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A Robustness Analysis of Phone-Pair Co-usage Evaluation
Methods using Behavioral Modeling

ABSTRACT

In criminal investigations, individuals may be connected to illicit
activities by linking their personal phone to an otherwise anony-
mous, crime-related phone. Several methods have been published
that use cell tower registrations to differentiate between same-user
and different-user scenarios for the two phones. However, crimi-
nals may deviate in movement patterns and phone usage from the
test subjects on which the methods are developed and evaluated.
Whether the proposed methods are robust to such different behav-
ioral profiles is unclear. The scarcity of readily available datasets
on criminals’ movements and phone usage further complicates this
issue.

Lacking precise knowledge of the behavior of the population of
interest, we propose a robustness analysis. Here, we present a tool
for generating synthetic datasets, based on well-established models
for the movement of individuals. We used the tool to generate data
for a range of behavioral properties, encompassing variations in
both underlying movement and phone usage. We evaluated three
existing methods using our synthetic data. The first is a discrimi-
natory approach that learns typical movement patterns and phone
usage from a reference dataset. The second approach uses a model
of cell tower behavior, making minimal assumptions on user be-
havior by choosing pairs of registrations close in time. The third
is a generic statistical method for comparing event data. Addition-
ally, we present a fourth method that combines the latter two, as
conceptually, they use different aspects of the data.

Our analysis reveals that the discriminatory method performs
best in a baseline scenario but is most sensitive to behavioral devia-
tions. The cell tower method shows the lowest baseline performance
yet exhibits the strongest resilience to variations. The generic model
appears intermediate in terms of performance and sensitivity. Given
the importance of robustness in evaluating evidence, we recom-
mend using the combined approach, which is both reliable and
effective across our defined variations.

1 INTRODUCTION

In criminal investigations, the use of anonymous burner phones
and encrypted devices complicates the task of linking suspects
to their illicit activities. These devices, designed for anonymity,
are chosen by criminals for discreet communication. Despite this,
they still produce identifying traces. Notably, Call Detail Records
(CDRs), capturing interactions with cell networks, can serve as a
proxy for the device’s location. Often, criminals also carry a second
legitimate phone registered under their name. By comparing CDRs
from both the anonymous and registered devices, it is possible to
assess co-location—phones being in close proximity over a period
of time. Such patterns suggest co-usage, potentially exposing the
anonymous device’s user. Several methods have been suggested
to evaluate the CDRs under the hypotheses Hy,: the phones were
carried by the same user, Hy,,: the phones were carried by indepen-
dently traveling users.

The spatiotemporal patterns in the CDRs are shaped by two main
processes: the behavioral process, which dictates the user’s location
and phone usage, and the technical telecom process, which deter-
mines the cell tower the phone registers to. Although the latter will
be very similar for criminal and non-criminal users, the former may
be distinct. For instance, individuals with a standard 9-to-5 office
job exhibit movement patterns that are markedly different from
those of professional hitmen. Likewise, an office worker’s routine
interactions with their work phone will result in widely different
usage patterns than a hitman’s use of a burner phone when coordi-
nating an assassination. This issue has been acknowledged but not
solved in previous work [1, 2]. One recent publication proposes a
solution by only evaluating one pair of cell registrations close in
time, arguing that distances observed are then primarily influenced
by the technical telecom process rather than the underlying travel
and phone usage behaviors [3]. It is currently unclear how well
these methods perform if ‘real’ behavioral patterns deviate from
assumed patterns.

To address this, we’ve developed a simulation-based approach
for creating synthetic CDRs to capture underlying behavioral prop-
erties. Our method involves two main steps: initially modeling
user movements and then generating CDRs for phones traveling
along these paths. For modeling user movement, we implement
the Exploration and Preferential Return mobility model that char-
acterizes movement as a power-law distributed time spent at a
location (waiting time), and a power-law distributed distance be-
tween consecutive locations (travel distance), complemented by a
return strategy to revisit locations. For phone usage modeling, we
describe the inter-arrival times between phone activities as being
exponentially distributed, and we characterize various usage de-
pendencies between phones carried by the same user. Connecting
cell towers are chosen using an open-source cell tower location
database, integrated with a statistical coverage model of the corre-
sponding service area

We use this tool to generate CDR data across various behavioral
scenarios, using our model parameters to guide us. Starting from a
basic baseline using general population movement data and assum-
ing that phones carried by the same user are used independently,
we outline three experimental scenarios: the first two examine the
effects of parameter changes in the mobility model, and the third
assesses the same-user phone-usage dependency. Specifically, in
the first scenario, we explore the behaviors of individuals moving
more dynamically or within a more restricted area by adjusting
the mobility model’s waiting time and travel distance distributions.
In the second scenario, we simulate individuals frequenting many
locations by adjusting the model’s return strategy. In the final sce-
nario, we investigate the impact of phone usage being dependent
on either time or location, e.g., only using a phone at a certain time
or location and otherwise using a separate phone.

We evaluate three proposed co-usage likelihood ratio systems us-
ing our simulated data. These comprise a discriminative approach,



which requires a reference dataset for parameter estimation; a close
pair approach, removing any movement assumptions by investigat-
ing one pair of registrations close in time; and a generic method for
evaluating event data that assesses global spatial patterns by tally-
ing the categories of registrations. We propose a fourth approach,
combining the close pair and categorical count methods.

2 BACKGROUND AND RELATED WORK

CDRs are generated by telecom providers, recording antenna regis-
trations triggered by mobile phone activities such as phone calls,
text messages, or data sessions. Each record in a CDR includes in-
formation like the timestamp, duration, caller and/or callee details,
and the identifier of the antenna handling the event. The location
of the antenna provides an approximate location of the person’s
phone at that time. However, challenges such as the various factors
influencing which cell a phone connects to mean CDRs provide a
proxy for phone location at best [4] and should ideally be handled
in a probabilistic manner.

Current approaches for co-usage strength evaluation between
phone pairs employ the likelihood ratio (LR) framework, which is
widely recognized by the forensic science community [5]. The LR
is formulated as

P(E|Hsu)
P(E|Hg,)

where Hy,, and Hy,, denote the hypotheses of same-user and different-
user, respectively, while E represents the evidence: the CDRs. An
LR greater than 1 suggests that the evidence supports the same-user
hypothesis, and less than 1 supports the different-user hypothesis.

