
 
 

Delft University of Technology

Document Version
Final published version

Licence
CC BY-NC

Citation (APA)
Ali, M. H. (2026). Earth Observations-Informed Modelling for the Design of Nature-Based Climate Adaptation Strategies.
[Dissertation (TU Delft), Delft University of Technology, IHE Delft Institute for Water Education].
https://doi.org/10.4233/uuid:eb704a5f-1a95-41d1-8466-3155831e37e7

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
In case the licence states “Dutch Copyright Act (Article 25fa)”, this publication was made available Green Open
Access via the TU Delft Institutional Repository pursuant to Dutch Copyright Act (Article 25fa, the Taverne
amendment). This provision does not affect copyright ownership.
Unless copyright is transferred by contract or statute, it remains with the copyright holder.
Sharing and reuse
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without
the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as
Creative Commons.
Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

https://doi.org/10.4233/uuid:eb704a5f-1a95-41d1-8466-3155831e37e7


Earth Observations-Informed 
Modelling for the Design  
of Nature-Based Climate  
Adaptation Strategies

Muhammad Haris Ali



 

 

 

 

 

EARTH OBSERVATIONS-INFORMED MODELLING FOR THE 

DESIGN OF NATURE-BASED CLIMATE ADAPTATION 

STRATEGIES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Muhammad Haris Ali 

 

 

 

 



 

 

 



 

 

 

 

 

EARTH OBSERVATIONS-INFORMED MODELLING FOR THE 

DESIGN OF NATURE-BASED CLIMATE ADAPTATION 

STRATEGIES 

 

 

 

 

 

 

 

 

DISSERTATION 

 

for the purpose of obtaining the degree of doctor  

at Delft University of Technology 

 by the authority of the Rector Magnificus Prof.dr.ir. H. Bijl, 

 chair of the Board for Doctorates 

and 

in fulfilment of the requirement of the Vice Rector of IHE Delft  

Institute for Water Education, Prof.dr. G.P.W. Jewitt, 

to be defended in public on 

Wednesday, 4 February 2026 at 12:30 hours 

 

 

 

 

 

by 

 

Muhammad Haris ALI 



 

 

 

 

This dissertation has been approved by the promotors. 

 

 

 

Composition of the doctoral committee: 

 

Rector Magnificus TU Delft   chairperson 

Vice Rector IHE Delft   vice-chairperson    

Em.prof.dr. D.P. Solomatine   TU Delft / IHE Delft, promotor 

Prof.dr. I.I. Popescu    TU Delft / IHE Delft, promotor 

Prof.dr. M. Hrachowitz   TU Delft, promotor 

 

Independent members:                 

Prof.dr. T.A. Bogaard        TU Delft 

Prof.dr. L. Beevers     University of Edinburgh, UK 

Prof.dr. G.P.W. Jewitt    TU Delft / IHE Delft 

Dr. H. Madsen         DHI, Denmark 

Prof.dr. M.E McClain    TU Delft / IHE Delft, reserve member 

 

 

Dr. A. Jonoski, Associate Professor of Hydroinformatics, IHE Delft Institute for Water 

Education, has significantly contributed towards the supervision of this dissertation 

 

This research was conducted under the auspices of the Graduate School for Socio-

Economic and Natural Sciences of the Environment (SENSE)  

 

 

© 2026, Muhammad Haris Ali 
  

Although all care is taken to ensure integrity and the quality of this publication and the 

information herein, no responsibility is assumed by the publishers, the author nor IHE 

Delft for any damage to the property or persons as a result of operation or use of this 

publication and/or the information contained herein. 

A pdf version of this work will be made available as Open Access via 

https://ihedelftrepository.contentdm.oclc.org/ This version is licensed under the 

Creative Commons Attribution-Non Commercial 4.0 International License, 

http://creativecommons.org/licenses/by-nc/4.0/ 

Published by IHE Delft Institute for Water Education 

www.un-ihe.org 

ISBN 978-90-73445-77-2 



 

 

 

 

 

 

 

 

 

 

 

To the hours that stretched and the hands that held me. 

To every late night and every struggling nudge forward. 

To effort, to grace, and to those who never let me fail - My family. 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 



vii 

 

ACKNOWLEDGEMENTS 

First and foremost, my deepest gratitude goes to Prof. Ioana Popescu, my daily supervisor, 

mentor, and role model. Her continuous support, insightful feedback and encouragement 

have been instrumental throughout my PhD journey. Thank you for always finding time 

to guide me, no matter how busy your schedule was. I am sincerely grateful to Dr. Andreja 

Jonoski for his guidance and constructive input, which were invaluable to the 

development of my research. I am profoundly thankful to both of you for entrusting me 

with the opportunity to pursue this PhD. I am deeply thankful to my promoters: Prof. 

Dimitri Solomatine and Prof. Markus Hrachowitz, for their valuable support and expert 

advice, which helped me a lot in refining my research ideas. I would also like to extend 

special thanks to Dr. Schalk Jan van Andel and Dr. Claudia Bertini for their valuable 

feedback and thoughtful suggestions.  

I thank my IHE friends and PhD fellows for the cherished moments, thoughtful chit-chat, 

and for listening to spontaneous ideas, no matter how lame they were at the time. Your 

camaraderie made my PhD journey more memorable. Further, to my dear Pakistani 

community and friends, I extend a heartfelt thanks. You were a great source of joy and 

comfort, helping to ease my mind from constant PhD thoughts.  

Special thanks to my wife for her unconditional love, patience, for tolerating my long 

working hours, and for supporting me throughout the PhD journey. Thank you for 

pretending to understand what hydrological modeling is and nodding along even when 

you had no clue what I was talking about. To my adorable daughter for being a daily 

reminder of joy and not bothering me (too much) on busy days. Your laughter and hugs 

were the best source of motivation. The PhD was a long journey but having you two by 

my side made it the best kind of adventure. 

I owe special thanks to my parents and my sister, whose love and prayers kept me 

motivated and going. Above all, I thank Allah for the opportunity to pursue this study and 

the perseverance to complete it. Alhamdulillah. 

 

 

  



 

 

viii 

 

 

 

 



 

ix 

 

SUMMARY 

Climate change poses prodigious challenges to water resource management. In 

addressing these challenges, traditional grey measures lack adaptability and long-term 

sustainability. In contrast, Nature Based Solutions (NBSs) offer flexible, sustainable and 

eco-friendly alternatives. The design and effectiveness of NBS-based adaptation 

strategies could be potentially assessed through integrated hydrological models, which 

simulate both surface and subsurface complex hydrological processes. However, the 

accuracy of models to efficiently simulate the hydrological processes significantly 

depends on the quality and availability of input data. Earth Observation (EO) datasets 

offer a wide range of hydrological data with comprehensive spatial and temporal coverage, 

yet their quality remains uncertain and requires evaluation across different scales and 

regions.  

To gain insights, the most frequently utilized EO datasets in distributed hydrological 

modelling were systematically reviewed and categorised across different catchment 

scales, including the micro-, meso- and macro-scales. The knowledge gaps identified 

through this detailed review of the articles demonstrate that dataset suitability for 

hydrological simulations varies substantially depending on location, scale, and evaluation 

criteria. Recognizing the inadequacies of single metric evaluation, the research further 

explores the sensitivity of the choice of metrics to the identification of the most suitable 

dataset for hydrological simulations. By applying a multi-metric, multiple-combination 

approach, it evaluates gridded precipitation products such as ERA5-Land, IMERG-Final, 

MSWEP, and EOBS in reproducing hydrological processes, revealing that the choice of 

performance metrics significantly influences the selection of suitable datasets. 

Further, the research analyses the separate and combined effects of climate and LULC 

change on the hydrology of the Aa of Weerijs catchment in the near future. Future 

meteorological data under climate change scenarios were obtained from the Royal 

Netherlands Meteorological Institute (KNMI). An Artificial Neural Network - Cellular 

Automata (ANN-CA) based prediction model was used to simulate the future LULC map. 

The model results showed that the combined effects of climate change with LULC 

changes did not significantly differ from the individual impact of climate change at the 

catchment scale. However, at the local scale, the changes in LULC can significantly 

influence the variations in hydrological components such as groundwater table, soil 

moisture, and actual evapotranspiration, depending on the specific change in LULC class 

and season. The research underscores the importance of considering both climate and land 

use dynamics for a comprehensive understanding of hydrological changes in the face of 

future challenges. 

Finally, the research evaluates the effectiveness of various NBSs and presents a 

methodology for designing NBS-based adaptive strategies for drought mitigation with a 
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focus on surface as well as subsurface hydrological components using an integrated 

distributed hydrological model. The NBSs assessed include ditch blocking, tree planting, 

wetland restoration, infiltration ponds, heathland restoration and brook bed barriers. 

Based on the model results, individual measures were spatially mapped to develop two 

adaptation strategies, each differing in spatial extent. The Key Performance Indicators 

(KPIs) were designed in consultation with key stakeholders and facilitated the clear 

communication of outcomes. Results indicated that the spatial extent of NBSs 

substantially influences their effectiveness. Overall, the NBS-based adaptation strategies 

showcased the potential to enhance the groundwater recharge and reduce the number of 

ban days for groundwater extraction, with almost eliminating the ban days in the 

downstream part of the catchment.  

In summary, this research integrates comprehensive EO dataset evaluation, combined 

climate and LULC scenario analyses, and the formulation and assessment of NBS-based 

adaptive strategies for water resource management in the context of a changing climate. 
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SAMENVATTING 

Klimaatverandering stelt het waterbeheer voor enorme uitdagingen. Traditionele 

infrastructurele (grijze) maatregelen bieden onvoldoende aanpassingsvermogen en 

duurzaamheid. Op de natuur gebaseerde (groene) oplossingen (Nature Based Solutions 

(NBS)) bieden daarentegen flexibele, duurzame en milieuvriendelijke alternatieven. 

Hydrologische modellen die grond- en oppervlaktewater geïntegreerd simuleren, kunnen 

mogelijk worden gebruikt voor het ontwerpen van aanpassingsstrategieën op basis van 

NBS en voor het beoordelen van de effectiviteit van zulke strategieën. De nauwkeurigheid 

van modellen om hydrologische processen te simuleren hangt echter sterk af van de 

kwaliteit en beschikbaarheid van invoergegevens. Aardobservatie (Earth Observation 

(EO)) datasets bieden een breed scala aan hydrologische gegevens met een uitgebreide 

ruimtelijke en temporele dekking, maar de kwaliteit ervan blijft onzeker en moet op 

verschillende schalen en in verschillende regio's worden geëvalueerd.  

Om inzicht te krijgen, zijn de voor gedistribueerde hydrologische modellering meest 

gebruikte EO datasets systematisch gereviewed en gecategoriseerd voor micro-, meso- en 

macro-stroomgebieden. De kennisleemtes die middels deze gedetailleerde 

literatuurreview zijn geïdentificeerd, laten zien dat de geschiktheid van datasets voor 

hydrologische simulatie aanzienlijk varieert per locatie, schaal en evaluatiecriteria. Het 

onderzoek erkent de tekortkomingen van evaluatie op basis van een enkel criterium en 

onderzoekt hoe gevoelig de identificatie van de meest geschikte dataset voor 

hydrologische simulaties is voor de keuze van evaluatiecriteria. Door een benadering van 

meerdere-criteria in verschillende combinaties toe te passen, evalueert het onderzoek 

ruimtelijke neerslagproducten zoals ERA5-Land, IMERG-Final, MSWEP en EOBS op 

geschiktheid voor het reproduceren van hydrologische processen. Hieruit blijkt dat de 

keuze van evaluatiecriteria de selectie van geschikte datasets aanzienlijk beïnvloedt. 

Daarnaast analyseert het onderzoek de afzonderlijke en gecombineerde effecten van 

klimaat- en LULC-veranderingen (landgebruik) op de hydrologie van het stroomgebied 

van de Aa of Weerijs in de nabije toekomst. Meteorologische gegevens onder 

klimaatscenario's werden verkregen van het Koninklijk Nederlands Meteorologisch 

Instituut (KNMI). Een voorspellingsmodel gebaseerd op kunstmatige intelligentie 

(Artificial Neural Network - Cellular Automata (ANN-CA)) werd gebruikt om de 

toekomstige LULC-kaart te simuleren. De modelresultaten toonden aan dat op de schaal 

van het stroomgebied de gecombineerde effecten van klimaat- en 

landgebruikveranderingen niet significant verschilden van de individuele effecten van 

klimaatverandering. Op lokale schaal kunnen de veranderingen in LULC echter wel de 

variaties in hydrologische componenten zoals grondwaterspiegel, bodemvocht en actuele 

evapotranspiratie aanzienlijk beïnvloeden, afhankelijk van het seizoen en de specifieke 
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verandering in LULC-klasse. Het onderzoek benadrukt hoe belangrijk het is voor een 

volledig begrip van hydrologische veranderingen met het oog op toekomstige uitdagingen 

om rekening te houden met dynamiek van zowel klimaat als landgebruik. 

Tot slot evalueert het onderzoek de effectiviteit van verschillende NBS voor het 

verkleinen van droogte risico’s en presenteert het een methodologie voor het ontwerpen 

van adaptieve strategieën op basis van NBS, met een focus op zowel oppervlakte- als 

grondwater met behulp van een geïntegreerd gedistribueerd hydrologisch model. De 

beoordeelde NBS omvatten het afdammen van sloten, het planten van bomen, 

moerasherstel, infiltratievijvers, heideherstel en beekbedbarrières. Op basis van de 

modelresultaten werden de afzonderlijke maatregelen in kaart gebracht om twee 

aanpassingsstrategieën te ontwikkelen die elk in ruimtelijke omvang verschillen. In 

overleg met belanghebbenden werden kritieke prestatie-indicatoren opgesteld (Key 

Performance Indicators (KPI's) hetgeen communicatie van de resultaten makkelijker 

maakte. De resultaten gaven aan dat de ruimtelijke omvang van NBS de effectiviteit 

aanzienlijk beïnvloedt. In het algemeen laten de NBS aanpassingsstrategieën zien de 

potentie te hebben om de grondwateraanvulling te verbeteren en het aantal dagen met een 

verbod op grondwateronttrekking te verminderen, waarbij in het benedenstroomse deel 

van het stroomgebied dagen met een onttrekkingsverbod vrijwel achterwege blijven.  

Kort samengevat integreert dit onderzoek uitgebreide evaluatie van EO datasets, analyse 

van gecombineerde klimaat- en LULC scenario’s en de formulering en evaluatie van 

klimaatadaptatie-strategieën met NBS voor het waterbeheer.
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1.1 BACKGROUND 

The indications of escalating climate change are prominent and can no longer be ignored 

in any region or sector of the world (Forster et al., 2024). The IPCC Sixth Assessment 

Report (AR6, 2023) stated with a high degree of confidence that the rate of rise in global 

surface temperature since 1970 has surpassed that of any other 50-year period in the past 

2000 years. Due to these changes, the hydrological cycle is accelerating leading to more 

frequent and stronger weather extremes including floods and droughts both at regional 

and global scales (Wang et al., 2021; Chiang et al., 2021). In a warming climate, frequent 

periods with less than average precipitation are anticipated. During such periods, the 

decrease in runoffs may be comparatively more than the corresponding decrease in 

precipitation (Massari et al., 2022) driven by higher evaporation rate and drier soil 

resulting from higher temperatures. In general, water management systems around the 

world are designed based on the assumption that the statistical properties of the flow 

remain constant over time, also known as stationarity (Villarini and Wasko, 2021). 

However, due to human influence and climate change, the assumption about the 

stationarity has become questionable (Milly et al., 2008). As a result, water management 

creates a prodigious impediment for the decision makers. Often, grey measures such as 

dams and reservoirs are built to alleviate flood and drought hazards due to their rapid and 

visible effects but these measures need large investment, frequent maintenance and are 

categorized as inflexible approaches (Brink et al., 2016; Wu et al., 2023; Schneider et al., 

2017). In addition to adverse effects on the downstream ecosystem, such measures are 

generally designed for certain life periods, are not environmentally friendly and lack the 

capability to adapt to changing climate.  

Many countries are nowadays focused on envisaging adaptation and mitigation strategies 

based on green infrastructure and ecosystem-based adaptive measures to reduce their 

exposure to hydro-meteorological hazards (Shah et al., 2023; Davies et al., 2021). This 

kind of measures offer greener and eco-friendly alternatives to traditional engineering 

solutions for hydro-meteorological risk reduction (Ruangpan et al., 2020) in cost effective 

ways (Ruangpan et al., 2024). The International Union for Conservation of Nature (IUCN) 

defines Nature Base Solution (NBS) as “actions to protect, sustainably manage, and 

restore natural and modified ecosystems that address societal challenges effectively and 

adaptively, simultaneously providing human well-being and biodiversity benefits” 

(IUCN, n.d.). In addition to risk reduction and confronting climate change, NBSs also 

provide co-benefits such as carbon storage, urban heat mitigation, ecosystem services and 

biodiversity enhancement (Keesstra et al., 2018).  

However, in order to assess the usefulness of nature based adaptive measures on local and 

basin scale and their long-term efficacy to mitigate or reduce climate change induced 

risks, detailed hydrological and/or hydrodynamic models are required to be developed. 

These numerical models are comprehensive tools that incorporate the laws of physics and 
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real state response variable equations to simulate floods and droughts, as well as to test 

NBSs. One of the hindrances in their use is the extensive data requirements (Kumar et al., 

2021). Moreover, the accuracy of models to efficiently simulate hydrological processes 

generally depends on the quality of input data.  

The in-situ data is often considered as the most suitable to feed the models. However, 

these ground observations lack the ability to provide proper spatial coverage (Glenn et al., 

2007; Fernandes et al., 2012; Lai et al., 2019) and are often not readily and freely available. 

Moreover, in a transboundary catchment case, the challenges regarding the in-situ data’s 

availability are compounded due to a lack of data sharing, inconsistencies arising due to 

differences in recording time and methodologies applied for data collection (UNECE, 

2024). Alternatively, EO based datasets offers a wide range of hydrological variables with 

time series spanning over multiple years (Jiang and Wang, 2019). As of 2023, there are 

more than seven thousand satellites orbiting the Earth. Out of them, approximately 64 % 

are active and about 17 % are launched for EO purposes (UCSSD, n.d.). Advancing from 

panchromatic and red green blue (RGB) imagery, the sensor technology has expanded to 

capture data such as multi hyperspectral visible to near-infrared bands, thermal bands, 

microwave emissions. From hydrological perspective, this data provided a new and 

independent source of information covering the range of water cycle component (McCabe 

et al., 2017). Many research activities took advantage of this spatially available long 

sequence of temporal observations to compile long-term global datasets (Beck et al., 

2017). Such datasets provide an independent mean of analyzing and studying 

hydrological system dynamics and response (Brocca et al., 2014) as well as for 

conducting trend analysis and anomaly detection in water cycle components.  

1.2 PROBLEM STATEMENT 

In the last three decades, a wide range of EO based datasets providing insight into a vast 

variety of hydrological variables are developed (Xu et al., 2014; Jiang and Wang, 2019). 

Seamless and prompt accessibility of these datasets makes them attractive to hydrological 

modelers and water managers as substitute or complementary data sources for setting up 

detailed models and testing solutions for better water management. EO has driven 

significant advancements in hydrological science. Many assume that hydrological 

variables such as precipitation, evapotranspiration, soil moisture, etc. are directly 

retrieved from EO. However, in reality, complex retrieval models with various 

parameterizations and simplifications are applied to convert earth emitted and reflected 

radiations to desired variables which increases the potential for errors (McCabe et al., 

2017). Further, due to budget constraints and the limited life span of satellites, the 

development of long time series of EO datasets required merging of data from different 

sensors. This can cause artificial fluctuations due to inconsistencies in satellites 

constellations (van Oostende et al., 2022) resulting in spatial and temporal variation in 
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the quality of datasets across regions of the globe. The accuracy of hydrological models 

is dependent not only on their structure but also highly on the quality of input data (Wang 

et al., 2023; Rasheed et al., 2024). Water cycle varies significantly across multiple 

spatiotemporal scales (Dash and Kumar, 2025; Chen and Wang, 2018) and the ability of 

global datasets to accurately capture this variability also differs across regions, leading to 

spatial variation in data quality. Consequently, selecting appropriate datasets for model 

setup is critical to ensure model accuracy for simulating hydrological processes. Despite 

the growing abundance of EO datasets, their performance and applicability in 

hydrological models across different geographical scales and regions remain unclear 

(Gebrechorkos et al., 2024; Beck et al., 2017). Therefore, there is a need to identify the 

potential of EO datasets for use in hydrological models particularly for different 

catchment scales ranging from micro-scale (<10 km2) to macro-scale (>1000 km2). 

Further, due to associated uncertainty, the quality of these datasets needs demonstration 

(Craglia et al., 2017). For instance, precipitation is one of the main drivers of the terrestrial 

hydrological cycle and an important input to hydrological models. However, it is 

challenging to estimate precipitation using satellite data or models (Gebrechorkos et al., 

2024; Beck et al., 2017). The uncertainties in the precipitation products can cause up to 

50 % error in variables simulated by hydrological models (Bárdossy et al., 2022), 

resulting in poor representation of hydrological responses. The suitability of EO products 

is evaluated mainly using two approaches (i) comparing the variable directly with 

observed data from ground stations (Yang et al., 2024; Sun et al., 2018; Ayehu et al., 

2018) and (ii) using EO products to force hydrological models and comparing the 

reproduced variables (e.g. streamflow) with observed data (Gebrechorkos et al., 2024; Ji 

et al., 2024; Lakew et al., 2020). In both approaches, researchers rely on error metrics to 

evaluate the goodness of fit between estimated and in-situ time series (Gebrechorkos et 

al., 2024; Dembele et al., 2020; Alexopoulos et al., 2023), which is standard practice for 

hydrologists (Jackson et al., 2019). The Nash-Sutcliffe efficiency (NSE) (Nash and 

Sutcliffe, 1970) and the Kling-Gupta efficiency (KGE) (Gupta et al., 2009) are frequently 

used metrics for the quantitative comparison between simulated timeseries and observed 

ones (Cinkus et al., 2023; Clark et al., 2021). However, each metric has its limitations: 

NSE over-emphasises peak values due to use of squared sum of errors (SSE) which leads 

to an inflated importance of the absolute errors during high flows at the expense of low 

flows (Knoben et al., 2019; Onyutha, 2024), whereas the KGE complements the 

deficiencies of the NSE to some extent but still underestimates the variability of 

timeseries data (Liu, 2020). Both NSE and KGE can be strongly swayed by a few outliers 

(Clark et al., 2021; Beven and Westerberg, 2011). In addition to these, many other error 

metrics are used by researchers; however, no single metric can comprehensively capture 

all aspects of a specific variable (see e.g. Jackson et al. (2019), Onyutha (2024)). Different 

metrics may lead to opposing and unclear conclusions about the identification of the most 

suitable EO product for a given application. Therefore, there is a need to evaluate the 
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influence of choice of performance metrics on the identification of the most suitable data 

product and to formulate a method that can comprehensively identify the suitable product 

for the hydrological application.  

Beyond data challenges, hydrological systems are further complicated by climate change 

and land use/land cover (LULC) changes. Droughts are among the most devastating 

natural hazards and have extensive impacts on water resources affecting agriculture, 

ecosystems, and socio-economic systems. In the summer of 2018, large parts of Europe, 

particularly north-western and central regions, experienced extreme hot and dry 

conditions (Philip et al., 2020; Bakke et al., 2020). Such droughts, similar to those of 

2018–2019, are expected to occur more frequently in the future (Philip et al., 2020). The 

Netherlands was one of the countries most affected by these extreme weather events, 

particularly in its eastern and southern regions (van den Eertwegh et al., 2019). The 

country, which is traditionally focused on managing surplus water, the severe impacts of 

the 2018–2019 droughts marked a turning point where water managers began searching 

for solutions to prepare for more frequent drought conditions. To counter these new 

challenges, a thorough understanding of climate change’s impact on hydrological systems 

both at regional and catchment scales is essential (IWMI, 2019; Adib et al., 2020). 

However, the positive or negative changes in the climate signals are quite uncertain as 

different Global Climate Models (GCM)/Regional Climate Models (RCM) produce 

varying projections for each study site depending on local climate and land use 

characteristics (Blöschl et al., 2019; Song et al., 2021). Additionally, alongside climate 

change, land use/land cover (LULC) change is also one of the important drivers of 

hydrological variations (Rigby et al., 2022; Kundu et al., 2017; Trang et al., 2017). 

Research examining the impact of human-induced changes in landscape patterns and 

climate change has gathered significant attention. However, primarily the research is 

focused on either the effects of climate change or changes in land use, rather than 

considering both factors combined (Nazeer et al., 2022; Gurara et al., 2021; Kay et al., 

2021). In addition to that, when these factors are examined together, the emphasis of the 

study is often centered on evaluating variations in surface hydrological variables alone 

(Ma et al., 2023; Lyu et al., 2023; Zhang et al., 2023; Iqbal et al., 2022; Sinha et al., 2020)   

or only on groundwater dynamics (Hanifehlou et al., 2022; Ghimire et al., 2021). 

Therefore, before envisaging the adaptive strategies, the individual and combined effects 

of the climate and LULC change on the catchment’s surface and sub-surface hydrological 

variables need to be analyzed. Additionally, it seeks to address a knowledge gap that how 

crucial is it to consider future LULC changes alongside changes in meteorological 

variables under climate change when assessing the future hydrological state of a 

catchment.  

The formulation of adaptive strategies for droughts is primarily focused on retaining the 

water in the catchment either by increasing storage or by slowing surface or sub surface 
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flow. Some of these actions are considered important for flood management as well but 

are imperative for droughts (POM, 2014). NBSs are the potential alternative to the grey 

infrastructure for climate adaptation (Yimer et al., 2024; Debele et al., 2019; Ruangpan 

et al., 2020) with their multiple co-benefits such as better water quality, improved soil 

health, biodiversity enhancement, natural area for recreation and better land use 

management and planning (Nesshöver et al., 2017; Penning et al., 2023). However, in 

research, much attention has been given to testing the potential of NBSs for flood 

management while their potential for drought management is barely touched. For instance, 

recent literature review by Yimer et al. (2024) found that only 6 % of European case 

studies and 14 % of global case studies were focused on NBSs for drought adaptation. 

Apart from this, the research on the potential of NBSs in urban areas is more developed 

compared to their implementation in rural areas at the catchment scale for drought 

management (Yimer et al., 2024; Johnson et al., 2022). Moreover, the lack of proper 

modelling approaches to test the impact of NBSs is another hindrance in understanding 

their potential for drought adaptation particularly in evaluating their impact on both 

surface and subsurface water resources.  

In summary, while EO datasets have transformed hydrological science, their reliability 

and applicability in hydrological modeling remain uncertain due to retrieval errors, data 

inconsistencies, and spatial-temporal variations in quality. Furthermore, the choice of 

error metrics influences the identification of suitable EO products, necessitating a more 

comprehensive evaluation framework. Additionally, the interplay of climate change and 

LULC change in hydrological systems is often analyzed in isolation, despite their 

combined impact on surface and subsurface hydrology. Lastly, while NBSs offer 

potential alternatives to grey measures, their potential remains underexplored for drought 

mitigations, particularly at the catchment scale. 

Addressing these knowledge gaps will provide crucial insights into improving EO-based 

hydrological modeling, assessing climate and land-use impacts, and enhancing adaptive 

strategies for drought management. 

1.3 RESEARCH OBJECTIVES AND QUESTIONS 

The main objective of the present research is to evaluate the potential of EO data products 

for hydrological modelling and to assess the effectiveness of NBSs for drought adaptation 

through modelling. 

The specific objectives are:  

I. To analyse the potential of EO data products for distributed hydrological 

modelling 
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II. To evaluate the influence of choice of performance metrics on the identification 

of the most suitable data product for hydrological simulations and to develop a 

comprehensive method to identify suitable products  

III. To analyse the individual and combined impacts of future projected changes in 

LULC and meteorological variables on surface and subsurface hydrology 

IV. To evaluate the potential of NBSs for mitigating drought impacts 

 

The research objectives will be achieved by answering the following research questions: 

 

I. What is the potential of different types of EO datasets for use in distributed 

hydrological modelling across different catchment scales? 

II. What are the literature gaps regarding the use of EO dataset across different spatial 

scales for future research? 

III. How can the most suitable EO datasets be comprehensively identified for 

hydrological simulations? 

IV. What is the influence of the selection of evaluation metrics on the identification 

of the most suitable dataset for hydrological simulations? 

V. What is the significane of considering future LULC changes alongside changes in 

meteorological variables under climate change when assessing the future 

hydrological condition of a catchment? 

VI. What is the potential of the NBSs for mitigating drought impact considering both 

surface and subsurface water resources? 

VII. How individual NBS measures can be spatially mapped to formulate adaptation 

strategies to achieve maximum water conservation in subsurface? 

1.4 THESIS OUTLINE 

Chapter 1 provides the theoretical background and describes the problem statement, 

along with the research objectives and questions that this research has addressed. 

Chapter 2 presents the systematic literature review conducted to seek the potential of EO 

datasets for distributed hydrological and their performance across different geographical 

scales of catchments, including the micro-scale (<10 km2), meso-scale (10 km2–1000 

km2), and macro-scale (>1000 km2). The review covers EO datasets relevant to 

hydrological modeling including rainfall, evapotranspiration, soil moisture, temperature, 

digital elevation model, land use, soil distribution, leaf area index and snow-covered area. 
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The chapter also identifies the knowledge gaps associated with the application of each 

dataset type at different spatial scales and insights which can assist in steering the possible 

future research directions in the field. 

Chapter 3 provides the description of the study area and a comprehensive overview of 

the hydrological model used in this research. 

Chapter 4 analyse the influence of evaluation metrics on the selection most suitable EO 

dataset for reproducing hydrological variables. It also presents the methodology 

developed for the comprehensive identification of suitable datasets for hydrological 

applications. The methodology is demonstrated using four different gridded EO 

precipitation data products for the study area. 

Chapter 5 provides insights into the impact of climate change on the surface and sub-

surface hydrological variables within the study area. Along with climate change, the 

chapter analyses the impacts of future LULC change on the hydrological processes. 

Further, this chapter also investigates the significance of considering future land use 

changes along with meteorological changes under climate change to comprehensively 

analyse the future hydrological state of the catchment. 

Chapter 6 presents a model-based methodology for designing and evaluating the 

potential of NBSs based adaptative strategies for mitigating drought impact on both 

surface and sub-surface hydrological variables. The NBS measures assessed include ditch 

blocking, tree planting, wetland restoration, infiltration ponds, heathland restoration and 

brook bed barriers. It covers the approach to model for each individual measure, evaluates 

their performance under climate change scenarios and formulation of combined 

adaptative strategies by combining these individual measures to maximum benefit, 

particularly in terms of groundwater resources. 

Chapter 7 complies the synthesis and outlook in the light of research questions. This 

chapter also includes the limitations of the study and constraints along with outlook on 

the topic as general with identifying future directions. 

 

 

 



 

 

2 
2 EARTH OBSERVATION DATASETS 

FOR DISTRIBUTED HYDROLOGICAL 

MODELLING: A REVIEW 

This chapter presents a systematic literature review on the use of Earth Observation (EO) 

datasets in distributed hydrological modelling. The study aims to investigate the most 

commonly used datasets in hydrological models and their performance across different 

geographical scales of catchments, including the micro-scale (<10 km2), meso-scale (10 

km2–1000 km2), and macro-scale (>1000 km2). The analysis included a search for the 

relation between the use of these datasets to different regions and the geographical scale 

at which they are most widely used. Additionally, co-authorship analysis was performed 

on the articles to identify the collaboration patterns among researchers. The study further 

categorized the analysis based on the type of datasets, including rainfall, digital elevation 

model, land use, soil distribution, leaf area index, snow-covered area, evapotranspiration, 

soil moisture and temperature. The research concluded by identifying knowledge gaps in 

the use of each data type at different scales and highlighted the varying performance of 

datasets across different locations. The findings underscore the importance of selecting 

the right datasets, which has a significant impact on the accuracy of hydrological models. 

This chapter provides valuable insights into the potential of EO datasets in hydrological 

modelling, and the identified knowledge gaps can inform future research directions. 

 

 

______________________________________________________________________ 

This chapter is based on the journal publication: Ali, M. H., Popescu, I., Jonoski, A., & 

Solomatine, D. P., 2023. Remote Sensed and/or Global Datasets for Distributed 

Hydrological Modelling: A Review. Remote Sensing, 15(6), 1642. 

https://doi.org/10.3390/rs15061642. 
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2.1 INTRODUCTION 

One of the important issues that the world is facing in the current era is climate change 

(MacAlister and Subramanyam, 2018), which will have adverse effects on the 

hydrological cycle of catchments (Jehanzaib et al., 2020). These effects will not be the 

same across the world (Konapala et al., 2020), hence their quantification and early 

prediction effects are important for preparedness. In order to obtain those quantifications, 

hydrological models are useful tools. The simulations of these models are used by water 

managers to study the current state of hydrological processes in areas of focus. The 

development of distributed hydrological models has the potential to provide large-scale 

predictions (Clark et al., 2017; Ocio et al., 2019), but these models need to be informed 

and assessed with distributed observational data for the better representation of spatio-

temporal processes (Baroni et al., 2019). However, one of the main challenges faced by 

the modellers is the lack of data (Khan et al., 2022). 

Commonly, the in-situ data are considered to be the most accurate. However, these 

ground observations are local and lack the ability to provide proper spatial coverage 

(Glenn et al., 2007; Fernandes et al., 2012; Lai et al., 2019). Further, the required huge 

amount of input data is often not readily and freely available. Luckily, the advancement 

in remote sensing technologies during the last decade has enabled mankind to gather huge 

datasets using satellite observations (Xu et al., 2014; Jiang and Wang, 2019). These 

observations are providing insights about the vast variety of the parameters that are 

required for building up a hydrological model (Karimi and Bastiaanssen, 2015). The 

immense diversity of these datasets covers digital elevation maps, land-use maps, soil 

distribution maps, rainfall, evapotranspiration, soil moisture, leaf area index and others. 

Moreover, for several of the sources of these datasets, the inventories span back half a 

century or even more. These freely available datasets are attractive to modellers, as these 

can fulfill data requirements. 

In addition to the model structure, the performance accuracy of a hydrological model is 

dependent upon the quality of input data. This makes the selection of the right data 

important. However, the performance of Earth observation (EO) datasets cannot be 

treated as uniform throughout the globe as it varies across different climatic zones 

(Dembele et al., 2020). Moreover, no remote sensed datasets can be regarded as actual 

observations due to uncertainties being common in them (Rajib et al., 2018). The quality 

of such data products needs demonstration (Craglia et al., 2017) and verification with 

ground observation before use in models (Khairul et al., 2018; Huang et al., 2019). With 

the increasing computing power, adding new data into the inventories of these datasets is 

happening very rapidly. Because of the abundance in variety and non-uniform 

performance, the selection of datasets is difficult. Therefore, there is a need to investigate 

the research that has been conducted in this specific field over the past few years. Jiang 

and Wang (2019) performed the overview of the role of satellite-based remote sensing 
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data products in hydrological modelling. However, their study is limited to the 

exploration of the performance of datasets for flow simulations only. The other model 

outputs, apart from discharge were not considered. Further, the remotely sensed datasets 

such as digital elevation models, land-use maps, soil distribution maps and leaf area 

indices, which are equally important in representing hydrological processes, were not 

covered by the authors. Likewise, Sheffield et al. (2018) reviewed the current satellite 

missions and datasets that are being used by national agencies in the regions of Latin 

American and the Caribbean for water resource management. However, the study is 

region-specific and the focus is on water resource management instead of distributed 

hydrological modelling. In both previously mentioned studies, the authors did not 

mention the years when the publications covered by their review were issued, nor did 

they describe their methodology for selecting the articles. Additionally, neither study 

investigated the performance of remote sensed datasets at different geographical scales. 

In this paper, we performed a systematic literature review. The aim of study was to 

investigate the research articles which were published on this topic in six years (2016 to 

2021) and which used one or more types of remotely sensed and/or global datasets to 

establish the distributed hydrological model. More specifically, we aimed to answer the 

following questions: Which datasets are most widely used by the researchers? At what 

catchment scale are the remotely sensed datasets mostly used? Have researchers evaluated 

the performance of these datasets for hydrological simulations? What are the knowledge 

gaps in this respective field? 

To answer the questions, we started the systematic literature review by sourcing 205 

articles from Scopus and 208 articles from Web of Science. After that, the final analysis 

was carried out on 120 articles. Then, we looked into different types of datasets that were 

used in hydrological models for different catchment sizes. The terms ‘micro-scale’, 

‘meso-scale’, and ‘macro-scale’ were used to categorize the sizes of catchments (i.e., less 

than 10 km2 (Tomasella et al., 2008); 10 km2 to 1000 km2 (Wu et al., 2021); and greater 

than 1000 km2 (Cornelissen et al., 2016), respectively). We performed this to detect the 

knowledge gaps at each scale concisely. Lastly, we concluded our analysis results and 

identified the scale-wise knowledge gaps that can act as the way forward for future work 

in the field. 

After this introduction, the chapter presents the methodology used for paper selection, 

which is followed by the results and discussion in Section 2.3. The chapter ends with the 

Conclusion in Section 2.4.  

2.2 METHODOLOGY 

The review methodology is based on preferred reporting items for systematic reviews and 

meta-analyses (PRISMA) criteria (Page et al., 2021), consisting of three main steps. The 
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first step includes the identification of relevant articles and for that we used the keywords, 

such as “hydrological modelling”, “remote sensing”, “global data”, etc. All keywords are 

shown in Figure 2.1. The process of identification was started by consulting two websites. 

The first was Scopus and the second was the Web of Science. Studies published between 

2016 and 2021 were selected for inclusion in this review to capture the latest 

advancements and trends in the use of remote sensed and/or global datasets for distributed 

hydrological modelling and to make the search manageable and feasible. Initially, 413 

articles were sourced from the two websites that were mentioned earlier. The second step 

included the screening of the articles. From the initially sourced 413 articles, some 

occurred twice because of their presence in both databases, and some were not classified 

as articles, such as conference papers, conference reviews and book chapters. This 

reduced the list of articles. Five more articles were excluded as they were not retrievable 

from the source. After this screening process, we ended up with 246 articles. In the third 

step, the abstracts of the article were read in order to eliminate the articles with research 

focuses outside the scope of this review, i.e., detailed distributed hydrological modelling, 

which included 126 articles. These 126 articles were excluded and the detailed analysis 

was finally conducted on 120 research articles. The schematic representation of the whole 

methodological process of selecting the papers for review can be seen in Figure 2.1.  

In the detailed analysis, firstly, the bibliographic analysis was performed to find the link 

between the regions and/or scale with the use of remote sensed and/or global datasets. 

Secondly, the shortlisted articles were categorized based on the type of datasets used by 

the authors for the hydrological modelling. Thirdly, for each dataset type, we further 

categorized the articles on the basis of catchment scale. Finally, we ascertained the 

progress of scientific community, both in terms of dataset type and scale. 
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2.3 RESULTS AND DISCUSSION 

In the beginning, we classified the articles country-, region- and scale-wise. The purpose 

was to analyze the locations around the world where the remote sensed and/or global 

datasets were being used most. As shown in Figure 2.2, out of 120 full-text articles 

reviewed, most studies have been found to be conducted in China, followed by the USA. 

