𝑒−𝜅(𝑡−𝑠)𝑑𝑊′

𝑠 𝑑𝑄𝑡)
2

] .

Consider the discrete time linear propagator model from Equation 3.4 for which we derived the expected
cost of trading in Lemma 3.4.2 and the variance of the cost in Lemma 4.4. Then the discrete version
of the optimal execution problem above can be formalized in matrix-vector notation as follows:

min
q∈𝒟

q𝑇(ΦΦΦ+ 𝜓1ΣΣΣ + 𝜓2A)q−𝛼𝛼𝛼𝑇q

s.t. 1𝑇q = 𝑄𝑁0 ,

where the vector 𝛼𝛼𝛼 contains the Ornstein–Uhlenbeck alpha signal, i.e. 𝔼[𝛼𝑛] = 𝛼0𝑒−𝜅𝑛 + 𝜇(1 − 𝑒−𝜅𝑛)
and the symmetric matrix A represents the risk aversion w.r.t the alpha signal. The upper-triangular
part of this matrix is equal to:

A𝑢𝑝𝑝𝑒𝑟 = {
𝐴𝑛,𝑛 = 𝜍2 ∑

𝑛
𝑖=1 𝑒𝜅(𝑖−1) ∀𝑛 = 1,⋯𝑇

𝐴𝑛,𝑛+𝑗 = 𝜍2 ∑
𝑛
𝑖=1 𝑒𝜅(2𝑖−1) 𝑗 odd and , ∀𝑛 = 1,⋯𝑇 and 𝑗 = 1,⋯𝑇 − 1

𝐴𝑛,𝑛+𝑗 = 𝜍2 ∑
𝑛
𝑖=1 𝑒𝜅(2𝑖) 𝑗 even and , ∀𝑛 = 1,⋯𝑇 and 𝑗 = 2,⋯𝑇 − 1

This is a quadratic optimization problem with optimal solution equal to:

q∗ = 1
2(ΦΦΦ+ 𝜓1ΣΣΣ + 𝜓2A)

−1 (𝛼𝛼𝛼 − 1
1𝑇(ΦΦΦ+ 𝜓1ΣΣΣ + 𝜓2A)−11

(1𝑇(ΦΦΦ+ 𝜓1ΣΣΣ + 𝜓2A)−1𝛼𝛼𝛼 − 2𝑄𝑁0 ))
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Proof. Consider the optimal execution problem with a deterministic admissible strategy 𝑄 ∈ 𝒟:

sup
𝑄∈𝒟

𝔼 [∫
𝑇

0
𝛼𝑡𝑑𝑄𝑡 −

1
2 ∫

𝑇

0
∫
𝑇

0
Θ̃(𝑡, 𝑠)𝐺(|𝑡 − 𝑠|)𝑑𝑄𝑠𝑑𝑄𝑡 − 𝜓1 (∫

𝑇

0
𝑍𝑡𝑑𝑄𝑡)

2

−𝜓2 (𝜍∫
𝑇

0
∫
𝑡

0
𝑒−𝜅(𝑡−𝑠)𝑑𝑊′

𝑠 𝑑𝑄𝑡)
2

] .

Then we can rewrite the risk aversion term w.r.t the alpha signal using results from the proof of Lemma
4.4 in the following way:

𝔼 [(𝜍∫
𝑇

0
∫
𝑡

0
𝑒−𝜅(𝑡−𝑠)𝑑𝑊′

𝑠 𝑑𝑄𝑡)
2

]

= 𝔼 [(𝜍∫
𝑇

0
(∫

𝑇

𝑡
𝑒−𝜅(𝑡−𝑠)𝑑𝑄𝑠)𝑑𝑊′

𝑡)
2

]

= 𝜍∫
𝑇

0
(∫

𝑇

𝑡
𝑒−𝜅(𝑡−𝑠)𝑑𝑄𝑠)