2.1 Statistical approaches for co-usage

For our analysis, we investigate three methods. The first two meth-
ods, produced by the Netherlands Forensic Institute, investigate dif-
ferences in timing and geographical locations for consecutive phone
registrations, termed switches [1, 3]. Both methods are designed
explicitly for the phone-pair co-usage use case and evaluated on
the same validation dataset of employees working at the forensics
institute. The third method we investigate, produced by the Univer-
sity of California, is more general and can be applied to any form
of two sets of user-generated event data [2]. In the case of geoloca-
tion data, the authors give the example of Twitter data, where the
location of tweets originating from two accounts can be used to
determine whether they belong to the same user. This methodology
can straightforwardly be applied to the CDR co-usage use case and
is therefore included in our analysis.

We outline each method in detail, highlighting their respective
strengths and weaknesses.

2.1.1 Discriminative approach. The first method we investigate,
proposed by Bosma et al. in [1], is completely data-driven. The
method extracts consecutive pairs of registrations from differing
phones, termed switches, from a reference CDR training dataset.
For each switch, the method calculates three features:

(1) the distance;

(2) the time difference;

(3) the speed, defined as the distance divided by the time differ-
ence.

Every switch is labeled with whether the two phones were from
the same or different users. A trained logistic regression model
attempts to predict this label from the features. It outputs a score
ranging from 0 to 1 for each switch, where scores closer to 1 suggest
the same-user case. To aggregate these scores for a larger set of
switches found for two phones, the method bins the corresponding
individual switch scores into ten bins with 0.1 range, normalizes
these counts to ensure their sum equals 1, and inputs these normal-
ized vectors into a second logistic regression model to determine a
final similarity score between 0 and 1.

Bosma et al. calculate the final LR by computing scores s for all
same-user and different-user phone pairs in a separate calibration
dataset, thus producing an empirical probability density function
for both hypotheses. They proceed to apply Kernel Density Estima-
tion with a Gaussian kernel to obtain their final smoothed density
functions, and the ratio of these densities,

_ P(s|Hsy)
P(s|Hay)’

represents the final LR. For a new pair of phones, a similarity score
is derived by applying the two regression models, and based on this
score and the two density functions, the LR is calculated.

The main drawback of this approach is that it strongly relies on
a reference CDR dataset, implicitly modelling user behaviour. The
authors currently suggest carefully assessing the reference data for
each case, as behavioral discrepancies may influence applicability.

2.1.2  Close pair. Addressing the data dependency limitation of the
discriminative approach, Bosma et al. introduced a novel method
that aims to remove implicit assumptions about underlying behav-
ioral patterns [3]. This approach works by assessing one pair of
registrations originating from the two phones that are close to-
gether in time. The idea is that pair registrations with temporal
proximity would suggest spatial proximity for two phones traveling
together. The observed distance between cell connections is then
mainly attributed to network factors, not user movements between
registrations. The method proposes a statistical model of an an-
tenna’s coverage, specifying the likelihood that two particular cells
were registered given that the two phones were in proximity. The
same model is also used to determine the likelihood of observing the
cell registered by the reference phone, given its typical movement
behavior.

The method operates as follows: the two CDRs originating from
the reference phone a and the illicit phone b are divided into two
periods—a short evaluation period, typically 24 hours to represent
a day, and a longer reference period comprising all other registra-
tions, denoted as R; and Ry,. The method then attempts to find a
single well-chosen pair of registrations within the evaluation pe-
riod. This is defined as a registration, c4; from phone a at time ¢
and a registration cp 4,5, from phone b at time ¢ + 6t, such that
this pair is close in time (within a maximum of 2 minutes) and the
location for the illicit phone’s registration cp, 4,5, is least occurring
in Ry,

The authors then apply a closed-form LR to this pair of registra-
tions. The LR is formulated as

P(catlep, et lat = Ipy)

Rl | Z P(Ca,t|ca,u, la,t = la,u)
" cau€R
au a

LR =




where the actual location of phone a and b at time t, I, t and I, t,
is explicitly conditioned upon in both numerator and denominator.
This method proposes a coverage model for an antenna’s service
area to estimate these probabilities. We will utilize this same model
to sample our antenna locations.

The LR can be interpreted as follows: The numerator models the
probability of the two cell registrations given that the devices were
in the same location at t. The closer the registrations are in time
and space, the higher this probability should be. The denominator
averages over the registrations cq y, in Ry. This term becomes larger
when the registration ¢4 is close to a cell that has been connected
to more often in R,, therefore modeling the coincidence of the
reference phone a being in the same location as phone b at time t.

The advantage of this method over the discriminative approach
is that it relies less heavily on movement and usage time patterns
observed in a training data set. This should make the method more
robust to a mismatch between the reference population of phone
users and the actual population of interest. A clear disadvantage
is that it only evaluates a single pair of registrations. This means
the method misses much of the information and may, on average,
perform worse than the discriminative approach.

2.1.3 Categorical count. Longjohn et al. follow a different line of
work, in which two sets of user-generated event data are modeled as
categorical count vectors [2]. For geolocation data, event categories
are defined by a map segmentation, i.e., partitioning a geographic
region into smaller sub-regions. Each item in the count vector cor-
responds to a sub-region, with counts representing the number of
events originating from that sub-region. They derive a closed-form
LR to evaluate the similarity between two count vectors produced
by a known and unknown user.

Longjohn et al. assume that the count vectors originating from
K categories follow a multinomial distribution to reach a closed-
form LR. Given that the known-user vector ry = (r11, 712, ..., 71K) is
generated by distribution with parameters 6; = (011, 012, ..., 01K),
then under the same-user hypothesis, Hgy,, the unknown-user vec-
tor ro = (r21,722,....1r2k) follows the same distribution. Under
the different-user hypothesis, Hy,,, this method assumes r; again
follows a multinomial distribution but with different parameters
0 = (621,022, ..., 05). The method treats 6; and 6, as unknown
parameters and assumes that these follow a Dirichlet distribution
with prior @ = (a1, aa, ..., #). The special case where o = 1 for
k=1,2,..,K is known as the uniform Dirichlet distribution and is
used by Longjohn et al. in their experimentation as non-informative
prior. We will also utilize this formulation in our experimentation.

