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Abstract
A discrete model for analyzing the interaction between plastic flow and
martensitic phase transformations is developed. The model is intended for
simulating the microstructure evolution in a single crystal of austenite that
transforms non-homogeneously into martensite. The plastic flow in the
untransformed austenite is simulated using a plane-strain discrete dislocation
model. The phase transformation is modeled via the nucleation and growth
of discrete martensitic regions embedded in the austenitic single crystal. At
each instant during loading, the coupled elasto-plasto-transformation problem
is solved using the superposition of analytical solutions for the discrete
dislocations and discrete transformation regions embedded in an infinite
homogeneous medium and the numerical solution of a complementary problem
used to enforce the actual boundary conditions and the heterogeneities in the
medium. In order to describe the nucleation and growth of martensitic regions, a
nucleation criterion and a kinetic law suitable for discrete regions are specified.
The constitutive rules used in discrete dislocation simulations are supplemented
with additional evolution rules to account for the phase transformation. To
illustrate the basic features of the model, simulations of specimens under plane-
strain uniaxial extension and contraction are analyzed. The simulations indicate
that plastic flow reduces the average stress at which transformation begins,
but it also reduces the transformation rate when compared with benchmark
simulations without plasticity. Furthermore, due to local stress fluctuations
caused by dislocations, martensitic systems can be activated even though
transformation would not appear to be favorable based on the average stress.
Conversely, the simulations indicate that the plastic hardening behavior is
influenced by the reduction in the effective austenitic grain size due to the
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evolution of transformation. During cyclic simulations, the coupled plasticity-
transformation model predicts plastic deformations during unloading, with a
significant increase in dislocation density. This information is relevant for the
development of meso- and macroscopic elasto-plasto-transformation models.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Martensitic carbon steels are known to achieve high levels of strength although they tend to
have a low ductility, which often makes them unsuitable for applications where formability is
important. In order to take advantage of the strength of the martensitic phase while preserving
good formability, new classes of low-alloyed multiphase carbon steels have been developed.
The microstructure of these steels is typically composed of isolated grains of the retained
austenite embedded in a ferritic matrix [1–4]. Upon subsequent mechanical deformation
(e.g. during forming), the grains of retained austenite might partially or totally transform into
martensite and the strength of the material is increased. Inside carbon-rich austenitic grains,
the martensite appears in the form of plate-like regions. Kinematically, the transformation is
characterized by a combination of a simple shear and a volumetric expansion, which needs
to be accommodated by plastic deformations in the surrounding phases (i.e. untransformed
austenite and ferrite), a phenomenon usually referred to as transformation-induced plasticity.

Traditionally, a distinction is made between the so-called stress-induced transformation,
where the austenite deforms only elastically prior to transformation, and the so-called strain-
assisted transformation, where plastic deformation in the austenite precedes the martensitic
transformation. In a sense, neither term is comprehensive since the two phenomena are coupled
and their evolution is complex, without a necessarily clear distinction between cause and effect.
Nonetheless, the interaction between martensitic transformations and plasticity is of paramount
importance in order to understand the mechanisms that control the overall properties of these
steels, i.e. ductility and strength.

Modeling of transformation-induced plasticity is an area of active research [5–15].
Nevertheless, a detailed understanding of this fundamental interaction is still far from
complete. Macro- and mesoscopic models for transformation-induced plasticity are based
on purely phenomenological plasticity theories or, at best, on a crystal plasticity approach.
These methods offer the advantages of continuum models, but the interaction between phase
transitions and plasticity is simplified through an implicit ‘smearing-out’ of both phenomena.
Such approaches are unable to pick up the interaction between unit transformation events and
the dislocation plasticity taking place at the submicrometer length scale. In particular, freshly
transformed martensitic plates create new obstacles for the dislocation glide and significantly
modify the local stress fields, which affect the evolution of the plastic deformation. These
effects are not taken into account in phenomenological plasticity models.

In this contribution, a model based on discrete dislocation plasticity and discrete
transformation regions is proposed in order to study the small-scale interaction between
transformation and plasticity in a single crystal grain of austenite. In this approach, the
nucleation and evolution of dislocations and martensitic regions are modeled explicitly
(i.e. without internal variables). The goals of this contribution are to (i) quantify the influence of
the martensitic regions on the nature and extent of the plastic deformation in the untransformed
austenite and (ii) determine the effect of the induced dislocations on further nucleation of
martensite. This information can be used to develop more accurate meso- and macroscopic
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models. Furthermore, although this work focuses on mechanically induced martensitic
transformations, the results of these simulations are of direct relevance for dual steels as well
as for maraging steels due to the correspondence between thermally induced and mechanically
induced martensite.