Conversely, continent-wise, most studies have been conducted in Asia, followed by 

Europe. If we look at the number of studies conducted at different catchment sizes, then 

the majority are being performed at the macro-scale. 

The main aim of this classification was to find a relationship between the performance of 

remote sensing datasets and geographic locations, as well as the sizes of catchments. 

However, after reviewing the literature, we were unable to establish any clear links. For 

example, we did not find any evidence to suggest that the performance of remote sensing 

data is consistently better in one region or country over another, such as Asia versus 

Europe or China versus the rest of the world. However, if we consider the catchment size 

and number of studies, a direct relationship can then be framed: these studies are more 

focused on the macro-scale, followed by the meso-scale and micro-scale. Thus, the trend 

Figure 2.1. Schematization for identification of research articles for 

systematic literature review 
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of using remote sensed and/or global datasets in large catchments is more as compared to 

the use in small ones. 

 

Figure 2.2. (a) Number of case study areas per country, (b) percentage contribution per 

continent, (c) number of studies per catchment scale 

The main aim of this classification was to find a relationship between the performance of 

remote sensing datasets and geographic locations, as well as the sizes of catchments. 

However, after reviewing the literature, we were unable to establish any clear links. For 

example, we did not find any evidence to suggest that the performance of remote sensing 

data is consistently better in one region or country over another, such as Asia versus 

Europe or China versus the rest of the world. However, if we consider the catchment size 

and number of studies, a direct relationship can then be framed: these studies are more 

focused on the macro-scale, followed by the meso-scale and micro-scale. Thus, the trend 

of using remote sensed and/or global datasets in large catchments is more as compared to 

the use in small ones. 

Further, we performed the co-authorship analysis on the articles in order to identify the 

collaboration patterns among the researchers. For this, VOSviewer software had been 

used and the method was selected as a full counting method. The threshold of a minimum 

of two articles by a researcher was chosen as there was no author who had authored three 

or more articles among the shortlisted articles. Out of 594 authors, only 46 met the 

threshold. Based on the strength of co-authorship link, 20 clusters were drawn, which are 

graphically presented in Figure 2.3. 

It can be seen in Figure 2.3 that there are only three clusters where the number of authors 

is more than three. The largest clusters are cluster 1 (shown in red) and cluster 2 (shown 
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in green), which have seven authors each. Cluster 3 (shown is blue) is the third largest 

cluster, with five authors. 

 

Figure 2.3. Clusters of authors collaboration patterns (the size of node is proportional 

to number of articles by the author) 

The research work of the authors of cluster 1 is focused on assimilation of soil moisture 

in hydrological models. For cluster 2, the research work is more versatile, covering the 

subjects of stream flow simulation with limited observed data, the evaluation of satellite-

based precipitation products, the merging of satellite-based precipitation products with 

in-situ data, the calibration of hydrological models with limited data and the evaluation 

of snow melt contribution in catchment hydrological processes. Likewise, the research 

work of the authors of cluster 3 is focused on flood simulation uncertainty and the 

uncertainty quantification of satellite-based precipitation for stream flow simulation. 

However, Figure 2.3 also represents that there are many authors which have no strong 

collaborations with others (represented in grey colour). 

In order to better analyse the contributions of the authors regarding the use of remotely 

sensed datasets at different scales for the purpose of hydrological modelling, the 

following discussions have been categorized based on the type of datasets. 

2.3.1 Rainfall Datasets 

One of the main components of the water cycle is the rainfall. Given its importance, 

several efforts have been prompted regarding its estimation and the capture of spatio-
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temporal variability on earth (Cui et al., 2019). For planning and decision-making in a 

variety of disciplines, including hydrology, meteorology, climate, and agriculture, its 

correct observation is crucial (Amjad et al., 2020). In hydrological models, precipitation 

data constitute central input that regulate the spatio-temporal variability of other 

hydrological fluxes (Thiemig et al., 2013). 

In recent years, many remote sensed satellite-based rainfall datasets with high spatio-

temporal coverage have been produced at a globe scale. These are available in near real 

time at zero cost (Khairul et al., 2018). Further, such estimates of precipitation from space 

are spatially uniform and encompass areas that are difficult to access (Beck et al., 2019). 

However, satellite-based datasets are vulnerable to both systematic and random errors 

due to various factors. For instance, these datasets are indirectly derived from radiance, 

which can lead to issues with sampling frequency and the algorithms used for estimation. 

Additionally, the accuracy of these estimation methods may vary depending on factors 

such as latitude, altitude, and the type of rainfall being measured (Ehret et al., 2012; Chen 

et al., 2016a). Considering these factors, such data products need to be evaluated with 

observed data. 

Among the reviewed articles, there are six studies out of one hundred twenty in which the 

size of study area is in the range of micro-scale catchment. Only in one study, the authors 

analyzed the influence of rainfall variability on discharge simulation using physically 

based distributed hydrological model for small semi urban French catchment. For this 

study, Paz et al. (2019) used rainfall data from two radars. Unfortunately, at the micro-

scale no author used the remote sensed satellite-based rainfall for hydrological modelling. 

Likewise, there are thirty-two studies in the reviewed articles where the study areas are 

in the range of meso-scale catchments. Surprisingly, no author used the remote sensed 

rainfall dataset for setting up a hydrological model even at this scale. 

On the macro-scale, the in-situ rainfall data have been mostly used, a fact which revealed 

that the data observed in-situ are the first preference of the researchers. Many authors 

mentioned using remote sensed rainfall data products as well. It is notable that if only 

different types of remote sensed datasets are compared, then rainfall is among the most 

used remote sensed dataset. In some of the studies, the authors used both satellite rainfall 

data products and in-situ gauge data in combination. Few authors used the gauge data for 

the evaluation of satellite-based rainfall products. For instance, for the area of Biliu basin 

China, Qi et al. (2016) compared six rainfall products statistically with gauge station data 

and also with respect to hydrological simulation. These products are Tropical Rainfall 

Measuring Mission (TRMM) versions 3B42 and 3B42RT, Global Land Data 

Assimilation System (GLDAS), Asian Precipitation-Highly Resolved Observational Data 

Integration Towards Evaluation of water resources (APHRODITE), Precipitation 

Estimation from Remotely Sensed Information using Artificial Neural Networks 

(PERSIANN) and Global Satellite Mapping of Precipitation (GSMaP) products. They 
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developed two hydrological models for the analysis. The first one was fully distributed, 

while the second one was a semi-distributed hydrological model. The results showed that 

the APHRODITE rainfall dataset outperformed the five other datasets in statistical 

comparison with gauge data and also in stream flow simulation by both hydrological 

models. Likewise, Pakoksung and Takagi (2016) evaluated the performance of five 

rainfall data products (Global Precipitation Measurement (GPM), GSMaP, TRMM 

3B42V7, Climate Prediction Center Morphing technique (CMORPH), and PERSIANN) 

as an input to rainfall–runoff–inundation (RRI) hydrological model for simulating run-

off in the Nan River basin, Thailand. CMORPH and GPM was reported as the best 

performers based on the statistical comparison with gauge rainfall data while GPM has 

performed best with respect to stream flow simulation by the model. 

As satellite-based rainfall datasets may have some systematic and random errors because 

of indirect estimation by remote sensing techniques, some researchers tried to correct 

them based on the use of in-situ data. For example, Khairul et al. (2018) evaluated four 

rainfall products statistically with gauge data. These datasets used were TRMM multi-

satellite precipitation analysis (TMPA), Climate Hazards Group InfraRed Precipitation 

with Station data (CHIRPS), Multi-Source Weighted-Ensemble Precipitation (MSWEP) 

and GSMaP. They found that all products were weak in apprehending the magnitude and 

spatial distribution but good in capturing events. They used the merged product of these 

datasets for hydrological modelling of the Meghna catchment in Bangladesh. However, 

they did not compare the performance of the merged product with individual datasets in 

terms of their capability to simulate a hydrological model. Müller-Schmied et al. (2021) 

evaluated the performance of global hydrological model WaterGAP v2.2d based on total 

water storage anomalies, streamflow and water use using observed data. To simulate the 

model, they developed the homogenized series of precipitation data using the Water and 

Global Change (WATCH) forcing data (1901–1978) and WATCH Forcing Data ERA-

Interim (WFDEI) (1979–2016). They further adjusted the data to the monthly 

precipitation sum based on Global Precipitation Climatology Centre (GPCC) data. The 

authors discussed the effects that modifications in the model algorithm and calibration 

routine had on the results, but did not make any explicit comments on the 

performance of the model based on the selection of forcing data. 

A total of 17 different rainfall products in combination with 6 different temperature 

datasets are compared by Dembele et al. (2020) as inputs to the meso-scale hydrologic 

model (mHM) to simulate the hydrological process in the Volta River basin, Africa. The 

model simulations have been evaluated based on four parameters. These parameters are 

(1) in-situ stream flow data, (2) Global Land Evaporation Amsterdam Model (GLEAM) 
evaporation data, (3) European Space Agency (ESA) Climate Change Initiative (CCI) 
soil moisture data and (4) Gravity Recovery and Climate Experiment (GRACE) terrestrial 
water storage (TWS) data. Among the 17 utilized datasets, no single rainfall dataset
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ranked first consistently with respect to evaluation parameters. Tropical Applications of 

Meteorology using SATellite data (TAMSAT), African Rainfall Climatology (ARC), 

Modern-Era Retrospective analysis for Research and Applications (MERRA-2) and 

MSWEP are best-performing datasets for streamflow, TWS, soil moisture and actual 

evaporation simulations, respectively. Lakew et al. (2020) evaluated the performance of 

five rainfall data products based on their capability to simulate daily flow in three 

catchments (Gilgel Abbay, Kessie station and Abbay basin) of Ethiopia using the Coupled 

Routing and Excess STorage (CREST) distributed hydrological model. The used datasets 

were CMORPH, TRMM TMPA 3B42v7, Re-Analysis (ERA) Interim, GPCC and 

MSWEP. The results indicated that the MSWEP rainfall data product performed better in 

flow simulation than the rest of them. 

Similarly, Singh and Saravanan (2020) evaluated four rainfall products for the Wunna 

Riveris catchment in India and found that the Global Precipitation Climatology Project 

(GPCP) rainfall data, TRMM and APHRODITE to be more suitable products for the 

simulation of hydrological processes in India. Mao et al. (2019) evaluated three rainfall 

products, namely GLDAS, TRMM, China Meteorological Forcing Dataset (CMFD) and 

MERRA-2. They assessed that, for runoff simulation, MERRA-2 performed better for the 

Nujiang River basin, China. 

Researchers have used a variety of rainfall datasets in their work. Their frequent use 

advocates their potential worth for hydrological modelling. However, if the aim is to 

determine one single dataset that is performing well in all catchments, then it is difficult 

to clearly identify a single product performing better from all perspectives. Datasets vary 

from catchment on the basis of size and region and depend a lot on evaluation criteria. 

For instance, either the evaluation criteria are a direct comparison of a dataset with in-situ 

observation, or the criterion is the capacity of a dataset to simulate the hydrological 

variables. These variables can be runoff, soil moisture, terrestrial water storage, actual 

evapotranspiration or others. Therefore, it is suggested to test and compare the 

hydrological simulation capability of different rainfall datasets for the aimed study area 

rather than relying only on a single dataset. 

2.3.2 Digital Elevations Models 

Topography influences the generation of overland flow in the physical hydrological 

models and is defined by the digital elevation models (DEMs). The river network, slope 

and drainage area are some of the key characteristics of catchments. These morphological 

attributes can be estimated by DEMs for representation in distributed hydrological models 

(Pakoksung and Takagi, 2021). Thus, the accuracy of these parameters is directly 

associated with the precision of DEMs. There are many procedures for the generation of 

DEMs, including photogrammetry, light detection and ranging systems, satellite optical 

imagery, SAR interferometry and field surveys. However, remote sensed technologies 
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have the advantage of being relatively less expensive, both in cost and time, at covering 

larger areas (Pakoksung and Takagi, 2021; Mohammadi et al., 2020). 

In the reviewed articles, for the micro-scale catchments the authors have only used the 

national-level datasets for their research. For instance, Ichiba et al. (2018) developed the 

multi-hydro physically based distributed hydrological model of an urban catchment in 

France in order to understand the effect of model scale on its hydrological performance. 

They used the local DEM data from the National Institute of Geographic and Forest 

Information to carry out the analysis. Likewise, Her and Heatwole (2016) developed the 

2D fully distributed hydrological model based on the time–area method to provide an 

alternative way to simulate hydrological processes. The modelling was performed on the 

Owl Run catchment using the national elevation data from the United States Geological 

Survey (USGS). 

Similar trends have been observed at the meso-scale, with a greater focus on local or 

national sources of datasets. Some authors have mentioned using DEM data from the 

Shuttle Radar Topography Mission (SRTM) and Advanced Spaceborne Thermal 

Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) 

for model development. However, they did not analyse the effect of selecting global DEM 

datasets on their findings. For macro-scale catchments, the trend of using DEMs is the 

opposite, with more researchers using global DEMs than local topographic datasets. Out 

of 79 articles, 52 studies used global DEMs, while only 12 utilized local or national-level 

topographic datasets. Among the global DEMs, SRTM was the most commonly used 

product, appearing in 28 articles, followed by the use of ASTER GDEM in 9 articles. 

Out of the reviewed articles, only one study, that of Pakoksung and Takagi (2021), has 

compared the runoff and inundation area simulation performance of five satellite products 

for a 2011 flood event in the Nan River basin, Thailand, through distributed hydrological 

modelling. The datasets used were SRTM, ASTER GDEM, Global Multi-resolution 

Terrain Elevation Data 2010 (GMTED 2010), Global 30 Arc-Second Elevation (GTOPO-

30) and Hydrological data and maps based on Shuttle Elevation Derivatives at multiple

Scales (HydroSHEDS). For the simulation of run-off, GMTED 2010 performed

comparatively better, while SRTM gave the highest accuracy for inundation area

simulation. Although GMTED 2010 has a coarser resolution (1000 m by 1000 m), it

performed better in run-off simulation as compared to other finer-resolution data products,

whereas SRTM performed better for inundation area imitation. Some researchers have

utilized multiple data products to cater to their utility needs. For instance, Ayala et al.

(2020) used local 55 m contour lines, SRTM, and TanDEM-X datasets to extract DEMs

for the years 1955, 2000, and 2013, respectively. They used the derived DEM for glacier

change and runoff studies in the Maipo River basin, Chile. Similarly, Siqueira et al. (2018)

used SRTM DEMs and HydroSHEDS data for flow accumulation. However, in these

studies, the authors did not perform any performance evaluation.
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The analysis showed that the use of global DEM datasets in the hydrological models is a 

common practice among the researchers. It is the only dataset where the use of remote 

sensed-derived global products has exceeded the use of local or national datasets. DEM 

is one of the essential inputs to the models and the accuracy of many terrain features, such 

as extents, slopes, elevations, is dependent on the accuracy of DEM. Despite its 

importance, only one study among the reviewed article is focused on the hydrological 

evaluation of different global DEMs (Pakoksung and Takagi, 2021). However, this study 

was limited to a macro-scale catchment and there is a lack of such evaluations for micro- 

and meso-scale catchments. The selection of a suitable source of DEM is an important 

step in the hydrological modelling procedure and the dearth of literature in this respect is 

concerning. 

2.3.3 Land-Use Land-Change Datasets 

Land cover plays a vital role in hydrology as it defines the properties of land surface in 

the models. In the physically based models, land cover represents the distribution of 

vegetation over the area which is used to calculate the spatial and temporal distribution 

of actual evapotranspiration (AET). In the overland component of models, the resistance 

to flow is represented by Manning values, which are often linked with the land-use type. 

Studies showed that the major portion of earth’s surface is altered due to human’s 

activities (Bhatta, 2010) and these changes are also represented in models through land-

use land-change (LULC) maps. In recent years, there has been a proliferation of global-

scale LULC datasets produced using remote sensing techniques. Despite the fact that 

these LULC datasets give a typical reflection of the Earth’s surface, they still differ in 

certain ways, such as in the methodology used to collect data and to construct land-use 

maps, the number and type of sensors used for detections, their spatial resolution, and 

their classification definition (Yang et al., 2017). Nevertheless, many countries have 

developed their local- or national-level LULC datasets using classification techniques 

based on fine-resolution aerial or satellite images. Even though these products may be 

regarded as the best datasets to be input into hydrological models, their availability and 

quality cannot always be guaranteed (Chirachawala et al., 2020). 

Among the reviewed articles, researchers have primarily used local- or national-level data 

products for all three catchment scales. At the meso-scale, the most frequent used regional 

or global data product is the Coordination of Information on the Environment (CORINE) 

land-cover map which has a spatial resolution of 100 m (Cenci et al., 2016; Heße et al., 

2017; Höllering et al., 2018). For studies conducted in the USA, the National Land Cover 

Database (NLCD), produced by USGS and with a spatial resolution of 30 m, is the most 

commonly used dataset (Rajib et al., 2016; Gleason and Nolin, 2016; Evenson et al., 

2018). 
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At the macro-scale, the most commonly used LULC dataset among the reviewed articles 

is the Global Land-Cover Characteristics (GLCC) by USGS (in 8 articles), followed by 

Globcover by ESA (in 7 articles), CORINE land-cover by Copernicus (in 5 articles) and 

moderate-resolution imaging spectroradiometer (MODIS) Terra+Aqua land-cover 

products (in 5 articles).  

The literature shows that new LULC datasets can be prepared for specific areas by using 

techniques such as supervised, unsupervised and semi-supervised classification 

algorithms. For instance, Wang and Chen (2019) used the Landsat-8 satellite imagery to 

develop the land-cover maps for the Shahe Creek in Guangzhou, China, using support 

vector machine (SVM) algorithms, which are a type of supervised classification technique. 

They identified the key hydrological processes for flood forecasting by setting up the 

distributed hydrological model using the land-use map developed. Similarly, Gampe et 

al. (2016) derived the LULC map for the Gaza Strip from SPOT-5 satellite images, which 

are made to be used in a water balance simulation model (WaSiM) to assess future 

drought risk. However, they did not mention the technique used for the development of 

land-use maps. 

Similarly, at the macro-scale, Maza et al. (2020) used (Linear Imaging Self-Scanning-IV) 

LISS-IV satellite images for the development of two LULC maps for the Kangsabati 

reservoir catchment India. The first had 8 vegetation classes, while the second had 16 

vegetation classes. The study showed that the variable infiltration capacity (VIC) 

hydrological model, having a fine land-use dataset with 16 vegetation classes, had 

performed better in low as well as in high flows. Sahoo et al. (2021), Singh and Saravanan 

(2020) and Munzimi et al. (2019) used Landsat satellite images data to derive the LULC 

maps. Sharif et al. (2017) and Alataway and El Alfy (2019) used the satellite imagery 

data from the Landsat satellite as well as from the SPOT-5 satellite images for the 

development of the LULC map. Likewise, Arthur et al. (2020) used images data from 

Landsat satellite and MODIS satellite to derive the LULC map. These authors mentioned 

the development of land-cover maps using the satellite images, but they did not analyse 

the accuracy of using the specific algorithm to compile them or how this affects 

hydrological simulations. 

Although global land-cover datasets are widely used, they may lack specific land-cover 

classifications that are required for certain studies, such as glacier coverage, crop type, 

etc. In light of this, some researchers have modified global land-cover maps by 

incorporating additional data sources to achieve the necessary specificity for their 

particular study. For instance, Mao et al. (2019) modified the GLCC data with glacier 

coverage data from the International Center for Integrated Mountain Development 

(ICIMOD) for Nujiang River basin, China. Similarly, Soulis et al. (2020) updated the 

CORINE land cover with data from the Integrated Administration and Control System, 

Greece, (IACS) for the agricultural part to be used in the distributed hydrological 
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modelling of Greece. However, no author evaluated the effect of LULC data source on 

the hydrological simulations. Only Busari et al. (2021) studied the effect of incorporating 

the multiple LULC maps into hydrological modelling. They developed two physically 

based distributed hydrological models using mHM modelling software for the Karasu 

Basin in Turkey. The first model was based on a single dataset of LULC from Globcover, 

while the second model was based on multiple LULC datasets sourced from CORINE for 

years 1990 and 2000 and from the MODIS land-cover product for years from 2001 to 

2008. The research concluded that the model with multiple LULC datasets (dynamic) had 

better performance in flow prediction at outlet than the model having static information 

of the land use. 

One of the crucial inputs in hydrological modelling is LULC data, and their usefulness 

needs to be carefully assessed. The common goal of the development of global LULC 

datasets is to develop a harmonized coverage for the whole globe that can be used for 

studies related to environmental assessment and climate change. The key characteristic 

of each initiative is that it is ensured that the same technique and classification rule is 

applied for the whole area. These exclusive properties make these products perfect inputs 

for hydrological modelling across different areas of the world. However, their taxonomy 

and class definition differ, resulting in a different legend (Chirachawala et al., 2020). The 

typical way of mapping LULC is through the use of field surveys. However, mapping at 

the catchment scale is time consuming and expensive, and in many cases is not practical 

(Wang and Chen, 2019). The applicability of global datasets to simulate hydrological 

models must be analysed in order to understand their performance in comparison to that 

of fine-resolution LULC datasets. Further, it is required to determine up to what standard 

these global datasets may be utilized as an alternative or as the only source in the data-

scarce regions. Moreover, the literature review also depicts that there is a lack of such 

investigations. 

2.3.4 Soil Distribution and Properties Datasets 

Soil is one the dominant factors in regulating the hydrology of the catchment as it controls 

the streamflow generation, defines the flow path and influences the water balance. This 

makes the soil information an important input for physically based hydrological models 

(Worqlul et al., 2018). The limited availability of distributed soil information is common 

around the globe. This may be because the traditional soil survey methods are time 

consuming and expensive (Moore et al., 1993). Moreover, the soil information is not often 

readily available in formats suitable for inclusion in models (Lilly et al., 1998). During 

recent years, many global-scale soil distribution and properties datasets have been 

produced by many agencies with the aim to provide harmonized soil information 

coverage throughout the earth’s surface. At the same time, many countries have their own 

soil information and properties databases. 
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Among the reviewed articles, researchers have primarily used soil information data from 

local or national databases for all three catchment scales. For instance, Ichiba et al. (2018) 

used the local soil data from the Bureau de Recherches Géologiques et Minières database 

for setting up the multi-hydro physically based distributed hydrological model of an urban 

micro-scale catchment in France. Similarly, Her and Heatwole (2016) used the national 

soil data from soil survey geographic database (SSURGO) for the hydrological modelling 

on Owl Run catchment, USA. It is important to mention that none of the reviewed articles 

used any global soil information dataset for micro-scale catchments. 

At the meso-scale, few researchers mentioned using the global soil information datasets 

such as Digital Soil Map of the World (DSMW) by Food and Agriculture Organization 

(FAO) (Macalalad et al., 2021), Harmonized World Soil Database (HWSD) (Appel et al., 

2019) and SoilGrids—global gridded soil information—by ISRIC (International Soil 

Reference and Information Centre) with a 1000 m resolution (Chen et al., 2016b). In one 

study, Wang and Chen (2019) noted that DSMW by FAO is not a recent dataset. Thus, 

the authors updated it based on the land-cover data and used it for hydrological model 

setup to identify the key hydrological process in the highly developed Shahe Creek 

catchment, China. However, in these studies, none of the authors evaluated the effect of 

soil-related datasets used at the meso-scale on hydrology. 

At the macro-scale, the number of studies that have used the global soil datasets as 

compared to one using local soil inventories for distributed hydrological modelling are 

more. The most frequently used global products for soil distribution information are 

DSMW by FAO (13 articles), followed by its updated version HWSD (11 articles), 

SoilGrids by ISRIC (9 articles) and European Soil Database (ESDB) by European Soil 

Data Centre (ESDAC) (3 articles). In addition, some studies reported using two global 

products to extract the desired soil information for developing distributed hydrological 

models. For instance, SoilGrids by ISRIC plus The Global Lithological Map (GLiM) v1.0 

data has been used by Dembele et al. (2020) and Dembélé et al. (2020) to develop 

hydrological models for the Volta River basin, Africa. SoilGrids by ISRIC, in addition to 

Global Hydrologic Soil Groups (HYSOGs250m) data for hydrologic soil groups 

identification, have been used by Al-Areeq et al. (2021) to develop two hydrological 

models for the Makkah region in Saudi Arabia using Gridded Surface Subsurface 

Hydrologic Analysis (GSSHA) fully distributed modelling tool and Hydrologic 

Engineering Center-Hydrologic Modelling System (HEC-HMS), a semi-distributed 

hydrological modelling tool. Busari et al. (2021) used ESDB in combination with HWSD, 

while Dahri et al. (2021) HWSD in combination with High-Resolution Soil Maps of 

Global Hydraulic Properties (HiHydroSoil) by Future Water. Ha et al. (2018) developed 

a new soil map by combining SoilGrids by ISRIC and DSMW by using unsupervised 

classification for the Red River Day basin, Vietnam. However, none of these studies 

performed a performance evaluation of the merged products. 
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Global soil datasets are frequently regarded as an alternate source of soil property 

information for large-scale hydrological modelling and for areas with limited local data 

(Huang et al., 2022). We analysed that, in the reviewed articles, few researchers used 

global soil products in combination with local data to achieve the required spatial 

resolution or to cover the intended study area. For example, Siqueira et al. (2018) 

mentioned using the Brazilian soil database in combination with DSMW to obtain soil 

properties at a 400 m spatial resolution and used in region-scale hydrological modelling 

of South America using Modelo hidrológico de Grandes Bacias (MGB), a large-scale 

hydrological model. Sharif et al. (2017) used local data plus DSMW for hydrological 

modelling of the Hafr-Al-Batin region in Saudi Arabia. Huang et al. (2019) used local 

data plus soil information by ISRIC to develop a hydrological model of Norway. Yet, 

again, none of these studies performed a performance evaluation of the merged products. 

Global soil information datasets give the traditional reflection of earth’s soil 

characteristics but they also vary in many aspects such as their mode of compilation, 

spatial resolution, number of incorporated soil profiles, number of depth layers. Most of 

these datasets are developed from soil surveys in one of two ways. The first way is the 

linkage method in which the soil profiles and soil mapping units are linked to form 

polygon-shaped soil type maps. The second method is digital soil mapping, in which 

machine learning techniques are used to map the spatial distributed soil properties. 

However, global soil datasets represent the average state of the last decades (Huang et al., 

2022; Dai et al., 2019). We analysed that, on one hand, many researchers have used the 

global soil information datasets for setting up the hydrological models but that, on the 

other hand, in the reviewed articles, no scholars evaluated the hydrological performance 

of these soil datasets. In light of this, there is a necessity to investigate the influence of 

these global datasets on hydrological simulations in order to determine the extent to which 

these datasets can be trusted as the only sources in data-scarce regions. 

2.3.5 Leaf Area Index Datasets 

Vegetation plays an important role in the hydrological process as it determines the 

separation of rainfall into runoff and ET, tasks which it performs largely through 2 

processes. One is transpiration through the canopy and the other is loss by interception 

(Vertessy et al., 2001). Transpiration mostly varies according to leaf area index (LAI). 

Changes in LAI not only influence the ET but also the soil moisture. Consequently, other 

processes in the catchment will be affected such as baseflow, recharge, saturation and 

infiltration (Western et al., 1999). Therefore, the improper dynamic representation of LAI 

in the hydrological model may result in a poor performance of the model (Tesemma et 

al., 2015). 

At the meso-scale, some researchers in the reviewed articles used the LAI values from 

the field surveys found in the literature. For instance, Sonnenborg et al. (2017) use the 
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values of LAI from the literature related to phenology to set up a MIKE-SHE-SWET 

model for the Skjern River and Lejre catchment Denmark with the aim to test the impact 

of forest type and coverage on water resources. Gleason and Nolin (2016) study effect of 

forest fire on snow ablation and snow-cover duration using the SnowModel for Oregon 

Cascades catchment in the USA. They modified the values of LAI in the model to postfire 

conditions based on field values and were able to capture the snow water equivalent (SWE) 

values. Gampe et al. (2016) used the value of LAI from literature to set up the WaSiM 

hydrological model for the Gaza Strip, Palestine, to assess future drought risk. For the in-

situ measurement of LAI, the number of techniques are available such as destructive 

sampling, allometry, optical observations (Jonckheere et al., 2004) but the problem is that 

these techniques are geographically limited as well as cost and time expensive. 

In the past few years, many global LAI datasets have been produced with moderate 

resolution. The estimation of LAI from remote sensing data is mostly derived from one 

of these methods: passive optical sensors, the active light detection and ranging 

instruments, and microwave sensors using empirical transfer and model inversion 

methods (Fang et al., 2019). In the reviewed articles, for meso-scale catchments, the 

authors had used the remote sensed LAI for setting up the distributed hydrological model. 

However, they did not explicitly comment on the hydrological performance quality of 

these datasets. For example, Cornelissen et al. (2016) developed a distributed 

hydrological model of Erkensruhr catchment in Germany to study the parametrization of 

the hydrological model by transferring calibrated parameters from a well-equipped head 

water catchment. They used the monthly mean value of LAI, derived from the 

MODIS/Terra-8-day LAI (MOD15A) dataset at a spatial resolution of 1 km, as an input 

for the model. Abiodun et al. (2018) set up the SWAT hydrological model for the Sixth 

Creek catchment in Australia to compare the MODIS Actual ET with the simulated ET 

from the SWAT model and used the LAI value from the default SWAT database. 

The commonly used remote sensed LAI products at a macro-scale level were the Global 

Inventory Modelling and Mapping Studies (GIMMS) LAI (mentioned in 3 articles), 

MODIS/Terra+Aqua (MCD15A) LAI (mentioned in 3 articles), and MOD15A LAI 

(mentioned in 5 articles). While the researchers incorporated global LAI datasets as inputs 

into their hydrological model, their study’s primary focus was not on LAI, and they did 

not assess the impact of using these specific data products on the model’s performance. 

Out of the reviewed articles, only that of Rajib et al. (2018) utilized the MCD15A LAI 

product to evaluate the SWAT hydrological model of Pipestem Creek catchment located 

in North Dakota, USA. Their findings revealed that calibrating the model with spatial ET 

enhanced the model’s performance in simulating both ET and LAI. In contrast, only one 

study conducted by Jiang et al. (2020) incorporated dynamic vegetation properties by 

utilizing the advanced very high-resolution radiometer (AVHRR) LAI record from 1981 

to 1994 in the VIC hydrological model for the Columbia River basin located in the USA. 
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They updated the model with the Global Land Surface Satellite (GLASS) / MODIS LAI 

for the duration from 2004 to 2013. The results showed improvement in 

evapotranspiration and run-off simulation. 

The LAI is an important biophysical variable in process-based modelling. For the 

assessment of this index, remote sensing has emerged as the major source, both at the 

local and global levels (Kappas and Propastin, 2012). These global LAI products have 

been used as input data in the reviewed articles for the development of hydrological 

models and their inclusion in the modelling setup has the potential to improve the model 

performance, as reported by Jiang et al. (2020). Although researchers have used different 

LAI datasets from various sources as inputs in their hydrological models, they have not 

specifically examined how different LAI datasets affect model performance. Such 

analysis would be essential in understanding variability in model results due to different 

LAI inputs, which can be particularly important in areas where ground-based LAI 

measurements are not readily available. It would also help to identify the most suitable 

LAI product for a given study area and hydrological model, potentially improving the 

accuracy of model predictions. Therefore, future research could focus on conducting a 

comparative analysis of different LAI datasets and evaluating their impact on 

hydrological model simulations. 

2.3.6 Snow-Covered Area Datasets 

Glaciers and seasonal snow packs are the sources of water for one sixth of the global 

population (Barnett et al., 2005). Snowmelt makes a noteworthy contribution to 

hydrology as it influences the vegetation growth and the consumption of water resources. 

In cold and mountainous catchments, snowmelt is a major contributor of water supply, 

especially in the middle and lower portions of these areas (Li et al., 2019). Snow cover is 

also an indicator of climate change, as increase and decrease in this is temperature 

dependent (Brown and Mote, 2009). Therefore, the accurate assessment of snow-related 

parameters is of considerable importance in hydrology. 

One of the traditional methods to measure snow parameters is through ground-based 

monitoring of snow characteristics, along with other variables, at a meteorological station. 

However, the availability of in-situ readings is still very limited because of several 

reasons including remote and far off areas, cost expensive and laborious (Appel et al., 

2019). 

In recent years, remote sensing technology has been considerably advanced and can be 

used as a substitute for traditional methods to obtain snow-cover information at catchment 

level. It can also provide near real-time monitoring of snow cover over large areas (Dong, 

2018). For instance, at the meso-scale, Gleason and Nolin (2016) used MODIS snow-

cover product (MOD10A1) for the calculation of snow-cover frequency to study effect 

of pre- and post-forest fire on snow ablation and snow-cover duration. Similarly, 
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Teweldebrhan et al. (2018) used MODIS Aqua (MYD10A1) and MODIS Terra 

(MOD10A1) snow-cover products for parameter uncertainty analysis in addition to the 

assessment of stream flow data. 

Another approach for the estimation of snow cover is through the hydrological model, 

which is based on meteorological and geomorphological data. In the reviewed articles, 

studies have been found in which the researchers have used hydrological models for snow 

simulation and used the remote sensed snow-related datasets for the evaluation of model 

simulated snow parameters. For example, at the meso-scale, Mimeau et al. (2019) used 

MODIS satellite images to derive a snow-cover map with spatial resolution of 250 m for 

the Pheriche sub-catchment of the Dudh Koshi basin in Nepal and used this snow-cover 

map to evaluate the simulated snow-cover area using the glacio-hydrological model 

(DHSVM-GDM), in addition to assessing outflows and glacier mass balances. Appel et 

al. (2019) derived binary information, conveying whether the snow is dry or wet from, 

Sentinel-1 satellite images and used these data to validate the simulated snow information 

with the Processes of Radiation, Mass and Energy Transfer (PROMET) model for the 

Forêt Montmorency catchment, Canada. Multitemporal snow extent maps derived from 

Landsat satellite images, in addition to MODIS SCA products (MOD10A1 and 

MYD10A1), were used by Hanzer et al. (2016) to validate AMUNDSEN model 

simulations. 

Likewise, at the macro-scale, Luo et al. (2017) used a MODIS (MOD10A2) data product 

to compare with MIKE-SHE-modelled snow cover and found the model to be performing 

adequately. Ren and Liu (2019) developed a distributed hydrological model for the Upper 

Yangtze River basin, China, using MODIS land surface temperature, daily snow-cover 

data products (MOD10A1 and MYD10A1) and in-situ data to calculate snow depths, 

while special sensor microwave/imager (SSM/I) snow-cover data were used to validate 

the model’s results. The Global Randolph Glacier Inventory (RGI), the Global Land Ice 

Measurements from Space (GLIMS) geospatial glacier database and the Glacier 

Monitoring of Switzerland (GLAMOS) database were utilized by Imhoff et al. (2020) for 

glacier coverage and initial storage assessment in order to be input into the hydrological 

model. Liao and Zhuang (2017) used cloud-free MODIS images for snow-cover data. Li 

et al. (2019) validated the snow distribution model results with integrated product of 

MODIS Terra/Aqua and local data (Interactive Multi-sensor Snow and Ice Mapping 

System) for catchment in the Tibetan Plateau region. Ayala et al. (2020) used the MODIS 

SCA product in addition to Snow Water Equivalent (SWE) data from the Chilean version 

of the Catchment Attributes and Meteorology for Large-Sample Studies (CAMELS-CL) 

database for calibration and validation of the Topographic Kinematic Approximation and 

Integration (TOPKAPI)-ETH hydrological model for the Mapio River basin in Chile. 

Overall, the performance of the model in flow simulation was improved, but the 
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individual effect of including the SCA product in the calibration process was not reported 

and/or analysed. 

From the reviewed articles it can be observed that, although different snow-related remote 

sensed datasets have been used by researchers, no one has compared these datasets with 

in-situ measurements. Moreover, no study can be found in which the remote sensed and/or 

global SCA or SWE products from different sources have been compared with each other 

or with the modelled results. Further, no author explored the potential of these products 

for assimilation into distributed hydrological models. Remote sensing techniques have 

the potential to estimate the snow properties well at different scales. However, there are 

several limitations as well. For example, remote sensing snow data gathering started in 

the past decades so the length of available data is limited and the observations may be 

influenced by cloud cover, leading to large errors. Further, the misclassification of surface 

features due to spectral misperception is possible (Dong, 2018). Therefore, the evaluation 

of the global snow datasets is required to determine their suitability for use in hydrological 

applications. 

2.3.7 Evapotranspiration Datasets 

Evapotranspiration (ET) and precipitation are among the main components of the water 

balance in most of the hydrological systems (Nachabe et al., 2005). ET often exceeds 

precipitation, particularly in arid and semi-arid regions, and creates a sink for 

groundwater (Raz-Yaseef et al., 2012). Thus, the reliable assessment of ET is important 

for effective water management. 

ET is traditionally measured through ground-based methods such as Bowen ratio-energy 

balance, eddy covariance, large aperture scintillometers and lysimeters (Liu et al., 2013), 

but these are often not well spatially distributed (Glenn et al., 2007). Further, different 

measurement methods have different associated uncertainties and errors related to 

instrument installation (Zhang et al., 2008; Allen et al., 2011). The availability of remote 

sensed data has eased the spatial estimation of ET (Abiodun et al., 2018). The variables 

that are derived from remote sensing data, such as land surface temperature, reflectance 

and vegetation indices, can be used to develop algorithms for ET estimation. Moreover, 

the cost of finer-resolution ET products covering the wide range is significantly lower 

than that of observing through ground-based monitoring stations (Bugan et al., 2020).  

There are many hydrological and remote sensing-based surface energy balance models 

currently in use for simulating ET datasets. In the reviewed articles, the researchers have 

used the actual evapotranspiration (AET) datasets for four different purposes, namely the 

(1) calibration, (2) validation, (3) assimilation and (4) evaluation of the ET products, by

comparing them with modelled results. Surprisingly, there is no study related to micro-

scale catchments in which an ET dataset has been used. At the meso-scale, Gampe et al.

(2016) used satellite the Landsat TM Images dataset to calculate actual evapotranspiration
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in order to validate simulated AET by WaSiM hydrological model for the Gaza Strip, 

Palestine, for drought studies. Interestingly, there was only one AET product (MODIS 

MOD16A) that had been evaluated by undergoing a comparison with model results in 

two studies. In the first study, Abiodun et al. (2018) performed the hydrological modelling 

using SWAT for Sixth Creek Catchment, Australia, and evaluated the MODIS AET data 

product MOD16A with model simulated AET. The authors reported good agreement 

between MODIS AET and SWAT ET on the catchment scale but the poor agreement at 

the fine scale. Similarly, in the second study, Bugan et al. (2020) evaluated MOD16A 

with simulated AET by using the Jena Adaptable Modelling System (JAMS) J2000 for 

the Sandspruit catchment, South Africa. In this study the authors reported a good 

correlation at the catchment level and poor results at the hydrological response unit (HRU) 

level. 