The closed-form LR is then given by

_ B(a+r;+12)B(a)

" B(a+r)B(a+rp)’
where B(.) denotes the multivariate beta function. Intuitively, this
LR captures the similarity of the two count vectors while accounting
for variations in count sizes. For example, two vectors with high
similarity and high counts result in an LR greater than two vectors
with high similarity and low counts.

This method is particularly suited for identifying global spatial
patterns in cell tower registration locations. However, it does so
at the expense of removing temporal information, for instance,
not attributing added significance to registrations that occur close

in time. This means the method will probably perform worse for
shorter interval data, which may not reflect the typical distribution
of locations a user visits. Additionally, the method relies on the
assumption that users typically use their phones in similar locations.

2.2 Human mobility and CDR generation

We investigate a bottom-up approach to generating synthetic CDRs.
We model user movements before generating phone usage patterns
and connecting antennas for phones traveling along these paths.
This strategy is particularly suited for the phone-pair co-usage
use case, as it enables the modeling of CDRs for multiple phones
consistent with a single user’s path. It also allows for behavioral
modeling of both the underlying movement pattern and phone
usage behavior.

2.2.1  Mobility modelling. We adopt the Exploration and Prefer-
ential Return (EPR) model proposed by Song et al. in [6] to model
user movement. EPR is recognized as a general mobility frame-
work resulting in paths that reflect broad patterns observed in
human mobility rather than individual specific properties [7]. The
model distinguishes between two primary behaviors: discovering
new locations (exploration) and returning to previously visited
locations based on personal preference (preferential return). EPR
defines exploration as a random walk process, and the assumption
is made that an individual’s inclination to explore new places dimin-
ishes over time. Therefore, the paths produced by EPR first exhibit
random walk properties before displaying the more predictable
visitation patterns inherent to human mobility.

Paths generated by the EPR model consist of a series of steps,
each characterized by a waiting time and a corresponding location.
The model employs two probability density functions: ¢(At) for
waiting times and f(Ax) for travel distances, with waiting times
sampled independently from ¢(At) at each step. An exploration
probability, pS~Y, where S is the number of unique locations visited
and p and y are constant shape parameters, determines the choice
of subsequent locations. With probability pS~Y, a new, previously
unvisited location is selected, at a distance, sampled from f(Ax),
from the current location. Conversely, with probability 1—pS~Y, the
next location is a return to one of the previously visited locations,
chosen in proportion to the frequency of past visits, reflecting the
preference to return towards familiar locations.

Waiting times and travel distances are standard mobility distri-
butions and are widely investigated in human travel data. Analyses
done on geolocation datasets, including GPS, CDR, and Dollar bill
data, have found the travel distances and waiting times in human
mobility follow a power-law distribution [6, 8, 9]. More specifically
these findings indicate f(Ax) ~ |Ax|™1~% and ¢(At) ~ |At]~1-A.

While more sophisticated adaptations of the EPR model ex-
ist—such as those that factor in the recency of visited locations
[10], or integrate a gravity model to allow preferential exploration
[11]—these enhancements primarily focus on improving the re-
alism of the generated paths. We argue that EPR equips us with
the essential parameters to define a range of movement behaviors
for our analysis. By adjusting the underlying parameters, we can
simulate a broad spectrum of variations in both time and space
scalings while also capturing the predictability characteristic of
human movement.



2.2.2  Generating synthetic CDRs. To generate synthetic CDRs, our
methodology incorporates two primary components: modelling the
temporal patterns of phone usage and accurately sampling antenna
locations based on phone positioning.

In line with our mobility model, we treat phone usage events
as temporally independent, focusing on general patterns rather
than individual-specific behaviors. The inter-event times between
phone activities are modeled using an exponential distribution, in
line with the global traffic patterns identified in large CDR datasets
[12]. Due to limited research on behaviors that are associated with
using multiple phones simultaneously, we propose dependency
models aimed at robustness testing. These models produce datasets
that vary in complexity from simple to difficult to differentiate
between the two hypotheses, enabling us to test the robustness of
co-usage methods without striving to mimic real-life phone usage
dependencies.

To sample realistic antenna locations, we use the coverage model
implemented by Bosma et al. in [3]. This model was trained on a
coverage dataset containing GPS locations and connected anten-
nas in the Netherlands, collected between February and June 2021.
The dataset was collected by Police surveillance cars from different
regions, carrying prepared phones from varying Dutch telecom
providers. This dataset resulted in 4,699 usable pairs of GPS lo-
cations [ and corresponding connecting antenna locations c. The
authors model the probability p(c|l) of connecting to a cell given
a location with isotonic regression, taking the distance to the cell
tower and the angle between the transmission direction of the an-
tenna and the line connecting the two locations as features. Isotonic
is a flexible, non-parametric method that makes the hard assump-
tion that the probability will decrease with increasing distance and
angle. Logistic regression is used to reduce the two features to a
single one. The authors verified their coverage model and found
no signs of miscalibration.

3 MATERIALS AND METHODS

To construct the evaluation datasets for our study, we make two
main assumptions: first, that each phone’s CDR corresponds to
a single individual, and second, that this individual continually
carries this phone along a specific path. At a discrete observation
time ¢, an agent a is assumed to be at an exact location x¢ form-
ing a path P = {t{, x{'}i=1,..n of size n. We then use this path to
generate CDRs, where an activity on phone m at time ¢ results in
a connection to a cell tower antenna c at location x¢, yielding a
CDR C = {t;", xjc.}jzl,“_,k of length k. While each agent follows a
unique path, multiple distinct CDRs can be derived, representing
phones traveling along this route. For our use case, we model users
carrying two phones.

The primary objective of this research is to generate CDR data
under different scenarios, thereby assessing the robustness of the
co-usage methods evaluated. We detail the development of the be-
havioral modeling and CDR simulation tool in Section 3.1. Our
study focuses on three scenarios of user behavior: 1) dynamic/local:
individuals move more dynamically and/or confined; 2) many lo-
cations individuals visit more distinct locations; 3) dependence cell
phone usage is dependent on time or location (Section 3.2). In Sec-
tion 3.3, we describe details about the co-usage methods, including

the three existing methods and a fourth combination approach. To
ensure consistent evaluation of the co-usage methods, we evaluate
them using the same simulated datasets, CDR preprocessing, and
performance metrics (detailed in Section 3.4).