The paper is organized as follows: the basic constitutive models for transformation and
plasticity and the procedure to solve the (instantaneous) transformation-plasticity problem
are developed in section 2. Additional constitutive information to determine the evolution
of transformation and plastic flow is presented in section 3. Numerical examples of uniaxial
extension and contraction and loading/unloading cycles are given in section 4 to study the
interaction between plastic deformations and phase transformations. Concluding remarks are
presented in section 5. As a general scheme of notation, scalars are written as lightface italic
letters, vectors as boldface lowercase letters (e.g. a, b) and second-order tensors as boldface
capital letters (e.g. A, B) except for the stress and strain tensors for which boldface Greek letters
are used. Fourth-order tensors are denoted using blackboard bold capital letters (e.g. A, B).
The action of a second-order tensor upon a vector is denoted as A b (in components Aijbj with
implicit summation on repeated indices) and the action of a fourth-order tensor upon a second-
order tensor is written as A B (i.e. AijklBkl). The composition of two fourth-order tensors is
denoted as A B (i.e. AijklBklmn). The tensor product between two vectors is denoted as a ⊗ b
(i.e. aibj ) and between two second-order tensors as A ⊗ B (i.e. AijBkl). All inner products are
indicated by a single dot between tensorial quantities of the same order (e.g. a · b and A · B,
i.e. aibi and AijBij ). Super- and subscript indices are typically used to refer to discrete entities
(e.g. martensitic plates or dislocations). Additional notation is introduced where required.

2. The instantaneous state of a body undergoing phase transformation and plastic
deformation

2.1. Basic assumptions and overview of the method

We consider a single crystal specimen that occupies a region � with boundary ∂�. The
specimen is subjected to prescribed displacements u0 = u0(x, t) for points x on one part of
the boundary (denoted as ∂�u) and to prescribed tractions t0 = t0(x, t) on the complementary
part of the boundary (denoted as ∂�t ). It is assumed that the loading process occurs quasi-
statically, so that at each instant t an equilibrium problem is solved for a given configuration
of the specimen. Suppose that the specimen is initially in a stress-free austenitic phase and
contains no mobile dislocations. As the specimen is loaded, it may deform plastically and/or
transform into martensite.

In particular, as illustrated in figure 1, suppose that at time t the specimen contains
Nm = Nm(t) martensitic plates (represented by dark gray regions) and Nd = Nd(t)

dislocations (represented by the symbols ⊥ and � along a slip line for positive and negative
dislocations). In order to determine the displacement u, strain ε and stress σ fields, the problem
is decomposed into three subproblems, namely, that of (i) martensitic plates in an infinite
austenitic medium, (ii) dislocations in an infinite homogeneous medium (either austenite or
martensite) and (iii) a complementary problem in a finite, heterogeneous medium that contains
austenite and martensite (see figure 1). Consequently, the stress, strain and displacement fields
of the original problem can be expressed as, respectively,

σ = σm + σd + σc, (1)
ε = εm + εd + εc, (2)
u = um + ud + uc, (3)

3



Modelling Simul. Mater. Sci. Eng. 16 (2008) 055005 J Shi et al

T    T            T                   T    
     

T     
   T

     
     

    
   T

     
    

    T
 

     
   

  T
     

 T    
     

   T
     

     
     T    

     
  

T           T                T      T      
   

T        T               T           T     
    

T     
     

 T    
    

    T
     

    
     

  T
     

    

T     
     

  T     
        

   T
    

     
T  

     
  

T        T               T = + +

Original Problem Martensitic Problem Dislocation Problem Complementary Problem

u0

t0

uc

tc

T    T            T                   T    
     

T     
   T

    
     

    
    T

     
     

   T
 

     
   

  T
     

 T    
     

   T
    

     
     

 T    
     

  

T           T                T      T      
   

T        T               T           T     
    

T     
     

 T     
    

   T
     

     
     

 T
     

    

T     
     

  T     
        

   T
     

    T
  

     
  

T        T               T 

Figure 1. Schematic illustration of the method.

where the superscripts m, d and c refer to the solutions of the transformation, dislocation
and complementary problems, respectively. In subproblem (i) each martensitic plate k (with
k = 1, . . . , Nm) is taken to be embedded in an infinite homogeneous austenitic matrix. In
subproblem (ii), each dislocation i (with i = 1, . . . , Nd) is taken to be in an infinite austenitic
matrix (respectively, martensitic matrix) if the core of the dislocation is in the austenitic region
(respectively, martensitic region) at time t . Hence, more precisely, subproblems (i) and (ii)
correspond, respectively, to a collection of Nm and Nd individual problems and the total
transformation and dislocation fields are defined as the summation of the contributions of the
individual martensitic plates and dislocations, i.e.

