
Using an eye tracker to measure developer focus
while writing unit test from within the IDE

Martijn Gribnau,
Delft University of Technology

m.m.w.gribnau@student.tudelft.nl

Abstract—Background: Reading and understanding source
code and writing test cases are indispensable parts of routine for
modern software developers. Unit testing helps many developers
to detect and prevent bugs at an early moment and is a cost-
effective way to improve the effectiveness of a program. With the
availability of portable eye trackers, it has become possible to
measure what developer focus on while comprehending code.
Goal: This paper identifies the effort spent fixating between
production code, test code and feedback on test results from
the IDE.

Method: Participant developers are given production code and
are tasked with testing the code like they would in their routine
development situation. To enable a routine-like development
situation, developers have access to a popular Java IDE. The
gaze of the developer is tracked using an eye tracker. Fixations
within marked areas of interest (AOI) are calculated from the
gaze measurements using the i-Vt algorithm. Fixations are then
mapped to areas of interest which have been created from the
screen recording. From the fixation-to-AOI mapped results we
can learn what developers look at when developing unit tests.
Results: Developers spend the majority of their fixation time,
focusing on test cases (tc), followed by the production code (ic),
which encompasses the method under testing, the auxiliary code
and the code comments. Little time is spent fixating on the test
results, but this could be explained by the test results being only
the indication of feedback to a developer. When delving deeper in
understanding on why written test cases might fail, a developer
will look into the ic and tc areas again, as they provide the source
to find that understanding. Conclusions: We investigated where
developers spent their time while unit testing. From the results
we can conclude that on average developers spent slightly more
time fixating on the test code than on the production code. This
could imply that writing test cases requires active understanding
of the test case being written. The method used did not allow for
reliably identification of AOI sequences.

I. INTRODUCTION

Software testing happens on many different levels and many
different processes have been developed, integrated in well
known software development models such as the Waterfall
model, the V-model and Rapid Application Development
models [1], [2]. An important part of many of these models
is component level testing [2], also known as unit testing,
which usually happens right before or after the development
of incrementally added program features. Unit testing has the
advantage of being accessible, since it is done isolated from
the rest of a program and is a cost effective method to find and
prevent faults (also known as bugs) in programs in an early
state of the software development cycle [2].

Unit testing is perceived to be commonly used. Beller at
al. [3] reported in a study which among others tried to find

out how much software testing was used in software projects,
that from the 460 projects they analysed, 43% were detected
to contain tests and 19% contained JUnit unit tests which the
Eclipse integrated development environment (IDE) used in the
study could actually run.

As biometric tools such as eye tracking have become
more widely available, researchers have started using it in
the program comprehension field. Various researchers have
been using eye tracking to measure program comprehension
within production code [4], [5]. After searching and not
finding studies which focus on test code comprehension, Yu
investigated (without the use of biometric tools) what test code
comprehension was influenced by. This paper delves further
into looking at test code comprehension by identifying the
time developers spent fixating on different areas of interest
while developing test code.

II. RESEARCH METHODS

The goal of this study is to explore what developers focus on
during the writing of unit tests, knowledge which can be used
to enhance unit testing methods. It also seeks to find which
code segments are important during the writing of test cases
and what focus patterns between code segments are common.
The following research questions are presented to that aim:

RQ1 Where do developers spend their time while unit testing?
RQ2 Can the finding of bugs be predicted by the amount of

tests written and the time spent on fixating on the test
code area of interest?

A natural way to find out on what developers focus on
is by finding out how much time they spend on different
code segments. Sharif et al. [5] showed that spending more
time reading source code could have beneficial effects on
how developers comprehend source code. For developers,
spending more time on a code segment indicates that the area
is important to grasp enough understanding, to write proper
unit tests. The code segments, also called areas of interest,
used for measurements during this study are:
• ic: implementation or production code, subdivided into:

– mut: method under testing
– aux: auxiliary code relevant to the method under

testing
– cm: code comments

• tc: test code for method under testing
• tr: test results for method under testing

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

The implementation code, also known as production code
ic, is the human readable source code written by a developer
which implements features for a program to function. It is
further divided into the method under testing mut, auxiliary
code which the method under testing could rely on or is
otherwise relevant, called aux, and code comments cm which
can guide a human in understanding the implementation code.
The segment which contains the unit test code is marked as
tc. Finally, there are the areas called tr and dbg, which stands
for test results and debugging tools respectively. While tr and
dbg are not segments within the code, these areas provides
indispensable feedback to a developer on the success or failure
of a test case, the code coverage of the implementation code
and specifically the method under testing and in the case of
dbg feedback towards understanding of the behaviour of the
code.