3.1 User behavior model

To generate CDR datasets, we have developed a generic user behav-
ior model and corresponding simulation tool!. The model operates
in two stages: initially, it applies EPR upon a realistic street network
with connecting buildings to generate user location data (see Figure
1a). To create corresponding CDRs for two phones traveling along
this route (illustrated in Figure 1b), the second stage implements
a phone usage model that describes when users use each of their
two mobile phones. To sample connecting antenna locations for
these usage times, known antenna locations are combined with a
coverage model of their service area.

3.1.1 User location. For user location simulation, we extend the
Geo-Mesa Agents and Networks framework [13] to incorporate
EPR capabilities. We utilize the framework’s interface to include
several adjustable parameters. These include the number of agents,
the agent moving speed, and the simulation step duration. We also
include the EPR-specific parameters, which include:

e Truncated power law parameters for waiting time distribu-
tion P(At): B, Atmin, and Atmax,

e Truncated power law parameters for travel distance distri-
bution P(Ax): &, AXmin, and Axmax,

o Probability of exploration constants: p and y.

The simulation utilizes data from an open-source geographic
database? to import a street network and building locations into
the Mesa GeoSpace. Initially, each agent is allocated a random
building as their starting point and given a set of visited locations
and corresponding visitation frequencies S(t = 0), initialized with
their starting location marked with a visitation frequency of 1.
Agents receive an initial waiting time sampled from P(At), then
proceed with an exploration step to a new location. Once at a
new location, agents sample a new waiting time. In subsequent
moves, agents choose to explore a new location with probability
pS~Y, where S is the number of unique locations visited, or return
to a previously visited location with complementary probability
1— pS~Y. The exploration and return steps are detailed below. This
cycle repeats until the simulation is stopped.

Exploration step: Agents select a new destination—a building at
a distance sampled from P(Ax) in a random direction from their
current position. This location is added to S(¢) with visitation fre-
quency 1. The path to this destination is calculated as the shortest
route along the street network, connecting the nearest points on
the street to the buildings’ location and segmented according to
the agent’s moving speed and simulation step duration.

Return step: Agents return to a previously visited location by sam-
pling a location from S(t) weighted by the corresponding visitation
frequencies. The route to this new location is chosen based on the
shortest path, and the visitation frequency corresponding to the
location in S(t) is incremented by 1.

!github.com/louiseleibbrandt/mesa-mobility
2 openstreetmap.org
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(a) Ground truth user movement

(b) Corresponding CDRs

Figure 1: Simulation is split into two steps: (a) step 1 produces an underlying user movement, (b) step 2 produces CDRs for two

phones traveling along this route.

3.1.2  CDRs. In the second stage, we utilize the simulated paths
produced by the mobility model to generate CDRs for phones travel-
ing along these routes. We create two CDRs for each path, reflecting
the scenario where each user carries two phones. The sampling
happens in two phases: first, determining the phone usage times
{tj'." }j=1,...k> closely related to user behavior, and second, modeling
the location of the corresponding connecting antenna, {x]C b=,k
driven by the technical telecom process of cell tower connectivity.

In the first phase, we model when users use their mobile phones.
As each user carries two phones, we implement two sampling
strategies modeling whether the phones are used independently or
dependently from one another. For both strategies, we assume that
the inter-event times between consecutive phone usages follow
an exponential distribution with a rate of one per hour. Assuming
starting time Ty, set to the starting time of user location simulation,
we define the sampling process for usage times of the two phones,
tJl. and tjz., sampled at position j under each dependency type. Under
independent sampling, inter-event times (AT) for each phone are
sampled separately, with usage times defined as follows:

J

1

tj =T+ Z ATJ"],
i=1

J

2

tj =T+ Z ATj’z,
i=1

where ATj 1 ~ Exp(1) and ATj > ~ Exp(1). Under dependent sam-
pling, rather than sampling inter-event times from a separate dis-
tribution per phone, we sample inter-event times from a shared
distribution per user. A switch condition s(j) then dictates the as-
signment to one of the two phones. This switch condition could,
for example, be at a time interval during the day. This would result
in one phone being used between certain hours; otherwise, the user
uses the other phone. The usage times then follow:

J

o 1

if s(j) then tj = To + Z AT;,
i=1

J
otherwise t]2_ =T+ Z AT;,

i=1
where AT; ~ Exp(1). The resulting usage times sampled in the
first phase, {tj'."}jzly_.,k, are mapped to the closest point in time
in the underlying movement path, the corresponding locations at
these times, {x;‘n}j=1,.4.,ks then represent the locations of the phone
at these usage times. In the next phase, we utilize these phone
locations to sample connecting cell locations {qu} =1, k-

To determine the locations of the connecting antenna, we aim
to replicate the complex process of cell connections. We utilize the
antenna coverage model detailed in Section 2.2.2, which predicts
the probability of connecting to an antenna from a given location.
Figure 2 provides an illustrative example of how this coverage
model works. We extract antenna locations and azimuth directions



0.1 0.1 0.1 0.1 0.1 0.15 0.2
0.1 0.1 0.1 0.1 0.2 0.35 0.5
0.1 0.1 0.1 0.1 0.5 0.75 0.65
0.1 0.1 0.1 0.9 0.8 0.7
0.1 0.1 0.1 0.1 0.5 0.75 0.65
0.1 0.1 0.1 0.1 0.2 0.35 0.5
0.1 0.1 0.1 0.1 0.1 0.15 0.2

Figure 2: The coverage model specifies the probability of con-
necting to an antenna c from a given location x: p(c|x). Itis a
basic model that only considers the distance to the cell tower
and the azimuth, the angle with its transmission direction.
We use this model to sample from possible antennas c; by

drawing each antenna with probability %

from a Dutch open-source antenna database>. We assume all agents
utilize phones connected to the fourth-generation network (4G,
also known as LTE) and only extract antennas in the LTE group.
We build a coverage model for each of the antennas, and for each
phone location x;" in {x;" }j=1,...k> we sample a connecting antenna
¢j proportional to
Pl
Se, (Gl

We use the locations of connecting antennas, xJC., to form our con-
necting cell locations {x; Yt ke

3.2 Defining the scenarios

We take one set of parameters as a baseline scenario. Here, we sim-
ulate individuals that move in the Rotterdam-The Hague area and
carry two independently used phones. We then adjust the parame-
ters to get at three specific scenarios, examining user movement
and phone usage variations. As our goal is to perform a robust-
ness analysis, we purposefully simulate scenarios that are on the
extreme side rather than maximally realistic scenarios. For exam-
ple, in scenario many locations, we simulate agents that constantly
travel to new places rather than simply returning to more locations
than baseline agents.

