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SUMMARY

Climate change poses prodigious challenges to water resource management. In
addressing these challenges, traditional grey measures lack adaptability and long-term
sustainability. In contrast, Nature Based Solutions (NBSs) offer flexible, sustainable and
eco-friendly alternatives. The design and effectiveness of NBS-based adaptation
strategies could be potentially assessed through integrated hydrological models, which
simulate both surface and subsurface complex hydrological processes. However, the
accuracy of models to efficiently simulate the hydrological processes significantly
depends on the quality and availability of input data. Earth Observation (EO) datasets
offer a wide range of hydrological data with comprehensive spatial and temporal coverage,
yet their quality remains uncertain and requires evaluation across different scales and
regions.

To gain insights, the most frequently utilized EO datasets in distributed hydrological
modelling were systematically reviewed and categorised across different catchment
scales, including the micro-, meso- and macro-scales. The knowledge gaps identified
through this detailed review of the articles demonstrate that dataset suitability for
hydrological simulations varies substantially depending on location, scale, and evaluation
criteria. Recognizing the inadequacies of single metric evaluation, the research further
explores the sensitivity of the choice of metrics to the identification of the most suitable
dataset for hydrological simulations. By applying a multi-metric, multiple-combination
approach, it evaluates gridded precipitation products such as ERAS5-Land, IMERG-Final,
MSWEP, and EOBS in reproducing hydrological processes, revealing that the choice of
performance metrics significantly influences the selection of suitable datasets.

Further, the research analyses the separate and combined effects of climate and LULC
change on the hydrology of the Aa of Weerijs catchment in the near future. Future
meteorological data under climate change scenarios were obtained from the Royal
Netherlands Meteorological Institute (KNMI). An Artificial Neural Network - Cellular
Automata (ANN-CA) based prediction model was used to simulate the future LULC map.
The model results showed that the combined effects of climate change with LULC
changes did not significantly differ from the individual impact of climate change at the
catchment scale. However, at the local scale, the changes in LULC can significantly
influence the variations in hydrological components such as groundwater table, soil
moisture, and actual evapotranspiration, depending on the specific change in LULC class
and season. The research underscores the importance of considering both climate and land
use dynamics for a comprehensive understanding of hydrological changes in the face of
future challenges.

Finally, the research evaluates the effectiveness of various NBSs and presents a
methodology for designing NBS-based adaptive strategies for drought mitigation with a
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focus on surface as well as subsurface hydrological components using an integrated
distributed hydrological model. The NBSs assessed include ditch blocking, tree planting,
wetland restoration, infiltration ponds, heathland restoration and brook bed barriers.
Based on the model results, individual measures were spatially mapped to develop two
adaptation strategies, each differing in spatial extent. The Key Performance Indicators
(KPIs) were designed in consultation with key stakeholders and facilitated the clear
communication of outcomes. Results indicated that the spatial extent of NBSs
substantially influences their effectiveness. Overall, the NBS-based adaptation strategies
showcased the potential to enhance the groundwater recharge and reduce the number of
ban days for groundwater extraction, with almost eliminating the ban days in the
downstream part of the catchment.

In summary, this research integrates comprehensive EO dataset evaluation, combined
climate and LULC scenario analyses, and the formulation and assessment of NBS-based
adaptive strategies for water resource management in the context of a changing climate.



SAMENVATTING

Klimaatverandering stelt het waterbeheer voor enorme uitdagingen. Traditionele
infrastructurele (grijze) maatregelen bieden onvoldoende aanpassingsvermogen en
duurzaamheid. Op de natuur gebaseerde (groene) oplossingen (Nature Based Solutions
(NBS)) bieden daarentegen flexibele, duurzame en milieuvriendelijke alternatieven.
Hydrologische modellen die grond- en oppervlaktewater geintegreerd simuleren, kunnen
mogelijk worden gebruikt voor het ontwerpen van aanpassingsstrategieén op basis van
NBS en voor het beoordelen van de effectiviteit van zulke strategieén. De nauwkeurigheid
van modellen om hydrologische processen te simuleren hangt echter sterk af van de
kwaliteit en beschikbaarheid van invoergegevens. Aardobservatie (Earth Observation
(EO)) datasets bieden een breed scala aan hydrologische gegevens met een uitgebreide
ruimtelijke en temporele dekking, maar de kwaliteit ervan blijft onzeker en moet op
verschillende schalen en in verschillende regio's worden geévalueerd.

Om inzicht te krijgen, zijn de voor gedistribueerde hydrologische modellering meest
gebruikte EO datasets systematisch gereviewed en gecategoriseerd voor micro-, meso- en
macro-stroomgebieden. De kennisleemtes die middels deze gedetailleerde
literatuurreview zijn geidentificeerd, laten zien dat de geschiktheid van datasets voor
hydrologische simulatie aanzienlijk varieert per locatie, schaal en evaluatiecriteria. Het
onderzoek erkent de tekortkomingen van evaluatie op basis van een enkel criterium en
onderzoekt hoe gevoelig de identificatie van de meest geschikte dataset voor
hydrologische simulaties is voor de keuze van evaluatiecriteria. Door een benadering van
meerdere-criteria in verschillende combinaties toe te passen, evalueert het onderzoek
ruimtelijke neerslagproducten zoals ERAS-Land, IMERG-Final, MSWEP en EOBS op
geschiktheid voor het reproduceren van hydrologische processen. Hieruit blijkt dat de
keuze van evaluatiecriteria de selectie van geschikte datasets aanzienlijk beinvloedt.

Daarnaast analyseert het onderzoek de afzonderlijke en gecombineerde effecten van
klimaat- en LULC-veranderingen (landgebruik) op de hydrologie van het stroomgebied
van de Aa of Weerijs in de nabije toekomst. Meteorologische gegevens onder
klimaatscenario's werden verkregen van het Koninklijk Nederlands Meteorologisch
Instituut (KNMI). Een voorspellingsmodel gebaseerd op kunstmatige intelligentie
(Artificial Neural Network - Cellular Automata (ANN-CA)) werd gebruikt om de
toekomstige LULC-kaart te simuleren. De modelresultaten toonden aan dat op de schaal
van het stroomgebied de gecombineerde effecten van klimaat- en
landgebruikveranderingen niet significant verschilden van de individuele effecten van
klimaatverandering. Op lokale schaal kunnen de veranderingen in LULC echter wel de
variaties in hydrologische componenten zoals grondwaterspiegel, bodemvocht en actuele
evapotranspiratie aanzienlijk beinvloeden, afhankelijk van het seizoen en de specificke
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verandering in LULC-klasse. Het onderzoek benadrukt hoe belangrijk het is voor een
volledig begrip van hydrologische veranderingen met het oog op toekomstige uitdagingen
om rekening te houden met dynamiek van zowel klimaat als landgebruik.

Tot slot evalueert het onderzoek de effectiviteit van verschillende NBS voor het
verkleinen van droogte risico’s en presenteert het een methodologie voor het ontwerpen
van adaptieve strategieén op basis van NBS, met een focus op zowel oppervlakte- als
grondwater met behulp van een geintegreerd gedistribueerd hydrologisch model. De
beoordeelde NBS omvatten het afdammen van sloten, het planten van bomen,
moerasherstel, infiltratievijvers, heideherstel en beekbedbarriéres. Op basis van de
modelresultaten werden de afzonderlijke maatregelen in kaart gebracht om twee
aanpassingsstrategieén te ontwikkelen die elk in ruimtelijke omvang verschillen. In
overleg met belanghebbenden werden kritieke prestatie-indicatoren opgesteld (Key
Performance Indicators (KPI's) hetgeen communicatie van de resultaten makkelijker
maakte. De resultaten gaven aan dat de ruimtelijke omvang van NBS de effectiviteit
aanzienlijk beinvloedt. In het algemeen laten de NBS aanpassingsstrategieén zien de
potentie te hebben om de grondwateraanvulling te verbeteren en het aantal dagen met een
verbod op grondwateronttrekking te verminderen, waarbij in het benedenstroomse deel
van het stroomgebied dagen met een onttrekkingsverbod vrijwel achterwege blijven.

Kort samengevat integreert dit onderzoek uitgebreide evaluatie van EO datasets, analyse
van gecombineerde klimaat- en LULC scenario’s en de formulering en evaluatie van
klimaatadaptatie-strategieén met NBS voor het waterbeheer.
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INTRODUCTION



1. Introduction

1.1 BACKGROUND

The indications of escalating climate change are prominent and can no longer be ignored
in any region or sector of the world (Forster et al., 2024). The IPCC Sixth Assessment
Report (AR6, 2023) stated with a high degree of confidence that the rate of rise in global
surface temperature since 1970 has surpassed that of any other 50-year period in the past
2000 years. Due to these changes, the hydrological cycle is accelerating leading to more
frequent and stronger weather extremes including floods and droughts both at regional
and global scales (Wang et al., 2021; Chiang et al., 2021). In a warming climate, frequent
periods with less than average precipitation are anticipated. During such periods, the
decrease in runoffs may be comparatively more than the corresponding decrease in
precipitation (Massari et al., 2022) driven by higher evaporation rate and drier soil
resulting from higher temperatures. In general, water management systems around the
world are designed based on the assumption that the statistical properties of the flow
remain constant over time, also known as stationarity (Villarini and Wasko, 2021).
However, due to human influence and climate change, the assumption about the
stationarity has become questionable (Milly et al., 2008). As a result, water management
creates a prodigious impediment for the decision makers. Often, grey measures such as
dams and reservoirs are built to alleviate flood and drought hazards due to their rapid and
visible effects but these measures need large investment, frequent maintenance and are
categorized as inflexible approaches (Brink et al., 2016; Wu et al., 2023; Schneider et al.,
2017). In addition to adverse effects on the downstream ecosystem, such measures are
generally designed for certain life periods, are not environmentally friendly and lack the
capability to adapt to changing climate.

Many countries are nowadays focused on envisaging adaptation and mitigation strategies
based on green infrastructure and ecosystem-based adaptive measures to reduce their
exposure to hydro-meteorological hazards (Shah et al., 2023; Davies et al., 2021). This
kind of measures offer greener and eco-friendly alternatives to traditional engineering
solutions for hydro-meteorological risk reduction (Ruangpan et al., 2020) in cost effective
ways (Ruangpan et al., 2024). The International Union for Conservation of Nature (IUCN)
defines Nature Base Solution (NBS) as “actions to protect, sustainably manage, and
restore natural and modified ecosystems that address societal challenges effectively and
adaptively, simultaneously providing human well-being and biodiversity benefits”
(IUCN, n.d.). In addition to risk reduction and confronting climate change, NBSs also
provide co-benefits such as carbon storage, urban heat mitigation, ecosystem services and
biodiversity enhancement (Keesstra et al., 2018).

However, in order to assess the usefulness of nature based adaptive measures on local and
basin scale and their long-term efficacy to mitigate or reduce climate change induced
risks, detailed hydrological and/or hydrodynamic models are required to be developed.
These numerical models are comprehensive tools that incorporate the laws of physics and



1.2 Problem statement

real state response variable equations to simulate floods and droughts, as well as to test
NBSs. One of the hindrances in their use is the extensive data requirements (Kumar et al.,
2021). Moreover, the accuracy of models to efficiently simulate hydrological processes
generally depends on the quality of input data.

The in-situ data is often considered as the most suitable to feed the models. However,
these ground observations lack the ability to provide proper spatial coverage (Glenn et al.,
2007; Fernandes et al., 2012; Lai et al., 2019) and are often not readily and freely available.
Moreover, in a transboundary catchment case, the challenges regarding the in-situ data’s
availability are compounded due to a lack of data sharing, inconsistencies arising due to
differences in recording time and methodologies applied for data collection (UNECE,
2024). Alternatively, EO based datasets offers a wide range of hydrological variables with
time series spanning over multiple years (Jiang and Wang, 2019). As of 2023, there are
more than seven thousand satellites orbiting the Earth. Out of them, approximately 64 %
are active and about 17 % are launched for EO purposes (UCSSD, n.d.). Advancing from
panchromatic and red green blue (RGB) imagery, the sensor technology has expanded to
capture data such as multi hyperspectral visible to near-infrared bands, thermal bands,
microwave emissions. From hydrological perspective, this data provided a new and
independent source of information covering the range of water cycle component (McCabe
et al., 2017). Many research activities took advantage of this spatially available long
sequence of temporal observations to compile long-term global datasets (Beck et al.,
2017). Such datasets provide an independent mean of analyzing and studying
hydrological system dynamics and response (Brocca et al., 2014) as well as for
conducting trend analysis and anomaly detection in water cycle components.

1.2 PROBLEM STATEMENT

In the last three decades, a wide range of EO based datasets providing insight into a vast
variety of hydrological variables are developed (Xu et al., 2014; Jiang and Wang, 2019).
Seamless and prompt accessibility of these datasets makes them attractive to hydrological
modelers and water managers as substitute or complementary data sources for setting up
detailed models and testing solutions for better water management. EO has driven
significant advancements in hydrological science. Many assume that hydrological
variables such as precipitation, evapotranspiration, soil moisture, etc. are directly
retrieved from EO. However, in reality, complex retrieval models with various
parameterizations and simplifications are applied to convert earth emitted and reflected
radiations to desired variables which increases the potential for errors (McCabe et al.,
2017). Further, due to budget constraints and the limited life span of satellites, the
development of long time series of EO datasets required merging of data from different
sensors. This can cause artificial fluctuations due to inconsistencies in satellites
constellations (van Oostende et al., 2022) resulting in spatial and temporal variation in



1. Introduction

the quality of datasets across regions of the globe. The accuracy of hydrological models
is dependent not only on their structure but also highly on the quality of input data (Wang
et al., 2023; Rasheed et al., 2024). Water cycle varies significantly across multiple
spatiotemporal scales (Dash and Kumar, 2025; Chen and Wang, 2018) and the ability of
global datasets to accurately capture this variability also differs across regions, leading to
spatial variation in data quality. Consequently, selecting appropriate datasets for model
setup is critical to ensure model accuracy for simulating hydrological processes. Despite
the growing abundance of EO datasets, their performance and applicability in
hydrological models across different geographical scales and regions remain unclear
(Gebrechorkos et al., 2024; Beck et al., 2017). Therefore, there is a need to identify the
potential of EO datasets for use in hydrological models particularly for different
catchment scales ranging from micro-scale (<10 km?) to macro-scale (>1000 km?).
Further, due to associated uncertainty, the quality of these datasets needs demonstration
(Cragliaetal., 2017). For instance, precipitation is one of the main drivers of the terrestrial
hydrological cycle and an important input to hydrological models. However, it is
challenging to estimate precipitation using satellite data or models (Gebrechorkos et al.,
2024; Beck et al., 2017). The uncertainties in the precipitation products can cause up to
50 % error in variables simulated by hydrological models (Bardossy et al., 2022),
resulting in poor representation of hydrological responses. The suitability of EO products
is evaluated mainly using two approaches (i) comparing the variable directly with
observed data from ground stations (Yang et al., 2024; Sun et al., 2018; Ayehu et al.,
2018) and (i1) using EO products to force hydrological models and comparing the
reproduced variables (e.g. streamflow) with observed data (Gebrechorkos et al., 2024; Ji
et al., 2024; Lakew et al., 2020). In both approaches, researchers rely on error metrics to
evaluate the goodness of fit between estimated and in-situ time series (Gebrechorkos et
al., 2024; Dembele et al., 2020; Alexopoulos et al., 2023), which is standard practice for
hydrologists (Jackson et al., 2019). The Nash-Sutcliffe efficiency (NSE) (Nash and
Sutcliffe, 1970) and the Kling-Gupta efficiency (KGE) (Gupta et al., 2009) are frequently
used metrics for the quantitative comparison between simulated timeseries and observed
ones (Cinkus et al., 2023; Clark et al., 2021). However, each metric has its limitations:
NSE over-emphasises peak values due to use of squared sum of errors (SSE) which leads
to an inflated importance of the absolute errors during high flows at the expense of low
flows (Knoben et al., 2019; Onyutha, 2024), whereas the KGE complements the
deficiencies of the NSE to some extent but still underestimates the variability of
timeseries data (Liu, 2020). Both NSE and KGE can be strongly swayed by a few outliers
(Clark et al., 2021; Beven and Westerberg, 2011). In addition to these, many other error
metrics are used by researchers; however, no single metric can comprehensively capture
all aspects of a specific variable (see e.g. Jackson et al. (2019), Onyutha (2024)). Different
metrics may lead to opposing and unclear conclusions about the identification of the most
suitable EO product for a given application. Therefore, there is a need to evaluate the
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influence of choice of performance metrics on the identification of the most suitable data
product and to formulate a method that can comprehensively identify the suitable product
for the hydrological application.

Beyond data challenges, hydrological systems are further complicated by climate change
and land use/land cover (LULC) changes. Droughts are among the most devastating
natural hazards and have extensive impacts on water resources affecting agriculture,
ecosystems, and socio-economic systems. In the summer of 2018, large parts of Europe,
particularly north-western and central regions, experienced extreme hot and dry
conditions (Philip et al., 2020; Bakke et al., 2020). Such droughts, similar to those of
2018-2019, are expected to occur more frequently in the future (Philip et al., 2020). The
Netherlands was one of the countries most affected by these extreme weather events,
particularly in its eastern and southern regions (van den Eertwegh et al., 2019). The
country, which is traditionally focused on managing surplus water, the severe impacts of
the 2018-2019 droughts marked a turning point where water managers began searching
for solutions to prepare for more frequent drought conditions. To counter these new
challenges, a thorough understanding of climate change’s impact on hydrological systems
both at regional and catchment scales is essential (IWMI, 2019; Adib et al., 2020).
However, the positive or negative changes in the climate signals are quite uncertain as
different Global Climate Models (GCM)/Regional Climate Models (RCM) produce
varying projections for each study site depending on local climate and land use
characteristics (Bloschl et al., 2019; Song et al., 2021). Additionally, alongside climate
change, land use/land cover (LULC) change is also one of the important drivers of
hydrological variations (Rigby et al., 2022; Kundu et al., 2017; Trang et al., 2017).
Research examining the impact of human-induced changes in landscape patterns and
climate change has gathered significant attention. However, primarily the research is
focused on either the effects of climate change or changes in land use, rather than
considering both factors combined (Nazeer et al., 2022; Gurara et al., 2021; Kay et al.,
2021). In addition to that, when these factors are examined together, the emphasis of the
study is often centered on evaluating variations in surface hydrological variables alone
(Maetal., 2023; Lyu et al., 2023; Zhang et al., 2023; Igbal et al., 2022; Sinha et al., 2020)
or only on groundwater dynamics (Hanifehlou et al., 2022; Ghimire et al., 2021).
Therefore, before envisaging the adaptive strategies, the individual and combined effects
of the climate and LULC change on the catchment’s surface and sub-surface hydrological
variables need to be analyzed. Additionally, it seeks to address a knowledge gap that how
crucial is it to consider future LULC changes alongside changes in meteorological
variables under climate change when assessing the future hydrological state of a
catchment.

The formulation of adaptive strategies for droughts is primarily focused on retaining the
water in the catchment either by increasing storage or by slowing surface or sub surface
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flow. Some of these actions are considered important for flood management as well but
are imperative for droughts (POM, 2014). NBSs are the potential alternative to the grey
infrastructure for climate adaptation (Yimer et al., 2024; Debele et al., 2019; Ruangpan
et al., 2020) with their multiple co-benefits such as better water quality, improved soil
health, biodiversity enhancement, natural area for recreation and better land use
management and planning (Nesshover et al., 2017; Penning et al., 2023). However, in
research, much attention has been given to testing the potential of NBSs for flood
management while their potential for drought management is barely touched. For instance,
recent literature review by Yimer et al. (2024) found that only 6 % of European case
studies and 14 % of global case studies were focused on NBSs for drought adaptation.
Apart from this, the research on the potential of NBSs in urban areas is more developed
compared to their implementation in rural areas at the catchment scale for drought
management (Yimer et al., 2024; Johnson et al., 2022). Moreover, the lack of proper
modelling approaches to test the impact of NBSs is another hindrance in understanding
their potential for drought adaptation particularly in evaluating their impact on both
surface and subsurface water resources.

In summary, while EO datasets have transformed hydrological science, their reliability
and applicability in hydrological modeling remain uncertain due to retrieval errors, data
inconsistencies, and spatial-temporal variations in quality. Furthermore, the choice of
error metrics influences the identification of suitable EO products, necessitating a more
comprehensive evaluation framework. Additionally, the interplay of climate change and
LULC change in hydrological systems is often analyzed in isolation, despite their
combined impact on surface and subsurface hydrology. Lastly, while NBSs offer
potential alternatives to grey measures, their potential remains underexplored for drought
mitigations, particularly at the catchment scale.

Addressing these knowledge gaps will provide crucial insights into improving EO-based
hydrological modeling, assessing climate and land-use impacts, and enhancing adaptive
strategies for drought management.

1.3 RESEARCH OBJECTIVES AND QUESTIONS

The main objective of the present research is to evaluate the potential of EO data products
for hydrological modelling and to assess the effectiveness of NBSs for drought adaptation
through modelling.

The specific objectives are:

I.  To analyse the potential of EO data products for distributed hydrological
modelling
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II.

I1I.

IV.

To evaluate the influence of choice of performance metrics on the identification
of the most suitable data product for hydrological simulations and to develop a
comprehensive method to identify suitable products

To analyse the individual and combined impacts of future projected changes in
LULC and meteorological variables on surface and subsurface hydrology

To evaluate the potential of NBSs for mitigating drought impacts

The research objectives will be achieved by answering the following research questions:

II.

I1I.

IV.

VL

VIL

What is the potential of different types of EO datasets for use in distributed
hydrological modelling across different catchment scales?

What are the literature gaps regarding the use of EO dataset across different spatial
scales for future research?

How can the most suitable EO datasets be comprehensively identified for
hydrological simulations?

What is the influence of the selection of evaluation metrics on the identification
of the most suitable dataset for hydrological simulations?

What is the significane of considering future LULC changes alongside changes in
meteorological variables under climate change when assessing the future
hydrological condition of a catchment?

What is the potential of the NBSs for mitigating drought impact considering both
surface and subsurface water resources?

How individual NBS measures can be spatially mapped to formulate adaptation
strategies to achieve maximum water conservation in subsurface?

1.4 THESIS OUTLINE

Chapter 1 provides the theoretical background and describes the problem statement,

along with the research objectives and questions that this research has addressed.

Chapter 2 presents the systematic literature review conducted to seek the potential of EO

datasets for distributed hydrological and their performance across different geographical

scales of catchments, including the micro-scale (<10 km?), meso-scale (10 km>-~1000
km?), and macro-scale (>1000 km?). The review covers EO datasets relevant to

hydrological modeling including rainfall, evapotranspiration, soil moisture, temperature,

digital elevation model, land use, soil distribution, leaf area index and snow-covered area.
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The chapter also identifies the knowledge gaps associated with the application of each
dataset type at different spatial scales and insights which can assist in steering the possible
future research directions in the field.

Chapter 3 provides the description of the study area and a comprehensive overview of
the hydrological model used in this research.

Chapter 4 analyse the influence of evaluation metrics on the selection most suitable EO
dataset for reproducing hydrological variables. It also presents the methodology
developed for the comprehensive identification of suitable datasets for hydrological
applications. The methodology is demonstrated using four different gridded EO
precipitation data products for the study area.

Chapter 5 provides insights into the impact of climate change on the surface and sub-
surface hydrological variables within the study area. Along with climate change, the
chapter analyses the impacts of future LULC change on the hydrological processes.
Further, this chapter also investigates the significance of considering future land use
changes along with meteorological changes under climate change to comprehensively
analyse the future hydrological state of the catchment.

Chapter 6 presents a model-based methodology for designing and evaluating the
potential of NBSs based adaptative strategies for mitigating drought impact on both
surface and sub-surface hydrological variables. The NBS measures assessed include ditch
blocking, tree planting, wetland restoration, infiltration ponds, heathland restoration and
brook bed barriers. It covers the approach to model for each individual measure, evaluates
their performance under climate change scenarios and formulation of combined
adaptative strategies by combining these individual measures to maximum benefit,
particularly in terms of groundwater resources.

Chapter 7 complies the synthesis and outlook in the light of research questions. This
chapter also includes the limitations of the study and constraints along with outlook on
the topic as general with identifying future directions.



EARTH OBSERVATION DATASETS
FOR DISTRIBUTED HYDROLOGICAL
MODELLING: A REVIEW

This chapter presents a systematic literature review on the use of Earth Observation (EO)
datasets in distributed hydrological modelling. The study aims to investigate the most
commonly used datasets in hydrological models and their performance across different
geographical scales of catchments, including the micro-scale (<10 km?), meso-scale (10
km?-1000 km?), and macro-scale (>1000 km?). The analysis included a search for the
relation between the use of these datasets to different regions and the geographical scale
at which they are most widely used. Additionally, co-authorship analysis was performed
on the articles to identify the collaboration patterns among researchers. The study further
categorized the analysis based on the type of datasets, including rainfall, digital elevation
model, land use, soil distribution, leaf area index, snow-covered area, evapotranspiration,
soil moisture and temperature. The research concluded by identifying knowledge gaps in
the use of each data type at different scales and highlighted the varying performance of
datasets across different locations. The findings underscore the importance of selecting
the right datasets, which has a significant impact on the accuracy of hydrological models.
This chapter provides valuable insights into the potential of EO datasets in hydrological
modelling, and the identified knowledge gaps can inform future research directions.

This chapter is based on the journal publication: Ali, M. H., Popescu, 1., Jonoski, A., &
Solomatine, D. P., 2023. Remote Sensed and/or Global Datasets for Distributed
Hydrological =~ Modelling: A  Review. Remote Sensing, 15(6), 1642.
https://doi.org/10.3390/rs15061642.



2. Earth observation datasets for distributed hydrological modelling: a review

2.1 INTRODUCTION

One of the important issues that the world is facing in the current era is climate change
(MacAlister and Subramanyam, 2018), which will have adverse effects on the
hydrological cycle of catchments (Jehanzaib et al., 2020). These effects will not be the
same across the world (Konapala et al., 2020), hence their quantification and early
prediction effects are important for preparedness. In order to obtain those quantifications,
hydrological models are useful tools. The simulations of these models are used by water
managers to study the current state of hydrological processes in areas of focus. The
development of distributed hydrological models has the potential to provide large-scale
predictions (Clark et al., 2017; Ocio et al., 2019), but these models need to be informed
and assessed with distributed observational data for the better representation of spatio-
temporal processes (Baroni et al., 2019). However, one of the main challenges faced by
the modellers is the lack of data (Khan et al., 2022).

Commonly, the in-situ data are considered to be the most accurate. However, these
ground observations are local and lack the ability to provide proper spatial coverage
(Glenn et al., 2007; Fernandes et al., 2012; Lai et al., 2019). Further, the required huge
amount of input data is often not readily and freely available. Luckily, the advancement
in remote sensing technologies during the last decade has enabled mankind to gather huge
datasets using satellite observations (Xu et al., 2014; Jiang and Wang, 2019). These
observations are providing insights about the vast variety of the parameters that are
required for building up a hydrological model (Karimi and Bastiaanssen, 2015). The
immense diversity of these datasets covers digital elevation maps, land-use maps, soil
distribution maps, rainfall, evapotranspiration, soil moisture, leaf area index and others.
Moreover, for several of the sources of these datasets, the inventories span back half a
century or even more. These freely available datasets are attractive to modellers, as these
can fulfill data requirements.

In addition to the model structure, the performance accuracy of a hydrological model is
dependent upon the quality of input data. This makes the selection of the right data
important. However, the performance of Earth observation (EO) datasets cannot be
treated as uniform throughout the globe as it varies across different climatic zones
(Dembele et al., 2020). Moreover, no remote sensed datasets can be regarded as actual
observations due to uncertainties being common in them (Rajib et al., 2018). The quality
of such data products needs demonstration (Craglia et al., 2017) and verification with
ground observation before use in models (Khairul et al., 2018; Huang et al., 2019). With
the increasing computing power, adding new data into the inventories of these datasets is
happening very rapidly. Because of the abundance in variety and non-uniform
performance, the selection of datasets is difficult. Therefore, there is a need to investigate
the research that has been conducted in this specific field over the past few years. Jiang
and Wang (2019) performed the overview of the role of satellite-based remote sensing
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data products in hydrological modelling. However, their study is limited to the
exploration of the performance of datasets for flow simulations only. The other model
outputs, apart from discharge were not considered. Further, the remotely sensed datasets
such as digital elevation models, land-use maps, soil distribution maps and leaf area
indices, which are equally important in representing hydrological processes, were not
covered by the authors. Likewise, Sheffield et al. (2018) reviewed the current satellite
missions and datasets that are being used by national agencies in the regions of Latin
American and the Caribbean for water resource management. However, the study is
region-specific and the focus is on water resource management instead of distributed
hydrological modelling. In both previously mentioned studies, the authors did not
mention the years when the publications covered by their review were issued, nor did
they describe their methodology for selecting the articles. Additionally, neither study
investigated the performance of remote sensed datasets at different geographical scales.

In this paper, we performed a systematic literature review. The aim of study was to
investigate the research articles which were published on this topic in six years (2016 to
2021) and which used one or more types of remotely sensed and/or global datasets to
establish the distributed hydrological model. More specifically, we aimed to answer the
following questions: Which datasets are most widely used by the researchers? At what
catchment scale are the remotely sensed datasets mostly used? Have researchers evaluated
the performance of these datasets for hydrological simulations? What are the knowledge
gaps in this respective field?

To answer the questions, we started the systematic literature review by sourcing 205
articles from Scopus and 208 articles from Web of Science. After that, the final analysis
was carried out on 120 articles. Then, we looked into different types of datasets that were
used in hydrological models for different catchment sizes. The terms ‘micro-scale’,
‘meso-scale’, and ‘macro-scale’ were used to categorize the sizes of catchments (i.e., less
than 10 km? (Tomasella et al., 2008); 10 km? to 1000 km? (Wu et al., 2021); and greater
than 1000 km? (Cornelissen et al., 2016), respectively). We performed this to detect the
knowledge gaps at each scale concisely. Lastly, we concluded our analysis results and
identified the scale-wise knowledge gaps that can act as the way forward for future work
in the field.

After this introduction, the chapter presents the methodology used for paper selection,
which is followed by the results and discussion in Section 2.3. The chapter ends with the
Conclusion in Section 2.4.

2.2 METHODOLOGY

The review methodology is based on preferred reporting items for systematic reviews and
meta-analyses (PRISMA) criteria (Page et al., 2021), consisting of three main steps. The
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first step includes the identification of relevant articles and for that we used the keywords,
such as “hydrological modelling”, “remote sensing”, “global data”, etc. All keywords are
shown in Figure 2.1. The process of identification was started by consulting two websites.
The first was Scopus and the second was the Web of Science. Studies published between
2016 and 2021 were selected for inclusion in this review to capture the latest
advancements and trends in the use of remote sensed and/or global datasets for distributed
hydrological modelling and to make the search manageable and feasible. Initially, 413
articles were sourced from the two websites that were mentioned earlier. The second step
included the screening of the articles. From the initially sourced 413 articles, some
occurred twice because of their presence in both databases, and some were not classified
as articles, such as conference papers, conference reviews and book chapters. This
reduced the list of articles. Five more articles were excluded as they were not retrievable
from the source. After this screening process, we ended up with 246 articles. In the third
step, the abstracts of the article were read in order to eliminate the articles with research
focuses outside the scope of this review, i.e., detailed distributed hydrological modelling,
which included 126 articles. These 126 articles were excluded and the detailed analysis
was finally conducted on 120 research articles. The schematic representation of the whole
methodological process of selecting the papers for review can be seen in Figure 2.1.

In the detailed analysis, firstly, the bibliographic analysis was performed to find the link
between the regions and/or scale with the use of remote sensed and/or global datasets.
Secondly, the shortlisted articles were categorized based on the type of datasets used by
the authors for the hydrological modelling. Thirdly, for each dataset type, we further
categorized the articles on the basis of catchment scale. Finally, we ascertained the
progress of scientific community, both in terms of dataset type and scale.

12
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Figure 2.1. Schematization for identification of research articles for
systematic literature review

2.3 RESULTS AND DISCUSSION

In the beginning, we classified the articles country-, region- and scale-wise. The purpose
was to analyze the locations around the world where the remote sensed and/or global
datasets were being used most. As shown in Figure 2.2, out of 120 full-text articles
reviewed, most studies have been found to be conducted in China, followed by the USA.
Conversely, continent-wise, most studies have been conducted in Asia, followed by
Europe. If we look at the number of studies conducted at different catchment sizes, then
the majority are being performed at the macro-scale.

The main aim of this classification was to find a relationship between the performance of
remote sensing datasets and geographic locations, as well as the sizes of catchments.
However, after reviewing the literature, we were unable to establish any clear links. For
example, we did not find any evidence to suggest that the performance of remote sensing
data is consistently better in one region or country over another, such as Asia versus
Europe or China versus the rest of the world. However, if we consider the catchment size
and number of studies, a direct relationship can then be framed: these studies are more
focused on the macro-scale, followed by the meso-scale and micro-scale. Thus, the trend
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of using remote sensed and/or global datasets in large catchments is more as compared to
the use in small ones.
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Figure 2.2. (a) Number of case study areas per country, (b) percentage contribution per
continent, (c) number of studies per catchment scale

The main aim of this classification was to find a relationship between the performance of
remote sensing datasets and geographic locations, as well as the sizes of catchments.
However, after reviewing the literature, we were unable to establish any clear links. For
example, we did not find any evidence to suggest that the performance of remote sensing
data is consistently better in one region or country over another, such as Asia versus
Europe or China versus the rest of the world. However, if we consider the catchment size
and number of studies, a direct relationship can then be framed: these studies are more
focused on the macro-scale, followed by the meso-scale and micro-scale. Thus, the trend
of using remote sensed and/or global datasets in large catchments is more as compared to
the use in small ones.

Further, we performed the co-authorship analysis on the articles in order to identify the
collaboration patterns among the researchers. For this, VOSviewer software had been
used and the method was selected as a full counting method. The threshold of a minimum
of two articles by a researcher was chosen as there was no author who had authored three
or more articles among the shortlisted articles. Out of 594 authors, only 46 met the
threshold. Based on the strength of co-authorship link, 20 clusters were drawn, which are
graphically presented in Figure 2.3.

It can be seen in Figure 2.3 that there are only three clusters where the number of authors
1s more than three. The largest clusters are cluster 1 (shown in red) and cluster 2 (shown
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in green), which have seven authors each. Cluster 3 (shown is blue) is the third largest

cluster, with five authors.
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Figure 2.3. Clusters of authors collaboration patterns (the size of node is proportional
to number of articles by the author)

The research work of the authors of cluster 1 is focused on assimilation of soil moisture
in hydrological models. For cluster 2, the research work is more versatile, covering the
subjects of stream flow simulation with limited observed data, the evaluation of satellite-
based precipitation products, the merging of satellite-based precipitation products with
in-situ data, the calibration of hydrological models with limited data and the evaluation
of snow melt contribution in catchment hydrological processes. Likewise, the research
work of the authors of cluster 3 is focused on flood simulation uncertainty and the
uncertainty quantification of satellite-based precipitation for stream flow simulation.
However, Figure 2.3 also represents that there are many authors which have no strong
collaborations with others (represented in grey colour).

In order to better analyse the contributions of the authors regarding the use of remotely
sensed datasets at different scales for the purpose of hydrological modelling, the
following discussions have been categorized based on the type of datasets.

2.3.1 Rainfall Datasets

One of the main components of the water cycle is the rainfall. Given its importance,
several efforts have been prompted regarding its estimation and the capture of spatio-
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temporal variability on earth (Cui et al., 2019). For planning and decision-making in a
variety of disciplines, including hydrology, meteorology, climate, and agriculture, its
correct observation is crucial (Amjad et al., 2020). In hydrological models, precipitation
data constitute central input that regulate the spatio-temporal variability of other
hydrological fluxes (Thiemig et al., 2013).

In recent years, many remote sensed satellite-based rainfall datasets with high spatio-
temporal coverage have been produced at a globe scale. These are available in near real
time at zero cost (Khairul et al., 2018). Further, such estimates of precipitation from space
are spatially uniform and encompass areas that are difficult to access (Beck et al., 2019).
However, satellite-based datasets are vulnerable to both systematic and random errors
due to various factors. For instance, these datasets are indirectly derived from radiance,
which can lead to issues with sampling frequency and the algorithms used for estimation.
Additionally, the accuracy of these estimation methods may vary depending on factors
such as latitude, altitude, and the type of rainfall being measured (Ehret et al., 2012; Chen
et al., 2016a). Considering these factors, such data products need to be evaluated with
observed data.

Among the reviewed articles, there are six studies out of one hundred twenty in which the
size of study area is in the range of micro-scale catchment. Only in one study, the authors
analyzed the influence of rainfall variability on discharge simulation using physically
based distributed hydrological model for small semi urban French catchment. For this
study, Paz et al. (2019) used rainfall data from two radars. Unfortunately, at the micro-
scale no author used the remote sensed satellite-based rainfall for hydrological modelling.
Likewise, there are thirty-two studies in the reviewed articles where the study areas are
in the range of meso-scale catchments. Surprisingly, no author used the remote sensed
rainfall dataset for setting up a hydrological model even at this scale.