At the macro-scale, researchers have primarily used AET datasets for the calibration and 

validation of hydrological model simulations. For instance, Dembélé et al. (2020) 

evaluated the potential of 12 satellite or reanalysis evaporation datasets in improving 

model performance of mHM modelling tool through calibration for the Volta River basin, 

West Africa. These datasets are MOD16A2, Operational Simplified Surface Energy 

Balance (SSEBop), Atmosphere-Land Exchange Inverse (ALEXI), CSIRO MODIS 

Reflectance Scaling EvapoTranspiration (CMRSET), Surface Energy Balance System 

(SEBS), Global Land Evaporation Amsterdam Model (GLEAM) v3.2a, GLEAM v3.3a, 

GLEAM v3.2b, GLEAM v3.3b, ERA-5, MERRA-2 and Japanese 55-year ReAnalysis 

(JRA-55). Further, they used ESA CCI Soil Moisture (SM) v4.2 dataset along with 

terrestrial storage data from GRACE and in-situ streamflow data for evaluation of 

hydrological model simulations. All calibration strategies outperform streamflow only 

calibration. MERRA-2, GLEAM v3.3a and SSEBop gave the best performance as 

calibration datasets. 

Nesru et al. (2020), used MODIS (level 1-B) satellite data along with meteorological data 

for calculation of AET by SEBS for the upper Omo–Gibe basin, Ethiopia. The authors 

used this calculated AET along with stream flows for calibration of the hydrological 

model. Further, they also used AET from SEBS in addition to stream flows for validation 

of model results and reported that the inclusion of AET in calibration had improved the 

model performance compared to the case where the model was calibrated only with 

stream flows. Becker et al. (2019) reported the use of AET derived by MODIS (level 1-

B) satellite data by Surface Energy Balance Algorithm (SEBAL) and modified it based

on land use. The modified data was used for calibration of the SWAT hydrological model

for the Lower Chenab Canal System, Pakistan. The mean Kling–Gupta Efficiency (KGE)

of the HRUs in simulating AET improved from 0.27 to 0.40 by using the modified

SEBAL AET for calibration in comparison to the model which was calibrated with

unmodified SEBAL AET. The authors recommended a detailed analysis of spatial
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variability of SEBAL AET for using it for model calibration. Similarly, Pan et al. (2018) 

used SEBAL to calculate the AET based on MODIS satellite images data and used it for 

calibration of Distributed Hydrology Soil Vegetation Model (DHSVM) of the Jinhua 

River Basin, China. The authors achieved the reduction in equifinality by considering 

multiple variables in the calibration of the model. Koppa et al. (2019) used GLEAM AET 

data for calibration of hydrological model for the Omo–Gibe River basin, Ethiopia. It 

improved the ET simulation sense of the model. Jin and Jin (2020) also used the GLEAM 

AET for calibration of the SWAT model for the Bayinhe River basin in northwest China. 

The authors reported the improved simulation of stream flows and water balance. 

Rajib et al. (2018) included the MODIS ET data in the calibration of each sub-catchment 

in the SWAT model by a spatially explicit approach and were not only able to achieve 

improvements in simulated ET and flows but also obtained more realistic results of 

vegetation growth. Similarly, the MODIS AET product has been used by Jiang et al. 

(2020) for spatially distributed model calibration of the VIC hydrological model of the 

Columbia River basin, North America. They reported that 75 % of the sub-basins showed 

the improved or comparable KGE values for streamflow simulations as compared to the 

base-model. Kunnath-Poovakka et al. (2016) used Advanced Microwave Scanning 

Radiometer-Earth Observing System (AMSR-E) version 5.0 (25 km) soil moisture data 

along with Evapotranspiration data from CMRSET for the calibration of the gridded 

Australian Water Resource Assessment—Landscape (AWRA-L) hydrological model in 

order to evaluate its efficiency in streamflow prediction. The authors analysed fifteen 

different objective functions to carry out the calibration and reported that most of the 

objective functions performed satisfactory in the catchments with medium to high 

average flows. This is the only found study among the reviewed articles in which the 

authors also compared the CMRSET AET with the ground station AET for the dry 

Loddon River catchment, Australia, and CMRSET underestimated on most of the days. 

Herman et al. (2018) explored two different techniques of model calibration using local 

data of streamflow and spatially distributed AET dataset from SSEBop model (1 km) and 

ALEXI model (4 km). They concluded that better simulation results can be achieved by 

selection of the right calibration technique. So not only the inclusion of AET in calibration 

can bring positive impact but also the selection of right calibration technique is equally 

significant. Ha et al. (2018) ensembled linearly four different ET models, i.e., SEBS (5 

km), CMRSET (5 km), SSEBop (1 km), and MOD16A (1 km). The ensembled ET data 

in addition to LAI data were used for calibration of the SWAT model developed for the 

Red River Day Basin, Vietnam. Overall, in these studies, the authors reported the 

improved model simulated results by incorporating AET in calibration. Moreover, the 

issue of equifinality can also be addressed by considering multivariate calibration. 

Like multi-objective calibration, it is a better practice to evaluate the model performance 

based on multiple variables instead of relying on a single output. Considering this, few 
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researchers used the remote sensed-based AET data products for evaluating the model 

simulated AET in addition to other observed or remote sensed variables. For example, 

Lazin et al. (2020), in addition to discharge and Terrestrial Water Storage Change, used 

the GLEAM AET data for validation of hydrological model simulations for Upper Blue 

Nile catchment, Ethiopia. Imhoff et al. (2020) used AET data from the Land Surface 

Analysis Satellite Application Facility (LSA SAF), for validation of the hydrological 

model of three sub-basins in Rhine basin along with discharge and snow water equivalent 

data. AET, calculated through ETwatch software, has been used by Zhang et al. (2020c) 

for the evaluation of DHSVM model results to compare the performance of two different 

interpolation techniques of precipitation data. Likewise, Zhang et al. (2018) and Hedrick 

et al. (2020) used the MODIS ET dataset for validation of hydrological model 

performance. Although the researchers had used different AET datasets for evaluation of 

their model’s performance, they did not comment on the liability or accuracy of these 

used remote sensed-based AET products. 

From the reviewed articles, only one study is about the use of AET product for 

assimilation into hydrological model. In this study, Hartanto et al. (2017) calculated AET 

from MODIS / Terra satellite data using ITA-MyWater algorithm and used the calculated 

AET for assimilation into the distributed hydrological model for the region of Rijnland, 

the Netherlands. The results showed an increase in precision of simulated discharge. 

The use of remote sensed-based AET datasets by the researchers show their potential to 

bring improvement in the simulation of the hydrological processes. However, for the 

small catchments with highly varied land use, keeping the spatial heterogeneity of 

remotely sensed datasets intact, remain one of the main challenges (Becker et al., 2019). 

The performance of datasets also varies across different climatic zones (Dembele et al., 

2020). Moreover, none of remote sensed dataset can be regarded as actual observations 

as uncertainties are common in them (Rajib et al., 2018). Among the reviewed articles, 

only the MODIS AET product has been evaluated against the simulated AET from 

hydrological models (Abiodun et al., 2018; Bugan et al., 2020) and reported a poor 

performance at a fine scale. Further, only in one study (Kunnath-Poovakka et al., 2016), 

the comparison of AET products with the ground-based observations has been performed 

and even in that, remote sensed AET product is reported to be under estimating. Therefore, 

the accuracy of these datasets relative to one another and ground observations should be 

extensively explored to improve our understanding of the ET estimation from different 

algorithms and sources. 

2.3.8 Soil Moisture Datasets 

In hydrology, soil moisture regulates the nonlinear separation of rainfall into infiltration 

and runoff. The knowledge of soil moisture in the catchment before any meteorological 

event, is an imperative factor to be known, as for the same rainfall magnitude, different 
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soil moisture states may lead to different hydrographs (Cenci et al., 2016). Similarly, in 

many of the hydrological models, the soil moisture steers the partition of water and energy 

fluxes. Thus, the better representation of soil moisture in the models has a potential to 

enhance the simulation accuracy of other key variables as well (Hostache et al., 2020). 

Like other meteorological variables, soil moisture is commonly measured by in-situ 

observations but these ground base observations give local readings. Further, considering 

the spatio-temporal variability of soil moisture, these methods have limitations and lack 

proper coverage (Jiang and Wang, 2019; Seneviratne et al., 2010). On the other hand, the 

satellite based remote sensing technique can provide large scale observations and the 

problem of poor spatial representation can be resolved (Cenci et al., 2016; Kumar et al., 

2018). The microwave remote sensing, both active and passive, are among the widely and 

commonly applied methods for estimations of soil moisture (Wanders et al., 2012). 

However, these estimations cannot be blindly trusted as passive microwave products 

performed more reliable over bare to sparsely vegetated areas (Brocca et al., 2011) while 

active microwave products gave better estimates over moderately vegetated areas (Liu et 

al., 2012).  

For the micro-scale catchment, no article found where the remote sensed soil moisture 

data has been used for hydrological applications. At the meso-scale, remote sensed soil 

moisture satellite products have been used by few researchers with the purpose of 

performing calibration, model evaluation and assimilation. For example, Rajib et al. 

(2016) used the gridded soil moisture dataset AMSR-E Aqua daily level-3, version 2, 

having a resolution of 25 km in addition to streamflow data at the outlet for calibration of 

a SWAT model for two catchments in the USA: Upper Wabash (macro-scale) and Cedar 

Creek (meso-scale). In addition to AMSR-E soil moisture, the authors also used in-situ 

soil moisture data for calibration in the case of Cedar Creek. No major change in stream 

flow simulation has been observed due to the application of soil moisture in calibration. 

Conversely, improved soil moisture simulation by model was reported in the case of 

Cedar Creek, where KGE improved from 0.13 to 0.35 when the calibration was performed 

with in-situ soil moisture data. In contrast, KGE remained almost the same upon 

performing the calibration using AMSR-E Aqua daily soil moisture. However, any direct 

comparison of in-situ soil moisture with AMSR-E Aqua daily soil moisture was not 

reported. Khan et al. (2018) used the surface soil moisture data product ESA CCI SM for 

evaluating the performance of a model built on an equivalent cross-section-based semi-

distributed hydrologic modelling approach for the McLaughlin catchment, Australia, to 

simulate the soil moisture. The authors did not comment on the quality of soil moisture 

product used. 

Cenci et al. (2016) tested the effect of soil moisture assimilation on discharge prediction 

by using a Continuum distributed hydrological model of the Orba, Casentino, and Magra 

catchments in Italy. Three soil moisture products from H-SAF were tested. These 
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products were SM-OBS-1, available at 25 km resolution, SM-OBS-2, available at 1 km 

resolution data product and SM-DAS-2, available at 25 km root zone soil moisture data 

product. The enhancement of discharge prediction has been assessed by using all three 

products. However, SM-OBS-1, despite having coarse resolution, outperformed others as 

assimilation data. The authors also concluded that the results of assimilation are also 

strongly dependent on catchment characteristics. Similarly, Laiolo et al. (2016) used four 

soil moisture data products for testing the effect of soil moisture data assimilation into a 

Continuum hydrological model for the study area, i.e., Orba, Italy. Three of the used 

datasets (SM-OBS-1, SM-OBS-2, SM-DAS-2) were from H-SAF while the fourth, Soil 

Moisture Content (SMC) Level 2, was obtained from the Soil Moisture and Ocean 

Salinity (SMOS) mission of the ESA. The authors reported that the assimilation of SM-

OBS-1 and SM-DAS-2 data provided the greatest benefit in discharge prediction. 

Likewise, in the reviewed article related to macro-scale catchments, it can be seen that 

the remote sensed soil moisture datasets have mostly been used for calibration, evaluation 

and assimilation in hydrological models. For instance, Dembélé et al. (2020) evaluated 

the potential of 12 satellite or reanalysis evaporation datasets to improve performance 

through model calibration and used ESA CCI SM (v4.2) soil moisture data product, along 

with terrestrial storage data from GRACE and in-situ streamflow data, for the evaluation 

of hydrological model simulations. Similarly, Dembele et al. (2020) tested the suitability 

of 17 rainfall and 6 temperature data products for hydrological modelling and evaluated 

model response using GLEAM v3.2a AET, ESA CCI SM v4.2 soil moisture and GRACE 

terrestrial water storage. Strohmeier et al. (2020) used ET from GLEAM v 3.0 and soil 

moisture data from ESA CCI SM v02.2 in calibration of SWAT and PCRaster Global 

Water Balance (PCR-GLOBWB) model for surface a flow and drought management 

study in the Oum Er Rbia basin, Morocco. The models showed the good simulation of 

surface flow, even without the consideration of in-situ data in calibration. Leroux et al. 

(2016) assimilated SMOS L3 soil moisture product into the DHSVM distributed 

hydrological model and revealed that the soil moisture assimilation can have positive 

impacts on hydrological variable estimations. Abhishek and Kinouchi (2021) used 

GRACE data, PCR-GLOBWB simulations, and in-situ groundwater data for the 

assessment of Terrestrial water storage, soil moisture storage (SMS) and groundwater 

storage for the Godavari, Krishna and Mahanadi river basins in India. Soil moisture was 

simulated by PCR-GLOBWB using the TRMM 3B43 rainfall data, which were corrected 

based on gauge data. The authors noted that, by using these global datasets, it is possible 

to quantify the different components of water storage for any catchment worldwide. 

However, the study did not comment on the performance evaluation of the datasets used 

in the research. 

Among the reviewed articles, only Van Der Velde et al. (2021) validated the SMAP 

passive-only soil moisture products, using the in-situ soil moisture data and model 
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simulations devised by the Dutch National Hydrological Model (LHM) for the region of 

Twente, the Netherlands. The authors concluded that the single-channel algorithm at 

vertical polarization (SCA-V) is a better algorithm compared to the single-channel 

algorithm at horizontal polarization (SCA-V) and the dual-channel algorithm (DCA). 

Moreover, the SMAP’s soil moisture values in the afternoons are closer to in-situ 

observed values as compared to morning values. 

Overall, the use of soil moisture remote sensed products as calibration datasets or for 

assimilation has been assessed by researchers in the reviewed articles, but any uniformity 

in the results with respect to improvement in hydrological simulation is hard to ascertain. 

These are dependent on a number of factors such as the type of datasets used, the 

catchment characteristics, assessment criteria, modelling structure, techniques and 

algorithms used for calibration and/or assimilation, and so on. Moreover, it is difficult to 

pick a single better-performing dataset for any of the cases. Among the reviewed articles, 

only one study (Van Der Velde et al., 2021) conducted the validation of SMAP passive-

only soil moisture products against the in-situ observation. Overall, the validation of such 

data products before their use in applications such as model calibration, validation or data 

assimilation need further exploration to increase confidence in their applicability. 

2.3.9 Temperature Datasets 

Air temperature plays a crucial role in climate research, serving as a valuable proxy for 

energy exchange between the land surface and the atmosphere (Hansen et al., 2010). 

Commonly, air temperature is measured at a height of around 2 m above the land surface. 

It is considered a critical parameter in glacio-hydrological studies, as it controls the rate 

of snow and ice melting (Kumar et al., 2016). Similarly, the land surface temperature 

(LST) is the temperature of the Earth’s top layer, known as the canopy skin, and provides 

an indication of its perceived hotness or coldness (Bense et al., 2016). Air temperature is 

closely related to LST. The difference in temperature between the air and the surface is 

an important parameter for calculating the convective heat loss from the earth surface to 

the air. The heat loss is used for the calculation of the surface energy balance (Seiler and 

Moene, 2011). Additionally, the temperature difference between the earth surface and the 

air is particularly relevant for estimating evapotranspiration (Stoll and Brazel, 1992). 

Similar to the other datasets needed for hydrological modelling, obtaining measurements 

of air temperature using in-situ meteorological stations can be expensive as it involves 

significant instrumentation and maintenance costs. This costliness often results in sparse 

spatial continuity of data, especially in remote environments (Singh et al., 2019). Due to 

the synoptic spatial coverage, satellite LST has become a good alternative for assessing 

air temperature. There are five commonly used methods for estimating air temperature 

from LST. These methods include statistical approaches, the empirical solar zenith angle 

approach, the energy balance approach, the temperature–vegetation index approach, and 
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the neural network approach (Shah et al., 2013). Although satellite LST data can help 

researchers to overcome many of the limitations and difficulties associated with in-situ 

measurements, thermal infrared remote sensing data requires correction for atmospheric 

and surface emissivity, which can introduce significant uncertainties. In addition, due to 

the spatial heterogeneity of the land surface, the satellite instrument footprint may 

encompass various canopy types and soils, which can exhibit large variations in 

emissivity and LST over both space and time. Consequently, satellite measurements tend 

to represent a complex weighted mean temperature within each pixel, which can make 

retrieving and interpreting LST data a challenging task (Guillevic et al., 2012). 

The articles reviewed showed that no studies have utilized remote sensed LST or air 

temperature datasets at the micro-scale. Furthermore, at the meso-scale, there was one 

study that used LST datasets for assimilation in hydrological models. In this study, Laiolo 

et al. (2016) incorporated four soil moisture data products and one LST product to 

evaluate the impact of data assimilation on the Continuum hydrological model in the Orba, 

Italy. The LST product used was the Satellite Application Facility on Land Surface 

Analysis (SAFLSA) from the European Organisation for the Exploitation of 

Meteorological Satellites (EUMETSAT). The effect of assimilation was analyzed by 

considering the model’s discharge simulation performance at the outlet. The authors 

reported that the assimilation of soil moisture datasets was more effective compared to 

that of LST dataset. Although the assimilation of LST resulted in an improvement in the 

Nash–Sutcliffe efficiency (NSE) from 0.63 to 0.64, the improvement was not as 

significant as that achieved through soil moisture assimilation. In addition, the authors 

emphasized that careful pre-processing of the LST data is required for several reasons. 

These include the importance of precise geometric registration between model and 

satellite pixels, the possibility of shadowing due to mountainous terrain, and variations in 

the satellite viewing angle across different pixels resulting from the sensor scanning 

geometry. However, due to the lack of ground data, the authors were unable to evaluate 

the accuracy of the remote sensed LST using local observed data. 

At the macro-scale, air temperature has been used as forcing datasets in hydrological 

models. For instance, Dembele et al. (2020)  used 6 different temperature reanalysis 

datasets in combination with 17 different rainfall products as forcing data for the mHM 

modelling tool to simulate hydrological processes in the Volta River basin in Africa. The 

temperature datasets used are JRA-55, EWEMBI, WFDEI, MERRA-2, PGF and ERA5. 

They evaluated a total of 102 combinations of rainfall–temperature data based on four 

parameters: (1) in-situ stream flow data, (2) GLEAM evaporation data, (3) ESA CCI soil 

moisture data, and (4) GRACE TWS data. They ranked different temperature datasets in 

combination with rainfall datasets using multiple criteria. For instance, during the 

evaluation period, the MERRA-2 temperature dataset was ranked first based on the mean 

KGE of stream flow simulations, while the WFDEI dataset was ranked first based on the 
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mean NSE of stream flow simulations. The authors reached the conclusion that there was 

no single temperature dataset that consistently outperformed others in reproducing the 

spatio-temporal variability of all hydrological processes. 

In another study, Sen-Gupta and Tarboton (2016) developed a downscaling approach and 

utilized MERRA temperature data to test their approach. To evaluate their method, they 

compared MERRA temperature data with temperature data from 173 snowpack telemetry 

(SNOTEL) sites operated by the U.S. Department of Agriculture in Utah, Nevada, Idaho, 

and California. The results showed that the NSE of the downscaled daily mean 

temperature increased from 0.83 to 0.84, while the NSE for daily maximum temperature 

increased from 0.23 to 0.86. Notably, the NSE value of 0.83 for mean temperature on 

direct comparison with SNOTEL’s site data suggests a good performance for the MERRA 

data, whereas the NSE values for maximum temperature were not as high. 

Two studies were found where the authors performed biased correction of the temperature 

datasets before using them for modelling purposes. Beck et al. (2020) explored the 

parameter regionalization approach by using streamflow data from 4,229 catchments, and 

they tested the approach by implementing it on a global scale using a distributed version 

of the HBV hydrological model. The authors used temperature data from both the ERA-

Interim and JRA-55 datasets, which were bias-corrected and averaged before being 

incorporated into the model. However, the effects of bias correction on the model 

performance were not reported by the authors. Dahri et al. (2021) utilized temperature 

data from the ERA5 reanalysis dataset, which had been recommended by a previous study 

for Indus catchment. Prior to using the data as forcing data for the VIC hydrological 

model, the authors conducted a bias correction. The authors also noted that existing 

global- and regional-scale gridded datasets are inadequate for capturing accurate 

meteorological variables in complex and orographically influenced high-mountain 

terrains. 

In some of the reviewed studies, authors used temperature datasets as inputs for their 

models. However, they did not comment on the performance of these datasets and only 

used them for their intended purposes. For instance, Singh and Saravanan (2020) used 

temperature data from Climate Prediction Centre (CPC) of the National Oceanic and 

Atmospheric Administration (NOAA) for the Wunna Riveris catchment in India. Rajib et 

al. (2018) used temperature data from Daily Surface Weather Data for North America 

(Daymet) for a catchment in North Dakota, USA. Busari et al. (2021) used temperature 

data from the European gridded dataset of daily observations version 20 (E-OBS 20.0e) 

and also from MODIS for the Karasu catchment in Turkey. Lazin et al. (2020) used 

temperature data from ERA-Interim for the Upper Blue Nile catchment. Ha et al. (2018) 

and Mao et al. (2019) used air temperature datasets from GLDAS for Vietnam and the 

Nujiang river catchment in China, respectively. However, the lack of comment on the 

performance of the temperature datasets used in these studies makes it difficult to assess 
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the accuracy and reliability of these datasets. It is important to evaluate the performance 

of the input temperature datasets to ensure the validity of the hydrological model 

simulations. 

In the reviewed articles related to macro-scale uses, LST datasets have been found only 

in three studies. In two of them, LST was used as an input to energy and water balance 

based hydrological model, while in one study it was used for model calibration. The 

hydrological Flash flood Event-based Spatially distributed rainfall–runoff 

Transformation Energy–Water Balance model (FEST-EWB) had been used by Corbari et 

al. (2020) to explore the feasibility of combining remotely sensed LST data with the 

model for better simulation of ET and soil moisture. The model was built for the 

Capitanata Irrigation Consortium, Italy. The satellite images from Landsat-7 Enhanced 

Thematic Mapper Plus (ETM+) and Landsat-8 Thermal InfraRed Sensor (TIRS) were 

used for the calculation of LST. The remote sensed LST was evaluated with ground 

station LST values. The values of correlation coefficient were 0.88 and 0.92 for ETM+ 

and TIRS, respectively. This was the only study found in the reviewed articles in which 

remote sensed LST was evaluated with ground observation prior to application for model 

calibration. Ren and Liu (2019) utilized temperature data from ground stations and the 

MODIS LST in the cold regions hydrological model (CRHM) to estimate snow depths in 

the Upper Yangtze catchment, China. The authors also employed MODIS data to 

determine the precipitation separation (critical) temperature. However, the authors did 

not perform an evaluation of the quality of the LST dataset used in the study. Corbari et 

al. (2019) utilized the MODIS LST product in addition to lake altimetry, water extent, 

and ground discharges to calibrate the FEST-EWB hydrological model of Yangtze River 

catchment, China. The incorporation of LST into the calibration process significantly 

enhanced the model’s performance in simulating representative equilibrium temperature 

(RET), leading to a reduction in RMSE from 9.4 °C to 3.1 °C.  

Overall, the reviewed literature shows limited use of air temperature and LST datasets 

compared to other datasets (e.g., precipitation, DEM). Except for glacio-hydrological 

models, air temperature is typically included in the calculation of potential/reference ET, 

which is often used as input for hydrological models. Additionally, the performance of 

temperature datasets is not uniform and depends on various factors such as geographical 

location, evaluation criteria, and modelling structure, as pointed out by Dembele et al. 

(2020). Although many different temperature datasets have been used by researchers, 

only the air temperature dataset from MERRA has been evaluated in comparison to local 

observation, which was performed by Sen-Gupta and Tarboton (2016). Most studies that 

have used air temperature datasets did not explicitly comment on their performance 

evaluation. LST datasets have been used in only four studies, and only Corbari et al. (2020) 

evaluated the developed LST from Landsat-7 and Landsat-8 data with reference to ground 

observations. The accuracy of the data is crucial for hydrologic applications as it can 
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significantly affect the reliability of any conclusions drawn from the analysis. Therefore, 

further exploration is necessary to assess the accuracy of air temperature and LST datasets 

for hydrological simulations. 

2.4 CONCLUSIONS 

This chapter presents a systematic literature review. This was performed on the one-

hundred twenty shortlisted articles with the aim to gauge progress in and identify 

knowledge gaps regarding the use of remote sensed and/or global datasets for distributed 

hydrological models. The analysis was categorized on the types of datasets and the 

catchment scale on which these had been used. The identified catchment scale-wise 

knowledge gaps are presented in Table 2.1. These identified future research prospects can 

help hydrologists and modellers to steer their efforts towards potentially needed research 

areas. 

Table 2.1. Identified scale-wise knowledge gaps. 

Dataset Type Knowledge Gaps Catchment 

Scale 

Rainfall 
Evaluation of rainfall datasets for hydrological simulation 

at micro-scale and meso-scale. 

Micro- and 

meso-scale 

Comparison of rainfall data products accuracy relative to 

one another and ground observations at meso- and micro-

scale. 

Micro- and 

meso-scale 

Comparison of different rainfall products’ computational 

algorithms and their effects on product capability for 

hydrological simulation. 

Micro-, meso- 

and macro-

scale 

DEM 
Evaluation of global DEMs for hydrological simulations at 

micro-scale and meso-scale catchment.  

Micro- and 

meso-scale 

Quantification of hydrological model uncertainties from 

different DEM sources. 

Micro-, meso- 

and macro-

scale 

Effect of DEM sources on surface-subsurface interactions 

in distributed physical hydrological models. 

Micro-, meso- 

and macro-

scale 

Effect of upscaling or downscaling of global DEMs on 

distributed hydrological model simulations. 

Micro-, meso- 

and macro-

scale 

LULC 
Response of model simulated water balance to different 

LULC data sources. 

Micro-, meso- 

and macro-

scale 

Effect of LULC sources on surface water–groundwater 

interactions in distributed hydrological models. 

Micro-, meso- 

and macro-

scale 
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Use of dynamics LULC maps in hydrological in 

comparison to static input of LULC data. 

Micro- and 

meso-scale 

Effect of different classification algorithms use for 

developing LULC maps on hydrological simulations. 

Micro- and 

meso-scale 

How the number of land-use classes effect the 

hydrological simulation. 

Micro- meso- 

and macro-

scale 

Scale wise identification of optimal number of land-use 

classes for reasonable performance of hydrological 

models. 

Micro-, meso- 

and macro-

scale 

Evaluation of different global LULC datasets for 

hydrological simulations. 

Micro-, meso- 

and macro-

scale 

Test the model performance by including long-term land 

use-induced changes in hydrology. 

Micro-, meso- 

and macro-

scale 

Soil 

distribution 

and properties 

Evaluate the impact of different levels of soil information 

on model performance. 

Micro-, meso- 

and macro-

scale 

To evaluate which datasets, support better hydrological 

performance. 

Micro-, meso- 

and macro-

scale 

Exploring the effect of temporal variation in soil 

properties on the hydrological simulations. 

Micro-, meso- 

and macro-

scale 

Leaf area   

index 
The role of LAI dynamics in model calibration. 

Micro-, meso- 

and macro-

scale 

Effect of LAI source on hydrological model simulation. 

Micro-, meso- 

and macro-

scale 

Evaluation of Global LAI datasets for hydrological 

simulations. 

Micro-, meso- 

and macro-

scale 

Updating the vegetation state of hydrological model by 

assimilation of near real-time LAI data. 

Micro-, meso- 

and macro-

scale 

Snow- 

covered area 
Potential use of considering SCA in data assimilation. 

Micro-, meso- 

and macro-

scale 

Direct comparison of remote sensed SCA datasets with in-

situ data. 

Micro-, meso- 

and macro-

scale 

Comparison of different SCA datasets with modelled SCA 

results. 

Micro-, meso- 

and macro-

scale 
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Comparison of SCA datasets used for calibration or for 

assimilation. 

Micro-, meso- 

and macro-

scale 

Evapo-

transpiration 

The accuracy of AET datasets relative to one another and 

ground observations. 

Micro-, meso- 

and macro-

scale 

The effect of spatial heterogeneity in AET data product on 

catchment hydrological simulations. 

Micro-, meso- 

and macro-

scale 

Comparison of hydrological performance of AET as 

calibration data or as assimilation data? 

Micro-, meso- 

and macro-

scale 

Effect of AET assimilation or calibration on the issue of 

equifinality in hydrological models. 

Micro-, meso- 

and macro-

scale 

Soil moisture 

Performance evaluation of soil moisture datasets for 

calibration and as data assimilation for micro-scale 

catchments. 

Role of soil moisture data in calibration to resolve the 

problem of equifinality. 

Evaluation of soil moisture product by comparing with 

model simulated soil moisture or with ground-based 

observations. 

Soil moisture as calibration dataset vs. as assimilation 

dataset for better hydrological model performance. 

Micro-scale 

Micro-, meso- 

and macro-

scale 

Micro-, meso- 

and macro-

scale 

Micro-, meso- 

and macro-

scale 

Temperature 
Performance evaluation of LST datasets for calibration 

and as data assimilation. 
Micro-scale 

Performance evaluation of air temperature datasets for 

hydrological simulations. 

Micro- and 

meso-scale 

Comparison of temperature data products accuracy 

relative to one another and ground observations. 

Micro- and 

meso-scale 

Effect of bias correction on hydrological prediction 

accuracy of model. 

Micro-, meso- 

and macro-

scale 

Role of LST data in calibration to resolve the problem of 

equifinality. 

Micro-, meso- 

and macro-

scale 

Evaluation of LST products by comparing with ground-

based observations. 

Micro-, meso- 

and macro-

scale 
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LST as calibration dataset vs. as assimilation dataset for 

better hydrological model performance. 

Micro-, meso- 

and macro-

scale 

The identified knowledge gaps are based on a detailed review of the considered articles. 

The authors acknowledge that some articles were skipped due to the keyword selection 

or due to a poorly written abstract which caused the elimination of the article from the 

review. 

Overall, we concluded that the use of remote sensed datasets is more focused on the 

macro- or large-scale catchments. Rainfall datasets are among the most used remote 

sensed datasets, while DEMs are the only global datasets which exceeded the local 

datasets in use for hydrological modelling. LST is the least used dataset. The performance 

of different remote sensed datasets is dependent upon many factors such as size of 

catchment, region of catchment, performance evaluation criteria and so on. It is difficult 

to determine a single consistently better performing dataset. The selection of datasets has 

a major influence on a model’s simulations. Therefore, the evaluation of a selected dataset 

for a specific study area is an important step. 

It is advisable to carry out investigations focused on exploring the effectiveness of 

different remote sensed datasets for the setting up, calibration, evaluation and data 

assimilation of distributed hydrological models at various scales, keeping in view the 

knowledge gaps highlighted in Table 2.1. Furthermore, it has been noticed that there is a 

lack of available literature as well as current research on the evaluating of remote sensed 

and/or global datasets in the case of distributed hydrological modelling, especially at the 

micro- and meso-scale catchment levels. This knowledge gap highlights the need for 

future research to explore and evaluate the effectiveness of different remote sensed 

datasets in hydrological modelling at various scales, with a particular focus on micro- and 

meso-scale catchments. This information could lead to the identification of more 

appropriate datasets for hydrological modelling, ultimately improving the accuracy of 

model simulations and contributing to better water resource management.





 

 

3 
3 STUDY AREA AND MODELLING 

SETUP 

 

 

This chapter describes the study area and provides a comprehensive overview of the 

hydrology model used in this research. The aim was to setup the modelling system that 

can represent the surface as well as sub-surface hydrological processes and interaction 

between them. The developed hydrological model for the study area is used to carry out 

the analyses presented in the subsequent chapters.  

 

 

 

 

 

______________________________________________________________________ 
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Ali, M. H., Bertini, C., Popescu, I., & Jonoski, A., 2025. Comparative analysis of 

hydrological impacts from climate and land use/land cover changes in a lowland 

mesoscale catchment. International Journal of River Basin Management, 1–19. 

https://doi.org/10.1080/15715124.2025.2454692 

Jonoski, A., Ali, M. H., Bertini, C., Popescu, I., van Andel, S.J., & Lansu, A., 2025. 

Model-based design of drought-related climate adaptation strategies using nature-based 

solutions: case study of the Aa of Weerijs catchment in the Netherlands. Nature-Based 

Solutions, 100264. https://doi.org/10.1016/j.nbsj.2025.100264 
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3.1 DESCRIPTION OF THE STUDY AREA 

The chosen study area for this research is the Aa of Weerijs, a transboundary mesoscale 

catchment shared between the Netherlands and Belgium. It covers an area of 346 km² out 

of which approximately 147 km2 is located in the Netherlands. The main stream originates 

from Brecht, a region in Belgium and flows northwards towards the city of Breda, the 

Netherlands where it enters the city canals and eventually joins River Mark (Figure 3.1). 

It is a lowland catchment, mostly flat with a gentle slope of approximately 0.5 % (de 

Klein and Koelmans, 2011). In the last five decades of the 20th century, the area 

underwent many alterations to adapt to the changing demands of urbanization, agriculture 

and for the purpose of flood protection. The streams and channels were normalized and 

the drainage network was intensified to reclaim the land (Witter and Raats, 2001). Almost 

Figure 3.1. Location of the study area, river network, and elevations (CLMS n.d.-a) 

and LULC (CLMS n.d.-b). The map also shows the discharge, groundwater, and AET 

locations where the model performance has been evaluated. The abbreviations used for 

AET locations represent the LULC, according to the following convention: CP: 

Complex cultivation pattern; DU: Discontinuous urban fabric; NIA: Non-irrigated 

arable land; LPA: Land principally occupied by agriculture; CF: Conifer forest; NG: 

Natural grassland; IM: Inland marshes; MF: Mixed forest; P: Pastures 
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no remnants of the original swamps remain. The number of weirs has also been 

constructed to maintain the target water levels in the channels. 

Based on the in-situ gauged data from 2010 to 2020, the average annual gross rainfall in 

the area is approximately 850 mm y-1, resulting in approximately 249 mm y-1 flow at the 

catchment’s outlet. The modest value of the runoff ratio (30 %) suggests a high level of 

water consumption within the catchment. The main land use in the area is agriculture and 

pastures. According to the Corine Land Cover (CLC) 2018 (CLMS, n.d.-a), the 

agriculture area comprises around 72.8 % of the total area which includes a tree nurseries 

sector of high commercial export value. Built-up areas cover 13.6 %, while forest and 

natural grassland areas collectively cover 9.3 % which are mainly located along the 

Bijloop and Turfvaart channels towards the western side of the catchment.   

In the catchment, sandy soils are the main soil type and are characterized by sand-covered 

ridges with streams typically deeply incised within them. In recent years, the catchment 

is facing challenges regarding water shortages during the summer season. This is 

attributed to the degradation of subsurface soil, affecting water retention and canal 

networking. Various factors exacerbate this situation, including climate change, growing 

demand for water in the tree-nursery export sector, and hot dry summers. These pressures 

are intensifying, compounded by the simultaneous high demand for protected and 

dedicated nature and recreation areas expressed by the residents of Breda, Zundert, and 

Roosendaal (Beers et al., 2018). The recent summer drought in 2018 and then again in 

2022 compelled the water managers to begin searching for solutions to prepare for more 

frequent drought conditions, whereas prior to these events the focus was primarily on 

managing the surplus water.  

3.2 MODEL SETUP AND DATA 

3.2.1 MIKE SHE hydrological model 

To achieve the objectives of the study, a fully distributed physically based hydrological 

model has been set up using the MIKE SHE (Systeme Hydrologique Europeen) modelling 

tool developed by the Danish Hydraulic Institute (DHI), Denmark. It contains physics-

based modules on overland flow (2D Saint-Venant equation, (Popescu, 2013)), 

unsaturated zone (1D Richards’ equation, (Richards, 1931)), groundwater (3D 

Boussinesq equation, Boussinesq (1904)), and fully dynamic channel flow, incorporating 

complex interactions and feedback between these modules. It uses a finite difference 

approach to solve the partial differential equations describing these processes (Thompson 

et al., 2004). It has the capacity to simulate all significant processes of the hydrological 

cycle (Refsgaard et al., 2010) and the capability to simulate integrated surface-subsurface 

hydrology more efficiently, especially in flat areas characterized by dense river networks 
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and shallow groundwater, by employing physically based methods, in contrast to 

conceptual models like Soil and Water Assessment Tool (SWAT) that rely on empirical 

equations for simulating interactions (Ma et al., 2016). The study area (Aa of Weerijs) is 

a lowland area with flat topography due to which it experiences strong surface sub-surface 

exchange of flows. Further, the river network also has weirs with target water levels to 

maintain. Moreover, the research also aims to test different NBSs based adaptative 

strategies spatial represented in different locations of the catchment. To meet these 

requirements, MIKE SHE was selected because of its ability to capture the complex 

interactions between surface water and groundwater. Under the MIKE package of DHI, 

MIKE SHE is fully integrated with MIKE 11 which allows the representation of river 

network along with structures. Further, as it is a fully distributed physically based model, 

it allows spatial representation and evaluation of NBS measures at different. It has been 

recently used for NBS analysis (Fennell et al., 2023; Holden et al., 2022) although the 

focus in these studies was on streamflow only whereas we aim to analyse both surface 

and groundwater together. 

3.2.2 Model setup 

The main meteorological forcing data for the model are precipitation and Potential 

Evapotranspiration (PET). Daily rainfall data at two stations situated in the Netherlands 

(Ginneken and Zundert, marked in Figure 3.1) was sourced from the Royal Netherlands 

Meteorological Institute (KNMI, n.d.). The data for the third station (Leonhout, marked 

in Figure 3.1) located in Belgium was obtained from the Flemish Environment Agency 

(VMM, n.d.). These stations are all located towards the Eastern side of the catchment, as 

no rain gauges are available on the West side of the catchment. In general, a uniform 

spatial distribution of rain gauges ensures a better representation of rainfall and its 

variability over wide areas. In this research, however, the catchment itself is small (346 

km2) and relatively flat, which reduces the potential for significant spatial variability in 

meteorological data. Moreover, the average rainfall on these stations is in close range 

(Ginneken: 2.3 mm d-1, Zunder: 2.3 mm d-1 and Leonhout: 2.2 mm d-1 for the period 2010-

2019), which shows that the spatial variability of rainfall in the catchment is limited and 

these stations can describe the rainfall distribution over the catchment reasonably well. 

There are many interpolation techniques available for upscaling rainfall data from point 

observations for representing over the model domain. However, each technique has its 

advantages and limitations (Hofstra et al., 2008). Considering the relatively flat 

topography of the catchment, the rainfall was presented over the model domain using 

Thiessen polygons as it is reported as simple method (Liu et al., 2015).  

The daily PET data was obtained from the closest weather station (Gilze Rijen) located 

in the Netherlands towards the North-East side of the catchment and provided as spatially 

uniform over the entire grid in the model. We acknowledge that PET varies depending 
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upon topography, soil and vegetation cover characteristics but the due to small size of the 

catchment and relatively flat terrain, PET is expected not to vary considerably with 

topography. The variations of land (vegetation) cover is taken into account when 

calculating actual evapotranspiration using varying vegetation parameters (root depth, 

leaf area index etc.). An alternative option to the use of uniformly distributed PET over 

the catchment was to obtain PET data from Earth observation gridded products, but these 

datasets have many associated uncertainties and cannot be regarded as actual observations 

(Rajib et al., 2018; Ali et al., 2023). Therefore, to avoid any additional uncertainties and 

ambiguities, PET data from the weather station was provided as spatially uniform over 

the entire grid in the model. 