3.2.1 Baseline parameters. For our baseline scenario, we use pa-
rameters for waiting time and travel distance distributions esti-
mated by Song et al. using GSM data [6]. This analysis investigated
a year-long CDR dataset from 3 million anonymized users and a
smaller, two-week GPS study tracking 1,000 users. The waiting

3antenneregister.nl

times follow a truncated power-law distribution P(At) with param-
eters f = 0.8, Atymin = 20min, and Atygx = 17hrs, and the travel
distances follow a truncated power law distribution P(Ax) with
parameters a = 0.55, Axppin = 1km, and Axpax = 100km. Our base-
line model assumes a more regular pattern of movement, setting the
exploration probability pS™Y with p = 1 and y = 2. The registration
times of the phones follow a Poisson process, where inter-event
times are sampled from an exponential distribution with a rate of
one per hour.

3.2.2 scenario dynamic/local. For scenario dynamic/local, we in-
vestigate variations in the underlying mobility distributions used
in EPR, encompassing the waiting time P(At) and travel distance
P(Ax) distributions. We adjust the scale parameters of P(At) and
P(Ax), i.e., the Atmin, Atmax, and Axmin, AXmax, by a factor of 10
whilst maintaining the shape parameters at f = 0.8 and « = 0.55.
We examine the impact of significantly reduced waiting times for
the waiting time distribution. The baseline scenario, with Aty,in =
20min, Atmax = 17hrs, depicts our static agents, while the ad-
justed version, Atyin = 2min, Atpax = 1.7hrs, models our dynamic
agents. Regarding travel, considering the baseline parameters al-
ready accommodate large movements, we test the effects of re-
duced travel distances: the baseline scenario, with Ax;,in = 1km,
Axmax = 100km, characterizes our regional agents. The adjusted
scenario, with distances from Ax;,in = 100m, Axpmax = 10km, de-
fines our local agents. We investigate all agent combinations, i.e.,
static local, dynamic local, static regional (=baseline scenario), and
dynamic regional.

3.2.3 Scenario many locations. In scenario many locations, we sim-
ulate individuals with a less predictable movement pattern. We
define two agent categories, returners with predictable movements
and explorers with unpredictable movements. The exploration prob-
ability in the EPR model is pS™Y, where S is the number of unique
locations visited. The returners are kept at p = 1 and y = 2, corre-
sponding to our baseline parameters, while explorers have p = 1
and y = 0. The choice of parameters ensures that returners will
converge to an average of roughly 13 visited locations after 40 days
of simulation, whereas explorers will always remain in a state of
exploration.

3.24 Scenario dependence. Scenario dependence examines the im-
pact of a different usage pattern for the two phones: using one
phone exclusively during the day or at home and otherwise us-
ing the other. Agents are either independent or dependent. The
independent case corresponds to our baseline parameters in which
we sample usage times independently for the two phones. Under
dependent sampling, we define a switch condition to determine
which phone is being used by the user. We examine two types of
switch functions: time-based and location-based. The time-based
switch occurs at 09:00 and again at 17:00; the user uses phone one
during the hours 09:00-17:00 and phone two from 17:00-9:00. The
location-based switch occurs when the agent enters or exists within
a 500-meter radius of their home location; using phone one within a
500-meter radius of the home and phone two outside of this radius.
To assign home locations to each agent, we assign a random loca-
tion with a visitation frequency of 10 at the start of the simulation,
ensuring regular return visits.
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3.3 Defining the methods

We evaluate four co-usage methods, the three existing approaches
detailed in Section 2.1 and a fourth combination approach, combin-
ing the LRs from the close pair and categorical count methods. We
provide the implementation-specific decisions for each method in
the subsequent subsections.

3.3.1 Discriminative. The discriminative approach requires a train-
ing dataset for fitting model parameters. To obtain these, we simu-
late separate CDR datasets with parameters equal to those used to
generate the evaluation datasets. This results in 7 separate training
datasets of equal size and behaviour parameters as those in the
evaluation datasets described in Section 3.2. We train models on
each unique training dataset, followed by assessments across all
evaluation datasets. This process allows us to examine the effect of
performance when behavioural patterns in the underlying training
dataset align or misalign with those in the evaluation dataset used
for model validation.

3.3.2  Close pair. The close pair method requires a statistical model
of the service area of an antenna. We utilize the coverage model
detailed in Section 2.2.2, from [3].

3.3.3 Count. The categorical count method requires a geographic
segmentation to define event categories. We use an open source
dataset* that partitions the Netherlands based on the first four
digits of the Dutch six-character postal codes. We limit these to the
postal areas covering our bounding box, resulting in 620 partitions.
We assume a non-informative (symmetric) prior, « = (1, 1,...,1),
assuming categories are equally likely to occur. As this method
provides unrealistically large LRs [2], we bound the LRs using the
input dataset size as a cut-off. We set n to the smaller size of the
two input CDR vectors, bounding the LR to lower bound 1/n and
upper bound n. This simple bounding improves performance over
the unbounded method on all generated evaluation datasets (see
Appendix A).

3.3.4 Close pair x count. We propose a fourth method that com-
bines the likelihood ratios produced by the close pair and categorical
count methods through multiplication. The rationale behind this
approach is that these methods provide (nearly) independent as-
sessments; the close pair method considers the evidence contained
in a pair of registrations occurring close in time, whilst the categor-
ical count considers the broad spatial patterns in all registrations
whilst ignoring the temporal dimension. The two methods will not
be fully independent, e.g. because the former estimates the rarity
of an antenna registration based on the overall spatial pattern of
that phone. Thus, it is interesting to see if the combined method
performs better than the separate approaches.

3.4 Evaluating the methods

We use the same metric to evaluate all methods using the same
generated datasets and corresponding phone pair combinations.
Details of this process are described below. We follow the terminol-
ogy of [1], referring to all phone registrations in a 24-hour period
as a track, and combinations of tracks as track pairs.