1) Overview of the Experiment: To aid in finding an answer
on the above research questions, the following experiment
setup is presented: a participant receives a code task which
deliberately contains a fault. The fault is obscured by the
surrounding source code, making its unlikely to be spotted
right away. Additionally the fault is a logical one, to ensure
that the static analysis tools automatically running in the
background of the IDE will not flag the bug and warn the
participant. The participant will not explicitly be told that
the code contains a fault and will be tasked with completing
the code such that the code will be ready by means of
testing and fixing problems in the code which came up as
a result of performing software testing activities, like how the
participating developers would if it was their own source code.

The focus (i.e. where on the screen the participant is
looking) of the participant will be tracked in real time, and
the actions taken by a participant are written down so when a
participant finds a bug, it will be noted. The implementation
and test code are checked afterwards to verify whether the
participant found and fixed a bug.

The participant is additionally asked about their level of
programming experience in years and months for both pro-
gramming in general, and programming in Java, the language
used in the experiment.

A. Developer Environment

The experiment used Java as programming language, which
is a modern, widely used programming language and has
actively maintained and mature tools and testing frameworks.
As testing framework, JUnit 5 was used. With a focus on
providing a development environment which a majority of
participants would be used to, it was decided to use the popular
Java IDE Intellij IDEA 2019.2.1 (Community Edition)[6], [7].
The measurements were taken on a Dell XPS laptop (Intel
i7-8750H 2.2Ghz with 32GB RAM installed), running the
Windows 10 Pro operating system. The experiment took place
in a evenly lighted room without outside facing windows, to
minimise possible reflections which could influence measure-
ments taken by the eye tracker. Figure 1 shows the IDE as
presented to a participant at the start of the code task.

Fig. 1: Developer environment

B. Task

A key wish in the setup of the experiment was to provide
a developer with a natural developer environment (i.e. an
environment where a developer can feel at ease, for as much
as a lab experiment allows). The task used in this experiment
is no exception. The task is derived from the Phone Number
exercise[8] from the code practice website exercism.io1. The
selected task was chosen because it describes a real world
practical problem, it does not require deep domain specific
knowledge, can be rigorously tested within half an hour and
requires one to break the testing of the provided implemen-
tation code in multiple smaller parts, as it contains multiple
code evaluation paths.

The provided code tasks contains a bug (signalling improper
implementation), which should not be instantly visible on the
a first scan, but will become visible by systematically testing
the implementation. In order to provide a slight direction to
a participant, examples of phone numbers which should be
accepted by the getFormattedNumber method (the method
which a participant is asked to unit test) and examples which
should be rejected are provided as part of the inline docu-
mentation. The implementation code for the code task can be
found in appendix A and the template for the test code can be
found in appendix B.

The fault in the code sample consists of the requirement
to handle a country code as input, while only accepting
North American Number Plan (NANP) numbers, thus only the
country code ′1′ should be accepted. Note that country codes
which are longer than one digit will be rejected based on the
required amount of digits (11 if the including the country code
or 10 if the country code is not included).

Other faults which a participant could evaluate and decide
to be bugs are the automatically acceptance of any character
which is not a digit (e.g. alphabetical letters) and the use of an
ArrayList with the remove(0) method which shifts all other
characters to the front upon removal of the first character.

Before a developer participant starts with the experiment,
an explanation of the build up of the code task is given, so
the participant will have a general understanding of the case.

1The tasks are provided by exercism.io under the MIT License

tr

mut

cm

aux

cm

implementation
code (ic)

test code(tc)

Legend

time

Scroll
Event

(within ic)

related (to mut)
comments (cm)

method under
testing (mut)

related (to mut)
auxiliary code

participant
implemented

test cases

tr

mut

aux

cm

tr

mut

aux

cm

Scroll
Event

(within tc)

Fig. 2: When content on the screen moves, AOIs should move
with the content

Normally, a developer would have gained such understanding
by researching the feature to implement or by implementing it
in source code. Specifically, the specification of the code task
is explained including, but not limited to, the requirement of
only allowing 1 as the country code within the input. The
examples which are also part of the inline documentation at
the class level are given as examples during the instruction
of the participants. A participant is told to test the code in a
similar way to how they would normally test their own code.

C. Measurements

In order to precisely measure what a participant focuses on,
a Tobii X2-30 eye tracker [9] was used. The eye tracker, in
combination with a screen recording, enabled us to measure
on which areas of interest (AOI) a participant fixates while
developing test code. For this to work, data recorded by the
eye tracker had to be mapped on the screen recording, as the
developer environment is not static and allows interactions
such as scrolling windows and switching between tab views
of source code files.

The iMotions[10] software was used to record, synchronise
and initially process the raw data received from the Tobii
X2-30 eye tracker. The raw data contains the gaze positions
and eye positions and the iMotions software calculated eye
fixations based on the i-Vt[11] algorithm. Fixations are small,
domain limited planes of eye gaze positions which are within a
short distance of each other, within a short period of time [12].
The metrics used to measure how much a developer focuses
on an area of interest are the fixation time and the fixation
count. The fixation time represents the duration of the time
spent fixating within an area of interest. The fixation count
is the number of fixations which happened within an area of
interest. Fixation was chosen as a metric because fixations are
considered to imply the moments of comprehension[13].