On the macro-scale, the in-situ rainfall data have been mostly used, a fact which revealed
that the data observed in-situ are the first preference of the researchers. Many authors
mentioned using remote sensed rainfall data products as well. It is notable that if only
different types of remote sensed datasets are compared, then rainfall is among the most
used remote sensed dataset. In some of the studies, the authors used both satellite rainfall
data products and in-situ gauge data in combination. Few authors used the gauge data for
the evaluation of satellite-based rainfall products. For instance, for the area of Biliu basin
China, Qi et al. (2016) compared six rainfall products statistically with gauge station data
and also with respect to hydrological simulation. These products are Tropical Rainfall
Measuring Mission (TRMM) versions 3B42 and 3B42RT, Global Land Data
Assimilation System (GLDAS), Asian Precipitation-Highly Resolved Observational Data
Integration Towards Evaluation of water resources (APHRODITE), Precipitation
Estimation from Remotely Sensed Information using Artificial Neural Networks
(PERSIANN) and Global Satellite Mapping of Precipitation (GSMaP) products. They
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developed two hydrological models for the analysis. The first one was fully distributed,
while the second one was a semi-distributed hydrological model. The results showed that
the APHRODITE rainfall dataset outperformed the five other datasets in statistical
comparison with gauge data and also in stream flow simulation by both hydrological
models. Likewise, Pakoksung and Takagi (2016) evaluated the performance of five
rainfall data products (Global Precipitation Measurement (GPM), GSMaP, TRMM
3B42V7, Climate Prediction Center Morphing technique (CMORPH), and PERSIANN)
as an input to rainfall-runoff-inundation (RRI) hydrological model for simulating run-
off in the Nan River basin, Thailand. CMORPH and GPM was reported as the best
performers based on the statistical comparison with gauge rainfall data while GPM has
performed best with respect to stream flow simulation by the model.

As satellite-based rainfall datasets may have some systematic and random errors because
of indirect estimation by remote sensing techniques, some researchers tried to correct
them based on the use of in-situ data. For example, Khairul et al. (2018) evaluated four
rainfall products statistically with gauge data. These datasets used were TRMM multi-
satellite precipitation analysis (TMPA), Climate Hazards Group InfraRed Precipitation
with Station data (CHIRPS), Multi-Source Weighted-Ensemble Precipitation (MSWEP)
and GSMaP. They found that all products were weak in apprehending the magnitude and
spatial distribution but good in capturing events. They used the merged product of these
datasets for hydrological modelling of the Meghna catchment in Bangladesh. However,
they did not compare the performance of the merged product with individual datasets in
terms of their capability to simulate a hydrological model. Miiller-Schmied et al. (2021)
evaluated the performance of global hydrological model WaterGAP v2.2d based on total
water storage anomalies, streamflow and water use using observed data. To simulate the
model, they developed the homogenized series of precipitation data using the Water and
Global Change (WATCH) forcing data (1901-1978) and WATCH Forcing Data ERA-
Interim (WFDEI) (1979-2016). They further adjusted the data to the monthly
precipitation sum based on Global Precipitation Climatology Centre (GPCC) data. The
authors discussed the effects that modifications in the model algorithm and calibration
routine had on the results, but did not make any explicit comments on the
performance of the model based on the selection of forcing data.

A total of 17 different rainfall products in combination with 6 different temperature
datasets are compared by Dembele et al. (2020) as inputs to the meso-scale hydrologic
model (mHM) to simulate the hydrological process in the Volta River basin, Africa. The
model simulations have been evaluated based on four parameters. These parameters are
(1) in-situ stream flow data, (2) Global Land Evaporation Amsterdam Model (GLEAM)
evaporation data, (3) European Space Agency (ESA) Climate Change Initiative (CCI)
soil moisture data and (4) Gravity Recovery and Climate Experiment (GRACE) terrestrial
water storage (TWS) data. Among the 17 utilized datasets, no single rainfall dataset
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ranked first consistently with respect to evaluation parameters. Tropical Applications of
Meteorology using SATellite data (TAMSAT), African Rainfall Climatology (ARC),
Modern-Era Retrospective analysis for Research and Applications (MERRA-2) and
MSWEP are best-performing datasets for streamflow, TWS, soil moisture and actual
evaporation simulations, respectively. Lakew et al. (2020) evaluated the performance of
five rainfall data products based on their capability to simulate daily flow in three
catchments (Gilgel Abbay, Kessie station and Abbay basin) of Ethiopia using the Coupled
Routing and Excess STorage (CREST) distributed hydrological model. The used datasets
were CMORPH, TRMM TMPA 3B42v7, Re-Analysis (ERA) Interim, GPCC and
MSWEDP. The results indicated that the MSWEP rainfall data product performed better in
flow simulation than the rest of them.

Similarly, Singh and Saravanan (2020) evaluated four rainfall products for the Wunna
Riveris catchment in India and found that the Global Precipitation Climatology Project
(GPCP) rainfall data, TRMM and APHRODITE to be more suitable products for the
simulation of hydrological processes in India. Mao et al. (2019) evaluated three rainfall
products, namely GLDAS, TRMM, China Meteorological Forcing Dataset (CMFD) and
MERRA-2. They assessed that, for runoff simulation, MERRA-2 performed better for the
Nujiang River basin, China.

Researchers have used a variety of rainfall datasets in their work. Their frequent use
advocates their potential worth for hydrological modelling. However, if the aim is to
determine one single dataset that is performing well in all catchments, then it is difficult
to clearly identify a single product performing better from all perspectives. Datasets vary
from catchment on the basis of size and region and depend a lot on evaluation criteria.
For instance, either the evaluation criteria are a direct comparison of a dataset with in-situ
observation, or the criterion is the capacity of a dataset to simulate the hydrological
variables. These variables can be runoff, soil moisture, terrestrial water storage, actual
evapotranspiration or others. Therefore, it is suggested to test and compare the
hydrological simulation capability of different rainfall datasets for the aimed study area
rather than relying only on a single dataset.

2.3.2 Digital Elevations Models

Topography influences the generation of overland flow in the physical hydrological
models and is defined by the digital elevation models (DEMs). The river network, slope
and drainage area are some of the key characteristics of catchments. These morphological
attributes can be estimated by DEMs for representation in distributed hydrological models
(Pakoksung and Takagi, 2021). Thus, the accuracy of these parameters is directly
associated with the precision of DEMs. There are many procedures for the generation of
DEMs, including photogrammetry, light detection and ranging systems, satellite optical
imagery, SAR interferometry and field surveys. However, remote sensed technologies
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have the advantage of being relatively less expensive, both in cost and time, at covering
larger areas (Pakoksung and Takagi, 2021; Mohammadi et al., 2020).

In the reviewed articles, for the micro-scale catchments the authors have only used the
national-level datasets for their research. For instance, Ichiba et al. (2018) developed the
multi-hydro physically based distributed hydrological model of an urban catchment in
France in order to understand the effect of model scale on its hydrological performance.
They used the local DEM data from the National Institute of Geographic and Forest
Information to carry out the analysis. Likewise, Her and Heatwole (2016) developed the
2D fully distributed hydrological model based on the time—area method to provide an
alternative way to simulate hydrological processes. The modelling was performed on the
Owl Run catchment using the national elevation data from the United States Geological
Survey (USGS).

Similar trends have been observed at the meso-scale, with a greater focus on local or
national sources of datasets. Some authors have mentioned using DEM data from the
Shuttle Radar Topography Mission (SRTM) and Advanced Spaceborne Thermal
Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM)
for model development. However, they did not analyse the effect of selecting global DEM
datasets on their findings. For macro-scale catchments, the trend of using DEMs is the
opposite, with more researchers using global DEMs than local topographic datasets. Out
of 79 articles, 52 studies used global DEMs, while only 12 utilized local or national-level
topographic datasets. Among the global DEMs, SRTM was the most commonly used
product, appearing in 28 articles, followed by the use of ASTER GDEM in 9 articles.

Out of the reviewed articles, only one study, that of Pakoksung and Takagi (2021), has

compared the runoff and inundation area simulation performance of five satellite products

for a 2011 flood event in the Nan River basin, Thailand, through distributed hydrological

modelling. The datasets used were SRTM, ASTER GDEM, Global Multi-resolution
Terrain Elevation Data 2010 (GMTED 2010), Global 30 Arc-Second Elevation (GTOPO-

30) and Hydrological data and maps based on Shuttle Elevation Derivatives at multiple

Scales (HydroSHEDS). For the simulation of run-off, GMTED 2010 performed

comparatively better, while SRTM gave the highest accuracy for inundation area

simulation. Although GMTED 2010 has a coarser resolution (1000 m by 1000 m), it

performed better in run-off simulation as compared to other finer-resolution data products,
whereas SRTM performed better for inundation area imitation. Some researchers have

utilized multiple data products to cater to their utility needs. For instance, Ayala et al.

(2020) used local 55 m contour lines, SRTM, and TanDEM-X datasets to extract DEMs

for the years 1955, 2000, and 2013, respectively. They used the derived DEM for glacier

change and runoff studies in the Maipo River basin, Chile. Similarly, Siqueira et al. (2018)
used SRTM DEMs and HydroSHEDS data for flow accumulation. However, in these

studies, the authors did not perform any performance evaluation.
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The analysis showed that the use of global DEM datasets in the hydrological models is a
common practice among the researchers. It is the only dataset where the use of remote
sensed-derived global products has exceeded the use of local or national datasets. DEM
1s one of the essential inputs to the models and the accuracy of many terrain features, such
as extents, slopes, elevations, is dependent on the accuracy of DEM. Despite its
importance, only one study among the reviewed article is focused on the hydrological
evaluation of different global DEMs (Pakoksung and Takagi, 2021). However, this study
was limited to a macro-scale catchment and there is a lack of such evaluations for micro-
and meso-scale catchments. The selection of a suitable source of DEM is an important
step in the hydrological modelling procedure and the dearth of literature in this respect is
concerning.

2.3.3 Land-Use Land-Change Datasets

Land cover plays a vital role in hydrology as it defines the properties of land surface in
the models. In the physically based models, land cover represents the distribution of
vegetation over the area which is used to calculate the spatial and temporal distribution
of actual evapotranspiration (AET). In the overland component of models, the resistance
to flow is represented by Manning values, which are often linked with the land-use type.
Studies showed that the major portion of earth’s surface is altered due to human’s
activities (Bhatta, 2010) and these changes are also represented in models through land-
use land-change (LULC) maps. In recent years, there has been a proliferation of global-
scale LULC datasets produced using remote sensing techniques. Despite the fact that
these LULC datasets give a typical reflection of the Earth’s surface, they still differ in
certain ways, such as in the methodology used to collect data and to construct land-use
maps, the number and type of sensors used for detections, their spatial resolution, and
their classification definition (Yang et al., 2017). Nevertheless, many countries have
developed their local- or national-level LULC datasets using classification techniques
based on fine-resolution aerial or satellite images. Even though these products may be
regarded as the best datasets to be input into hydrological models, their availability and
quality cannot always be guaranteed (Chirachawala et al., 2020).

Among the reviewed articles, researchers have primarily used local- or national-level data
products for all three catchment scales. At the meso-scale, the most frequent used regional
or global data product is the Coordination of Information on the Environment (CORINE)
land-cover map which has a spatial resolution of 100 m (Cenci et al., 2016; Hel3e et al.,
2017; Hollering et al., 2018). For studies conducted in the USA, the National Land Cover
Database (NLCD), produced by USGS and with a spatial resolution of 30 m, is the most
commonly used dataset (Rajib et al., 2016; Gleason and Nolin, 2016; Evenson et al.,
2018).
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At the macro-scale, the most commonly used LULC dataset among the reviewed articles
is the Global Land-Cover Characteristics (GLCC) by USGS (in 8 articles), followed by
Globcover by ESA (in 7 articles), CORINE land-cover by Copernicus (in 5 articles) and
moderate-resolution imaging spectroradiometer (MODIS) Terra+tAqua land-cover
products (in 5 articles).

The literature shows that new LULC datasets can be prepared for specific areas by using
techniques such as supervised, unsupervised and semi-supervised classification
algorithms. For instance, Wang and Chen (2019) used the Landsat-8 satellite imagery to
develop the land-cover maps for the Shahe Creek in Guangzhou, China, using support
vector machine (SVM) algorithms, which are a type of supervised classification technique.
They identified the key hydrological processes for flood forecasting by setting up the
distributed hydrological model using the land-use map developed. Similarly, Gampe et
al. (2016) derived the LULC map for the Gaza Strip from SPOT-5 satellite images, which
are made to be used in a water balance simulation model (WaSiM) to assess future
drought risk. However, they did not mention the technique used for the development of
land-use maps.

Similarly, at the macro-scale, Maza et al. (2020) used (Linear Imaging Self-Scanning-IV)
LISS-1V satellite images for the development of two LULC maps for the Kangsabati
reservoir catchment India. The first had 8 vegetation classes, while the second had 16
vegetation classes. The study showed that the variable infiltration capacity (VIC)
hydrological model, having a fine land-use dataset with 16 vegetation classes, had
performed better in low as well as in high flows. Sahoo et al. (2021), Singh and Saravanan
(2020) and Munzimi et al. (2019) used Landsat satellite images data to derive the LULC
maps. Sharif et al. (2017) and Alataway and El Alfy (2019) used the satellite imagery
data from the Landsat satellite as well as from the SPOT-5 satellite images for the
development of the LULC map. Likewise, Arthur et al. (2020) used images data from
Landsat satellite and MODIS satellite to derive the LULC map. These authors mentioned
the development of land-cover maps using the satellite images, but they did not analyse
the accuracy of using the specific algorithm to compile them or how this affects
hydrological simulations.

Although global land-cover datasets are widely used, they may lack specific land-cover
classifications that are required for certain studies, such as glacier coverage, crop type,
etc. In light of this, some researchers have modified global land-cover maps by
incorporating additional data sources to achieve the necessary specificity for their
particular study. For instance, Mao et al. (2019) modified the GLCC data with glacier
coverage data from the International Center for Integrated Mountain Development
(ICIMOD) for Nujiang River basin, China. Similarly, Soulis et al. (2020) updated the
CORINE land cover with data from the Integrated Administration and Control System,
Greece, (IACS) for the agricultural part to be used in the distributed hydrological
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modelling of Greece. However, no author evaluated the effect of LULC data source on
the hydrological simulations. Only Busari et al. (2021) studied the effect of incorporating
the multiple LULC maps into hydrological modelling. They developed two physically
based distributed hydrological models using mHM modelling software for the Karasu
Basin in Turkey. The first model was based on a single dataset of LULC from Globcover,
while the second model was based on multiple LULC datasets sourced from CORINE for
years 1990 and 2000 and from the MODIS land-cover product for years from 2001 to
2008. The research concluded that the model with multiple LULC datasets (dynamic) had
better performance in flow prediction at outlet than the model having static information
of the land use.

One of the crucial inputs in hydrological modelling is LULC data, and their usefulness
needs to be carefully assessed. The common goal of the development of global LULC
datasets is to develop a harmonized coverage for the whole globe that can be used for
studies related to environmental assessment and climate change. The key characteristic
of each initiative is that it is ensured that the same technique and classification rule is
applied for the whole area. These exclusive properties make these products perfect inputs
for hydrological modelling across different areas of the world. However, their taxonomy
and class definition differ, resulting in a different legend (Chirachawala et al., 2020). The
typical way of mapping LULC is through the use of field surveys. However, mapping at
the catchment scale is time consuming and expensive, and in many cases is not practical
(Wang and Chen, 2019). The applicability of global datasets to simulate hydrological
models must be analysed in order to understand their performance in comparison to that
of fine-resolution LULC datasets. Further, it is required to determine up to what standard
these global datasets may be utilized as an alternative or as the only source in the data-
scarce regions. Moreover, the literature review also depicts that there is a lack of such
investigations.

2.3.4 Soil Distribution and Properties Datasets

Soil is one the dominant factors in regulating the hydrology of the catchment as it controls
the streamflow generation, defines the flow path and influences the water balance. This
makes the soil information an important input for physically based hydrological models
(Worqlul et al., 2018). The limited availability of distributed soil information is common
around the globe. This may be because the traditional soil survey methods are time
consuming and expensive (Moore et al., 1993). Moreover, the soil information is not often
readily available in formats suitable for inclusion in models (Lilly et al., 1998). During
recent years, many global-scale soil distribution and properties datasets have been
produced by many agencies with the aim to provide harmonized soil information
coverage throughout the earth’s surface. At the same time, many countries have their own
soil information and properties databases.
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Among the reviewed articles, researchers have primarily used soil information data from
local or national databases for all three catchment scales. For instance, Ichiba et al. (2018)
used the local soil data from the Bureau de Recherches Géologiques et Mini¢res database
for setting up the multi-hydro physically based distributed hydrological model of an urban
micro-scale catchment in France. Similarly, Her and Heatwole (2016) used the national
soil data from soil survey geographic database (SSURGO) for the hydrological modelling
on Owl Run catchment, USA. It is important to mention that none of the reviewed articles
used any global soil information dataset for micro-scale catchments.

At the meso-scale, few researchers mentioned using the global soil information datasets
such as Digital Soil Map of the World (DSMW) by Food and Agriculture Organization
(FAO) (Macalalad et al., 2021), Harmonized World Soil Database (HWSD) (Appel et al.,
2019) and SoilGrids—global gridded soil information—by ISRIC (International Soil
Reference and Information Centre) with a 1000 m resolution (Chen et al., 2016b). In one
study, Wang and Chen (2019) noted that DSMW by FAO is not a recent dataset. Thus,
the authors updated it based on the land-cover data and used it for hydrological model
setup to identify the key hydrological process in the highly developed Shahe Creek
catchment, China. However, in these studies, none of the authors evaluated the effect of
soil-related datasets used at the meso-scale on hydrology.

At the macro-scale, the number of studies that have used the global soil datasets as
compared to one using local soil inventories for distributed hydrological modelling are
more. The most frequently used global products for soil distribution information are
DSMW by FAO (13 articles), followed by its updated version HWSD (11 articles),
SoilGrids by ISRIC (9 articles) and European Soil Database (ESDB) by European Soil
Data Centre (ESDAC) (3 articles). In addition, some studies reported using two global
products to extract the desired soil information for developing distributed hydrological
models. For instance, SoilGrids by ISRIC plus The Global Lithological Map (GLiM) v1.0
data has been used by Dembele et al. (2020) and Dembélé et al. (2020) to develop
hydrological models for the Volta River basin, Africa. SoilGrids by ISRIC, in addition to
Global Hydrologic Soil Groups (HYSOGs250m) data for hydrologic soil groups
identification, have been used by Al-Areeq et al. (2021) to develop two hydrological
models for the Makkah region in Saudi Arabia using Gridded Surface Subsurface
Hydrologic Analysis (GSSHA) fully distributed modelling tool and Hydrologic
Engineering Center-Hydrologic Modelling System (HEC-HMS), a semi-distributed
hydrological modelling tool. Busari et al. (2021) used ESDB in combination with HWSD,
while Dahri et al. (2021) HWSD in combination with High-Resolution Soil Maps of
Global Hydraulic Properties (HiHydroSoil) by Future Water. Ha et al. (2018) developed
a new soil map by combining SoilGrids by ISRIC and DSMW by using unsupervised
classification for the Red River Day basin, Vietnam. However, none of these studies
performed a performance evaluation of the merged products.
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Global soil datasets are frequently regarded as an alternate source of soil property
information for large-scale hydrological modelling and for areas with limited local data
(Huang et al., 2022). We analysed that, in the reviewed articles, few researchers used
global soil products in combination with local data to achieve the required spatial
resolution or to cover the intended study area. For example, Siqueira et al. (2018)
mentioned using the Brazilian soil database in combination with DSMW to obtain soil
properties at a 400 m spatial resolution and used in region-scale hydrological modelling
of South America using Modelo hidrologico de Grandes Bacias (MGB), a large-scale
hydrological model. Sharif et al. (2017) used local data plus DSMW for hydrological
modelling of the Hafr-Al-Batin region in Saudi Arabia. Huang et al. (2019) used local
data plus soil information by ISRIC to develop a hydrological model of Norway. Yet,
again, none of these studies performed a performance evaluation of the merged products.

Global soil information datasets give the traditional reflection of earth’s soil
characteristics but they also vary in many aspects such as their mode of compilation,
spatial resolution, number of incorporated soil profiles, number of depth layers. Most of
these datasets are developed from soil surveys in one of two ways. The first way is the
linkage method in which the soil profiles and soil mapping units are linked to form
polygon-shaped soil type maps. The second method is digital soil mapping, in which
machine learning techniques are used to map the spatial distributed soil properties.
However, global soil datasets represent the average state of the last decades (Huang et al.,
2022; Dai et al., 2019). We analysed that, on one hand, many researchers have used the
global soil information datasets for setting up the hydrological models but that, on the
other hand, in the reviewed articles, no scholars evaluated the hydrological performance
of these soil datasets. In light of this, there is a necessity to investigate the influence of
these global datasets on hydrological simulations in order to determine the extent to which
these datasets can be trusted as the only sources in data-scarce regions.

2.3.5 Leaf Area Index Datasets

Vegetation plays an important role in the hydrological process as it determines the
separation of rainfall into runoff and ET, tasks which it performs largely through 2
processes. One is transpiration through the canopy and the other is loss by interception
(Vertessy et al., 2001). Transpiration mostly varies according to leaf area index (LAI).
Changes in LAI not only influence the ET but also the soil moisture. Consequently, other
processes in the catchment will be affected such as baseflow, recharge, saturation and
infiltration (Western et al., 1999). Therefore, the improper dynamic representation of LAI
in the hydrological model may result in a poor performance of the model (Tesemma et
al., 2015).

At the meso-scale, some researchers in the reviewed articles used the LAI values from
the field surveys found in the literature. For instance, Sonnenborg et al. (2017) use the
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values of LAI from the literature related to phenology to set up a MIKE-SHE-SWET

model for the Skjern River and Lejre catchment Denmark with the aim to test the impact

of forest type and coverage on water resources. Gleason and Nolin (2016) study effect of
forest fire on snow ablation and snow-cover duration using the SnowModel for Oregon

Cascades catchment in the USA. They modified the values of LAI in the model to postfire

conditions based on field values and were able to capture the snow water equivalent (SWE)
values. Gampe et al. (2016) used the value of LAI from literature to set up the WaSiM

hydrological model for the Gaza Strip, Palestine, to assess future drought risk. For the in-

situ measurement of LAI, the number of techniques are available such as destructive

sampling, allometry, optical observations (Jonckheere et al., 2004) but the problem is that

these techniques are geographically limited as well as cost and time expensive.

In the past few years, many global LAI datasets have been produced with moderate
resolution. The estimation of LAI from remote sensing data is mostly derived from one
of these methods: passive optical sensors, the active light detection and ranging
instruments, and microwave sensors using empirical transfer and model inversion
methods (Fang et al., 2019). In the reviewed articles, for meso-scale catchments, the
authors had used the remote sensed LAI for setting up the distributed hydrological model.
However, they did not explicitly comment on the hydrological performance quality of
these datasets. For example, Cornelissen et al. (2016) developed a distributed
hydrological model of Erkensruhr catchment in Germany to study the parametrization of
the hydrological model by transferring calibrated parameters from a well-equipped head
water catchment. They used the monthly mean value of LAI, derived from the
MODIS/Terra-8-day LAl (MODI15A) dataset at a spatial resolution of 1 km, as an input
for the model. Abiodun et al. (2018) set up the SWAT hydrological model for the Sixth
Creek catchment in Australia to compare the MODIS Actual ET with the simulated ET
from the SWAT model and used the LAI value from the default SWAT database.

The commonly used remote sensed LAI products at a macro-scale level were the Global
Inventory Modelling and Mapping Studies (GIMMS) LAI (mentioned in 3 articles),
MODIS/TerratAqua (MCD15A) LAI (mentioned in 3 articles), and MODI15A LAI
(mentioned in 5 articles). While the researchers incorporated global LAI datasets as inputs
into their hydrological model, their study’s primary focus was not on LAI, and they did
not assess the impact of using these specific data products on the model’s performance.
Out of the reviewed articles, only that of Rajib et al. (2018) utilized the MCD15A LAI
product to evaluate the SWAT hydrological model of Pipestem Creek catchment located
in North Dakota, USA. Their findings revealed that calibrating the model with spatial ET
enhanced the model’s performance in simulating both ET and LAI In contrast, only one
study conducted by Jiang et al. (2020) incorporated dynamic vegetation properties by
utilizing the advanced very high-resolution radiometer (AVHRR) LAI record from 1981
to 1994 in the VIC hydrological model for the Columbia River basin located in the USA.
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They updated the model with the Global Land Surface Satellite (GLASS) / MODIS LAI
for the duration from 2004 to 2013. The results showed improvement in
evapotranspiration and run-off simulation.

The LAI is an important biophysical variable in process-based modelling. For the
assessment of this index, remote sensing has emerged as the major source, both at the
local and global levels (Kappas and Propastin, 2012). These global LAI products have
been used as input data in the reviewed articles for the development of hydrological
models and their inclusion in the modelling setup has the potential to improve the model
performance, as reported by Jiang et al. (2020). Although researchers have used different
LAI datasets from various sources as inputs in their hydrological models, they have not
specifically examined how different LAI datasets affect model performance. Such
analysis would be essential in understanding variability in model results due to different
LAI inputs, which can be particularly important in areas where ground-based LAI
measurements are not readily available. It would also help to identify the most suitable
LAI product for a given study area and hydrological model, potentially improving the
accuracy of model predictions. Therefore, future research could focus on conducting a
comparative analysis of different LAI datasets and evaluating their impact on
hydrological model simulations.

2.3.6 Snow-Covered Area Datasets

Glaciers and seasonal snow packs are the sources of water for one sixth of the global
population (Barnett et al., 2005). Snowmelt makes a noteworthy contribution to
hydrology as it influences the vegetation growth and the consumption of water resources.
In cold and mountainous catchments, snowmelt is a major contributor of water supply,
especially in the middle and lower portions of these areas (Li et al., 2019). Snow cover is
also an indicator of climate change, as increase and decrease in this is temperature
dependent (Brown and Mote, 2009). Therefore, the accurate assessment of snow-related
parameters is of considerable importance in hydrology.

One of the traditional methods to measure snow parameters is through ground-based
monitoring of snow characteristics, along with other variables, at a meteorological station.
However, the availability of in-situ readings is still very limited because of several
reasons including remote and far off areas, cost expensive and laborious (Appel et al.,
2019).

In recent years, remote sensing technology has been considerably advanced and can be
used as a substitute for traditional methods to obtain snow-cover information at catchment
level. It can also provide near real-time monitoring of snow cover over large areas (Dong,
2018). For instance, at the meso-scale, Gleason and Nolin (2016) used MODIS snow-
cover product (MODI10AT1) for the calculation of snow-cover frequency to study effect
of pre- and post-forest fire on snow ablation and snow-cover duration. Similarly,
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Teweldebrhan et al. (2018) used MODIS Aqua (MYDIOAIl) and MODIS Terra
(MOD10A1) snow-cover products for parameter uncertainty analysis in addition to the
assessment of stream flow data.

Another approach for the estimation of snow cover is through the hydrological model,
which is based on meteorological and geomorphological data. In the reviewed articles,
studies have been found in which the researchers have used hydrological models for snow
simulation and used the remote sensed snow-related datasets for the evaluation of model
simulated snow parameters. For example, at the meso-scale, Mimeau et al. (2019) used
MODIS satellite images to derive a snow-cover map with spatial resolution of 250 m for
the Pheriche sub-catchment of the Dudh Koshi basin in Nepal and used this snow-cover
map to evaluate the simulated snow-cover area using the glacio-hydrological model
(DHSVM-GDM), in addition to assessing outflows and glacier mass balances. Appel et
al. (2019) derived binary information, conveying whether the snow is dry or wet from,
Sentinel-1 satellite images and used these data to validate the simulated snow information
with the Processes of Radiation, Mass and Energy Transfer (PROMET) model for the
Forét Montmorency catchment, Canada. Multitemporal snow extent maps derived from
Landsat satellite images, in addition to MODIS SCA products (MODI10A1 and
MYDI10AT), were used by Hanzer et al. (2016) to validate AMUNDSEN model
simulations.

Likewise, at the macro-scale, Luo et al. (2017) used a MODIS (MOD10A?2) data product
to compare with MIKE-SHE-modelled snow cover and found the model to be performing
adequately. Ren and Liu (2019) developed a distributed hydrological model for the Upper
Yangtze River basin, China, using MODIS land surface temperature, daily snow-cover
data products (MOD10A1 and MYDI10A1) and in-situ data to calculate snow depths,
while special sensor microwave/imager (SSM/I) snow-cover data were used to validate
the model’s results. The Global Randolph Glacier Inventory (RGI), the Global Land Ice
Measurements from Space (GLIMS) geospatial glacier database and the Glacier
Monitoring of Switzerland (GLAMOS) database were utilized by Imhoff et al. (2020) for
glacier coverage and initial storage assessment in order to be input into the hydrological
model. Liao and Zhuang (2017) used cloud-free MODIS images for snow-cover data. Li
et al. (2019) validated the snow distribution model results with integrated product of
MODIS Terra/Aqua and local data (Interactive Multi-sensor Snow and Ice Mapping
System) for catchment in the Tibetan Plateau region. Ayala et al. (2020) used the MODIS
SCA product in addition to Snow Water Equivalent (SWE) data from the Chilean version
of the Catchment Attributes and Meteorology for Large-Sample Studies (CAMELS-CL)
database for calibration and validation of the Topographic Kinematic Approximation and
Integration (TOPKAPI)-ETH hydrological model for the Mapio River basin in Chile.
Overall, the performance of the model in flow simulation was improved, but the
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individual effect of including the SCA product in the calibration process was not reported
and/or analysed.

From the reviewed articles it can be observed that, although different snow-related remote
sensed datasets have been used by researchers, no one has compared these datasets with
in-situ measurements. Moreover, no study can be found in which the remote sensed and/or
global SCA or SWE products from different sources have been compared with each other
or with the modelled results. Further, no author explored the potential of these products
for assimilation into distributed hydrological models. Remote sensing techniques have
the potential to estimate the snow properties well at different scales. However, there are
several limitations as well. For example, remote sensing snow data gathering started in
the past decades so the length of available data is limited and the observations may be
influenced by cloud cover, leading to large errors. Further, the misclassification of surface
features due to spectral misperception is possible (Dong, 2018). Therefore, the evaluation
of the global snow datasets is required to determine their suitability for use in hydrological
applications.

2.3.7 Evapotranspiration Datasets

Evapotranspiration (ET) and precipitation are among the main components of the water
balance in most of the hydrological systems (Nachabe et al., 2005). ET often exceeds
precipitation, particularly in arid and semi-arid regions, and creates a sink for
groundwater (Raz-Yaseef et al., 2012). Thus, the reliable assessment of ET is important
for effective water management.

ET is traditionally measured through ground-based methods such as Bowen ratio-energy
balance, eddy covariance, large aperture scintillometers and lysimeters (Liu et al., 2013),
but these are often not well spatially distributed (Glenn et al., 2007). Further, different
measurement methods have different associated uncertainties and errors related to
instrument installation (Zhang et al., 2008; Allen et al., 2011). The availability of remote
sensed data has eased the spatial estimation of ET (Abiodun et al., 2018). The variables
that are derived from remote sensing data, such as land surface temperature, reflectance
and vegetation indices, can be used to develop algorithms for ET estimation. Moreover,
the cost of finer-resolution ET products covering the wide range is significantly lower
than that of observing through ground-based monitoring stations (Bugan et al., 2020).

There are many hydrological and remote sensing-based surface energy balance models
currently in use for simulating ET datasets. In the reviewed articles, the researchers have
used the actual evapotranspiration (AET) datasets for four different purposes, namely the
(1) calibration, (2) validation, (3) assimilation and (4) evaluation of the ET products, by
comparing them with modelled results. Surprisingly, there is no study related to micro-
scale catchments in which an ET dataset has been used. At the meso-scale, Gampe et al.
(2016) used satellite the Landsat TM Images dataset to calculate actual evapotranspiration
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in order to validate simulated AET by WaSiM hydrological model for the Gaza Strip,
Palestine, for drought studies. Interestingly, there was only one AET product (MODIS
MOD16A) that had been evaluated by undergoing a comparison with model results in
two studies. In the first study, Abiodun et al. (2018) performed the hydrological modelling
using SWAT for Sixth Creek Catchment, Australia, and evaluated the MODIS AET data
product MOD16A with model simulated AET. The authors reported good agreement
between MODIS AET and SWAT ET on the catchment scale but the poor agreement at
the fine scale. Similarly, in the second study, Bugan et al. (2020) evaluated MOD16A
with simulated AET by using the Jena Adaptable Modelling System (JAMS) J2000 for
the Sandspruit catchment, South Africa. In this study the authors reported a good
correlation at the catchment level and poor results at the hydrological response unit (HRU)
level.

At the macro-scale, researchers have primarily used AET datasets for the calibration and
validation of hydrological model simulations. For instance, Dembélé et al. (2020)
evaluated the potential of 12 satellite or reanalysis evaporation datasets in improving
model performance of mHM modelling tool through calibration for the Volta River basin,
West Africa. These datasets are MOD16A2, Operational Simplified Surface Energy
Balance (SSEBop), Atmosphere-Land Exchange Inverse (ALEXI), CSIRO MODIS
Reflectance Scaling EvapoTranspiration (CMRSET), Surface Energy Balance System
(SEBS), Global Land Evaporation Amsterdam Model (GLEAM) v3.2a, GLEAM v3.3a,
GLEAM v3.2b, GLEAM v3.3b, ERA-5, MERRA-2 and Japanese 55-year ReAnalysis
(JRA-55). Further, they used ESA CCI Soil Moisture (SM) v4.2 dataset along with
terrestrial storage data from GRACE and in-situ streamflow data for evaluation of
hydrological model simulations. All calibration strategies outperform streamflow only
calibration. MERRA-2, GLEAM v3.3a and SSEBop gave the best performance as
calibration datasets.

Nesru et al. (2020), used MODIS (level 1-B) satellite data along with meteorological data
for calculation of AET by SEBS for the upper Omo—Gibe basin, Ethiopia. The authors
used this calculated AET along with stream flows for calibration of the hydrological
model. Further, they also used AET from SEBS in addition to stream flows for validation
of model results and reported that the inclusion of AET in calibration had improved the
model performance compared to the case where the model was calibrated only with
stream flows. Becker et al. (2019) reported the use of AET derived by MODIS (level 1-
B) satellite data by Surface Energy Balance Algorithm (SEBAL) and modified it based
on land use. The modified data was used for calibration of the SWAT hydrological model
for the Lower Chenab Canal System, Pakistan. The mean Kling—Gupta Efficiency (KGE)
of the HRUs in simulating AET improved from 0.27 to 0.40 by using the modified
SEBAL AET for calibration in comparison to the model which was calibrated with
unmodified SEBAL AET. The authors recommended a detailed analysis of spatial
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variability of SEBAL AET for using it for model calibration. Similarly, Pan et al. (2018)
used SEBAL to calculate the AET based on MODIS satellite images data and used it for
calibration of Distributed Hydrology Soil Vegetation Model (DHSVM) of the Jinhua
River Basin, China. The authors achieved the reduction in equifinality by considering
multiple variables in the calibration of the model. Koppa et al. (2019) used GLEAM AET
data for calibration of hydrological model for the Omo—Gibe River basin, Ethiopia. It
improved the ET simulation sense of the model. Jin and Jin (2020) also used the GLEAM
AET for calibration of the SWAT model for the Bayinhe River basin in northwest China.
The authors reported the improved simulation of stream flows and water balance.

Rajib et al. (2018) included the MODIS ET data in the calibration of each sub-catchment
in the SWAT model by a spatially explicit approach and were not only able to achieve
improvements in simulated ET and flows but also obtained more realistic results of
vegetation growth. Similarly, the MODIS AET product has been used by Jiang et al.
(2020) for spatially distributed model calibration of the VIC hydrological model of the
Columbia River basin, North America. They reported that 75 % of the sub-basins showed
the improved or comparable KGE values for streamflow simulations as compared to the
base-model. Kunnath-Poovakka et al. (2016) used Advanced Microwave Scanning
Radiometer-Earth Observing System (AMSR-E) version 5.0 (25 km) soil moisture data
along with Evapotranspiration data from CMRSET for the calibration of the gridded
Australian Water Resource Assessment—Landscape (AWRA-L) hydrological model in
order to evaluate its efficiency in streamflow prediction. The authors analysed fifteen
different objective functions to carry out the calibration and reported that most of the
objective functions performed satisfactory in the catchments with medium to high
average flows. This is the only found study among the reviewed articles in which the
authors also compared the CMRSET AET with the ground station AET for the dry
Loddon River catchment, Australia, and CMRSET underestimated on most of the days.
Herman et al. (2018) explored two different techniques of model calibration using local
data of streamflow and spatially distributed AET dataset from SSEBop model (1 km) and
ALEXI model (4 km). They concluded that better simulation results can be achieved by
selection of the right calibration technique. So not only the inclusion of AET in calibration
can bring positive impact but also the selection of right calibration technique is equally
significant. Ha et al. (2018) ensembled linearly four different ET models, i.e., SEBS (5
km), CMRSET (5 km), SSEBop (1 km), and MOD16A (1 km). The ensembled ET data
in addition to LAI data were used for calibration of the SWAT model developed for the
Red River Day Basin, Vietnam. Overall, in these studies, the authors reported the
improved model simulated results by incorporating AET in calibration. Moreover, the
issue of equifinality can also be addressed by considering multivariate calibration.