The topography in the model was represented using elevation data from EU-DEM version 

1.1 (resolution: 25 m, (CLMS, n.d.-b)), while the LULC was represented using CLC 2018 

(resolution: 100 m, (CLMS, n.d.-a)). The data on vegetation characteristics, including 

Leaf Area Index (LAI) and root depth was acquired from the National Hydrologic 

Instrumentation (NHI) sub-report on crop characteristics (NHI, 2008). The values of 

Manning’s roughness coefficient corresponding to CLC classes were used from 

Papaioannou et al. (2018). 

The grid resolution of MIKE SHE model was set as 500 m. The selected grid resolution 

reflects a compromise between computational efficiency and the need for spatial detail in 

representing the modelled parameters and processes. Finer resolutions can capture 

smaller-scale spatial variability but they would significantly increase computational time 

without proportionate improvement in model’s accuracy (Vázquez et al., 2002). The 

chosen resolution is sufficient for simulating the river and surrounding catchment 

dynamics effectively while allowing for reasonable simulation times, as supported by 

similar studies in the literature (Loliyana and Patel, 2020). Further compared to lumped 

or semi-distributed hydrological models where often each sub catchment is represented 

as a single unit, 500 m grid cell provides much greater spatial detail. The main tributary 

of the river network, the Aa of Weerijs, has an average bed width of approximately 10 

meters. The routing within the river is modelled using MIKE 11, with its geometry 

defined through detailed cross-sectional data. The exchange between MIKE 11 and MIKE 

SHE occurs at each grid cell, based on the dynamic relationship between river water levels 

and groundwater levels at those cells after each computational time step. Therefore, the 

selected grid cell size did not affect the representation of river and flow routing process.  

The data of the river cross-sections was obtained from the water authority of the Dutch 

part of the catchment, the Water Board Brabantse Delta (WBD). A discharge of 0.03 m3s-

1 was set as upstream boundary condition to ensure numerical stability by preventing 

drying conditions. All streamflow is subsequently generated through interactions between 

MIKE 11 river component and the MIKE SHE grid cells.  A rating curve was provided 

as a downstream boundary condition. The Manning’s roughness coefficient value was 
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provided as 0.03 (Chow, 1959). The model incorporated the primary 29 weirs, out of 

which 7 were automated. The crest levels and target upstream water levels for the 

automated weirs were also provided by WBD. The model integrated these specified gate 

operation values for weirs to account for flow regulation. 

For the unsaturated zone, the method based on the Richards equation was selected for the 

simulation of processes. It was characterized using soil texture data obtained from the 

‘Land Use/Land Cover Area Frame Survey’ (LUCAS) 2015 topsoil physical properties 

dataset (Ballabio et al., 2016). According to this dataset, five different soil textures are 

present in the area. These soils were further categorized based on soil carbon content data 

(LUCAS topsoil chemical properties dataset, (Ballabio et al., 2019)), resulting in a soil 

map with 18 classes. The hydraulic soil properties were defined using the van Genuchten 

method (van Genuchten, 1980), and parameter values were calculated using pedotransfer 

function equations from Wösten et al. (1999). 

For the saturated zone, the MIKE SHE implemented 3D Finite Difference method was 

selected and it was considered as an 80 m deep single aquifer layer. The boundary 

condition was set as spatially distributed fixed heads along the boundary, with values 

representing the average groundwater levels along the boundary from 2009 to 2016. 

Saturated horizontal hydraulic conductivity values were sourced from the Netherlands 

REGIS II V2.2 hydrogeological model (Gunnink et al., 2013; Vernes et al., 2005). These 

values were extended to the Belgian part of the catchment through interpolation. Small 

streams and ditches having an average bed width less than approximately 1 m were not 

modelled in MIKE 11 but were incorporated into the model using the conceptual drainage 

component of MIKE SHE. Their levels were set equal to the average bed levels of these 

small drains with in each model grid. A summary of the datasets used to set-up the model 

is presented in Table 4.1 while the schematic representation of MIKE SHE model setup 

is shown in Figure 3.2. 
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3.2.3 Calibration and validation 

The model was set up for the period 15-09-2009 to 31-12-2019. The initial three-and-a-

half months were considered as a model spinning up period. The traditional split sample 

approach was used for calibration and validation of the model. Years from 2010 to 2016 

was considered for calibration while years 2017 to 2019 were used for validation. The 

period 2018-2019 was the driest, so it was kept in the validation period to assess the model 

performance in dry seasons. For model calibration, a manual, one-at-a-time approach was 

employed. Given the physically based nature of the model, most parameter values were 

obtained from independent source and existing literature. For the physically based 

distributed model like MIKE SHE, minimum number of parameters are suggested to be 

considered in calibration (Refsgaard, 1997). For instance, Al-Khudhairy et al. (1999) 

considered only three parameters in calibration. These were manning roughness 

coefficient for overland flow, hydraulic conductivity for saturated zone and the drainage 

time constant. In this study, the values of manning roughness coefficients and saturated 

hydraulic conductivity were taken from literature as mentioned in section 3.2.2. Only one 

parameter (drainage time constant) related to saturated zone was considered for 

calibration as it is more conceptual in nature. These initial values were obtained from 

literature which range between 1.50 exp-7 to 4.5 exp-7 1/s corresponding to 77 days - 26 

days (DHI, 2007; Brandyk et al., 2020; Refsgaard, 1997). The weighted mean of Nash-

Sutcliffe Efficiency coefficient (MNSE) and Correlation coefficient (MR) were used as 

Figure 3.2. Schematic representation of MIKE SHE hydrological model for Aa of 

Weerijs 
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target evaluation metrics with equal weights assigned to each site with its associated 

variable. The target variables included streamflow at 3 locations, groundwater levels 

(GWL) at 13 locations, and actual ET (AET) at 13 locations (Figure 3.1). During the 

validation (2017-2019), the same variables were considered, except for two groundwater 

locations (B49F0231 GW5 and B50A0234 GW4 Figure 3.1) due to data unavailability.  

Table 3.1. Datasets used for model setup and performance evaluation 

Data Temporal 

resolution 

Spatial 

resolution 

Source 

Rainfall Daily Point data NL: Ginneken, Zundert (KNMI, 

n.d.); BE: Leonhout (VMM, 

n.d.) 

Potential 

evapotranspiration 

Daily Point data Gilze Rijen Weather station 

(KNMI, n.d.) 

Vegetation parameters 

(LAI and root depth) 

-- -- NHI (2008) 

Actual 

evapotranspiration 

Daily 100 m Satellite-based evaporation data 

for the Netherlands SATDATA 

3.0 (Meteobase, n.d.) 

Observed groundwater 

levels 

Daily, Bi-

weekly 

Point data NL: WBD, UCSSD (n.d.) 

BE: DOV (n.d.) 

Observed discharge Daily Point data WBD 

River geometric data -- -- WBD 

Topography -- 25 m European Digital Elevation 

Model v1.1(CLMS, n.d.-b)) 

Land use land cover -- 100 m Corine Land Cover 2018  

(CLMS, n.d.-a) 

Soil texture and 

typology 

-- 500 m LUCAS 2015 topsoil physical 

properties dataset (Ballabio et 

al., 2016) 

Soil carbon content (%) -- 500 m LUCAS topsoil chemical 

properties dataset (Ballabio et 

al., 2019) 

Acronyms used in the table: NL: Netherlands; BE: Belgium; LAI: Leaf area index; WBD: Water Board 

Brabantse Delta; DOV: Databank subsurface Flanders; LUCAS: Land Use/Land Cover Area Frame 

Survey  
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3.3 RESULTS AND DISCUSSION 

3.3.1 Model Calibration and Validation 

For the catchment average AET, the values of R and NSE for the calibration and 

validation periods were 0.91, 0.80, 0.926, and 0.822, respectively. Figure. 3.3 shows that 

the catchment average observed and simulated AET exhibit good agreement. The values 

of NSE and R at all locations for the calibration and validation period are provided in 

Table 3.2.  

In terms of discharge at the catchment outlet, NSE and R values during calibration and 

validation were 0.88, 0.71, 0.87, and 0.71, respectively. While the model tended to 

underestimate the magnitude of high peaks, the plots in Figure. 3.4 demonstrate the 

reasonable capture of trends during both high and low flow periods, indicating the model's 

ability to reflect seasonal variations adequately. 

Figure 3.3.Observed and simulated catchment averaged actual evapotranspiration 

during the calibration and validation period 
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The simulation of GWLs showed varying model efficacy across different locations. The 

plots of groundwater levels at four locations are presented in Figure 3.5. The model 

tended to slightly overestimate the GWLs in the upstream regions and around the 

catchment’s outlet. Nevertheless, the model results demonstrated good agreement with 

observed data for GWLs, capturing seasonal variations and trends reasonably well (R= 

0.77 for the average of all observed versus modelled outputs). At certain locations, for 

instance at GW7, the observed groundwater head showed the sharp decrease in levels in 

the summer months which the model fail to fully reproduce. This sharp decline is likely 

due to localised groundwater pumping near the groundwater well. The groundwater 

pumping was not included in the model due to unavailability of detail pumping data.  

Figure 3.4.  Observed and simulated stream flow during calibration and validation 

period (a) Q1: at the outlet, (b) Q2: in the middle, (c) Q3: at the Belgian border 
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Table 3.2. Model performance evaluation during the calibration and validation period 

Variable  Location Calibration (2010-2016)  Validation (2010-2016)  

R NSE KGE R NSE KGE 

D
is

ch

ar
g
e Q1 (Outlet) 0.88 0.71 0.60 0.87 0.71 0.61 

Q2 (Middle) 0.73 0.53 0.57 0.74 0.55 0.58 

Q3 (Border) 0.66 0.43 0.47 0.65 0.42 0.44 

G
ro

u
n
d
w

at
er

 l
ev

el
 

GW9 (5219) 0.72 0.11 0.55 0.90 0.75 0.81 

GW3 (5332) 0.72 0.28 0.26 0.80 0.02 0.25 

GW1 (5170) 0.56 0.10 0.41 0.73 0.13 0.70 

GW2 (5165) 0.72 0.29 0.20 0.80 0.38 0.26 

GW8 

(B50COO77) 

0.89 0.51 0.76 0.83 0.39 0.70 

GW7 

(B50C0079) 

0.89 0.77 0.84 0.78 0.60 0.65 

GW6 

(B50C0078) 

0.85 0.58 0.47 0.87 0.39 0.38 

Figure 3.5. Observed and simulated Groundwater levels during the calibration 

and validation period at locations (a) GW13 (1-0334), (b) GW11 (1-0170), (c) 

GW9 (5219), (d) GW7 (B50C0079) 
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GW5 

(B49F0231) 

0.64 0.35 0.48 -- -- -- 

GW4 

(B50A0234) 

0.66 0.14 0.16 -- -- -- 

GW13 (1-

(0344) 

0.85 0.73 0.81 0.92 0.84 0.87 

GW10 (1-

(0347) 

0.89 0.16 0.54 0.84 0.15 0.76 

GW12 (1-342) 0.74 0.37 0.70 0.83 0.68 0.71 

GW11 (1-

0170) 

0.87 0.54 0.84 0.92 0.62 0.88 

A
ct

u
al

 E
v
ap

o
tr

an
sp

ir
at

io
n

 

CP-1 0.88 0.74 0.75 0.84 0.70 0.78 

CP-2 0.86 0.73 0.82 0.85 0.72 0.85 

CP-3 0.91 0.74 0.77 0.71 0.33 0.67 

DU-1 0.87 0.57 0.62 0.86 0.55 0.63 

DU-2 0.89 0.74 0.84 0.89 0.74 0.85 

P-1 0.89 0.77 0.78 0.91 0.78 0.76 

P-2 0.86 0.72 0.83 0.72 0.44 0.71 

LPA 0.88 0.74 0.75 0.75 0.52 0.67 

NIA 0.87 0.74 0.82 0.78 0.59 0.74 

CF 0.66 0.20 0.60 0.58 0.03 0.53 

MF 0.87 0.54 0.64 0.72 0.04 0.50 

NG 0.82 0.55 0.75 0.72 0.25 0.63 

IM 0.82 0.42 0.43 0.65 0.15 0.31 

R: Correlation coefficient; NSE: Nash-Sutcliffe Efficiency coefficient; KGE: Kling Gupta Efficiency 

coefficient; CP: Complex cultivation pattern; DU: Discontinuous urban fabric; NIA: Non-irrigated 

arable land; LPA: Land principally occupied by agriculture; CF: Conifer forest; NG: Natural 

grassland; IM: Inland marshes; MF: Mixed forest; P: Pastures. 

 

3.3.2 Catchment water balance 

The accumulated water balance of the catchment simulated by the model over the decade 

2010 – 2019 is presented in the Figure 3.6. The main components are expressed in mm 

over the period of 10 years (round to nearest integer) on the conceptual cross-sectional 

view. The components are mentioned to reflect their position within the surface or 

subsurface layer of the hydrological component. The total precipitation over the 

catchment is 8251 mm. The simulated evapotranspiration (ET) is 5189 mm. It includes 

the ET from surface and sub-surface. Surface part of ET consists of evaporation from 

intercepted water by plants along with evaporation from ponded water. Transpiration and 

soil evaporation comprised the sub-surface part of ET. The results of simulated ET are in 

accordance with Huisman et al. (1998) where the ET for the Netherlands is reported as  

approximately 500 mm y-1 with values close 550 mm y-1 for the areas which are far from 

coast. The infiltrated water in the un-saturated zone is available for sub-surface 

evaporation process or for recharge to groundwater. In the zone where Aa of Weerijs is 
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located, the groundwater recharge is reported by Huisman et al. (1998) as 200-300 mm y-

1 with large spatial variability. This value conforms with the results of MIKE SHE which 

has simulated the recharge of 288.8 mm y-1. The water in saturated zone contributes 

significantly to streamflow while also lost to catchment boundaries as downstream 

groundwater outflow.  

The obtained results from the model also agree with those of Dams et al. (2008), where 

the authors developed the model of Kleine Nete catchment in Belgium  located in near 

vicinity to the Aa of weerijs. They reported the average annual precipitation, ET and 

groundwater recharge as 832 mm, 462 mm and 292 mm, respectively, which are very 

similar to the values that MIKE SHE model simulated for the Aa of Weerijs. Overall the 

results of water balance depict that because of the flat topography and relative permeable 

soils, the major amount of precipitation infiltrates in to sub-surface while a small fraction 

of about 254 mm is generated as direct run-off. The large portion of streamflow (1668 

mm) comes from saturated zone via drainage network when the groundwater levels 

exceed the drainage levels. The remaining portion of streamflow (208 mm) comes from 

direct interaction of saturated zone with river as baseflow.  

It is importance to mentioned that the reported water balance represents the spatial 

average of the catchment. The identified hydrological processes may vary spatially. For 

example, in the wet conditions there may be areas where the soil become fully saturated 

leading to temporary ponding of water on the surface (no unsaturated zone). From such 

locations, the water can evaporate or percolate again. Overall, the water balance provided 

Figure 3.6. Conceptual representation of the key water balance components simulated 

by the model accumulated over the period 2010-2019 
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the better understanding of the catchment hydrology by highlighting contributions of 

individual component and exchanges between them. 

3.4 CONCLUSIONS 

Overall, the hydrological processes of the catchment are well captured by the MIKE SHE 

model. The perfromance of the model during calibration and validation was equally good. 

Notably, the period of 2018-2019 was the driest on the record but the model well 

reproduced the variables in this periods which indicates the realiablity of the model to be 

confidentilly used in drought related studies. Further, only limited parameters were 

considered in the calibration process but the model performed quite reasonably. This 

further increased the confidence in model for use in application such as evaluation of 

different earth observation datasets, climate change impact assessment and testing of 

NBS-based adaptive strategies. Not relying on extensive calibrated parameters ensures 

that any observed differences in outcomes can be more confidently attributed to scenarios 

or datasets rather than the compensation effects from finely tuned parameters. 

 

 



 

 

4 
4 EVALUATION OF PRECIPITATION 

PRODUCTS 

Single performance metrics may be insufficient to identify the suitable gridded 

precipitation products for simulating hydrological variables. Conversely in a multi-metric 

approach, often all metrics from a specific set are collectively considered to compute an 

aggregated score. However, there can be multiple combinations possible depending on 

the total number of metrics leading to varying aggregated scores. In this study, a multi-

metric, multiple combination evaluation approach is used to identify the most suitable 

precipitation product for reproducing discharge and groundwater levels with a specific 

hydrological model. The objective is to evaluate the influence of the choice of metrics on 

the identification of the most suitable precipitation products. To explore this, MIKE-SHE 

hydrological model for Aa of Weerijs catchment is forced with four different gridded 

precipitation products: ERA5-Land, IMERG-Final, MSWEP and EOBS. Five distinct 

scenarios are formulated to carry out the analysis using different timeseries based and 

hydrological signature-based metrics. The results revealed that no precipitation product 

consistently performed better than others across all metrics in precipitation estimation or 

reproducing hydrological variables. Testing of multiple metric combinations revealed that 

the identification of the most suitable product is sensitive to the choice of metrics. When 

the number of metrics considered for evaluation is small, then the likelihood of all the 

products to be identified as most suitable for precipitation estimation or reproducing 

hydrological variables is higher. The results strongly illustrate the significance of a multi-

metric, multiple combination approach for the evaluation of gridded precipitation 

products in hydrological studies. 

______________________________________________________________________ 

This chapter is based on the journal publication: Ali, M. H., Popescu, I., Hrachowitz, M., 

& Jonoski, A., 2025. Multi-metric multiple combination evaluation of precipitation 

products for hydrological simulations. Under review. 
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4.1 INTRODUCTION 

In the era of advanced technology and remote-sensing, each passing year brings forth new 

datasets and hydrologists have greatly benefited from these advancements (Alfieri et al., 

2022). The momentum seems to grow further as initiatives such as ‘Early Warning for 

All’ by the United Nations, ‘Green Deal’ by the European Union, ‘Earth Intelligence for 

All’ by Group on Earth Observations (GEO) and others, actively promote the generation 

and use of Earth observation (EO) products. One of the main drivers of the terrestrial 

hydrological cycle and an important input to hydrological models is precipitation. 

Gridded EO precipitation products provide advantages over local observations from 

gauging stations, such as lower costs, homogeneous coverage and easy data accessibility 

(Almagro et al., 2021; Dembele et al., 2020; Brocca et al., 2019). However, it is 

challenging to estimate precipitation using satellite data or models and it has many 

associated uncertainties (Gebrechorkos et al., 2024; Beck et al., 2017). The uncertainties 

in the precipitation products can cause up to 50 % error in variables simulated by 

hydrological models (Bárdossy et al., 2022), resulting in poor representation of 

hydrological responses. Therefore, it is important to evaluate their suitability before using 

them for hydrological applications.  

In previous studies, the suitability of gridded EO precipitation products is evaluated 

mainly using two approaches (i) comparing estimated precipitation directly with observed 

data from gauging stations (Yang et al., 2024; Sun et al., 2018; Ayehu et al., 2018) and 

(ii) using precipitation products to force hydrological models and comparing the 

reproduced variables (e.g. streamflow) with observed data (Gebrechorkos et al., 2024; Ji 

et al., 2024; Lakew et al., 2020). In both approaches, researchers rely on error metrics to 

evaluate the goodness of fit between estimated and in-situ time series (Alexopoulos et al., 

2023; Gebrechorkos et al., 2024; Dembele et al., 2020), which is standard practice for 

hydrologists (Jackson et al., 2019). The Nash-Sutcliffe efficiency (NSE) (Nash and 

Sutcliffe, 1970) and the Kling-Gupta efficiency (KGE) (Gupta et al., 2009) are frequently 

used metrics for the quantitative comparison between simulated timeseries and observed 

ones (Cinkus et al., 2023; Clark et al., 2021). However, each metric has its limitations. 

Such as NSE over-emphasises peak values due to use of squared sum of errors (SSE) 

which leads to an inflated importance of the absolute errors during high flows at the 

expense of low flows: as minimization target SSE leads to an imbalanced reduction of 

errors with more emphasizes on high values (Knoben et al., 2019; Onyutha, 2024). 

Conversely, the KGE is a decomposition of NSE into three components i.e. correlation, 

bias and the ratio of variances or coefficients of variation which to some extent 

complement the deficiencies of the NSE but still underestimate the variability of 

timeseries data (Liu, 2020). Both NSE and KGE can be strongly swayed by few outliers 

(Clark et al., 2021; Beven and Westerberg, 2011). To overcome the influence of high 

flows or peaks, various prior transformations on the observed and estimated timeseries 
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can be applied such as logarithmic transformation which allows a stronger emphasis on 

low flows (Lamontagne et al., 2020; Quesada‐Montano et al., 2018). However, in the case 

of KGE, log transformation is not advised as it becomes unstable when the transformed 

series reaches near zero leading to possible misinterpretation of the results (Santos et al., 

2018). In addition to these, many other error metrics are used by researchers; however, 

no single metric can comprehensively capture all aspects of a specific variable (Onyutha, 

2024). Therefore, the use of a single metric for datasets evaluation is often insufficient 

(Cinkus et al., 2023). Acknowledging this, there is increasing understanding for the need 

of multi-metric approaches to evaluate EO precipitation products (Gebrechorkos et al., 

2024; Le et al., 2020; Brocca et al., 2019). Additionally, the use of error metrics on 

timeseries alone cannot capture the specific features of streamflow regimes (e.g. 

magnitude and timing of high and low flows) and dominant catchment processes (e.g. 

base flow index, runoff ratio). These features of watersheds are instead described by 

hydrological signatures (Sawicz et al., 2011; Kiraz et al., 2023). Using hydrological 

signatures in combination with statistical error metrics can reflect more comprehensively 

the ability of precipitation products to reproduce flow (Almagro et al., 2021). 

On the one hand, the multi-metric evaluation is suggested for comprehensive data product 

evaluation for hydrological applications (Jackson et al., 2019; Moges et al., 2022). On the 

other hand, it can lead to complex interpretations of the results due to conflicting 

outcomes of the individual metrics. Camici et al. (2020) considered only KGE to compare 

simulated and observed discharge with an argument that the limited number of 

performance metrics allows the communication of results in an effective way. Further, in 

studies where multiple metrics are used, the results are often presented individually for 

each metric rather than with thorough combined analyses (Gebrechorkos et al., 2024; 

Almagro et al., 2021; Yang et al., 2024). This can lead to opposing and unclear 

conclusions about the identification of the most suitable precipitation product for a given 

application. To overcome this, individual metrics can be aggregated into a single 

composite score (Akbas and Ozdemir, 2024; Kumar et al., 2024). However, the final score 

can vary based on the number of metrics aggregated, as multiple combinations are 

possible depending on the total number of metrics (number of combinations =  2𝑛 − 1, 

where n is the total number of metrics).   

Therefore, there is a need for an evaluation approach that not only considers multiple 

metrics but also systematically explores all possible combinations of those metrics to 

assess the robustness of precipitation product performance. This study presents a novel, 

comprehensive evaluation framework that exhaustively tests multiple combinations of 

selected metrics (approximately 33 million) to identify the most suitable gridded 

precipitation product for hydrological simulations. The core idea is that the most suitable 

product is not the one that performs best on a single or arbitrarily selected set of metrics, 

but rather the one that demonstrates consistent plausibility across the widest range of 
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metric combinations. To our knowledge, no previous study has implemented such a 

combinatorial, multi-metric evaluation to identify the most suitable gridded product for 

precipitation estimation and for reproducing hydrological variables with a model. 

The objective is to evaluate the influence of metric selection on identifying the most 

suitable gridded precipitation products in comparison with in-situ precipitation gauge data 

and for reproducing hydrological variables (discharge and groundwater levels). In 

addition, the following specific research questions are addressed: Is the most suitable 

precipitation product identified by considering individual metrics the same as that 

identified by testing multiple combinations of metrics? Is the product identified as most 

suitable based on timeseries error metrics (such as KGE, NSE) the same as identified by 

hydrological signatures-based metrics to reproduce hydrological variables? Is the product 

identified as most suitable from comparison with station data is also the one that is the 

most suitable to reproduce hydrological variables? Is considering multiple metrics for the 

evaluation of precipitation product beneficial and can a minimum number of metrics 

needed for effective evaluation be determined? 

To address these questions, four gridded precipitation products: fifth generation of 

European ReAnalysis (ERA5) Land, Integrated Multi-satellitE Retrievals for Global 

Precipitation Measurement (GPM IMERG Final), Multi-Source Weighted-Ensemble 

Precipitation (MSWEP) and the European gridded dataset of daily observations version 

28 (EOBS) are analysed as a test case in this study. These products are used to force 

MIKE-SHE hydrological model for the study area. Overall, the research offers a 

comprehensive evaluation criterion for these EO data products through exhaustive metric 

combination analysis to identify the most suitable product for use with the MIKE-SHE 

hydrological model in the study area. 

4.2 MATERIAL AND METHODS 

The research was carried out focusing on Aa of Weerijs catchment. The MIKE-SHE 

hydrological model was developed for the area and utilized to carry out the research. The 

description of the study area, details of the input data and model setup are provided in the 

Chapter 3. Therefore, this information is not described here. The model is forced with the 

four selected gridded precipitation products (described in section 4.2.1). The scope of this 

study was not to evaluate the absolute performance of the hydrological model but to 

compare the relative performance of the considered precipitation products. The model 

was therefore not calibrated individually for each product but the same modelling 

structure with identical parameter values was used for all four products (as done by 

Gebrechorkos et al. (2024)). This ensured that each product was evaluated using the same 

model structure where the parameters did not compensate for the uncertainties of 

precipitation products. 
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4.2.1 Gridded precipitation products 

There is a wide range of gridded precipitation products that have been utilized by the 

scientific community for distributed hydrological modelling (e.g. Chapter 2 section 2.3.1). 

The continuity of the product, its spatio-temporal resolution and coverage over the study 

area were the main criteria for selection of the products. In this study we have used the 

following gridded precipitation products that are available for the study area for at least 

daily time scale and a spatial resolution of 0.1 degree: 

The fifth generation of European ReAnalysis (ERA5) Land is a reanalysis product by the 

European Centre for Medium-Range Weather Forecasts (ECMWF). It is available at 0.1o 

spatial resolution from 1950 to 2024 (Muñoz-Sabater et al., 2021). ERA5-Land is 

generated from the meteorological forcing data for ERA5 for land applications only and 

freely available from the Climate data store (CDS) by Copernicus (CDS, n.d). 

Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM 

IMERG) is a product by NASA. IMERG has three versions: early, late and final which 

are defined by varying time delays in their availability (early: 4-hrs, late: 14-hrs and final: 

3.5-months). In this study, IMERG Final version 7 is used. It is generated based on 

microwave-infrared retrievals from satellite data and calibrated using rain gauge data 

from global precipitation networks (Huffman et al., 2020). The product has a resolution 

of 0.1o and is available from 1998 to 2024. It is freely available from the Goddard Earth 

Sciences Data and Information Services Center by NASA Earthdata (GES-DISC, n.d). 

Multi-Source Weighted-Ensemble Precipitation (MSWEP) is a global precipitation data 

product available at a resolution of 0.1o. It was developed by fusion of multiple data 

sources including satellite-based, reanalysis and gauge data (Beck et al., 2017; Beck et 

al., 2019). MSWEP has been used by researchers for many hydrological applications and 

reported among the most suitable products (Gebrechorkos et al., 2024; Dembele et al., 

2020; Lakew et al., 2020). The MSWEP version 2.8 used in this study covers the period 

from 1979 to 2024 and is available to download from the GloH2O website on request 

(GloH2O, n.d). 

The European gridded dataset of daily observations version 28 (EOBS v28.0) is a product 

with a resolution of 0.1o developed using data from 23600 meteorological stations across 

Europe. Initially, the dataset was developed for validation of European climate models 

and now also being used for monitoring climate across Europe. The daily values from 

stations are fitted using a deterministic model to capture the spatial trends then daily 

ensembles are generated using stochastic techniques (Cornes et al., 2018). We have used 

the daily ensemble mean data which is available to download from the European Climate 

Assessment and Dataset website (ECAD, n.d). 

As ERA5-Land, IMERG-Final and MSWEP are available at sub-daily temporal 

resolution, they were aggregated to daily scale to match the resolution of EOBS and rain 
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station data. For brevity, hereafter we refer to ‘ERA5-Land’ as ERA5 and ‘IMERG-Final’ 

as IMERG. 

4.2.2 In-situ data 

The observed discharge at three locations along the main branch of river Aa of Weerijs 

was used for the calculation of metrics (Q1, Q2, and Q3 in Figure 3.1). The discharge 

data was provided by the Brabanste Delta water board (https://www.brabantsedelta.nl/, 

last access: 18 August 2024). The groundwater levels (GWL) at 13 locations were used 

for the calculation of related metrics (GW1 to GW13 in Figure 3.1). The groundwater 

data for the Netherlands area of the catchment was obtained from the Brabanste Delta 

water board and Data and Information of the Dutch Subsurface website (DINOloket, n.d.), 

while for the part of the catchment in Belgium, the data was available through Databank 

Ondergrond Vlaanderen (DOV, n.d.). 

The daily precipitation data from three gauging stations was used for direct comparison 

with the gridded EO precipitation products. Two gauging stations, ‘Ginneken’ and 

‘Zunder’ (R1 and R2 in Figure 3.1) are located in the Netherlands and data was obtained 

from the Royal Netherlands Meteorological Institute website (KNMI, n.d.) while for the 

third station ‘Leonhout’ (R3 in Figure 3.1) located in Belgium, the data was obtained 

from the Flemish Environment Agency website (VMM, n.d.). 

4.2.3 Evaluation metrics 

To explore the research questions, initially, the suitability of gridded products to estimate 

precipitation compared to station data is evaluated. Then, the model is individually forced 

with the four gridded precipitation products, and their suitability to reproduce discharge, 

groundwater levels and other hydrological signatures with the MIKE-SHE model are 

tested. For the evaluation of the difference between the reproduced and observed data, a 

wide range of metrics is considered and discussed below. 

To identify the most plausible precipitation product for precipitation estimation, the 

difference between the precipitation estimates from the four gridded data products (ERA5, 

IMERG, MSWEP and EOBS) and in-situ data is quantified at the three precipitation 

gauging stations. The point to grid-cell data comparison approach is adopted as done by 

(Dembélé and Zwart, 2016; Ayehu et al., 2018). The alternative option was to upscale the 

point-based station data to the same grid scale as of precipitation products using 

interpolation techniques. However, there are many different interpolation techniques 

available that could be applied but each has its advantages and limitations (Hofstra et al., 

2008). Therefore, to limit uncertainties and ambiguities involved in selecting an 

interpolation method, a simple point to grid-cell comparison method is selected for this 

study.  
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The selection of metrics was guided by the need to capture diverse aspects of precipitation 

product performance, both statistically and hydrologically. The evaluation metrics used 

to quantify the agreement between the precipitation data products and in-situ data at the 

gauging stations include timeseries metrics, precipitation extreme indices and categorical 

event detection metrics. Their details are described in Table 4.1. Among the six error 

indicators, two are the most frequently used indicators in hydrological studies i.e. NSE 

(MNSE) and KGE (MKGE). Further, Log NSE (MLNSE) is also included to complement the 

low values in the series. In addition to normalized error indicators, the use of at least one 

absolute value error indicator has been recommended by (Ritter and Muñoz-Carpena, 

2013). Therefore, the mean absolute error (MMAE) is included as well. Apart from 

timeseries data, the signatures or precipitation extreme indices that have single value as 

output, are compared using the relative error (MER) (Euser et al., 2013). In addition to 

these statistical error metrics, the capability of precipitation data products to detect daily 

rainfall events is evaluated using categorical metrics: Probability of detection, False 

discovery rate, Equitable threat score and Frequency bias. 

Table 4.1. Performance metrics for evaluation of precipitation product against station 

data 

No. Variable/ 

signature/ 

indices 

Abbreviation Performance 

metric 

Description 

1 Time series of 

rainfall 

R MNSE,R; MLNSE,R; 

MKGE,R; MMAE,R; 

MCC,R 

 

2 Rain duration 

curve 

RDC MNSE,RDC; 

MLNSE,RDC; 

MKGE,RDC; 

MMAE,RDC 

RDC represents a 

relationship between 

rainfall magnitudes and 

their exceedance 

probabilities. It gives 

insights into how often 

certain levels of rainfall 

occur. 

3 Total rainfall on 

very wet days  

R95pt0t MER,R95pt0t Sum of rainfall on days 

exceeding 95th percentile 

threshold (Casanueva et 

al., 2014) 

4 Longest 

consecutive dry 

days 

CDD MER,CDD Longest consecutive 

days when rainfall is less 

than 1 mm/day 

(Casanueva et al., 2014) 



4. Evaluation of precipitation products 

 

64 

 

5 Longest 

consecutive wet 

days 

CWD MER,CWD Longest consecutive 

days when rainfall is 

more than 1 mm/day 

(Casanueva et al., 2014) 

6 Probability of 

detection 

POD MPOD The ratio of the number 

of correctly detected 

events to the total 

number of actual events 

that occurred (Bouttier 

and Marchal, 2024) 

7 False discovery 

rate 

FDR MFDR The proportion of false 

positives among all the 

positive detections 

(Bouttier and Marchal, 

2024) 

8 Equitable threat 

score 

ETS METS It measures how well a 

dataset captures the 

occurrence of rainfall 

compared to random 

chance (Bouttier and 

Marchal, 2024) 

9 Frequency bias FB MFB Ratio of a captured event 

to actual events (Bouttier 

and Marchal, 2024) 

In addition to the overall combined results, the metrics are also grouped into subcategories, 

comprising those related to timeseries, duration curves, categorical event detection 

metrics and precipitation extreme indices, to understand the performance of products well 

across different domains. 

Next, the gridded precipitation products are used as model forcing and their adequacy to 

simulate discharge and groundwater level timeseries as well as various other hydrological 

signatures is quantified. For this, we included a range of hydrological signatures to 

quantify which precipitation data products have most plausibly reproduced multiple 

stream and groundwater signatures. These signatures are related to magnitude (e.g. high 

flow segment volume, mean discharge, median discharge, variance), distribution 

(duration curves), flow dynamics (base flow index, autocorrelation, runoff ratio) and 

responsiveness of the catchment (rising limb density, streamflow elasticity). The same 

six error indicators mentioned before (MNSE, MLNSE, MKGE, MMAE, MCC and MER) are 

applied to observed and simulated timeseries of discharge and GWL along with other 

catchment signatures to quantify the differences. These metrics are listed in Table 4.2. 
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The selection was informed by the need to capture the diverse hydrological responses of 

the catchment, which is characterized by lowland hydrology, with moderate slopes, 

shallow groundwater tables, and a strong surface–subsurface interaction. For example, 

the inclusion of groundwater-sensitive indicators such as baseflow index and streamflow 

elasticity reflects the importance of groundwater contributions to streamflow in this 

region. Similarly, rising limb density and autocorrelation help assess the flashiness and 

memory effects of the system in response to precipitation inputs. 

Table 4.2. Performance metrics for evaluation of simulated variables 

No. Variable/ 

signature 

Abbreviation Performance 

metrics 

Description 

1 Time series of 

stream flow 

Q MNSE,Q; MLNSE,Q; 

MKGE,Q; MMAE,Q; 

MCC,Q 

 

2 Time series of 

groundwater 

levels 

G MNSE,G; MLNSE,G; 

MKGE,G; MMAE,G; 

MCC,G 

 

3 Flow duration 

curve 

FDC MNSE,FDC; 

MLNSE,FDC; 

MKGE,FDC; 

MMAE,FDC 

FDC represents a 

relationship between 

flow magnitudes and 

their exceedance 

probabilities. It gives 

insights into how often 

certain flows occur 

(Jothityangkoon et al., 

2001) 

4 Groundwater 

duration curve 

GDC MNSE,GDC; 

MLNSE,GDC; 

MKGE,GDC; 

MMAE,GDC 

GDC represents a 

relationship between 

groundwater levels and 

their exceedance 

probabilities. It gives 

insights into how often 

certain levels occur 

(Hrachowitz et al., 

2014) 

5 FDC high flow 

segment volume 

HFV MER,HFV It characterises the 

amount of flow from 

extreme events 

(exceedance probability 

< 2%) (Xia et al., 2024) 
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6 FDC mid flow 

segment slope 

MFS MER,MFS It characterises the 

variability and 

behaviour of mid-range 

flows (exceedance 

probability between 20 

– 70 %) (Xia et al., 

2024) 

7 Base flow 

index* 

BFI MER,BFI Contribution of 

baseflow to streamflow 

(Sawicz et al., 2011; 

Zhang et al., 2020b) 

8 Streamflow 

elasticity 

SE MER,SE Sensitivity of 

streamflow to changes 

in precipitation (Sawicz 

et al., 2011) 

9 Autocorrelation 

lag by 1 day 

1-lag MER,1-lag The degree of similarity 

between time series and 

its shifted version. 

Thus, a reflection on 

the memory of the 

system (Hrachowitz et 

al., 2014; Euser et al., 

2013) 

10 Rising limb 

density (month-

1) 

RLD MER,RLD It depicts the 

‘flashiness’ of the 

catchment’s propensity 

(Sawicz et al., 2011) 

11 Runoff ratio 

(monthly) 

RR MNSE,RR; 

MLNSE,RR; 

MKGE,RR; MMAE,RR 

The portion of rainfall 

converted to streamflow 

by the catchment. It 

reflects the water 

use/storage in the 

catchment (Sawicz et 

al., 2011; Xu et al., 

2021)  

12 Mean discharge MQ MER,MQ (Xia et al., 2024) 

13 Mean log-

transformed 

discharge 

MLQ MER,MLQ  
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14 Median 

discharge 

MDQ MER,MDQ (Xia et al., 2024) 

15 Discharge 

variance 

VQ MER,VQ  

16 Variance of log-

transformed 

discharge 

VLQ MER,VLQ  

17 Peak discharge PQ MER,PQ (Xia et al., 2024) 

*Base flow is simulated by the MIKE-SHE model and is compared with the gauge model’s 

base flow for assessment of MER,BFI for each dataset. 

The overall suitability of the four gridded precipitation products either based on their 

agreement with point observations (Table 4.1) or to reproduce the hydrological response 

of the study catchment (Table 4.2), was evaluated by combining the individual metrics 

into two different aggregate criteria. In the first criterion, the Euclidean distance (DE) 

from the perfect model (Hrachowitz et al., 2014) was calculated where each performance 

metric is assigned with an equal weight. 

 𝐷𝐸 = √
∑ (𝑃𝑖 − 𝑀𝑖)2𝑁

𝑖=1

𝑁
 (4.1) 

Where Pi are the perfect values of performance metrics, Mi are the actual values of 

performance metrics and N is the total number of metrics. Since each metric contributes 

equally to the DE, poor performance in a single metric (where Mi deviates significantly 

from 𝑃) will have a squared effect on the DE score. This means that a large difference in 

one metric can disproportionately increase the DE, even if the product performs very well 

in other metrics. This disproportionate effect could penalize a dataset based on a single 

metric, affecting the overall performance assessment. 