σm :=
Nm∑
k=1

σm
k , σd :=

Nd∑
i=1

σd
i , (4)

εm :=
Nm∑
k=1

εm
k , εd :=

Nd∑
i=1

εd
i , (5)

um :=
Nm∑
k=1

um
k , ud :=

Nd∑
i=1

ud
i , (6)

where quantities with subscripts k or i refer to the individual fields of a martensitic plate
k or a dislocation i. It is important to note that since the fields associated with individual
martensitic plates and dislocations are obtained in an infinite homogeneous matrix, neither the
boundary conditions of the original problem nor the heterogeneities of the matrix are accounted
for. Consequently, the complementary field is introduced in order to satisfy the boundary
conditions of the original problem as well as the equilibrium equation in a nonhomogeneous
domain composed of austenitic and martensitic regions.

The transformation and dislocations fields can be determined analytically whereas the
complementary field is computed numerically. It is worth mentioning that in the discrete
dislocation method presented by Van der Giessen and Needleman [16], the purpose of the
decomposition of the actual field into a dislocation and complementary fields was to avoid, in
the numerical solution, the singular fields related to dislocations. In the present context,
since the stress field related to the appearance of a martensitic plate is not singular, in
principle it may be combined with the complementary field. Nonetheless, the decomposition
given in (1) is useful since the stress field related to a martensitic plate can be determined
analytically for evolving martensitic plates, as discussed in the subsequent section, and thus
avoids a computationally costly re-meshing procedure to preserve the same degree of accuracy.
Furthermore, accuracy at the interface between the austenite and martensite is important to
determine the evolution of the martensitic plates.
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Figure 2. Martensitic plate (with an internally twinned structure) in an austenitic matrix.

2.2. Stress field associated with a martensitic plate in an infinite austenitic matrix

2.2.1. Transformation kinematics. In this model, attention is restricted to thin-plate twinned
martensite as a product phase. This type of martensite has relatively straight interfaces with
the adjacent (untransformed) austenite and a fairly uniform twinned internal substructure. The
transformation is characterized crystallographically as a change from a face centered cubic
(FCC) austenitic lattice to twin-related body centered tetragonal (BCT) martensitic lattices.
For a cubic to tetragonal change, the unconstrained theory of martensitic transformations
indicates that there are 24 possible crystallographically distinct arrangements of twinned
martensite that form coherent interfaces with austenite. Each possible arrangement consists of
alternating layers of two twin-related martensitic BCT variants with specific orientations and
proportions (see the inset in figure 2 for an illustration of an arrangement of twinned martensite).
Crystallographically distinct arrangements of twinned martensite are characterized by a pair
of vectors {a, m} and, in analogy to slip systems, this pair of vectors is referred to as a
transformation system. The vector a is the average transformation shape vector of the two
twin-related variants of martensite and m is the normal vector to the austenite–martensite
interface, known as the habit plane, under unconstrained conditions (i.e. for average stress-free
conditions). From the theory of martensitic transformations and within the framework of small
deformations, the change in shape during an unconstrained transformation from austenite into
twinned martensite is characterized by a transformation strain tensor εtr

k that can be expressed
as (see, e.g. [17–19])

εtr
k := 1

2 (ak ⊗ mk + mk ⊗ ak) , (7)

where the subscript k refers to the kth martensitic plate. At the scale of observation
considered in this model, only one transformation system is allowed to occupy a given region
(i.e. martensitic platelets are assumed to be composed of a single transformation system).
Consequently, the vectors {ak, mk} correspond to the characteristic vectors of the specific
system (among the crystallographically distinct systems) that became active in that region
during loading. In addition, the crystallographic characteristics of twinned martensite under
constrained conditions (e.g. a martensitic plate fully surrounded by an austenitic matrix) are
assumed to be the same as in the unconstrained case; hence, the model does not take into
account possible detwinning.