Like multi-objective calibration, it is a better practice to evaluate the model performance
based on multiple variables instead of relying on a single output. Considering this, few
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researchers used the remote sensed-based AET data products for evaluating the model
simulated AET in addition to other observed or remote sensed variables. For example,
Lazin et al. (2020), in addition to discharge and Terrestrial Water Storage Change, used
the GLEAM AET data for validation of hydrological model simulations for Upper Blue
Nile catchment, Ethiopia. Imhoff et al. (2020) used AET data from the Land Surface
Analysis Satellite Application Facility (LSA SAF), for validation of the hydrological
model of three sub-basins in Rhine basin along with discharge and snow water equivalent
data. AET, calculated through ETwatch software, has been used by Zhang et al. (2020c¢)
for the evaluation of DHSVM model results to compare the performance of two different
interpolation techniques of precipitation data. Likewise, Zhang et al. (2018) and Hedrick
et al. (2020) used the MODIS ET dataset for validation of hydrological model
performance. Although the researchers had used different AET datasets for evaluation of
their model’s performance, they did not comment on the liability or accuracy of these
used remote sensed-based AET products.

From the reviewed articles, only one study is about the use of AET product for
assimilation into hydrological model. In this study, Hartanto et al. (2017) calculated AET
from MODIS / Terra satellite data using ITA-MyWater algorithm and used the calculated
AET for assimilation into the distributed hydrological model for the region of Rijnland,
the Netherlands. The results showed an increase in precision of simulated discharge.

The use of remote sensed-based AET datasets by the researchers show their potential to
bring improvement in the simulation of the hydrological processes. However, for the
small catchments with highly varied land use, keeping the spatial heterogeneity of
remotely sensed datasets intact, remain one of the main challenges (Becker et al., 2019).
The performance of datasets also varies across different climatic zones (Dembele et al.,
2020). Moreover, none of remote sensed dataset can be regarded as actual observations
as uncertainties are common in them (Rajib et al., 2018). Among the reviewed articles,
only the MODIS AET product has been evaluated against the simulated AET from
hydrological models (Abiodun et al., 2018; Bugan et al., 2020) and reported a poor
performance at a fine scale. Further, only in one study (Kunnath-Poovakka et al., 2016),
the comparison of AET products with the ground-based observations has been performed
and even in that, remote sensed AET product is reported to be under estimating. Therefore,
the accuracy of these datasets relative to one another and ground observations should be
extensively explored to improve our understanding of the ET estimation from different
algorithms and sources.

2.3.8 Soil Moisture Datasets

In hydrology, soil moisture regulates the nonlinear separation of rainfall into infiltration
and runoff. The knowledge of soil moisture in the catchment before any meteorological
event, is an imperative factor to be known, as for the same rainfall magnitude, different
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soil moisture states may lead to different hydrographs (Cenci et al., 2016). Similarly, in
many of the hydrological models, the soil moisture steers the partition of water and energy
fluxes. Thus, the better representation of soil moisture in the models has a potential to
enhance the simulation accuracy of other key variables as well (Hostache et al., 2020).

Like other meteorological variables, soil moisture is commonly measured by in-situ
observations but these ground base observations give local readings. Further, considering
the spatio-temporal variability of soil moisture, these methods have limitations and lack
proper coverage (Jiang and Wang, 2019; Seneviratne et al., 2010). On the other hand, the
satellite based remote sensing technique can provide large scale observations and the
problem of poor spatial representation can be resolved (Cenci et al., 2016; Kumar et al.,
2018). The microwave remote sensing, both active and passive, are among the widely and
commonly applied methods for estimations of soil moisture (Wanders et al., 2012).
However, these estimations cannot be blindly trusted as passive microwave products
performed more reliable over bare to sparsely vegetated areas (Brocca et al., 2011) while
active microwave products gave better estimates over moderately vegetated areas (Liu et
al., 2012).

For the micro-scale catchment, no article found where the remote sensed soil moisture
data has been used for hydrological applications. At the meso-scale, remote sensed soil
moisture satellite products have been used by few researchers with the purpose of
performing calibration, model evaluation and assimilation. For example, Rajib et al.
(2016) used the gridded soil moisture dataset AMSR-E Aqua daily level-3, version 2,
having a resolution of 25 km in addition to streamflow data at the outlet for calibration of
a SWAT model for two catchments in the USA: Upper Wabash (macro-scale) and Cedar
Creek (meso-scale). In addition to AMSR-E soil moisture, the authors also used in-situ
soil moisture data for calibration in the case of Cedar Creek. No major change in stream
flow simulation has been observed due to the application of soil moisture in calibration.
Conversely, improved soil moisture simulation by model was reported in the case of
Cedar Creek, where KGE improved from 0.13 to 0.35 when the calibration was performed
with in-situ soil moisture data. In contrast, KGE remained almost the same upon
performing the calibration using AMSR-E Aqua daily soil moisture. However, any direct
comparison of in-situ soil moisture with AMSR-E Aqua daily soil moisture was not
reported. Khan et al. (2018) used the surface soil moisture data product ESA CCI SM for
evaluating the performance of a model built on an equivalent cross-section-based semi-
distributed hydrologic modelling approach for the McLaughlin catchment, Australia, to
simulate the soil moisture. The authors did not comment on the quality of soil moisture
product used.

Cenci et al. (2016) tested the effect of soil moisture assimilation on discharge prediction
by using a Continuum distributed hydrological model of the Orba, Casentino, and Magra
catchments in Italy. Three soil moisture products from H-SAF were tested. These
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products were SM-OBS-1, available at 25 km resolution, SM-OBS-2, available at 1 km
resolution data product and SM-DAS-2, available at 25 km root zone soil moisture data
product. The enhancement of discharge prediction has been assessed by using all three
products. However, SM-OBS-1, despite having coarse resolution, outperformed others as
assimilation data. The authors also concluded that the results of assimilation are also
strongly dependent on catchment characteristics. Similarly, Laiolo et al. (2016) used four
soil moisture data products for testing the effect of soil moisture data assimilation into a
Continuum hydrological model for the study area, i.e., Orba, Italy. Three of the used
datasets (SM-OBS-1, SM-OBS-2, SM-DAS-2) were from H-SAF while the fourth, Soil
Moisture Content (SMC) Level 2, was obtained from the Soil Moisture and Ocean
Salinity (SMOS) mission of the ESA. The authors reported that the assimilation of SM-
OBS-1 and SM-DAS-2 data provided the greatest benefit in discharge prediction.

Likewise, in the reviewed article related to macro-scale catchments, it can be seen that
the remote sensed soil moisture datasets have mostly been used for calibration, evaluation
and assimilation in hydrological models. For instance, Dembélé et al. (2020) evaluated
the potential of 12 satellite or reanalysis evaporation datasets to improve performance
through model calibration and used ESA CCI SM (v4.2) soil moisture data product, along
with terrestrial storage data from GRACE and in-situ streamflow data, for the evaluation
of hydrological model simulations. Similarly, Dembele et al. (2020) tested the suitability
of 17 rainfall and 6 temperature data products for hydrological modelling and evaluated
model response using GLEAM v3.2a AET, ESA CCI SM v4.2 soil moisture and GRACE
terrestrial water storage. Strohmeier et al. (2020) used ET from GLEAM v 3.0 and soil
moisture data from ESA CCI SM v02.2 in calibration of SWAT and PCRaster Global
Water Balance (PCR-GLOBWB) model for surface a flow and drought management
study in the Oum Er Rbia basin, Morocco. The models showed the good simulation of
surface flow, even without the consideration of in-situ data in calibration. Leroux et al.
(2016) assimilated SMOS L3 soil moisture product into the DHSVM distributed
hydrological model and revealed that the soil moisture assimilation can have positive
impacts on hydrological variable estimations. Abhishek and Kinouchi (2021) used
GRACE data, PCR-GLOBWB simulations, and in-situ groundwater data for the
assessment of Terrestrial water storage, soil moisture storage (SMS) and groundwater
storage for the Godavari, Krishna and Mahanadi river basins in India. Soil moisture was
simulated by PCR-GLOBWB using the TRMM 3B43 rainfall data, which were corrected
based on gauge data. The authors noted that, by using these global datasets, it is possible
to quantify the different components of water storage for any catchment worldwide.
However, the study did not comment on the performance evaluation of the datasets used
in the research.

Among the reviewed articles, only Van Der Velde et al. (2021) validated the SMAP
passive-only soil moisture products, using the in-situ soil moisture data and model
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simulations devised by the Dutch National Hydrological Model (LHM) for the region of
Twente, the Netherlands. The authors concluded that the single-channel algorithm at
vertical polarization (SCA-V) is a better algorithm compared to the single-channel
algorithm at horizontal polarization (SCA-V) and the dual-channel algorithm (DCA).
Moreover, the SMAP’s soil moisture values in the afternoons are closer to in-situ
observed values as compared to morning values.

Overall, the use of soil moisture remote sensed products as calibration datasets or for
assimilation has been assessed by researchers in the reviewed articles, but any uniformity
in the results with respect to improvement in hydrological simulation is hard to ascertain.
These are dependent on a number of factors such as the type of datasets used, the
catchment characteristics, assessment criteria, modelling structure, techniques and
algorithms used for calibration and/or assimilation, and so on. Moreover, it is difficult to
pick a single better-performing dataset for any of the cases. Among the reviewed articles,
only one study (Van Der Velde et al., 2021) conducted the validation of SMAP passive-
only soil moisture products against the in-situ observation. Overall, the validation of such
data products before their use in applications such as model calibration, validation or data
assimilation need further exploration to increase confidence in their applicability.

2.3.9 Temperature Datasets

Air temperature plays a crucial role in climate research, serving as a valuable proxy for
energy exchange between the land surface and the atmosphere (Hansen et al., 2010).
Commonly, air temperature is measured at a height of around 2 m above the land surface.
It is considered a critical parameter in glacio-hydrological studies, as it controls the rate
of snow and ice melting (Kumar et al., 2016). Similarly, the land surface temperature
(LST) is the temperature of the Earth’s top layer, known as the canopy skin, and provides
an indication of its perceived hotness or coldness (Bense et al., 2016). Air temperature is
closely related to LST. The difference in temperature between the air and the surface is
an important parameter for calculating the convective heat loss from the earth surface to
the air. The heat loss is used for the calculation of the surface energy balance (Seiler and
Moene, 2011). Additionally, the temperature difference between the earth surface and the
air is particularly relevant for estimating evapotranspiration (Stoll and Brazel, 1992).

Similar to the other datasets needed for hydrological modelling, obtaining measurements
of air temperature using in-situ meteorological stations can be expensive as it involves
significant instrumentation and maintenance costs. This costliness often results in sparse
spatial continuity of data, especially in remote environments (Singh et al., 2019). Due to
the synoptic spatial coverage, satellite LST has become a good alternative for assessing
air temperature. There are five commonly used methods for estimating air temperature
from LST. These methods include statistical approaches, the empirical solar zenith angle
approach, the energy balance approach, the temperature—vegetation index approach, and

34



2.3 Results and discussion

the neural network approach (Shah et al., 2013). Although satellite LST data can help
researchers to overcome many of the limitations and difficulties associated with in-situ
measurements, thermal infrared remote sensing data requires correction for atmospheric
and surface emissivity, which can introduce significant uncertainties. In addition, due to
the spatial heterogeneity of the land surface, the satellite instrument footprint may
encompass various canopy types and soils, which can exhibit large variations in
emissivity and LST over both space and time. Consequently, satellite measurements tend
to represent a complex weighted mean temperature within each pixel, which can make
retrieving and interpreting LST data a challenging task (Guillevic et al., 2012).

The articles reviewed showed that no studies have utilized remote sensed LST or air
temperature datasets at the micro-scale. Furthermore, at the meso-scale, there was one
study that used LST datasets for assimilation in hydrological models. In this study, Laiolo
et al. (2016) incorporated four soil moisture data products and one LST product to
evaluate the impact of data assimilation on the Continuum hydrological model in the Orba,
Italy. The LST product used was the Satellite Application Facility on Land Surface
Analysis (SAFLSA) from the European Organisation for the Exploitation of
Meteorological Satellites (EUMETSAT). The effect of assimilation was analyzed by
considering the model’s discharge simulation performance at the outlet. The authors
reported that the assimilation of soil moisture datasets was more effective compared to
that of LST dataset. Although the assimilation of LST resulted in an improvement in the
Nash—Sutcliffe efficiency (NSE) from 0.63 to 0.64, the improvement was not as
significant as that achieved through soil moisture assimilation. In addition, the authors
emphasized that careful pre-processing of the LST data is required for several reasons.
These include the importance of precise geometric registration between model and
satellite pixels, the possibility of shadowing due to mountainous terrain, and variations in
the satellite viewing angle across different pixels resulting from the sensor scanning
geometry. However, due to the lack of ground data, the authors were unable to evaluate
the accuracy of the remote sensed LST using local observed data.

At the macro-scale, air temperature has been used as forcing datasets in hydrological
models. For instance, Dembele et al. (2020) used 6 different temperature reanalysis
datasets in combination with 17 different rainfall products as forcing data for the mHM
modelling tool to simulate hydrological processes in the Volta River basin in Africa. The
temperature datasets used are JRA-55, EWEMBI, WFDEI, MERRA-2, PGF and ERAS.
They evaluated a total of 102 combinations of rainfall-temperature data based on four
parameters: (1) in-situ stream flow data, (2) GLEAM evaporation data, (3) ESA CCI soil
moisture data, and (4) GRACE TWS data. They ranked different temperature datasets in
combination with rainfall datasets using multiple criteria. For instance, during the
evaluation period, the MERRA-2 temperature dataset was ranked first based on the mean
KGE of stream flow simulations, while the WFDEI dataset was ranked first based on the
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mean NSE of stream flow simulations. The authors reached the conclusion that there was
no single temperature dataset that consistently outperformed others in reproducing the
spatio-temporal variability of all hydrological processes.

In another study, Sen-Gupta and Tarboton (2016) developed a downscaling approach and
utilized MERRA temperature data to test their approach. To evaluate their method, they
compared MERRA temperature data with temperature data from 173 snowpack telemetry
(SNOTEL) sites operated by the U.S. Department of Agriculture in Utah, Nevada, Idaho,
and California. The results showed that the NSE of the downscaled daily mean
temperature increased from 0.83 to 0.84, while the NSE for daily maximum temperature
increased from 0.23 to 0.86. Notably, the NSE value of 0.83 for mean temperature on
direct comparison with SNOTEL ’s site data suggests a good performance for the MERRA
data, whereas the NSE values for maximum temperature were not as high.

Two studies were found where the authors performed biased correction of the temperature
datasets before using them for modelling purposes. Beck et al. (2020) explored the
parameter regionalization approach by using streamflow data from 4,229 catchments, and
they tested the approach by implementing it on a global scale using a distributed version
of the HBV hydrological model. The authors used temperature data from both the ERA-
Interim and JRA-55 datasets, which were bias-corrected and averaged before being
incorporated into the model. However, the effects of bias correction on the model
performance were not reported by the authors. Dahri et al. (2021) utilized temperature
data from the ERAS reanalysis dataset, which had been recommended by a previous study
for Indus catchment. Prior to using the data as forcing data for the VIC hydrological
model, the authors conducted a bias correction. The authors also noted that existing
global- and regional-scale gridded datasets are inadequate for capturing accurate
meteorological variables in complex and orographically influenced high-mountain
terrains.

In some of the reviewed studies, authors used temperature datasets as inputs for their
models. However, they did not comment on the performance of these datasets and only
used them for their intended purposes. For instance, Singh and Saravanan (2020) used
temperature data from Climate Prediction Centre (CPC) of the National Oceanic and
Atmospheric Administration (NOAA) for the Wunna Riveris catchment in India. Rajib et
al. (2018) used temperature data from Daily Surface Weather Data for North America
(Daymet) for a catchment in North Dakota, USA. Busari et al. (2021) used temperature
data from the European gridded dataset of daily observations version 20 (E-OBS 20.0e)
and also from MODIS for the Karasu catchment in Turkey. Lazin et al. (2020) used
temperature data from ERA-Interim for the Upper Blue Nile catchment. Ha et al. (2018)
and Mao et al. (2019) used air temperature datasets from GLDAS for Vietnam and the
Nujiang river catchment in China, respectively. However, the lack of comment on the
performance of the temperature datasets used in these studies makes it difficult to assess
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the accuracy and reliability of these datasets. It is important to evaluate the performance
of the input temperature datasets to ensure the validity of the hydrological model
simulations.

In the reviewed articles related to macro-scale uses, LST datasets have been found only
in three studies. In two of them, LST was used as an input to energy and water balance
based hydrological model, while in one study it was used for model calibration. The
hydrological Flash flood Event-based Spatially distributed rainfall-runoff
Transformation Energy—Water Balance model (FEST-EWB) had been used by Corbari et
al. (2020) to explore the feasibility of combining remotely sensed LST data with the
model for better simulation of ET and soil moisture. The model was built for the
Capitanata Irrigation Consortium, Italy. The satellite images from Landsat-7 Enhanced
Thematic Mapper Plus (ETM+) and Landsat-8 Thermal InfraRed Sensor (TIRS) were
used for the calculation of LST. The remote sensed LST was evaluated with ground
station LST values. The values of correlation coefficient were 0.88 and 0.92 for ETM+
and TIRS, respectively. This was the only study found in the reviewed articles in which
remote sensed LST was evaluated with ground observation prior to application for model
calibration. Ren and Liu (2019) utilized temperature data from ground stations and the
MODIS LST in the cold regions hydrological model (CRHM) to estimate snow depths in
the Upper Yangtze catchment, China. The authors also employed MODIS data to
determine the precipitation separation (critical) temperature. However, the authors did
not perform an evaluation of the quality of the LST dataset used in the study. Corbari et
al. (2019) utilized the MODIS LST product in addition to lake altimetry, water extent,
and ground discharges to calibrate the FEST-EWB hydrological model of Yangtze River
catchment, China. The incorporation of LST into the calibration process significantly
enhanced the model’s performance in simulating representative equilibrium temperature
(RET), leading to a reduction in RMSE from 9.4 °C to 3.1 °C.

Overall, the reviewed literature shows limited use of air temperature and LST datasets
compared to other datasets (e.g., precipitation, DEM). Except for glacio-hydrological
models, air temperature is typically included in the calculation of potential/reference ET,
which is often used as input for hydrological models. Additionally, the performance of
temperature datasets is not uniform and depends on various factors such as geographical
location, evaluation criteria, and modelling structure, as pointed out by Dembele et al.
(2020). Although many different temperature datasets have been used by researchers,
only the air temperature dataset from MERRA has been evaluated in comparison to local
observation, which was performed by Sen-Gupta and Tarboton (2016). Most studies that
have used air temperature datasets did not explicitly comment on their performance
evaluation. LST datasets have been used in only four studies, and only Corbari et al. (2020)
evaluated the developed LST from Landsat-7 and Landsat-8 data with reference to ground
observations. The accuracy of the data is crucial for hydrologic applications as it can
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significantly affect the reliability of any conclusions drawn from the analysis. Therefore,
further exploration is necessary to assess the accuracy of air temperature and LST datasets
for hydrological simulations.

2.4 CONCLUSIONS

This chapter presents a systematic literature review. This was performed on the one-
hundred twenty shortlisted articles with the aim to gauge progress in and identify
knowledge gaps regarding the use of remote sensed and/or global datasets for distributed
hydrological models. The analysis was categorized on the types of datasets and the
catchment scale on which these had been used. The identified catchment scale-wise
knowledge gaps are presented in Table 2.1. These identified future research prospects can
help hydrologists and modellers to steer their efforts towards potentially needed research

areas.
Table 2.1. Identified scale-wise knowledge gaps.
Dataset Type Knowledge Gaps Catchment
Scale
) Evaluation of rainfall datasets for hydrological simulation =~ Micro- and
Rainfall .
at micro-scale and meso-scale. meso-scale
Comparison of rainfall data products accuracy relative to Micro- and
one another and ground observations at meso- and micro-
scale. meso-scale
Comparison of different rainfall products’ computational ~Micro-, meso-
algorithms and their effects on product capability for and macro-
hydrological simulation. scale
DEM Evaluation of global DEMs for hydrological simulations at Micro- and
micro-scale and meso-scale catchment. meso-scale
Quantification of hydrological model uncertainties from Ngrfgor;;lre(f_o_
different DEM sources.
scale
Effect of DEM sources on surface-subsurface interactions l\/gr(l:(rior_r’l;?resf)_
in distributed physical hydrological models. scale
Effect of upscaling or downscaling of global DEMs on NZSSOI;;;:;_O_
distributed hydrological model simulations. scale
Response of model simulated water balance to different Micro-, meso-
LULC and macro-
LULC data sources.
scale
Effect of LULC sources on surface water—groundwater Ng;(rior;;;?rej_o_
interactions in distributed hydrological models. scale

38



2.4 Conclusions

Use of dynamics LULC maps in hydrological in Micro- and
comparison to static input of LULC data. meso-scale
Effect of different classification algorithms use for Micro- and
developing LULC maps on hydrological simulations. meso-scale
How the number of land-use classes effect the Micro- meso-
. i . and macro-
hydrological simulation.
scale
Scale wise identification of optimal number of land-use Micro-, meso-
classes for reasonable performance of hydrological and macro-
models. scale
Evaluation of different global LULC datasets for Micto-, meso-
. . . and macro-
hydrological simulations.
scale
Test the model performance by including long-term land Micto-, meso-
) : and macro-
use-induced changes in hydrology.
scale
Soil Evaluate the impact of different levels of soil information Micto-, meso-
distribution and macro-
. on model performance.
and properties scale
To evaluate which datasets, support better hydrological Micto-, meso-
and macro-
performance.
scale
Exploring the effect of temporal variation in soil Micro-, meso-
. . . . and macro-
properties on the hydrological simulations. scale
Leaf area Micro-, meso-
index The role of LAI dynamics in model calibration. and macro-
scale
Micro-, meso-
Effect of LAI source on hydrological model simulation. and macro-
scale
Evaluation of Global LAI datasets for hydrological Micro-, meso-
. . and macro-
simulations.
scale
Updating the vegetation state of hydrological model by Micto-, meso-
C 2 . and macro-
assimilation of near real-time LAI data.
scale
Snow- Micro-, meso-
Potential use of considering SCA in data assimilation. and macro-
covered area
scale
Direct comparison of remote sensed SCA datasets with in- Micro-, meso-
. and macro-
situ data.
scale
Comparison of different SCA datasets with modelled SCA Micro-, meso-
and macro-
results. scale
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scale
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.. . and macro-
transpiration ground observations.
scale
) L. Micro-, meso-
The effect of spatial heterogeneity in AET data product on ’
) ) . and macro-
catchment hydrological simulations.
scale
) . Micro-, meso-
Comparison of hydrological performance of AET as 1CT0", MESo
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calibration data or as assimilation data?
scale
C e ) ) ) Micro-, meso-
Effect of AET assimilation or calibration on the issue of ’
. o ) and macro-
equifinality in hydrological models. scale
Performance evaluation of soil moisture datasets for
Soil moisture calibration and as data assimilation for micro-scale Micro-scale

catchments.

) ) ) ) . Micro-, meso-
Role of soil moisture data in calibration to resolve the ’

. s and macro-
problem of equifinality. scale
Evaluation of soil moisture product by comparing with Micro-, meso-
model simulated soil moisture or with ground-based and macro-
observations. scale
Soil moisture as calibration dataset vs. as assimilation Mlcgo-, meso-
dataset for better hydrological model performance. an Sr;ﬁ?o_

Temperature
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Micro-, meso-
and macro-
scale

LST as calibration dataset vs. as assimilation dataset for
better hydrological model performance.

The identified knowledge gaps are based on a detailed review of the considered articles.
The authors acknowledge that some articles were skipped due to the keyword selection
or due to a poorly written abstract which caused the elimination of the article from the
review.

Overall, we concluded that the use of remote sensed datasets is more focused on the
macro- or large-scale catchments. Rainfall datasets are among the most used remote
sensed datasets, while DEMs are the only global datasets which exceeded the local
datasets in use for hydrological modelling. LST is the least used dataset. The performance
of different remote sensed datasets is dependent upon many factors such as size of
catchment, region of catchment, performance evaluation criteria and so on. It is difficult
to determine a single consistently better performing dataset. The selection of datasets has
amajor influence on a model’s simulations. Therefore, the evaluation of a selected dataset
for a specific study area is an important step.

It is advisable to carry out investigations focused on exploring the effectiveness of
different remote sensed datasets for the setting up, calibration, evaluation and data
assimilation of distributed hydrological models at various scales, keeping in view the
knowledge gaps highlighted in Table 2.1. Furthermore, it has been noticed that there is a
lack of available literature as well as current research on the evaluating of remote sensed
and/or global datasets in the case of distributed hydrological modelling, especially at the
micro- and meso-scale catchment levels. This knowledge gap highlights the need for
future research to explore and evaluate the effectiveness of different remote sensed
datasets in hydrological modelling at various scales, with a particular focus on micro- and
meso-scale catchments. This information could lead to the identification of more
appropriate datasets for hydrological modelling, ultimately improving the accuracy of
model simulations and contributing to better water resource management.
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STUDY AREA AND MODELLING
SETUP

This chapter describes the study area and provides a comprehensive overview of the
hydrology model used in this research. The aim was to setup the modelling system that
can represent the surface as well as sub-surface hydrological processes and interaction
between them. The developed hydrological model for the study area is used to carry out
the analyses presented in the subsequent chapters.

This chapter is based on the journal publications:

Ali, M. H., Bertini, C., Popescu, 1., & Jonoski, A., 2025. Comparative analysis of
hydrological impacts from climate and land use/land cover changes in a lowland
mesoscale catchment. International Journal of River Basin Management, 1-19.
https://doi.org/10.1080/15715124.2025.2454692

Jonoski, A., Ali, M. H., Bertini, C., Popescu, 1., van Andel, S.J., & Lansu, A., 2025.
Model-based design of drought-related climate adaptation strategies using nature-based
solutions: case study of the Aa of Weerijs catchment in the Netherlands. Nature-Based
Solutions, 100264. https://doi.org/10.1016/j.nbsj.2025.100264



3. Study area and modelling setup

3.1 DESCRIPTION OF THE STUDY AREA

The chosen study area for this research is the Aa of Weerijs, a transboundary mesoscale
catchment shared between the Netherlands and Belgium. It covers an area of 346 km? out
of which approximately 147 km? is located in the Netherlands. The main stream originates
from Brecht, a region in Belgium and flows northwards towards the city of Breda, the
Netherlands where it enters the city canals and eventually joins River Mark (Figure 3.1).

It is a lowland catchment, mostly flat with a gentle slope of approximately 0.5 % (de
Klein and Koelmans, 2011). In the last five decades of the 20™ century, the area
underwent many alterations to adapt to the changing demands of urbanization, agriculture
and for the purpose of flood protection. The streams and channels were normalized and
the drainage network was intensified to reclaim the land (Witter and Raats, 2001). Almost

& Netherlands

Belgium
A AET point
¥  Rain station
@ Discharge point
== NL-BE Border
Landuse [ Inland marshes ___ Road and rail networks River
_ [ Broad-leaved forest [ Principally occupied by agriculture [ Sport and leisure facilities DEM (m)
[_1 Complex cultivation patterns [ Mixed forest [ Transitional woodland-shrub 0
[1 Coniferous forest [C1 Moors and heathland [] Water bodies
N [ Discontinuous urban fabric [ Natural grasslands
01 2 4 5 8 [_] Green urban areas [ Non-irrigated arable land 2.2
km
[ Industrial or commercial units [ Pastures

Figure 3.1. Location of the study area, river network, and elevations (CLMS n.d.-a)
and LULC (CLMS n.d.-b). The map also shows the discharge, groundwater, and AET
locations where the model performance has been evaluated. The abbreviations used for
AET locations represent the LULC, according to the following convention: CP:
Complex cultivation pattern;, DU Discontinuous urban fabric;, NIA: Non-irrigated
arable land; LPA: Land principally occupied by agriculture; CF: Conifer forest; NG:
Natural grassland; IM: Inland marshes; MF: Mixed forest; P: Pastures
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no remnants of the original swamps remain. The number of weirs has also been
constructed to maintain the target water levels in the channels.

Based on the in-situ gauged data from 2010 to 2020, the average annual gross rainfall in
the area is approximately 850 mm y!, resulting in approximately 249 mm y! flow at the
catchment’s outlet. The modest value of the runoff ratio (30 %) suggests a high level of
water consumption within the catchment. The main land use in the area is agriculture and
pastures. According to the Corine Land Cover (CLC) 2018 (CLMS, n.d.-a), the
agriculture area comprises around 72.8 % of the total area which includes a tree nurseries
sector of high commercial export value. Built-up areas cover 13.6 %, while forest and
natural grassland areas collectively cover 9.3 % which are mainly located along the
Bijloop and Turfvaart channels towards the western side of the catchment.

In the catchment, sandy soils are the main soil type and are characterized by sand-covered
ridges with streams typically deeply incised within them. In recent years, the catchment
is facing challenges regarding water shortages during the summer season. This is
attributed to the degradation of subsurface soil, affecting water retention and canal
networking. Various factors exacerbate this situation, including climate change, growing
demand for water in the tree-nursery export sector, and hot dry summers. These pressures
are intensifying, compounded by the simultaneous high demand for protected and
dedicated nature and recreation areas expressed by the residents of Breda, Zundert, and
Roosendaal (Beers et al., 2018). The recent summer drought in 2018 and then again in
2022 compelled the water managers to begin searching for solutions to prepare for more
frequent drought conditions, whereas prior to these events the focus was primarily on
managing the surplus water.

3.2 MODEL SETUP AND DATA

3.2.1 MIKE SHE hydrological model

To achieve the objectives of the study, a fully distributed physically based hydrological
model has been set up using the MIKE SHE (Systeme Hydrologique Europeen) modelling
tool developed by the Danish Hydraulic Institute (DHI), Denmark. It contains physics-
based modules on overland flow (2D Saint-Venant equation, (Popescu, 2013)),
unsaturated zone (1D Richards’ equation, (Richards, 1931)), groundwater (3D
Boussinesq equation, Boussinesq (1904)), and fully dynamic channel flow, incorporating
complex interactions and feedback between these modules. It uses a finite difference
approach to solve the partial differential equations describing these processes (Thompson
et al., 2004). It has the capacity to simulate all significant processes of the hydrological
cycle (Refsgaard et al., 2010) and the capability to simulate integrated surface-subsurface
hydrology more efficiently, especially in flat areas characterized by dense river networks
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and shallow groundwater, by employing physically based methods, in contrast to
conceptual models like Soil and Water Assessment Tool (SWAT) that rely on empirical
equations for simulating interactions (Ma et al., 2016). The study area (Aa of Weerijs) is
alowland area with flat topography due to which it experiences strong surface sub-surface
exchange of flows. Further, the river network also has weirs with target water levels to
maintain. Moreover, the research also aims to test different NBSs based adaptative
strategies spatial represented in different locations of the catchment. To meet these
requirements, MIKE SHE was selected because of its ability to capture the complex
interactions between surface water and groundwater. Under the MIKE package of DHI,
MIKE SHE is fully integrated with MIKE 11 which allows the representation of river
network along with structures. Further, as it is a fully distributed physically based model,
it allows spatial representation and evaluation of NBS measures at different. It has been
recently used for NBS analysis (Fennell et al., 2023; Holden et al., 2022) although the
focus in these studies was on streamflow only whereas we aim to analyse both surface
and groundwater together.

3.2.2 Model setup

The main meteorological forcing data for the model are precipitation and Potential
Evapotranspiration (PET). Daily rainfall data at two stations situated in the Netherlands
(Ginneken and Zundert, marked in Figure 3.1) was sourced from the Royal Netherlands
Meteorological Institute (KNMI, n.d.). The data for the third station (Leonhout, marked
in Figure 3.1) located in Belgium was obtained from the Flemish Environment Agency
(VMM, n.d.). These stations are all located towards the Eastern side of the catchment, as
no rain gauges are available on the West side of the catchment. In general, a uniform
spatial distribution of rain gauges ensures a better representation of rainfall and its
variability over wide areas. In this research, however, the catchment itself is small (346
km?) and relatively flat, which reduces the potential for significant spatial variability in
meteorological data. Moreover, the average rainfall on these stations is in close range
(Ginneken: 2.3 mm d"!, Zunder: 2.3 mm d"! and Leonhout: 2.2 mm d™! for the period 2010-
2019), which shows that the spatial variability of rainfall in the catchment is limited and
these stations can describe the rainfall distribution over the catchment reasonably well.
There are many interpolation techniques available for upscaling rainfall data from point
observations for representing over the model domain. However, each technique has its
advantages and limitations (Hofstra et al., 2008). Considering the relatively flat
topography of the catchment, the rainfall was presented over the model domain using
Thiessen polygons as it is reported as simple method (Liu et al., 2015).

The daily PET data was obtained from the closest weather station (Gilze Rijen) located
in the Netherlands towards the North-East side of the catchment and provided as spatially
uniform over the entire grid in the model. We acknowledge that PET varies depending
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upon topography, soil and vegetation cover characteristics but the due to small size of the
catchment and relatively flat terrain, PET is expected not to vary considerably with
topography. The variations of land (vegetation) cover is taken into account when
calculating actual evapotranspiration using varying vegetation parameters (root depth,
leaf area index etc.). An alternative option to the use of uniformly distributed PET over
the catchment was to obtain PET data from Earth observation gridded products, but these
datasets have many associated uncertainties and cannot be regarded as actual observations
(Rajib et al., 2018; Ali et al., 2023). Therefore, to avoid any additional uncertainties and
ambiguities, PET data from the weather station was provided as spatially uniform over
the entire grid in the model.

The topography in the model was represented using elevation data from EU-DEM version
1.1 (resolution: 25 m, (CLMS, n.d.-b)), while the LULC was represented using CLC 2018
(resolution: 100 m, (CLMS, n.d.-a)). The data on vegetation characteristics, including
Leaf Area Index (LAI) and root depth was acquired from the National Hydrologic
Instrumentation (NHI) sub-report on crop characteristics (NHI, 2008). The values of
Manning’s roughness coefficient corresponding to CLC classes were used from
Papaioannou et al. (2018).

The grid resolution of MIKE SHE model was set as 500 m. The selected grid resolution
reflects a compromise between computational efficiency and the need for spatial detail in
representing the modelled parameters and processes. Finer resolutions can capture
smaller-scale spatial variability but they would significantly increase computational time
without proportionate improvement in model’s accuracy (Vazquez et al., 2002). The
chosen resolution is sufficient for simulating the river and surrounding catchment
dynamics effectively while allowing for reasonable simulation times, as supported by
similar studies in the literature (Loliyana and Patel, 2020). Further compared to lumped
or semi-distributed hydrological models where often each sub catchment is represented
as a single unit, 500 m grid cell provides much greater spatial detail. The main tributary
of the river network, the Aa of Weerijs, has an average bed width of approximately 10
meters. The routing within the river is modelled using MIKE 11, with its geometry
defined through detailed cross-sectional data. The exchange between MIKE 11 and MIKE
SHE occurs at each grid cell, based on the dynamic relationship between river water levels
and groundwater levels at those cells after each computational time step. Therefore, the
selected grid cell size did not affect the representation of river and flow routing process.

The data of the river cross-sections was obtained from the water authority of the Dutch
part of the catchment, the Water Board Brabantse Delta (WBD). A discharge of 0.03 m’s~
! was set as upstream boundary condition to ensure numerical stability by preventing
drying conditions. All streamflow is subsequently generated through interactions between
MIKE 11 river component and the MIKE SHE grid cells. A rating curve was provided
as a downstream boundary condition. The Manning’s roughness coefficient value was
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provided as 0.03 (Chow, 1959). The model incorporated the primary 29 weirs, out of
which 7 were automated. The crest levels and target upstream water levels for the
automated weirs were also provided by WBD. The model integrated these specified gate
operation values for weirs to account for flow regulation.

For the unsaturated zone, the method based on the Richards equation was selected for the
simulation of processes. It was characterized using soil texture data obtained from the
‘Land Use/Land Cover Area Frame Survey’ (LUCAS) 2015 topsoil physical properties
dataset (Ballabio et al., 2016). According to this dataset, five different soil textures are
present in the area. These soils were further categorized based on soil carbon content data
(LUCAS topsoil chemical properties dataset, (Ballabio et al., 2019)), resulting in a soil
map with 18 classes. The hydraulic soil properties were defined using the van Genuchten
method (van Genuchten, 1980), and parameter values were calculated using pedotransfer
function equations from Wosten et al. (1999).