D. Post processing

The recorded raw data and calculated fixations required
post processing to map measured eye gaze positions on the
screen to the recorded screen content within the IDE and find

out whether a developer’s gaze is within an area of interest
at a given moment. Areas of interest were manually created
by dragging rectangles on the code segments and test results
screen. Before the areas of interest could be created with
iMotions, the video recording of the content on the screen
had to be converted to individual image frames as the video
based area of interest tool was not designed for large amounts
of screen details and low contrast. Since the screen recording
contained moving content (for example by means of scrolling
or typing), marked areas of interest would have to move
with their content on each recording frame. The excessive
amount of recorded frames made this impossible. Observing
the recording showed that for the majority of the time, content
on the screen did not move. Because of this observation,
an approximation of the measurements taken (weighted up
against the large amount of recorded data) was used in which
frames were no movement or no likely movement took place
were merged. After completing this process, the results were
scanned for rough errors in and detected errors were corrected
manually. Figure 2 shows the necessity to remap areas of
interest between moments of motion.

This process started with the export of scroll event data as
recorded by iMotions, which consisted of scroll events which
were the primary source of vertical motion within the IDE.
The other major source of vertical motion was typing in new
test cases, however as test cases were only tracked by the tc
code segment, the moving of text within that window did not
matter for the mapping of areas of interest to the recorded
screen content. The scroll event data consisted of time stamps
in milliseconds from the start of a scroll event.

Here, the time stamps were converted to seconds. Then for
each time stamp ti, we round it up (ci) and down (fi) to an
integer. This is done to ensure we do not capture a frame in
the middle of a scroll event. Then, for any pair of subsequent
events (ci−1, ci) where ci − ci−1 ≤ 1, we merge these events
together (fi and ci−1 are marked as unused; the merged event
spans from fi−1 to ci).

The next step is to actually create the separate scenes in the
video recording using the sequence intervals as found in the
first step. These scenes are created using the scene tool in the
iMotions software. To reduce the chance of human mistakes
while entering each sequence, the scenes were created by
generating the input using the AWT Robot functionality 2.
The first and last scene from the beginning and the end of
the screen recording respectively were created manually to
ensure only scenes were created which captured data from a
participant which was working on the task.

Now we have static images on which we can mark areas
of interest. This process was done completely manually for
all scenes. The areas of interest were labelled according to the
code segments as defined at the beginning of this section. Note
that the mut, aux and cm code segments overlap the ic code
segment. Any tracked time spent within mut, aux and cm
will thus also be registered for ic (measurements registered for

2AWT Robot: https://docs.oracle.com/javase/8/docs/api/java/awt/Robot.html

mut, aux and cm should thus be subsets of the measurements
registered for ic).

E. Analysis

After post-processing the data, the data is further prepared
and analysed with Rust using the csv and serde packages
(crates), and Python 3.7 with the Pandas ans Seaborn pack-
ages.3.

To answer RQ2, the post-processed data was used in com-
bination with the collected data on whether a bug was found
or not. Logistic regression was applied with the binary output
variable whether a participant found a bug, and with for the
input variables either the number of test cases written by a
participant or the amount of time spent fixating on the test code
area. The logistic regression was performed in Excel using the
Solver add-in.

F. Participants

For this experiment 10 healthy participants were recruited,
from which 9 male and 1 female (aged between 17-25 years
old). From this selection, experiments run by 3 participants
failed (for 2 experiments, recording stopped in the middle
of the experiment for unknown reasons and 1 run of the
experiment was not possible due to participant requiring
glasses to correct eyesight which caused imprecision on the
eye tracking recording. The 7 remaining participants were all
male, aged 17-25 years old. There were 2 participants with
between 6 months and 1 year of programming experience, 2
participants with roughly 3 years of programming experience
and 3 participants with approximately 6 years of programming
experience. All participants were Computer Science students
studying at the Bachelor or Master level.

III. RESULTS

A. RQ: Where do developers spend their time while unit
testing?

Figure 3 and table I show the time as measured for fixations
on areas of interest per individual participant. Figure 4 and
table II show the measured fixation count on areas of interest
per participant. The figures and tables show that participants
spent the majority of their time on focusing on the test code. A
significant amount of time is also spent on the implementation
code. Depending on the participant,

Note that the implementation code area of interest (labelled
ic), contains the method under testing (mut), auxiliary code
(aux) and comments related to the method under testing (mut)
areas of interest. Any fixation time and fixation count towards
these sub areas is also counted towards the implementation
code area. These sub areas however do not necessarily span
the total implementation code area. Additionally there are
unmapped areas, such as menus within the IDE and moments
where participants did either not look at the screen, or no
valid eye tracking data was collected. As a consequence, the
total processed time (the time for which eye tracking data was