4hub.arcgis.com

3.4.1 Simulation parameters. For all simulated evaluation datasets,
we simulate 100 agents within a bounding box encompassing Rotter-
dam and The Hague (coordinates: 4.2009, 51.8561 to 4.5978, 52.1149).
The simulations last 40 days, but we analyze only the last 30 to
minimize any initial start-up biases. Agents move at 14 m/s (roughly
50 km/h), and user location is recorded every 60 seconds.

3.4.2 CDR preprocessing. To evaluate the chosen phone-pair co-
usage methods, we utilize telcell®, a collection of scripts developed
by the Netherlands Forensic Institute. This code base provides a
pipeline for evaluation. We split the antenna registrations into 24-
hour intervals called tracks for all evaluation datasets. Tracks are
matched from the same date to form the track pairs, with same-
user track pairs matched if they originate from the same user. For
the different-user track pairs, we match phones originating from
different users, and we sample a subset of track pairs matching the
size of same-user pairs. This sampled subset is utilized across all
methods to ensure uniform conditions.

3.4.3 Measuring performance. To evaluate the performance of the
aforementioned co-usage assessment methods, we utilize the log-
likelihood ratio cost (Cy;,), as recommended for forensic evidence
analysis [14]. This metric assesses both the discrimination and
calibration of the method—it penalizes misleading LRs and penalizes
them more strongly when they deviate further from 1. Given a set
of same and different user observations, Oy, and O, sampled
under hypotheses Hy,, and Hy,, respectively, and with size Ny, and
Ny, the Cyp, is defined as

C11r(Osu, Ogy) =

1 1 1 1
5 New Z 10g2(1+m)+N—du Z 10g2(1+LR(0)) s

0€0gy, 0€0g4y

where LR(0) is the LR produced by the system for observation
o. As the Cyj, is a cost function, a lower score indicates higher
performance. A perfect system would result in a Cy;, of 0, whereas
a non-informative system, such as one always returning LR = 1,
would yield a Cy;, of 1. Scores below 1 signify that the LR system
will improve decision-making on average; above 1, it will make
decisions worse on average [15].

4 RESULTS

We first show results for the baseline (Section 4.1) and three sce-
narios (Section 4.2) and conclude with a comprehensive analysis
combining all datasets to analyze general model trends in Section
4.3. See Appendix B for an overview of simulated dataset sizes and
global dataset metrics for the baseline and three scenarios.

4.1 Baseline

Table 1 presents the Cyj, scores obtained by each method on the
evaluation dataset simulated using baseline parameters. Although
Cyy scores may be sensitive to the dataset evaluated, we compare
method scores to those reported in the papers that introduced them
as a sanity check. Both the discriminative and close pair methods
were previously assessed on the Netherlands Forensic Institute (NFI)

5 github.com/NetherlandsForensicInstitute/telcell
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Method Train Baseline
Discriminative Baseline 0.097
Close Pair - 0.580
Count - 0.471
Close Pair * Count - 0.418

Table 1: The log likelihood ratio cost (Cjj,) for the evaluation
dataset with baseline parameters.

curated dataset [1, 3], and the count method on a Twitter dataset
[2].

The discriminative approach achieves Cjj,. = 0.097, outperform-
ing the Cyj, of 0.47 it achieves on the NFI dataset. This improve-
ment likely stems from the simulation training data’s larger size
and greater similarity to the corresponding validation data. The
close pair method scores a Cy;, = 0.580, more closely aligning with
its Cjj, = 0.71 on the NFI dataset. The improved performance indi-
cates that our baseline parameters favor the close pair model more.
This is potentially due to the NFI dataset’s composition, which in-
cludes employees commuting to the same location at similar times,
resulting in a higher incidence of co-locations for different users.

The count method scores a Cyj, of 0.471, improving upon the
Cyr = 0.778 achieved on the Twitter data under non-informative
prior. However, this does not account for the boundary adjustment
we applied to improve calibration. Without this adjustment, the
method’s performance drops to Cjj, = 0.667 on the simulated data,
more in line with its result on the Twitter data. These results may
be less comparable as we only examine data originating from a
single day for each LR, unlike the months-long observation period
used in the Twitter data. Combining close pair and count yields a
Cyyr = 0.418, surpassing their individual performances and indicat-
ing combined evidential strength on the baseline parameters.

4.2 Scenarios

4.2.1 Scenario dynamic/local. Table 2 provides the results for vari-
ations in the scaling of the waiting time and travel distance distri-
butions. While the discriminative method demonstrates resilience
across most training and evaluation configurations, it struggles
when trained on local agents with short travel distances and as-
sessed on dynamic regional agents with larger travel distances and
short waiting times. This discrepancy is likely due to the system
learning to recognize shorter travel distances belonging to the same

user while also learning from stationary agents. Therefore, it only
fails on datasets marked both by greater travel distances and mini-
mal stationary behavior.

The close pair method showcases robustness across the scaled
waiting time distributions, achieving consistent outcomes for both
static and dynamic settings when the travel distance distribution
remains the same. However, its performance is sensitive to scaling
in the travel distances, with regional agents performing better than
local ones. This sensitivity likely stems from the local agents travel-
ing smaller distances and connecting more often to a smaller subset
of antennas. This increased repetitiveness of antenna connections
increases the likelihood of coincidental co-locations for same-user
pairs, resulting in less confident and accurate same-user likelihood
ratios.

The count method’s performance diminishes with shorter wait-
ing times and larger travel distances, showcasing sensitivity to
scaling in both distributions. Scaling these parameters broadens the
spread of the location data, reducing the accuracy and confidence
of likelihood ratios produced by the count method for same-user
track pairs. Given that the close pair and count methods offer com-
pensatory benefits across the variations, the combined approach
seems to provide a stabilizing effect, positioning the combined
performance between the outcomes of the individual methods.

4.2.2  Scenario many locations. In scenario many locations, we in-
vestigate the impact of location predictability on method perfor-
mance, detailed in Table 3. The results indicate that the discrim-
inative approach appears robust to these variations, most likely
because the method does not consider precise location information
but investigates the time and space distance between consecutive
pairs of registrations.