To overcome this, an additional criterion based on the Plurality Rank Aggregation method 

(Roberts, 1991) is designed which involves assigning a percentage score to each dataset 

based on how frequently it ranks first (best) across various performance metrics. The 

scores are then summed up across all metrics. For example, if dataset A ranks first at two 

locations for discharge simulation in terms of NSE, while dataset B ranks first at one 

location, dataset A would receive a score of 67%, and dataset B would receive a score of 

33% corresponding to metric MNSE,Q. Then these scores would sum up to determine the 

best dataset across all metrics. This approach ensures that a dataset's poor performance in 

a single metric does not overly influence its overall ranking.  

The percentage score (PS) for dataset ‘j’ considering metric ‘Mi’ is mathematical 

represented in Equation 4.2. 
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 𝑃𝑆𝑗 = ∑(
𝑇𝑖𝑗

𝐿𝑖
 𝑥 100)

𝑁

𝑖=1

 (4.2) 

Where Tij is the total number of times dataset ‘j’ ranks first for metric ‘Mi’ across all 

locations, the Li is the total number of locations for metric ‘Mi’ and N is the total number 

of performance metrics. 

4.2.4 Scenarios formulation 

Five distinct scenarios are formulated to explore the research questions and mainly to 

assess how does the choice of evaluation metrics influence the identification of the most 

suitable gridded data product for precipitation estimation and for reproducing 

hydrological variables. 

In the first scenario (SC-1), point to grid-cell comparison of data from precipitation 

products and three gauging stations is performed using performance metrics listed in 

Table 4.1. The aim is to identify the most plausible gridded product for precipitation 

estimation. In the second scenario (SC-2), the performance metrics applied to timeseries 

data of discharge and GWLs are considered. These are listed in rows 1 and 2 of Table 4.2. 

In the third scenario (SC-3), the focus is on metrics based on hydrological signatures 

which are listed in rows 3 to 17 of Table 4.2. This scenario explores which products 

reproduce hydrological responses in the catchment more plausibly and whether it is 

similar to the one identified as most suitable in scenario SC-2. The fourth scenario (SC-

4) represents a more holistic approach that incorporates both timeseries and signature-

based metrics corresponding to all metrics listed in Table 4.2. The aim is to determine 

how a comprehensive evaluation can alter the conclusions about which gridded product 

is overall the most suitable for hydrological simulation with the MIKE-SHE model in the 

study catchment. The results are also compared with scenario SC-1 to test whether the 

product identified as most suitable from comparison with station data is also the one that 

is the most suitable to reproduce hydrological variables. 

Considering that researchers may select a different set of metrics, scenario SC-5 considers 

all the possible combinations of metrics listed in Table 4.1 and 4.2. This scenario 

acknowledges the subjectivity inherent in metric selection and demonstrates that different 

combinations can lead to different products being identified as the most suitable for a 

specific catchment. In this scenario, 65,535 possible combinations of metrics for 

precipitation estimation (from the set of 16 metrics), 33,55,4431 possible combinations 

for discharge (from the set of 25 metrics) and 511 possible combinations for GWLs (from 

the set of 9 metrics) were tested. The primary aim is to evaluate the influence of metric 

selection on identifying the most suitable precipitation products and to determine the 

products that are identified as suitable across majority of combinations. Further, outcomes 
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are used to examine whether considering multiple metrics for the evaluation of gridded 

precipitation products is beneficial and whether a minimum number of metrics needed for 

effective evaluation can be determined. 

In all scenarios, the selected metrics are combined using two aggregation criteria for 

overall performance assessment i.e. DE (Equation 1) and PS (Equation 2). 

4.3 RESULTS 

4.3.1 Comparison of gridded precipitation products based 
hydrological simulations with gauge-based model 

Hydrological variables were obtained as results of model runs with input precipitation 

from gauging stations, ERA5, IMERG, MSWEP and EOBS. The precipitation with the 

corresponding simulated discharge at the catchment’s outlet on a daily scale for the period 

2017-2019 is shown in Figure 4.1. The simulated discharge from the four gridded 

precipitation products (QERA5, QIMERG, QMSWEP and QEOBS) is broadly consistent with the 

simulated discharge from the in-situ precipitation gauge data (QGauge). In terms of KGE, 

the discharge is better reproduced by the IMERG at the outlet than the station data (0.68 

vs 0.61). Whereas, in NSE, EOBS (0.69) performed better than IMERG (0.52) but not 

better than the gauge model (0.71). The performance of each product against the gauge 

data to simulate discharge is not consistent across different metrics (Figure 4.2a). For 

instance, EOBS is better in MNSE,Q, MLNSE,Q, MMAE,Q, MCC,Q , MMAE,FDC and MKGE,RR than 

the gauge model. The respective values are 0.57, 0.64, 0.70 m3 s-1, 0.77, 0.38 m3 s-1 and 

0.77 against 0.56, 0.60, 0.73 m3 s-1, 0.76, 0.42 m3 s-1 and 0.51 for QGauge, respectively. 

Whereas, IMERG performed better than the gauge model in eight metrics which is the 

highest among all products. These metrics are MKGE,Q, MNSE,FDC, MKGE,FDC, MER,HFV, 

MER,1-lag, MER,VQ, MER,VLQ, MER,PQ with respective values 0.68, 0.94, 0.75, 0.19, 0.28, 

0.003, 0.22 and 0.08 against 0.59, 0.83, 0.63, 0.27, 0.36, 0.26 and 0.47 for QGauge. In the 

case of ERA5 and MSWEP, although overall performance to reproduce discharge is 

comparatively poor among products but still for many metrics the values are better than 

the gauge model. For example, ERA5 has performed better in MER,MFS (0.84 vs 0.95), 

MER,SE (0.01 vs 0.06), MER,MQ (0.01 vs 0.02), MER,MLQ (0.09 vs 0.12) and  MSWEP in 

MLNSE,FDC (0.89 vs 0.86), MER,RLD (0.12 vs 0.20), MNSE,RR (0.73 vs 0.68), MLNSE,RR (0.75 

vs 0.67), MER,MDQ (0.18 vs 0.35). The results align with the findings of Almagro et al. 

(2021), who also observed that the precipitation product's performance in simulating 

discharge and signature is better than ground observed data at many locations in the 

Brazilian biomes including the Atlantic Forest, Cerrado, and Caatinga biomes. 
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In Figure 4.2, the values of metrics related to relative errors (MER) and MAE are inverted 

by subtracting them from 1 to ensure that higher values represent better performance. 

Greater variability is observed in discharge metrics’ values across different precipitation 

Figure 4.1. Observed and simulated discharge at the catchment outlet along with 

catchment average precipitation data from gauge station and the gridded precipitation 

products (a) ERA5, (b) IMERG, (c) MSWEP and (d) EOBS 

Figure 4.2. Average values of evaluation metrics for (a) discharge and (b) GWLs, 

across 3 discharge points and 13 groundwater points. Note: values of MAE are not 

normalized 
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products compared to the metrics’ values for GWLs (Figure 4.2) which suggests that 

discharge is more sensitive to changes in precipitation than the GWLs. In eight out of 

nine metrics, EOBS performed equally well (MLNSE,G, MMAE,G, MNSE,GDC, MLNSE,GDC) or 

a bit better than the gauge model (MNSE,G, MKGE,G, MCC,G, MMAE,GDC) with a cumulative 

difference of only 0.002. MSWEP performed better than the gauge model only in 

MKGE,GDC (0.65 vs 0.64) and equally well in MMAE,GDC (0.180 vs 0.183). However, ERA5 

and IMERG did not outperform the gauge model for groundwater simulation in any of 

the metrics.  

The values of different metrics reflected the adequate ability of the model to capture the 

hydrological fluxes in the catchment. However, the main focus of the study is on the 

relative performance of precipitation products for hydrological simulations using a range 

of metrics, instead of assessing the model's own accuracy or effectiveness. Therefore, in 

the following sections, precipitation products are analysed in terms of their relative 

performance without comparing with the hydrological variables simulated with gauge-

based model. 

4.3.2 Scenario 1 comparison of gridded precipitation products 
with gauging station data 

The spatial variability in the performance of gridded products across three precipitation 

stations (represented by diamonds) using the frequent applied metrics (KGER, NSER, 

LNSER and MAER) are shown in Figure 4.3. Considering the timeseries (Figure 4.3a-d), 

EOBS has performed strongly in precipitation estimation across the majority of locations. 

The dominance is particularly visible in NSER (0.78 vs 0.443, 0.066, 0.463 for ERA5, 

IMERG and MSWEP, respectively), LNSER (0.60 vs 0.57, 0.35, 0.59 for ERA5, IMERG 

and MSWEP, respectively) and MAER (0.9 mm d-1 vs 1.51 mm d-1, 1.91 mm d-1, 1.47 

mm d-1 for ERA5, IMERG and MSWEP respectively) while in terms of KGER, MSWEP 

has outperformed EOBS at two locations (R1: 0.75 vs 0.72; R2: 0.77 vs 0.75) while at a 

third location (R3) EOBS has shown better results (0.78 vs 0.71). In contrast, ERA5 has 

shown limited performance with no dominance at any location while among all the 

products, IMERG has the poorest values for all the metrics. Comparing both ERA5 and 

IMERG with MSWEP, the difference in average KGER, NSER, LNSER and MAER for 

ERA5 is only 0.5%, 4.4%, 3.6% and 2.5% while in the case of IMERG, the differences 

in metrics values are above 20%. For the metrics applied on the precipitation duration 

curve (Figure 3.4e-f), EOBS has the best value only at location R3 for KGERDC (0.86 vs 

0.78, 0.85, 0.77 for ERA5, IMERG and MSWEP respectively) and NSERDC (0.97 vs 0.90, 

0.96, 0.92 for ERA5, IMERG and MSWEP respectively). Whereas, ERA5 and MSWEP 

have better values than EOBS at locations R1 and R2 where ERA5 has shown dominance 

in terms KGERDC (R1: 0.95, R2: 0.98) and MAERDC (R1: 0.15 m d-1, R2: 0.10 mm d-1) 
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while at the same locations, MSWEP is leading in terms of NSERDC (R1: 0.99, R2: 0.99) 

and LNSERDC (R1: 0.97, R2: 0.99). 

 

Overall, the results of metrics applied to timeseries data (Figure 4.3a-b diamonds) clearly 

show the dominance of EOBS except for a few locations where MSWEP has better values. 

However, in terms of the rainfall duration curve (Figure 4.3e-f diamonds) each product 

has the best value at least at two locations affirming the strengths of these products with 

specific rainfall characteristics at particular locations. Considering the spatial distribution, 

it is complex to clearly identify any product as the most suitable one. Therefore, the 

Figure 4.3. The best performing gridded product at each location on comparing with 

rain gauge data (diamonds, 3 locations), in simulating discharge (squares, 3 locations) 

and groundwater levels (circles, 13 locations) using metrics KGE, NSE, LNSE and 

MAE for timeseries (a-d) and duration curves (e-f). The colour of a marker represents 

the product with the best metric value at the specific location while the shape of a 

marker represents the variable. The size of a marker is proportional to the values of 

each metric. The MAE values (d and h) are normalized and inverted (subtracted from 1) 

to ensure that bigger markers represent better performance 
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metrics are combined for the overall assessment using two criteria (DE and PS) explained 

in section 4.2.3 using Equations 4.1 and 4.2 and results are shown in Figure 4.4. 

EOBS has the best score across most of the timeseries metrics indicated by both criteria: 

DE(1-5) and PS(1-5) with scores of 0.467 and 400 respectively. The MSWEP has second 

best scores with DE(1-5) = 0.743 and PS(1-5) = 100. While for metrics applied to RDC, DE(6-

9) supported ERA5 as the most suitable product with a score of 0.13 vs 0.32, 0.14, 0.24

for IMERG, MSWEP and EOBS respectively. Whereas, according to PS6-9) both MSWEP

and ERA5 are equally suitable having equal scores (133). Therefore, in detecting the

overall magnitude and frequency of rainfall, ERA5 and MSWEP are closest to the rain

gauge station data. The aggregated score of precipitation extreme indices (MER,R95pt0t,

MER,CDD and MER,CWD) identified MSWEP as the most suitable product with DE(10-12) as

Figure 4.4. The performance of gridded precipitation products over the catchment for each 

metric (Table 4.1) represented individually and combined using criteria: (1) the Euclidean 

distance (DE) on the left side and (2) the Percentage score (PS) on the right side 



4. Evaluation of precipitation products

74 

0.230 vs 0.37, 0.72, 0.36 for ERA5, IMERG and EOBS, respectively while as per PS(10-

12) both MSWEP and ERA5 have same scores (107 vs 20, 67 for IMERG and EOBS,

respectively). Considering the metric for the detection of events (MPOD), ERA5 has the

top score (DE: 0.14, PS: 75). However, it showed the lowest performance in false

discovery rate (MFDR; DE: 0.21, PS: 0) which suggests that it detected rainfall events that

did not actually occurred. Whereas, EOBS has the best scores in MFDR (DE: 0.06, PS:

100) and METS (DE: 0.40, PS: 100) that show its balance behaviour between detecting

rainfall events without false alarms. Overall on combining the outcomes of detection

metrics, EOBS stood out as the most suitable product as per both criteria with the value

of DE as 0.23 vs 0.30, 0.37, 0.28 (PS: 220 vs 115, 20, 45) for ERA5, IMERG and MSWEP

respectively.

Overall, the aggregated scores from both criteria considering all the metrics from Table 

1, identified EOBS as the most suitable product to estimate precipitation in comparison 

with gauging station data. The DE (PS) score for EOBS is 0.35 (753) against 0.48 (355), 

0.69 (107), 0.45 (385) for ERA5, IMERG and MSWEP, respectively. EOBS also has the 

best scores in most of the subcategories, especially in metrics for timeseries data. MSWEP 

also performed well with slightly lagging performance in a few metrics than EOBS and 

has second best overall scores. ERA5 has shown good performance in RDC metrics and 

extreme events magnitude but struggled in some event detection and timeseries related 

metrics. IMERG consistently underperformed across nearly all metrics except from 

MLNSE, RDC where it gained the best score. EOBS emerged as the most suitable product 

overall, especially for time series metrics, while MSWEP showed consistent secondary 

performance. ERA5 performed well for duration curve metrics and extreme events but 

had limitations in event detection. IMERG underperformed across most metrics. These 

results highlight the value of using multiple metrics for a comprehensive evaluation. 

4.3.3 Scenario 2 comparison of gridded precipitation products to 
reproduce discharge and groundwater levels 

The spatially distributed performance of precipitation products to simulate discharge and 

GWLs at different locations in the catchment evaluated in terms of MKGE, MNSE, MLNSE 

and MMAE are represented in Figure 4.3(a-d). For the discharge (represented by squares 

in Figure 4.3), EOBS has shown clear dominance in terms of MNSE, MLNSE and MMAE at 

all three locations (Q1, Q2 and Q3) with average values of 0.57, 0.64 and 0.70 m3 s-1 

respectively. However, in terms of MKGE (which is one of the most considered 

performance metrics in recent literature), IMERG has outperformed other products at all 

three locations (Q1: 0.68, Q2: 0.70, Q3: 0.66). Particularly when compared with EOBS, 

the percentage differences are 9.33 %, 10.55 % and 19.21 % at locations Q1, Q2 and Q3, 

respectively.  
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For GWLs (Figure 4.3a-d), EOBS performed slightly more plausibly than others, 

especially in the middle part of the catchment (GW6-11) where the average values of 

MNSE,G (MLNSE,G) are 0.55 (0.54) against 0.47 (0.46), 0.43 (0.43) and 0.47 (0.47) for ERA5, 

IMERG and MSWEP, respectively. In terms of MKGE,G, IMERG, MSWEP and EOBS 

have performed equally well by having the best score at four locations each with average 

values of 0.55, 0.56 and 0.58, respectively. ERA5 was the least frequent best performing 

product with best values only at GW10 for MKGE,G  (0.81) and GW12 for MMAE,G (0.22 

m). 

The overall performance of gridded products to capture discharge and groundwater levels 

for the entire catchment aggregated using the DE and PS criteria are represented in Figure 

4.5. The dominance of EOBS as the best performing product is clearly visible except for 

MKGE,Q where IMERG has performed better with values of DE: 0.32 and PS:100 against 

DE: 0.41 and PS:0 for EOBS. However, with respect to the final scores of DE and PS on 

aggregating all metrics, EOBS is identified as most suitable for simulating both discharge 

and GWLs (DE: 0.46 and PS: 723). The results are more ambiguous for the second best 

product. For discharge, according to DE, MSWEP has second best score (0.54 vs 0.59 for 

IMERG) whereas according to PS, IMERG has second best score (100 vs 0 for MSWEP). 

Contrary, in GWLs, IMERG is second best as per DE (0.51 against 0.52 for MSWEP) 

whereas MSWEP is second best as per PS (84.6 vs 76.9 for IMERG). However, the 

margin in DE (0.01) and PS (7.7) values for IMERG and MSWEP is not very high. 

Considering discharge and GWL together, IMERG is in second place as per PS criteria 

(176.9 vs 84.6 for MSWEP) but it is in worst place as per DE criteria (0.55 vs 0.54, 0.53 

for ERA5 and MSWEP, respectively). This may be due to its poor performance in MMAE 

where its value is 23 % worse than MSWEP and its ‘square of difference from perfect 

values’ is approximately 52 % worse (see Equation 1). This significantly affected the 

overall ranking of IMERG according to the DE criteria. 
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Overall, IMERG despite having the best KGE values for discharge (MKGE,Q, DE:0.10, 

PS:100 ), struggles with some other metrics such as MLNSE,Q (DE:0.29, PS:0) and MMAE,Q 

(DE:0.92, PS:0) indicating possible difficulties with log scaled flow (low flow conditions) 

and absolute error. On the other hand, EOBS demonstrated the best performance in 

simulating both discharge and GWLs and emerged as the best product overall for scenario 

SC-2. However, considering the spatially distributed results, its performance is not 

consistent at all the locations. MSWEP showed moderate consistent performance but did 

not attain the highest score in any single metric. ERA5 obtained the lowest score among 

the products reflecting comparatively large discrepancies from the observed data. In SC-

2, EOBS was identified as the most suitable product overall for simulating both discharge 

and groundwater levels, despite some spatial inconsistencies. IMERG performed well in 

terms of KGE, particularly for discharge, but showed weaknesses in low-flow and 

absolute error metrics, affecting its overall ranking. MSWEP showed balanced but less 

dominant performance, while ERA5 consistently lagged behind. 

4.3.4 Scenario 3 comparison of gridded precipitation products to 
reproduce signatures 

Figure 4.5. The performance of gridded precipitation products to reproduce discharge 

and groundwater levels evaluated using timeseries based metrics (Table 4.2, at 1 and 

2) represented individually and combined using criteria: (1) DE on the left side and

(2) PS on the right side. Performance is ranked on a scale from 1 to 4, with 1

representing the most suitable product while 4 representing the least one
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In this scenario, the gridded precipitation products' suitability to reproduce flow and 

groundwater signatures has been analysed using 24 different metrics listed in Table 4.2 

(3-17). The spatial distributed results of metrics applied to duration curves of discharge 

and GWLs are represented in Figure 4.3(e-h). For discharge (represented by squares), at 

all three locations, IMERG has the highest values for MKGE,FDC and MNSE,FDC with 

respective average values of 0.75 and 0.94 against ERA5 (0.58, 0.79), MSWEP (0.55, 

0.76) and EOBS (0.63, 0.84), respectively. Whereas, in terms of MLNSE,FDC and MMAE,FDC, 

IMERG is not among the top ranked at any of the discharge points. In MLNSE,FDC, MSWEP 

has the highest values at Q1 (0.78) while EOBS has the highest at Q2 (0.96) and Q3 (0.93). 

While, for MMAE,FDC, EOBS has the highest values across all three locations with an 

average of 0.38 m3
 s

-1 against 0.46 m3
 s

-1, 0.47 m3
 s

-1, 0.42 m3
 s

-1
 for ERA5, IMERG and 

MSWEP, respectively. 

IMERG attained the best scores in the metrics MER,HFV (ERA5: 0.57, IMERG: 0.44, 

MSWEP: 0.61, EOBS: 0.52) and MER, PQ (ERA5: 0.75, IMERG: 0.28, MSWEP: 0.73, 

EOBS: 0.63) that reflect the strength of the product to simulate high values comparatively 

better. Further, duration curves represent the distribution of magnitudes without 

considering time stamps and the results showed that IMERG excelled in simulating the 

high magnitudes (as evidenced by the metrics MER,HFV and MER, PQ). This strength gave 

IMERG an advantage in terms MNSE,FDC, as it is influenced by the high values and show 

enhanced efficiencies in such cases (as discussed in section 1). Conversely, in MLNSE,FDC, 

the log transformation of data highlighted the low values and in such a situation MSWEP 

and EOBS performed better than IMERG. 

Regarding the spatially distributed results of GWL duration curves (GDC; represented by 

circles in Figure 4.3e-f), the number of locations where EOBS is identified as most 

suitable for reproducing GDC has reduced compared to scenario SC-2. It lost the top rank 

at 1, 4, 5 and 6 number of locations in MKGE, MNSE, MLNSE and MMAE respectively. For 

instance, at location G5, the MSWEP ranked as first in MNSE,GDC where values are 0.47 

(ERA5), 0.30 (IMERG), 0.62 (MSWEP) and 0.60 (EOBS). However, values are in close 

range for different products when averaged across all locations (G1-G13). For instance, 

the average values of MNSE,GDC for different products are 0.54 (ERA5), 0.57 (IMERG), 

0.58 (MSWEP) and 0.60 (EOBS). Therefore, as per DE criteria (Figure 4.6, DE(20-25)), 

EOBS remained the most suitable for reproducing groundwater signatures despite losing 

top rank at many locations (DE: 0.40, 0.37, 0.36, 0.35 for ERA5, IMERG, MSWEP and 

EOBS respectively). MSWEP is the second best as per DE criteria falling behind just by 

0.01. However, it is the best performer as per PS criteria followed by IMERG, as in PS 

criteria the scoring is based on the percentage of times a product is ranked first (PS: 15, 

123, 154, 108 for ERA5, IMERG, MSWEP and EOBS respectively).  
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In discharge simulation, although, IMERG has higher average values of MNSE,FDC and 

MKGE,FDC than EOBS by 11.2 % and 15.9 % respectively, but the average values of 

MLNSE,FDC and MMAE,FDC are lower by 15.2 % and 18.9 %, respectively. Consequently, as 

per DE criteria (DE(1-4)), IMERG is ranked second best after EOBS (DE: 0.34, 0.29, 0.33, 

0.28 for ERA5, IMERG, MSWEP and EOBS, respectively) while it has higher score as 

Figure 4.6. The performance of gridded precipitation products to reproduce discharge 

and groundwater signatures evaluated using signatures-based metrics (Table 4.2, row 

3-17) represented individually and combined using criteria: (1) the Euclidean distance

(DE) on the left side and (2) the Percentage score (PS) on the right side. Performance

is ranked on a scale from 1 to 4, with 1 representing the most suitable product while 4

representing the least one 
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per PS criteria due to its better performance at more locations (PS: 0, 200, 33.3, 166.6 for 

ERA5, IMERG, MSWEP and EOBS, respectively). 

In the metrics related to peak flows (MER,PQ), flow variance (MER,VQ and MER,VLQ) and 

high segment flow (MER,HFV), IMERG attained high aggregated score than other products 

in capturing these flow signatures (DE:0.36 and PS:366.6). Whereas, in these metrics, 

EOBS ranked second (DE:0.56 and PS: 33). In addition to these, IMERG also performed 

best in metrics related to base flow index (MER,BFI, DE:0.05 and PS:100 ) and stream flow 

elasticity (MER,SE, DE:0.53 and PS:100) indicating that most of the catchment 

characteristics are well captured by IMERG. However, in the metrics related to the runoff 

ratio (MNSE,RR, MLNSE,RR, MMEA,RR and MKGE,RR), IMERG has comparatively the least 

aggregated DE score and MSWEP outranked other products with respective DE and PS 

scores of 0.24 and 300 against 0.29 and 100 for IMERG. In the metrics related to average 

flows (MER,MQ and MER,MLQ) and mid-segment of FDC (MER,MFS), ERA5 attained the 

highest aggregated score which highlights its strength to simulate the average flows better 

than other products (DE: 0.56, 0.65, 0.65, 0.60 and PS: 166.6, 33.3, 133.3, 33.3 for ERA5, 

IMERG, MSWEP and EOBS, respectively).   

Based on all metrics related to discharge (Figure 4.6, 1-20), IMERG is the most suitable 

in scenario SC-3 for reproducing flow signatures (DE(1-20):0.43 and PS(1-20):900). Whereas, 

for reproducing groundwater signatures, MSWEP attained highest score in PS criteria 

(154 vs 108 for EOBS), while EOBS ranked first as per DE criteria (0.35 vs 0.36 for 

MSWEP).  

Given these results in scenario SC-3, each product has shown its strengths and 

weaknesses in terms of individual metrics. However, considering both discharge and 

groundwater signatures related metrics together, IMERG has the highest overall score in 

both DE and PS criteria and is identified as most suitable for reproducing the hydrological 

signature in the catchment (DE: 0.42 and PS: 1023). Whereas, EOBS is second best as 

per DE criteria (DE: 0.43 and PS: 541) and MSWEP is ranked second per PS criteria (DE: 

0.46 and PS:820.5).  

4.3.5 Scenario 4 comparison of precipitation gridded products to 
reproduce discharge, groundwater levels and hydrological 
signatures 

In this scenario, all the metrics used in scenarios SC-2 and SC-3 are analysed together 

using both the DE and PS criteria. To evaluate the performance of gridded precipitation 

products in simulating the discharge and GWL along with relevant signatures, the DE and 

PS scores were also calculated separately for discharge and GWL by considering all the 

metrics that are related to these variables, as mentioned in Table 4.2. The results are 

represented in Figure 4.7. As per DE criteria, EOBS is the best precipitation product for 

simulating discharge (DEQ: 0.45), GWL (DEG: 0.42), and both together along with 
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signatures (DEoverall: 0.44). Whereas, IMERG is the second most suitable product with 

scores of 0.47, 0.45 and 0.46 for DEQ, DEG and DEoverall, respectively. 

However, PS criteria generated different results when discharge or GWL were analysed 

separately. In the case of discharge, the top ranked product is IMERG (PSQ: 1000) unlike 

in the DE criteria where EOBS (PSQ: 833) holds the top spot. In GWL, EOBS remained 

top ranked in both criteria (PSG: 430.8 and DEG: 0.42). Whereas, the second best is 

different, which is MSWEP in the case of PS (PSG: 238.5 and DEG:0.46) and IMERG in 

the case of DE (PSG: 200 and DEG:0.45). However, the final ranks in overall results 

(PSoverall and DEoverall) are the same in both criteria. The percentage difference in scores 

of DE and PS for ERA5, IMERG and MSWEP compared to EOBS are -10.8 %, -5.3 %, 

-9.6 % and -76.5 %, -5.1 %, -28.4 % respectively. The consistency in final rankings 

increases confidence in the suitability of best products for the simulation of hydrological 

processes, which is EOBS, with IMERG lagging only by approximately 5 % difference 

in both criteria. 

Scenario SC-4 results show that EOBS as the most suitable precipitation product for 

reproducing discharge, groundwater levels, and related hydrological signatures, based on 

both DE and PS criteria. IMERG ranks second overall, with particularly strong 

performance for discharge under PS criteria. MSWEP shows moderate performance, 

especially for groundwater. 

4.3.6 Scenario 5 comparison of gridded precipitation products 
considering all possible metrics combinations 

In scenarios 1-4, the specific sets of metrics are considered to analyse that different sets 

of metrics can lead to varying conclusions about the most suitable gridded product for 

Figure 4.7. The performance of precipitation gridded products to reproduce hydrological 

variables along with signature evaluated using all performance metrics (Table 2) 

combined using criteria: (1) DE on the left side and (2) PS on the right side. 

Performance is ranked on a scale from 1 to 4, with 1 representing the most suitable 

product while 4 representing the least one. DEQ / PSQ represents the results of metrics 

applied to discharge while DEG / PSG represents the results for GWL 
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estimation of precipitation compared to gauge data and for reproducing hydrological 

variables and signatures. There is a total of 50 metrics listed in Tables 4.1 and 4.2. Out of 

which 16 are related to rainfall, 25 to discharge and 9 to groundwater. The selection of 

metrics can be random from the total number of considered metrics leading to the possible 

number of combinations 65,535 for precipitation, 33,554,432 for discharge and 511 for 

groundwater. DE and PS values for each combination were calculated. The number of 

times each product ranked first in these combinations was summed and plotted against 

the number of metrics considered for making combinations from the set of total metrics 

(Figure 4.8). 

The results of combinations indicated that when the number of considered metrics are 

less then more products have a chance to be ranked first. For instance, when a single 

metric is considered to identify the most suitable product for precipitation estimation then 

31.3 %, 6.3 %, 12.5 %, 50 % of outcomes as per DE and 35.3 %, 0 %, 29.4 %, 35.3 % of 

outcomes as per PS supported ERA5, IMERG, MSWEP and EOBS, respectively. 

However, as the number of considered metrics is increasing, the likelihood of unsuitable 

products to be identified as most suitable is decreasing and outcomes are favouring fewer, 

more consistent performing products. For example, when any of the 7 out of 16 metrics 

are considered for evaluation of precipitation estimation then EOBS has a 74.8 % and 

78.2 % likelihood to be identified as most suitable per DE and PS.  

Similarly, in the case of discharge, when a single metric is considered then ERA5, 

IMERG, MSWEP and EOBS have 16 %, 36 %, 24 %, 24 % of results as per DE and 11.1 

%, 37 %, 22.2 %, 29.6 % of results as per PS, respectively, that identified these products 

as most suitable for discharge simulation. Whereas, the number of metrics for which any 

single product has attained a 75% likelihood to be identified as most suitable is 16 as per 

DE (EOBS) and 19 as per PS (IMERG). 

As per DE criteria for discharge (Figure 4.8c), if the considered metrics are more than 7, 

there is less than 1 % likelihood that ERA5 and MSWEP can be identified as best. While 

up to 23 metrics, there are 4.67 % of combinations where IMERG can be the top ranked 

product. As per PS criteria for discharge (Figure 4.8d), the results are 50 % converged 

towards IMERG when the number of metrics is 8 against 0.2 %, 19.3 % and 30.4 % 

likelihood for ERA5, MSWEP and EOBS respectively. The results highlighted the 

sensitivity of both the numbers and the choice of metrics for precipitation product 

evaluation. Testing multiple combinations reduces the likelihood of identifying the wrong 

product as the most suitable and the most persistent performing product can be identified.  
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For GWLs, in both criteria, EOBS dominated by consistently ranking first for nearly all 

combinations. Especially in DE criteria (Figure 4.8e), out of 511 combinations, there are 

only three possible combinations where MSWEP could be at top. Under PS criteria 

(Figure 4.8f), IMERG and MSWEP have shown marginal existence by performing best 

in 7 and 27 combinations respectively but EOBS performance in GWLs metrics is 

plausible. However, there is a combination comprising of 5 metrics for which MSWEP is 

most suitable for GWL simulation. Similarly, in the case of discharge, the overall 

performance of ERA5 is very poor but still, there are 30,444 and 11,579 combinations of 

Figure 4.8. Stack area plots representing the percentage of time each gridded product 

identified as most suitable for precipitation estimation (a, b), discharge (c, d) and 

groundwater levels (e, f) corresponding to possible combinations considering a specific 

number of metrics from the set of metrics. The left panel (a,c and e) represents the result for 

DE criteria while the right panel (b,d and f) represents PS criteria 
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metrics under DE and PS criteria, respectively, where it has been identified as the most 

suitable. This highlights the importance of metrics selection and the need for a detailed 

analysis considering all possible combinations which clearly illustrate the likelihood of 

all precipitation products to be identified as most suitable for hydrological applications. 

Overall Scenario SC-5 demonstrates that the identification of the most suitable 

precipitation product is highly sensitive to the number and combination of metrics used 

particularly when then number of metrics are small. When fewer metrics are considered, 

the likelihood of misidentifying a less suitable product as the best increases. As more 

metrics are included, the outcomes converge towards consistently strong performers 

(EOBS for precipitation estimation and GWL simulation, and IMERG for discharge, 

particularly under PS criteria). This scenario highlights the critical importance of using 

multiple, diverse metrics to ensure robust and reliable evaluation of precipitation products 

in hydrological modelling. 

4.4 DISCUSSION 

The main objective this study aims to address is to evaluate the influence of metric 

selection on identifying the most suitable gridded products for precipitation estimation 

from comparison with gauging station data and for reproducing hydrological variables 

(discharge and groundwater levels). The results of different scenarios and metrics 

combinations clearly reflect that the choice of evaluation metrics has a significant 

influence in determining the most suitable product. Depending on which metrics and 

which variables have been selected for evaluation, the results have varied a lot. For 

instance, individual metrics such as NSE applied to stream flow identified EOBS as most 

suitable for discharge simulation while KGE value for stream flow favoured IMERG 

(scenario SC-2). This contrast is due to the mathematical sensitivity of the metrics. NSE 

is highly sensitive to deviations between observed and simulated values because of its 

squared error formulation, which disproportionately penalizes errors in the timing and 

magnitude of peak flows. As a result, a few mismatches (especially during high-flow 

events) can significantly lower the NSE score, even when the overall hydrograph pattern 

is reasonably represented. The comparative low scores of IMERG than the EOBS in event 

detection metrics (Scenario SC-1) reflects its limitations in accurately capturing the 

timing and occurrence of rainfall events, which likely contributed to its lower score in 

NSE.  

In contrast, KGE integrates three components (correlation, variability, and bias) into a 

single metric, providing a more balanced evaluation of the time series. This makes it more 

tolerant to timing errors compared to NSE and more reflective of overall hydrograph 

shape and consistency. Notably, the IMERG Final product is bias-corrected using 

monthly gauge data from Global Precipitation Climatology Center (Huffman et al., 2020), 



4. Evaluation of precipitation products 

 

84 

 

which likely align its long-term mean and improve its performance in metrics that 

emphasize distribution and correlation, such as KGE. Further, hydrological signatures 

tend to evaluate specific aspects of the flow regime (e.g., peak flow volume, rising limb 

steepness, baseflow ratio) without being as sensitive to temporal alignment or individual 

outliers. This allows IMERG’s strengths in capturing general hydrological aspects to be 

reflected more clearly in the signature-based analysis (scenario SC-3). Overall, EOBS 

performed well across a broader range of metrics and was identified as the most suitable 

for discharge and GWL simulation in scenario SC-2 and SC-4. Its consistently strong 

performance can be attributed to its gauge-based interpolation method, which aligns 

closely with observed station data. This illustrates the significance of interpreting metrics 

in the context of their mathematical sensitivities and the hydrological behaviours they 

emphasize. 

Additionally, the results of scenario SC-5, where multiple combinations of metrics are 

tested, strongly support that the use of a single metric can lead to an unsuitable choice of 

gridded product either for precipitation estimation or hydrological simulations. The use 

of multiple metrics multiple combination provided a more robust and comprehensive 

assessment of the product’s performance. Further, the use of different signatures in 

addition to timeseries based metrics, revealed the strengths and weaknesses of each 

product under varying hydrological conditions. This supports the findings of previous 

studies (Kiraz et al., 2023; Moges et al., 2022), which emphasize that relying solely on 

statistical performance measures may overlook important deficiencies in hydrological 

models and inputs. For instance, Kiraz et al. (2023) proposed a signature-based efficiency 

metric suitable for evaluating models in ungauged basins, showing that hydrological 

signatures can be regionalized and carry meaningful performance information beyond 

traditional metrics like NSE or KGE. Similarly, Moges et al. (2022) demonstrated that 

signature-based and process-based diagnostics can uncover functional mismatches in 

models that would otherwise appear satisfactory using only time series metrics. These 

studies reinforce our approach of using diverse time series metrics and hydrological 

signatures to perform a more comprehensive assessment of gridded precipitation product 

suitability. 

Also, the results of scenario SC-5 reveal that the probability of consistently identifying 

the most suitable precipitation product increases with the number of metrics considered 

in the evaluation. This trend can be attributed to the fact that individual performance 

metrics capture distinct and often complementary aspects of model behaviour, such as 

central tendency (average conditions), variability, error magnitude, event detection 

capability, or responsiveness. Consequently, evaluations based on a limited or unbalanced 

set of metrics may reflect only partial product performance, leading to non-representative 

conclusions. 
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As the number of metrics increases, particularly when they are diverse and representative 

of multiple hydrological and statistical domains, the evaluation becomes more robust. 

This is because aggregating across multiple performance dimensions tends to mitigate the 

dominance of any single metric and minimizes the influence of outliers or artefacts. This 

approach improves the representativeness of the evaluation by combining time series 

statistical metrics with hydrological response characteristics, thereby increasing the 

stability of the product rankings. 

The findings emphasize the importance of adopting multi-metric and multi-combination 

evaluation framework in hydrological modelling studies. Furthermore, the combinatorial 

analysis demonstrates that the selection of evaluation metrics significantly influences the 

outcome of product suitability assessments. This has important implications for future 

research, suggesting that the evaluation of precipitation products should move beyond 

conventional reliance on one or two widely used metrics (e.g., NSE or KGE), and instead 

adopt a more comprehensive, systematic approach. Incorporating a broader set of 

performance metrics can reduce the risk of overfitting product selection to a narrow 

evaluation scope and lead to more generalizable and defensible conclusions. 

In this study, we attempted to determine the minimum number of metrics considering that 

the likelihood of identification of the most suitable product for precipitation estimation 

or hydrological simulations is at least more than 50 %. Few researchers have suggested 

the evaluation criteria should embrace at least one absolute error metric, one 

dimensionless metric for good of fit quantification and a graphical representation (Ritter 

and Muñoz-Carpena, 2013; Biondi et al., 2012) but any recommendation about the 

minimum number of metrics to be used for model evaluation was lacking. We agree that 

more metrics are better but due to the high computational burden and enhanced 

complexity related to result analyses, it will also become more challenging. Therefore, in 

scenario SC-5, it was explored by testing different numbers of metrics along with their 

possible combinations. In the case of precipitation estimation and discharge simulation, 

when the number of metrics considered is more than seven, the likelihood of the most 

unsuitable product to be ranked as best is less than 1 % and the likelihood of the most 

suitable product to be ranked at the top is more than 50 %. Whereas for the groundwater, 

the situation is quite different from the precipitation estimation and discharge, where the 

likelihood of the most suitable product to be identified as best is already about 90 % for 

GWL simulation by considering 3 metrics only. It is important to mention that the 

findings regarding the minimum number of metrics varied depending on the type of 

variable and the overall performance criteria (DE and PS). Moreover, the findings are 

based on the data from only one catchment whereas more generalizable outcomes could 

be achieved by extending the analysis to a larger number of watersheds (Kratzert et al., 

2023). 
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The other question this research aimed to address was whether the product identified as 

most suitable based on comparison with station data is also the most suitable for 

reproducing hydrological variables? The results suggest that, although there is some 

alignment between the products' performance in precipitation estimation (as evaluated 

against gauge station data) and in hydrological simulations, this relationship is not 

consistent across all products and metrics. For instance, EOBS showed the best 

performance in precipitation estimation followed by MSWEP on the direct comparison 

with the gauge data (scenario SC-1). EOBS also performed well in simulating 

hydrological variables (scenarios SC-2 and SC-4). This indicated that the comparison 

with the gauging station data could be a good approximation for identifying the most 

suitable product for reproducing variables to some extent but could not be relied upon as 

the only criteria. This is because IMERG showed the worst performance in comparison 

with the gauge data but performed second best in reproducing hydrological variables 

(scenario SC-4) and best in reproducing signatures (scenario SC-3). Such discrepancy in 

outcomes suggests that the comparison of precipitation products with gauge data alone is 

not enough to judge the product’s ability to simulate hydrological processes in the 

catchment. The findings align with Gebrechorkos et al. (2024), where the authors 

advocate the approach for precipitation products evaluation that considers the comparison 

of observed and simulated variables, as it can identify the product that can best capture 

the hydrological variability in the region. Similarly, Alexopoulos et al. (2023) did not 

compare the precipitation products with gauge data with an argument that gauges are only 

representative of the area that is covered by the measuring instrument (about 200 cm2 for 

the well-known instrument). Whereas, the precipitation products might be outperforming 

gauge station data in capturing the spatial variability which is important in distributed 

hydrological simulations. Therefore, the multi-metric approach for comparison of 

simulated variables with the observed data is more comprehensive for the identification 

of the most suitable products for hydrological simulations instead of making a judgement 

based on comparison with the gauge data only. 