In this model, the specimen is assumed to be under plane-strain conditions perpendicular
to and loaded in the (1 1 0)a plane, where the subscript indicates that the Miller indices are
referred to the FCC austenitic lattice. This orientation is often adopted in planar discrete
dislocation simulations in order to interpret plastic slip as being generated by the movement
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of pure edge dislocation in an FCC lattice (see, e.g. [20]). However, in a typical FCC to BCT
transformation, the experimentally observed as well as the theoretically computed vectors ak

and mk are not perpendicular to the out-of-plane [1 1 0]a direction. Nonetheless, in order to keep
the formulation consistent with plane-strain conditions, the transformation systems considered
in the present analysis are assumed such that the habit plane normal and the shape strain vector
are perpendicular to the out-of-plane direction of the specimen. Similar to the approach used
for slip systems under plane-strain conditions, a reduced number of transformation systems
is considered (in the present context, only two crystallographically distinct systems will be
used).

The in-plane cross-section of a region that transforms into martensite is approximated as
an ellipse and the lengths of the semi-axes are denoted by c and d, as shown in figure 2. This
choice is motivated by the geometrical resemblance of an elliptical shape to the experimentally
observed shapes of martensitic plates at the relevant length scale and by the availability of an
analytical solution of the transformation problem for this particular shape. It is noted that, in the
absence of external loads and internal constraints, the theory of martensitic transformations
predicts that the interface between austenite and martensite is planar (i.e. the vector mk is
constant for all points on the interface). However, under constrained conditions (i.e. when
the martensitic plate is embedded in an austenitic matrix), the actual habit plane is not flat.
Since the geometrical interpretation of mk as the habit plane normal is limited to unconstrained
transformations, the vector mk is henceforth referred to as the unconstrained habit plane normal
(under average stress-free conditions), to distinguish it from the actual habit plane normal n
under constrained conditions. The relation between the unconstrained and the constrained
habit planes is taken such that the (constant) vector mk is oriented perpendicularly to the major
semi-axis of the ellipse (i.e. midplane of the ellipse, see figure 2).

The transformation strain εtr
k in a martensitic plate k is interpreted as an expansion of

magnitude δ in the direction perpendicular to the unconstrained habit plane and a simple shear
of magnitude γ parallel to the unconstrained habit plane (symmetrized for consistency with
small strain theory), with δ = ak ·mk and γ = ak ·m⊥

k (no sum on k), where m⊥
k is a unit vector

along the unconstrained habit plane. In accordance with the assumptions for the transformation
systems, the in-plane transformation strain, referred to the habit plane basis, is given by

εtr
k = 1

2γ (m⊥
k ⊗ mk + mk ⊗ m⊥

k ) + δ (mk ⊗ mk) . (8)

2.2.2. Transformation stress field in an infinite medium. As indicated in (4)1, the stress field
σm in an infinite domain due to martensitic transformations is defined as the sum of the stress
fields σm

k caused by individual martensitic plates k = 1, . . . , Nm, each in an infinite austenitic
medium (i.e. without taking into account the finiteness of the domain or the mutual interactions
between plates). To determine each stress field σm

k , consider an isolated plate �m
k of martensite

embedded in an infinite austenitic medium R
2 − �m

k . Let C
a and C

m be the tensors of elastic
moduli of the austenitic matrix and the martensitic plates, respectively. For the isotropic case,

C
p = 1

3 (3κp − 2µp)I ⊗ I + 2µp
I, (9)

where the phase p is either p = a for austenite or p = m for martensite, κp is the bulk
modulus of phase p, µp is the shear modulus of phase p and I and I are the second and fourth-
order identity tensors, respectively. The stress field σm

k is generated due to the imposition of
a uniform transformation strain εtr

k inside the plate �m
k (i.e. the so-called eigenstrain). The

constitutive relations are as follows:

σm
k :=

{
C

aεm
k in R

2 − �m
k ,

C
m

(
εm

k − εtr
k

)
in �m

k .
(10)
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The strain field εm
k and the stress field σm

k can be computed using the so-called equivalent
inclusion method [21]. According to this method, the strain and the stress inside the martensitic
plate k can be expressed as

εm
k = S

[(
C

m − C
a
)
S + C

a
]−1

C
mεtr

k in �m
k , (11)

σm
k = C

a (S − I)
[(

C
m − C

a
)
S + C

a
]−1

C
mεtr

k in �m
k , (12)

where S is Eshelby’s tensor (see, e.g. [21]). In the present plane-strain formulation, Eshelby’s
tensor can be formally obtained from the three-dimensional formulation as the limiting case
of an ellipsoidal plate that is infinitely long in the out-of-plane direction. Observe that, since
the transformation strain tensor εtr

k is uniform inside the plate, the strain and the stress tensors
in the martensitic plate are uniform.