3Source code for data processing: http://doi.org/10.5281/zenodo.3261826

ic mut au
x cm tc tr

AOI

0

100000

200000

300000

400000

500000

600000

700000

Fi
xa

tio
n

tim
e

(m
s)

Participants
VII
VI
V
IV
III
II
I

Fig. 3: Time of fixations per area of interest per participant

ic mut au
x cm tc tr

AOI

0

100

200

300

400

500

600

700

800

N
um

be
r o

f f
ix

at
io

ns

Participants
VII
VI
V
IV
III
II
I

Fig. 4: Number of fixations per area of interest per participant

Fig. 5: Logistic Regression of finding a bug as function of
number of tests created

Fig. 6: Logistic Regression of finding a bug as function of
time spent fixating the test code

mapped to areas of interest) will be larger than the sum of the
individual areas of interest.

The time spent fixating on the ic was 30 to 50 percent
compared to the time spent fixating on the tc for participants
I, III, IV, V and VI. Participant II and VII spent approximately
equal amount of time on both the ic and tc areas of interest.

On the test results tr, significantly less time was spent.
Participant I spent relatively more time on this area of interest
than any of the other participants.

Within the implementation code, most time is spent on
the method under testing. The time spent on axillary code
and code comments related to the method under testing is
rather small in general, except for participant II who spent a
significant amount of time fixating on cm.

The trends in fixation count are similar to the time spent
fixating for all participants.

B. RQ2: Can the finding of bugs be predicted by the amount
of tests written and the time spent on fixating on the test code
area of interest?

Figure 5 shows the result of a logistic regression, where the
finding of a bug is used as output variable (0 = no and 1 =
yes). The number of test cases developed by the participant is
used as input variable. When taking a closer look at the figure,

we can see that there is a good fit to the data, as the predicted
values are on the y = 0 or y = 1 line. The offset value
on approximately x = 15.4 indicated that there is a relation
between the number of test cases developed by a participant
and the identification of a bug by a participant.

Figure 6 shows a similar relation. Here finding a bug by a
participant is also used as output variable (0 = no and 1 =
yes), but the time spent on fixating on the test code area by
a participant is used as the input variable instead. This results
of this analysis show that developers which spent more than
357 seconds fixating on the test code are predicted to finding
a bug, whereas developers which spent less time fixating on
the test code are predicted to not finding a bug.

IV. DISCUSSION

In the research method, we asked ourselves the following
questions:

RQ1 Where do developers spend their time while unit testing?
RQ2 Can the finding of bugs be predicted by the amount of

tests written and the time spent on fixating on the test
code area of interest?

A. RQ1

As noted in the results section, we found that participants
spent the majority of their time fixating on test code. On
average developers spent slightly more time fixating on the
test code than on the production code. This could imply that
writing test code requires significant comprehensibility effort.
We should however not forget that the production code was
given, and the test code was written by the participants. The
fixations on the test code are thus made up from both the
reading of test code which already exists, and the writing of
new test code. The effort to write tests (and applying the
understanding on how effective the test will be on testing
the implementation) could be larger than one would expect.
The test results area of interests was not fixated on much.
Probably this is the case, since only limited amount of fixations
are enough to see failure of test cases. If a developer then
want to understand why it happened they will fixate on the
ic and tc again, Further research is needed to track down the
effectiveness of the fixation on the selected areas of interest.

B. RQ2

Research question 2 asked whether implementing more test
cases, or whether spending more time fixating on the test code
area of interest would result in a better probability to discover
a bug in the implementation code. Figure 5 and 6 show that
this is the case for both parts of the question. It indicates
that more time spent on testing will result in potentially less
errors in production code. This can potentially be generalised
to a more general statement that spending time on developing
test code may result in the early detection and prevention of
bugs in production code. It should be noted however, that the
number of participants in this study is quite small, thus the
results found may still be too optimistic.

Participant

AOI I II III IV V VI VII

ic 305.6 (20%) 680.9 (39%) 128.8 (23%) 189.3 (16%) 181.0 (19%) 72.8 (14%) 245.0 (23%)
mut 291.4 (19%) 392.4 (22%) 74.9 (13%) 173.4 (15%) 149.4 (15%) 26.5 (5%) 138.5 (13%)
aux 3.1 (<1%) 66.3 (4%) 9.7 (2%) 4.6 (<1%) 12.0 (1%) 23.3 (4%) 58.2 (5%)
cm 4.2 (<1%) 154.8 (9%) 34.5 (6%) 7.7 (1%) 18.2 (2%) 24.0 (5%) 39.9 (4%)

tc 756.0 (49%) 605.3 (34%) 243.1 (43%) 445.0 (39%) 562.4 (58%) 224.7 (43%) 269.0 (25%)
tr 131.777 (9%) 13.556 (1%) 10.489 (2%) 23.185 (2%) 6.385 (1%) 15.071 (3%) 44.166 (4%)∑

processed time (s) 1546 1768 569 1155 977 524 1081

TABLE I: Total fixation time per AOI per person (in seconds).