2

𝑑[𝑊′]𝑡

= 𝜍∫
𝑇

0
(∫

𝑇

𝑡
𝑒−𝜅(𝑡−𝑠)𝑑𝑄𝑠)

2

𝑑𝑡,

where in the second to last line we use Ito’s isometry. Substituting this in the control problem we get:

sup
𝑄∈𝒟

∫
𝑇

0
𝔼[𝛼𝑡]𝑑𝑄𝑡 −

1
2 ∫

𝑇

0
∫
𝑇

0
Θ̃(𝑡, 𝑠)𝐺(|𝑡 − 𝑠|)𝑑𝑄𝑠𝑑𝑄𝑡 − 𝜓1∫

𝑇

0
(∫

𝑇

𝑡
𝜎𝑠𝑑𝑄𝑠)

2

𝑑𝑡

− 𝜓2𝜍 ∫
𝑇

0
(∫

𝑇

𝑡
𝑒−𝜅(𝑡−𝑠)𝑑𝑄𝑠)

2

𝑑𝑡.

Using Theorem 4.5.1, we write this in matrix-vector notation as follows:

min
q∈𝒟

q𝑇(ΦΦΦ+ 𝜓1ΣΣΣ + 𝜓2A)q−𝛼𝛼𝛼𝑇q

s.t. 1𝑇q = 𝑄0,

where the vector 𝛼𝛼𝛼 contains the Ornstein–Uhlenbeck alpha signal, i.e. 𝔼[𝛼𝑛] = 𝛼0𝑒−𝜅𝑛 + 𝜇(1 − 𝑒−𝜅𝑛)
and the symmetric matrix A represents the risk aversion w.r.t the alpha signal.

The proof is a direct consequence of Theorem 4.3.1 and Theorem 4.5.1 since ΦΦΦ + 𝜓1ΣΣΣ + 𝜓2A is a
symmetric matrix. We only need to show that we can discretize the risk aversion w.r.t alpha signal as
the symmetric matrix A. Using the the notation in Definition 3.1.4, we discretize the risk-aversion w.r.t
the alpha signal as follows:

𝑇

∑
𝑛=1

(
𝑇

∑
𝑚=𝑛

𝑒−𝜅(𝑛−𝑚)Δ𝑚𝑄𝑁) =
𝑇

∑
𝑛=1

𝑇

∑
𝑚=1

𝐴𝑛,𝑚Δ𝑚𝑄𝑁Δ𝑛𝑄𝑁 .

If one writes out the left hand side for different 𝑇 and inspects it structure we find:

A𝑢𝑝𝑝𝑒𝑟 = {
𝐴𝑛,𝑛 = ∑

𝑛
𝑖=1 𝑒𝜅(𝑖−1) ∀𝑛 = 1,⋯𝑇

𝐴𝑛,𝑛+𝑗 = ∑
𝑛
𝑖=1 𝑒𝜅(2𝑖−1) 𝑗 odd and , ∀𝑛 = 1,⋯𝑇 and 𝑗 = 1,⋯

𝐴𝑛,𝑛+𝑗 = ∑
𝑛
𝑖=1 𝑒𝜅(2𝑖) 𝑗 even and , ∀𝑛 = 1,⋯𝑇 and 𝑗 = 2,⋯
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So for example we take 𝑇 = 5, we find:

A = 𝜍2 ⋅
⎡
⎢
⎢
⎢
⎣

1 𝑒𝜅 𝑒2𝜅 𝑒3𝜅 𝑒4𝜅
𝑒𝜅 𝑒2𝜅 + 1 𝑒3𝜅 + 𝑒𝜅 𝑒4𝜅 + 𝑒2𝜅 𝑒5𝜅 + 𝑒3𝜅
𝑒2𝜅 𝑒3𝜅 + 𝑒𝜅 𝑒4𝜅 + 𝑒2𝜅 + 1 𝑒5𝜅 + 𝑒3𝜅 + 𝑒𝜅 𝑒6𝜅 + 𝑒4𝜅 + 𝑒2𝜅
𝑒3𝜅 𝑒4𝜅 + 𝑒2𝜅 𝑒5𝜅 + 𝑒3𝜅 + 𝑒𝜅 𝑒6𝜅 + 𝑒4𝜅 + 𝑒2𝜅 + 1 𝑒7𝜅 + 𝑒5𝜅 + 𝑒3𝜅 + 𝑒𝜅
𝑒4𝜅 𝑒5𝜅 + 𝑒3𝜅 𝑒6𝜅 + 𝑒4𝜅 + 𝑒2𝜅 𝑒7𝜅 + 𝑒5𝜅 + 𝑒3𝜅 + 𝑒𝜅 𝑒8𝜅 + 𝑒6𝜅 + 𝑒4𝜅 + 𝑒2𝜅 + 1

⎤
⎥
⎥
⎥
⎦





B
Appendix B: Additional numerical results

B.1. Residual analysis least squares problem
To estimate the non-projected kernel we use a least-squares approximation. To make sure that the
least-square approximation gives the best unbiased solution to the problem, some assumptions need to
be satisfied. However, we are dealing with a rather unique version of the least-squares approximation.
In our problem, U𝑘 is a lower-triangular Toeplitz matrix instead of a normal design matrix and U𝑘g
represents a convolution operation. Therefore, our assumptions deviate from the classical ones.

Below we list the assumptions and whether they apply to our model or not:

1. Linearity: In the linear propagator model we assume that the participation rate and the instanta-
neous impact have a linear relationship. In the Section B.2, we have looked into this.

2. No endogeneity: holds by construction of the model. In the linear propagator model we assume
that only our participation in the market influences the impact.

3. No perfect multicollinearity: does not apply by construction of the model. The linear propagator
model is based on the assumption that the impact of our trade is an ’accumulation’ of the impacts
of all our previous trades by means of a convolution. Or in different words, the predictors are
correlated by construction. Therefore, this assumption does not apply in our case.

4. Homoscedasticity: the residuals have constant variance. This is something we check.

5. Normality of the residual distribution: The residuals are normally distributed. This is something
we check.

6. No autocorrelation in the residuals: the residuals are not correlated with each other and the
correlation does not change over time. This is something we check.

7. Stationary of the residuals: The distribution of the residuals does not change to much over time.
This is something we check.

From the revision of the least-squares assumptions we conclude that we only need to check assump-
tions 4 − 7. To check assumption 4 we make a scatter plot of the standardized square-root residuals
versus the fitted values and use a spline regression (see Hastie (1986)) to check for a pattern. This is
also called a scale-location plot of the standardized vs fitted values in the literature. We use this ver-
sion of the residuals versus fitted plot because it is more robust for outliers. The scale-location plot is
displayed in left hand side of Figure B.1. To check assumption 5, we make a Q-Q plot of the residuals.
This plot is present in the right hand side of Figure B.1.

From the spline regression and the way how the observations are scattered around the grid we deduce
that there is not a clear pattern between the standardized residuals and the fitted values. This means
that the variance of the residuals can be assumed to be constant across the observations. Therefore,
the homoscedasticity assumption holds. Furthermore, from the right hand side of Figure B.1 we find that
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Figure B.1: (Left) scatterplot of the fitted values versus the standardized absolute square-root residuals. The orange line repre-
sents a spline regression trough the data. (Right) Quantile-Quantile (Q-Q) plot of the standardized residuals.

the residuals are by approximation normally distributed because the sample and theoretical quantiles
align. However, we see a bit of a fat tail behaviour.

We continue by checking assumption 6, i.e. we investigate whether there is a significant autocorrelation
between the residuals. To do this we use the Durbin–Watson (DW) statistic (see, Durbin and Watson
(1950)). The DW statistic is a value between 0 and 4. If the value of the test statistic is close to 0
there is statistical evidence of a positive autocorrelation, if it is close to 2 there is no statistical evidence
of autocorrelation and if it is close to 4 than there is statistical evidence for negative autocorrelation
between the residuals.