In principle, the stress field σm
k outside a martensitic plate �m

k can be obtained from
Eshelby’s solution for exterior points using the given transformation strain. However, these
formulae are cumbersome in practice and, instead, an alternative method is used to evaluate
the stress field for points in R

2 − �m
k . To this end, observe that the boundary value problem

for σm
k for points outside the martensitic plate (under-plane strain conditions) corresponds

to a situation where the domain R
2 − �m

k with elastic moduli C
a is subjected to zero stress

at infinity and a traction t̂ = σbn applied on the boundary Sk = ∂�m
k , where σb is equal

to the (constant) stress tensor σm
k obtained from the interior solution given in (12) and n is

the outward normal unit vector on Sk . By superposition, the solution to this boundary value
problem can be decomposed as the sum of the solutions to two auxiliary problems: (i) an
infinite domain containing a stress-free void �m

k and subject to a stress −σb at infinity and (ii)
an infinite medium loaded with a stress σb at infinity (whose solution is trivially a uniform
field σb). The solution to the void problem (i), denoted as σv, can be obtained with the help of
Mushkelishvili’s potentials that provide the stress, strain and displacement fields of an infinite
domain with a stress-free elliptical void under loading at infinity. For brevity, the resulting
formulae are not reported here, but for completeness the method is outlined in appendix A.

In summary, the stress field due to a martensitic plate k in an infinite austenitic medium
is obtained as

σm
k =

{
C

a (S − I) [(Cm − C
a) S + C

a]−1
C

mεtr
k in �m

k ,

σv + C
a (S − I) [(Cm − C

a) S + C
a]−1

C
mεtr

k in R
2 − �m

k ,
(13)

with the transformation strain εtr
k being given by equation (8). This tensor, together with the

elastic properties of the phases and the geometrical characteristics of the martensitic plates
which determine the Eshelby tensor, allows the analytical computation of the transformation
stress field from (13) and the formulae derived from (A.2) in appendix A.

2.3. Stress field of discrete dislocations

Analytical expressions for the displacement ud
i , strain εd

i and stress σd
i associated with an

edge dislocation i in an infinite, isotropic and homogeneous medium are well known and can
be found, e.g. in [16]. Since the stress field is singular at the dislocation core, the analytical
solution is only used outside the core, which in the present model is defined as a circular region
with a radius equal to twice the magnitude of the Burgers vector. Experimental observations
indicate that in the martensite that was generated from high-carbon austenite (e.g. more than
1.4 wt% C), the deformation is essentially elastic up to fracture, which can occur at high axial
stresses (∼2–4 GPa, see [4,22]). Under these circumstances, the plastic deformation is limited
to the austenitic phase, but the martensitic phase can inherit the dislocations generated in the
austenitic phase prior to transformation [23]. For simplicity, it is assumed that the strain tensor
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for dislocations that get trapped in the martensite upon transformation remains the same as in
the parent austenitic phase. For isotropic elasticity, the assumption that εd

i remains unchanged
upon transformation corresponds to a situation where (i) the Burgers vector remains unchanged
after transformation and (ii) Poisson’s ratio of the parent and product phases is the same. As
shown in section 4.1, the relation between the stiffness of austenite and martensite is such that
condition (ii) is satisfied. However, condition (i) implies that the present method does not take
into account the change in the Burgers vector due to the change in the lattice structure upon
transformation [23]. Nevertheless, a correction in the self-energy of dislocations due to the
phase change is performed at the level of the stress tensor, which accounts for the stiffness of
the martensitic phase according to the following constitutive relations:

σd
i :=

{
C

aεd
i for i ∈ Aa ,

C
mεd

i for i ∈ Am
k , k = 1, . . . , Nm ,

(14)

where Aa and Am
k refer to, respectively, the set of dislocations in the austenitic region �a and

the set of dislocations in a martensitic plate �m
k .