Further, considering all metrics, no single precipitation product consistently performed 

well across all spatial locations in our study (Figure 4.3), which aligns with the findings 

of previous large scales studies (Gebrechorkos et al., 2024; Dembele et al., 2020; Beck et 

al., 2017). These studies report significant spatial variability in product performance, 

emphasizing that no single dataset performs best across all regions. For instance, Dembele 

et al. (2020) and Gebrechorkos et al. (2024) found that the top-performing product varied 

across climatic zones and basins, while Beck et al. (2017) highlighted that even globally 

well-performing datasets like MSWEP showed inconsistent accuracy across catchments. 

Although those studies covered much larger areas but similar pattern is observed in the 

lowland study area which reinforce the importance of product evaluation at comparative 

small scales as well. 
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Two independent criteria (DE and PS) for the multiple metric aggregation have be used 

to reach the final conclusions. Among these criteria, DE criteria have been employed by 

researchers in many studies to combine different metrics (Dembele et al., 2020; 

Hrachowitz et al., 2014; Hulsman et al., 2021). However, all metrics do not exhibit linear 

behaviour, for instance, the gain in NSE is gradual with the model improvement 

corresponding to a steep drop on large error (Jackson et al., 2019). If a product has 

performed very badly in specific metrics although it has performed very well in others, 

DE criteria can disproportionately penalize such product due to a squared difference from 

the best value (see Equation 1). Whereas, PS criteria is based on ranks ensures that the 

product is not unduly penalized by considering the number of times the product has been 

ranked first. While PS criteria is useful for identifying the products that perform well 

across multiple metrics and locations, it considers only rank and ignores the absolute 

values of the metrics. Therefore, consideration of dual criteria for overall performance 

evaluation has provided a more balanced perspective on the precipitation products 

evaluation and enhanced the confidence in the findings of the study.  

While the findings of this study provide valuable insights into the impact of metric 

selection on precipitation product evaluation, it is important to acknowledge that the 

results are derived from a single catchment with lowland hydrological characteristics, 

mild slopes, and shallow groundwater tables. The performance of gridded precipitation 

products, and their ability to reproduce hydrological processes, can vary significantly 

across catchments with different climatic, topographic, and hydrological settings, such as 

arid regions, mountainous basins, or tropical catchments. As such, the generalizability of 

the identified best-performing products (e.g., EOBS or IMERG) may be limited beyond 

the context of this specific study area. However, the methodological framework 

developed in this study based on a multi-metric and multi-combination evaluation 

approach, is transferable and scalable. Future research may aim to replicate this across 

diverse hydro-climatic regions, allowing for broader conclusions on the performance of 

precipitation products as well as to make recommendations regarding the optimal number 

of metrics to be considered in the evaluation of EO precipitation products. 

It is important to mention the limitations of the study. Firstly, the model was not calibrated 

separately for each precipitation product. The same approach has been adopted by 

Gebrechorkos et al. (2024) for the evaluation of precipitation products at the global scale. 

The parameter calibration for each product could lead to the compensation of biases in 

the input precipitation product (McMillan et al., 2016) which might impact the products 

evaluation, as the main evaluating tool which is the hydrological model, would vary for 

each dataset. On the other hand, there are studies (Dembele et al., 2020; Alexopoulos et 

al., 2023; Almagro et al., 2021) who did the calibration for each dataset. While we agree 

that the calibration could have improved the performance of each precipitation product 

but our focus was on relative performance evaluation. Further, in section 4.3.1, the results 
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showed that across different metrics gridded precipitation products have often performed 

better in simulating hydrological variables compared to gauge-based model, which 

supports that the base model contains the set of parameters that are not unduly biased 

towards any specific dataset and represents a neutral model. Secondly, the point to grid 

comparison of precipitation products with the rainfall gauge stations was carried. While 

this method is widely used in the literature (Bagiliko et al., 2025; Maranan et al., 2020; 

Ageet et al., 2022; Monsieurs et al., 2018; Ayehu et al., 2018; Dembélé and Zwart, 2016) 

and avoids additional uncertainty introduced by interpolation techniques, it does involve 

a scale mismatch between the spatial extent of a gridded pixel (~10 km²) and the point-

based nature of gauge measurements (~200 cm²). This mismatch may introduce 

representation error, particularly in mountainous regions with high spatial variability in 

rainfall. However, in relatively flat lowland regions such as our study area, this effect is 

expected to be less pronounced. Future studies could explore the impact of alternative 

comparison methods, such as grid to grid evaluations by interpolating gauge data or using 

gauge corrected radar data, where appropriate. 

4.5 CONCLUSIONS 

This study evaluates the influence of the choice of performance metrics on the 

identification of the most suitable gridded product for precipitation estimation and 

reproducing hydrological variables. The research is done in Aa of Weerijs catchment 

using MIKE-SHE hydrological model over the period of 10-years (2010-2019) forced 

with four different precipitation products. The evaluation of gridded products is carried 

out for precipitation estimation compared to in-situ gauge data using 16 different 

performance metrics and for reproducing hydrological variables (discharge and GWLs) 

using 34 different metrics including hydrological signatures. The values of metrics are 

aggregated using two criteria (DE and PS) for the overall score. Further, all the possible 

combinations of metrics related to precipitation, discharge and groundwater are tested to 

explore the research objectives. The findings revealed that no precipitation product 

consistently performed better than others across all metrics in precipitation estimation or 

reproducing hydrological variables. For instance, EOBS performed best for reproducing 

discharge as per NSE value for stream flow while KGE for stream flow identified IMERG 

as the best product. It is not necessary that the precipitation product that is identified as 

most suitable for reproducing discharge and GWLs timeseries (EOBS) is also the most 

suitable for reproducing hydrological signatures (IMERG). Further, the comparison of 

precipitation products with gauging station data revealed that such evaluations may not 

consistently serve as a reliable procedure to determine the product’s suitability for 

hydrological simulations. For instance, a relation was found in the case of EOBS where 

it has been identified as most suitable both for comparison with station data and also for 

simulating hydrological variables. However, IMERG poorly performed to estimate 
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precipitation relative to in-situ data from gauge stations but was identified as most suitable 

for simulating hydrological signatures. Therefore, we conclude that to identify the 

suitability of a product for hydrological processes, the reproduced hydrological variables 

are better to be evaluated with observed data.  

Testing of multiple metric combinations demonstrated that when the number of metrics 

considered in evaluation criteria is small, then the likelihood of any product being 

identified as most suitable for precipitation estimation or reproducing hydrological 

variables is higher. In our case, when the number of metrics considered for evaluation is 

more than seven, then the likelihood of identification of the most suitable product for 

precipitation estimation and for discharge simulation is above 50 % and the likelihood of 

least suitable product to be chosen as best is less than 1 %. Whereas, for the GWLs, even 

with three metrics the likelihood of the most suitable product identification is above 90 

%. These findings regarding the minimum number of metrics are specific to our study 

and may vary depending on catchment characteristics and the type of hydrological 

variables being studied. The multiple combination analysis highlighted the sensitivity of 

products’ ranking to the choice of metrics. For instance, the overall aggregated scores 

determined that the performance of ERA5 was the worst among the four precipitation 

products for reproducing discharge but still there were about 30 thousand and 11 thousand 

possible combinations of metrics under DE and PS criteria, respectively, that ranked the 

product at the top. This describes that a selective set of metrics could lead to an unsuitable 

choice of precipitation product. Therefore, multi-metric, multiple combination analysis 

provides a comprehensive evaluation method for identifying the most suitable product for 

hydrological applications. 

The findings of the study give a critical insight into the sensitivity associated with the 

choice of metrics and the significant influence of metric selection on identifying the most 

suitable precipitation products. Although the outcomes are limited to the study catchment 

but scientific community can benefit from the methodology proposed. The framework 

was developed and demonstrated in a well-instrumented catchment but it is adaptable to 

data-scarce regions as well where traditional ground-based observations are limited. In 

such contexts, alternative remotely sensed variables such as evapotranspiration or soil 

moisture can be used as evaluation variables, allowing the proposed multi-metric 

evaluation framework to still support the identification of the most suitable precipitation 

products based on broader hydrological behaviour. Further the application is not limited 

to precipitation products but can be applied to evaluate other EO products and to assess 

model performance in routine hydrological modelling practices.  



 

 

 

 

 

 



 

 

5 
5 CLIMATE AND LAND USE/LAND 

COVER CHANGE IMPACTS 

The hydrological processes within the catchment are generally influenced by both climate 

change and land use/land cover (LULC) change. However, most of the studies are focused 

on their individual impact on the catchment’s hydrology, while their combined effects 

have received little attention. This chapter presents study which employs the physically 

based fully distributed hydrological model, MIKE SHE, to analyse the separate and 

combined effect of climate and LULC change on the hydrology of a mesoscale catchment 

in the near future (2050s). An Artificial Neural Network - Cellular Automata (ANN-CA) 

based prediction model was trained to simulate the future LULC map. The future 

meteorological data under four climate change scenarios was obtained from the Royal 

Netherlands Meteorological Institute (KNMI). The model results showed that the 

combined effects of climate change with LULC changes did not significantly differ from 

the individual impact of climate change on the catchment scale. However, on the local 

scale, the changes in LULC can significantly influence the variations in groundwater table, 

soil moisture, and actual evapotranspiration ranging from approximately -6 to 15 %, -9 to 

27 %, and -30 to 10 % respectively, depending on the specific change in LULC class and 

season. In summary, this chapter provides valuable insights into the complex interactions 

between LULC changes, climate change, and hydrology. 
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5.1 INTRODUCTION 

Climate change poses serious risks to water availability and food security, impeding 

progress towards Sustainable Development Goals. Its far-reaching adverse effects 

influence both natural ecosystems and human communities, revealing disparities across 

different systems, regions, and sectors (Lee et al., 2024). The IPCC Sixth Assessment 

Report (AR6, 2023) stated with a high degree of confidence that the rate of rise in global 

surface temperature since 1970 has surpassed that of any other 50-year period in the past 

2000 years. This continuous temperature rise underscores the increasingly apparent 

climate-driven changes (Blöschl et al., 2019). 

Climatic variations, particularly changes in precipitation and temperature, can profoundly 

affect both the hydrological state and the spatiotemporal distribution of water resources 

(Sorribas et al., 2016; Sunde et al., 2017). To counter these, water management strategies 

need to prioritize climate change, emphasizing the implementation of basin-scale 

hydrological management techniques (IWMI, 2019). However, selecting appropriate 

adaptation strategies necessitates a thorough understanding of the potential impact of 

global climate change on the local environment (Adib et al., 2020). Therefore, one of the 

initial steps in assessing the impact of climate change on hydrological systems involves 

comprehending how future climate signals will influence key catchment hydrological 

variables. 

Alongside climate change, land use/land cover (LULC) change is also one of the 

important drivers of hydrological variations (Rigby et al., 2022; Kundu et al., 2017; Trang 

et al., 2017). Changes in LULC can influence hydrological processes, such as 

evapotranspiration (ET), interception, infiltration, and surface runoff. These effects occur 

through direct alterations to the landscape's morphology and physiology, as well as 

indirect modifications to the soil and atmospheric boundary layers (Zhang et al., 2018). 

Research examining the impact of human-induced changes in landscape patterns and 

climate change has gathered significant attention. However, the majority of this research 

has primarily focused on either the effects of climate change or changes in land use, rather 

than considering both factors combined (Nazeer et al., 2022; Gurara et al., 2021; Kay et 

al., 2021; Adib et al., 2020). In addition to that, when these factors are examined together, 

the emphasis of the study is often centered on evaluating variations in surface 

hydrological variables alone (Ma et al., 2023; Lyu et al., 2023; Zhang et al., 2023; Sinha 

et al., 2020; Iqbal et al., 2022) or only on groundwater dynamics (Hanifehlou et al., 2022; 

Ghimire et al., 2021). 

Furthermore, the existing literature presents a certain level of variation regarding the 

individual influence of climate change and LULC change on hydrology. While some 

studies assert that LULC change had a more significant impact on hydrological variables 

in their study areas (Zhang et al., 2023; Zhou et al., 2019), others highlighted the 
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prominent influence of climate change (Huq and Abdul-Aziz, 2021; Ye et al., 2023; Iqbal 

et al., 2022) (Fu et al., 2019). Consequently, a dedicated combined analysis for a specific 

catchment becomes imperative (Wedajo et al., 2022). Further, the positive or negative 

change in the climatic variables due to climate change is quite uncertain as the Global 

Climate Models (GCM)/Regional Climate Models (RCM) differ for each study site, along 

with climate and land use characteristics (Blöschl et al., 2019; Song et al., 2021). Hence, 

conducting a study for the area of interest with a focus on local changes is seen as crucial 

for a comprehensive assessment of catchment surface and subsurface hydrological 

changes, which is necessary for the development of effective water management practices. 

In recent years, nearly all regions of Europe have experienced significant impacts from 

droughts affecting critical systems such as agriculture, water supply, energy, river 

transport, and ecosystems. These impacts are projected to intensify further attributed to 

climate change (Rossi et al., 2023). In the summer of 2018, the Netherlands experienced 

below average precipitation during May, June, July, September, and October. The 

Southern and Eastern regions of the country were more affected by this dry period, 

leading to significant impacts on crop yield and grasslands due to a reduction in water 

availability (Philip et al., 2020). The situation was similar in the Aa of Weerijs catchment, 

which is situated in the south of the Netherlands and shared with Belgium. The main land 

use in the area is agriculture, which highly depends on water resources. It is important to 

analyse the future local hydrological trends in the catchment to prepare for long term 

effective management practices in the area. Therefore, focusing on this catchment, this 

chapter aims to analyse both the individual and combined impacts of future projected 

changes in LULC and meteorological variables on surface and subsurface hydrology. 

Additionally, it seeks to address a knowledge gap about how crucial is it to consider future 

LULC changes alongside changes in meteorological variables under climate change when 

assessing the future hydrological state of a mesoscale (346 km2) catchment. To conduct 

the analysis, a fully distributed hydrological model using MIKE SHE modelling tool was 

setup with historical data. The simulation results were then compared by running the 

model with: future meteorological data from KNMI’23 climate scenarios alone, with only 

the ANN-CA predicted future LULC map, and with both combined. 

Following this introduction, the chapter provides the details of the research materials and 

methods utilized. Subsequently, the results obtained from the research are presented, 

along with a comprehensive discussion of the findings. Finally, the chapter concludes 

with a summary of the key findings and their implications. 

5.2 MATERIALS AND METHODS 

The research was carried out for the Aa of Weerijs catchment. The MIKE-SHE 

hydrological model was developed for the area and utilized to carry out the research. The 
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description of the study area, details of the input data and model setup are provided in the 

Chapter 3. Therefore, this information is not described here. 

5.2.1 Future land use / land cover projection 

LULC plays an important role in hydrology as changes in it can disturb water and energy 

balances consequently affecting processes such as transpiration, interception, evaporation, 

and infiltration. The impact of future LULC can be assessed in two ways. The first option 

involves considering a hypothetical scenario where one LULC type undergoes a complete 

transformation into another type (Zhang et al., 2020a). This approach is, however, 

subjective and lacks specificity. Alternatively, the impact can be evaluated by simulating 

future LULC using prediction models based on past changes and other influencing 

variables (Getachew et al., 2021). These prediction models generally use techniques such 

as Cellular Automata (CA), the Markov Chain Model (Marhaento et al., 2018), and 

Artificial Neural Networks (ANN). CA is a commonly used method that predicts the 

evolution in LULC based on the initial state, neighbouring cells, and transition rules. 

Complicated transition rules are often defined by coupling neural networks with CA (Liu 

et al., 2017). Machine learning algorithms can facilitate the learning of change factors 

based on historical data from two periods to simulate the change rules for future maps.  

In this study, ANN-CA was used to simulate the potential future LULC map because of 

its consistently satisfactory performance over the literature (Roy and Rahman, 2023; Kafy 

et al., 2020). For this task, we utilized QGIS 2.18 and the MOLUSCE plugin. Given the 

availability of CLC maps for the earliest (1990) and most recent (2018) years, the 

subsequent predicted map was generated for the year 2046 considering it as a 

representation of the average LULC condition of the catchment in the 2050s. The process 

involved two phases. In the first phase, CLC maps for 2006 and 2012 were treated as 

dependent variables, while raster maps of Euclidean distance from rivers, roads, and 

digital elevation served as independent variables. The dependent variables were used by 

the tool to calculate pixel-by-pixel change map while Pearson correlations are calculated 

between independent variables. The Multilayer Perceptron (MLP) ANN was then trained 

to predict transition potential. Afterward, CA was employed to simulate the LULC map 

for 2018, which was validated against the CLC map for that year. The finest results were 

achieved with parameter values of learning rate = 0.10, hidden layers = 1 with 10 neurons, 

momentum = 0.050, and iterations = 1000. The kappa coefficients (koverall, khisto, and kloc) 

and percentage of correctness were used to quantify the agreement between the reference 

and simulated LULC map. 

In the second phase, using the above mentioned finalized parameters of the model, the 

map for 2046 was simulated using the CLC maps from 1990 and 2018, along with the 

aforementioned independent variables. It is worth mentioning here that the future map 

was simulated under a business-as-usual scenario, without incorporating any landscape 
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planning policies or restrictions on specific LULC classes. The study's objective was not 

to generate various future landscapes but to find out the hydrological significance of 

incorporating future LULC maps in climate change studies. Therefore, the business-as-

usual scenario was chosen to generate the future LULC map assuming it as a 

representative of a worst-case scenario.  

5.2.2 Future meteorological projections 

To run the hydrological model for future climate change analysis, rainfall, and potential 

evapotranspiration (PET) data are required. For this study, the future climate data is 

obtained from KNMI (Koninklijk Nederlands Meteorologisch Instituut), the 

meteorological institute of the Netherlands. The dataset is known as KNMI’23 climate 

scenarios, as it was made publicly available in October 2023. These scenarios are based 

on the Coupled Model Intercomparison Project (CMIP6) model runs and translate the 

Intergovernmental Panel on Climate Change (IPCC) 2021 global climate projections for 

the Netherlands. The KNMI’s Global Circulation Model (GCM) EC-Earth3 model, which 

is also part of Coupled Model Intercomparison Project (CMIP6) models, was re-tuned to 

reduce the bias and resampled based on CMIP6 target values. The results were then 

dynamically downscaled with the regional atmospheric climate model RACMO, also 

owned by KNMI. In the end, the outputs of RACMO were bias-corrected based on 

observed data (1991-2020) using the Quantile Delta Mapping method (Cannon et al., 

2015). More details can be found in the scientific report by KNMI (van Dorland et al., 

2023).  

KNMI’23 scenarios consist of six paths that describe the possible future climate in the 

Netherlands around the years 2050, 2100, and 2150. In this study, we are focused only on 

the near future (2050). For that time frame, the climate scenarios data is available from 

2036 to 2065, with the 30-year time horizon representing the averaging condition of 2050. 

The scenarios are based on the three levels of CO2 emissions, according to the Shared 

Socioeconomic Pathways (SSP): high ‘H’ (SSP5-8.5), moderate ‘M’ (SSP2-4.5), and low 

‘L’ (SSP1-2.6). Each emission scenario is further combined with wetting scenario ‘N’ 

(‘Wet’ is ‘Nat’ in Dutch) and drying scenario ‘D’ (‘Dry’ is ‘Droog’ in Dutch) based on 

the circulation of precipitation. The wetting scenario represents a wetting trend in winter 

and moderate drying in summer, while the drying scenario provides drier conditions in 

summer and moderate wetting in winter. Consequently, the six resulting scenarios are HN, 

HD, MN, MD, LN, and LD.  

In this study, scenarios MN and MD were not considered due to our focus on extreme 

climate change scenarios. Our analysis concentrated on the high CO2 emissions scenarios 

(HN, HD) and low CO2 emissions scenarios (LN, LD). Moreover, as scenarios MN and 

MD lie between the high and low envelopes, their elimination did not affect the high and 

low values of the results. The data at the daily time step is available at a resolution of 0.5˚ 
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by 0.65˚ and covers only the Dutch part of the catchment. To overcome this issue, the 

model grids belonging to the Belgian part of the catchment were filled with data from the 

closest neighbouring grid cells. The time series were extracted from the gridded data at 

the locations where the three rain stations (Ginneken, Zundert, and Leonhout) are situated 

(Figure 3.1) and presented interpolated over the model domain using Thiessen polygons 

to keep the methodological consistency with the base model. 

Moreover, the future projected rainfall and PET for the time horizon 2050 (2036-2065) 

were compared with observed data from the base period (2011-2020) to calculate the 

projected relative change in rainfall and PET. To analyse extreme events, the statistical 

metric ‘R95pTOT’ was calculated for each season using catchment average rainfall data 

for the base period and future scenarios. R95pTOT quantifies the contribution of very wet 

days to the total rainfall, with the threshold for very wet days set at the 95th quantile of 

daily rainfall data for the base period. It is also defined as the sum of rain in wet days, i.e. 

days with rainfall above the 95th percentile. Further, the rainfall duration curves were 

plotted to compare the low, middle, and high-intensity rainfall events for the base period 

and four climate projection scenarios. The 95th and 30th percentile lines were marked as 

thresholds for comparison of high and low intensity rainfall events (Jian et al., 2022). 

5.2.3 Simulation scenario design 

To assess the impacts of climate change and LULC change on the hydrology of the Aa of 

Weerijs catchment and to elucidate the significance of incorporating future LULC 

considerations in climate change studies, three simulation scenarios were developed. The 

first scenario exclusively considered future LULC changes, obtained with the developed 

ANN-CA model. The second scenario solely accounted for changes in future 

meteorological variables and employed the developed MIKE SHE model forced with the 

KNMI’23 climate projections. The third scenario, instead, considered both future LULC 

and climate change. Further details are provided in Table 5.1.  

To analyse the results under these scenarios, the relative changes in seasonal catchment 

averages for AET, discharge at the catchment outlet, recharge to groundwater (recharge), 

and base plus drain flow to the river (subsurface flow) were computed using Equation 5.1. 

∆ =  
𝑋𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 − 𝑋𝑏𝑎𝑠𝑒

𝑋𝑏𝑎𝑠𝑒
 × 100 (5.1) 

where ∆ represents relative change, 𝑋𝑏𝑎𝑠𝑒 is the variable value simulated during the base 

period and 𝑋𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 is the variable simulated under the respective scenario. A positive 

value of  ∆ indicates an increase while a negative value indicates a decrease. For the GWT, 

as the levels are referenced to the surface, the terms in the numerator of Equation 5.1 were 

inverted to maintain consistency in sign conventions. 
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The results were further examined at the local level, considering seasonal spatially 

distributed values for AET, soil moisture (SM) in the top 10 cm layer, and GWT using 

Equation 5.1 at each grid cell, and results are presented as maps. 

Table 5.1. Description of designed simulation scenarios 

Abbreviation Meteorological data LULC map 

SC1 Observed data for base period (2010-2019) 2046 

SC2 Climate scenarios LD, LN, HD, and HN for 2050-time 

horizon (2036-2065) 

2018 

SC3 Climate scenarios LD, LN, HD, and HN for 2050-time 

horizon (2036-2065) 

2046 

5.3 RESULTS AND DISCUSSION 

5.3.1 Future land use / land cover simulation 

CLC maps of the years 1990 and 2018, along with other driver variables such as 

Euclidean distance from rivers, roads, and DEM, were used to simulate the future LULC 

map of the year 2046 using the developed ANN-CA model. Before simulating the future 

LULC map, the LULC prediction model was validated using the CLC 2018 map. The 

agreement between the reference and simulated map was assessed using the kappa 

coefficients (koverall, khisto, kloc) and the percentage of correctness. Their values were 0.94, 

0.97, 0.95, and 95.7 % respectively, lying in the high agreement range (Roy and Rahman, 

2023; Viera and Garrett, 2005). The map of 2046 was then simulated using the validated 

model (Figure A1 in Appendix).  

According to the CLC map, the area was categorized into 17 different land use classes, 

which were aggregated into 5 major classes following Feranec et al. (2016) for 

understanding the major shifts in the LULC (Table 5.2). According to the results, the 

built-up area has shown a consistent increase over the examined period. Starting at 39 

km² (11.3 %) in 1992, it expanded to 47 km² (13.6 %) in 2018 and is projected to further 

grow to 52.8 km² (15.3 %) by 2046. This pattern reflects further urbanization and 

infrastructure development in the area. Agricultural lands experienced a minor decrease 

from 263.3 km² (76.1%) in 1992 to 251.8 km² (72.8 %) in 2018. The map of 2046 

suggested a continued decline to 244.5 km² (70.7 %) but still agriculture remained the 

dominant LULC in the region. Considering the changes within the agricultural class of 

landcover, 1.75 km² of area has been projected to shift from ‘Complex cultivation patterns’ 

(CCP) to ‘Land principally occupied by agriculture’ (LPA). The category of ‘Forest and 
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semi-natural’ (FSN) areas demonstrated minor positive growth, increasing from 38.3 km² 

(11.1 %) in 2018 to 39.8 km² (11.5 %) in 2046. Wetlands remained relatively stable over 

the years. Starting at 6.8 km² (2 %) in 1992, they decreased slightly to 6.5 km² (1.9 %) in 

2018, but the projected map maintained this stability at 6.5 km² (1.9 %) in 2046. Similarly, 

for the water bodies, the simulated covered area remained 2.3 km² (0.7 %). 

In general, there has not been any unrealistic LULC change in the region which is 

predicted by the ANN-CA model. The simulated map for the year 2046 indicated an 

expansion of built-up areas, particularly around existing urban zones, encroaching into 

agricultural areas. It is important to note that the simulated future map for the year 2046 

was generated under a business-as-usual scenario, without the integration of specific 

landscape planning policies or restrictions on LULC classes. The choice of a business-as-

usual scenario serves as a representation of a worst-case scenario, emphasizing the 

potential impacts of unchecked urban expansion and changes in agricultural land use. By 

doing so, the study aims to highlight the hydrological consequences associated with the 

absence of proactive planning measures or land management policies in the face of future 

climate and LULC changes. This approach provides valuable insights into the potential 

challenges and risks that may arise under such conditions, contributing to a more 

comprehensive understanding of the complex interactions between land use, climate, and 

hydrology. 

Table 5.2. Areas under historical (1990, 2018) and future simulated (2046) LULC maps 

Corine land use / land 

cover class  

Aggregated 

class 

Historical Simulated 

1990 2018 2046 

km2 % km2 % km2 % 

Discontinuous urban fabric 

Built-up 

area 

3
9
 

1
1
.3

 

4
7
 

1
3
.6

 

5
2
.8

 

1
5
.3

 

Industrial or commercial 

units 

Road and rail networks and 

associated land 

Green urban areas 

Sport and leisure facilities 

Non-irrigated arable land 

Agricultural 

2
6
3
.3

 

7
6
.1

 

2
5
1
.8

 

7
2
.8

 

2
4
4
.5

 

7
0
.7

 

Pastures 

Complex cultivation 

patterns 

Land principally occupied 

by agriculture, with 
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significant areas of natural 

vegetation 

Broad-leaved forest 

Forest and 

semi-natural 3
4
.8

 

1
0
.1

 

3
8
.3

 

1
1
.1

 

3
9
.8

 

1
1
.5

 

Coniferous forest 

Mixed forest 

Natural grasslands 

Moors and heathland 

Transitional woodland-

shrub 

Inland marshes 

Wetlands 6
.8

 

2
 

6
.5

 

1
.9

 

6
.5

 

1
.9

 

Water bodies 
Water 

bodies 
2
 

0
.6

 

2
.3

 

0
.7

 

2
.3

 

0
.7

 

5.3.2 Future meteorological projections 

The 10 years from 2010 to 2019 were considered as a baseline period to calculate the 

relative change (Equation 5.1) as a percentage difference for rainfall and PET, for the 

assessment of projected meteorological changes in the 2050 horizon. The outcomes of 

the comparison across all scenarios are presented in a range based on the highest and 

lowest values achieved overall. The findings indicated that in all months the percentage 

change in PET is positive under each scenario, indicating an increase in future conditions. 

In contrast, rainfall exhibited a more random pattern (Figure 5.1). During winter months 

(DJF: December, January, February), minor variations in rainfall are observed in January 

and December. However, In February, the percentage increase ranged from 17.3% to 24%, 

making it the wettest month in the winter season. In March and April, there is a notable 

increase in rainfall percentages (ranging from 3.9 to 14.7 % and 6.9 to 11.3 %, 

respectively) compared to December and January. Conversely, the rise in PET during 

these months is less pronounced, ranging from 1.6 to 5.3 % and 3.3 to 6.7 %, respectively. 

The combined effects contribute to making March and April relatively wetter. Conversely, 

in December and January, the relative percentage differences in rainfall are lower (-1.2 to 

6.6 % and -5.2 to 2.6 %, respectively), while PET shows more substantial increases 

(ranging from 8 to 10.1 % and 14 to 15.8 %, respectively), leading to relatively low wet 

conditions. This shift indicates a temporal change in the rainfall pattern, transitioning 

from the winter months (December and January) to the spring months (March and April), 

resulting in increased rainfall during the latter period. 
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The months of May, July, and August show an increase in PET accompanied by a 

decrease in rainfall. In June, rainfall is projected to decrease by -1.6 % under the HD 

scenario, while it is expected to increase upto 7.9 % in other scenarios with a maximum 

value under HN scenarios, respectively. However, PET in June is projected to increase 

under all scenarios by 4.1 to 8.5 %, not balancing the increase in rainfall, likely making 

the overall conditions drier. August emerges as the driest month, characterized by a rise 

in PET and a decline in rainfall in the ranges of 12.6 to 17.3 % and 7.9 to 18.3 %, 

respectively. Moving to autumn (SON: September, October, and November), there is an 

overall major increase in rainfall compared to other seasons (13 to 15.5 %), but PET also 

shows an upward trend (Figure 5.1). Winter also shows an increase in rainfall (2 to 9.1 

%) but is accompanied by a simultaneous rise in PET (8.8 to 10.1 %), consequently 

balancing out the increase in rainfall. 

For the rainfall, the results align with the broader consensus that Europe is expected to 

experience wetter conditions in winter and drier conditions during summers, especially 

in the Northern part of Europe (e.g., (Sassi et al., 2019)). However, with the temperature 

rise, PET will also be increasing. The future scenarios indicate that the percentage 

increase in PET (6.7 to 10.1 %) is more pronounced compared to the rise in rainfall (1.4 

to 6.1 %) on an annual scale. This suggests that the catchment may face increased stress 

in terms of water availability. Moreover, focusing specifically on the summer months 

(JJA: June, July, August), the findings suggest a tendency for decreased rainfall (3.4 to 

11.3 %) coupled with a substantial increase in PET (7.5 to 12.4 %). This combination 

Figure 5.1.Relative change in rainfall and PET calculated in percentage under the 

KNMI’23 climate projection scenarios for the time horizon 2050 with reference to the 

base period. Dashed lines separate the plots that indicate the averages across seasons 

and annual data (spr: spring, sum: summer, aut: autumn, win: winter, ann: annual) 
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further emphasizes the potential for water stress during the critical summer months. The 

observed increasing trends of PET in the Netherlands are consistent with the findings of 

Philip et al. (2020), wherein the importance of PET in characterizing the summer droughts 

in the Netherlands is highlighted and attributed to changes in atmospheric circulation. 

The observed trends regarding the increase ET and decreased precipitation during 

summer under future climate broadly align with findings from other regions in the 

Netherlands such as Dommel catchment (van Vliet et al., 2012), Keersop catchment 

(Visser et al., 2012) and Veluwe region (Van Huijgevoort et al., 2020). To analyse 

extreme events, the statistical metric ‘R95pTOT’ was calculated for each season under 

both the base and future scenarios (Table A1 in Appendix A). During the base period, 

summer exhibited the highest total rainfall from very wet days, aligning with the findings 

of Whitford et al. (2023). These higher values indicate that the majority of summer 

rainfall occurs in short periods with high intensity. Conversely, R95pTOT values were 

lowest in spring. In future climate scenarios, R95pTOT values are notably low, suggesting 

a decrease in the intensity of extreme events and a shift towards more events with a lower 

intensity of rainfall. 

This observation was further analysed by plotting duration curves for both the base and 

future scenarios using daily rainfall and their corresponding exceedance probability 

(Figure 5.2). While there is minimal difference between the duration curves of the four 

future scenarios, a comparison between the base period and future scenarios indicates a 

decrease in high rainfall events under all scenarios, accompanied by a significant increase 

in low rainfall events. Days with rainfall greater than approximately 2.2 mm are 

decreasing, while days with lower rainfall are increasing. This result, however, is 

potentially influenced by the different nature of the in-situ data used for the base period, 

i.e. point-based, and of the climate projections, i.e. grid-based. Indeed, rain gauges, 

strategically positioned on the ground, are designed to measure precipitation at specific 

locations which enable them to capture localized events like heavy downpours. In contrast, 

future scenarios are the climate model outputs that operate on a broader spatial scale 

where each grid cell represents an averaged value for climate variables, providing a more 

generalized view over larger regions but also less capabilities in representing extremes.  



5. Climate and land use/land cover change impacts

102 

5.3.3 Model Calibration and Validation 

For the catchment average AET, the values of R and NSE for the calibration and 

validation periods were 0.91, 0.80, 0.926, and 0.822, respectively. In terms of discharge 

at the catchment outlet, NSE and R values during calibration and validation were 0.88, 

0.71, 0.87, and 0.71, respectively. Results demonstrate the reasonable capture of trends 

during both high and low flow periods, indicating the model's ability to reflect seasonal 

variations adequately. The simulation of GWLs showed varying model efficacy across 

different locations. The model tended to slightly overestimate the GWLs in the upstream 

regions and around the catchment’s outlet. Nevertheless, the model results demonstrated 

good agreement with observed data for GWLs, capturing seasonal variations and trends 

reasonably well (R= 0.77 for the average of all observed versus modelled outputs). The 

results are presented in detail in Chapter 3. 

5.3.4 Impact on catchment hydrology under designed scenarios 

Scenario SC1, under future LULC changes 

In scenario SC1, the model was simulated for the base period 2010 to 2019 using a future 

LULC map (2046) to assess the individual effects of LULC changes on the catchment’s 

hydrology. The impacts have been assessed on various simulated variables, including 

discharge at the catchment outlet, AET, subsurface flow, and recharge at the catchment 

scale. In addition, the impacts on AET, GWT, and SM (top 10 cm) were evaluated at the 

local scale as well. 

Figure 5.2. Rainfall duration curve for the base period (2010-2019) and KNMI’23 

climate scenarios (2050). Q30 and Q95 are 30th and 95th quantiles, respectively 
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Under the future LULC change, the effects on hydrology at the catchment level are 

minimal. The mean monthly discharge is almost the same as the base model with a minor 

increase (Figure 5.3). The maximum observed increase occurs during autumn, with only 

a 0.7 % rise, while the minimum increase is during the spring months, equal to 0.2 % 

(Table 5.3). This may be attributed to the projected increase in built-up areas in the future, 

where the expansion of the built-up area (1.7 %) dominates the forest and semi-natural 

(FSN) area expansion (0.4 %).  This LULC change reduced actual evapotranspiration 

(AET), leading to more water being retained in the soil and subsequently contributed to 

increased subsurface flow to river by 0.3 to 1.1 %, with the maximum rise observed in 

autumn.  

 

The AET is reduced on the catchment scale by -0.2 %, -0.3 %, and -0.3 % in the spring, 

summer, and autumn respectively, which may be due to a decrease in transpiration from 

areas that have been converted to built-up areas. On the local scale (Figure 5.4), 

considering only the areas where LULC change is projected to occur, the changes in AET 

range from -30 to 22 %. Specifically, areas converted to built-up from agriculture and 

those transitioning from CCP to LPA exhibited a wide range of percentage changes during 

the spring and summer. In the summer, AET decreased by up to -20 % for most of the 

areas that transitioned to built-up and LPA, while it increased by up to 5 % for the areas 

that transitioned to FSN (Figure 5.5). During the winter season, AET for LPA started to 

increase, reached its maximum in the spring, and decreased in the summer and autumn. 

This pattern is likely attributed to the sowing and harvesting season for crops in that area. 

In spring, crops are in full growth, resulting in the maximum AET. In autumn, all 

Figure 5.3. Mean monthly discharge at the catchment outlet under the base, SC1, 

SC2, and SC3 scenarios. For SC2 and SC3, the envelope represents the range 

between the highest and lowest values under LD, LN, HD, and HN climate scenarios 



5. Climate and land use/land cover change impacts

104 

transitioned areas experienced a decrease in AET ranging from 0 to -20 %, while the 

transitioned area to FSN class showed minimal change. In winter, all transitioned cells 

experience an increase in AET, with a maximum of 8 % in places that have been 

transitioned to built-up areas.  

Considering catchment average values, the recharge to groundwater was increased during 

the summer, autumn, and winter (1.7 %, 0.7 %, and 0.1 %), while experiencing a slight 

reduction in the spring (0.4 %). However, on a local scale, the change in GWT fluctuated 

between -10 to 10 %. The changes were mostly positive in autumn and winter. During 

the spring and summer, most of the transitioned areas exhibited positive change except 

for a few areas belonging to the built-up area and LPA classes, where the change was 

negative. Overall, the change in GWT is minimal compared to the variations in AET and 

SM. 

In spring, SM values varied from -8 to 10 %, with most transitioned areas exhibiting 

negative changes. During the summer, SM in areas that transitioned to LPA and FSN 

remained minimal while most of the built-up area exhibited changes, ranging from -5 to 

18 %. In autumn, apart from areas that transitioned to FSN, where SM decreased by up 

to -2 %, other areas exhibited positive changes of up to 7 %. During the winter months, 

SM remained almost unchanged, although AET and GWT exhibited positive changes. 

This could be due to the presence of already high-water content in the soil layer during 

winter, keeping SM relatively unaffected. 