Calculating the DW statistic for the total prediction error gives a value of 0.032. This indicates that the
residuals are strongly positively lag 1 autocorrelated. This means that if the prediction is wrong in a
certain direction, the next prediction will again be wrong in the same direction. This suggest that there
has been a level shift which can not be explained by the model. For example, this could imply that
there exist a non-zero short-term alpha signal.

To overcome this, we check for autocorrelation in the difference between the return per bin and the
difference in predicted impact per bin, i.e. 𝑒𝑁𝑛 = Δ𝑛𝑆𝑁−Δ𝑛𝐼𝑁. This approach makes use less vulnerable
for a large level shift by a short-term alpha signal. In this new approach we calculate the DW statistic for
the change in the residuals per metaorder and plot the empirical distribution. To compare the empirical
distribution we formulate a base distribution in which we calculate the DW statistic of 𝜖𝑁𝑛 ; the increments
of the martingale, which are i.i.d standard normal distributed. In addition, we calculate the empirical
distribution for different subsets of the dataset, where these subsets are all of the same length and
represent different time windows. Both plots are present in Figure B.2. We see in Figure B.2 that the
empirical distribution of the DW statistic is centered around 1.5. This means that the there is some
evidence for positive autocorrelation in the change of the residuals but it is not critical. The same we
have observed in Figure 2.3, in which we calculate the autocorrelation of the return. In this analysis we
found a significant first lag, even if we remove our own impact. Therefore, we can conclude that the
autocorrelation in the residuals is due to the data instead of the model. In the right hand side of the
figure above we find that the empirical distribution of the of the DW-statistic does not change to much
over time.

Lastly, we check of the stationary of the residuals. Since we are dealing with time series data it is impor-
tant that the residuals are stationary over time. We check this by calculating the empirical distribution
of the residuals for different time windows. All subsets are of equal length and based on time. The
empirical distribution of the residuals for different time windows are displayed in Figure B.3. We see in
Figure B.3 that the empirical distribution for different time widows are approximately the same. This is
enough to conclude that the residuals are stationary.
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Figure B.2: (Left) the empirical distribution of the DW statistic of the rate of change in the residuals per metaorder in pink. The
base distribution is the DW statistic of the increments of the martingale 𝑍 in blue. (Right) the empirical distribution of the DW
statistic for 12 different time windows .

Figure B.3: Empirical distribution of the residuals for 12 different time windows.

B.2. Locally concave model performance
The main model use throughout this thesis is the linear propagator model on the trader’s participa-
tion rate. In Chapter 3, we have seen that there are alternative modeling choices possible, including
variations in the instantaneous impact function (linear vs. non-linear) and normalization methods (par-
ticipation rate vs. normalized by ADV). The key reason for using the linear model is that a non-linear
model permits pricemanipulation and lacks tractable solutions for the optimal execution problem.

The decision to use participation rate as the normalization method is twofold. Firstly, as demonstrated
in Section 2.3.1, child orders normalized by the intraday volume curve exhibit a more linear relationship
compared to those normalized by ADV. Secondly, normalizing by the intraday volume curve enables
the model to account for the varying liquidity throughout the trading day, a critical factor influencing
market impact.

In this section of the appendix, we demonstrate that this modeling choice also results in a better model
fit in terms of R-squared.