For the saturated zone, the MIKE SHE implemented 3D Finite Difference method was
selected and it was considered as an 80 m deep single aquifer layer. The boundary
condition was set as spatially distributed fixed heads along the boundary, with values
representing the average groundwater levels along the boundary from 2009 to 2016.
Saturated horizontal hydraulic conductivity values were sourced from the Netherlands
REGIS II V2.2 hydrogeological model (Gunnink et al., 2013; Vernes et al., 2005). These
values were extended to the Belgian part of the catchment through interpolation. Small
streams and ditches having an average bed width less than approximately 1 m were not
modelled in MIKE 11 but were incorporated into the model using the conceptual drainage
component of MIKE SHE. Their levels were set equal to the average bed levels of these
small drains with in each model grid. A summary of the datasets used to set-up the model
is presented in Table 4.1 while the schematic representation of MIKE SHE model setup
is shown in Figure 3.2.
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Figure 3.2. Schematic representation of MIKE SHE hydrological model for Aa of
Weerijs

3.2.3 Calibration and validation

The model was set up for the period 15-09-2009 to 31-12-2019. The initial three-and-a-
half months were considered as a model spinning up period. The traditional split sample
approach was used for calibration and validation of the model. Years from 2010 to 2016
was considered for calibration while years 2017 to 2019 were used for validation. The
period 2018-2019 was the driest, so it was kept in the validation period to assess the model
performance in dry seasons. For model calibration, a manual, one-at-a-time approach was
employed. Given the physically based nature of the model, most parameter values were
obtained from independent source and existing literature. For the physically based
distributed model like MIKE SHE, minimum number of parameters are suggested to be
considered in calibration (Refsgaard, 1997). For instance, Al-Khudhairy et al. (1999)
considered only three parameters in calibration. These were manning roughness
coefficient for overland flow, hydraulic conductivity for saturated zone and the drainage
time constant. In this study, the values of manning roughness coefficients and saturated
hydraulic conductivity were taken from literature as mentioned in section 3.2.2. Only one
parameter (drainage time constant) related to saturated zone was considered for
calibration as it is more conceptual in nature. These initial values were obtained from
literature which range between 1.50 exp™’ to 4.5 exp™’ 1/s corresponding to 77 days - 26
days (DHI, 2007; Brandyk et al., 2020; Refsgaard, 1997). The weighted mean of Nash-
Sutcliffe Efficiency coefficient (MNSE) and Correlation coefficient (MR) were used as
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target evaluation metrics with equal weights assigned to each site with its associated
variable. The target variables included streamflow at 3 locations, groundwater levels
(GWL) at 13 locations, and actual ET (AET) at 13 locations (Figure 3.1). During the
validation (2017-2019), the same variables were considered, except for two groundwater
locations (B49F0231 GWS5 and B50A0234 GW4 Figure 3.1) due to data unavailability.

Table 3.1. Datasets used for model setup and performance evaluation

Data Temporal Spatial Source
resolution resolution

Rainfall Daily Point data NL: Ginneken, Zundert (KNMI,
n.d.); BE: Leonhout (VMM,
n.d.)

Potential Daily Point data Gilze Rijen Weather station

evapotranspiration (KNMI, n.d.)

Vegetation parameters — -- -- NHI (2008)

(LAI and root depth)

Actual Daily 100 m Satellite-based evaporation data

evapotranspiration for the Netherlands SATDATA

3.0 (Meteobase, n.d.)
Observed groundwater Daily, Bi- Point data NL: WBD, UCSSD (n.d.)

levels weekly BE: DOV (n.d.)

Observed discharge Daily Point data WBD

River geometric data -- -- WBD

Topography -- 25m European Digital Elevation
Model v1.1(CLMS, n.d.-b))

Land use land cover - 100 m Corine Land Cover 2018
(CLMS, n.d.-a)

Soil  texture  and -- 500 m LUCAS 2015 topsoil physical

typology properties dataset (Ballabio et
al., 2016)

Soil carbon content (%) -- 500 m LUCAS  topsoil  chemical
properties dataset (Ballabio et
al., 2019)

Acronyms used in the table: NL: Netherlands; BE: Belgium; LAI: Leaf area index; WBD: Water Board
Brabantse Delta; DOV: Databank subsurface Flanders; LUCAS: Land Use/Land Cover Area Frame

Survey
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3.3 RESULTS AND DISCUSSION

3.3.1 Model Calibration and Validation

For the catchment average AET, the values of R and NSE for the calibration and
validation periods were 0.91, 0.80, 0.926, and 0.822, respectively. Figure. 3.3 shows that
the catchment average observed and simulated AET exhibit good agreement. The values
of NSE and R at all locations for the calibration and validation period are provided in
Table 3.2.

Validation

—— Observed —— Calibration

U - T T T T T T T
2012 2013 2014 2015 2016 2017 2018 2019

= M W = m @
1

Actual Evapotranspiration
{mm d-1)

Figure 3.3.0bserved and simulated catchment averaged actual evapotranspiration
during the calibration and validation period

In terms of discharge at the catchment outlet, NSE and R values during calibration and
validation were 0.88, 0.71, 0.87, and 0.71, respectively. While the model tended to
underestimate the magnitude of high peaks, the plots in Figure. 3.4 demonstrate the
reasonable capture of trends during both high and low flow periods, indicating the model's
ability to reflect seasonal variations adequately.
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Figure 3.4. Observed and simulated stream flow during calibration and validation
period (a) QI: at the outlet, (b) Q2: in the middle, (c) Q3: at the Belgian border

The simulation of GWLs showed varying model efficacy across different locations. The
plots of groundwater levels at four locations are presented in Figure 3.5. The model
tended to slightly overestimate the GWLs in the upstream regions and around the
catchment’s outlet. Nevertheless, the model results demonstrated good agreement with
observed data for GWLs, capturing seasonal variations and trends reasonably well (R=
0.77 for the average of all observed versus modelled outputs). At certain locations, for
instance at GW7, the observed groundwater head showed the sharp decrease in levels in
the summer months which the model fail to fully reproduce. This sharp decline is likely
due to localised groundwater pumping near the groundwater well. The groundwater
pumping was not included in the model due to unavailability of detail pumping data.
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Figure 3.5. Observed and simulated Groundwater levels during the calibration
and validation period at locations (a) GW13 (1-0334), (b) GW11 (1-0170), (c)
GW9 (5219), (d) GW7 (B50C0079)

Table 3.2. Model performance evaluation during the calibration and validation period

Variable Location Calibration (2010-2016) Validation (2010-2016)
R NSE KGE R NSE KGE
= o QI (Outlet) 0.88 0.71 0.60 0.87 0.71 0.61
2 %’3 Q2 (Middle) 0.73 0.53 0.57 0.74 0.55 0.58
a Q3 (Border) 0.66 0.43 0.47 0.65 0.42 0.44
GWO (5219)  0.72 0.11 0.55 0.90 0.75 0.81
_ GW3 (5332) 0.72 0.28 0.26 0.80 0.02 0.25
% GWI (5170)  0.56 0.10 0.41 0.73 0.13 0.70
E GW2 (5165)  0.72 0.29 0.20 0.80 0.38 0.26
15 GWS 0.89 0.51 0.76 0.83 0.39 0.70
£ (B50CO077)
§ GW7 0.89 0.77 0.84 0.78 0.60 0.65
5 (B50C0079)
GWb6 0.85 0.58 0.47 0.87 0.39 0.38
(B50C0078)
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GWS5 064 035 048 - - -

(B49F0231)

GW4 066 014 016 - - -

(B50A0234)

GWI13 (1- 085 073 081 092 084  0.87

(0344)

GW10 (1- 089 016 054 084 015 076

(0347)

GWI2(1-342) 074 037 070 083 068  0.71

GW11 (1- 087 054 084 092 062  0.88

0170)

CP-1 088 074 075 084 070  0.78

CP-2 08 073 082 085 072 085
£  CP3 091 074 077 071 033  0.67
&  DU-I 087 057 062 08 055  0.63
‘e DU-2 089 074 084 089 074  0.85
5 P-l 089 077 078 091 078  0.76
g P2 086 072 083 072 044  0.71
s LPA 088 074 075 075 052  0.67
2 NIA 087 074 082 078 059 074
S CF 066 020 060 058 003  0.53
2 MF 087 054 064 072 004 050

NG 082 055 075 072 025  0.63

™M 082 042 043 065 015 031

R: Correlation coefficient; NSE: Nash-Sutcliffe Efficiency coefficient; KGE: Kling Gupta Efficiency
coefficient; CP: Complex cultivation pattern; DU: Discontinuous urban fabric; NIA: Non-irrigated
arable land; LPA: Land principally occupied by agriculture; CF: Conifer forest; NG: Natural
grassland; IM: Inland marshes; MF: Mixed forest; P: Pastures.

3.3.2 Catchment water balance

The accumulated water balance of the catchment simulated by the model over the decade
2010 — 2019 is presented in the Figure 3.6. The main components are expressed in mm
over the period of 10 years (round to nearest integer) on the conceptual cross-sectional
view. The components are mentioned to reflect their position within the surface or
subsurface layer of the hydrological component. The total precipitation over the
catchment is 8251 mm. The simulated evapotranspiration (ET) is 5189 mm. It includes
the ET from surface and sub-surface. Surface part of ET consists of evaporation from
intercepted water by plants along with evaporation from ponded water. Transpiration and
soil evaporation comprised the sub-surface part of ET. The results of simulated ET are in
accordance with Huisman et al. (1998) where the ET for the Netherlands is reported as
approximately 500 mm y™! with values close 550 mm y! for the areas which are far from
coast. The infiltrated water in the un-saturated zone is available for sub-surface
evaporation process or for recharge to groundwater. In the zone where Aa of Weerijs is
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located, the groundwater recharge is reported by Huisman et al. (1998) as 200-300 mm y~
! with large spatial variability. This value conforms with the results of MIKE SHE which
has simulated the recharge of 288.8 mm y!. The water in saturated zone contributes
significantly to streamflow while also lost to catchment boundaries as downstream
groundwater outflow.

Precipitation Evapotranspiration=5189 mm
=8251 mm (sub-surface=3716 mm
surface = 1473 mm)