Participant
AOI I II III IV V VI VII

ic 446 839 258 332 435 167 442
mut 418 496 135 290 357 64 273
aux 5 97 18 12 23 44 91
cm 8 179 93 18 51 63 61

tc 720 554 365 690 746 380 364
tr 178 35 22 78 27 45 98

TABLE II: Total number of fixations per AOI per person

C. Measuring eye tracking within an IDE

Integrated development environments are complex beasts,
where many interactions and events can happen which could
distort measurements taken when combining eye tracking
data with a gaze mapping. Most actions and tools within
an IDE are overkill to perform studies like these. While a
participant can have the comfort of having an IDE it knows
and uses on a daily bases, for a researcher it introduces many
potential problems which can interfere with the sampled data.
During this experiment, any moving window within the IDE
introduced a difficult to detect potential imprecision of data.
Intellij has many hot keys which can open windows, and since
the method used to perform gaze mapping between moments
of motion on screen rendered objects relied on detecting scroll
events, any changes in rendering would could not have been
accounted for by the automatically created scenes. To account
for that after creating the scenes automatically based on scroll
events, the screen editor was used to manually scan the created
scenes on errors and fix them. Participants were also asked
before the start of the task to not open more windows than the
ones which were already present: the default Intellij view, but
with the implementation code on a vertically split window on
the left, the test code on a vertically split window on the right
and with test results below these windows. This however could
raise the question why to use an IDE. Aside from familiarity to
a participant, another reason is that all tools to perform unit
testing activities are available from within a single window.
While much can change within that window, using for example
a terminal window to run the tests could introduce an at least
even difficult mapping, as its position on the screen is neither
static.

1) Static image gaze mapping: This study makes use of
individual static image scenes to perform the gaze mapping
process. This allows one to relatively easily create areas of

interests on a scene. If no flattened image frames were used,
the areas of interests should have been mapped to the video
screen recording content. As a result, an area of interest would
have to move with the content for any area of interest where
the content on a previous screen would change the position
of the area of interest in a next frame. Video recordings
can of course be seen as sequences of individual images.
Thus, creating a gaze mapping on the video of the screen
recording can still be performed by, for each frame re-creating
the mapping of the areas of interests. However, such a task
would be unmanageable if done manually. Imagine having a
screen recording of 30 frames per second, which goes on for
10 minutes. Then for a single participant, areas of interest
would have to be mapped (or re-mapped) 30∗60∗10 = 18000
times manually, once per frame. This amount can be decreased
by reducing the amount of frames per second or by taking
the difference of two consecutive frames and if there is none,
using the same area of interest mapping (assuming the content
on the screen allows for the same areas of interest). Still this
remains a job of a large amount of impractical and error prone
manual labour. Another option was to reduce the amount of
frames by diving the frames for a participant by an integer
x, and then only mapping the areas of interest for the frames
the resulting amount of frames on equal time intervals. This
has as advantage that the scenes have equal duration and as
much resulting (static image) frames as viable could have
been chosen. However, it does not take motion into account
whatsoever. Since motion in a scene was the observed to be
the most important divisor between scenes, this process was
chosen.

A more practical solution would be to have an IDE (or
whichever tool is used to present code on the screen) report
where on the screen the areas of interest are rendered. This
could introduce a problem with regard to synchronizing the
positional data points of the areas of interests visible the screen
with any other stimulus (for example because of induced
latency) but at the clear advantage that you now would have
a quite precise areas of interests for any moment in the
recording. Little to no error prone manual work would be
further required to perform a gaze mapping.

However in the event that such a tool is not available, we’ll
have to resort to other solutions, which perhaps also in effect
reduce the probability on the correctness of the measurements.

The method described in the research method and used

during this study can also be further improved. Even if we can
not report precise positions for our areas of interests within
the IDE, we can still try to automatically create scenes for any
event of motion by subscribing to any event fired by which
involves potential motion.

2) Program complexity: As previously mentioned, we
wanted to provide a participant with a natural developer
environment. Tasks which a participant carried out are were
no exception to this requirement. Regularly, studies which
perform code comprehension related research use code sam-
ples from introduction algorithm and data structure courses or
even simpler code samples such as a single if statement, a
for loop and a few variables. While both can be interesting
test cases, they (1) do not represent industrial written code
(usually introductory algorithm and data structures are part
of a standard library), (2) follow a certain structure which
a computer science student is too much trained on, hence
introducing a bias, and such samples will often be recognized
by computer science students in advance and (3) might require
specific prior knowledge on these specific topics (e.g. how
heap sort or linked lists work). On the other part of the
spectrum we could have chosen to use industrial code from,
for example, open source industrial projects. We observed that
these projects required too much domain specific knowledge
to get up and running. This would substantially limited re-
cruitment of participants and the time spend on gathering and
processing data per participant would significantly increase.
As mention in the research method, we chose to use a code
practice task with a short introduction on the problem instead.
This allowed us to present a single class of implementation
code and a single class of test code to a participant, while
also introducing the required complexities and code paths to
have sufficiently complex unit test cases.