Figure 5.4. Relative change in simulated AET (upper), GWT (middle), and SM 

(lower) under base period and SC1 scenarios, calculated as a percentage on the 

seasonal basis 
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The percentage differences in AET, SM, and GWT under future LULC (2046), relative 

to the base period, were plotted against each other to analyse their relationships and 

sensitivities in different seasons and during transitions of the area from one LULC class 

to another. GWT changes exhibit minimal sensitivity to variations in SM and AET in 

spring and summer where wide changes in SM and AET correspond to minor GWT 

variations. In autumn, the relations between changes in SM and AET become relatively 

more sensitive to GWT changes, with an increase in SM by up to 7 % and a decrease in 

AET by up to -20 % resulting in a change of GWT by a maximum of 10 %. However, 

during winter months, even with no change in SM and an increase in AET ranging from 

0 to 8 %, the GWT across transitioned areas increased up to a maximum of 8 %. This 

increase may be attributed to the slower subsurface hydrological flows compared to the 

topsoil and surface processes (Yang et al., 2020; Leong and Yokoo, 2022). Another 

Figure 5.5. The relationship between the relative change in AET, SM, and GWT on a 

seasonal basis under the base period and scenario SC1, focusing only on pixels where 

the LULC is projected to change in the year 2046. Orange represents map pixels 

transitioning from agriculture to ‘Built-up area’, green represents pixels transitioning 

from agriculture to ‘Forest and semi-natural (FSN) class’, while blue represents pixels 

projected to change from a ‘Complex cultivation pattern (CCP)’ to ‘Lands principally 

occupied by agriculture (LPA)’ 
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contributing factor could be the higher saturation of the soil during the winter, where 

excess rainfall directly contributes to groundwater storage (Van Huijgevoort et al., 2020). 

The relationship between AET and SM is comparatively more responsive. The maximum 

positive change in SM (up to 18 %) is observed in the summer, corresponding to a change 

in AET (up to -22 %) for areas that transitioned from agriculture to built-up areas. For 

areas transitioning into forest and semi-natural areas or LPA, the change remains minimal. 

In autumn, the decrease in AET (up to 20 %) causes an increase of up to 7 % in SM. 

Whereas, in winter, even with an increase in AET (up to 10 %), SM remains mostly 

unchanged. 

The relationship between the variables is non-linear and varies depending on the seasons 

and the transitioned class of LULC. Changes in areas transitioning to FSN remained 

minimal. Areas transitioning into LPA experienced an increase in AET during spring, 

causing a decrease in SM. During summer, AET decreased in these cells, leading to an 

increase in SM, and the same process continued in autumn. In winter, they reached higher 

saturation levels, and SM remained unaffected despite an increase in AET. Whereas, for 

areas transitioning to the built-up areas from agriculture, the trend remained random 

during spring and summer, but they followed a similar trend as LPA during autumn and 

winter. 

Scenario SC2, under future climate change 

In scenario SC2, the model was simulated using climate projections data for the horizon 

2050 (2036-2065), together with the LULC map of the base period, to assess the 

individual impact of climate change on the catchment’s hydrology. The model results 

revealed that the discharge at the catchment outlet is projected to decrease in January and 

from April to December under all climate scenarios considered. The lowest average 

discharges are projected to be observed in September. However, an exception to this trend 

is noted in February and March, where an increase in discharge relative to the base model 

is projected only under the HN scenario (Figure 5.3). It may be attributed to the increased 

value of PET under all scenarios. 

On a seasonal scale, the discharge is projected to decrease by 27.3 to 32.2 % and 23.8 to 

37 % in summer and autumn, respectively. In contrast, it ranges between -11.4 to 1.1 % 

and -14.4 to 2 % in spring and winter, respectively (Table 5.3). This reduction in discharge 

is likely attributed to a change in catchment average AET which is projected to increase 

under all climate scenarios by 11.9 to 13.5 %, 15.7 to 16.5 %, 11.2 to 13 %, and 13.8 to 

15.2 % in spring, summer, autumn, and winter, respectively. The values across different 

areas exhibit variation, with certain regions projecting an increase in AET up to 30 %, 

particularly during summer and autumn under LN and HN scenarios (Figure 5.6). Notably, 

these areas are characterized by LULC class built-up area and LPA. Conversely, during 
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winter, the change in AET from built-up areas and LPA is less pronounced, with 

dominance shifting towards LULC classes FSN and CCP.  

The maximum change in SM is projected during summer under climate change scenarios 

LD and HD, where certain areas belonging to classes FSN and CCP show a reduction of 

up to -38 % and -40 % (Figure 5.7). Meanwhile, under LN and HN scenarios, SM across 

the region ranges from -35 to 5 %. Positive changes are observed only in a small region, 

possibly attributed to a comparatively lesser increase in AET over those regions. In 

autumn, SM exhibited both positive and negative changes in the catchment. Under 

scenarios LD and HD, most areas show negative changes, while the trend reversed under 

scenarios LN and HN. During winter and spring, the catchment generally experiences 

positive changes under all scenarios, except for a small section towards the north side of 

the catchment where changes are negative. Although the trend across different LULC 

classes appears random, no direct correlation with specific LULC classes influencing an 

increase or decrease in SM has been identified. However, the negative change (up to -40 

%) exhibited during summer outweighs the positive change (up to 10 %) observed during 

winter. Similarly, the catchment's average recharge to groundwater is projected to 

Figure 5.6. Relative change in simulated AET under the base period and SC2 scenario 

calculated as a percentage on seasonal basis 
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decrease by -107.6 to -139.5 % during summer, whereas in spring (-11 to -31.8 %) and 

autumn (-8.4 to -28.3 %), the change in relative to base period is comparatively less 

(Table 4). During winter, an increase is projected by 2.4 % and 7.8 % under HD and HN 

scenarios, while LD and LN scenarios anticipated a reduction of -3 % and -0.4 %, 

respectively. These findings highlight the season-specific and scenario-dependent nature 

of changes in SM. The spatial distribution of percentage change in GWT is shown in 

Figure 5.8. 

On the local scale, during the summer months, negative changes in GWT are observed 

across all areas under all scenarios. The maximum negative change, reaching -50 %, is 

projected under LD and HD scenarios, while it is -30 % under LN and HN scenarios in 

certain areas having LULC class as agricultural. Moving to autumn, some areas exhibit a 

GWT increase of 25 %, but the major portion of the catchment is likely to have negative 

changes. Notably, in the central area of the catchment, GWT is projected to decrease by 

a maximum of -60 % and -75 % under LD and HD scenarios, respectively. Even during 

winter, changes in the catchment are not spatially uniform, with positive changes 

observed in the central portion and negative changes in the southern and northern areas 

of the catchment. A similar trend is observed in spring, though the magnitude of change 

is comparatively less than in winter. 

Figure 5.7. Relative change in simulated SM under the base period and SC2 scenario, 

calculated as a percentage on the seasonal basis 
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It is worth noting that across all scenarios and seasons, negative changes in GWT are 

consistently observed in the area near the outlet of the catchment (north part). The general 

groundwater flow in the catchment is from southeast to northwest. Due to a lower water 

table in the middle and upper portions of the catchment, groundwater flow towards the 

outlet might be comparatively less, impacting the area near the outlet across all seasons.  

As discussed in Section 5.3.2, despite an increase in autumn rainfall, the discharge at the 

catchment outlet, subsurface flows, recharge, and GWT at most locations exhibited a 

negative change. Even the SM for the topsoil layer did not show a spatially consistent 

positive change across the catchment. This phenomenon may be attributed to additional 

summer stress generated in the catchment due to low rainfall and higher AET. The 

additional rainfall, compared to the base period, occurring in autumn is consumed to 

overcome the prevailing summer drawdowns in GWT and soil water content. On the other 

hand, in spring, the projected increase in rainfall is comparatively less than in autumn, 

but the discharge at the outlet, along with other variables, exhibited a more positive 

change than in autumn. This may be because in winter, the GWT and water content in the 

soil are relatively high, and even a comparatively smaller increase in rainfall contributes 

more prominently to different hydrological components. This aligns with the findings of 

Figure 5.8. Relative change in simulated GWT under the base period and SC2 scenario, 

calculated as a percentage on the seasonal basis 
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Assouline et al. (2024), Alam et al. (2024) and Ran et al. (2022), who highlighted the 

influence of antecedent conditions on flow generation. 

Scenario SC3, under future climate and LULC change 

In scenario SC3, the model was simulated with climate projections referred to the horizon 

2050 (2036-2065), together with the generated future LULC to assess the combined 

effects on the catchment’s hydrology. Notably, the discharge at the catchment outlet 

across different months under scenario SC3 closely resembles that of scenario SC2, where 

only climate change was considered (Figure 5.3). The maximum increase in discharge, 

compared to scenario SC2, is projected to be 0.5 % in winter and 0.3 % in summer. This 

modest change may be attributed to the projected expansion of built-up areas in the future, 

where the development of the built-up area (1.7 %) dominates over FSN area expansion 

(0.4 %). A similar trend was observed in scenario SC1, though the comparative increase 

in discharge in scenario SC3 is less than that observed in SC1. Likewise, the subsurface 

flow to the river is projected to increase under the combined effect of climate change and 

future LULC changes, but the increase in the catchment average is minimal (Table 5.3). 

The situation with AET mirrors the discharge trends. When considering catchment 

average values, AET is projected to decrease by 0.3 to 0.4 % compared to the individual 

effect of climate change in the summers, with no projected change in winter. However, 

to assess changes at the local scale, the spatially distributed relative change in AET 

compared to the base period was calculated (Figure 5.9), and found that AET under 

scenario SC3 is almost identical to scenario SC2, except for a few locations where the 

relative change in AET has altered. To identify the exact locations where the change has 

happened under scenario SC3, the differences in percentage changes under scenarios SC2 

and SC3 relative to the base model were computed and are represented in Figure A2 

(Appendix A). In spring, summer, and autumn, significant changes in AET are observed 

over areas that are projected to undergo LULC transition. For example, in summer, 

compared to scenario SC2, AET is projected to be less by up to 30 % in areas transitioning 

from agriculture to built-up, while it will be more by up to 5 % in areas transitioning to 

FSN from agriculture. In spring and autumn, the differences are comparatively less, and 

there is no change in winter.  
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The spatial distribution of SM under scenario SC3 is represented in Figure 5.10. Similar 

to AET, the relative change in SM compared to the base period under the combined effect 

of climate change and future LULC is within the same range as that of the individual 

effect of climate change, with only a few areas exhibiting notable differences as presented 

in Figure A3 (Appendix A). A noteworthy observation is the increased number of areas 

showing positive changes in summers under the combined effect of climate change and 

future LULC. These new areas with positive changes in summer are predominantly those 

that are projected to undergo a transition from agriculture to built-up areas in the future 

LULC map. The maximum projected change in these areas is reaching up to a maximum 

of 30 %. Conversely, in areas transitioning to FSN, the change is reduced, up to a 

maximum of -4 %. During the winter, there is no change in simulated SM under scenarios 

SC2 and SC3. 

Considering the catchment average values, recharge to groundwater is projected to 

decrease under scenario SC3, aligning with the trend observed in scenario SC2. However, 

under scenario SC3, the recharge values differ by a maximum of 0.6 % and 0.7 % in 

summer and winter, respectively, under the HD scenario of climate change. In other 

seasons and climate scenarios, the differences are even less (Table 5.3). Similar to AET 

Figure 5.9. Relative change in simulated AET under the base period and SC3 scenario, 

calculated as a percentage on the seasonal basis 
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and SM, the variations in GWT at the local scale in transitioning areas are more 

pronounced than changes in catchment averages. The spatial distribution of GWT and the 

differences in percentage changes under scenarios SC2 and SC3 relative to the base model 

are illustrated in Figure 5.11 and Figure A4 Appendix A, respectively. The seasonal and 

spatial trends under scenario SC3 are consistent with those of SC2, but in a few of the 

areas, the values of percentage change have shifted within the range of -5 to 15 %. For 

instance, during winter, in areas transitioning to the built-up, the GWT is projected to 

further rise by 15 % compared to the relative change projected under scenario SC2. These 

changes are particularly noticeable in autumn and winter compared to spring and summer. 

It is crucial to note that the changes in GWT are not limited to the areas that are projected 

to undergo future LULC transitions, but changes in neighboring areas are also observed. 

In contrast to GWT, the influence on neighboring areas has not been observed for SM. 

This distinction may be attributed to the modelling constraints in MIKE SHE, where the 

exchange of flow in the unsaturated zone is primarily permitted in the vertical direction, 

limiting the simulation of soil moisture exchanges in the horizontal direction. 

Figure 5.10. Relative change in simulated SM under the base period and SC3 

scenario, calculated as a percentage on the seasonal basis 
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The overall findings suggest that hydrological components are more influenced by 

climate change alone (SC2) than by the LULC change scenario (SC1). Furthermore, on 

the catchment scale, the combined effect of climate and LULC changes (SC3) does not 

significantly differ from the individual effect of climate change (SC2). These results align 

with studies conducted by Getachew et al. (2021) and Yan et al. (2019), both of which 

identified hydrological components as more sensitive to climate change on both seasonal 

and annual scales. In the combined effect of LULC and climate change (SC3), the impact 

of climate change appears to be somewhat dampened by the effects of LULC change. 

Similar findings have been reported by Tirupathi and Shashidhar (2020), although in this 

study, the offsetting influence of LULC change is very minimal, accounting for less than 

1 % on the catchment scale. 

However, in contrast to this, the impact of LULC changes is more pronounced at the local 

scale, particularly in areas projected to transition from one LULC class to another. The 

incorporation of LULC changes, alongside climate change, can significantly influence 

the relative changes in GWT, SM, and AET on the local scale, with variations referred to 

scenario SC2 ranging from approximately -6 to 15 %, -9 to 27 %, and -30 to 10 %, 

respectively, depending upon the specific change in LULC class and season. 

Figure 5.11. Relative change in simulated GWT under the base period and SC3 

scenario, calculated as a percentage on the seasonal basis 
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Table 5.3. Relative change in water balance component calculated as percentage 

change with reference to the base period for design scenarios SC1, SC2, and SC3. 
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This nuanced spatial distribution of changes in hydrological variables underscores the 

role of LULC changes in conjunction with climate impacts, highlighting specific areas 

undergoing transitions as significant contributors to the observed variations in 

hydrological dynamics. Understanding these localized effects is crucial for effective 

water resource management and climate change adaptation strategies within the 

catchment. These findings underscore the importance of considering both climate change 

and future LULC changes in assessing the hydrological response of the catchment 

particularly if the focus is on local scales. 

5.4 CONCLUSIONS 

This research assesses the response of surface (AET, discharge) and subsurface (recharge, 

GWT, SM, and lateral flow) hydrological components to the separate and combined 

future changes in climate and LULC at a catchment and local scales for the Aa of Weerijs 

catchment. To conduct the research, a physically based fully distributed hydrological 

model was set up for the study area, using MIKE SHE and MIKE 11 modelling tools. The 

ANN-CA technique was employed to simulate future LULC changes using the 

MOLUSCE plugin of QGIS. Validation of the LULC prediction model demonstrated 

satisfactory accuracy, with kappa coefficients ranging from 0.94 to 0.97 and a percentage 

correctness of 95.7 %. The analysis of historical (2018) and simulated LULC for the year 

2046 identified a 1.7 % expansion in built-up and a 0.4 % increase in FSN class. 

For meteorological projections under climate change, the data was acquired from 

KNMI’23 climate scenarios for the 2050 horizon (2036-2065). The time series of 

catchment average rainfall and PET were compared with data from the historical (base) 

period and the results suggested an overall increase in PET across all scenarios, with 

varying patterns of rainfall changes. The increase in PET is more pronounced than the 

changes in rainfall. The summer showed a tendency for decreased rainfall coupled with a 

substantial increase in PET, highlighting potential water stress during critical periods.  

The simulated results only with future LULC changes revealed that the impacts on 

catchment hydrology are minimal. The expansion of built-up areas contributes to a 

modest increase in discharge and subsurface flow, while changes in AET, GWT, and SM 

show localized variations. Under the individual impacts of climate change, the changes 

in hydrological variables are comparatively more pronounced. Considering both future 

LULC and climate change demonstrated that while hydrological variables were more 
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sensitive to climate change alone, the combined effects did not significantly differ from 

the individual impact of climate change on the catchment scale. However, at the local 

scale, especially in areas undergoing LULC transitions, the combined effects exhibited 

significant variations in hydrological variables.  

To address the specific research question raised, we concluded that for the lowland 

catchment with a size of 346 km2 and projected increase in built-up area by 1.7 % and 

FSN by 0.4 %, the impact of including future LULC data in addition to climate change 

projections, is not significant at the catchment scale, as it accounts for very minimal 

changes in hydrological variables (>1 %). However, at the local scales, it can significantly 

influence the relative changes in GWT, SM, and AET with variations ranging from 

approximately -6 to 15 %, -9 to 27 %, and -30 to 10 % respectively, depending on the 

specific change in LULC class and season. The spatial distribution of changes in AET, 

SM, and GWT emphasizes the importance of considering localized impacts for effective 

water resource management. The study underscores the importance of considering both 

climate and land use dynamics for a comprehensive understanding of hydrological 

changes in the face of future challenges. 

While this study has provided valuable insights, there are certain limitations that warrant 

consideration. Firstly, the future LULC scenario adopted here is based on a business-as-

usual approach. A more nuanced understanding could be achieved by formulating 

different scenarios for future LULC, incorporating constraints on LULC class expansion, 

and considering local landscape policies, municipal priorities, or broader European-level 

policies. Such considerations could enhance the refinement of future LULC projections. 

Secondly, the study focused only on rainfall, PET, and LULC under future changes. 

Global warming may trigger additional factors, such as groundwater abstraction or direct 

water abstraction from rivers, which could impact discharge and GWT. Additionally, 

changes in groundwater boundary conditions, not accounted for in this study's future 

scenarios, could further influence hydrological dynamics. Therefore, future research 

activities could address these limitations by incorporating these additional factors. The 

effect of these factors might not be significant alone but studying the coupled effects of 

various drivers would provide a more comprehensive understanding of future 

hydrological dynamics. Such insights could offer more detailed information to 

policymakers, aiding in the development of informed and robust strategies for sustainable 

water resource management. 



 

 

6 
6 NATURE BASE SOLUTIONS FOR 

CLIMATE ADAPTATION 

Nature based solutions (NBSs) are a potential alternative to the traditional grey 

infrastructure for climate adaptation. However, their effectiveness in mitigating drought 

impacts is underexplored. This chapter presents the methodology for designing and 

assessing the potential of NBS-based adaptive strategies for drought mitigation with focus 

on surface as well as sub-surface hydrological components using an integrated distributed 

hydrological model. The methodology is demonstrated for Aa of Weerijs catchment using 

the MIKE SHE modelling system. The NBSs assessed include ditch blocking, tree 

planting, wetland restoration, infiltration ponds, heathland restoration and brook bed 

barriers. Based on the model results, individual measures were spatially mapped to 

develop two adaptation strategies, each differing in spatial extent. The Key Performance 

Indicators (KPIs) were designed to be relatable to key stakeholders, such as the number 

of days with a ban on water extraction from surface and groundwater. The performance 

of the strategies was evaluated using the designed KPIs under future climate scenarios. 

The results showed that strategy with a larger spatial extent has more positive impacts on 

the KPIs. The adaptation strategies enhanced the groundwater recharge and reduced the 

number of ban days for groundwater extraction with almost eliminating the ban days in 

the downstream part of the catchment.  

 

 

______________________________________________________________________ 

This chapter is an edited version of the journal publication: Jonoski, A., Ali, M. H., Bertini, 

C., Popescu, I., van Andel, S.J., & Lansu, A., 2025. Model-based design of drought-

related climate adaptation strategies using nature-based solutions: case study of the Aa of 

Weerijs catchment in the Netherlands. Nature-Based Solutions, 100264. 

https://doi.org/10.1016/j.nbsj.2025.100264 
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6.1 INTRODUCTION 

The indications of escalating climate change are prominent and can no longer be ignored 

in any region or sector of the world (Forster et al., 2024). The IPCC Sixth Assessment 

Report (AR6, 2023) stated with a high degree of confidence that the rate of rise in global 

surface temperature since 1970 has surpassed that of any other 50-year period in the past 

2000 years. Due to these changes, the hydrological cycle is accelerating leading to more 

frequent and stronger weather extremes including floods and droughts both at regional 

and global scales (Wang et al., 2021; Chiang et al., 2021). In a warming climate, frequent 

periods with less than average precipitation are anticipated. During such periods, the 

decrease in runoffs may be comparatively more than the corresponding decrease in 

precipitation (Massari et al., 2022) driven by higher evaporation rate and drier soil 

resulting from higher temperatures. In general, water management systems around the 

world are designed based on the assumption that the statistical properties of the flow 

remain constant over time, also known as stationarity (Villarini and Wasko, 2021). 

However, due to human influence and climate change, the assumption about the 

stationarity has become questionable (Milly et al., 2008). As a result, water management 

creates a prodigious impediment for decision makers. Often, grey measures such as dams 

and reservoirs are built to alleviate flood and drought hazards due to their rapid and visible 

effects but these measures need large investment, frequent maintenance and are 

categorized as inflexible approaches (Brink et al., 2016; Wu et al., 2023; Schneider et al., 

2017). In addition to adverse effects on the downstream ecosystem, such measures are 

generally designed for certain life periods, are not environmentally friendly and lack the 

capability to adapt to changing climate.  

The formulation of adaptive strategies for droughts is primarily focused on retaining the 

water in the catchment either by increasing storage or by slowing surface or sub surface 

flow. Some of these actions are considered important for flood management as well but 

are imperative for droughts (POM, 2014). Many countries are nowadays focused on 

envisaging adaptation and mitigation strategies based on green infrastructure and 

ecosystem-based adaptive measures to reduce their exposure to hydro-meteorological 

hazards (Shah et al., 2023; Davies et al., 2021). Such kind of measures offer greener and 

eco-friendly alternatives to traditional engineering solutions for hydro-meteorological 

risk reduction (Ruangpan et al., 2020) in cost effective ways (Ruangpan et al., 2024). The 

International Union for Conservation of Nature (IUCN) defines Nature Base Solution 

(NBS) as “actions to protect, sustainably manage, and restore natural and modified 

ecosystems that address societal challenges effectively and adaptively, simultaneously 

providing human well-being and biodiversity benefits” (IUCN, n.d.).  

NBSs are the potential, greener and eco-friendly alternative to the grey infrastructure for 

climate adaptation (Yimer et al., 2024; Debele et al., 2019; Ruangpan et al., 2020) with 

their multiple co-benefits such as better water quality, improved soil health, biodiversity 
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enhancement, natural area for recreation and better land use management and planning 

(Nesshöver et al., 2017; Penning et al., 2023). However, in research, much attention has 

been given to testing the potential of NBSs for flood management while their potential 

for drought management is barely touched. For instance, a recent literature review by 

Yimer et al. (2024) found that only 6 % of European case studies and 14 % of global case 

studies were focused on NBSs for drought adaptation. Apart from this, the research on 

the potential of NBSs in urban areas is more developed compared to their implementation 

in rural areas at the catchment scale for drought management (Yimer et al., 2024; Johnson 

et al., 2022). Further, the impacts of a single type of NBS may be known but it is 

challenging to design strategies where different NBS types are required to be spatially 

mapped due to the multiple objectives NBSs need to achieve (Guido et al., 2023).  

In order to assess the usefulness of nature based adaptive measures on local and basin 

scale and their long-term efficacy to mitigate or reduce climate change induced risks, 

detailed hydrological and/or hydrodynamic models are required. However, the lack of 

proper modelling approaches to test the impact of NBSs (Kumar et al., 2021) is another 

hindrance to understanding their potential for drought adaptation. Particularly, in flat 

landscapes, the aim is to enhance sub-surface storage in the wet period so it can be used 

in the dry periods. To carry out such analysis, integrated surface-subsurface hydrological 

modelling is required (Yimer et al., 2024) which can simultaneously provide results in 

terms of observable variables such as river discharge and groundwater levels, together 

with water balance variations associated with the interactions between surface and sub-

surface. In past research, where the integrated models have been used, the focus was on 

the surface water and groundwater recharge, without discussing the actual groundwater 

levels (Fennell et al., 2023; Holden et al., 2022). The deficiency of appropriate 

quantitative tools and comprehensive simulated results adds to the lack of evidence 

regarding the successful implementation of NBSs. The tools to engage stakeholders with 

diverse interests and attitudes (e.g. Farmers, local and regional authorities) in the design 

of NBS-based adaptation strategies are still very limited (Bogatinoska et al., 2022). 

Further, for the quantification of the impact of such strategies, scientific research argues 

for the use of more generic KPIs where comparisons across studies and catchments could 

be made conveniently (Penning et al., 2023). Whereas, stakeholders (water managers and 

private land owners) may require specific KPIs that are relatable to observable variables 

and address actual water management actions.  

In this research we aim to assess the potential of the NBSs for mitigating hydrological 

drought impact considering both surface (discharge) and subsurface (groundwater levels) 

variables. More specifically, a methodology to design the NBS-based adaptation 

strategies using integrated hydrological model is presented. To carry out the research, Aa 

of Weerijs catchment served as the study area. The integrated hydrological model was 

developed for the area using MIKE SHE modelling system and used for assessing NBSs 
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of drought mitigating under current and future meteorological conditions under climate 

change.    

The following sections present a methodology, followed by results and discusion. In the 

end main findings are summerized in conclusions.  

6.2 METHODS 

The research was carried out using MIKE SHE hydrological model for the Aa of Weerijs 

catchment. The description of the study area and model setup are presented in the Chapter 

3. For assessing the performance of NBSs under future climate change, the KNMI’23 

dataset was used. The dataset along with hydrological condition in the catchment under 

future climate condition are explained in Chapter 5. For brevity, these aspects are not 

repeated in this chapter.  

6.2.1 Methodological framework 

The main methodological steps followed to design the adaptation strategies are presented 

in Figure 6.1. A fully distributed and integrated surface water groundwater model was 

developed for the catchment using MIKE SHE modelling system that simultaneously 

captures the surface and subsurface hydrological dynamics of the catchment. This model 

acted as the main tool for designing of the adaptation strategies. A set of KPIs related to 

the observable hydrological variable were selected in consultation with the main 

stakeholders (Water Board Brabantse Delta and Province of Noord Brabant) and used for 

the performance evaluation of the NBS strategies under the current and future climatic 

conditions. Out of the four climate change scenarios from the KNMI’23 dataset, only the 

Figure 6.1. Methodological steps for the design and evaluation of the NBS-based 

adaptation strategies 
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one which is categorised by high CO2 emissions and a drying climate (HD scenario) was 

selected for the performance analysis of the strategies as this scenario is expected to result 

in the most prolonged drought period. The design of strategies included the testing of 

single measures, finding appropriate ways to model them and adjusting them spatially to 

formulate combined strategies. The formulation of NBS strategies and the selection of 

KPIs to assess their performance were conducted in consultation with the local 

stakeholders through devoted meetings. A web application was developed to facilitate 

knowledge sharing, communication of methodologies and results, and to support 

informed decision-making and stakeholder engagement in NBS-based design of 

strategies. The web application is publicly available and can be accessed via the link 

https://eiffel.un-ihe.org/EIFFEL-prod.  

6.2.2 Key performance indicators 

The characterization of hydrological droughts using indices/indicators is well established 

(Sahani et al., 2019). However, there is no universal consensus on the use of any particular 

indicator (Van Loon, 2015) as the selection of indicator is dependent on the intended use 

of water and it can be very diverse. Further, the selection of appropriate KPI is also 

challenging when it is also required to assess the impact of adaptation strategies including 

NBS-based strategies. The successful implementation of such strategies is dependent 

upon the recognition of their benefits by the stakeholders, which can be better 

demonstrated by KPIs that align well with their immediate concerns and water use needs. 

Aa of Weerijs catchment has recently experienced summer droughts, particularly in 2018 

and then again in 2022. In these periods, the bans on the water extractions on the surface 

water (withdrawal of water from the rivers) were imposed by the key stakeholders of the 

area, the Province of Noord Brabant (PNB- the regional government body charged with 

spatial planning) and the Water Board Brabantse Delta (WBD – the regional government 

body charged with managing water). Based on the water availability in the channels, 

water extraction bans are imposed for irrigation of specific crops or complete bans on 

water abstraction for irrigation. The lower the surface water discharge in the rivers, the 

greater the limitations in the water abstractions. A similar concept is adopted here to 

define the two new KPIs in consultation with WBD to ascertain the present condition and 

to evaluate the performance of the designed strategies. The KPIs link the actions taken by 

WBD to manage water shortages to the percentiles of the long-term observations of 

streamflow and groundwater levels (GWLs). The streamflow and GWLs are monitored 

at several locations across the catchment by the WBD and can be used to restrict water 

extraction if the water levels are below certain percentile-based pre-defined thresholds. 

The developed KPIs are Surface Water Availability (SWA) and Groundwater Availability 

(GWA). They represent the number of days when the surface water/ groundwater is 

sufficiently available, limited available and not available. These are calculated at each 
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monitoring location. For defining the categories (no-, limited- or sufficient- availability) 

threshold used is as follows: if the discharge (GWL) is below the 10th percentile then there 

is a total extraction ban and the status is 'not available'. If discharge (GWL) is between 

the 10th and 40th percentile then a partial ban is introduced and water is said to have 

'limited availability'; if discharge (GWL) is above the 40th percentile, no ban is introduced 

and water has 'sufficient availability' for any usage. Further instead of considering the 

thresholds for the whole time series, these can be defined seasonally. In this research, the 

thresholds defined for summer months (June, July, August) are considered as the 

objective was to observe the impact of NBS strategies on the drought conditions and it is 

the most affected period of the year by drought events for the study area. The thresholds 

are presented in Table 6.1. The model simulated discharge and GWLs were considered 

for determining thresholds, ensuring that the KPIs are calculated using the same 

procedure under both current and future conditions with or without NBS. Since the 

observed data under future conditions and with NBS strategies is unavailable. Thus, using 

the simulated variables for KPI calculation ensured consistency in methodology across 

all cases. Further, the use of modelled results provides flexibility in computing KPIs at 

any location across the catchment, whereas observed data is available only at limited 

locations. The values of the KPIs are calculated for the summer seasons under three 

scenarios: current conditions (2010-2019), climate change conditions (2050-2059), and 

climate change with NBS adaptation strategies (2050-2059). Further, the number of days 

falling within each category of threshold is aggregated over the entire period. 

Table 6.1. Summary of the thresholds, (water) availability class and bans on water 

extraction used to compute the Surface Water Availability (SWA) and Groundwater 

Availability (GWA) 

Discharge/Groundwater level 

(𝒙) 

Availability class Ban on water extraction 

𝒙 < 𝟏𝟎𝒕𝒉 𝒑𝒆𝒓𝒄𝒆𝒏𝒕𝒊𝒍𝒆 No availability Total ban 

𝟏𝟎𝒕𝒉 ≤ 𝒙 ≤ 𝟒𝟎𝒕𝒉 𝒑𝒆𝒓𝒄𝒆𝒏𝒕𝒊𝒍𝒆 Limited availability Partial ban 

𝒙 > 𝟒𝟎𝒕𝒉 𝒑𝒆𝒓𝒄𝒆𝒏𝒕𝒊𝒍𝒆 Sufficient 

availability 

No ban 

 

6.2.3   NBS types and modelling 

In the Netherlands, Climate change impacts are presented to stakeholders through various 

mediums, one of which is the climate impact atlas (Klimaateffectatlas, n.d.). Steered by 
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information available on such portals, Provincial authorities, water boards and 

municipalities conduct their local climate impact analyses and develop adaptation 

strategy plans. In the Province of North Brabant, such plan specially addressing the floods 

and drought are developed by PNB and WBD. The PNB also has a platform (PNB, n.d.) 

which provide information on both planned and implemented adaptation measures and 

many of which prominently feature NBS. The current strategy of the authorities (2022-

2027) for the water and land management is ‘nature-based solutions where possible, 

technical solutions where necessary’ (WBD, n.d.).  

The recent European research project named Co-adapt (Co-Adapt, n.d.), contributed to 

the first GIS based assessment of types and spatial distribution of potential NBSs in whole 

province, which included the Dutch part of the Aa of Weerijs catchment. A set of NBS 

types was proposed using information regarding the water system, average GWLs, 

landscape topography, land use and land cover, together with data on NBSs from existing 

projects and plans. For each NBS type, an ‘opportunity map’ was created, covering all 

possible areas where that NBS type can potentially be implemented. These maps have 

been provided by the Province for this research, and served as the basis for the design of 

the NBS-based adaptation strategy. An example of the opportunity maps is presented in 

Figure 6.2. 

Figure 6.2. Opportunity maps for potential implementation of different types of NBSs 

within the Dutch part of the Aa of Weerijs catchment 
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The design of our adaptation strategies started by modelling single-type NBSs (single-

measure strategy) within the developed hydrological model, using the opportunity maps 

as inputs. Six different types of NBS -Ditch Blocking, Tree Planting, Wetlands 

Restoration, Heathlands Restoration, Infiltration Ponds, Brook Bed Barriers- were pre-

selected based on their potential beneficial effects for drought adaptation shown in 

literature (Fennell et al., 2023; Raymond et al., 2017; Holden et al., 2022) and on the Co-

adapt project outcomes. Ditch Blocking consists in blocking the flow from small channels 

to larger streams, causing the water to slow down and allowing it to infiltrate in the sub- 

surface. From a modelling perspective, ditches in our MIKE SHE model are modelled 

through conceptual sub-surface drainage in the saturated zone. Ditch Blocking is hence 

reproduced in the model by reducing the parameter “drain time constant” by two-thirds 

with respect to initial values (range 1.50 exp-7 - 4.5 exp-7 1/s - corresponding to 77 days - 

26 days) in the cells where the block is applied. The initial values (without NBS) have 

been obtained after calibration, using ranges reported in literature (DHI, 2007; Refsgaard, 

1997; Brandyk et al., 2020). Brook Bed Barriers is a NBS where the natural barriers such 

as wooden logs or stones are used to form small bumps on the small water streams that 

increase flow resistance, reducing downstream flow velocity, and enhancing water 

retention in upstream sections (Szarek-Gwiazda et al., 2023; Quinn et al., 2013). These 

inline features are modelled in the MIKE 11 river network by weirs as represented by 

other authors as well who used similar approaches with other software tools (Guido et al., 

2023; Thomas and Nisbet, 2012; Metcalfe et al., 2017). Wetland Restoration aims to store 

water and increasing its retention in the application area. In our hydrological model, this 

NBS is introduced by changing the existing vegetation type to a new one, characterised 

by Leaf Area Index (LAI) of 2.5 and Root Depth (RD) of 450 mm. These average values 

of vegetation parameters are taken from NHI (2008) and Breuer et al. (2003). Additionally, 

the Strickler roughness coefficient value is set to 15 m1/3 s-1 in areas where wetlands are 

restored (Janssen, 2023; Chow, 1959). The overland flow detention storage is set at 0.15 

m to represent the typical shallow ponding and temporary water retention characteristic 

of wetlands (Mitsch and Gosselink, 2015; Tousignant et al., 1999). Wetlands store more 

organic matter compared to crop areas, which would alter the soil hydraulic properties in 

the area where wetlands are restored. The changes in the soil properties are incorporated 

in the model by recalculating the soil hydraulic properties based on the potential changes 

in the soil organic content as studied by (Guo and Gifford, 2002; Beillouin et al., 2023) 

and using equations of continuous pedotransfer functions from Wösten et al. (1999). 

Infiltration Ponds are areas with highly permeable material that allows water to infiltrate 

into the sub-surface. As such, they are introduced in our MIKE SHE model by providing 

the top 30 cm layer of soil as sandy soil to facilitate infiltration (Hsieh and Davis, 2005; 

Woods Ballard et al., 2015) and corresponding soil hydraulic parameters are calculated 

using equations of continuous pedotransfer functions from by Wösten et al. (1999). 

Strickler roughness coefficient is set as 40 m1/3 s-1 (Engman, 1986) and the overland 
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detention storage is set at 0.15 m to represent the temporary surface ponding as suggested 

in Woods Ballard et al. (2015). Heathlands Restoration aims at reducing transpiration and 

interception from plants with large canopy cover. For this reason, they are represented in 

our hydrological model reducing the LAI and RD parameters, according to the values 

suggested by NHI (2008) for heathlands. Further, Strickler roughness coefficient is set at 

20 m1/3 s-1 in these areas (Papaioannou et al., 2018), same as in the base model for 

heathlands. Tree planting can play a dual role in hydrology. Trees function as 'pumps' 

through enhanced ET (Chen et al., 2023) and as 'sponges' by improving soil infiltration 

(Peña-Arancibia et al., 2019). The overall hydrological effects of tree planting within a 

specific catchment are therefore dependent upon the complex interplay between these two 

fundamental processes. They are modelled by modifying LAI, RD, Strickler coefficient 

and soil hydraulic properties to capture the influence of roots in the infiltration process. 

The values of LAI and RD are kept same as used in base model for the forest areas and 

these values were taken from NHI (2008). Strickler roughness coefficient is set at 10 m1/3 

s-1  (Papaioannou et al., 2018; Freeman et al., 1998). Similar to wetlands, trees also 

increase organic content in the soil leading to enhanced water holding capacity. This 

process is incorporated in the modelling by calculating the soil hydraulic parameters using 

equations of continuous pedotransfer functions from Wösten et al. (1999), considering 

the potential percentage changes in soil organic content values based on (Beillouin et al., 

2023).  

Each of the NBSs described was modelled independently within MIKE SHE in current 

conditions (2010-2019). Both KPIs, i.e. GWA and SWA, were computed for each of the 

single-measures, and the NBS types that did not provide improvement in terms of surface 

and groundwater availability were excluded from further analysis, which resulted in the 

exclusion of Tree Planting and Brook Bed barriers from the next step of analysis.  

Table 6.2. NBS types considered in the Aa of Weerijs catchment and approaches taken 

for their modelling in the MIKE SHE hydrological model 

NBS type  Main drought-related 

function 

 Modelling approach 

Ditch blocking Slowing down drain 

flow and allowing more 

infiltration upstream 

Conceptual drain time constant reduced 

by 2/3 of the initial values (DHI, 2007; 

Refsgaard, 1997; Brandyk et al., 2020)  

Wetlands 

restoration 

Water storage and 

retention 

Modified vegetation parameters: LAI = 

2.5, RD = 450 mm (NHI, 2008; Breuer et 

al., 2003);  Flow detention storage 

introduced (0.15m) (Mitsch and 
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Gosselink, 2015; Tousignant et al., 

1999); Modified Strickler roughness 

coefficient = 15 m1/3/s (Janssen, 2023; 

Chow, 1959); Modified soil hydraulic 

properties (Wösten et al., 1999; Guo and 

Gifford, 2002; Beillouin et al., 2023) 

Infiltration ponds Increase of infiltration 

into the sub-surface 

Sandy soil in the top 30 cm (Hsieh and 

Davis, 2005; Woods Ballard et al., 2015); 

Flow detention storage introduced 

(0.15m) (Woods Ballard et al., 2015); 

Modified Strickler roughness coefficient 

= 40 m1/3/s (Engman, 1986) and soil 

hydraulic properties (Wösten et al., 1999) 

Heathlands 

restoration 

Reduce interception and 

transpiration from 

currently forested areas 

Reduced LAI and RD according to (NHI, 

2008); Modified Strickler roughness 

coefficient (Papaioannou et al., 2018) 

Tree planting Increased infiltration 

and soil water retention; 

enhanced flow 

resistance 

Modified LAI and RD values (NHI, 

2008); Modified Strickler roughness 

coefficient (Papaioannou et al., 2018; 

Freeman et al., 1998); Modified soil 

hydraulic properties in trees’ root zone 

(Beillouin et al., 2023; Wösten et al., 

1999) 

Brook bed barriers Slowing down upstream 

river flow and allowing 

more infiltration 

Using weirs in Mike 11 river model to 

represent barriers (Guido et al., 2023; 

Thomas and Nisbet, 2012; Metcalfe et al., 

2017) 

6.2.4 NBS-based adaptation strategies 

The single NBS measures were used as the foundation to design the spatially combined 

adaptation strategies. The opportunity maps of single NBS measures cover quite a large 

area and implementing them at every potential location may not be feasible. Therefore, 

the design of the combined adaptation strategies was restricted to the spatial domain 
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which are already identified for the nature by the Province. As an outcome, two strategies 

were developed (S1 and S2), which differ in their spatial extents. In S1, the spatial extent 

was limited to the area proposed under the “Nature Management Plan” (NMP) which was 

developed in the 1990s. While the S2 covers larger spatial extent, for which along with 

NMP a recently defined “Green Blue Mantel” (GBM) area was included. The GBM has 

been designated as a buffer zone surrounding the nature network of province which can 

be used to support climate proofing as well as nature and landscape enhancement. These 

steps ensured that the proposed NBS adaptation strategies are embedded in the existing 

water and land management plans regarding climate adaptation and nature enhancement. 