Drain to river = 1668 mm Infiltration

=6524 mm
___________ Overland to

~~~~~~~ river = 254 ny

Sub-surface storage

change = 49 mm

(UZ=-80 mm; SZ=129 mm)
Net boundary

outflow = 884 mm

“Groundwater
level

Groundwater
recharge = 2888 mm

Base flow to river = 208 mm

Figure 3.6. Conceptual representation of the key water balance components simulated
by the model accumulated over the period 2010-2019

The obtained results from the model also agree with those of Dams et al. (2008), where
the authors developed the model of Kleine Nete catchment in Belgium located in near
vicinity to the Aa of weerijs. They reported the average annual precipitation, ET and
groundwater recharge as 832 mm, 462 mm and 292 mm, respectively, which are very
similar to the values that MIKE SHE model simulated for the Aa of Weerijs. Overall the
results of water balance depict that because of the flat topography and relative permeable
soils, the major amount of precipitation infiltrates in to sub-surface while a small fraction
of about 254 mm is generated as direct run-off. The large portion of streamflow (1668
mm) comes from saturated zone via drainage network when the groundwater levels
exceed the drainage levels. The remaining portion of streamflow (208 mm) comes from
direct interaction of saturated zone with river as baseflow.

It is importance to mentioned that the reported water balance represents the spatial
average of the catchment. The identified hydrological processes may vary spatially. For
example, in the wet conditions there may be areas where the soil become fully saturated
leading to temporary ponding of water on the surface (no unsaturated zone). From such
locations, the water can evaporate or percolate again. Overall, the water balance provided
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the better understanding of the catchment hydrology by highlighting contributions of
individual component and exchanges between them.

3.4 CONCLUSIONS

Overall, the hydrological processes of the catchment are well captured by the MIKE SHE
model. The perfromance of the model during calibration and validation was equally good.
Notably, the period of 2018-2019 was the driest on the record but the model well
reproduced the variables in this periods which indicates the realiablity of the model to be
confidentilly used in drought related studies. Further, only limited parameters were
considered in the calibration process but the model performed quite reasonably. This
further increased the confidence in model for use in application such as evaluation of
different earth observation datasets, climate change impact assessment and testing of
NBS-based adaptive strategies. Not relying on extensive calibrated parameters ensures
that any observed differences in outcomes can be more confidently attributed to scenarios
or datasets rather than the compensation effects from finely tuned parameters.
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EVALUATION OF PRECIPITATION
PRODUCTS

Single performance metrics may be insufficient to identify the suitable gridded
precipitation products for simulating hydrological variables. Conversely in a multi-metric
approach, often all metrics from a specific set are collectively considered to compute an
aggregated score. However, there can be multiple combinations possible depending on
the total number of metrics leading to varying aggregated scores. In this study, a multi-
metric, multiple combination evaluation approach is used to identify the most suitable
precipitation product for reproducing discharge and groundwater levels with a specific
hydrological model. The objective is to evaluate the influence of the choice of metrics on
the identification of the most suitable precipitation products. To explore this, MIKE-SHE
hydrological model for Aa of Weerijs catchment is forced with four different gridded
precipitation products: ERAS5-Land, IMERG-Final, MSWEP and EOBS. Five distinct
scenarios are formulated to carry out the analysis using different timeseries based and
hydrological signature-based metrics. The results revealed that no precipitation product
consistently performed better than others across all metrics in precipitation estimation or
reproducing hydrological variables. Testing of multiple metric combinations revealed that
the identification of the most suitable product is sensitive to the choice of metrics. When
the number of metrics considered for evaluation is small, then the likelihood of all the
products to be identified as most suitable for precipitation estimation or reproducing
hydrological variables is higher. The results strongly illustrate the significance of a multi-
metric, multiple combination approach for the evaluation of gridded precipitation
products in hydrological studies.

This chapter is based on the journal publication: Ali, M. H., Popescu, 1., Hrachowitz, M.,
& Jonoski, A., 2025. Multi-metric multiple combination evaluation of precipitation
products for hydrological simulations. Under review.



4. Evaluation of precipitation products

4.1 INTRODUCTION

In the era of advanced technology and remote-sensing, each passing year brings forth new
datasets and hydrologists have greatly benefited from these advancements (Alfieri et al.,
2022). The momentum seems to grow further as initiatives such as ‘Early Warning for
All’ by the United Nations, ‘Green Deal’ by the European Union, ‘Earth Intelligence for
All’ by Group on Earth Observations (GEO) and others, actively promote the generation
and use of Earth observation (EO) products. One of the main drivers of the terrestrial
hydrological cycle and an important input to hydrological models is precipitation.
Gridded EO precipitation products provide advantages over local observations from
gauging stations, such as lower costs, homogeneous coverage and easy data accessibility
(Almagro et al., 2021; Dembele et al., 2020; Brocca et al., 2019). However, it is
challenging to estimate precipitation using satellite data or models and it has many
associated uncertainties (Gebrechorkos et al., 2024; Beck et al., 2017). The uncertainties
in the precipitation products can cause up to 50 % error in variables simulated by
hydrological models (Bardossy et al., 2022), resulting in poor representation of
hydrological responses. Therefore, it is important to evaluate their suitability before using
them for hydrological applications.

In previous studies, the suitability of gridded EO precipitation products is evaluated
mainly using two approaches (i) comparing estimated precipitation directly with observed
data from gauging stations (Yang et al., 2024; Sun et al., 2018; Ayehu et al., 2018) and
(i1) using precipitation products to force hydrological models and comparing the
reproduced variables (e.g. streamflow) with observed data (Gebrechorkos et al., 2024; Ji
et al., 2024; Lakew et al., 2020). In both approaches, researchers rely on error metrics to
evaluate the goodness of fit between estimated and in-situ time series (Alexopoulos et al.,
2023; Gebrechorkos et al., 2024; Dembele et al., 2020), which is standard practice for
hydrologists (Jackson et al., 2019). The Nash-Sutcliffe efficiency (NSE) (Nash and
Sutcliffe, 1970) and the Kling-Gupta efficiency (KGE) (Gupta et al., 2009) are frequently
used metrics for the quantitative comparison between simulated timeseries and observed
ones (Cinkus et al., 2023; Clark et al., 2021). However, each metric has its limitations.
Such as NSE over-emphasises peak values due to use of squared sum of errors (SSE)
which leads to an inflated importance of the absolute errors during high flows at the
expense of low flows: as minimization target SSE leads to an imbalanced reduction of
errors with more emphasizes on high values (Knoben et al., 2019; Onyutha, 2024).
Conversely, the KGE is a decomposition of NSE into three components i.e. correlation,
bias and the ratio of variances or coefficients of variation which to some extent
complement the deficiencies of the NSE but still underestimate the variability of
timeseries data (Liu, 2020). Both NSE and KGE can be strongly swayed by few outliers
(Clark et al., 2021; Beven and Westerberg, 2011). To overcome the influence of high
flows or peaks, various prior transformations on the observed and estimated timeseries
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can be applied such as logarithmic transformation which allows a stronger emphasis on
low flows (Lamontagne et al., 2020; Quesada-Montano et al., 2018). However, in the case
of KGE, log transformation is not advised as it becomes unstable when the transformed
series reaches near zero leading to possible misinterpretation of the results (Santos et al.,
2018). In addition to these, many other error metrics are used by researchers; however,
no single metric can comprehensively capture all aspects of a specific variable (Onyutha,
2024). Therefore, the use of a single metric for datasets evaluation is often insufficient
(Cinkus et al., 2023). Acknowledging this, there is increasing understanding for the need
of multi-metric approaches to evaluate EO precipitation products (Gebrechorkos et al.,
2024; Le et al., 2020; Brocca et al., 2019). Additionally, the use of error metrics on
timeseries alone cannot capture the specific features of streamflow regimes (e.g.
magnitude and timing of high and low flows) and dominant catchment processes (e.g.
base flow index, runoff ratio). These features of watersheds are instead described by
hydrological signatures (Sawicz et al., 2011; Kiraz et al., 2023). Using hydrological
signatures in combination with statistical error metrics can reflect more comprehensively
the ability of precipitation products to reproduce flow (Almagro et al., 2021).

On the one hand, the multi-metric evaluation is suggested for comprehensive data product
evaluation for hydrological applications (Jackson et al., 2019; Moges et al., 2022). On the
other hand, it can lead to complex interpretations of the results due to conflicting
outcomes of the individual metrics. Camici et al. (2020) considered only KGE to compare
simulated and observed discharge with an argument that the limited number of
performance metrics allows the communication of results in an effective way. Further, in
studies where multiple metrics are used, the results are often presented individually for
each metric rather than with thorough combined analyses (Gebrechorkos et al., 2024;
Almagro et al., 2021; Yang et al.,, 2024). This can lead to opposing and unclear
conclusions about the identification of the most suitable precipitation product for a given
application. To overcome this, individual metrics can be aggregated into a single
composite score (Akbas and Ozdemir, 2024; Kumar et al., 2024). However, the final score
can vary based on the number of metrics aggregated, as multiple combinations are
possible depending on the total number of metrics (number of combinations = 2™ — 1,
where 7 is the total number of metrics).

Therefore, there is a need for an evaluation approach that not only considers multiple
metrics but also systematically explores all possible combinations of those metrics to
assess the robustness of precipitation product performance. This study presents a novel,
comprehensive evaluation framework that exhaustively tests multiple combinations of
selected metrics (approximately 33 million) to identify the most suitable gridded
precipitation product for hydrological simulations. The core idea is that the most suitable
product is not the one that performs best on a single or arbitrarily selected set of metrics,
but rather the one that demonstrates consistent plausibility across the widest range of
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metric combinations. To our knowledge, no previous study has implemented such a
combinatorial, multi-metric evaluation to identify the most suitable gridded product for
precipitation estimation and for reproducing hydrological variables with a model.

The objective is to evaluate the influence of metric selection on identifying the most
suitable gridded precipitation products in comparison with in-situ precipitation gauge data
and for reproducing hydrological variables (discharge and groundwater levels). In
addition, the following specific research questions are addressed: Is the most suitable
precipitation product identified by considering individual metrics the same as that
identified by testing multiple combinations of metrics? Is the product identified as most
suitable based on timeseries error metrics (such as KGE, NSE) the same as identified by
hydrological signatures-based metrics to reproduce hydrological variables? Is the product
identified as most suitable from comparison with station data is also the one that is the
most suitable to reproduce hydrological variables? Is considering multiple metrics for the
evaluation of precipitation product beneficial and can a minimum number of metrics
needed for effective evaluation be determined?

To address these questions, four gridded precipitation products: fifth generation of
European ReAnalysis (ERAS5) Land, Integrated Multi-satellitE Retrievals for Global
Precipitation Measurement (GPM IMERG Final), Multi-Source Weighted-Ensemble
Precipitation (MSWEP) and the European gridded dataset of daily observations version
28 (EOBS) are analysed as a test case in this study. These products are used to force
MIKE-SHE hydrological model for the study area. Overall, the research offers a
comprehensive evaluation criterion for these EO data products through exhaustive metric
combination analysis to identify the most suitable product for use with the MIKE-SHE
hydrological model in the study area.

4.2 MATERIAL AND METHODS

The research was carried out focusing on Aa of Weerijs catchment. The MIKE-SHE
hydrological model was developed for the area and utilized to carry out the research. The
description of the study area, details of the input data and model setup are provided in the
Chapter 3. Therefore, this information is not described here. The model is forced with the
four selected gridded precipitation products (described in section 4.2.1). The scope of this
study was not to evaluate the absolute performance of the hydrological model but to
compare the relative performance of the considered precipitation products. The model
was therefore not calibrated individually for each product but the same modelling
structure with identical parameter values was used for all four products (as done by
Gebrechorkos et al. (2024)). This ensured that each product was evaluated using the same
model structure where the parameters did not compensate for the uncertainties of
precipitation products.
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4.2.1 Gridded precipitation products

There is a wide range of gridded precipitation products that have been utilized by the
scientific community for distributed hydrological modelling (e.g. Chapter 2 section 2.3.1).
The continuity of the product, its spatio-temporal resolution and coverage over the study
area were the main criteria for selection of the products. In this study we have used the
following gridded precipitation products that are available for the study area for at least
daily time scale and a spatial resolution of 0.1 degree:

The fifth generation of European ReAnalysis (ERAS) Land is a reanalysis product by the
European Centre for Medium-Range Weather Forecasts (ECMWF). It is available at 0.1°
spatial resolution from 1950 to 2024 (Muifioz-Sabater et al., 2021). ERA5-Land is
generated from the meteorological forcing data for ERAS for land applications only and
freely available from the Climate data store (CDS) by Copernicus (CDS, n.d).

Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM
IMERG) is a product by NASA. IMERG has three versions: early, late and final which
are defined by varying time delays in their availability (early: 4-hrs, late: 14-hrs and final:
3.5-months). In this study, IMERG Final version 7 is used. It is generated based on
microwave-infrared retrievals from satellite data and calibrated using rain gauge data
from global precipitation networks (Huffman et al., 2020). The product has a resolution
of 0.1° and is available from 1998 to 2024. It is freely available from the Goddard Earth
Sciences Data and Information Services Center by NASA Earthdata (GES-DISC, n.d).

Multi-Source Weighted-Ensemble Precipitation (MSWEP) is a global precipitation data
product available at a resolution of 0.1°. It was developed by fusion of multiple data
sources including satellite-based, reanalysis and gauge data (Beck et al., 2017; Beck et
al., 2019). MSWEP has been used by researchers for many hydrological applications and
reported among the most suitable products (Gebrechorkos et al., 2024; Dembele et al.,
2020; Lakew et al., 2020). The MSWEP version 2.8 used in this study covers the period
from 1979 to 2024 and is available to download from the GloH20O website on request
(GloH20, n.d).

The European gridded dataset of daily observations version 28 (EOBS v28.0) is a product
with a resolution of 0.1° developed using data from 23600 meteorological stations across
Europe. Initially, the dataset was developed for validation of European climate models
and now also being used for monitoring climate across Europe. The daily values from
stations are fitted using a deterministic model to capture the spatial trends then daily
ensembles are generated using stochastic techniques (Cornes et al., 2018). We have used
the daily ensemble mean data which is available to download from the European Climate
Assessment and Dataset website (ECAD, n.d).

As ERAS5-Land, IMERG-Final and MSWEP are available at sub-daily temporal
resolution, they were aggregated to daily scale to match the resolution of EOBS and rain
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station data. For brevity, hereafter we refer to ‘ERA5-Land’ as ERAS and ‘IMERG-Final’
as IMERG.

4.2.2 In-situ data

The observed discharge at three locations along the main branch of river Aa of Weerijs
was used for the calculation of metrics (Q1, Q2, and Q3 in Figure 3.1). The discharge
data was provided by the Brabanste Delta water board (https://www.brabantsedelta.nl/,
last access: 18 August 2024). The groundwater levels (GWL) at 13 locations were used
for the calculation of related metrics (GW1 to GW13 in Figure 3.1). The groundwater
data for the Netherlands area of the catchment was obtained from the Brabanste Delta
water board and Data and Information of the Dutch Subsurface website (DINOloket, n.d.),
while for the part of the catchment in Belgium, the data was available through Databank
Ondergrond Vlaanderen (DOV, n.d.).

The daily precipitation data from three gauging stations was used for direct comparison
with the gridded EO precipitation products. Two gauging stations, ‘Ginneken’ and
‘Zunder’ (R1 and R2 in Figure 3.1) are located in the Netherlands and data was obtained
from the Royal Netherlands Meteorological Institute website (KNMI, n.d.) while for the
third station ‘Leonhout’ (R3 in Figure 3.1) located in Belgium, the data was obtained
from the Flemish Environment Agency website (VMM, n.d.).

4.2.3 Evaluation metrics

To explore the research questions, initially, the suitability of gridded products to estimate
precipitation compared to station data is evaluated. Then, the model is individually forced
with the four gridded precipitation products, and their suitability to reproduce discharge,
groundwater levels and other hydrological signatures with the MIKE-SHE model are
tested. For the evaluation of the difference between the reproduced and observed data, a
wide range of metrics is considered and discussed below.

To identify the most plausible precipitation product for precipitation estimation, the
difference between the precipitation estimates from the four gridded data products (ERAS,
IMERG, MSWEP and EOBS) and in-situ data is quantified at the three precipitation
gauging stations. The point to grid-cell data comparison approach is adopted as done by
(Dembé¢lé and Zwart, 2016; Ayehu et al., 2018). The alternative option was to upscale the
point-based station data to the same grid scale as of precipitation products using
interpolation techniques. However, there are many different interpolation techniques
available that could be applied but each has its advantages and limitations (Hofstra et al.,
2008). Therefore, to limit uncertainties and ambiguities involved in selecting an
interpolation method, a simple point to grid-cell comparison method is selected for this
study.
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The selection of metrics was guided by the need to capture diverse aspects of precipitation
product performance, both statistically and hydrologically. The evaluation metrics used
to quantify the agreement between the precipitation data products and in-situ data at the
gauging stations include timeseries metrics, precipitation extreme indices and categorical
event detection metrics. Their details are described in Table 4.1. Among the six error
indicators, two are the most frequently used indicators in hydrological studies i.e. NSE
(Mnse) and KGE (Mkge). Further, Log NSE (Mvrnsg) is also included to complement the
low values in the series. In addition to normalized error indicators, the use of at least one
absolute value error indicator has been recommended by (Ritter and Mufioz-Carpena,
2013). Therefore, the mean absolute error (Mmag) is included as well. Apart from
timeseries data, the signatures or precipitation extreme indices that have single value as
output, are compared using the relative error (Mgr) (Euser et al., 2013). In addition to
these statistical error metrics, the capability of precipitation data products to detect daily
rainfall events is evaluated using categorical metrics: Probability of detection, False
discovery rate, Equitable threat score and Frequency bias.

Table 4.1. Performance metrics for evaluation of precipitation product against station

data
No. Variable/ Abbreviation Performance Description
signature/ metric
indices
1 Time series of R MnsgR; MLNSER;
rainfall MKGER; MMAER;
Mccr
2 Rain duration RDC MNSE,RDC; RDC represents a
curve MLNSE,RDC; relationship between
MKGE,RDC; rainfall magnitudes and
MMAE,RDC their exceedance
probabilities. It gives
insights into how often
certain levels of rainfall
occur.
3 Total rainfall on R95pt0t MER Rosptot Sum of rainfall on days
very wet days exceeding 95™ percentile
threshold (Casanueva et
al., 2014)
4 Longest CDD MER,cDD Longest consecutive
consecutive dry days when rainfall is less
days than 1 mm/day

(Casanueva et al., 2014)
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5 Longest CWD MEr,cwp Longest consecutive
consecutive wet days when rainfall is
days more than 1 mm/day

(Casanueva et al., 2014)

6 Probability of POD Mprop The ratio of the number

detection of correctly detected

events to the total
number of actual events
that occurred (Bouttier
and Marchal, 2024)

7 False discovery FDR Mrpr The proportion of false
rate positives among all the
positive detections
(Bouttier and Marchal,
2024)
8 Equitable threat ETS MEerts It measures how well a
score dataset captures the

occurrence of rainfall
compared to random
chance (Bouttier and
Marchal, 2024)

9 Frequency bias FB Mks Ratio of a captured event
to actual events (Bouttier
and Marchal, 2024)

In addition to the overall combined results, the metrics are also grouped into subcategories,
comprising those related to timeseries, duration curves, categorical event detection
metrics and precipitation extreme indices, to understand the performance of products well
across different domains.

Next, the gridded precipitation products are used as model forcing and their adequacy to
simulate discharge and groundwater level timeseries as well as various other hydrological
signatures is quantified. For this, we included a range of hydrological signatures to
quantify which precipitation data products have most plausibly reproduced multiple
stream and groundwater signatures. These signatures are related to magnitude (e.g. high
flow segment volume, mean discharge, median discharge, variance), distribution
(duration curves), flow dynamics (base flow index, autocorrelation, runoff ratio) and
responsiveness of the catchment (rising limb density, streamflow elasticity). The same
six error indicators mentioned before (Mnsg, Minse, MkGe, MMaE, Mcc and Mgr) are
applied to observed and simulated timeseries of discharge and GWL along with other
catchment signatures to quantify the differences. These metrics are listed in Table 4.2.
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The selection was informed by the need to capture the diverse hydrological responses of

the catchment, which is characterized by lowland hydrology, with moderate slopes,
shallow groundwater tables, and a strong surface—subsurface interaction. For example,

the inclusion of groundwater-sensitive indicators such as baseflow index and streamflow

elasticity reflects the importance of groundwater contributions to streamflow in this
region. Similarly, rising limb density and autocorrelation help assess the flashiness and

memory effects of the system in response to precipitation inputs.

Table 4.2. Performance metrics for evaluation of simulated variables

No. Variable/ Abbreviation Performance Description
signature metrics
1 Time series of Q MnsE,Q; MLNSEQ;
stream flow MkGE,Q; MMAEQ;
Mcco
2 Time series of G Mnske,G; MLNSEG;
groundwater MkceG; MMAEG;
levels Mcc,g
3 Flow duration FDC MNSE,FDC; FDC represents a
curve MLNSE,FDC; relationship between
MKkGE.FDC; flow magnitudes and
MMAE,FDC their exceedance
probabilities. It gives
insights into how often
certain flows occur
(Jothityangkoon et al.,
2001)
4 Groundwater GDC MNSE,GDC; GDC represents a
duration curve MLNSE,GDC; relationship between
MKkGE,Gpe; groundwater levels and
MMAE,GDC their exceedance
probabilities. It gives
insights into how often
certain levels occur
(Hrachowitz et al.,
2014)
5 FDC high flow HFV MER HFV It characterises the

segment volume

amount of flow from
extreme events
(exceedance probability
< 2%) (Xia et al., 2024)
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6 FDC mid flow MES MER MFs It characterises the
segment slope variability and
behaviour of mid-range
flows (exceedance
probability between 20
—70 %) (Xia et al.,
2024)
7 Base flow BFI MER BFI Contribution of
index” baseflow to streamflow
(Sawicz et al., 2011;
Zhang et al., 2020b)
8 Streamflow SE MERr sE Sensitivity of
elasticity streamflow to changes
in precipitation (Sawicz
etal., 2011)
9 Autocorrelation 1-lag MER,1-lag The degree of similarity
lag by 1 day between time series and
its shifted version.
Thus, a reflection on
the memory of the
system (Hrachowitz et
al., 2014; Euser et al.,
2013)
10 Rising limb RLD MERRLD It depicts the
density (month ‘flashiness’ of the
D! catchment’s propensity
(Sawicz et al., 2011)
11 Runoff ratio RR MNSE RR; The portion of rainfall
(monthly) MLNSE RR; converted to streamflow
MkGERR; MMaERR by the catchment. It
reflects the water
use/storage in the
catchment (Sawicz et
al., 2011; Xu et al.,
2021)
12 Mean discharge MQ MEr MQ (Xia et al., 2024)
13 Mean log- MLQ MEer MLQ
transformed
discharge
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14  Median MDQ MER MDQ (Xia et al., 2024)
discharge
15 Discharge VQ MERr,vQ
variance
16  Variance of log- VLQ MER,vLQ
transformed
discharge
17  Peak discharge PQ MERr pQ (Xia et al., 2024)

*Base flow is simulated by the MIKE-SHE model and is compared with the gauge model’s
base flow for assessment of MER,BFI for each dataset.

The overall suitability of the four gridded precipitation products either based on their
agreement with point observations (Table 4.1) or to reproduce the hydrological response
of the study catchment (Table 4.2), was evaluated by combining the individual metrics
into two different aggregate criteria. In the first criterion, the Euclidean distance (DE)
from the perfect model (Hrachowitz et al., 2014) was calculated where each performance
metric is assigned with an equal weight.

Iiv=1(Pi - Mi)z
N

DE = (4.1)

Where P; are the perfect values of performance metrics, Mi are the actual values of
performance metrics and N is the total number of metrics. Since each metric contributes
equally to the DE, poor performance in a single metric (where Mi deviates significantly
from P) will have a squared effect on the DE score. This means that a large difference in
one metric can disproportionately increase the DE, even if the product performs very well
in other metrics. This disproportionate effect could penalize a dataset based on a single
metric, affecting the overall performance assessment.

To overcome this, an additional criterion based on the Plurality Rank Aggregation method
(Roberts, 1991) is designed which involves assigning a percentage score to each dataset
based on how frequently it ranks first (best) across various performance metrics. The
scores are then summed up across all metrics. For example, if dataset A ranks first at two
locations for discharge simulation in terms of NSE, while dataset B ranks first at one
location, dataset A would receive a score of 67%, and dataset B would receive a score of
33% corresponding to metric Mnsg,. Then these scores would sum up to determine the
best dataset across all metrics. This approach ensures that a dataset's poor performance in
a single metric does not overly influence its overall ranking.

The percentage score (PS) for dataset j° considering metric ‘Mi’ is mathematical
represented in Equation 4.2.
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N
PS; = ) (7% x 100) (4.2)
i=1

Where T} is the total number of times dataset 7’ ranks first for metric ‘Mi’ across all
locations, the L; is the total number of locations for metric ‘Mi’ and N is the total number
of performance metrics.

4.2.4 Scenarios formulation

Five distinct scenarios are formulated to explore the research questions and mainly to
assess how does the choice of evaluation metrics influence the identification of the most
suitable gridded data product for precipitation estimation and for reproducing
hydrological variables.

In the first scenario (SC-1), point to grid-cell comparison of data from precipitation
products and three gauging stations is performed using performance metrics listed in
Table 4.1. The aim is to identify the most plausible gridded product for precipitation
estimation. In the second scenario (SC-2), the performance metrics applied to timeseries
data of discharge and GWLs are considered. These are listed in rows 1 and 2 of Table 4.2.
In the third scenario (SC-3), the focus is on metrics based on hydrological signatures
which are listed in rows 3 to 17 of Table 4.2. This scenario explores which products
reproduce hydrological responses in the catchment more plausibly and whether it is
similar to the one identified as most suitable in scenario SC-2. The fourth scenario (SC-
4) represents a more holistic approach that incorporates both timeseries and signature-
based metrics corresponding to all metrics listed in Table 4.2. The aim is to determine
how a comprehensive evaluation can alter the conclusions about which gridded product
is overall the most suitable for hydrological simulation with the MIKE-SHE model in the
study catchment. The results are also compared with scenario SC-1 to test whether the
product identified as most suitable from comparison with station data is also the one that
is the most suitable to reproduce hydrological variables.

Considering that researchers may select a different set of metrics, scenario SC-5 considers
all the possible combinations of metrics listed in Table 4.1 and 4.2. This scenario
acknowledges the subjectivity inherent in metric selection and demonstrates that different
combinations can lead to different products being identified as the most suitable for a
specific catchment. In this scenario, 65,535 possible combinations of metrics for
precipitation estimation (from the set of 16 metrics), 33,55,4431 possible combinations
for discharge (from the set of 25 metrics) and 511 possible combinations for GWLs (from
the set of 9 metrics) were tested. The primary aim is to evaluate the influence of metric
selection on identifying the most suitable precipitation products and to determine the
products that are identified as suitable across majority of combinations. Further, outcomes
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are used to examine whether considering multiple metrics for the evaluation of gridded
precipitation products is beneficial and whether a minimum number of metrics needed for
effective evaluation can be determined.

In all scenarios, the selected metrics are combined using two aggregation criteria for
overall performance assessment i.e. DE (Equation 1) and PS (Equation 2).

4.3 RESULTS

4.3.1 Comparison of gridded precipitation products based
hydrological simulations with gauge-based model

Hydrological variables were obtained as results of model runs with input precipitation
from gauging stations, ERAS, IMERG, MSWEP and EOBS. The precipitation with the
corresponding simulated discharge at the catchment’s outlet on a daily scale for the period
2017-2019 is shown in Figure 4.1. The simulated discharge from the four gridded
precipitation products (Qeras, Qmmerc, Qmswep and Qeogs) is broadly consistent with the
simulated discharge from the in-situ precipitation gauge data (Qgauge). In terms of KGE,
the discharge is better reproduced by the IMERG at the outlet than the station data (0.68
vs 0.61). Whereas, in NSE, EOBS (0.69) performed better than IMERG (0.52) but not
better than the gauge model (0.71). The performance of each product against the gauge
data to simulate discharge is not consistent across different metrics (Figure 4.2a). For
instance, EOBS is better in MnsE,Q, MLNsE,Q, MMAE,Q, Mcc,q , MMag Fpc and MkaGe rr than
the gauge model. The respective values are 0.57, 0.64, 0.70 m® s, 0.77, 0.38 m* s™! and
0.77 against 0.56, 0.60, 0.73 m> s, 0.76, 0.42 m® s and 0.51 for Qgauge, respectively.
Whereas, IMERG performed better than the gauge model in eight metrics which is the
highest among all products. These metrics are Mkagg,Q, MnsE,rpc, MKGEFpC, MER HFV,
MER,1-lag, MER,VQ, MER,VLQ, MERPQ With respective values 0.68, 0.94, 0.75, 0.19, 0.28,
0.003, 0.22 and 0.08 against 0.59, 0.83, 0.63, 0.27, 0.36, 0.26 and 0.47 for QgGauge. In the
case of ERA5 and MSWEDP, although overall performance to reproduce discharge is
comparatively poor among products but still for many metrics the values are better than
the gauge model. For example, ERAS has performed better in Mer mrs (0.84 vs 0.95),
Mer,se (0.01 vs 0.06), Mermo (0.01 vs 0.02) MgrmLq (0.09 vs 0.12) and MSWEP in
Minskerpc (0.89 vs 0.86), Merrrp (0.12 vs 0.20), Mnsgrr (0.73 vs 0.68), Minsgrr (0.75
vs 0.67), MerMpQ (0.18 vs 0.35). The results align with the findings of Almagro et al.
(2021), who also observed that the precipitation product's performance in simulating
discharge and signature is better than ground observed data at many locations in the
Brazilian biomes including the Atlantic Forest, Cerrado, and Caatinga biomes.
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Figure 4.1. Observed and simulated discharge at the catchment outlet along with
catchment average precipitation data from gauge station and the gridded precipitation
products (a) ERAS, (b) IMERG, (c) MSWEP and (d) EOBS

In Figure 4.2, the values of metrics related to relative errors (Mgr) and MAE are inverted

by subtracting them from 1 to ensure that higher values represent better performance.

Greater variability is observed in discharge metrics’ values across different precipitation
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products compared to the metrics’ values for GWLs (Figure 4.2) which suggests that
discharge is more sensitive to changes in precipitation than the GWLs. In eight out of
nine metrics, EOBS performed equally well (MLnsE.G, MMAE,G, MNSE,Gbc, MLNSE,GDC) OF
a bit better than the gauge model (MnsE,G, MkGE,G, Mcc,6, MmaE,Gpe) with a cumulative
difference of only 0.002. MSWEP performed better than the gauge model only in
Mkae,gpe (0.65 vs 0.64) and equally well in Mmag,gpe (0.180 vs 0.183). However, ERAS
and IMERG did not outperform the gauge model for groundwater simulation in any of
the metrics.

The values of different metrics reflected the adequate ability of the model to capture the
hydrological fluxes in the catchment. However, the main focus of the study is on the
relative performance of precipitation products for hydrological simulations using a range
of metrics, instead of assessing the model's own accuracy or effectiveness. Therefore, in
the following sections, precipitation products are analysed in terms of their relative
performance without comparing with the hydrological variables simulated with gauge-
based model.

4.3.2 Scenario 1 comparison of gridded precipitation products
with gauging station data

The spatial variability in the performance of gridded products across three precipitation
stations (represented by diamonds) using the frequent applied metrics (KGERr, NSERg,
LNSERr and MAER) are shown in Figure 4.3. Considering the timeseries (Figure 4.3a-d),
EOBS has performed strongly in precipitation estimation across the majority of locations.
The dominance is particularly visible in NSEr (0.78 vs 0.443, 0.066, 0.463 for ERAS,
IMERG and MSWEP, respectively), LNSER (0.60 vs 0.57, 0.35, 0.59 for ERAS, IMERG
and MSWEP, respectively) and MAEg (0.9 mm d! vs 1.51 mm d!, 1.91 mm d, 1.47
mm d! for ERAS, IMERG and MSWERP respectively) while in terms of KGEr, MSWEP
has outperformed EOBS at two locations (R1: 0.75 vs 0.72; R2: 0.77 vs 0.75) while at a
third location (R3) EOBS has shown better results (0.78 vs 0.71). In contrast, ERAS has
shown limited performance with no dominance at any location while among all the
products, IMERG has the poorest values for all the metrics. Comparing both ERAS5 and
IMERG with MSWEP, the difference in average KGEr, NSEgr, LNSEr and MAER for
ERAS is only 0.5%, 4.4%, 3.6% and 2.5% while in the case of IMERG, the differences
in metrics values are above 20%. For the metrics applied on the precipitation duration
curve (Figure 3.4e-f), EOBS has the best value only at location R3 for KGErpc (0.86 vs
0.78, 0.85, 0.77 for ERAS, IMERG and MSWEP respectively) and NSErpc (0.97 vs 0.90,
0.96, 0.92 for ERAS, IMERG and MSWEP respectively). Whereas, ERA5 and MSWEP
have better values than EOBS at locations R1 and R2 where ERAS5 has shown dominance
in terms KGErpc (R1: 0.95, R2: 0.98) and MAEgrpc (R1: 0.15 m d”!, R2: 0.10 mm d)
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while at the same locations, MSWEP is leading in terms of NSErpc (R1: 0.99, R2: 0.99)
and LNSErpc (R1: 0.97, R2: 0.99).
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Figure 4.3. The best performing gridded product at each location on comparing with
rain gauge data (diamonds, 3 locations), in simulating discharge (squares, 3 locations)
and groundwater levels (circles, 13 locations) using metrics KGE, NSE, LNSE and
MAE for timeseries (a-d) and duration curves (e-f). The colour of a marker represents
the product with the best metric value at the specific location while the shape of a
marker represents the variable. The size of a marker is proportional to the values of
each metric. The MAE values (d and h) are normalized and inverted (subtracted from 1)
to ensure that bigger markers represent better performance

Overall, the results of metrics applied to timeseries data (Figure 4.3a-b diamonds) clearly
show the dominance of EOBS except for a few locations where MSWEP has better values.
However, in terms of the rainfall duration curve (Figure 4.3e-f diamonds) each product
has the best value at least at two locations affirming the strengths of these products with
specific rainfall characteristics at particular locations. Considering the spatial distribution,
it is complex to clearly identify any product as the most suitable one. Therefore, the
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metrics are combined for the overall assessment using two criteria (DE and PS) explained
in section 4.2.3 using Equations 4.1 and 4.2 and results are shown in Figure 4.4.

ERA5 IMERG MSWEP EOQOBS ERA5 IMERG MSWEP EOBS
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Figure 4.4. The performance of gridded precipitation products over the catchment for each
metric (Table 4.1) represented individually and combined using criteria: (1) the Euclidean
distance (DE) on the left side and (2) the Percentage score (PS) on the right side

EOBS has the best score across most of the timeseries metrics indicated by both criteria:
DE(i-s5) and PS(1-s5) with scores of 0.467 and 400 respectively. The MSWEP has second
best scores with DE(1.5y=0.743 and PS1.s)= 100. While for metrics applied to RDC, DE .
9) supported ERAS as the most suitable product with a score of 0.13 vs 0.32, 0.14, 0.24
for IMERG, MSWEP and EOBS respectively. Whereas, according to PS¢.9) both MSWEP
and ERAS are equally suitable having equal scores (133). Therefore, in detecting the
overall magnitude and frequency of rainfall, ERAS5 and MSWEP are closest to the rain
gauge station data. The aggregated score of precipitation extreme indices (MEgr,Rrosptot,
Mer,cop and Mgr,cwp) identified MSWEP as the most suitable product with DE(i0-12) as
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0.230 vs 0.37, 0.72, 0.36 for ERAS, IMERG and EOBS, respectively while as per PS(io-
12) both MSWEP and ERAS5 have same scores (107 vs 20, 67 for IMERG and EOBS,
respectively). Considering the metric for the detection of events (Mpop), ERAS has the
top score (DE: 0.14, PS: 75). However, it showed the lowest performance in false
discovery rate (Mrpr; DE: 0.21, PS: 0) which suggests that it detected rainfall events that
did not actually occurred. Whereas, EOBS has the best scores in Mrpr (DE: 0.06, PS:
100) and Mgrs (DE: 0.40, PS: 100) that show its balance behaviour between detecting
rainfall events without false alarms. Overall on combining the outcomes of detection
metrics, EOBS stood out as the most suitable product as per both criteria with the value
of DE as 0.23 vs 0.30,0.37,0.28 (PS: 220 vs 115, 20, 45) for ERAS, IMERG and MSWEP
respectively.

Overall, the aggregated scores from both criteria considering all the metrics from Table
1, identified EOBS as the most suitable product to estimate precipitation in comparison
with gauging station data. The DE (PS) score for EOBS is 0.35 (753) against 0.48 (355),
0.69 (107), 0.45 (385) for ERAS, IMERG and MSWEDP, respectively. EOBS also has the
best scores in most of the subcategories, especially in metrics for timeseries data. MSWEP
also performed well with slightly lagging performance in a few metrics than EOBS and
has second best overall scores. ERAS has shown good performance in RDC metrics and
extreme events magnitude but struggled in some event detection and timeseries related
metrics. IMERG consistently underperformed across nearly all metrics except from
Munsk, Roc Where it gained the best score. EOBS emerged as the most suitable product
overall, especially for time series metrics, while MSWEP showed consistent secondary
performance. ERAS performed well for duration curve metrics and extreme events but
had limitations in event detection. IMERG underperformed across most metrics. These
results highlight the value of using multiple metrics for a comprehensive evaluation.

4.3.3 Scenario 2 comparison of gridded precipitation products to
reproduce discharge and groundwater levels

The spatially distributed performance of precipitation products to simulate discharge and
GWLs at different locations in the catchment evaluated in terms of Mxge, Mnse, MINSE
and Mwmag are represented in Figure 4.3(a-d). For the discharge (represented by squares
in Figure 4.3), EOBS has shown clear dominance in terms of Mnsg, Minse and Mmak at
all three locations (Q1, Q2 and Q3) with average values of 0.57, 0.64 and 0.70 m> s™!
respectively. However, in terms of Mkge (which is one of the most considered
performance metrics in recent literature), IMERG has outperformed other products at all
three locations (Q1: 0.68, Q2: 0.70, Q3: 0.66). Particularly when compared with EOBS,
the percentage differences are 9.33 %, 10.55 % and 19.21 % at locations Q1, Q2 and Q3,
respectively.
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For GWLs (Figure 4.3a-d), EOBS performed slightly more plausibly than others,
especially in the middle part of the catchment (GW6-11) where the average values of
Mnsk,G (MLnsg,G) are 0.55 (0.54) against 0.47 (0.46), 0.43 (0.43) and 0.47 (0.47) for ERAS,
IMERG and MSWEP, respectively. In terms of Mkce,g, IMERG, MSWEP and EOBS
have performed equally well by having the best score at four locations each with average
values of 0.55, 0.56 and 0.58, respectively. ERAS was the least frequent best performing
product with best values only at GW10 for Mxge,g (0.81) and GW12 for Mmag (0.22
m).

The overall performance of gridded products to capture discharge and groundwater levels
for the entire catchment aggregated using the DE and PS criteria are represented in Figure
4.5. The dominance of EOBS as the best performing product is clearly visible except for
Mkae,@ where IMERG has performed better with values of DE: 0.32 and PS:100 against
DE: 0.41 and PS:0 for EOBS. However, with respect to the final scores of DE and PS on
aggregating all metrics, EOBS is identified as most suitable for simulating both discharge
and GWLs (DE: 0.46 and PS: 723). The results are more ambiguous for the second best
product. For discharge, according to DE, MSWEP has second best score (0.54 vs 0.59 for
IMERG) whereas according to PS, IMERG has second best score (100 vs 0 for MSWEP).
Contrary, in GWLs, IMERG is second best as per DE (0.51 against 0.52 for MSWEP)
whereas MSWEP is second best as per PS (84.6 vs 76.9 for IMERG). However, the
margin in DE (0.01) and PS (7.7) values for IMERG and MSWEP is not very high.

Considering discharge and GWL together, IMERG is in second place as per PS criteria
(176.9 vs 84.6 for MSWEP) but it is in worst place as per DE criteria (0.55 vs 0.54, 0.53
for ERAS and MSWEP, respectively). This may be due to its poor performance in Mmag
where its value is 23 % worse than MSWEP and its ‘square of difference from perfect
values’ is approximately 52 % worse (see Equation 1). This significantly affected the
overall ranking of IMERG according to the DE criteria.
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Figure 4.5. The performance of gridded precipitation products to reproduce discharge
and groundwater levels evaluated using timeseries based metrics (Table 4.2, at 1 and
2) represented individually and combined using criteria: (1) DE on the left side and
(2) PS on the right side. Performance is ranked on a scale from 1 to 4, with 1
representing the most suitable product while 4 representing the least one

Overall, IMERG despite having the best KGE values for discharge (MkaE,q, DE:0.10,
PS:100 ), struggles with some other metrics such as Minskg,q (DE:0.29, PS:0) and MMmak,Q
(DE:0.92, PS:0) indicating possible difficulties with log scaled flow (low flow conditions)
and absolute error. On the other hand, EOBS demonstrated the best performance in
simulating both discharge and GWLs and emerged as the best product overall for scenario
SC-2. However, considering the spatially distributed results, its performance is not
consistent at all the locations. MSWEP showed moderate consistent performance but did
not attain the highest score in any single metric. ERAS obtained the lowest score among
the products reflecting comparatively large discrepancies from the observed data. In SC-
2, EOBS was identified as the most suitable product overall for simulating both discharge
and groundwater levels, despite some spatial inconsistencies. IMERG performed well in
terms of KGE, particularly for discharge, but showed weaknesses in low-flow and
absolute error metrics, affecting its overall ranking. MSWEP showed balanced but less
dominant performance, while ERAS consistently lagged behind.

4.3.4 Scenario 3 comparison of gridded precipitation products to
reproduce signatures
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In this scenario, the gridded precipitation products' suitability to reproduce flow and
groundwater signatures has been analysed using 24 different metrics listed in Table 4.2
(3-17). The spatial distributed results of metrics applied to duration curves of discharge
and GWLs are represented in Figure 4.3(e-h). For discharge (represented by squares), at
all three locations, IMERG has the highest values for Mkgerpc and Mnsgrpc with
respective average values of 0.75 and 0.94 against ERAS (0.58, 0.79), MSWEP (0.55,
0.76) and EOBS (0.63, 0.84), respectively. Whereas, in terms of Mixsg,rpc and MmaEgFpc,
IMERG is not among the top ranked at any of the discharge points. In Mrxsg,rpc, MSWEP
has the highest values at Q1 (0.78) while EOBS has the highest at Q2 (0.96) and Q3 (0.93).
While, for Mmagrpc, EOBS has the highest values across all three locations with an
average of 0.38 m’s™! against 0.46 m*s™!, 0.47 m*s!, 0.42 m*s™! for ERAS5, IMERG and
MSWEP, respectively.

IMERG attained the best scores in the metrics Merurv (ERAS: 0.57, IMERG: 0.44,
MSWEP: 0.61, EOBS: 0.52) and Mg, rq (ERAS: 0.75, IMERG: 0.28, MSWEP: 0.73,
EOBS: 0.63) that reflect the strength of the product to simulate high values comparatively
better. Further, duration curves represent the distribution of magnitudes without
considering time stamps and the results showed that IMERG excelled in simulating the
high magnitudes (as evidenced by the metrics Mgr nrv and Mgg, pg). This strength gave
IMERG an advantage in terms Mnskg.rpc, as it is influenced by the high values and show
enhanced efficiencies in such cases (as discussed in section 1). Conversely, in MiNsE FpC,
the log transformation of data highlighted the low values and in such a situation MSWEP
and EOBS performed better than IMERG.

Regarding the spatially distributed results of GWL duration curves (GDC; represented by
circles in Figure 4.3e-f), the number of locations where EOBS is identified as most
suitable for reproducing GDC has reduced compared to scenario SC-2. It lost the top rank
at 1, 4, 5 and 6 number of locations in Mkce, Mnsg, Minse and Mwmakg respectively. For
instance, at location G5, the MSWEP ranked as first in Mnsg,gpc where values are 0.47
(ERAS), 0.30 (IMERG), 0.62 (MSWEP) and 0.60 (EOBS). However, values are in close
range for different products when averaged across all locations (G1-G13). For instance,
the average values of Mnsg,gpe for different products are 0.54 (ERAS), 0.57 (IMERG),
0.58 (MSWEP) and 0.60 (EOBS). Therefore, as per DE criteria (Figure 4.6, DE(0-25)),
EOBS remained the most suitable for reproducing groundwater signatures despite losing
top rank at many locations (DE: 0.40, 0.37, 0.36, 0.35 for ERAS, IMERG, MSWEP and
EOBS respectively). MSWEP is the second best as per DE criteria falling behind just by
0.01. However, it is the best performer as per PS criteria followed by IMERG, as in PS
criteria the scoring is based on the percentage of times a product is ranked first (PS: 15,
123, 154, 108 for ERAS, IMERG, MSWEP and EOBS respectively).
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Figure 4.6. The performance of gridded precipitation products to reproduce discharge

and groundwater signatures evaluated using signatures-based metrics (Table 4.2, row

3-17) represented individually and combined using criteria: (1) the Euclidean distance

(DE) on the left side and (2) the Percentage score (PS) on the right side. Performance

is ranked on a scale from 1 to 4, with I representing the most suitable product while 4
representing the least one

In discharge simulation, although, IMERG has higher average values of Mnsgrpc and
Mkae,rpc than EOBS by 11.2 % and 15.9 % respectively, but the average values of
Munskg,rpc and Mumakg epc are lower by 15.2 % and 18.9 %, respectively. Consequently, as
per DE criteria (DE(i-4)), IMERG is ranked second best after EOBS (DE: 0.34, 0.29, 0.33,
0.28 for ERAS, IMERG, MSWEP and EOBS, respectively) while it has higher score as
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per PS criteria due to its better performance at more locations (PS: 0, 200, 33.3, 166.6 for
ERAS, IMERG, MSWEP and EOBS, respectively).

In the metrics related to peak flows (Mggr,pq), flow variance (Mgr,vo and Mgr,viq) and
high segment flow (Mgr urv), IMERG attained high aggregated score than other products
in capturing these flow signatures (DE:0.36 and PS:366.6). Whereas, in these metrics,
EOBS ranked second (DE:0.56 and PS: 33). In addition to these, IMERG also performed
best in metrics related to base flow index (Mgr,gr1, DE:0.05 and PS:100) and stream flow
elasticity (Mgr;se, DE:0.53 and PS:100) indicating that most of the catchment
characteristics are well captured by IMERG. However, in the metrics related to the runoff
ratio (MnsgRR, MLNSERR, MMEARR and MkGeRrr), IMERG has comparatively the least
aggregated DE score and MSWEP outranked other products with respective DE and PS
scores of 0.24 and 300 against 0.29 and 100 for IMERG. In the metrics related to average
flows (Mermq and MgrmrLg) and mid-segment of FDC (Mgrmrs), ERAS attained the
highest aggregated score which highlights its strength to simulate the average flows better
than other products (DE: 0.56, 0.65, 0.65, 0.60 and PS: 166.6, 33.3, 133.3, 33.3 for ERAS,
IMERG, MSWEP and EOBS, respectively).

Based on all metrics related to discharge (Figure 4.6, 1-20), IMERG is the most suitable
in scenario SC-3 for reproducing flow signatures (DE(1-20):0.43 and PS(1-20:900). Whereas,
for reproducing groundwater signatures, MSWEP attained highest score in PS criteria
(154 vs 108 for EOBS), while EOBS ranked first as per DE criteria (0.35 vs 0.36 for
MSWEP).

Given these results in scenario SC-3, each product has shown its strengths and
weaknesses in terms of individual metrics. However, considering both discharge and
groundwater signatures related metrics together, IMERG has the highest overall score in