V. RELATED WORK

Increasingly biometric measuring devices such as eye track-
ers are being used for measurements related to program
comprehension. For example, Busjahn et al. [14] looked into
the linearity of source code reading and compared it to
the linearity of natural language text. In their study, they
found that novice participants follow a linear reading order
(called "Story Order") more than expert participant developers
did when reading source code. The authors think based on
their results that experts more closely follow the "Execution
Order" of a program (the order in which program statements
and expressions are evaluated). Another study by Jbara and
Feitelson [4] looked at the influence of regularity, the repetition
of source code patterns, within a single function of source
code. They make a case for the inclusion of the regularity of
code to also be viewed as a metric of code complexity (which
influences program comprehension), especially since simpler
metrics of code complexity such as the amount of lines or
cyclomatic complexity [15] do not consider type and context
of the code and therefore do not actually represent how much
effect the code has on actual the understanding of a developer,
which relies on the context of other parts of the code. The

study shows recurring patterns within the reading of a function,
such as the initially scanning followed by reading or fixating
or participants regularly looking ahead after a comprehension
event took place.

Walters et al. [16] presented a plug-in for the Eclipse
integrated development environment (IDE), which generates
links between code segments and the eye gaze data and can
also show these links from within the IDE. This has major
advantages on scalability of eye tracking from within an IDE,
has the i-trace tool will take take of capturing and calculating
areas of interest from selections of code.

To get an impression where the idea of using fixations
which often imply comprehension come from, one can read
a paper by Just and Carpenter [13] which presented a model
which aimed to explain comprehension during reading. The
model was tested on scientific text samples and was conducted
on college students. While source code is different from
regular text because it does not necessarily follow the same
execution order as more linear text samples [14], there are also
similarities like how context within and between sentences are
related to one another, which is similar in a way to how parts
of code can also depend on other parts of code. The presented
model joins eye fixation to reader comprehension based on
two assumptions which the authors call the "immediacy"
assumption and the "eye-mind" assumption. The "immediacy"
assumption describes that words are being processed on the
spot and the "eye-mind" assumption can be explained as the
eyes not leaving a word for as long as is necessary for a person
to process (which implies understanding) the word. The results
show some confirmation which support both the "immediacy"
and the "eye-mind" assumptions.

Exploratory work towards understanding of test code was
done by Yu in his thesis titled Towards Understanding How
Developers Comprehend Tests [17]. In this thesis, Yu decides
on three factors which reflect the comprehension of test code:
reading time, the ability to identify the testing purpose and the
ability to produce extra test cases. To measure what part of
the code a participant is reading, a sliding viewport is used.
The side effect of this viewport is that participants can not
jump backwards and forwards over the whole code, taking
away the ability to scan ahead or re-scan the previously fixated
areas. Participants are thus required to keep previously visited
code clear in their mind during each test case. Yu observed
that the reading time was not significantly dependent upon the
measured experience of the participants with Java and with
prior experience of using tests.

VI. THREATS TO VALIDITY

Manual AOI mapping First, the manually mapping of
areas of interest. Any human makes mistakes, and humans
do not necessarily create exact equal areas of interest when
using a drawing tool to select an area of interest. Areas of
interest have been mapped to the contexts to the best of the
authors ability. Additionally, the areas of interest are usually
quite large (think a full code block like a method) to improve

precision, and thus allow for some imprecision just around the
area.

AOI mapping with static scenes Secondly, the mapping
of AOIs to static images should happen on all events where
the mapped AOIs for a previous screen versus the the AOI
mapping on the current screen could change based on changing
content as result of actions or motions. The creation of scene
around potential events which produce motions is not idea. The
created scenes were however manually scanned after automatic
creation based on scroll events, to correct the biggest mistakes.

Amount of participants The involvement of around eye
tracking and requiring human participants to be available on
site is sub optimal to enlarge your set of participants. The
amount of data gathered is however offset by the duration of
10-30 minutes each participant spent on performing the code
testing task.

VII. CONCLUSION

This study aimed to evaluate where developers fixated, to
understand where developers spent the most time comprehend-
ing code while performing unit tests. Test code was found
to be slightly more focused on compared to implementation
code. While many program comprehension researchers have
successfully used eye tracking devices to measure focus in
program comprehension, it is mainly performed in a small,
static environment where horizontal and vertical motion such
as scrolling do not influence the gaze mapping of screen
coordinates to areas of interest mapped over the screen content.
Automated tooling is required to effectively and precisely map
eye gaze to areas of interest on screen contents which are
regularly in motion.