Consider the discrete propagator model from Equation (3.4), in which we scale every child order by a
concave function 𝑓(⋅):

𝑆𝑁𝑛 = 𝑆𝑁0 +
𝑛

∑
𝑚=1

𝐺(𝑛 −𝑚)𝑓(Θ𝑁𝑚Δ𝑚𝑄𝑁) + 𝑍𝑁𝑛 ,



76 B. Appendix B: Additional numerical results

For demonstration purposes we consider an exponential kernel such that we obtain:

𝑆𝑁𝑛 = 𝑆𝑁0 +
𝑛

∑
𝑚=1

𝜆𝑒−𝛽(𝑛−𝑚)𝑓(Θ𝑁𝑚Δ𝑚𝑄𝑁) + 𝑍𝑁𝑛 ,

To investigate the concavity of the model for different normalizations of the traded quantity, we consider
two functional forms for the instantaneous impact function 𝑓(⋅). First, we consider a power-law function
normalized by ADV:

𝑓1(Θ𝑁𝑛Δ𝑛𝑄𝑁) = 𝜎 sign (Δ𝑛𝑄𝑁) (
|Δ𝑛𝑄𝑛|
𝐴𝐷𝑉 )

𝑐1
,

where 𝑐1 is the concavity parameter. The second functional form is a power-law on the participation
rate:

𝑓2(Θ𝑁𝑛Δ𝑛𝑄𝑁) = 𝜎 sign (Δ𝑛𝑄𝑁) (
|Δ𝑛𝑄𝑁|
𝑉𝑁𝑛

)
𝑐2
,

where 𝑉𝑁𝑛 is the total volume traded in a time bucket.

By comparing these two functional forms, we aim to understand how different normalizations of the
traded quantity affect the concavity and performance of the model. To analyze this, we employ a similar
optimization approach to that outlined in Section 3.5, but we find the parameters of the exponential
kernel directly. For each concavity parameter 𝑐 ∈ [0.3, 1], we determine the parameters using a variant
of Equation 3.12:

𝛽(𝑐), 𝜆(𝑐) = argmin
𝛽,𝜆

𝐾

∑
𝑘=1

‖y𝑘 − U𝑘g‖
2 ,

where g is a vector representing the exponential decay kernel. Each entry 𝑈𝑛 of the matrix U𝑘 is
scaled using either 𝑓1 or 𝑓2. To solve the optimization problem, we use the solver ”SLSQP” from the
scipy.optimize.minimize package in Python. Using the calibrated parameters, we evaluate the model
performance on all orders using the R-squared.

Performing the analysis for different values of the concavity parameters results in Figure B.4. In this
model we fit the concavity of the instantaneous impact function versus the model performance mea-
sured in R-squared for the two normalizations.

Figure B.4: Locally concave model performance for concavity parameter 𝑐 ∈ [0.3, 1] for the model fitted on participation rate and
normalized by ADV

Let’s start with the model fitted on the normalized child orders by ADV. Figure B.4 shows that the model
performs best with a concavity parameter around 𝑐1 = 0.5. This aligns with results from the literature
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(see Bouchaud et al. (2009)). However, as the model becomes less concave and approaches a linear
form, its performance decreases significantly, by approximately 70%.

However, for the model fitted on the participation rate, the optimal concavity parameter is 𝑐2 = 0.65.
This indicates a less concave relationship compared to the ADV normalization, which is consistent with
our observations in Figure 2.6. Additionally, the performance drop when transitioning towards a linear
model is much smaller, only around 30%. Interestingly, the linear model based on the participation rate
performs almost as well as the model normalized by ADV with a concavity of 𝑐1 = 0.5.
In conclusion, the main reason for fitting a linear model is to ensure its viability. To compensate the
performance loss associated with ADV normalization, fitting on the participation rate offers a strong
alternative. The participation rate normalization maintains better performance even as the model be-
comes linear, making it a better choice for practical applications.
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Figure C.1: After applying the filters in Table 2.1. (Upper left) histogram of the length of the metaorders. (Upper right) histogram
of the number of child orders per metaorder. (Lower left) plot which displays the amount of trades in each intraday time bin.
(Lower right) boxplot of the of the intraday volatility’s.
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Figure C.2: Bootstrapped nonparametric decay kernel with 20 bootstraps.
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