both DE and PS criteria and is identified as most suitable for reproducing the hydrological
signature in the catchment (DE: 0.42 and PS: 1023). Whereas, EOBS is second best as
per DE criteria (DE: 0.43 and PS: 541) and MSWEP is ranked second per PS criteria (DE:
0.46 and PS:820.5).

4.3.5 Scenario 4 comparison of precipitation gridded products to
reproduce discharge, groundwater levels and hydrological
signatures

In this scenario, all the metrics used in scenarios SC-2 and SC-3 are analysed together
using both the DE and PS criteria. To evaluate the performance of gridded precipitation
products in simulating the discharge and GWL along with relevant signatures, the DE and
PS scores were also calculated separately for discharge and GWL by considering all the
metrics that are related to these variables, as mentioned in Table 4.2. The results are
represented in Figure 4.7. As per DE criteria, EOBS is the best precipitation product for
simulating discharge (DEq: 0.45), GWL (DEg: 0.42), and both together along with
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signatures (DEoverani: 0.44). Whereas, IMERG is the second most suitable product with
scores 0f 0.47, 0.45 and 0.46 for DEq, DEG and DEoveral, respectively.

However, PS criteria generated different results when discharge or GWL were analysed
separately. In the case of discharge, the top ranked product is IMERG (PSq: 1000) unlike
in the DE criteria where EOBS (PSq: 833) holds the top spot. In GWL, EOBS remained
top ranked in both criteria (PSq: 430.8 and DEg: 0.42). Whereas, the second best is
different, which is MSWERP in the case of PS (PSg: 238.5 and DEg:0.46) and IMERG in
the case of DE (PSg: 200 and DEg:0.45). However, the final ranks in overall results
(PSoveranl and DEoveranl) are the same in both criteria. The percentage difference in scores
of DE and PS for ERAS, IMERG and MSWEP compared to EOBS are -10.8 %, -5.3 %,
-9.6 % and -76.5 %, -5.1 %, -28.4 % respectively. The consistency in final rankings
increases confidence in the suitability of best products for the simulation of hydrological
processes, which is EOBS, with IMERG lagging only by approximately 5 % difference
in both criteria.

ERAS IMERG MSWEP EOBS ERAS IMERG MSWEP EOBS
DEq PSq
1
DEg PSc 2
3
DEOVeraII PSO\lerall 4

Figure 4.7. The performance of precipitation gridded products to reproduce hydrological
variables along with signature evaluated using all performance metrics (Table 2)
combined using criteria: (1) DE on the left side and (2) PS on the right side.
Performance is ranked on a scale from 1 to 4, with 1 representing the most suitable
product while 4 representing the least one. DEg/ PSo represents the results of metrics
applied to discharge while DEG/ PS¢ represents the results for GWL

Scenario SC-4 results show that EOBS as the most suitable precipitation product for
reproducing discharge, groundwater levels, and related hydrological signatures, based on
both DE and PS criteria. IMERG ranks second overall, with particularly strong
performance for discharge under PS criteria. MSWEP shows moderate performance,
especially for groundwater.

4.3.6 Scenario 5 comparison of gridded precipitation products
considering all possible metrics combinations

In scenarios 1-4, the specific sets of metrics are considered to analyse that different sets
of metrics can lead to varying conclusions about the most suitable gridded product for
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estimation of precipitation compared to gauge data and for reproducing hydrological
variables and signatures. There is a total of 50 metrics listed in Tables 4.1 and 4.2. Out of
which 16 are related to rainfall, 25 to discharge and 9 to groundwater. The selection of
metrics can be random from the total number of considered metrics leading to the possible
number of combinations 65,535 for precipitation, 33,554,432 for discharge and 511 for
groundwater. DE and PS values for each combination were calculated. The number of
times each product ranked first in these combinations was summed and plotted against
the number of metrics considered for making combinations from the set of total metrics
(Figure 4.8).

The results of combinations indicated that when the number of considered metrics are
less then more products have a chance to be ranked first. For instance, when a single
metric is considered to identify the most suitable product for precipitation estimation then
31.3 %, 6.3 %, 12.5 %, 50 % of outcomes as per DE and 35.3 %, 0 %, 29.4 %, 35.3 % of
outcomes as per PS supported ERAS, IMERG, MSWEP and EOBS, respectively.
However, as the number of considered metrics is increasing, the likelihood of unsuitable
products to be identified as most suitable is decreasing and outcomes are favouring fewer,
more consistent performing products. For example, when any of the 7 out of 16 metrics
are considered for evaluation of precipitation estimation then EOBS has a 74.8 % and
78.2 % likelihood to be identified as most suitable per DE and PS.

Similarly, in the case of discharge, when a single metric is considered then ERAS,
IMERG, MSWEP and EOBS have 16 %, 36 %, 24 %, 24 % of results as per DE and 11.1
%, 37 %, 22.2 %, 29.6 % of results as per PS, respectively, that identified these products
as most suitable for discharge simulation. Whereas, the number of metrics for which any
single product has attained a 75% likelihood to be identified as most suitable is 16 as per
DE (EOBS) and 19 as per PS (IMERG).

As per DE criteria for discharge (Figure 4.8c¢), if the considered metrics are more than 7,
there is less than 1 % likelihood that ERAS and MSWEP can be identified as best. While
up to 23 metrics, there are 4.67 % of combinations where IMERG can be the top ranked
product. As per PS criteria for discharge (Figure 4.8d), the results are 50 % converged
towards IMERG when the number of metrics is 8 against 0.2 %, 19.3 % and 30.4 %
likelihood for ERAS, MSWEP and EOBS respectively. The results highlighted the
sensitivity of both the numbers and the choice of metrics for precipitation product
evaluation. Testing multiple combinations reduces the likelihood of identifying the wrong
product as the most suitable and the most persistent performing product can be identified.
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Figure 4.8. Stack area plots representing the percentage of time each gridded product
identified as most suitable for precipitation estimation (a, b), discharge (c, d) and
groundwater levels (e, f) corresponding to possible combinations considering a specific
number of metrics from the set of metrics. The left panel (a,c and e) represents the result for
DE criteria while the right panel (b,d and f) represents PS criteria

For GWLs, in both criteria, EOBS dominated by consistently ranking first for nearly all
combinations. Especially in DE criteria (Figure 4.8e), out of 511 combinations, there are
only three possible combinations where MSWEP could be at top. Under PS criteria
(Figure 4.8f), IMERG and MSWEP have shown marginal existence by performing best
in 7 and 27 combinations respectively but EOBS performance in GWLs metrics is
plausible. However, there is a combination comprising of 5 metrics for which MSWEP is
most suitable for GWL simulation. Similarly, in the case of discharge, the overall
performance of ERAS is very poor but still, there are 30,444 and 11,579 combinations of
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metrics under DE and PS criteria, respectively, where it has been identified as the most
suitable. This highlights the importance of metrics selection and the need for a detailed
analysis considering all possible combinations which clearly illustrate the likelihood of
all precipitation products to be identified as most suitable for hydrological applications.

Overall Scenario SC-5 demonstrates that the identification of the most suitable
precipitation product is highly sensitive to the number and combination of metrics used
particularly when then number of metrics are small. When fewer metrics are considered,
the likelihood of misidentifying a less suitable product as the best increases. As more
metrics are included, the outcomes converge towards consistently strong performers
(EOBS for precipitation estimation and GWL simulation, and IMERG for discharge,
particularly under PS criteria). This scenario highlights the critical importance of using
multiple, diverse metrics to ensure robust and reliable evaluation of precipitation products
in hydrological modelling.

4.4 DiscUSSION

The main objective this study aims to address is to evaluate the influence of metric
selection on identifying the most suitable gridded products for precipitation estimation
from comparison with gauging station data and for reproducing hydrological variables
(discharge and groundwater levels). The results of different scenarios and metrics
combinations clearly reflect that the choice of evaluation metrics has a significant
influence in determining the most suitable product. Depending on which metrics and
which variables have been selected for evaluation, the results have varied a lot. For
instance, individual metrics such as NSE applied to stream flow identified EOBS as most
suitable for discharge simulation while KGE value for stream flow favoured IMERG
(scenario SC-2). This contrast is due to the mathematical sensitivity of the metrics. NSE
is highly sensitive to deviations between observed and simulated values because of its
squared error formulation, which disproportionately penalizes errors in the timing and
magnitude of peak flows. As a result, a few mismatches (especially during high-flow
events) can significantly lower the NSE score, even when the overall hydrograph pattern
is reasonably represented. The comparative low scores of IMERG than the EOBS in event
detection metrics (Scenario SC-1) reflects its limitations in accurately capturing the
timing and occurrence of rainfall events, which likely contributed to its lower score in
NSE.

In contrast, KGE integrates three components (correlation, variability, and bias) into a
single metric, providing a more balanced evaluation of the time series. This makes it more
tolerant to timing errors compared to NSE and more reflective of overall hydrograph
shape and consistency. Notably, the IMERG Final product is bias-corrected using
monthly gauge data from Global Precipitation Climatology Center (Huffman et al., 2020),

83



4. Evaluation of precipitation products

which likely align its long-term mean and improve its performance in metrics that
emphasize distribution and correlation, such as KGE. Further, hydrological signatures
tend to evaluate specific aspects of the flow regime (e.g., peak flow volume, rising limb
steepness, baseflow ratio) without being as sensitive to temporal alignment or individual
outliers. This allows IMERG’s strengths in capturing general hydrological aspects to be
reflected more clearly in the signature-based analysis (scenario SC-3). Overall, EOBS
performed well across a broader range of metrics and was identified as the most suitable
for discharge and GWL simulation in scenario SC-2 and SC-4. Its consistently strong
performance can be attributed to its gauge-based interpolation method, which aligns
closely with observed station data. This illustrates the significance of interpreting metrics
in the context of their mathematical sensitivities and the hydrological behaviours they
emphasize.

Additionally, the results of scenario SC-5, where multiple combinations of metrics are
tested, strongly support that the use of a single metric can lead to an unsuitable choice of
gridded product either for precipitation estimation or hydrological simulations. The use
of multiple metrics multiple combination provided a more robust and comprehensive
assessment of the product’s performance. Further, the use of different signatures in
addition to timeseries based metrics, revealed the strengths and weaknesses of each
product under varying hydrological conditions. This supports the findings of previous
studies (Kiraz et al., 2023; Moges et al., 2022), which emphasize that relying solely on
statistical performance measures may overlook important deficiencies in hydrological
models and inputs. For instance, Kiraz et al. (2023) proposed a signature-based efficiency
metric suitable for evaluating models in ungauged basins, showing that hydrological
signatures can be regionalized and carry meaningful performance information beyond
traditional metrics like NSE or KGE. Similarly, Moges et al. (2022) demonstrated that
signature-based and process-based diagnostics can uncover functional mismatches in
models that would otherwise appear satisfactory using only time series metrics. These
studies reinforce our approach of using diverse time series metrics and hydrological
signatures to perform a more comprehensive assessment of gridded precipitation product
suitability.

Also, the results of scenario SC-5 reveal that the probability of consistently identifying
the most suitable precipitation product increases with the number of metrics considered
in the evaluation. This trend can be attributed to the fact that individual performance
metrics capture distinct and often complementary aspects of model behaviour, such as
central tendency (average conditions), variability, error magnitude, event detection
capability, or responsiveness. Consequently, evaluations based on a limited or unbalanced
set of metrics may reflect only partial product performance, leading to non-representative
conclusions.
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As the number of metrics increases, particularly when they are diverse and representative
of multiple hydrological and statistical domains, the evaluation becomes more robust.
This is because aggregating across multiple performance dimensions tends to mitigate the
dominance of any single metric and minimizes the influence of outliers or artefacts. This
approach improves the representativeness of the evaluation by combining time series
statistical metrics with hydrological response characteristics, thereby increasing the
stability of the product rankings.

The findings emphasize the importance of adopting multi-metric and multi-combination
evaluation framework in hydrological modelling studies. Furthermore, the combinatorial
analysis demonstrates that the selection of evaluation metrics significantly influences the
outcome of product suitability assessments. This has important implications for future
research, suggesting that the evaluation of precipitation products should move beyond
conventional reliance on one or two widely used metrics (e.g., NSE or KGE), and instead
adopt a more comprehensive, systematic approach. Incorporating a broader set of
performance metrics can reduce the risk of overfitting product selection to a narrow
evaluation scope and lead to more generalizable and defensible conclusions.

In this study, we attempted to determine the minimum number of metrics considering that
the likelihood of identification of the most suitable product for precipitation estimation
or hydrological simulations is at least more than 50 %. Few researchers have suggested
the evaluation criteria should embrace at least one absolute error metric, one
dimensionless metric for good of fit quantification and a graphical representation (Ritter
and Muifioz-Carpena, 2013; Biondi et al., 2012) but any recommendation about the
minimum number of metrics to be used for model evaluation was lacking. We agree that
more metrics are better but due to the high computational burden and enhanced
complexity related to result analyses, it will also become more challenging. Therefore, in
scenario SC-5, it was explored by testing different numbers of metrics along with their
possible combinations. In the case of precipitation estimation and discharge simulation,
when the number of metrics considered is more than seven, the likelihood of the most
unsuitable product to be ranked as best is less than 1 % and the likelihood of the most
suitable product to be ranked at the top is more than 50 %. Whereas for the groundwater,
the situation is quite different from the precipitation estimation and discharge, where the
likelihood of the most suitable product to be identified as best is already about 90 % for
GWL simulation by considering 3 metrics only. It is important to mention that the
findings regarding the minimum number of metrics varied depending on the type of
variable and the overall performance criteria (DE and PS). Moreover, the findings are
based on the data from only one catchment whereas more generalizable outcomes could
be achieved by extending the analysis to a larger number of watersheds (Kratzert et al.,
2023).
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The other question this research aimed to address was whether the product identified as
most suitable based on comparison with station data is also the most suitable for
reproducing hydrological variables? The results suggest that, although there is some
alignment between the products' performance in precipitation estimation (as evaluated
against gauge station data) and in hydrological simulations, this relationship is not
consistent across all products and metrics. For instance, EOBS showed the best
performance in precipitation estimation followed by MSWEP on the direct comparison
with the gauge data (scenario SC-1). EOBS also performed well in simulating
hydrological variables (scenarios SC-2 and SC-4). This indicated that the comparison
with the gauging station data could be a good approximation for identifying the most
suitable product for reproducing variables to some extent but could not be relied upon as
the only criteria. This is because IMERG showed the worst performance in comparison
with the gauge data but performed second best in reproducing hydrological variables
(scenario SC-4) and best in reproducing signatures (scenario SC-3). Such discrepancy in
outcomes suggests that the comparison of precipitation products with gauge data alone is
not enough to judge the product’s ability to simulate hydrological processes in the
catchment. The findings align with Gebrechorkos et al. (2024), where the authors
advocate the approach for precipitation products evaluation that considers the comparison
of observed and simulated variables, as it can identify the product that can best capture
the hydrological variability in the region. Similarly, Alexopoulos et al. (2023) did not
compare the precipitation products with gauge data with an argument that gauges are only
representative of the area that is covered by the measuring instrument (about 200 cm? for
the well-known instrument). Whereas, the precipitation products might be outperforming
gauge station data in capturing the spatial variability which is important in distributed
hydrological simulations. Therefore, the multi-metric approach for comparison of
simulated variables with the observed data is more comprehensive for the identification
of the most suitable products for hydrological simulations instead of making a judgement
based on comparison with the gauge data only.

Further, considering all metrics, no single precipitation product consistently performed
well across all spatial locations in our study (Figure 4.3), which aligns with the findings
of previous large scales studies (Gebrechorkos et al., 2024; Dembele et al., 2020; Beck et
al., 2017). These studies report significant spatial variability in product performance,
emphasizing that no single dataset performs best across all regions. For instance, Dembele
et al. (2020) and Gebrechorkos et al. (2024) found that the top-performing product varied
across climatic zones and basins, while Beck et al. (2017) highlighted that even globally
well-performing datasets like MSWEP showed inconsistent accuracy across catchments.
Although those studies covered much larger areas but similar pattern is observed in the
lowland study area which reinforce the importance of product evaluation at comparative
small scales as well.
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Two independent criteria (DE and PS) for the multiple metric aggregation have be used
to reach the final conclusions. Among these criteria, DE criteria have been employed by
researchers in many studies to combine different metrics (Dembele et al., 2020;
Hrachowitz et al., 2014; Hulsman et al., 2021). However, all metrics do not exhibit linear
behaviour, for instance, the gain in NSE is gradual with the model improvement
corresponding to a steep drop on large error (Jackson et al., 2019). If a product has
performed very badly in specific metrics although it has performed very well in others,
DE criteria can disproportionately penalize such product due to a squared difference from
the best value (see Equation 1). Whereas, PS criteria is based on ranks ensures that the
product is not unduly penalized by considering the number of times the product has been
ranked first. While PS criteria is useful for identifying the products that perform well
across multiple metrics and locations, it considers only rank and ignores the absolute
values of the metrics. Therefore, consideration of dual criteria for overall performance
evaluation has provided a more balanced perspective on the precipitation products
evaluation and enhanced the confidence in the findings of the study.

While the findings of this study provide valuable insights into the impact of metric
selection on precipitation product evaluation, it is important to acknowledge that the
results are derived from a single catchment with lowland hydrological characteristics,
mild slopes, and shallow groundwater tables. The performance of gridded precipitation
products, and their ability to reproduce hydrological processes, can vary significantly
across catchments with different climatic, topographic, and hydrological settings, such as
arid regions, mountainous basins, or tropical catchments. As such, the generalizability of
the identified best-performing products (e.g., EOBS or IMERG) may be limited beyond
the context of this specific study area. However, the methodological framework
developed in this study based on a multi-metric and multi-combination evaluation
approach, is transferable and scalable. Future research may aim to replicate this across
diverse hydro-climatic regions, allowing for broader conclusions on the performance of
precipitation products as well as to make recommendations regarding the optimal number
of metrics to be considered in the evaluation of EO precipitation products.

It is important to mention the limitations of the study. Firstly, the model was not calibrated
separately for each precipitation product. The same approach has been adopted by
Gebrechorkos et al. (2024) for the evaluation of precipitation products at the global scale.
The parameter calibration for each product could lead to the compensation of biases in
the input precipitation product (McMillan et al., 2016) which might impact the products
evaluation, as the main evaluating tool which is the hydrological model, would vary for
each dataset. On the other hand, there are studies (Dembele et al., 2020; Alexopoulos et
al., 2023; Almagro et al., 2021) who did the calibration for each dataset. While we agree
that the calibration could have improved the performance of each precipitation product
but our focus was on relative performance evaluation. Further, in section 4.3.1, the results
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showed that across different metrics gridded precipitation products have often performed
better in simulating hydrological variables compared to gauge-based model, which
supports that the base model contains the set of parameters that are not unduly biased
towards any specific dataset and represents a neutral model. Secondly, the point to grid
comparison of precipitation products with the rainfall gauge stations was carried. While
this method is widely used in the literature (Bagiliko et al., 2025; Maranan et al., 2020;
Ageet et al., 2022; Monsieurs et al., 2018; Ayehu et al., 2018; Demb¢lé and Zwart, 2016)
and avoids additional uncertainty introduced by interpolation techniques, it does involve
a scale mismatch between the spatial extent of a gridded pixel (~10 km?) and the point-
based nature of gauge measurements (~200 cm?). This mismatch may introduce
representation error, particularly in mountainous regions with high spatial variability in
rainfall. However, in relatively flat lowland regions such as our study area, this effect is
expected to be less pronounced. Future studies could explore the impact of alternative
comparison methods, such as grid to grid evaluations by interpolating gauge data or using
gauge corrected radar data, where appropriate.

4.5 CONCLUSIONS

This study evaluates the influence of the choice of performance metrics on the
identification of the most suitable gridded product for precipitation estimation and
reproducing hydrological variables. The research is done in Aa of Weerijs catchment
using MIKE-SHE hydrological model over the period of 10-years (2010-2019) forced
with four different precipitation products. The evaluation of gridded products is carried
out for precipitation estimation compared to in-situ gauge data using 16 different
performance metrics and for reproducing hydrological variables (discharge and GWLs)
using 34 different metrics including hydrological signatures. The values of metrics are
aggregated using two criteria (DE and PS) for the overall score. Further, all the possible
combinations of metrics related to precipitation, discharge and groundwater are tested to
explore the research objectives. The findings revealed that no precipitation product
consistently performed better than others across all metrics in precipitation estimation or
reproducing hydrological variables. For instance, EOBS performed best for reproducing
discharge as per NSE value for stream flow while KGE for stream flow identified IMERG
as the best product. It is not necessary that the precipitation product that is identified as
most suitable for reproducing discharge and GWLs timeseries (EOBS) is also the most
suitable for reproducing hydrological signatures (IMERG). Further, the comparison of
precipitation products with gauging station data revealed that such evaluations may not
consistently serve as a reliable procedure to determine the product’s suitability for
hydrological simulations. For instance, a relation was found in the case of EOBS where
it has been identified as most suitable both for comparison with station data and also for
simulating hydrological variables. However, IMERG poorly performed to estimate
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precipitation relative to in-situ data from gauge stations but was identified as most suitable
for simulating hydrological signatures. Therefore, we conclude that to identify the
suitability of a product for hydrological processes, the reproduced hydrological variables
are better to be evaluated with observed data.

Testing of multiple metric combinations demonstrated that when the number of metrics
considered in evaluation criteria is small, then the likelihood of any product being
identified as most suitable for precipitation estimation or reproducing hydrological
variables is higher. In our case, when the number of metrics considered for evaluation is
more than seven, then the likelihood of identification of the most suitable product for
precipitation estimation and for discharge simulation is above 50 % and the likelihood of
least suitable product to be chosen as best is less than 1 %. Whereas, for the GWLs, even
with three metrics the likelihood of the most suitable product identification is above 90
%. These findings regarding the minimum number of metrics are specific to our study
and may vary depending on catchment characteristics and the type of hydrological
variables being studied. The multiple combination analysis highlighted the sensitivity of
products’ ranking to the choice of metrics. For instance, the overall aggregated scores
determined that the performance of ERAS was the worst among the four precipitation
products for reproducing discharge but still there were about 30 thousand and 11 thousand
possible combinations of metrics under DE and PS criteria, respectively, that ranked the
product at the top. This describes that a selective set of metrics could lead to an unsuitable
choice of precipitation product. Therefore, multi-metric, multiple combination analysis
provides a comprehensive evaluation method for identifying the most suitable product for
hydrological applications.

The findings of the study give a critical insight into the sensitivity associated with the
choice of metrics and the significant influence of metric selection on identifying the most
suitable precipitation products. Although the outcomes are limited to the study catchment
but scientific community can benefit from the methodology proposed. The framework
was developed and demonstrated in a well-instrumented catchment but it is adaptable to
data-scarce regions as well where traditional ground-based observations are limited. In
such contexts, alternative remotely sensed variables such as evapotranspiration or soil
moisture can be used as evaluation variables, allowing the proposed multi-metric
evaluation framework to still support the identification of the most suitable precipitation
products based on broader hydrological behaviour. Further the application is not limited
to precipitation products but can be applied to evaluate other EO products and to assess
model performance in routine hydrological modelling practices.
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CLIMATE AND LAND USE/LAND
COVER CHANGE IMPACTS

The hydrological processes within the catchment are generally influenced by both climate
change and land use/land cover (LULC) change. However, most of the studies are focused
on their individual impact on the catchment’s hydrology, while their combined effects
have received little attention. This chapter presents study which employs the physically
based fully distributed hydrological model, MIKE SHE, to analyse the separate and
combined effect of climate and LULC change on the hydrology of a mesoscale catchment
in the near future (2050s). An Artificial Neural Network - Cellular Automata (ANN-CA)
based prediction model was trained to simulate the future LULC map. The future
meteorological data under four climate change scenarios was obtained from the Royal
Netherlands Meteorological Institute (KNMI). The model results showed that the
combined effects of climate change with LULC changes did not significantly differ from
the individual impact of climate change on the catchment scale. However, on the local
scale, the changes in LULC can significantly influence the variations in groundwater table,
soil moisture, and actual evapotranspiration ranging from approximately -6 to 15 %, -9 to
27 %, and -30 to 10 % respectively, depending on the specific change in LULC class and
season. In summary, this chapter provides valuable insights into the complex interactions
between LULC changes, climate change, and hydrology.

This chapter is based on the journal publication: Ali, M. H., Bertini, C., Popescu, 1., &
Jonoski, A., 2025. Comparative analysis of hydrological impacts from climate and land
use/land cover changes in a lowland mesoscale catchment. International Journal of River
Basin Management, 1-19. https://doi.org/10.1080/15715124.2025.2454692



5. Climate and land use/land cover change impacts

5.1 INTRODUCTION

Climate change poses serious risks to water availability and food security, impeding
progress towards Sustainable Development Goals. Its far-reaching adverse effects
influence both natural ecosystems and human communities, revealing disparities across
different systems, regions, and sectors (Lee et al., 2024). The IPCC Sixth Assessment
Report (AR6, 2023) stated with a high degree of confidence that the rate of rise in global
surface temperature since 1970 has surpassed that of any other 50-year period in the past
2000 years. This continuous temperature rise underscores the increasingly apparent
climate-driven changes (Bloschl et al., 2019).

Climatic variations, particularly changes in precipitation and temperature, can profoundly
affect both the hydrological state and the spatiotemporal distribution of water resources
(Sorribas et al., 2016; Sunde et al., 2017). To counter these, water management strategies
need to prioritize climate change, emphasizing the implementation of basin-scale
hydrological management techniques (IWMI, 2019). However, selecting appropriate
adaptation strategies necessitates a thorough understanding of the potential impact of
global climate change on the local environment (Adib et al., 2020). Therefore, one of the
initial steps in assessing the impact of climate change on hydrological systems involves
comprehending how future climate signals will influence key catchment hydrological
variables.

Alongside climate change, land use/land cover (LULC) change is also one of the
important drivers of hydrological variations (Rigby et al., 2022; Kundu et al., 2017; Trang
et al, 2017). Changes in LULC can influence hydrological processes, such as
evapotranspiration (ET), interception, infiltration, and surface runoff. These effects occur
through direct alterations to the landscape's morphology and physiology, as well as
indirect modifications to the soil and atmospheric boundary layers (Zhang et al., 2018).

Research examining the impact of human-induced changes in landscape patterns and
climate change has gathered significant attention. However, the majority of this research
has primarily focused on either the effects of climate change or changes in land use, rather
than considering both factors combined (Nazeer et al., 2022; Gurara et al., 2021; Kay et
al., 2021; Adib et al., 2020). In addition to that, when these factors are examined together,
the emphasis of the study is often centered on evaluating variations in surface
hydrological variables alone (Ma et al., 2023; Lyu et al., 2023; Zhang et al., 2023; Sinha
etal., 2020; Igbal et al., 2022) or only on groundwater dynamics (Hanifehlou et al., 2022;
Ghimire et al., 2021).

Furthermore, the existing literature presents a certain level of variation regarding the
individual influence of climate change and LULC change on hydrology. While some
studies assert that LULC change had a more significant impact on hydrological variables
in their study areas (Zhang et al., 2023; Zhou et al., 2019), others highlighted the
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prominent influence of climate change (Huq and Abdul-Aziz, 2021; Ye et al., 2023; Igbal
et al., 2022) (Fu et al., 2019). Consequently, a dedicated combined analysis for a specific
catchment becomes imperative (Wedajo et al., 2022). Further, the positive or negative
change in the climatic variables due to climate change is quite uncertain as the Global
Climate Models (GCM)/Regional Climate Models (RCM) differ for each study site, along
with climate and land use characteristics (Bloschl et al., 2019; Song et al., 2021). Hence,
conducting a study for the area of interest with a focus on local changes is seen as crucial
for a comprehensive assessment of catchment surface and subsurface hydrological
changes, which is necessary for the development of effective water management practices.

In recent years, nearly all regions of Europe have experienced significant impacts from
droughts affecting critical systems such as agriculture, water supply, energy, river
transport, and ecosystems. These impacts are projected to intensify further attributed to
climate change (Rossi et al., 2023). In the summer of 2018, the Netherlands experienced
below average precipitation during May, June, July, September, and October. The
Southern and Eastern regions of the country were more affected by this dry period,
leading to significant impacts on crop yield and grasslands due to a reduction in water
availability (Philip et al., 2020). The situation was similar in the Aa of Weerijs catchment,
which is situated in the south of the Netherlands and shared with Belgium. The main land
use in the area is agriculture, which highly depends on water resources. It is important to
analyse the future local hydrological trends in the catchment to prepare for long term
effective management practices in the area. Therefore, focusing on this catchment, this
chapter aims to analyse both the individual and combined impacts of future projected
changes in LULC and meteorological variables on surface and subsurface hydrology.
Additionally, it seeks to address a knowledge gap about how crucial is it to consider future
LULC changes alongside changes in meteorological variables under climate change when
assessing the future hydrological state of a mesoscale (346 km?) catchment. To conduct
the analysis, a fully distributed hydrological model using MIKE SHE modelling tool was
setup with historical data. The simulation results were then compared by running the
model with: future meteorological data from KNMI’23 climate scenarios alone, with only
the ANN-CA predicted future LULC map, and with both combined.

Following this introduction, the chapter provides the details of the research materials and
methods utilized. Subsequently, the results obtained from the research are presented,
along with a comprehensive discussion of the findings. Finally, the chapter concludes
with a summary of the key findings and their implications.

5.2 MATERIALS AND METHODS

The research was carried out for the Aa of Weerijs catchment. The MIKE-SHE
hydrological model was developed for the area and utilized to carry out the research. The
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description of the study area, details of the input data and model setup are provided in the
Chapter 3. Therefore, this information is not described here.

5.2.1 Future land use / land cover projection

LULC plays an important role in hydrology as changes in it can disturb water and energy
balances consequently affecting processes such as transpiration, interception, evaporation,
and infiltration. The impact of future LULC can be assessed in two ways. The first option
involves considering a hypothetical scenario where one LULC type undergoes a complete
transformation into another type (Zhang et al., 2020a). This approach is, however,
subjective and lacks specificity. Alternatively, the impact can be evaluated by simulating
future LULC using prediction models based on past changes and other influencing
variables (Getachew et al., 2021). These prediction models generally use techniques such
as Cellular Automata (CA), the Markov Chain Model (Marhaento et al., 2018), and
Artificial Neural Networks (ANN). CA is a commonly used method that predicts the
evolution in LULC based on the initial state, neighbouring cells, and transition rules.
Complicated transition rules are often defined by coupling neural networks with CA (Liu
et al., 2017). Machine learning algorithms can facilitate the learning of change factors
based on historical data from two periods to simulate the change rules for future maps.

In this study, ANN-CA was used to simulate the potential future LULC map because of
its consistently satisfactory performance over the literature (Roy and Rahman, 2023; Kafy
et al., 2020). For this task, we utilized QGIS 2.18 and the MOLUSCE plugin. Given the
availability of CLC maps for the earliest (1990) and most recent (2018) years, the
subsequent predicted map was generated for the year 2046 considering it as a
representation of the average LULC condition of the catchment in the 2050s. The process
involved two phases. In the first phase, CLC maps for 2006 and 2012 were treated as
dependent variables, while raster maps of Euclidean distance from rivers, roads, and
digital elevation served as independent variables. The dependent variables were used by
the tool to calculate pixel-by-pixel change map while Pearson correlations are calculated
between independent variables. The Multilayer Perceptron (MLP) ANN was then trained
to predict transition potential. Afterward, CA was employed to simulate the LULC map
for 2018, which was validated against the CLC map for that year. The finest results were
achieved with parameter values of learning rate = 0.10, hidden layers = 1 with 10 neurons,
momentum = 0.050, and iterations = 1000. The kappa coefficients (Koverail, Knisto, and Kioc)
and percentage of correctness were used to quantify the agreement between the reference
and simulated LULC map.

In the second phase, using the above mentioned finalized parameters of the model, the
map for 2046 was simulated using the CLC maps from 1990 and 2018, along with the
aforementioned independent variables. It is worth mentioning here that the future map
was simulated under a business-as-usual scenario, without incorporating any landscape
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planning policies or restrictions on specific LULC classes. The study's objective was not
to generate various future landscapes but to find out the hydrological significance of
incorporating future LULC maps in climate change studies. Therefore, the business-as-
usual scenario was chosen to generate the future LULC map assuming it as a
representative of a worst-case scenario.

5.2.2 Future meteorological projections

To run the hydrological model for future climate change analysis, rainfall, and potential
evapotranspiration (PET) data are required. For this study, the future climate data is
obtained from KNMI (Koninklijk Nederlands Meteorologisch Instituut), the
meteorological institute of the Netherlands. The dataset is known as KNMI’23 climate
scenarios, as it was made publicly available in October 2023. These scenarios are based
on the Coupled Model Intercomparison Project (CMIP6) model runs and translate the
Intergovernmental Panel on Climate Change (IPCC) 2021 global climate projections for
the Netherlands. The KNMI’s Global Circulation Model (GCM) EC-Earth3 model, which
is also part of Coupled Model Intercomparison Project (CMIP6) models, was re-tuned to
reduce the bias and resampled based on CMIP6 target values. The results were then
dynamically downscaled with the regional atmospheric climate model RACMO, also
owned by KNMI. In the end, the outputs of RACMO were bias-corrected based on
observed data (1991-2020) using the Quantile Delta Mapping method (Cannon et al.,
2015). More details can be found in the scientific report by KNMI (van Dorland et al.,
2023).

KNMI’23 scenarios consist of six paths that describe the possible future climate in the
Netherlands around the years 2050, 2100, and 2150. In this study, we are focused only on
the near future (2050). For that time frame, the climate scenarios data is available from
2036 to 2065, with the 30-year time horizon representing the averaging condition of 2050.
The scenarios are based on the three levels of CO; emissions, according to the Shared
Socioeconomic Pathways (SSP): high ‘H’ (SSP5-8.5), moderate ‘M’ (SSP2-4.5), and low
‘L> (SSP1-2.6). Each emission scenario is further combined with wetting scenario ‘N’
(‘Wet’ is ‘Nat’ in Dutch) and drying scenario ‘D’ (‘Dry’ is ‘Droog’ in Dutch) based on
the circulation of precipitation. The wetting scenario represents a wetting trend in winter
and moderate drying in summer, while the drying scenario provides drier conditions in
summer and moderate wetting in winter. Consequently, the six resulting scenarios are HN,
HD, MN, MD, LN, and LD.

In this study, scenarios MN and MD were not considered due to our focus on extreme
climate change scenarios. Our analysis concentrated on the high CO2 emissions scenarios
(HN, HD) and low CO2 emissions scenarios (LN, LD). Moreover, as scenarios MN and
MD lie between the high and low envelopes, their elimination did not affect the high and
low values of the results. The data at the daily time step is available at a resolution of 0.5°
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by 0.65° and covers only the Dutch part of the catchment. To overcome this issue, the
model grids belonging to the Belgian part of the catchment were filled with data from the
closest neighbouring grid cells. The time series were extracted from the gridded data at
the locations where the three rain stations (Ginneken, Zundert, and Leonhout) are situated
(Figure 3.1) and presented interpolated over the model domain using Thiessen polygons
to keep the methodological consistency with the base model.

Moreover, the future projected rainfall and PET for the time horizon 2050 (2036-2065)
were compared with observed data from the base period (2011-2020) to calculate the
projected relative change in rainfall and PET. To analyse extreme events, the statistical
metric ‘R9SpTOT’ was calculated for each season using catchment average rainfall data
for the base period and future scenarios. RO5pTOT quantifies the contribution of very wet
days to the total rainfall, with the threshold for very wet days set at the 95" quantile of
daily rainfall data for the base period. It is also defined as the sum of rain in wet days, i.e.
days with rainfall above the 95" percentile. Further, the rainfall duration curves were
plotted to compare the low, middle, and high-intensity rainfall events for the base period
and four climate projection scenarios. The 95" and 30" percentile lines were marked as
thresholds for comparison of high and low intensity rainfall events (Jian et al., 2022).

5.2.3 Simulation scenario design

To assess the impacts of climate change and LULC change on the hydrology of the Aa of
Weerijs catchment and to elucidate the significance of incorporating future LULC
considerations in climate change studies, three simulation scenarios were developed. The
first scenario exclusively considered future LULC changes, obtained with the developed
ANN-CA model. The second scenario solely accounted for changes in future
meteorological variables and employed the developed MIKE SHE model forced with the
KNMTI’23 climate projections. The third scenario, instead, considered both future LULC
and climate change. Further details are provided in Table 5.1.

To analyse the results under these scenarios, the relative changes in seasonal catchment
averages for AET, discharge at the catchment outlet, recharge to groundwater (recharge),
and base plus drain flow to the river (subsurface flow) were computed using Equation 5.1.

Xscenario - Xbase

A=

x 100 5.1
Xbase ( )

where A represents relative change, X, ,5. 1S the variable value simulated during the base
period and X enario 18 the variable simulated under the respective scenario. A positive
value of A indicates an increase while a negative value indicates a decrease. For the GWT,
as the levels are referenced to the surface, the terms in the numerator of Equation 5.1 were
inverted to maintain consistency in sign conventions.
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The results were further examined at the local level, considering seasonal spatially
distributed values for AET, soil moisture (SM) in the top 10 cm layer, and GWT using
Equation 5.1 at each grid cell, and results are presented as maps.

Table 5.1. Description of designed simulation scenarios

Abbreviation Meteorological data LULC map
SC1 Observed data for base period (2010-2019) 2046
SC2 Climate scenarios LD, LN, HD, and HN for 2050-time 2018

horizon (2036-2065)

SC3 Climate scenarios LD, LN, HD, and HN for 2050-time 2046
horizon (2036-2065)

5.3 RESULTS AND DISCUSSION

5.3.1 Future land use / land cover simulation

CLC maps of the years 1990 and 2018, along with other driver variables such as
Euclidean distance from rivers, roads, and DEM, were used to simulate the future LULC
map of the year 2046 using the developed ANN-CA model. Before simulating the future
LULC map, the LULC prediction model was validated using the CLC 2018 map. The
agreement between the reference and simulated map was assessed using the kappa
coefficients (Koverall, Knisto, Kioc) and the percentage of correctness. Their values were 0.94,
0.97, 0.95, and 95.7 % respectively, lying in the high agreement range (Roy and Rahman,
2023; Viera and Garrett, 2005). The map of 2046 was then simulated using the validated
model (Figure Al in Appendix).

According to the CLC map, the area was categorized into 17 different land use classes,
which were aggregated into 5 major classes following Feranec et al. (2016) for
understanding the major shifts in the LULC (Table 5.2). According to the results, the
built-up area has shown a consistent increase over the examined period. Starting at 39
km? (11.3 %) in 1992, it expanded to 47 km? (13.6 %) in 2018 and is projected to further
grow to 52.8 km? (15.3 %) by 2046. This pattern reflects further urbanization and
infrastructure development in the area. Agricultural lands experienced a minor decrease
from 263.3 km? (76.1%) in 1992 to 251.8 km? (72.8 %) in 2018. The map of 2046
suggested a continued decline to 244.5 km? (70.7 %) but still agriculture remained the
dominant LULC in the region. Considering the changes within the agricultural class of
landcover, 1.75 km? of area has been projected to shift from ‘Complex cultivation patterns’
(CCP) to ‘Land principally occupied by agriculture’ (LPA). The category of ‘Forest and
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semi-natural’ (FSN) areas demonstrated minor positive growth, increasing from 38.3 km?
(11.1 %) in 2018 to 39.8 km? (11.5 %) in 2046. Wetlands remained relatively stable over
the years. Starting at 6.8 km? (2 %) in 1992, they decreased slightly to 6.5 km? (1.9 %) in
2018, but the projected map maintained this stability at 6.5 km? (1.9 %) in 2046. Similarly,
for the water bodies, the simulated covered area remained 2.3 km? (0.7 %).

In general, there has not been any unrealistic LULC change in the region which is
predicted by the ANN-CA model. The simulated map for the year 2046 indicated an
expansion of built-up areas, particularly around existing urban zones, encroaching into
agricultural areas. It is important to note that the simulated future map for the year 2046
was generated under a business-as-usual scenario, without the integration of specific
landscape planning policies or restrictions on LULC classes. The choice of a business-as-
usual scenario serves as a representation of a worst-case scenario, emphasizing the
potential impacts of unchecked urban expansion and changes in agricultural land use. By
doing so, the study aims to highlight the hydrological consequences associated with the
absence of proactive planning measures or land management policies in the face of future
climate and LULC changes. This approach provides valuable insights into the potential
challenges and risks that may arise under such conditions, contributing to a more
comprehensive understanding of the complex interactions between land use, climate, and
hydrology.

Table 5.2. Areas under historical (1990, 2018) and future simulated (2046) LULC maps

Historical Simulated

Corine land use / land Aggregated

1990 2018 2046
cover class class

km?> % km? % km* %

Discontinuous urban fabric
Industrial or commercial

units
) Built-u o o ) N
Road and rail networks and p a — S s N e
) area
associated land
Green urban areas
Sport and leisure facilities
Non-irrigated arable land
Pastures
Complex cultivation o - * 0 o I
Agricultural & S 7 Q 3 S
patterns 8 S =~ & = N =

Land principally occupied
by agriculture, with
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significant areas of natural
vegetation

Broad-leaved forest
Coniferous forest
Mixed forest

Natural grasslands Forest and : R = g Z
semi-natural -« — « -
Moors and heathland
Transitional woodland-
shrub
Inland marshes
Wetlands @ N 3 2 3 C:
Water bodies
Water ~ N ) o~ ) o
bodies < o < o <

5.3.2 Future meteorological projections

The 10 years from 2010 to 2019 were considered as a baseline period to calculate the
relative change (Equation 5.1) as a percentage difference for rainfall and PET, for the
assessment of projected meteorological changes in the 2050 horizon. The outcomes of
the comparison across all scenarios are presented in a range based on the highest and
lowest values achieved overall. The findings indicated that in all months the percentage
change in PET is positive under each scenario, indicating an increase in future conditions.
In contrast, rainfall exhibited a more random pattern (Figure 5.1). During winter months
(DJF: December, January, February), minor variations in rainfall are observed in January
and December. However, In February, the percentage increase ranged from 17.3% to 24%,
making it the wettest month in the winter season. In March and April, there is a notable
increase in rainfall percentages (ranging from 3.9 to 14.7 % and 6.9 to 11.3 %,
respectively) compared to December and January. Conversely, the rise in PET during
these months is less pronounced, ranging from 1.6 to 5.3 % and 3.3 to 6.7 %, respectively.
The combined effects contribute to making March and April relatively wetter. Conversely,
in December and January, the relative percentage differences in rainfall are lower (-1.2 to
6.6 % and -5.2 to 2.6 %, respectively), while PET shows more substantial increases
(ranging from 8 to 10.1 % and 14 to 15.8 %, respectively), leading to relatively low wet
conditions. This shift indicates a temporal change in the rainfall pattern, transitioning
from the winter months (December and January) to the spring months (March and April),
resulting in increased rainfall during the latter period.
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The months of May, July, and August show an increase in PET accompanied by a
decrease in rainfall. In June, rainfall is projected to decrease by -1.6 % under the HD
scenario, while it is expected to increase upto 7.9 % in other scenarios with a maximum
value under HN scenarios, respectively. However, PET in June is projected to increase
under all scenarios by 4.1 to 8.5 %, not balancing the increase in rainfall, likely making
the overall conditions drier. August emerges as the driest month, characterized by a rise