REFERENCES

[1] N. Munassar, A. G. IJCSI, and undefined 2010, “A Comparison Between
Five Models Of Software Engineering,” Citeseer. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.402.8120&rep=rep1&type=pdf#page=115

[2] R. Black, E. Van Veenendaal, and D. Gramham, Foundations of software
testing : ISTQB certification. Andover, Hampshire: Cengage Learning
EMEA, 2012.

[3] M. Beller, G. Gousios, A. Panichella, and A. Zaidman, “When,
how, and why developers (do not) test in their IDEs,” in
Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering - ESEC/FSE 2015. New York, New
York, USA: ACM Press, 2015, pp. 179–190. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2786805.2786843

[4] A. Jbara and D. G. Feitelson, “How programmers read regular
code: a controlled experiment using eye tracking,” Empirical Software
Engineering, vol. 22, no. 3, pp. 1440–1477, jun 2017. [Online].
Available: http://link.springer.com/10.1007/s10664-016-9477-x

[5] B. Sharif, M. Falcone, J. M. P. o. t. S. on Eye, and
undefined 2012, “An eye-tracking study on the role of scan
time in finding source code defects,” dl.acm.org. [Online]. Available:
https://dl.acm.org/citation.cfm?id=2168642

[6] StackOverflow, “StackOverflow Developer Survey,”
https://insights.stackoverflow.com/survey/2019, 2019, [Online; accessed
02 April 2019].

[7] Jetbrains, “Intellij IDEA, a Java oriented Integrated Developer Envi-
ronment (IDE),” https://www.jetbrains.com/idea/, [Online; accessed on
May 10th 2019].

[8] Exercism authors, “Java exercise: Phone number,”
https://github.com/exercism/java/tree/master/exercises/phone-number,
2019, [Online; accessed on May 27th 2019].

[9] “Tobii X2-30 Eye Tracker,” https://www.tobiipro.com/product-
listing/tobii-pro-x2-30/, [Online; accessed on May 10th 2019].

[10] iMotions A/S, “imotions biometric research platform 7.1,”
https://imotions.com/eye-tracking/, 2018, [Online; accessed on May
27th 2019].

[11] A. Olsen, “The tobii i-vt fixation filter,” Tobii Technology, 2012.
[12] K. Holmqvist, M. Nyström, R. Andersson, R. Dewhurst, H. Jarodzka,

and J. Van de Weijer, Eye tracking: A comprehensive guide to methods
and measures. OUP Oxford, 2011.

[13] M. Just, P. C. P. Review, and undefined 1980, “A theory of reading:
From eye fixations to comprehension.” psycnet.apa.org. [Online].
Available: https://psycnet.apa.org/record/1980-27123-001

[14] T. Busjahn, R. Bednarik, A. Begel, M. Crosby, J. H. Paterson,
C. Schulte, B. Sharif, and S. Tamm, “Eye movements in code reading:
relaxing the linear order,” pp. 255–265, 2015. [Online]. Available:
https://dl.acm.org/citation.cfm?id=2820282.2820320

[15] T. McCabe, “A Complexity Measure,” IEEE Transactions on Software
Engineering, vol. SE-2, no. 4, pp. 308–320, dec 1976. [Online].
Available: http://ieeexplore.ieee.org/document/1702388/

[16] B. Walters, M. Falcone, A. S. . t. I. . . . , and
undefined 2013, “Towards an eye-tracking enabled IDE for
software traceability tasks,” ieeexplore.ieee.org. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/6620154/

[17] C. S. Yu, “Towards Understanding How De-
velopers Comprehend Tests,” 2018. [Online]. Avail-
able: https://repository.tudelft.nl/islandora/object/uuid%3A3d251634-
5499-4423-ab66-d9803a6ae877?collection=education

APPENDIX A
APPENDIX: IMPLEMENTATION SOURCE CODE FOR

NANPPHONENUMBER

Listing 1 and listing 2 show the implementation code as
provided to participants. The participants were tasked with
testing the getFormattedNumber method.

APPENDIX B
APPENDIX: TEST CODE TEMPLATE FOR

NANPPHONENUMBER

Listing 3 shows the test code template as provided to
participants.

Listing 1 Code Task: provided implementation code (1/2)
import java.util.ArrayList;
import java.util.List;

/**
* The North American Numbering Plan (NANP) is a telephone numbering

* system used by many countries in North America like

* the United States, Canada or Bermuda.

* All NANP-countries share the same *international country code*: 1.

* <p>

* NANP numbers are ten-digit numbers consisting of a three-digit

* Numbering Plan Area code, commonly known as *area code*,

* followed by a seven-digit local number.

* <p>

* The first three digits of the local number represent the *exchange code*,

* followed by the unique four-digit number which is the *subscriber number*.