These two areas (NMP and GMB) are shown in Figure 6.3. 

The potential locations of individual measures, as shown in the opportunity maps, are 

determined based on the geospatial analyses. Therefore, there are chances that locations 

may overlap where different type of single measures could potentially be implemented. 

Further, as the hydrological processes are complex, different measures at a particular 

location may have different effects on different hydrological components. Consequently, 

single measures were combined into strategies based on their performance with respect 

to groundwater conditions improvement as the main criterion. The groundwater 

conditions were prioritized, as for the drought adaption the aim was to store more water 

in the sub-surface storage.  Increasing groundwater storage eventually supports greater 

water retention in the catchment and contributes to base flow.  

The locations where the single measures had negative impact on the GWLs were excluded. 

Only the locations where the results were positive where included in the formulation of 

strategies. The final locations selected for each measure were determined based on 

evaluating where the particular measure demonstrated the greatest positive impact. For 

Figure 6.3. Spatial domains used for designing strategies S1 and S2 
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instance, if there was a spatial overlap or conflict at a location then the measure with 

higher positive impact was provided. It is important to note that Ditch blocking 

consistently showed positive effects on all the locations where it was provided. So, it was 

provided in combination with other measures at some locations. 

For the performance assessment of the strategies (S1 and S2), the climate scenario HD 

was selected as it represents the most severe drought conditions. This scenario may not 

be most likely but to best reveal the potential of strategies it was selected for simulations. 

The outcomes were analysed in term of KPIs. Further, the water balances of the catchment 

were computed to provide supporting information on the hydrological changes introduced 

by the strategies. 

6.3 RESULTS AND DISCUSSION 

6.3.1 Single measures and water balance results 

The flow duration curves for the streamflow at the catchment outlet, based on the single 

measures and considering only the values from the summer months (June, July, August) 

are shown in Figure 6.4. The infiltration ponds and heathlands restoration have reduced 

the high flows and increased the low flows. The trend is more prominent for the 

infiltration ponds compared to heathlands restoration. The wetlands restoration reduced 

the high flows while remaining neutral when the flow is less than about 2 m3 s-1. Similarly, 

for the ditch blocking the low flow remained unaffected while the flows above 8 m3 s-1 

increased marginally. Tree planting has a negative effect on high as well as low flows 

whereas brook bed barriers remained neutral.  
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The average change in the groundwater level during the summer months for each single 

measure compared to base conditions is shown in Figure 6.5. The spatial maps show the 

areas with increase (blue) and decrease (red) in GWLs across the catchment. The ditch 

blocking, infiltration ponds and heathlands restoration have positive effects on the GWLs 

at all the locations where they were implemented. In particular, the most substantial 

change is demonstrated by infiltration ponds where the change at a few locations reaches 

up to 0.45 m. Heathlands restoration also contributed to the moderate increase in the 

north-east and central areas of the catchment. Ditch blocking produced the increase 

typically in the range of 0.1 to 0.3 m. Wetlands restoration presented mixed effects where 

some areas exhibited an increase of up to 0.1 m – 0.4 m and some regions showed declines. 

This may be due to the dual influence of increased ET and storage change, where the local 

conditions decide the net effect on the GWLs. The brook bed barriers showed a negligible 

impact on the GWLs mostly within the range of 0.01 m. Tree planting is the only measure 

with a widespread decrease in GWL, reaching up to -0.2 to -0.3 m at some locations. This 

is consistent with the increased ET as observed in the water balance (Table 6.3) which 

depicted that trees are causing significant water loss due to increased vegetation uptake.  

Figure 6.4. Flow duration curve for summer months at catchment’s outlet 
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The summarized main water balance components of the base model and single measure 

under the current condition (2010-2019) for the whole catchment are presented in Table 

6.3. The values are accumulated over the entire period and rounded off to integer values. 

It is important to mention that the evaporation from the surface consists of evaporation 

from canopy interception, ponded water on the surface and open water. While the sub-

surface component of ET consists of soil evaporation and transpiration. The infiltered 

water to un-saturated zone is available for sub-surface ET and groundwater recharge. For 

the ditch blocking increase in the GWLs was observed (Figure 6.5) whereas in water 

balance a slight decrease in the recharge was observed (from 2888 mm to 2830 mm). 

Ditch blocking is a measure that disrupts drainage network by slowing the lateral 

subsurface flow and retaining water that is already in the subsurface rather than 

enhancing vertical recharge.  The sub-surface storage change remained almost the same 

(49 mm vs 50 mm) while the base flow increased from 208 mm to 215 mm. Overall, ditch 

blocking resulted in a rise of GWLs due to enhanced water retention via reduced lateral 

drainage rather than increased vertical input. The catchment average rise in GWL during 

the summer at locations with positive response to ditch blocking is 4.9 cm which is in 

accordance with the findings of Stachowicz et al. (2025), who observed a rise of about 6 

cm due to ditch blocking in the catchments in Norway. Infiltration ponds demonstrated 

the highest increase in recharge among the tested measures (3135). This led to an increase 

in base flow and sub-surface storage. On average, at the location with positive impacts of 

infiltration ponds, the GWLs rose by 14.6 cm. Similarly, heathlands enhanced the average 
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Figure 6.5. Average change in groundwater levels in summer months due to singles 

measure compared to base conditions 
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GWL by 5.4 cm by slightly reduced ET (5115 mm) and increased recharge (2953 mm). 

Consequently, the river runoff also increased. Wetlands restoration led to an increase in 

surface ET but also a slight increase in recharge. This suggests the improved water 

residence time has been facilitated by wetlands. At locations where wetlands showed a 

positive impact on GWL, the average summer rise was about 9 cm, whereas areas 

showing a negative response showed a mean decline of about 4 cm.  

Tree planting enhanced ET (5189 mm to 5346 mm) from both surface and sub-surface. 

Consequently, this led to reduced groundwater recharge and river runoff. Similar 

conclusions have been reported by van Meerveld and Seibert (2025) in their recent review 

article that in general tree plantation will increase ET, and reduce recharge 

and streamflow specifically in low flow periods. However, this should not be 

considered as an excuse to clear-cut the forests as they provide many other 

benefits such as carbon sequestration, biodiversity enhancement, cool, etc. Brook bed 

barrier showed negligible changes in the water balance suggesting minimal 

hydrological change at the catchment scale.  

Table 6.3. Accumulate water balances for the base model along with single measures 

for the period 2010-2019 

Water balance component Values for each Case (all values are expressed in mm) 

Base DB WR IP HR TP BB 

Precipitation 8251 8251 8251 8251 8251 8251 8251 

Total Evapotranspiration 5189 5194 5267 4955 5115 5346 5189 

- From sub-surface 3716 3715 3672 3779 3663 3808 3715 

- From surface 1473 1479 1595 1176 1452 1537 1474 

Infiltration 6524 6467 6482 6840 6540 6487 6523 

Groundwater recharge 2888 2830 2890 3135 2953 2699 2888 

River runoff 2130 2119 2058 2285 2184 2010 2130 

- From drain flow 1668 1597 1670 1830 1712 1579 1668 

- From base flow 208 215 212 220 211 202 208 

- From overland flow 254 307 176 235 261 229 254 

Sub-surface storage change 49 50 46 65 53 37 49 

- From unsaturated zone -80 -80 -81 -76 -79 -82 -80

- From saturated zone 129 130 127 141 132 119 129

Boundary outflow 884 889 882 946 899 859 884 

Tree planting demonstrated a consistently negative impact on GWL while brook bed 

barriers remained neutral with no significant changes in the water balance components. 

Therefore, these two measures were excluded from the formulation of combined 

strategies and are not discussed further in the following sections. 
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6.3.2 NBS adaptation strategies and their KPIs and water 
balance results 

The single measures (ditch blocking, infiltration ponds, heathlands restorations and 

wetlands restorations) were combined following the procedure described in the 

methodology to formulate two strategies S1 and S2. These two strategies are presented in 

Figure 6.6.  

Clearly visible in Figure 6.6, S1 has small spatial extent compared to S2, which covers 

larger area. Following the land use map of the area along with two nature management 

plan (NMP and GBM, Figure 6.3), there seems to be more opportunities to implement 

NBS towards the west side of the catchment. Western side is already covered with more 

natural area as compared to the eastern side which is more dedicated to agricultural 

activities. This spatial pattern may be because of the reason that the main branch (Aa of 

Weerijs) is toward the east side of the catchment, historically favoring agricultural 

development. Additionally, the two strategies also cover more spatial area towards the 

west side of the catchment because of overlap with NMP and GBM. Therefore, these 

strategies mainly propose the expansion of current natural area with NBSs on that side of 

catchment. On the eastern side, strategies S2 offers more opportunities but only in close 

Figure 6.6. Spatial design of S1 (left panel) and S2 (right panel) NBS adaptation 

strategies 
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vicinity to the Aa of Weerijs river. This spatial distribution of the NBSs in the S1 and S2 

has direct implications for the outcomes under climate scenario HD (referred to HD-CC 

from now on) in term of obtained KPI. Figure 6.7 showed the results for KPI SWA under 

HD-CC and HD-CC with S1 and S2. The situation under HD-CC is becoming worse 

where the number of days with no availability and limited availability has increased. The 

trend is similar at all three locations. All these locations are towards the eastern side of 

catchment along the main Aa of Weerijs river. With the implementation of strategies S1 

and S2, SWA has improved, but the magnitude of improvement is greater for S2 than for 

S1, particularly at most downstream location (Q1). As the NBS implementation is more 

focused on the eastern side, so the effect on SWA is significant only after the tributaries 

from the eastern side join the main Aa of Weerijs river upstream location Q1. 

The variation in the value of KPI due to spatial distribution of NBS in S1 and S2 are even 

more prominent in terms of GWA results as they are more dispersed across the catchment. 

The results of GWA are shown in Figure 6.8. Even the results of HD-CC scenario alone 

show the more severe impact on the well locations which are towards the east side of the 

catchment (e.g. GW-2,3,6) as compared to west (e.g. GW-4,5), due to extensive 

agriculture toward east and more already existing natural area towards the west. The most 

significant improvements with the strategies S1 and S2 are observed on the locations 

which in the downstream part of the catchment (GW-1,2,3, and 4), where with S2 the 

days with ‘no availability’ are almost fully eliminated. Similar is the situation at GW5, 

Figure 6.7. Surface Water Availability (SWA) results for climate change scenario 

HD (HD-CC) and nature-based solutions adaptation strategies S1 and S2 



6. Nature base solutions for climate adaptation

134 

which is more upstream but located on the western side where it is surrounded by more 

NBSs. At the locations which are further upstream such as GW6,7 and 8, S1 hardly 

enhanced SWA due to limited implementation of NBS at these locations. Whereas under 

S2 improvements are more noticeable due to more spatial coverage of NBS around these 

locations. At the points which are in Belgium hardly any improvement is noticeable. 

Overall, the results demonstrated that in addition to the improvements at the local 

locations where NBS are implemented, the positive impacts are accumulated from 

upstream to downstream for both surface and groundwater. These findings are in 

accordance with other literature that investigated the impacts of spatially distributed NBS 

strategies (Fennell et al., 2023). 

The hydrological conditions under the climate change scenario HD along with the 

implemented strategies S1 and S2 are further analyzed by computing the water balances 

of hydrological components for the period 2050-2059 and are presented in Table 6.4. 

Under the HD-CC, the most significant change compared to the current condition (Table 

6.3) is in terms of ET which increased by about 14 %. The precipitation is also reduced 

but only by about 2 %. So, the main component is the increased ET which induced the 

prominent negative impacts on GWA and SWA under climate change. Under S1 and S2, 

the increase in ET was reduced and consequently, infiltration and recharge were increased. 

Figure 6.8. Groundwater Availability (GWA) results for climate change scenario 

HD (HD-CC) and nature-based solutions adaptation strategies S1 and S2. 
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Table 6.4. Accumulated water balances for the HD scenario, S1 and S2 strategies 

(2050-2059) 

Water balance component 
Values for each Case (all values are expressed in mm 

HC-CC S1 S2 

Precipitation 8060 8060 8060 

Total Evapotranspiration 5939 5816 5752 

- From Sub-surface 3051 3201 3290 

- From Surface 2887 2617 2462 

Infiltration 5062 5336 5493 

Groundwater recharge 2089 2211 2277 

River runoff 1379 1462 1496 

- From drain flow 1094 1171 1201 

- From base flow 174 182 191 

- From overland flow 111 109 104 

Sub-surface storage change 44 56 63 

- From unsaturated zone -78 -75 -74

- From saturated zone 122 131 137

Boundary outflow 699 727 749 

The results are further analyzed to understand how these strategies behave under different 

seasons. The average seasonal variations of the key hydrological components over the 

10-year simulation period (2050-2059) under HD-CC, S1 and S2 are represented in

Figure 6.9. The results show the already mentioned effect from the strategies S1 and S2

but these are more prominent during spring and summer. For instance, the average ET

under HD-CC during summer is 261 mm/season but is reduced to 251 mm/season under

S2 and consequently infiltration is increased from 82 mm/season to 98 mm/season under

S2. The negative value of recharge under CC-HD shows that groundwater is losing water

due to evapotranspiration. However, this negative recharge is reduced under S1 and S2.

Overall, the results depict that the goal to increase sub-surface storage is achieved but a

considerable positive impact came from the implementation of NBS on larger area.
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The decrease in ET due to NBS strategies is primarily because they enable more water to 

infiltrate into the sub-surface consequently leaving less water on the surface to evaporate. 

It is also evident from the water balance (Table 6.4) that actual ET from sub-surface 

increased under two NBS strategies while surface related Actual ET reduced. This is 

attributed to multiple combined effects from different types of NBS present in the 

strategies such as change of vegetation parameters due to wetlands and heathlands, 

enhancement of infiltration with infiltration ponds, and slowing of lateral flow with ditch 

blocking. The combined effects led to an increase in SWA and GWA. In literature, similar 

effects have been reported that examined the role of NBS in mitigating drought impacts 

(Fennell et al., 2023; Holden et al., 2022; Welderufael et al., 2013). However, the 

catchment characteristics or implemented NBS might be different, but the results 

conclude that NBSs based adaptation strategies have a potential to perform across 

different scales and climates as long as they are designed to increase retention and 

infiltrations. With our research using an integrated model, we provided further such 

evidence that support the NBS strategies.  

Our results showed that the proposed NBS strategies in Aa of Weerijs catchment led to 

higher river discharges in the winter seasons. This is generally undesirable due to the 

potential of flood nuisance, but in Aa of Weerijs it is not a primary concern as the 

Figure 6.9. Seasonal variation of key water balance components, represented as 

average seasonal values over the 10-year simulation period, under HD climate 

change scenario (HD-CC), and adaptation strategies S1 and S2 
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catchment is well protected from flooding. Future research may focus on designing 

strategies that consider high flows as well. It is important to mention that the results are 

specific to the study area. The results may vary for other catchments depending upon the 

meteorological conditions and characteristics of the catchment such as landscape, land 

use, soil properties, etc. It should be expected that allocating larger areas to NBS would 

yield more benefits as we observed in the case of S1 and S2. The most significant general 

contribution lies in the development of a methodology that provides clear and 

interconnected steps for selecting, designing and evaluating NBS strategies for drought 

using the integrated hydrological model that simulates surface and sub-surface processes 

simultaneously. Further, in the methodological step, the key aspect is the identification of 

the KPIs that need to be finalized in association with the stakeholders. This ensures that 

the KPIs are aligned with stakeholder priorities and are meaningful for both assessment 

and decision-making. The actual single measures may vary for different catchments 

depending on the objectives to achieve and the opportunities a particular landscape offers. 

Our procedural steps for model-based testing of NBS measures and designing the 

subsequent spatially distributed strategies would still be applicable.   

6.4 CONCLUSIONS 

This research proposed the methodology for design and catchment-scale evaluation of 

NBS-based adaptation strategies to mitigate hydrological drought, using indicators that 

are close to stakeholders' needs and practices. The methodology used an integrated 

hydrological model based on MIKE SHE software as the main tool to analyse surface and 

groundwater behaviour in catchment under: (1) current climate conditions, (2) single 

NBSs, (3) projected near future climate change, and (4) combined NBS-based adaptation 

strategies. In addition to the use of groundwater level difference, flow duration 

curves, and water balance are computed to assess the current conditions and the effect 

of single NBS measures. Further, the effect of climate change and NBS measures 

(single or combined strategies) on surface and sub-surface condition of the catchment 

are assessed using two newly introduced KPI (SWA and GWA). These indicators were 

developed in consultation with stakeholders and express the surface and groundwater 

availability status connecting the traditional threshold with the actions on withdrawal.  

Six different individual NBS measures were assessed using the integrated hydrological 

model with the aim of retaining water in the catchment for longer and enhancing 

groundwater recharge. Among these, the most positive impacts were observed for 

infiltration ponds and heathlands restoration where they increased recharge and 

consequently contributed to enhanced baseflow. Ditch blocking did not notably 

improve the recharge but effectively reduced the lateral drainage flow from the sub-

surface, consequently increasing groundwater levels. Wetlands restoration demonstrated 

both positive as well as negative effects. Tree plantation led to enhanced ET and induced 
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negative impacts on the groundwater and streamflow. Brook bed barriers showed 

negligible response to surface and sub-surface components. The four single measures 

(infiltration ponds, heathland restoration, ditch blocking, and wetlands restoration) with 

the positive response on the groundwater were combined spatially to develop two 

strategies S1 and S2. Both strategies reduced ET and enhanced the infiltration and 

recharge, consequently increasing the runoff, achieving the main aim of their application. 

Strategies S2 (with a larger spatial extent) provided a comparatively more positive effect 

on surface and groundwater by completely eliminating ‘no availability’ days at 

monitoring locations near the downstream part of the catchment. Further, in both 

strategies, the positive impacts of NBS are accumulated from upstream to downstream.  

This assessment was mainly focused on drought adaptation but can be extended to flood 

adaptation strategies by following the proposed methodology, once the flood-related KPIs 

are identified in consultation with local stakeholders. Further, we believe that the 

proposed methodology is not limited to Aa of Weerijs but is readily transferable to other 

case studies.   



7 
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7.1 INTRODUCTION 

The previous chapters address the research objective regarding the potential of EO 

datasets for hydrological modeling, the evaluation of precipitation products suitability for 

producing surface and subsurface hydrological variables, and the potential of NBS-based 

adaptation strategies to mitigate drought impacts. This chapter reflects on the findings of 

the previous chapters in the light of the research objectives presented in Chapter 1. Further, 

the limitations of the work are discussed and finally in the end the outlook on the topic is 

provided, identifying further prospects for future research efforts. 

7.2 SYNTHESIS 

The first objective that the study aims to address is to analyse the potential of EO data 

products for distributed hydrological modelling which is a topic of considerable 

importance due to challenges posed by data scarcity. Through an extensive PRISMA 

based systematic literature review (Chapter 2), the analysis provided a thorough 

examination of multiple dataset types (precipitation, LULC, soil properties, leaf area 

index (LAI), snow cover, evapotranspiration, soil moisture and temperature) across the 

catchment scales. The EO data products are helpful for hydrological modelling at regional 

to global scales, offering broad spatial and temporal coverage. However, the performance 

and reliability of these datasets are highly variable depending on geographic region, 

catchment size and hydrological variable of interest. The main synthesis on the EO 

datasets is that they can fill data gaps in the poorly monitored regions and improve the 

spatial coverage, but their use remains heavily dependent on careful evaluation. The 

review (Chapter 2) highlighted that no single EO dataset consistently performs best across 

different environments or hydrological variables, suggesting that the performance of 

specific datasets is conditional and context-specific rather than universally identical.   

Chapter 2 also highlights the variation in EO dataset usage across micro-, meso- and 

macro-scale catchments and the relationship between dataset utility and catchment size is 

established.  At the smaller catchment scales (micro- and meso-scale), the utilization and 

potential of EO datasets remained largely unexplored in practice. The in-situ data is 

preferred at these scales due to concerns about the coarse spatial resolution of the EO 

datasets. While the EO products may have the potential to support distributed 

hydrological modelling at small scales, further performance evaluation studies are needed 

to unveil this potential fully. The trend might evolve as the fine resolution datasets 

become more widely available. In the end, the catchment scale- and dataset type-wise 

knowledge gaps have been identified.  

Although the literature search was comprehensive, it is important to mention that it 

covered the articles published between 2016 and 2021 and relied on two databases. The 
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relevant studies published outside this time window or on other platforms may have been 

overlooked. Further, most of the studies were from China and USA, which might have 

introduced regional bias. Moreover, the review could have been further strengthened by 

incorporating a systematic synthesis of the comparative accuracy of EO datasets in 

hydrological simulations. However, this was challenging to incorporate due to the lack of 

use of standardized evaluation criteria or metrics in the reviewed articles.  

While the review categorizes knowledge gaps across dataset types for different catchment 

scales, one of the common gaps identified is the lack of common evaluation criteria used 

for selecting the most suitable datasets for the specific hydrological purpose. This gap is 

consistent across catchment scales and persists irrespective of data type. Although many 

reviewed articles provided comparative statements about the dataset performance, they 

did not provide any systematic approach to identify the most suitable dataset for 

hydrological modelling. Therefore, in the second objective, we evaluated the influence of 

the choice of performance metrics on the identification of the most suitable data product 

for hydrological simulations and developed a comprehensive methodology to identify 

suitable products.  

In Chapter 4, we presented the development and application of multi-metric, multi 

combination evaluation framework to identify suitable EO products for simulating 

hydrological variables. The study directly reflects on the identified gap regarding the lack 

of a comprehensive method to select a suitable dataset. The methodology was applied to 

a lowland transboundary catchment using the MIKE SHE model and four precipitation 

products (EOBS, MSWEP, IMERG Final and ERA5 Land) were rigorously evaluated by 

testing approximately 33 million combinations of selected metrics. The core concept is 

that the most suitable product is not the one that performs best on a single or arbitrarily 

selected set of metrics, but rather the one that demonstrates consistent plausibility across 

the widest range of metric combinations.  

The results of different scenarios and metrics combinations clearly reflect that the choice 

of evaluation metrics has a significant influence on determining the most suitable product. 

Depending on which metrics and which variables have been selected for evaluation, the 

results have varied a lot. Testing of multiple combinations of metrics strongly supported 

that the use of a single metric can lead to an unsuitable choice of gridded product, either 

for precipitation estimation or hydrological simulations. The use of multi-metrics 

multiple combinations approach provided a more robust and comprehensive assessment 

of the product’s performance. The identification of the most suitable precipitation product 

is highly sensitive to the number and combination of metrics used, particularly when the 

number of metrics is small. When fewer metrics were considered (chapter 3), the 

likelihood of misidentifying a less suitable product as the best increases. As more metrics 

were included, the outcomes converged towards consistently strong performers. Overall, 

the study highlighted and cautioned that the arbitrary metric selection based on a few 
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unbalanced metric sets can lead to false identification of the most suitable product. 

Further, the inclusion of hydrological signatures in the evaluation process enhanced the 

diagnostic power that traditional statistical error metrics alone could not provide. 

Moreover, the aggregation of multiple performance combinations using both Euclidean 

Distance and Plurality Score based criteria enabled a more comprehensive and transparent 

comparison across datasets, serving as a template for future evaluations. The study also 

reflected that no single precipitation product consistently performed better than others 

across all metrics in precipitation estimation or reproducing hydrological variables. At a 

few locations, the precipitation product's performance in simulating discharge and 

signature is even better than ground observed data, but it was not consistent across all 

observation locations. This outcome directly reinforces the findings of Chapter 2 that EO 

dataset performance is context-specific and therefore, relying on limited or singular 

evaluation metrics can lead to misleading conclusions. 

The findings of the study reflect a critical insight into the sensitivity associated with the 

choice of metrics and the significant influence of metric selection on identifying the most 

suitable precipitation products. Although the outcomes are limited to the study catchment, 

but scientific community can benefit from the methodology proposed. The framework 

was developed and demonstrated in a well-instrumented catchment, but it is adaptable to 

data-scarce regions as well, where traditional ground-based observations are limited. In 

such contexts, alternative remotely sensed variables such as evapotranspiration or soil 

moisture can be used as evaluation variables, allowing the proposed multi-metric 

evaluation framework to still support the identification of the most suitable precipitation 

products based on broader hydrological behaviour. Further, the application is not limited 

to precipitation products but can be applied to evaluate other EO products and to assess 

model performance in routine hydrological modelling practices.  

Following the evaluation of the EO datasets and the development of a comprehensive 

framework for their selection in Chapter 4, the third objective (Chapter 5) extended the 

application of the hydrological modelling to analyse the individual and combined impacts 

of future projected changes in LULC and meteorological variables on surface and 

subsurface hydrology. The MIKE SHE model used in this study was hybrid in terms of 

input data as it integrated EO datasets, specifically DEM, land use and soil texture, with 

meteorological data from local stations. In chapter 4, precipitation products demonstrated 

their potential to be used as input datasets. However, the use of local station data for this 

study was a deliberate choice to ensure comparability and credibility of the results, 

particularly in the communication with local stakeholders. This reflects that the balance 

between EO and in-situ data usage can ensure an operational modelling environment 

where stakeholders' trust and data reliability are harmonized. Scientifically, this objective 

reflects on a critical gap by analysing the combined hydrological impact of both LULC 

and meteorological changes, which are often considered in isolation in climate impact 
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studies. The use of recently released KNMI’23 climate projections further strengthened 

the study’s relevance and timeliness, as it offers up-to-date meteorological projection data 

for scenario analysis.  The other major strength that the study offered was the prediction 

of the future LULC map using ANN-CA. The integration of KNMI’23 scenarios with the 

future LULC map allowed to capture both the catchment scale averages and local scale 

sensitivities of hydrological variables towards meteorological inputs and land use change.  

For the simulation of future land use, on one side, the choice of a business-as-usual 

scenario serves as a representation of a worst-case trajectory, emphasizing the potential 

hydrological impacts of unchecked urban expansion and changes in agricultural land use 

without interventions of land management or policy-driven planning. On the other hand, 

it reflects the simplistic scenario that does not account for socioeconomic, political, or 

environmental factors that could change future land use dynamics or trends assumed 

under the business-as-usual scenario. Therefore, this scenario is useful for stress-testing 

of hydrological systems and should be interpreted as a boundary case rather than a 

definitive forecast.  

The model results revealed that under future climate change, the catchment will 

experience more water stress. This is primarily due to an increase in evapotranspiration 

due to a temperature rise. The main reflection of the objective is that, on the catchment 

scale, impacts of climate change on the hydrological variables are comparatively more 

pronounced than the LULC change. The hydrological impact due to future LULC 

accounts for very minimal changes in hydrological variables (>1 %) at the catchment 

scale. However, at the local scales, particularly in zones transitioning from agriculture to 

built-up or semi-natural areas, LULC change significantly influenced the relative changes 

in groundwater level, soil moisture and actual evapotranspiration. Under the combined 

effects, LULC changes appeared to slightly buffer the effects of climate change. Overall, 

the climate change remained the principal driver of hydrological impacts, while LULC 

changes can influence the spatial distribution of impacts in the transformed areas.  

After the climate change impact analyses (Chapter 5), the final objective was to evaluate 

the potential of NBSs for mitigating drought impacts and to formulate adaptation 

strategies to achieve maximum water conservation in subsurface. Chapter 6 expanded the 

scope of this thesis from dataset evaluation and future scenario analysis to the design and 

evaluation of NBS-based adaptive strategies. MIKE SHE model was used to simulate the 

effects of six individual NBS types and a framework was developed to spatially combine 

the most effective single NBS into composite adaptive strategies. The systematic 

selection of final NBS types and their spatial allocation within the strategies (S1 and S2), 

considering both the regional land use plans and hydrological impact, is the strength of 

the method that enhances its acceptability, scalability and adaptability. Further, the 

study’s strength is reinforced by the incorporation of KPIs that are stakeholders’ relevant 

and bridge the gap between model output and decision-making needs. The KPIs were 
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designed in consultation with regional stakeholders, specifically professionals from the 

Water Board and the Province. It is important to recognise that the implementation of 

NBS may involve a diverse group of stakeholders with different priorities and KPIs may 

need to be adapted accordingly.  

The single NBS measures tested in this study were categorized in the prior project as 

suitable for sub-surface water conditions based on GIS based assessment that considered 

the physical characteristics of the catchment and average groundwater levels. However, 

the model results depicted that the hydrological effects were not uniformly positive at all 

the locations. While some measures led to noticeable improvement in the groundwater 

levels, others (Tree planting and brook bed barriers) remain neutral or even negative. Also, 

for the same measure, the results have varied across the catchment. This highly reflects 

the importance of validating GIS based opportunity mapping with hydrological modelling, 

as spatial suitability alone does not guarantee hydrological effectiveness.  

Out of six different individual NBS measures that were assessed for their potential to 

retain water within the catchment for longer and enhance groundwater recharge, the most 

positive impacts were observed for infiltration ponds and heathland restoration. Ditching 

blocking did not notably improve the recharge but effectively reduced the lateral drainage 

flow from the sub-surface which consequently increased groundwater levels. Wetlands 

restoration demonstrated both positive as well as negative effects. In contrast, tree 

plantation led to enhanced evapotranspiration and induced negative impacts on the 

groundwater and streamflow. Brook bed barriers showed a negligible response to surface 

and sub-surface components.  

Based on the findings, four measures (infiltration ponds, heathland restoration, ditch 

blocking, and wetlands restoration) were combined spatially to develop two strategies (S1 

and S2). The selection and spatial allocation were driven by performance with respect to 

groundwater level improvement, as the primary focus of the study was to enhance sub-

surface storage. It is important to note that different spatial maps might have emerged if 

the criteria prioritized different objectives. Both strategies succeeded in reducing ET and 

enhancing infiltration and recharge, consequently increasing the runoff, and improving 

water availability during summer. Strategies S2, with a larger spatial extent, delivered 

comparatively more substantial hydrological benefits, including the complete elimination 

of ‘no availability’ days at the downstream monitoring locations. The results also 

reflected that the positive impacts due to NBS are accumulated from upstream to 

downstream. However, the quantum of the positive impact is closely related to the area 

allocated to each measure, which may conflict with other land use priorities. Moreover, 

the KPIs considered are solely focused on water availability in the catchment and do not 

account for potential co-benefits of NBS, nor do they include any economic cost-benefit 

analysis.  
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In summary, the research begins with identifying the potential and limitation of EO 

datasets, then progresses towards the development of comprehensive multiple metrics-

based evaluation framework for identifying the most suitable datasets, followed by the 

impact assessment of combined climate and LULC change and in the end, culminates in 

the design of NBS-based drought adaptation strategies. Each objective is linked to the 

preceding one, providing a transparent methodological framework that is transferable and 

adaptable across different hydrological contexts. The finding underscores that no single 

dataset, evaluation metrics, or NBS-based intervention is universally optimal. Their 

effectiveness is, rather, context dependent and is most meaningfully assessed when spatial 

variability and stakeholders' perspectives are taken into consideration. 

7.3 OUTLOOK 

This thesis proposes the methodological frameworks for two aims: First, to identify 

suitable EO datasets for hydrological modeling and second, to evaluate the potential of 

NBSs for mitigating drought impacts and designing adaptive strategies through integrated 

hydrological modelling. In the previous section, we reflected on the strengths and 

limitations of these approaches. Despite the challenges, the research meaningfully 

advances the knowledge and the findings demonstrate clear potential for the 

implementation and adaptation of these methods across various locations and settings. 

Therefore, to further advance the evaluation criteria of EO datasets towards establishing 

a standardized methodology and to further investigate the potential of NBS-based 

adaptive strategies to mitigate climate impact, future opportunities are discussed below. 

Regarding the potential of EO datasets for distributed hydrological modelling, the 

literature review conducted identified gaps categorized based on the dataset type and 

spatial scale (Table 2.1). The identified gap highlights the need for future research to 

explore and evaluate the effectiveness of different EO datasets in hydrological modelling 

at various scales, with a particular focus on micro- and meso-scale catchments. This could 

lead to the identification of more appropriate datasets for hydrological modelling and will 

enhance the credibility of these datasets for usage in operations as well. Although in the 

review, all the commonly used datasets for hydrological modelling are covered. But 

future review could benefit from a more focused in-depth analysis. For instance, by 

focusing on a single dataset type or increasing the temporal scope of covered literature. 

This will lead to a more in-depth assessment of dataset specific advancements and 

knowledge gaps. In addition to the use of EO dataset for model setup, these have wide 

potential to be used in model calibration, validation and data assimilation. The review 

only cursory touch on these applications of EO datasets. Future studies could therefore 

focus on in depth review of EO datasets for particular modelling functions.  
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Regarding the identification of suitable products for hydrological simulation, a 

comprehensive, multi-metric, multiple combination evaluation approach has been 

developed to identify the most suitable precipitation product for reproducing discharge 

and groundwater levels with a specific hydrological model. The methodology was applied 

to precipitation products, but it can be implemented to identify other suitable EO datasets. 

The future study could explore the broader applicability of methodology to other EO 

datasets. Further, the multi-metric, multiple combination criteria offer potential beyond 

dataset selection. It could be used as an objective function for calibration and validation 

of the model. Its applicability and robustness need to be tested across diverse modelling 

goals. Further, the combinatorial analysis demonstrates that the selection of evaluation 

metrics significantly influences the outcome of product suitability assessments. Although 

a wide range of metrics was used but still the selection of metrics remains subjective. The 

future research could test the methodology with a different set of metrics and compare 

whether the findings remain consistent or change. 

Importantly, the methodology was implemented in a single, small scale catchment, 

whereas more generalizable outcomes could be achieved by extending the analysis to a 

broader set of watersheds. The methodological framework developed in this study, based 

on a multi-metric and multi-combination evaluation approach, is transferable and scalable. 

Future research may aim to replicate this across diverse hydro-climatic regions, allowing 

for broader conclusions on the performance of precipitation products as well as to make 

recommendations regarding the optimal number of metrics to be considered in the 

evaluation of EO precipitation products and beyond. Overall, methodology represents an 

important step toward standardizing EO dataset assessment, but not the definitive one. 

Rather, it invites further research to expand, adapt, and refine the approach for wider 

hydrological practice. 

Regarding the combined assessment of climate and LULC change, the future map was 

simulated under a business-as-usual scenario. A more nuanced understanding could be 

achieved by formulating different scenarios for future LULC, incorporating constraints 

on LULC class expansion, and considering local landscape policies, municipal priorities, 

stakeholder perspectives, or broader European-level policies. Such considerations could 

enhance the refinement of future LULC projections. Further, the study considered only 

rainfall, PET, and LULC under future changes. Global warming may trigger additional 

factors, such as groundwater abstraction or direct water abstraction from rivers, which 

could impact discharge and GWT. Additionally, changes in groundwater boundary 

conditions, not accounted for in this study's future scenarios, could further influence 

hydrological dynamics. The change in hydrological variables, such as soil moisture and 

temperature, along with changes in land use, can also affect the soil hydraulic properties. 

The impact of land use changes on soil properties and their subsequent effects on 

hydrological processes is under explored area of research. Therefore, future research 
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activities could explore these additional factors. The effect of these factors might not be 

significant alone, but studying the coupled effects of various drivers would provide a 

more comprehensive understanding of future hydrological dynamics.  

Regarding the NBS strategies for climate adaptation, the research particularly focused on 

water conservation for drought adaptation. Future research may focus on designing 

strategies that consider both high and low flows. The existing methodology can be 

extended to flood adaptation strategies by identifying the flood-related KPIs in 

consultation with local stakeholders. Further, in the methodological steps, the key aspect 

is the identification of the KPIs in consultation with the stakeholders. This ensures that 

the KPIs are aligned with stakeholder priorities and are meaningful for both assessment 

and decision-making. However, in this research, consultation was limited to the 

representatives from the Water Board and the Province. A broader and diverse group of 

stakeholders may be consulted to design the KPIs. It will ensure the broader social 

acceptability of the designed strategies in the community. The NBSs are assessed on their 

performance for enhancing surface water and groundwater availability. Their co-benefits, 

such as carbon sequestration, water purification, biodiversity enhancement, etc, along 

with cost benefit analyses, can be focused on in future research. 

The NBSs were modelled in a small-scale catchment using an integrated hydrological 

model. To expand its utility, different methods can be explored to upscale the results, for 

instance, by training a machine learning model on hydrological model outputs and GIS 

based opportunity maps to identify other locations where the NBS interventions may yield 

positive impacts, depending on the defined KPIs. Moreover, NBS strategies in this 

research were designed on a basin scale, the implementation of which falls out of the 

scope and capacity of individual landowners or farmers. Future research could explore 

field scale NBS interventions that the landowner can feasibly implement in their field.  

To conclude, these future directions will broaden the scope and scale of EO datasets 

applicability, promote the development of standardized evaluation criteria, advance the 

NBS-based adaptation strategies design, and strengthen stakeholder engagement in 

hydrological modelling and sustainable water resource management. 
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APPENDIX A 

Figure A1. The simulated LULC map of 2046 

Table A1. The values of ‘R95pTot’ for the catchment average rainfall for the base 

period and future climate scenarios  

Seasons Base 

period 

Climate scenarios 

LD LN HD HN 

Spring 287.7 11.9 0 40.2 12.1 

Summer 472.3 37.3 40.5 104.7 67.7 

Autumn 361.8 92.7 39.9 57.2 29.4 

Winter 378.1 0 0 12 0 



Appendix A 

 

178 

 

 

Figure A2. The difference in the relative change (%) of simulated AET between SC3 and 

SC2 scenarios on a seasonal basis 
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Figure A3. The difference in the relative change (%) of simulated SM between SC3 and 

SC2 scenarios on a seasonal basis 

 

 

 

 

 

 



Appendix A 

 

180 

 

 

Figure A4. The difference in the relative change (%) of simulated GWT between SC3 

and SC2 scenarios on a seasonal basis 
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