Method Train  Returners Explorers
Discriminative returners 0.097 0.077
explorers 0.133 0.075

Close Pair - 0.580 0.299
Count - 0.471 0.623
Close Pair * Count - 0.418 0.235

Table 3: The log likelihood ratio cost (Cj;,) for the evaluation
datasets in scenario many locations. The dataset “Returners”
corresponds to our baseline parameters.

. Static Dynamic Static Dynamic

Method Train Local }Il,ocal Regional RZgional
Discriminative static local 0.126 0.136 0.281 1.193
dynamic local 0.127 0.137 0.263 1.540

static regional 0.156 0.188 0.097 0.396

dynamic regional = 0.245 0.252 0.142 0.251

Close Pair - 0.789 0.725 0.580 0.517
Count - 0.250 0.308 0.471 0.744
Close Pair * Count - 0.298 0.333 0.418 0.538

Table 2: The log likelihood ratio cost (Cj;,) for the evaluation datasets in scenario dynamic/local. The dataset “Static Regional”

corresponds to our baseline parameters.
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Figure 3: Heatmap and marginal distributions of distance and time difference for features extracted from consecutive phone-pair
registrations, for (top) same-user and (bottom) different-user track pairs for the three-time sampling cases: (left) independent

(middle) dependent on time and (right) dependent on location.

The close pair method performs better on the many locations
visited in the explorers dataset. This trend mirrors scenario dy-
namic/local, where user locations, and therefore corresponding
antenna connections, are more repetitive under the predictable lo-
cations in the returners dataset. This repetitiveness, again, results in
agents connecting to a smaller subset of antennas with higher visita-
tion frequency, increasing the likelihood of coincidental co-location
for same-user pairs.

Unlike the close pair approach, the count method’s performance
decreases on the explorers dataset. Mirroring scenario dynamic/local,
users visiting many locations produce a wider dispersion of points,
reducing the count methods performance for same-user classifica-
tions. Similar to baseline findings, merging the close pair and count
methods improves upon the individual performances, showcasing
combined strength under these parameters.

4.2.3  Scenario dependence. In Table 4, we provide model perfor-
mance for the varying dependency sampling techniques in scenario
dependence. The discriminative method’s sensitivity becomes ap-
parent when trained on either the independent or dependent time
dataset and then evaluated on the dependent location dataset. To
explain this sensitivity, we include the distribution of features (used

for training) for the same- and different-user pairs across the vary-
ing dependencies in Figure 3. These distributions reveal that lo-
cation dependence fundamentally changes the time and distance
distributions between the same-user pairs (as seen in the top right
plot in Figure 3). This change makes the distribution of features
between the same- and different-user cases more similar, making it

Method Train Ind. D.ep. Dep.
Time Loc.
Discriminative ind. 0.097 0.607 3.151

dep. time | 0.161 0.413 1.503
dep. loc. 0.361 0.643  0.752

Close Pair - 0.580 0.412  0.228
Count - 0.471 0.838 1.242
Close Pair * Count - 0.418 0556  0.425

Table 4: The log likelihood ratio cost (Cy;,) for the evalua-
tion datasets in scenario dependence. The dataset “Ind.” cor-
responds to our baseline parameters. Abbreviations: Ind. =
Independent, Dep. = Dependent, Loc. = location.



Method Train Static Dynamic Baseline Explorers Dyn.amic Depcf,ndent Depenflent
Local Local Regional Time Location

Discriminative static local 0.126 0.136 0.281 0.165 1.193 1.611 4.497
dynamic local 0.127 0.137 0.263 0.244 1.540 1.129 4.458

baseline 0.156 0.188 0.097 0.077 0.396 0.607 3.151

explorers 0.287 0.220 0.133 0.075 0.403 0.653 2.752

dynamic regional 0.245 0.252 0.142 0.086 0.251 0.594 2.766

dependent time 0.185 0.214 0.161 0.152 0.344 0.413 1.503

dependent location = 0.515 0.455 0.361 0.387 0.494 0.643 0.752

Close Pair - 0.789 0.725 0.580 0.299 0.517 0.412 0.228
Count - 0.250 0.308 0.471 0.623 0.744 0.838 1.242
Close Pair * Count - 0.298 0.333 0.418 0.235 0.538 0.556 0.425

Table 5: The log likelihood ratio cost (Cjj,) for all datasets featured in our experimental analysis, including all train and
evaluation combinations for the discriminative approach. The ordering of datasets is according to the performance of the

count method.

more difficult to distinguish between them. When the discrimina-
tive model is fit on easier-to-distinguish data, it learns to classify
simple patterns as originating from the same user; if then validated
on a much harder evaluation dataset, the method will naively assign
any non-simple patterns as being from different users, resulting in
many overconfident and incorrect different-user likelihood ratios.

The close pair model consistently achieves high and stable per-
formance across the dependencies. In both dependent samplings,
the time between consecutive registrations is much higher than
under independent sampling, as seen in Figure 3’s temporal dis-
tributions. As this method attempts to find a pair of registrations
within a 2-minute window, it can only create likelihood ratios for
a small set of same-user track pairs under dependency sampling,
something not reflected by the Cjj, metric.

The count method’s performance declines under dependency
sampling, particularly for the location dependence. Both dependen-
cies create a segmentation of the location data, which is especially
pronounced under location sampling. As the count method only
investigates spatial information, this complicates its ability to recog-
nize same-user pairs, resulting in many overconfident and incorrect
results. The combination approach stabilizes the count method’s
low performance, as the close pair filters out many of its incorrect
same-user likelihood ratios.

4.3 Comprehensive Dataset Analysis

We combine previous results into Table 5, including results for all
combinations of train and evaluation datasets used in the discrimi-
native approach. As expected, the discriminative approach achieves
its highest performance when trained and evaluated on datasets
with shared parameters, as seen by the results on the diagonal axis
in Table 5. The general behavior is that fundamentally changing
the time difference and distance between pair registrations results
in worse Cjj, values. Cy;, values even surpass 1 when the resulting
patterns for the hypotheses are easy to distinguish in the training
set but hard in the evaluation, i.e., in the top right corner of the
table.

The general pattern for the close pair approach is that it is robust
to all scenarios, achieving only Cyj,- values below 1. Its performance
declines under more bounded or repetitive movement; however, it

manages high results under dependency sampling due to the close
time constraint when choosing a pair of registrations to evaluate.