* <p>

* Both the *area code* and the *exchange code* should not start with either a 0 or a 1.

* <p>

* Valid examples (which all produce "6139950253") are:

* - "+1 (613)-995-0253"

* - "613-995-0253"

* - "1 613 995 0253"

* - "613.995.0253"

* <p>

* Invalid numbers include (but are not limited by):

* - "123456789" (too short)

* - "+2 (613)-995-0253" (invalid country code)

* - "112 345 6789" (area code should be in range 2-9)

* - "212 045 6789" (exchange code should be in range 2-9)

*/
public class NANPPhoneNumber {

private final String input;

public NANPPhoneNumber(final String input) {
if (input == null) {

throw new ValidationException(ValidationException.NULL_PTR);
}
this.input = input;

}

/**
* 1) First we filter out any character which is not a digit.

* 2) Then we check whether we have 10 or 11 digits, any other amount of digits is invalid.

* <p>

* We are left with a number which can be represented by:

* --------------

* A BCD EFG HIJK

* --------------

* A represents the optional country code 1 (often displayed as +1).

* BCD represent the 3 digit area codes.

* EFG represents the 3 digit exchange code.

* HIJK represent the 4 digit subscriber number.

* <p>

* 3) If we are working with a 11 digit number starting with a +1, we remove the country code.

* <p>

* 4) The area code and the exchange code must not start with a 0 or a 1.

* We check for both codes if they start with a 0 or a 1 and signal failure if they do.

* <p>

* 5) The phone number is valid. We join the digits together as a string and return it.

*
* @return The 10 digit North American Number Plan phone number formatted

* to only contain digits. The country code is NOT included.

*/
public String getFormattedNumber() {

char[] chars = this.input.toCharArray();

// All tokens
ArrayList<Character> tokens = new ArrayList<>(10);

for (char currentChar : chars) {
if (Character.isDigit(currentChar)) {

tokens.add(currentChar);
}

}

// Valid amount of number characters is 10 or 11.
final boolean tenDigitsWithoutCountryCode = tokens.size() == 10;
final boolean elevenDigitsWithCountryCode = tokens.size() == 11;
if (!tenDigitsWithoutCountryCode && !elevenDigitsWithCountryCode) {

throw new ValidationException(ValidationException.INVALID_LENGTH);
}

// remove the country code if we have eleven digits
if (elevenDigitsWithCountryCode) {

tokens.remove(0);
}

// check the area code: it can start with any digit except: 0 or 1.
final int AREA_CODE_START_INDEX = 0;
// check the exchange code: it can start with any digit except: 0 or 1.
final int EXCHANGE_CODE_START_INDEX = 3;

if (tokens.get(AREA_CODE_START_INDEX) == '0'
|| tokens.get(AREA_CODE_START_INDEX) == '1') {

throw new ValidationException(ValidationException.AREA_CODE_INVALID_CHAR);
} else if (tokens.get(EXCHANGE_CODE_START_INDEX) == '0'

|| tokens.get(EXCHANGE_CODE_START_INDEX) == '1') {
throw new ValidationException(ValidationException.EXCHANGE_CODE_INVALID_CHAR);

}

return this.joinCharacters(tokens);
}

Listing 2 Code Task: provided implementation code (2/2)
/**
* Join a list of characters together (without a separator) and format it as a String.

*
* @param sequence The list of characters which should be joined together and

* formatted as a String.

* @return The formatted String.

*/
private String joinCharacters(List<Character> sequence) {

StringBuilder sb = new StringBuilder();
for (char c : sequence) {

sb.append(c);
}
return sb.toString();

}

/**
* An exception which represents failure to process a NANP number.

* Should only be thrown when a NANP number is considered invalid.

*/
public class ValidationException extends RuntimeException {

static final String NULL_PTR =
"A NANP phone number can't be null.";

static final String INVALID_LENGTH =
"A NANP phone number must have a length of 10 digits without" +

" the prefixed country code.";

static final String AREA_CODE_INVALID_CHAR =
"The area code must not start with a 0 or 1 character.";

static final String EXCHANGE_CODE_INVALID_CHAR =
"The exchange code must not start with a 0 or 1 character.";

ValidationException(String message) {
super(message);

}
}

}

Listing 3 Code Task: provided test code template
import org.junit.jupiter.api.Test;

import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertThrows;

public class NANPPhoneNumberTest {

@Test
public void validNumberWithPunctuation() {

String expectedNumber = "2234567890";
String actualNumber = new NANPPhoneNumber("(223) 456-7890").getFormattedNumber();

assertEquals(expectedNumber, actualNumber);
}

@Test
public void invalidEmptyNumber() {

assertThrows(NANPPhoneNumber.ValidationException.class, () -> {
new NANPPhoneNumber("").getFormattedNumber();

});
}

}