in PET and a decline in rainfall in the ranges of 12.6 to 17.3 % and 7.9 to 18.3 %,
respectively. Moving to autumn (SON: September, October, and November), there is an
overall major increase in rainfall compared to other seasons (13 to 15.5 %), but PET also
shows an upward trend (Figure 5.1). Winter also shows an increase in rainfall (2 to 9.1
%) but is accompanied by a simultaneous rise in PET (8.8 to 10.1 %), consequently
balancing out the increase in rainfall.

For the rainfall, the results align with the broader consensus that Europe is expected to
experience wetter conditions in winter and drier conditions during summers, especially
in the Northern part of Europe (e.g., (Sassi et al., 2019)). However, with the temperature
rise, PET will also be increasing. The future scenarios indicate that the percentage
increase in PET (6.7 to 10.1 %) is more pronounced compared to the rise in rainfall (1.4
to 6.1 %) on an annual scale. This suggests that the catchment may face increased stress
in terms of water availability. Moreover, focusing specifically on the summer months
(JJA: June, July, August), the findings suggest a tendency for decreased rainfall (3.4 to
11.3 %) coupled with a substantial increase in PET (7.5 to 12.4 %). This combination
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Figure 5.1.Relative change in rainfall and PET calculated in percentage under the
KNMI’23 climate projection scenarios for the time horizon 2050 with reference to the
base period. Dashed lines separate the plots that indicate the averages across seasons

and annual data (spr: spring, sum. summer, aut: autumn, win: winter, ann: annual)
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further emphasizes the potential for water stress during the critical summer months. The
observed increasing trends of PET in the Netherlands are consistent with the findings of
Philip et al. (2020), wherein the importance of PET in characterizing the summer droughts
in the Netherlands is highlighted and attributed to changes in atmospheric circulation.

The observed trends regarding the increase ET and decreased precipitation during
summer under future climate broadly align with findings from other regions in the
Netherlands such as Dommel catchment (van Vliet et al., 2012), Keersop catchment
(Visser et al., 2012) and Veluwe region (Van Huijgevoort et al., 2020). To analyse
extreme events, the statistical metric ‘R95pTOT’ was calculated for each season under
both the base and future scenarios (Table Al in Appendix A). During the base period,
summer exhibited the highest total rainfall from very wet days, aligning with the findings
of Whitford et al. (2023). These higher values indicate that the majority of summer
rainfall occurs in short periods with high intensity. Conversely, RO5pTOT values were
lowest in spring. In future climate scenarios, R95pTOT values are notably low, suggesting
a decrease in the intensity of extreme events and a shift towards more events with a lower
intensity of rainfall.

This observation was further analysed by plotting duration curves for both the base and
future scenarios using daily rainfall and their corresponding exceedance probability
(Figure 5.2). While there is minimal difference between the duration curves of the four
future scenarios, a comparison between the base period and future scenarios indicates a
decrease in high rainfall events under all scenarios, accompanied by a significant increase
in low rainfall events. Days with rainfall greater than approximately 2.2 mm are
decreasing, while days with lower rainfall are increasing. This result, however, is
potentially influenced by the different nature of the in-situ data used for the base period,
1.e. point-based, and of the climate projections, i.e. grid-based. Indeed, rain gauges,
strategically positioned on the ground, are designed to measure precipitation at specific
locations which enable them to capture localized events like heavy downpours. In contrast,
future scenarios are the climate model outputs that operate on a broader spatial scale
where each grid cell represents an averaged value for climate variables, providing a more
generalized view over larger regions but also less capabilities in representing extremes.
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Figure 5.2. Rainfall duration curve for the base period (2010-2019) and KNMI’23
climate scenarios (2050). Q30 and Q95 are 30th and 95th quantiles, respectively

5.3.3 Model Calibration and Validation

For the catchment average AET, the values of R and NSE for the calibration and
validation periods were 0.91, 0.80, 0.926, and 0.822, respectively. In terms of discharge
at the catchment outlet, NSE and R values during calibration and validation were 0.88,
0.71, 0.87, and 0.71, respectively. Results demonstrate the reasonable capture of trends
during both high and low flow periods, indicating the model's ability to reflect seasonal
variations adequately. The simulation of GWLs showed varying model efficacy across
different locations. The model tended to slightly overestimate the GWLs in the upstream
regions and around the catchment’s outlet. Nevertheless, the model results demonstrated
good agreement with observed data for GWLs, capturing seasonal variations and trends
reasonably well (R= 0.77 for the average of all observed versus modelled outputs). The
results are presented in detail in Chapter 3.

5.3.4 Impact on catchment hydrology under designed scenarios

Scenario SC1, under future LULC changes

In scenario SC1, the model was simulated for the base period 2010 to 2019 using a future
LULC map (2046) to assess the individual effects of LULC changes on the catchment’s
hydrology. The impacts have been assessed on various simulated variables, including
discharge at the catchment outlet, AET, subsurface flow, and recharge at the catchment
scale. In addition, the impacts on AET, GWT, and SM (top 10 cm) were evaluated at the
local scale as well.
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Under the future LULC change, the effects on hydrology at the catchment level are
minimal. The mean monthly discharge is almost the same as the base model with a minor
increase (Figure 5.3). The maximum observed increase occurs during autumn, with only
a 0.7 % rise, while the minimum increase is during the spring months, equal to 0.2 %
(Table 5.3). This may be attributed to the projected increase in built-up areas in the future,
where the expansion of the built-up area (1.7 %) dominates the forest and semi-natural
(FSN) area expansion (0.4 %). This LULC change reduced actual evapotranspiration
(AET), leading to more water being retained in the soil and subsequently contributed to
increased subsurface flow to river by 0.3 to 1.1 %, with the maximum rise observed in
autumn.

64 —— Base SC1 I SC2 envelope SC3 envelope

Discharge (m® s~ 1)
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Figure 5.3. Mean monthly discharge at the catchment outlet under the base, SCI,
SC2, and SC3 scenarios. For SC2 and SC3, the envelope represents the range
between the highest and lowest values under LD, LN, HD, and HN climate scenarios

The AET is reduced on the catchment scale by -0.2 %, -0.3 %, and -0.3 % in the spring,
summer, and autumn respectively, which may be due to a decrease in transpiration from
areas that have been converted to built-up areas. On the local scale (Figure 5.4),
considering only the areas where LULC change is projected to occur, the changes in AET
range from -30 to 22 %. Specifically, areas converted to built-up from agriculture and
those transitioning from CCP to LPA exhibited a wide range of percentage changes during
the spring and summer. In the summer, AET decreased by up to -20 % for most of the
areas that transitioned to built-up and LPA, while it increased by up to 5 % for the areas
that transitioned to FSN (Figure 5.5). During the winter season, AET for LPA started to
increase, reached its maximum in the spring, and decreased in the summer and autumn.
This pattern is likely attributed to the sowing and harvesting season for crops in that area.
In spring, crops are in full growth, resulting in the maximum AET. In autumn, all
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transitioned areas experienced a decrease in AET ranging from 0 to -20 %, while the
transitioned area to FSN class showed minimal change. In winter, all transitioned cells
experience an increase in AET, with a maximum of 8 % in places that have been
transitioned to built-up areas.

Considering catchment average values, the recharge to groundwater was increased during
the summer, autumn, and winter (1.7 %, 0.7 %, and 0.1 %), while experiencing a slight
reduction in the spring (0.4 %). However, on a local scale, the change in GWT fluctuated
between -10 to 10 %. The changes were mostly positive in autumn and winter. During
the spring and summer, most of the transitioned areas exhibited positive change except
for a few areas belonging to the built-up area and LPA classes, where the change was
negative. Overall, the change in GWT is minimal compared to the variations in AET and
SM.

In spring, SM values varied from -8 to 10 %, with most transitioned areas exhibiting
negative changes. During the summer, SM in areas that transitioned to LPA and FSN
remained minimal while most of the built-up area exhibited changes, ranging from -5 to
18 %. In autumn, apart from areas that transitioned to FSN, where SM decreased by up
to -2 %, other areas exhibited positive changes of up to 7 %. During the winter months,
SM remained almost unchanged, although AET and GWT exhibited positive changes.
This could be due to the presence of already high-water content in the soil layer during
winter, keeping SM relatively unaffected.

Spring Summer Autumn Winter

Figure 5.4. Relative change in simulated AET (upper), GWT (middle), and SM
(lower) under base period and SC1 scenarios, calculated as a percentage on the
seasonal basis
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The percentage differences in AET, SM, and GWT under future LULC (2046), relative
to the base period, were plotted against each other to analyse their relationships and
sensitivities in different seasons and during transitions of the area from one LULC class
to another. GWT changes exhibit minimal sensitivity to variations in SM and AET in
spring and summer where wide changes in SM and AET correspond to minor GWT
variations. In autumn, the relations between changes in SM and AET become relatively
more sensitive to GWT changes, with an increase in SM by up to 7 % and a decrease in
AET by up to -20 % resulting in a change of GWT by a maximum of 10 %. However,
during winter months, even with no change in SM and an increase in AET ranging from
0 to 8 %, the GWT across transitioned areas increased up to a maximum of 8 %. This
increase may be attributed to the slower subsurface hydrological flows compared to the
topsoil and surface processes (Yang et al., 2020; Leong and Yokoo, 2022). Another
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Figure 5.5. The relationship between the relative change in AET, SM, and GWT on a
seasonal basis under the base period and scenario SC1, focusing only on pixels where
the LULC is projected to change in the year 2046. Orange represents map pixels
transitioning from agriculture to ‘Built-up area’, green represents pixels transitioning
from agriculture to ‘Forest and semi-natural (FSN) class’, while blue represents pixels
projected to change from a ‘Complex cultivation pattern (CCP)’ to ‘Lands principally
occupied by agriculture (LPA)’
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contributing factor could be the higher saturation of the soil during the winter, where
excess rainfall directly contributes to groundwater storage (Van Huijgevoort et al., 2020).

The relationship between AET and SM is comparatively more responsive. The maximum
positive change in SM (up to 18 %) is observed in the summer, corresponding to a change
in AET (up to -22 %) for areas that transitioned from agriculture to built-up areas. For
areas transitioning into forest and semi-natural areas or LPA, the change remains minimal.
In autumn, the decrease in AET (up to 20 %) causes an increase of up to 7 % in SM.
Whereas, in winter, even with an increase in AET (up to 10 %), SM remains mostly
unchanged.

The relationship between the variables is non-linear and varies depending on the seasons
and the transitioned class of LULC. Changes in areas transitioning to FSN remained
minimal. Areas transitioning into LPA experienced an increase in AET during spring,
causing a decrease in SM. During summer, AET decreased in these cells, leading to an
increase in SM, and the same process continued in autumn. In winter, they reached higher
saturation levels, and SM remained unaffected despite an increase in AET. Whereas, for
areas transitioning to the built-up areas from agriculture, the trend remained random
during spring and summer, but they followed a similar trend as LPA during autumn and
winter.

Scenario SC2, under future climate change

In scenario SC2, the model was simulated using climate projections data for the horizon
2050 (2036-2065), together with the LULC map of the base period, to assess the
individual impact of climate change on the catchment’s hydrology. The model results
revealed that the discharge at the catchment outlet is projected to decrease in January and
from April to December under all climate scenarios considered. The lowest average
discharges are projected to be observed in September. However, an exception to this trend
is noted in February and March, where an increase in discharge relative to the base model
is projected only under the HN scenario (Figure 5.3). It may be attributed to the increased
value of PET under all scenarios.

On a seasonal scale, the discharge is projected to decrease by 27.3 to 32.2 % and 23.8 to
37 % in summer and autumn, respectively. In contrast, it ranges between -11.4 to 1.1 %
and -14.4 to 2 % in spring and winter, respectively (Table 5.3). This reduction in discharge
is likely attributed to a change in catchment average AET which is projected to increase
under all climate scenarios by 11.9 to 13.5 %, 15.7 to 16.5 %, 11.2 to 13 %, and 13.8 to
15.2 % in spring, summer, autumn, and winter, respectively. The values across different
areas exhibit variation, with certain regions projecting an increase in AET up to 30 %,
particularly during summer and autumn under LN and HN scenarios (Figure 5.6). Notably,
these areas are characterized by LULC class built-up area and LPA. Conversely, during
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winter, the change in AET from built-up areas and LPA is less pronounced, with
dominance shifting towards LULC classes FSN and CCP.
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Figure 5.6. Relative change in simulated AET under the base period and SC2 scenario
calculated as a percentage on seasonal basis

The maximum change in SM is projected during summer under climate change scenarios
LD and HD, where certain areas belonging to classes FSN and CCP show a reduction of
up to -38 % and -40 % (Figure 5.7). Meanwhile, under LN and HN scenarios, SM across
the region ranges from -35 to 5 %. Positive changes are observed only in a small region,
possibly attributed to a comparatively lesser increase in AET over those regions. In
autumn, SM exhibited both positive and negative changes in the catchment. Under
scenarios LD and HD, most areas show negative changes, while the trend reversed under
scenarios LN and HN. During winter and spring, the catchment generally experiences
positive changes under all scenarios, except for a small section towards the north side of
the catchment where changes are negative. Although the trend across different LULC
classes appears random, no direct correlation with specific LULC classes influencing an
increase or decrease in SM has been identified. However, the negative change (up to -40
%) exhibited during summer outweighs the positive change (up to 10 %) observed during
winter. Similarly, the catchment's average recharge to groundwater is projected to
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decrease by -107.6 to -139.5 % during summer, whereas in spring (-11 to -31.8 %) and
autumn (-8.4 to -28.3 %), the change in relative to base period is comparatively less
(Table 4). During winter, an increase is projected by 2.4 % and 7.8 % under HD and HN
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Figure 5.7. Relative change in simulated SM under the base period and SC2 scenario,
calculated as a percentage on the seasonal basis

scenarios, while LD and LN scenarios anticipated a reduction of -3 % and -0.4 %,
respectively. These findings highlight the season-specific and scenario-dependent nature
of changes in SM. The spatial distribution of percentage change in GWT is shown in
Figure 5.8.

On the local scale, during the summer months, negative changes in GWT are observed
across all areas under all scenarios. The maximum negative change, reaching -50 %, is
projected under LD and HD scenarios, while it is -30 % under LN and HN scenarios in
certain areas having LULC class as agricultural. Moving to autumn, some areas exhibit a
GWT increase of 25 %, but the major portion of the catchment is likely to have negative
changes. Notably, in the central area of the catchment, GWT is projected to decrease by
a maximum of -60 % and -75 % under LD and HD scenarios, respectively. Even during
winter, changes in the catchment are not spatially uniform, with positive changes
observed in the central portion and negative changes in the southern and northern areas
of the catchment. A similar trend is observed in spring, though the magnitude of change
1s comparatively less than in winter.
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It is worth noting that across all scenarios and seasons, negative changes in GWT are
consistently observed in the area near the outlet of the catchment (north part). The general
groundwater flow in the catchment is from southeast to northwest. Due to a lower water
table in the middle and upper portions of the catchment, groundwater flow towards the
outlet might be comparatively less, impacting the area near the outlet across all seasons.
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Figure 5.8. Relative change in simulated GWT under the base period and SC2 scenario,
calculated as a percentage on the seasonal basis

As discussed in Section 5.3.2, despite an increase in autumn rainfall, the discharge at the
catchment outlet, subsurface flows, recharge, and GWT at most locations exhibited a
negative change. Even the SM for the topsoil layer did not show a spatially consistent
positive change across the catchment. This phenomenon may be attributed to additional
summer stress generated in the catchment due to low rainfall and higher AET. The
additional rainfall, compared to the base period, occurring in autumn is consumed to
overcome the prevailing summer drawdowns in GWT and soil water content. On the other
hand, in spring, the projected increase in rainfall is comparatively less than in autumn,
but the discharge at the outlet, along with other variables, exhibited a more positive
change than in autumn. This may be because in winter, the GWT and water content in the
soil are relatively high, and even a comparatively smaller increase in rainfall contributes
more prominently to different hydrological components. This aligns with the findings of
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Assouline et al. (2024), Alam et al. (2024) and Ran et al. (2022), who highlighted the
influence of antecedent conditions on flow generation.

Scenario SC3, under future climate and LULC change

In scenario SC3, the model was simulated with climate projections referred to the horizon
2050 (2036-2065), together with the generated future LULC to assess the combined
effects on the catchment’s hydrology. Notably, the discharge at the catchment outlet
across different months under scenario SC3 closely resembles that of scenario SC2, where
only climate change was considered (Figure 5.3). The maximum increase in discharge,
compared to scenario SC2, is projected to be 0.5 % in winter and 0.3 % in summer. This
modest change may be attributed to the projected expansion of built-up areas in the future,
where the development of the built-up area (1.7 %) dominates over FSN area expansion
(0.4 %). A similar trend was observed in scenario SC1, though the comparative increase
in discharge in scenario SC3 is less than that observed in SC1. Likewise, the subsurface
flow to the river is projected to increase under the combined effect of climate change and
future LULC changes, but the increase in the catchment average is minimal (Table 5.3).

The situation with AET mirrors the discharge trends. When considering catchment
average values, AET is projected to decrease by 0.3 to 0.4 % compared to the individual
effect of climate change in the summers, with no projected change in winter. However,
to assess changes at the local scale, the spatially distributed relative change in AET
compared to the base period was calculated (Figure 5.9), and found that AET under
scenario SC3 is almost identical to scenario SC2, except for a few locations where the
relative change in AET has altered. To identify the exact locations where the change has
happened under scenario SC3, the differences in percentage changes under scenarios SC2
and SC3 relative to the base model were computed and are represented in Figure A2
(Appendix A). In spring, summer, and autumn, significant changes in AET are observed
over areas that are projected to undergo LULC transition. For example, in summer,
compared to scenario SC2, AET is projected to be less by up to 30 % in areas transitioning
from agriculture to built-up, while it will be more by up to 5 % in areas transitioning to
FSN from agriculture. In spring and autumn, the differences are comparatively less, and
there is no change in winter.
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Figure 5.9. Relative change in simulated AET under the base period and SC3 scenario,

calculated as a percentage on the seasonal basis

The spatial distribution of SM under scenario SC3 is represented in Figure 5.10. Similar
to AET, the relative change in SM compared to the base period under the combined effect
of climate change and future LULC is within the same range as that of the individual
effect of climate change, with only a few areas exhibiting notable differences as presented
in Figure A3 (Appendix A). A noteworthy observation is the increased number of areas
showing positive changes in summers under the combined effect of climate change and
future LULC. These new areas with positive changes in summer are predominantly those
that are projected to undergo a transition from agriculture to built-up areas in the future
LULC map. The maximum projected change in these areas is reaching up to a maximum
of 30 %. Conversely, in areas transitioning to FSN, the change is reduced, up to a
maximum of -4 %. During the winter, there is no change in simulated SM under scenarios
SC2 and SC3.

Considering the catchment average values, recharge to groundwater is projected to
decrease under scenario SC3, aligning with the trend observed in scenario SC2. However,
under scenario SC3, the recharge values differ by a maximum of 0.6 % and 0.7 % in
summer and winter, respectively, under the HD scenario of climate change. In other
seasons and climate scenarios, the differences are even less (Table 5.3). Similar to AET
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Figure 5.10. Relative change in simulated SM under the base period and SC3
scenario, calculated as a percentage on the seasonal basis

and SM, the variations in GWT at the local scale in transitioning areas are more
pronounced than changes in catchment averages. The spatial distribution of GWT and the
differences in percentage changes under scenarios SC2 and SC3 relative to the base model
are illustrated in Figure 5.11 and Figure A4 Appendix A, respectively. The seasonal and
spatial trends under scenario SC3 are consistent with those of SC2, but in a few of the
areas, the values of percentage change have shifted within the range of -5 to 15 %. For
instance, during winter, in areas transitioning to the built-up, the GWT is projected to
further rise by 15 % compared to the relative change projected under scenario SC2. These
changes are particularly noticeable in autumn and winter compared to spring and summer.

It is crucial to note that the changes in GWT are not limited to the areas that are projected
to undergo future LULC transitions, but changes in neighboring areas are also observed.
In contrast to GWT, the influence on neighboring areas has not been observed for SM.
This distinction may be attributed to the modelling constraints in MIKE SHE, where the
exchange of flow in the unsaturated zone is primarily permitted in the vertical direction,
limiting the simulation of soil moisture exchanges in the horizontal direction.
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Figure 5.11. Relative change in simulated GWT under the base period and SC3
scenario, calculated as a percentage on the seasonal basis

The overall findings suggest that hydrological components are more influenced by
climate change alone (SC2) than by the LULC change scenario (SC1). Furthermore, on
the catchment scale, the combined effect of climate and LULC changes (SC3) does not
significantly differ from the individual effect of climate change (SC2). These results align
with studies conducted by Getachew et al. (2021) and Yan et al. (2019), both of which
identified hydrological components as more sensitive to climate change on both seasonal
and annual scales. In the combined effect of LULC and climate change (SC3), the impact
of climate change appears to be somewhat dampened by the effects of LULC change.
Similar findings have been reported by Tirupathi and Shashidhar (2020), although in this
study, the offsetting influence of LULC change is very minimal, accounting for less than
1 % on the catchment scale.

However, in contrast to this, the impact of LULC changes is more pronounced at the local
scale, particularly in areas projected to transition from one LULC class to another. The
incorporation of LULC changes, alongside climate change, can significantly influence
the relative changes in GWT, SM, and AET on the local scale, with variations referred to
scenario SC2 ranging from approximately -6 to 15 %, -9 to 27 %, and -30 to 10 %,
respectively, depending upon the specific change in LULC class and season.
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Scenario SC3

Scenario SC2

Table 5.3. Relative change in water balance component calculated as percentage
Scenario SC1

change with reference to the base period for design scenarios SC1, SC2, and SC3.
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This nuanced spatial distribution of changes in hydrological variables underscores the
role of LULC changes in conjunction with climate impacts, highlighting specific areas
undergoing transitions as significant contributors to the observed variations in
hydrological dynamics. Understanding these localized effects is crucial for effective
water resource management and climate change adaptation strategies within the
catchment. These findings underscore the importance of considering both climate change
and future LULC changes in assessing the hydrological response of the catchment
particularly if the focus is on local scales.

5.4 CoNCLUSIONS

This research assesses the response of surface (AET, discharge) and subsurface (recharge,
GWT, SM, and lateral flow) hydrological components to the separate and combined
future changes in climate and LULC at a catchment and local scales for the Aa of Weerijs
catchment. To conduct the research, a physically based fully distributed hydrological
model was set up for the study area, using MIKE SHE and MIKE 11 modelling tools. The
ANN-CA technique was employed to simulate future LULC changes using the
MOLUSCE plugin of QGIS. Validation of the LULC prediction model demonstrated
satisfactory accuracy, with kappa coefficients ranging from 0.94 to 0.97 and a percentage
correctness of 95.7 %. The analysis of historical (2018) and simulated LULC for the year
2046 identified a 1.7 % expansion in built-up and a 0.4 % increase in FSN class.

For meteorological projections under climate change, the data was acquired from
KNMI'23 climate scenarios for the 2050 horizon (2036-2065). The time series of
catchment average rainfall and PET were compared with data from the historical (base)
period and the results suggested an overall increase in PET across all scenarios, with
varying patterns of rainfall changes. The increase in PET is more pronounced than the
changes in rainfall. The summer showed a tendency for decreased rainfall coupled with a
substantial increase in PET, highlighting potential water stress during critical periods.

The simulated results only with future LULC changes revealed that the impacts on
catchment hydrology are minimal. The expansion of built-up areas contributes to a
modest increase in discharge and subsurface flow, while changes in AET, GWT, and SM
show localized variations. Under the individual impacts of climate change, the changes
in hydrological variables are comparatively more pronounced. Considering both future
LULC and climate change demonstrated that while hydrological variables were more
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sensitive to climate change alone, the combined effects did not significantly differ from
the individual impact of climate change on the catchment scale. However, at the local
scale, especially in areas undergoing LULC transitions, the combined effects exhibited
significant variations in hydrological variables.

To address the specific research question raised, we concluded that for the lowland
catchment with a size of 346 km? and projected increase in built-up area by 1.7 % and
FSN by 0.4 %, the impact of including future LULC data in addition to climate change
projections, is not significant at the catchment scale, as it accounts for very minimal
changes in hydrological variables (>1 %). However, at the local scales, it can significantly
influence the relative changes in GWT, SM, and AET with variations ranging from
approximately -6 to 15 %, -9 to 27 %, and -30 to 10 % respectively, depending on the
specific change in LULC class and season. The spatial distribution of changes in AET,
SM, and GWT emphasizes the importance of considering localized impacts for effective
water resource management. The study underscores the importance of considering both
climate and land use dynamics for a comprehensive understanding of hydrological
changes in the face of future challenges.

While this study has provided valuable insights, there are certain limitations that warrant
consideration. Firstly, the future LULC scenario adopted here is based on a business-as-
usual approach. A more nuanced understanding could be achieved by formulating
different scenarios for future LULC, incorporating constraints on LULC class expansion,
and considering local landscape policies, municipal priorities, or broader European-level
policies. Such considerations could enhance the refinement of future LULC projections.
Secondly, the study focused only on rainfall, PET, and LULC under future changes.
Global warming may trigger additional factors, such as groundwater abstraction or direct
water abstraction from rivers, which could impact discharge and GWT. Additionally,
changes in groundwater boundary conditions, not accounted for in this study's future
scenarios, could further influence hydrological dynamics. Therefore, future research
activities could address these limitations by incorporating these additional factors. The
effect of these factors might not be significant alone but studying the coupled effects of
various drivers would provide a more comprehensive understanding of future
hydrological dynamics. Such insights could offer more detailed information to
policymakers, aiding in the development of informed and robust strategies for sustainable
water resource management.
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NATURE BASE SOLUTIONS FOR
CLIMATE ADAPTATION

Nature based solutions (NBSs) are a potential alternative to the traditional grey
infrastructure for climate adaptation. However, their effectiveness in mitigating drought
impacts is underexplored. This chapter presents the methodology for designing and
assessing the potential of NBS-based adaptive strategies for drought mitigation with focus
on surface as well as sub-surface hydrological components using an integrated distributed
hydrological model. The methodology is demonstrated for Aa of Weerijs catchment using
the MIKE SHE modelling system. The NBSs assessed include ditch blocking, tree
planting, wetland restoration, infiltration ponds, heathland restoration and brook bed
barriers. Based on the model results, individual measures were spatially mapped to
develop two adaptation strategies, each differing in spatial extent. The Key Performance
Indicators (KPIs) were designed to be relatable to key stakeholders, such as the number
of days with a ban on water extraction from surface and groundwater. The performance
of the strategies was evaluated using the designed KPIs under future climate scenarios.
The results showed that strategy with a larger spatial extent has more positive impacts on
the KPIs. The adaptation strategies enhanced the groundwater recharge and reduced the
number of ban days for groundwater extraction with almost eliminating the ban days in
the downstream part of the catchment.

This chapter is an edited version of the journal publication: Jonoski, A., Ali, M. H., Bertini,
C., Popescu, 1., van Andel, S.J., & Lansu, A., 2025. Model-based design of drought-
related climate adaptation strategies using nature-based solutions: case study of the Aa of
Weerijs catchment in the Netherlands. Nature-Based Solutions, 100264.
https://doi.org/10.1016/j.nbsj.2025.100264



6. Nature base solutions for climate adaptation

6.1 INTRODUCTION

The indications of escalating climate change are prominent and can no longer be ignored
in any region or sector of the world (Forster et al., 2024). The IPCC Sixth Assessment
Report (AR6, 2023) stated with a high degree of confidence that the rate of rise in global
surface temperature since 1970 has surpassed that of any other 50-year period in the past
2000 years. Due to these changes, the hydrological cycle is accelerating leading to more
frequent and stronger weather extremes including floods and droughts both at regional
and global scales (Wang et al., 2021; Chiang et al., 2021). In a warming climate, frequent
periods with less than average precipitation are anticipated. During such periods, the
decrease in runoffs may be comparatively more than the corresponding decrease in
precipitation (Massari et al., 2022) driven by higher evaporation rate and drier soil
resulting from higher temperatures. In general, water management systems around the
world are designed based on the assumption that the statistical properties of the flow
remain constant over time, also known as stationarity (Villarini and Wasko, 2021).
However, due to human influence and climate change, the assumption about the
stationarity has become questionable (Milly et al., 2008). As a result, water management
creates a prodigious impediment for decision makers. Often, grey measures such as dams
and reservoirs are built to alleviate flood and drought hazards due to their rapid and visible
effects but these measures need large investment, frequent maintenance and are
categorized as inflexible approaches (Brink et al., 2016; Wu et al., 2023; Schneider et al.,
2017). In addition to adverse effects on the downstream ecosystem, such measures are
generally designed for certain life periods, are not environmentally friendly and lack the
capability to adapt to changing climate.

The formulation of adaptive strategies for droughts is primarily focused on retaining the
water in the catchment either by increasing storage or by slowing surface or sub surface
flow. Some of these actions are considered important for flood management as well but
are imperative for droughts (POM, 2014). Many countries are nowadays focused on
envisaging adaptation and mitigation strategies based on green infrastructure and
ecosystem-based adaptive measures to reduce their exposure to hydro-meteorological
hazards (Shah et al., 2023; Davies et al., 2021). Such kind of measures offer greener and
eco-friendly alternatives to traditional engineering solutions for hydro-meteorological
risk reduction (Ruangpan et al., 2020) in cost effective ways (Ruangpan et al., 2024). The
International Union for Conservation of Nature (IUCN) defines Nature Base Solution
(NBS) as “actions to protect, sustainably manage, and restore natural and modified
ecosystems that address societal challenges effectively and adaptively, simultaneously
providing human well-being and biodiversity benefits” (IUCN, n.d.).

NBS:s are the potential, greener and eco-friendly alternative to the grey infrastructure for
climate adaptation (Yimer et al., 2024; Debele et al., 2019; Ruangpan et al., 2020) with
their multiple co-benefits such as better water quality, improved soil health, biodiversity
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enhancement, natural area for recreation and better land use management and planning
(Nesshover et al., 2017; Penning et al., 2023). However, in research, much attention has
been given to testing the potential of NBSs for flood management while their potential
for drought management is barely touched. For instance, a recent literature review by
Yimer et al. (2024) found that only 6 % of European case studies and 14 % of global case
studies were focused on NBSs for drought adaptation. Apart from this, the research on
the potential of NBSs in urban areas is more developed compared to their implementation
in rural areas at the catchment scale for drought management (Yimer et al., 2024; Johnson
et al., 2022). Further, the impacts of a single type of NBS may be known but it is
challenging to design strategies where different NBS types are required to be spatially
mapped due to the multiple objectives NBSs need to achieve (Guido et al., 2023).

In order to assess the usefulness of nature based adaptive measures on local and basin
scale and their long-term efficacy to mitigate or reduce climate change induced risks,
detailed hydrological and/or hydrodynamic models are required. However, the lack of
proper modelling approaches to test the impact of NBSs (Kumar et al., 2021) is another
hindrance to understanding their potential for drought adaptation. Particularly, in flat
landscapes, the aim is to enhance sub-surface storage in the wet period so it can be used
in the dry periods. To carry out such analysis, integrated surface-subsurface hydrological
modelling is required (Yimer et al., 2024) which can simultaneously provide results in
terms of observable variables such as river discharge and groundwater levels, together
with water balance variations associated with the interactions between surface and sub-
surface. In past research, where the integrated models have been used, the focus was on
the surface water and groundwater recharge, without discussing the actual groundwater
levels (Fennell et al.,, 2023; Holden et al., 2022). The deficiency of appropriate
quantitative tools and comprehensive simulated results adds to the lack of evidence
regarding the successful implementation of NBSs. The tools to engage stakeholders with
diverse interests and attitudes (e.g. Farmers, local and regional authorities) in the design
of NBS-based adaptation strategies are still very limited (Bogatinoska et al., 2022).
Further, for the quantification of the impact of such strategies, scientific research argues
for the use of more generic KPIs where comparisons across studies and catchments could
be made conveniently (Penning et al., 2023). Whereas, stakeholders (water managers and
private land owners) may require specific KPIs that are relatable to observable variables
and address actual water management actions.

In this research we aim to assess the potential of the NBSs for mitigating hydrological
drought impact considering both surface (discharge) and subsurface (groundwater levels)
variables. More specifically, a methodology to design the NBS-based adaptation
strategies using integrated hydrological model is presented. To carry out the research, Aa
of Weerijs catchment served as the study area. The integrated hydrological model was
developed for the area using MIKE SHE modelling system and used for assessing NBSs
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of drought mitigating under current and future meteorological conditions under climate
change.

The following sections present a methodology, followed by results and discusion. In the
end main findings are summerized in conclusions.

6.2 METHODS

The research was carried out using MIKE SHE hydrological model for the Aa of Weerijs
catchment. The description of the study area and model setup are presented in the Chapter
3. For assessing the performance of NBSs under future climate change, the KNMI’23
dataset was used. The dataset along with hydrological condition in the catchment under
future climate condition are explained in Chapter 5. For brevity, these aspects are not
repeated in this chapter.

6.2.1 Methodological framework

The main methodological steps followed to design the adaptation strategies are presented
in Figure 6.1. A fully distributed and integrated surface water groundwater model was

Design of
single-measure

Selection of
NBS measures

MIKE SHE hydrological

model NBS strategies
Model development _ _

» data collection CC scenarios Design of spatially

* model setup selection combined NBS

strategies

calibratio?d validation
KPI values and hydrology KP!I values and KPI values and hydrology KPls
for current conditions hydrology under CC with NBS strategies for one selection
(2010-2019) scenarigs {2050-2059) CC scenario (2050-2059) {?

[ Web application: progressive development and deployment of results [ Stakeholder workshops

Figure 6.1. Methodological steps for the design and evaluation of the NBS-based
adaptation strategies

developed for the catchment using MIKE SHE modelling system that simultaneously
captures the surface and subsurface hydrological dynamics of the catchment. This model
acted as the main tool for designing of the adaptation strategies. A set of KPIs related to
the observable hydrological variable were selected in consultation with the main
stakeholders (Water Board Brabantse Delta and Province of Noord Brabant) and used for
the performance evaluation of the NBS strategies under the current and future climatic
conditions. Out of the four climate change scenarios from the KNMI’23 dataset, only the
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one which is categorised by high CO; emissions and a drying climate (HD scenario) was
selected for the performance analysis of the strategies as this scenario is expected to result
in the most prolonged drought period. The design of strategies included the testing of
single measures, finding appropriate ways to model them and adjusting them spatially to
formulate combined strategies. The formulation of NBS strategies and the selection of
KPIs to assess their performance were conducted in consultation with the local
stakeholders through devoted meetings. A web application was developed to facilitate
knowledge sharing, communication of methodologies and results, and to support
informed decision-making and stakeholder engagement in NBS-based design of
strategies. The web application is publicly available and can be accessed via the link
https://eiffel.un-ihe.org/EIFFEL-prod.

6.2.2 Key performance indicators

The characterization of hydrological droughts using indices/indicators is well established
(Sahani et al., 2019). However, there is no universal consensus on the use of any particular
indicator (Van Loon, 2015) as the selection of indicator is dependent on the intended use
of water and it can be very diverse. Further, the selection of appropriate KPI is also
challenging when it is also required to assess the impact of adaptation strategies including
NBS-based strategies. The successful implementation of such strategies is dependent
upon the recognition of their benefits by the stakeholders, which can be better
demonstrated by KPIs that align well with their immediate concerns and water use needs.

Aa of Weerijs catchment has recently experienced summer droughts, particularly in 2018
and then again in 2022. In these periods, the bans on the water extractions on the surface
water (withdrawal of water from the rivers) were imposed by the key stakeholders of the
area, the Province of Noord Brabant (PNB- the regional government body charged with
spatial planning) and the Water Board Brabantse Delta (WBD — the regional government
body charged with managing water). Based on the water availability in the channels,
water extraction bans are imposed for irrigation of specific crops or complete bans on
water abstraction for irrigation. The lower the surface water discharge in the rivers, the
greater the limitations in the water abstractions. A similar concept is adopted here to
define the two new KPIs in consultation with WBD to ascertain the present condition and
to evaluate the performance of the designed strategies. The KPIs link the actions taken by
WBD to manage water shortages to the percentiles of the long-term observations of
streamflow and groundwater levels (GWLs). The streamflow and GWLs are monitored
at several locations across the catchment by the WBD and can be used to restrict water
extraction if the water levels are below certain percentile-based pre-defined thresholds.
The developed KPIs are Surface Water Availability (SWA) and Groundwater Availability
(GWA). They represent the number of days when the surface water/ groundwater is
sufficiently available, limited available and not available. These are calculated at each
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monitoring location. For defining the categories (no-, limited- or sufficient- availability)
threshold used is as follows: if the discharge (GWL) is below the 10 percentile then there
is a total extraction ban and the status is 'not available'. If discharge (GWL) is between
the 10™ and 40™ percentile then a partial ban is introduced and water is said to have
'limited availability"; if discharge (GWL) is above the 40" percentile, no ban is introduced
and water has 'sufficient availability' for any usage. Further instead of considering the
thresholds for the whole time series, these can be defined seasonally. In this research, the
thresholds defined for summer months (June, July, August) are considered as the
objective was to observe the impact of NBS strategies on the drought conditions and it is
the most affected period of the year by drought events for the study area. The thresholds
are presented in Table 6.1. The model simulated discharge and GWLs were considered
for determining thresholds, ensuring that the KPIs are calculated using the same
procedure under both current and future conditions with or without NBS. Since the
observed data under future conditions and with NBS strategies is unavailable. Thus, using
the simulated variables for KPI calculation ensured consistency in methodology across
all cases. Further, the use of modelled results provides flexibility in computing KPIs at
any location across the catchment, whereas observed data is available only at limited
locations. The values of the KPIs are calculated for the summer seasons under three
scenarios: current conditions (2010-2019), climate change conditions (2050-2059), and
climate change with NBS adaptation strategies (2050-2059). Further, the number of days
falling within each category of threshold is aggregated over the entire period.

Table 6.1. Summary of the thresholds, (water) availability class and bans on water
extraction used to compute the Surface Water Availability (SWA) and Groundwater

Availability (GWA)
Discharge/Groundwater level Availability class Ban on water extraction
x < 10" percentile No availability Total ban
10" < x < 40" percentile  Limited availability Partial ban
x > 40" percentile Sufficient No ban
availability
6.2.3 NBS types and modelling

In the Netherlands, Climate change impacts are presented to stakeholders through various
mediums, one of which is the climate impact atlas (Klimaateffectatlas, n.d.). Steered by
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information available on such portals, Provincial authorities, water boards and
municipalities conduct their local climate impact analyses and develop adaptation
strategy plans. In the Province of North Brabant, such plan specially addressing the floods
and drought are developed by PNB and WBD. The PNB also has a platform (PNB, n.d.)
which provide information on both planned and implemented adaptation measures and
many of which prominently feature NBS. The current strategy of the authorities (2022-
2027) for the water and land management is ‘nature-based solutions where possible,
technical solutions where necessary’ (WBD, n.d.).

The recent European research project named Co-adapt (Co-Adapt, n.d.), contributed to
the first GIS based assessment of types and spatial distribution of potential NBSs in whole
province, which included the Dutch part of the Aa of Weerijs catchment. A set of NBS
types was proposed using information regarding the water system, average GWLs,
landscape topography, land use and land cover, together with data on NBSs from existing
projects and plans. For each NBS type, an ‘opportunity map’ was created, covering all
possible areas where that NBS type can potentially be implemented. These maps have
been provided by the Province for this research, and served as the basis for the design of
the NBS-based adaptation strategy. An example of the opportunity maps is presented in
Figure 6.2.
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Figure 6.2. Opportunity maps for potential implementation of different types of NBSs
within the Dutch part of the Aa of Weerijs catchment
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The design of our adaptation strategies started by modelling single-type NBSs (single-
measure strategy) within the developed hydrological model, using the opportunity maps
as inputs. Six different types of NBS -Ditch Blocking, Tree Planting, Wetlands
Restoration, Heathlands Restoration, Infiltration Ponds, Brook Bed Barriers- were pre-
selected based on their potential beneficial effects for drought adaptation shown in
literature (Fennell et al., 2023; Raymond et al., 2017; Holden et al., 2022) and on the Co-
adapt project outcomes. Ditch Blocking consists in blocking the flow from small channels
to larger streams, causing the water to slow down and allowing it to infiltrate in the sub-

surface. From a modelling perspective, ditches in our MIKE SHE model are modelled
through conceptual sub-surface drainage in the saturated zone. Ditch Blocking is hence
reproduced in the model by reducing the parameter “drain time constant” by two-thirds
with respect to initial values (range 1.50 exp”’ - 4.5 exp’ 1/s - corresponding to 77 days -
26 days) in the cells where the block is applied. The initial values (without NBS) have
been obtained after calibration, using ranges reported in literature (DHI, 2007; Refsgaard,
1997; Brandyk et al., 2020). Brook Bed Barriers is a NBS where the natural barriers such
as wooden logs or stones are used to form small bumps on the small water streams that
increase flow resistance, reducing downstream flow velocity, and enhancing water
retention in upstream sections (Szarek-Gwiazda et al., 2023; Quinn et al., 2013). These
inline features are modelled in the MIKE 11 river network by weirs as represented by
other authors as well who used similar approaches with other software tools (Guido et al.,
2023; Thomas and Nisbet, 2012; Metcalfe et al., 2017). Wetland Restoration aims to store
water and increasing its retention in the application area. In our hydrological model, this
NBS is introduced by changing the existing vegetation type to a new one, characterised
by Leaf Area Index (LAI) of 2.5 and Root Depth (RD) of 450 mm. These average values
of vegetation parameters are taken from NHI (2008) and Breuer et al. (2003). Additionally,
the Strickler roughness coefficient value is set to 15 m'? s’ in areas where wetlands are
restored (Janssen, 2023; Chow, 1959). The overland flow detention storage is set at 0.15
m to represent the typical shallow ponding and temporary water retention characteristic
of wetlands (Mitsch and Gosselink, 2015; Tousignant et al., 1999). Wetlands store more
organic matter compared to crop areas, which would alter the soil hydraulic properties in
the area where wetlands are restored. The changes in the soil properties are incorporated
in the model by recalculating the soil hydraulic properties based on the potential changes
in the soil organic content as studied by (Guo and Gifford, 2002; Beillouin et al., 2023)
and using equations of continuous pedotransfer functions from Wosten et al. (1999).
Infiltration Ponds are areas with highly permeable material that allows water to infiltrate
into the sub-surface. As such, they are introduced in our MIKE SHE model by providing
the top 30 cm layer of soil as sandy soil to facilitate infiltration (Hsieh and Davis, 2005;
Woods Ballard et al., 2015) and corresponding soil hydraulic parameters are calculated
using equations of continuous pedotransfer functions from by Wosten et al. (1999).
Strickler roughness coefficient is set as 40 m'”* s' (Engman, 1986) and the overland
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detention storage is set at 0.15 m to represent the temporary surface ponding as suggested
in Woods Ballard et al. (2015). Heathlands Restoration aims at reducing transpiration and