Contrary to the close pair approach, the count method improves
for bounded and repetitive movements yet deteriorates under de-
pendency sampling. Given this general trend of compensatory
benefits between the close pair and count methods, the combined
approach results in a stabilizing effect, achieving relatively high
performance across the variations. Combining the likelihood ratios
increases the individual performances for 2 out of the 7 investigated
datasets, indicating that these methods may achieve combined evi-
dential strength for some datasets.

5 DISCUSSION AND CONCLUSION

Our study examined the robustness of various systems for assessing
phone-pair co-usage from Call Detail Records (CDRs). We designed
a systematic evaluation method using simulated data to observe
the impact of travel and phone usage behaviors on the performance
of various systems. We explored a discriminative approach trained
on a reference CDR dataset, a close pair method analyzing a select
registration pair close in time, and a categorical count method that
assesses global spatial information. Additionally, we introduce a
hybrid approach combining the close pair and categorical count
methods, supported by their complementary potential. Our exper-
imentation focused on three behavioral scenarios: alterations in
temporal and spatial distributions modeling user movement, vari-
ations in location visit predictability, and different phone usage
dependency samplings.

5.1 Interpretation and implications

Our findings reveal that the data-driven discriminative approach
is adaptable and achieves high performance across behavioral sce-
narios, but only when trained on representative data. This same
adaptability means that, when the parameters for training and eval-
uation are distinct, the model can become over- or underconfident,
even leading to a system that makes decisions worse on average
(Cygr > 1). Therefore, we recommend that practitioners only use
this system if confident that their reference dataset closely matches
the alternative population in the case at hand.



We find that the close pair approach is much more robust, show-
ing adequate performance for all scenarios tested. This makes it
a safer method to use in practice. However, particularly under
bounded and repetitive movement, investigators should be aware
that this method may result in underconfident same-user likelihood
ratios.

The categorical count method performs well under various sce-
narios, showing mostly low Cy;, values. The method requires that
the sampling period is long enough, such that most of the user’s
movement behavior has been observed, and will thus be less useful
when phones are used for only days. More importantly, the method
breaks down (Cy;, > 1) when there is a strong mismatch in phone
usage, e.g. when one phone is used at home and the other at work.
The close pair approach is more favorable if such a mismatch is
present.

As the close pair method looks at detailed time-dependent in-
formation and the count method looks at overall spatial patterns,
their evaluations may be regarded as (nearly) independent. We
therefore proposed a fourth approach that simply multiplies their
LRs. This approach resulted in a well-performing system that was
stable across the scenarios.

5.2 Limitations and future work

We employ relatively simple behavioral modeling that does not
cover all possible relevant behaviors. For example, bounding-box
effects limit the maximum distances and speeds covered by agents,
therefore inter-city travel at high speeds is missing from our in-
vestigation. We aimed to look at a spread of feasible behavioral
profiles specifically to test the robustness of methods rather than
provide the definitive answer on what method works best. Given
the expected and observed performance of the methods, adding
more details will likely not change the overall picture of robustness
we found.

Another interesting avenue for extension is the inclusion of
social-based models aimed at capturing dynamics between related
agents, i.e., family members or coworkers. Modeling these rela-
tions would result in harder datasets containing more examples of
accidental co-locations. These datasets would not conform to the
alternative hypothesis used by the method of independent move-
ment, it would be interesting to see what this would do to model
results.

Our work also points at improvements possible for the evidence
evaluation methods themselves. Although the close pair method
shows robustness, it is often underconfident. Incorporating more
information, such as sequential data, may improve this. One way
forward may be to further investigate the combination of methods
that look at different aspects of the data, which we did in a very
simplistic manner here by multiplying LRs.

5.3 Conclusion

In conclusion, no single method is preferable in any situation. When
little knowledge is available on the population of interest, the close
pair method seems the safest bet. For longer sampling periods, it
may be well worth looking at the count method or a combination of
the two, as it provides additional information. When reference data
are available that can be seen as representative of the population of

interest, more data-driven approaches, such as the discriminative
approach, will offer the best performance.

A COUNT POST-HOC CALIBRATION

Table 6 provides the log likelihood ratio cost for the original and
our proposed bounded count methods on the experimental evalua-
tion datasets. Our simple bound improves results on all datasets,
indicating that the count method may result in unreasonably large
LRs.

Count Count
Dataset ..

original bounded
static local 0.267 0.250
dynamic local 0.383 0.308
baseline 0.667 0.471
explorers 0.943 0.623
dynamic regional 1.156 0.744
dependent time 0.994 0.838
dependent location 2.082 1.242

Table 6: The log likelihood ratio cost (Cy;,.) for the count
method for both the original method and our proposed
bounded method. For bounding, we clip the LR to lower
bound 1/n and upper bound n where n is the smaller length
of the evaluated input tracks.

B OVERVIEW OF EVALUATION DATASETS

Table 7 provides an overview of the global metrics for the evaluation
datasets across the baseline and three behavioral scenarios. It details
the total number of days, agents, phones per agent, data points, and
track pairs utilized, and it also outlines the average number of daily
switches observed between same- and different-user track pairs.

Metric Baseline Dyn./Loc. Many Loc. Depend.
days 30 30 29 30
agents 100 100 100 100
phones per agent 2 2 2 2
data points 142.8k 143.9k 129.9k 71.8k
track-pairs 6k 6k 5.7k 6k
avg. dsu 22.7 22.5 22.0 235
avg. dau 22.6 225 21.9 7.29

Table 7: Global dataset metrics for baseline and various sce-
narios. ¢g,: switches between same-user track pairs, ¢g,:
switches between different-user track pairs.

Similar values are observed across datasets that utilize indepen-
dent sampling, namely the baseline, the dynamic/local scenario,
and the many locations scenario. In contrast, the dependence sce-
nario employs dependency sampling, where we sample usage times
from a single distribution per individual rather than separate dis-
tributions for each phone. As a result, datasets generated under
dependency sampling are approximately half the size of those pro-
duced via independent sampling. With independent sampling, we
observe a consistent average of around twenty-two daily switches



between same- and different-user track pairs. Dependency sam-
pling, however, leads to a substantial reduction, with different-user
pairs averaging about seven switches. We also use a restrictive
switch condition under dependency sampling based on a specific
time of day or if the user is within a particular area. This results in
an average of roughly only two switches per same-user track pair.
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