interception from plants with large canopy cover. For this reason, they are represented in
our hydrological model reducing the LAI and RD parameters, according to the values
suggested by NHI (2008) for heathlands. Further, Strickler roughness coefficient is set at
20 m'3 s in these areas (Papaioannou et al., 2018), same as in the base model for
heathlands. Tree planting can play a dual role in hydrology. Trees function as 'pumps'
through enhanced ET (Chen et al., 2023) and as 'sponges' by improving soil infiltration
(Pena-Arancibia et al., 2019). The overall hydrological effects of tree planting within a
specific catchment are therefore dependent upon the complex interplay between these two
fundamental processes. They are modelled by modifying LAI, RD, Strickler coefficient
and soil hydraulic properties to capture the influence of roots in the infiltration process.
The values of LAI and RD are kept same as used in base model for the forest areas and
these values were taken from NHI (2008). Strickler roughness coefficient is set at 10 m'3
s' (Papaioannou et al., 2018; Freeman et al., 1998). Similar to wetlands, trees also
increase organic content in the soil leading to enhanced water holding capacity. This
process is incorporated in the modelling by calculating the soil hydraulic parameters using
equations of continuous pedotransfer functions from Wosten et al. (1999), considering
the potential percentage changes in soil organic content values based on (Beillouin et al.,
2023).

Each of the NBSs described was modelled independently within MIKE SHE in current
conditions (2010-2019). Both KPIs, i.e. GWA and SWA, were computed for each of the
single-measures, and the NBS types that did not provide improvement in terms of surface
and groundwater availability were excluded from further analysis, which resulted in the
exclusion of Tree Planting and Brook Bed barriers from the next step of analysis.

Table 6.2. NBS types considered in the Aa of Weerijs catchment and approaches taken
for their modelling in the MIKE SHE hydrological model

NBS type Main drought-related = Modelling approach
function
Ditch blocking Slowing down drain Conceptual drain time constant reduced

flow and allowing more by 2/3 of the initial values (DHI, 2007;
infiltration upstream Refsgaard, 1997; Brandyk et al., 2020)

Wetlands Water storage and Modified vegetation parameters: LAl =

restoration retention 2.5, RD =450 mm (NHI, 2008; Breuer et
al., 2003); Flow detention storage
introduced (0.15m) (Mitsch and
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Gosselink, 2015; Tousignant et al.,
1999); Modified Strickler roughness
coefficient = 15 m'/s (Janssen, 2023;
Chow, 1959); Modified soil hydraulic
properties (Wdsten et al., 1999; Guo and
Gifford, 2002; Beillouin et al., 2023)

Infiltration ponds Increase of infiltration =~ Sandy soil in the top 30 cm (Hsieh and
into the sub-surface Davis, 2005; Woods Ballard et al., 2015);
Flow detention storage introduced
(0.15m) (Woods Ballard et al., 2015);
Modified Strickler roughness coefficient
=40 m'?/s (Engman, 1986) and soil
hydraulic properties (Wosten et al., 1999)

Heathlands Reduce interception and Reduced LAI and RD according to (NHI,
restoration transpiration from 2008); Modified Strickler roughness
currently forested areas  coefficient (Papaioannou et al., 2018)

Tree planting Increased infiltration Modified LAI and RD values (NHI,
and soil water retention; 2008); Modified Strickler roughness
enhanced flow coefficient (Papaioannou et al., 2018;
resistance Freeman et al., 1998); Modified soil

hydraulic properties in trees’ root zone
(Beillouin et al., 2023; Wosten et al.,
1999)

Brook bed barriers ~ Slowing down upstream  Using weirs in Mike 11 river model to
river flow and allowing  represent barriers (Guido et al., 2023;
more infiltration Thomas and Nisbet, 2012; Metcalfe et al.,

2017)

6.2.4 NBS-based adaptation strategies

The single NBS measures were used as the foundation to design the spatially combined
adaptation strategies. The opportunity maps of single NBS measures cover quite a large
area and implementing them at every potential location may not be feasible. Therefore,
the design of the combined adaptation strategies was restricted to the spatial domain
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which are already identified for the nature by the Province. As an outcome, two strategies
were developed (S1 and S2), which differ in their spatial extents. In S1, the spatial extent
was limited to the area proposed under the “Nature Management Plan” (NMP) which was
developed in the 1990s. While the S2 covers larger spatial extent, for which along with
NMP a recently defined “Green Blue Mantel” (GBM) area was included. The GBM has
been designated as a buffer zone surrounding the nature network of province which can
be used to support climate proofing as well as nature and landscape enhancement. These
steps ensured that the proposed NBS adaptation strategies are embedded in the existing
water and land management plans regarding climate adaptation and nature enhancement.
These two areas (NMP and GMB) are shown in Figure 6.3.

The potential locations of individual measures, as shown in the opportunity maps, are
determined based on the geospatial analyses. Therefore, there are chances that locations
may overlap where different type of single measures could potentially be implemented.
Further, as the hydrological processes are complex, different measures at a particular
location may have different effects on different hydrological components. Consequently,
single measures were combined into strategies based on their performance with respect
to groundwater conditions improvement as the main criterion. The groundwater
conditions were prioritized, as for the drought adaption the aim was to store more water
in the sub-surface storage. Increasing groundwater storage eventually supports greater
water retention in the catchment and contributes to base flow.

Y ] ) X _.
-.‘,H\/ N /\_) Existing nature R /,\‘)
M7 New nature TN Yl Green blue mantel

Figure 6.3. Spatial domains used for designing strategies S1 and S2

The locations where the single measures had negative impact on the GWLs were excluded.
Only the locations where the results were positive where included in the formulation of
strategies. The final locations selected for each measure were determined based on
evaluating where the particular measure demonstrated the greatest positive impact. For
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instance, if there was a spatial overlap or conflict at a location then the measure with
higher positive impact was provided. It is important to note that Ditch blocking
consistently showed positive effects on all the locations where it was provided. So, it was
provided in combination with other measures at some locations.

For the performance assessment of the strategies (S1 and S2), the climate scenario HD
was selected as it represents the most severe drought conditions. This scenario may not
be most likely but to best reveal the potential of strategies it was selected for simulations.
The outcomes were analysed in term of KPIs. Further, the water balances of the catchment
were computed to provide supporting information on the hydrological changes introduced
by the strategies.

6.3 RESULTS AND DISCUSSION

6.3.1 Single measures and water balance results

The flow duration curves for the streamflow at the catchment outlet, based on the single
measures and considering only the values from the summer months (June, July, August)
are shown in Figure 6.4. The infiltration ponds and heathlands restoration have reduced
the high flows and increased the low flows. The trend is more prominent for the
infiltration ponds compared to heathlands restoration. The wetlands restoration reduced
the high flows while remaining neutral when the flow is less than about 2 m? s™!. Similarly,
for the ditch blocking the low flow remained unaffected while the flows above 8 m? s°!
increased marginally. Tree planting has a negative effect on high as well as low flows
whereas brook bed barriers remained neutral.
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Figure 6.4. Flow duration curve for summer months at catchment’s outlet

The average change in the groundwater level during the summer months for each single
measure compared to base conditions is shown in Figure 6.5. The spatial maps show the
areas with increase (blue) and decrease (red) in GWLs across the catchment. The ditch
blocking, infiltration ponds and heathlands restoration have positive effects on the GWLs
at all the locations where they were implemented. In particular, the most substantial
change is demonstrated by infiltration ponds where the change at a few locations reaches
up to 0.45 m. Heathlands restoration also contributed to the moderate increase in the
north-east and central areas of the catchment. Ditch blocking produced the increase
typically in the range of 0.1 to 0.3 m. Wetlands restoration presented mixed effects where
some areas exhibited an increase of up to 0.1 m — 0.4 m and some regions showed declines.
This may be due to the dual influence of increased ET and storage change, where the local
conditions decide the net effect on the GWLs. The brook bed barriers showed a negligible
impact on the GWLs mostly within the range of 0.01 m. Tree planting is the only measure
with a widespread decrease in GWL, reaching up to -0.2 to -0.3 m at some locations. This
is consistent with the increased ET as observed in the water balance (Table 6.3) which
depicted that trees are causing significant water loss due to increased vegetation uptake.
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Figure 6.5. Average change in groundwater levels in summer months due to singles
measure compared to base conditions

The summarized main water balance components of the base model and single measure
under the current condition (2010-2019) for the whole catchment are presented in Table
6.3. The values are accumulated over the entire period and rounded off to integer values.
It is important to mention that the evaporation from the surface consists of evaporation
from canopy interception, ponded water on the surface and open water. While the sub-
surface component of ET consists of soil evaporation and transpiration. The infiltered
water to un-saturated zone is available for sub-surface ET and groundwater recharge. For
the ditch blocking increase in the GWLs was observed (Figure 6.5) whereas in water
balance a slight decrease in the recharge was observed (from 2888 mm to 2830 mm).
Ditch blocking is a measure that disrupts drainage network by slowing the lateral
subsurface flow and retaining water that is already in the subsurface rather than
enhancing vertical recharge. The sub-surface storage change remained almost the same
(49 mm vs 50 mm) while the base flow increased from 208 mm to 215 mm. Overall, ditch
blocking resulted in a rise of GWLs due to enhanced water retention via reduced lateral
drainage rather than increased vertical input. The catchment average rise in GWL during
the summer at locations with positive response to ditch blocking is 4.9 cm which is in
accordance with the findings of Stachowicz et al. (2025), who observed a rise of about 6
cm due to ditch blocking in the catchments in Norway. Infiltration ponds demonstrated
the highest increase in recharge among the tested measures (3135). This led to an increase
in base flow and sub-surface storage. On average, at the location with positive impacts of
infiltration ponds, the GWLs rose by 14.6 cm. Similarly, heathlands enhanced the average
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GWL by 5.4 cm by slightly reduced ET (5115 mm) and increased recharge (2953 mm).
Consequently, the river runoff also increased. Wetlands restoration led to an increase in
surface ET but also a slight increase in recharge. This suggests the improved water
residence time has been facilitated by wetlands. At locations where wetlands showed a
positive impact on GWL, the average summer rise was about 9 cm, whereas areas
showing a negative response showed a mean decline of about 4 cm.

Tree planting enhanced ET (5189 mm to 5346 mm) from both surface and sub-surface.
Consequently, this led to reduced groundwater recharge and river runoff. Similar
conclusions have been reported by van Meerveld and Seibert (2025) in their recent review
article that in general tree plantation will increase ET, and reduce recharge
and streamflow specifically in low flow periods. However, this should not be
considered as an excuse to clear-cut the forests as they provide many other
benefits such as carbon sequestration, biodiversity enhancement, cool, etc. Brook bed
barrier showed negligible changes in the water balance suggesting minimal
hydrological change at the catchment scale.

Table 6.3. Accumulate water balances for the base model along with single measures

for the period 2010-2019

Water balance component Values for each Case (all values are expressed in mm)

Base DB WR IP HR TP BB

Precipitation 8251 8251 8251 8251 8251 8251 8251
Total Evapotranspiration 5189 5194 5267 4955 5115 5346 5189
- From sub-surface 3716 3715 3672 3779 3663 3808 3715
- From surface 1473 1479 1595 1176 1452 1537 1474
Infiltration 6524 6467 6482 6840 6540 6487 6523
Groundwater recharge 2888 2830 2890 3135 2953 2699 2888
River runoff 2130 2119 2058 2285 2184 2010 2130
- From drain flow 1668 1597 1670 1830 1712 1579 1668
- From base flow 208 215 212 220 211 202 208

- From overland flow 254 307 176 235 261 229 254

Sub-surface storage change 49 50 46 65 53 37 49
- From unsaturated zone -80 -80 -81 -76 -79 -82 -80
- From saturated zone 129 130 127 141 132 119 129

Boundary outflow 884 889 882 946 899 859 884

Tree planting demonstrated a consistently negative impact on GWL while brook bed
barriers remained neutral with no significant changes in the water balance components.
Therefore, these two measures were excluded from the formulation of combined
strategies and are not discussed further in the following sections.
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6.3.2 NBS adaptation strategies and their KPIs and water
balance results

The single measures (ditch blocking, infiltration ponds, heathlands restorations and
wetlands restorations) were combined following the procedure described in the
methodology to formulate two strategies S1 and S2. These two strategies are presented in
Figure 6.6.

Strategy S1 Strategy S2

| I
5 10 km
NES Measure Km? Stra::»g:fscttchment size Km? St‘:iefg;fczhment size
Ditch Blocking {DB) 6.25 L8 12,5 3.6
Heathland restoration 9.75 2.8 14.0 4.0
Heathland resteration and DB 1.75 0.5 4.48 1.3
Infiltration ponds 30.0 8.7 47.2 13.6
Infiltration ponds and DB 1.50 0.4 2.05 0.6
Wetland restoration 2.75 0.8 7.28 2.1
Wetland restoration and DB L.50 0.4 3.20 0.9

Figure 6.6. Spatial design of SI (left panel) and S2 (right panel) NBS adaptation
strategies

Clearly visible in Figure 6.6, S1 has small spatial extent compared to S2, which covers
larger area. Following the land use map of the area along with two nature management
plan (NMP and GBM, Figure 6.3), there seems to be more opportunities to implement
NBS towards the west side of the catchment. Western side is already covered with more
natural area as compared to the eastern side which is more dedicated to agricultural
activities. This spatial pattern may be because of the reason that the main branch (Aa of
Weerijs) is toward the east side of the catchment, historically favoring agricultural
development. Additionally, the two strategies also cover more spatial area towards the
west side of the catchment because of overlap with NMP and GBM. Therefore, these
strategies mainly propose the expansion of current natural area with NBSs on that side of
catchment. On the eastern side, strategies S2 offers more opportunities but only in close
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vicinity to the Aa of Weerijs river. This spatial distribution of the NBSs in the S1 and S2
has direct implications for the outcomes under climate scenario HD (referred to HD-CC
from now on) in term of obtained KPI. Figure 6.7 showed the results for KPI SWA under
HD-CC and HD-CC with S1 and S2. The situation under HD-CC is becoming worse
where the number of days with no availability and limited availability has increased. The
trend is similar at all three locations. All these locations are towards the eastern side of
catchment along the main Aa of Weerijs river. With the implementation of strategies S1
and S2, SWA has improved, but the magnitude of improvement is greater for S2 than for
S1, particularly at most downstream location (Q1). As the NBS implementation is more
focused on the eastern side, so the effect on SWA is significant only after the tributaries
from the eastern side join the main Aa of Weerijs river upstream location Q1.

The variation in the value of KPI due to spatial distribution of NBS in S1 and S2 are even
more prominent in terms of GWA results as they are more dispersed across the catchment.
The results of GWA are shown in Figure 6.8. Even the results of HD-CC scenario alone
show the more severe impact on the well locations which are towards the east side of the
catchment (e.g. GW-2,3,6) as compared to west (e.g. GW-4,5), due to extensive

HD-CC S1
C
HD CC

HD CC

[ Sufficient availability
Limited availability
[ No availability

Figure 6.7. Surface Water Availability (SWA) results for climate change scenario
HD (HD-CC) and nature-based solutions adaptation strategies SI and S2

agriculture toward east and more already existing natural area towards the west. The most
significant improvements with the strategies S1 and S2 are observed on the locations
which in the downstream part of the catchment (GW-1,2,3, and 4), where with S2 the
days with ‘no availability’ are almost fully eliminated. Similar is the situation at GWS,
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which is more upstream but located on the western side where it is surrounded by more
NBSs. At the locations which are further upstream such as GW6,7 and 8, S1 hardly
enhanced SWA due to limited implementation of NBS at these locations. Whereas under
S2 improvements are more noticeable due to more spatial coverage of NBS around these
locations. At the points which are in Belgium hardly any improvement is noticeable.

HD-CC HD-CC s1
HD- CC HD- CC S1
HD- cc S1 HD-CC s1
HD-CC S1 HD-CC
& ‘ ‘ &, .
HD CcC HD-CC
HD-CC  S1 /D cc sl HD-CC [ sufficient availability

B Limited availability
No availability

Figure 6.8. Groundwater Availability (GWA) results for climate change scenario
HD (HD-CC) and nature-based solutions adaptation strategies S1 and S2.

Overall, the results demonstrated that in addition to the improvements at the local
locations where NBS are implemented, the positive impacts are accumulated from
upstream to downstream for both surface and groundwater. These findings are in
accordance with other literature that investigated the impacts of spatially distributed NBS
strategies (Fennell et al., 2023).

The hydrological conditions under the climate change scenario HD along with the
implemented strategies S1 and S2 are further analyzed by computing the water balances
of hydrological components for the period 2050-2059 and are presented in Table 6.4.
Under the HD-CC, the most significant change compared to the current condition (Table
6.3) is in terms of ET which increased by about 14 %. The precipitation is also reduced
but only by about 2 %. So, the main component is the increased ET which induced the
prominent negative impacts on GWA and SWA under climate change. Under S1 and S2,
the increase in ET was reduced and consequently, infiltration and recharge were increased.
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Table 6.4. Accumulated water balances for the HD scenario, SI and S2 strategies
(2050-2059)

Values for each Case (all values are expressed in mm

Water balance component

HC-CC S1 S2
Precipitation 8060 8060 8060
Total Evapotranspiration 5939 5816 5752
- From Sub-surface 3051 3201 3290
- From Surface 2887 2617 2462
Infiltration 5062 5336 5493
Groundwater recharge 2089 2211 2277
River runoff 1379 1462 1496
- From drain flow 1094 1171 1201
- From base flow 174 182 191
- From overland flow 111 109 104
Sub-surface storage change 44 56 63
- From unsaturated zone -78 -75 -74
- From saturated zone 122 131 137
Boundary outflow 699 727 749

The results are further analyzed to understand how these strategies behave under different
seasons. The average seasonal variations of the key hydrological components over the
10-year simulation period (2050-2059) under HD-CC, S1 and S2 are represented in
Figure 6.9. The results show the already mentioned effect from the strategies S1 and S2
but these are more prominent during spring and summer. For instance, the average ET
under HD-CC during summer is 261 mm/season but is reduced to 251 mm/season under
S2 and consequently infiltration is increased from 82 mm/season to 98 mm/season under
S2. The negative value of recharge under CC-HD shows that groundwater is losing water
due to evapotranspiration. However, this negative recharge is reduced under S1 and S2.
Overall, the results depict that the goal to increase sub-surface storage is achieved but a
considerable positive impact came from the implementation of NBS on larger area.
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Figure 6.9. Seasonal variation of key water balance components, represented as
average seasonal values over the 10-year simulation period, under HD climate
change scenario (HD-CC), and adaptation strategies S1 and S2

The decrease in ET due to NBS strategies is primarily because they enable more water to
infiltrate into the sub-surface consequently leaving less water on the surface to evaporate.
It is also evident from the water balance (Table 6.4) that actual ET from sub-surface
increased under two NBS strategies while surface related Actual ET reduced. This is
attributed to multiple combined effects from different types of NBS present in the
strategies such as change of vegetation parameters due to wetlands and heathlands,
enhancement of infiltration with infiltration ponds, and slowing of lateral flow with ditch
blocking. The combined effects led to an increase in SWA and GWA. In literature, similar
effects have been reported that examined the role of NBS in mitigating drought impacts
(Fennell et al., 2023; Holden et al., 2022; Welderufael et al., 2013). However, the
catchment characteristics or implemented NBS might be different, but the results
conclude that NBSs based adaptation strategies have a potential to perform across
different scales and climates as long as they are designed to increase retention and
infiltrations. With our research using an integrated model, we provided further such
evidence that support the NBS strategies.

Our results showed that the proposed NBS strategies in Aa of Weerijs catchment led to
higher river discharges in the winter seasons. This is generally undesirable due to the
potential of flood nuisance, but in Aa of Weerijs it is not a primary concern as the
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catchment is well protected from flooding. Future research may focus on designing
strategies that consider high flows as well. It is important to mention that the results are
specific to the study area. The results may vary for other catchments depending upon the
meteorological conditions and characteristics of the catchment such as landscape, land
use, soil properties, etc. It should be expected that allocating larger areas to NBS would
yield more benefits as we observed in the case of S1 and S2. The most significant general
contribution lies in the development of a methodology that provides clear and
interconnected steps for selecting, designing and evaluating NBS strategies for drought
using the integrated hydrological model that simulates surface and sub-surface processes
simultaneously. Further, in the methodological step, the key aspect is the identification of
the KPIs that need to be finalized in association with the stakeholders. This ensures that
the KPIs are aligned with stakeholder priorities and are meaningful for both assessment
and decision-making. The actual single measures may vary for different catchments
depending on the objectives to achieve and the opportunities a particular landscape offers.
Our procedural steps for model-based testing of NBS measures and designing the
subsequent spatially distributed strategies would still be applicable.

6.4 CONCLUSIONS

This research proposed the methodology for design and catchment-scale evaluation of
NBS-based adaptation strategies to mitigate hydrological drought, using indicators that
are close to stakeholders' needs and practices. The methodology used an integrated
hydrological model based on MIKE SHE software as the main tool to analyse surface and
groundwater behaviour in catchment under: (1) current climate conditions, (2) single
NBSs, (3) projected near future climate change, and (4) combined NBS-based adaptation
strategies. In addition to the use of groundwater level difference, flow duration
curves, and water balance are computed to assess the current conditions and the effect
of single NBS measures. Further, the effect of climate change and NBS measures
(single or combined strategies) on surface and sub-surface condition of the catchment
are assessed using two newly introduced KPI (SWA and GWA). These indicators were
developed in consultation with stakeholders and express the surface and groundwater
availability status connecting the traditional threshold with the actions on withdrawal.

Six different individual NBS measures were assessed using the integrated hydrological
model with the aim of retaining water in the catchment for longer and enhancing
groundwater recharge. Among these, the most positive impacts were observed for
infiltration ponds and heathlands restoration where they increased recharge and
consequently contributed to enhanced baseflow. Ditch blocking did not notably
improve the recharge but effectively reduced the lateral drainage flow from the sub-
surface, consequently increasing groundwater levels. Wetlands restoration demonstrated
both positive as well as negative effects. Tree plantation led to enhanced ET and induced
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negative impacts on the groundwater and streamflow. Brook bed barriers showed
negligible response to surface and sub-surface components. The four single measures
(infiltration ponds, heathland restoration, ditch blocking, and wetlands restoration) with
the positive response on the groundwater were combined spatially to develop two
strategies S1 and S2. Both strategies reduced ET and enhanced the infiltration and
recharge, consequently increasing the runoff, achieving the main aim of their application.
Strategies S2 (with a larger spatial extent) provided a comparatively more positive effect
on surface and groundwater by completely eliminating ‘no availability’ days at
monitoring locations near the downstream part of the catchment. Further, in both
strategies, the positive impacts of NBS are accumulated from upstream to downstream.

This assessment was mainly focused on drought adaptation but can be extended to flood
adaptation strategies by following the proposed methodology, once the flood-related KPIs
are identified in consultation with local stakeholders. Further, we believe that the
proposed methodology is not limited to Aa of Weerijs but is readily transferable to other
case studies.
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7. Synthesis and outcome

7.1 INTRODUCTION

The previous chapters address the research objective regarding the potential of EO
datasets for hydrological modeling, the evaluation of precipitation products suitability for
producing surface and subsurface hydrological variables, and the potential of NBS-based
adaptation strategies to mitigate drought impacts. This chapter reflects on the findings of
the previous chapters in the light of the research objectives presented in Chapter 1. Further,
the limitations of the work are discussed and finally in the end the outlook on the topic is
provided, identifying further prospects for future research efforts.

7.2 SYNTHESIS

The first objective that the study aims to address is to analyse the potential of EO data
products for distributed hydrological modelling which is a topic of considerable
importance due to challenges posed by data scarcity. Through an extensive PRISMA
based systematic literature review (Chapter 2), the analysis provided a thorough
examination of multiple dataset types (precipitation, LULC, soil properties, leaf area
index (LAI), snow cover, evapotranspiration, soil moisture and temperature) across the
catchment scales. The EO data products are helpful for hydrological modelling at regional
to global scales, offering broad spatial and temporal coverage. However, the performance
and reliability of these datasets are highly variable depending on geographic region,
catchment size and hydrological variable of interest. The main synthesis on the EO
datasets is that they can fill data gaps in the poorly monitored regions and improve the
spatial coverage, but their use remains heavily dependent on careful evaluation. The
review (Chapter 2) highlighted that no single EO dataset consistently performs best across
different environments or hydrological variables, suggesting that the performance of
specific datasets is conditional and context-specific rather than universally identical.

Chapter 2 also highlights the variation in EO dataset usage across micro-, meso- and
macro-scale catchments and the relationship between dataset utility and catchment size is
established. At the smaller catchment scales (micro- and meso-scale), the utilization and
potential of EO datasets remained largely unexplored in practice. The in-situ data is
preferred at these scales due to concerns about the coarse spatial resolution of the EO
datasets. While the EO products may have the potential to support distributed
hydrological modelling at small scales, further performance evaluation studies are needed
to unveil this potential fully. The trend might evolve as the fine resolution datasets
become more widely available. In the end, the catchment scale- and dataset type-wise
knowledge gaps have been identified.

Although the literature search was comprehensive, it is important to mention that it
covered the articles published between 2016 and 2021 and relied on two databases. The
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relevant studies published outside this time window or on other platforms may have been
overlooked. Further, most of the studies were from China and USA, which might have
introduced regional bias. Moreover, the review could have been further strengthened by
incorporating a systematic synthesis of the comparative accuracy of EO datasets in
hydrological simulations. However, this was challenging to incorporate due to the lack of
use of standardized evaluation criteria or metrics in the reviewed articles.

While the review categorizes knowledge gaps across dataset types for different catchment
scales, one of the common gaps identified is the lack of common evaluation criteria used
for selecting the most suitable datasets for the specific hydrological purpose. This gap is
consistent across catchment scales and persists irrespective of data type. Although many
reviewed articles provided comparative statements about the dataset performance, they
did not provide any systematic approach to identify the most suitable dataset for
hydrological modelling. Therefore, in the second objective, we evaluated the influence of
the choice of performance metrics on the identification of the most suitable data product
for hydrological simulations and developed a comprehensive methodology to identify
suitable products.

In Chapter 4, we presented the development and application of multi-metric, multi
combination evaluation framework to identify suitable EO products for simulating
hydrological variables. The study directly reflects on the identified gap regarding the lack
of a comprehensive method to select a suitable dataset. The methodology was applied to
a lowland transboundary catchment using the MIKE SHE model and four precipitation
products (EOBS, MSWEP, IMERG Final and ERAS5 Land) were rigorously evaluated by
testing approximately 33 million combinations of selected metrics. The core concept is
that the most suitable product is not the one that performs best on a single or arbitrarily
selected set of metrics, but rather the one that demonstrates consistent plausibility across
the widest range of metric combinations.

The results of different scenarios and metrics combinations clearly reflect that the choice
of evaluation metrics has a significant influence on determining the most suitable product.
Depending on which metrics and which variables have been selected for evaluation, the
results have varied a lot. Testing of multiple combinations of metrics strongly supported
that the use of a single metric can lead to an unsuitable choice of gridded product, either
for precipitation estimation or hydrological simulations. The use of multi-metrics
multiple combinations approach provided a more robust and comprehensive assessment
of the product’s performance. The identification of the most suitable precipitation product
is highly sensitive to the number and combination of metrics used, particularly when the
number of metrics is small. When fewer metrics were considered (chapter 3), the
likelihood of misidentifying a less suitable product as the best increases. As more metrics
were included, the outcomes converged towards consistently strong performers. Overall,
the study highlighted and cautioned that the arbitrary metric selection based on a few
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unbalanced metric sets can lead to false identification of the most suitable product.
Further, the inclusion of hydrological signatures in the evaluation process enhanced the
diagnostic power that traditional statistical error metrics alone could not provide.
Moreover, the aggregation of multiple performance combinations using both Euclidean
Distance and Plurality Score based criteria enabled a more comprehensive and transparent
comparison across datasets, serving as a template for future evaluations. The study also
reflected that no single precipitation product consistently performed better than others
across all metrics in precipitation estimation or reproducing hydrological variables. At a
few locations, the precipitation product's performance in simulating discharge and
signature is even better than ground observed data, but it was not consistent across all
observation locations. This outcome directly reinforces the findings of Chapter 2 that EO
dataset performance is context-specific and therefore, relying on limited or singular
evaluation metrics can lead to misleading conclusions.

The findings of the study reflect a critical insight into the sensitivity associated with the
choice of metrics and the significant influence of metric selection on identifying the most
suitable precipitation products. Although the outcomes are limited to the study catchment,
but scientific community can benefit from the methodology proposed. The framework
was developed and demonstrated in a well-instrumented catchment, but it is adaptable to
data-scarce regions as well, where traditional ground-based observations are limited. In
such contexts, alternative remotely sensed variables such as evapotranspiration or soil
moisture can be used as evaluation variables, allowing the proposed multi-metric
evaluation framework to still support the identification of the most suitable precipitation
products based on broader hydrological behaviour. Further, the application is not limited
to precipitation products but can be applied to evaluate other EO products and to assess
model performance in routine hydrological modelling practices.

Following the evaluation of the EO datasets and the development of a comprehensive
framework for their selection in Chapter 4, the third objective (Chapter 5) extended the
application of the hydrological modelling to analyse the individual and combined impacts
of future projected changes in LULC and meteorological variables on surface and
subsurface hydrology. The MIKE SHE model used in this study was hybrid in terms of
input data as it integrated EO datasets, specifically DEM, land use and soil texture, with
meteorological data from local stations. In chapter 4, precipitation products demonstrated
their potential to be used as input datasets. However, the use of local station data for this
study was a deliberate choice to ensure comparability and credibility of the results,
particularly in the communication with local stakeholders. This reflects that the balance
between EO and in-situ data usage can ensure an operational modelling environment
where stakeholders' trust and data reliability are harmonized. Scientifically, this objective
reflects on a critical gap by analysing the combined hydrological impact of both LULC
and meteorological changes, which are often considered in isolation in climate impact
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studies. The use of recently released KNMI’23 climate projections further strengthened
the study’s relevance and timeliness, as it offers up-to-date meteorological projection data
for scenario analysis. The other major strength that the study offered was the prediction
of the future LULC map using ANN-CA. The integration of KNMI’23 scenarios with the
future LULC map allowed to capture both the catchment scale averages and local scale
sensitivities of hydrological variables towards meteorological inputs and land use change.

For the simulation of future land use, on one side, the choice of a business-as-usual
scenario serves as a representation of a worst-case trajectory, emphasizing the potential
hydrological impacts of unchecked urban expansion and changes in agricultural land use
without interventions of land management or policy-driven planning. On the other hand,
it reflects the simplistic scenario that does not account for socioeconomic, political, or
environmental factors that could change future land use dynamics or trends assumed
under the business-as-usual scenario. Therefore, this scenario is useful for stress-testing
of hydrological systems and should be interpreted as a boundary case rather than a
definitive forecast.

The model results revealed that under future climate change, the catchment will
experience more water stress. This is primarily due to an increase in evapotranspiration
due to a temperature rise. The main reflection of the objective is that, on the catchment
scale, impacts of climate change on the hydrological variables are comparatively more
pronounced than the LULC change. The hydrological impact due to future LULC
accounts for very minimal changes in hydrological variables (>1 %) at the catchment
scale. However, at the local scales, particularly in zones transitioning from agriculture to
built-up or semi-natural areas, LULC change significantly influenced the relative changes
in groundwater level, soil moisture and actual evapotranspiration. Under the combined
effects, LULC changes appeared to slightly buffer the effects of climate change. Overall,
the climate change remained the principal driver of hydrological impacts, while LULC
changes can influence the spatial distribution of impacts in the transformed areas.

After the climate change impact analyses (Chapter 5), the final objective was o evaluate
the potential of NBSs for mitigating drought impacts and fo formulate adaptation
strategies to achieve maximum water conservation in subsurface. Chapter 6 expanded the
scope of this thesis from dataset evaluation and future scenario analysis to the design and
evaluation of NBS-based adaptive strategies. MIKE SHE model was used to simulate the
effects of six individual NBS types and a framework was developed to spatially combine
the most effective single NBS into composite adaptive strategies. The systematic
selection of final NBS types and their spatial allocation within the strategies (S1 and S2),
considering both the regional land use plans and hydrological impact, is the strength of
the method that enhances its acceptability, scalability and adaptability. Further, the
study’s strength is reinforced by the incorporation of KPIs that are stakeholders’ relevant
and bridge the gap between model output and decision-making needs. The KPIs were
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designed in consultation with regional stakeholders, specifically professionals from the
Water Board and the Province. It is important to recognise that the implementation of
NBS may involve a diverse group of stakeholders with different priorities and KPIs may
need to be adapted accordingly.

The single NBS measures tested in this study were categorized in the prior project as
suitable for sub-surface water conditions based on GIS based assessment that considered
the physical characteristics of the catchment and average groundwater levels. However,
the model results depicted that the hydrological effects were not uniformly positive at all
the locations. While some measures led to noticeable improvement in the groundwater
levels, others (Tree planting and brook bed barriers) remain neutral or even negative. Also,
for the same measure, the results have varied across the catchment. This highly reflects
the importance of validating GIS based opportunity mapping with hydrological modelling,
as spatial suitability alone does not guarantee hydrological effectiveness.

Out of six different individual NBS measures that were assessed for their potential to
retain water within the catchment for longer and enhance groundwater recharge, the most
positive impacts were observed for infiltration ponds and heathland restoration. Ditching
blocking did not notably improve the recharge but effectively reduced the lateral drainage
flow from the sub-surface which consequently increased groundwater levels. Wetlands
restoration demonstrated both positive as well as negative effects. In contrast, tree
plantation led to enhanced evapotranspiration and induced negative impacts on the
groundwater and streamflow. Brook bed barriers showed a negligible response to surface
and sub-surface components.

Based on the findings, four measures (infiltration ponds, heathland restoration, ditch
blocking, and wetlands restoration) were combined spatially to develop two strategies (S1
and S2). The selection and spatial allocation were driven by performance with respect to
groundwater level improvement, as the primary focus of the study was to enhance sub-
surface storage. It is important to note that different spatial maps might have emerged if
the criteria prioritized different objectives. Both strategies succeeded in reducing ET and
enhancing infiltration and recharge, consequently increasing the runoff, and improving
water availability during summer. Strategies S2, with a larger spatial extent, delivered
comparatively more substantial hydrological benefits, including the complete elimination
of ‘no availability’ days at the downstream monitoring locations. The results also
reflected that the positive impacts due to NBS are accumulated from upstream to
downstream. However, the quantum of the positive impact is closely related to the area
allocated to each measure, which may conflict with other land use priorities. Moreover,
the KPIs considered are solely focused on water availability in the catchment and do not
account for potential co-benefits of NBS, nor do they include any economic cost-benefit
analysis.
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In summary, the research begins with identifying the potential and limitation of EO
datasets, then progresses towards the development of comprehensive multiple metrics-
based evaluation framework for identifying the most suitable datasets, followed by the
impact assessment of combined climate and LULC change and in the end, culminates in
the design of NBS-based drought adaptation strategies. Each objective is linked to the
preceding one, providing a transparent methodological framework that is transferable and
adaptable across different hydrological contexts. The finding underscores that no single
dataset, evaluation metrics, or NBS-based intervention is universally optimal. Their
effectiveness is, rather, context dependent and is most meaningfully assessed when spatial
variability and stakeholders' perspectives are taken into consideration.

7.3 OuTLOOK

This thesis proposes the methodological frameworks for two aims: First, to identify
suitable EO datasets for hydrological modeling and second, to evaluate the potential of
NBSs for mitigating drought impacts and designing adaptive strategies through integrated
hydrological modelling. In the previous section, we reflected on the strengths and
limitations of these approaches. Despite the challenges, the research meaningfully
advances the knowledge and the findings demonstrate clear potential for the
implementation and adaptation of these methods across various locations and settings.
Therefore, to further advance the evaluation criteria of EO datasets towards establishing
a standardized methodology and to further investigate the potential of NBS-based
adaptive strategies to mitigate climate impact, future opportunities are discussed below.

Regarding the potential of EO datasets for distributed hydrological modelling, the
literature review conducted identified gaps categorized based on the dataset type and
spatial scale (Table 2.1). The identified gap highlights the need for future research to
explore and evaluate the effectiveness of different EO datasets in hydrological modelling
at various scales, with a particular focus on micro- and meso-scale catchments. This could
lead to the identification of more appropriate datasets for hydrological modelling and will
enhance the credibility of these datasets for usage in operations as well. Although in the
review, all the commonly used datasets for hydrological modelling are covered. But
future review could benefit from a more focused in-depth analysis. For instance, by
focusing on a single dataset type or increasing the temporal scope of covered literature.
This will lead to a more in-depth assessment of dataset specific advancements and
knowledge gaps. In addition to the use of EO dataset for model setup, these have wide
potential to be used in model calibration, validation and data assimilation. The review
only cursory touch on these applications of EO datasets. Future studies could therefore
focus on in depth review of EO datasets for particular modelling functions.
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Regarding the identification of suitable products for hydrological simulation, a
comprehensive, multi-metric, multiple combination evaluation approach has been
developed to identify the most suitable precipitation product for reproducing discharge
and groundwater levels with a specific hydrological model. The methodology was applied
to precipitation products, but it can be implemented to identify other suitable EO datasets.
The future study could explore the broader applicability of methodology to other EO
datasets. Further, the multi-metric, multiple combination criteria offer potential beyond
dataset selection. It could be used as an objective function for calibration and validation
of the model. Its applicability and robustness need to be tested across diverse modelling
goals. Further, the combinatorial analysis demonstrates that the selection of evaluation
metrics significantly influences the outcome of product suitability assessments. Although
a wide range of metrics was used but still the selection of metrics remains subjective. The
future research could test the methodology with a different set of metrics and compare
whether the findings remain consistent or change.

Importantly, the methodology was implemented in a single, small scale catchment,
whereas more generalizable outcomes could be achieved by extending the analysis to a
broader set of watersheds. The methodological framework developed in this study, based
on a multi-metric and multi-combination evaluation approach, is transferable and scalable.
Future research may aim to replicate this across diverse hydro-climatic regions, allowing
for broader conclusions on the performance of precipitation products as well as to make
recommendations regarding the optimal number of metrics to be considered in the
evaluation of EO precipitation products and beyond. Overall, methodology represents an
important step toward standardizing EO dataset assessment, but not the definitive one.
Rather, it invites further research to expand, adapt, and refine the approach for wider
hydrological practice.

Regarding the combined assessment of climate and LULC change, the future map was
simulated under a business-as-usual scenario. A more nuanced understanding could be
achieved by formulating different scenarios for future LULC, incorporating constraints
on LULC class expansion, and considering local landscape policies, municipal priorities,
stakeholder perspectives, or broader European-level policies. Such considerations could
enhance the refinement of future LULC projections. Further, the study considered only
rainfall, PET, and LULC under future changes. Global warming may trigger additional
factors, such as groundwater abstraction or direct water abstraction from rivers, which
could impact discharge and GWT. Additionally, changes in groundwater boundary
conditions, not accounted for in this study's future scenarios, could further influence
hydrological dynamics. The change in hydrological variables, such as soil moisture and
temperature, along with changes in land use, can also affect the soil hydraulic properties.
The impact of land use changes on soil properties and their subsequent effects on
hydrological processes is under explored area of research. Therefore, future research
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activities could explore these additional factors. The effect of these factors might not be
significant alone, but studying the coupled effects of various drivers would provide a
more comprehensive understanding of future hydrological dynamics.

Regarding the NBS strategies for climate adaptation, the research particularly focused on
water conservation for drought adaptation. Future research may focus on designing
strategies that consider both high and low flows. The existing methodology can be
extended to flood adaptation strategies by identifying the flood-related KPIs in
consultation with local stakeholders. Further, in the methodological steps, the key aspect
is the identification of the KPIs in consultation with the stakeholders. This ensures that
the KPIs are aligned with stakeholder priorities and are meaningful for both assessment
and decision-making. However, in this research, consultation was limited to the
representatives from the Water Board and the Province. A broader and diverse group of
stakeholders may be consulted to design the KPIs. It will ensure the broader social
acceptability of the designed strategies in the community. The NBSs are assessed on their
performance for enhancing surface water and groundwater availability. Their co-benefits,
such as carbon sequestration, water purification, biodiversity enhancement, etc, along
with cost benefit analyses, can be focused on in future research.

The NBSs were modelled in a small-scale catchment using an integrated hydrological
model. To expand its utility, different methods can be explored to upscale the results, for
instance, by training a machine learning model on hydrological model outputs and GIS
based opportunity maps to identify other locations where the NBS interventions may yield
positive impacts, depending on the defined KPIs. Moreover, NBS strategies in this
research were designed on a basin scale, the implementation of which falls out of the
scope and capacity of individual landowners or farmers. Future research could explore
field scale NBS interventions that the landowner can feasibly implement in their field.

To conclude, these future directions will broaden the scope and scale of EO datasets
applicability, promote the development of standardized evaluation criteria, advance the
NBS-based adaptation strategies design, and strengthen stakeholder engagement in
hydrological modelling and sustainable water resource management.
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APPENDIX A

LULC 2048 I Vixed forest

[ Broad-leaved forest [ Moors and heathland

[1 Complex cultivalion patterns [ Natural grasslands

[ Coniferous forest [ 1 Non-irrigated arable land
I Discontinuous urban fabric [ Pastures

[ Green urban areas I Road and rail networks
I Industrial or commercial units [ Sport and leisure facilities
I Inland marshes [ Transitional woodland-shrub

[ Land principally occupied by agriculture [ | Water bodies

Figure Al. The simulated LULC map of 2046

Table Al. The values of ‘R95pTot’ for the catchment average rainfall for the base
period and future climate scenarios

Seasons Base Climate scenarios

peried | py LN HD HN
Spring 287.7 11.9 0 40.2 12.1
Summer 4723 37.3 40.5 104.7 67.7
Autumn  361.8 92.7 39.9 57.2 29.4
Winter 378.1 0 0 12 0
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Figure A2. The difference in the relative change (%) of simulated AET between SC3 and
SC2 scenarios on a seasonal basis
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Figure A3. The difference in the relative change (%) of simulated SM between SC3 and
SC2 scenarios on a seasonal basis
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Figure A4. The difference in the relative change (%) of simulated GWT between SC3
and SC2 scenarios on a seasonal basis
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Land Use Land Cover
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