2.4. Complementary field

The complementary field is used to satisfy the actual boundary conditions and to account for
the inhomogeneities due to the formation of martensitic plates. To this end, observe that the
original problem can be expressed as

divσ = 0 in �∗ , (15)

where the stress–strain relation is given by

σ =
{

C
aε in �a∗ ,

C
m

(
ε − εtr

k

)
in �m∗

k , k = 1, . . . , Nm ,
(16)

and the strain–displacement relation is expressed as

ε = 1
2

(∇u + ∇uT
)

in �∗ . (17)

In equations (15)–(17), �∗, �a∗ and �m∗
k , with k = 1, . . . , Nm, refer to the corresponding

domains �, �a and �m
k but excluding the dislocation cores. The boundary conditions are as

specified in section 2.1. In view of the decompositions (1)–(6), and the constitutive relations
(10) and (14), the complementary boundary value problem is, from (15) to (17), formulated as

divσc = 0 in �∗; (18)

σc :=
{

C
aεc + Pd

a in �a∗,
C

mεc + Pm
k + Pd

k in �m∗
k , k = 1, . . . , Nm,

(19)

εc = 1
2

(
∇uc +

(∇uc
)T

)
in �∗. (20)

In (19), the tensors Pd
a , Pm

k and Pd
k are polarization stresses that result from the difference in

elastic properties between the austenite and martensite, given by

Pd
a := (

C
a − C

m
) ∑

j∈Am

εd
j in �a∗, (21)

Pm
k := (

C
m − C

a
) Nm∑

l=1,l �=k

εm
l in �m∗

k , k = 1, . . . , Nm, (22)

Pd
k := (

C
m − C

a
) ∑

j∈Aa

εd
j in �m∗

k , k = 1, . . . , Nm. (23)
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The subscripts a and k in (21)–(23) indicate that the polarization stresses are used to correct for
the proper stiffness in the austenitic or martensitic regions, respectively, while the superscripts
m and d indicate that the polarization stresses are related to the martensitic transformation or
the dislocation field, respectively. The set Am refers to the set of dislocations in all martensitic
plates while, as indicated in section 2.3, Aa indicates the set of all dislocations in the austenitic
region.

The boundary conditions for the complementary problem are as follows: tractions tc and
displacements uc are prescribed as

σcn = tc := t0 − tm − td on ∂�t , (24)

uc := u0 − um − ud on ∂�u , (25)

where n is the outward normal unit vector to ∂� and

tm = σmn, td = σdn.

Equations (18)–(25) constitute a linear elastic boundary value problem that can be solved
numerically for the complementary field. It is worth mentioning that, for the finite element
implementation of the complementary problem, a distinction has to be made between the
(evolving) austenitic and martensitic regions in order to assign the corresponding stiffnesses
and polarization stresses, which in principle should be done using re-meshing or an equivalent
technique. For simplicity however, a ‘diffuse interface’ approach is taken on a fixed mesh,
where weighted stiffnesses and polarization stresses are used in elements that are partly
austenite and partly martensite, according to a volume average. Nonetheless, since the main
contribution to the stress jump across an interface is computed analytically using the field σv

(see (13)), the diffuse interface approach is a reasonable compromise between computational
cost and accuracy. For the special case in which the austenitic and martensitic stiffnesses are
equal, the stress jump is completely determined from the analytical solution given in (13) and
all polarization stresses vanish.

The superposition (1)–(3) of the martensitic, dislocation and complementary fields
determines the solution to the original problem at a given instant t . The evolution of the
state of the material (i.e. the number and location of martensitic plates and dislocations) is
specified using a separate set of constitutive rules.

3. Constitutive rules for the evolution of discrete phase transformation and plastic
deformation

After determining the (instantaneous) state of a body undergoing phase transformations and
plastic deformations, the configuration is updated to account for nucleation and/or growth of
martensitic regions and nucleation and/or movement of dislocations. The method is explicit
in the sense that the configuration at time t + �t (martensitic regions and dislocations) is
determined based on the state at time t .

3.1. Transformation driving force

The nucleation and growth of martensitic domains are treated in this work based on the
framework developed by Abeyaratne and Knowles [24, 25] for moving interfaces. Consider
a martensitic plate �m

k with boundary Sm
k . Within the context of small deformations, the

transformation driving force at a point on Sm
k is given by (see [24])

f tr
k := ρ [[ψ]] − 〈σ〉n · [[ε]] n on Sm

k , (26)

9
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where ψ is the Helmholtz energy per unit mass, ρ is the mass density and [[ψ]] := ψ+ −ψ− is
the jump in ψ across the interface, in which ψ+ and ψ− represent the limiting values of ψ on
Sm

k from the austenitic and martensitic sides, respectively. Moreover, 〈σ〉 := (1/2)
(
σ+ + σ−)

corresponds to the average stress across the interface, where σ+ and σ− are the stress tensors
on the austenitic and martensitic sides of the interface, respectively. Similarly, [[ε]] := ε+ −ε−

indicates the jump in strain across the interface. Note that the tensors σ± refer to the total stress;
hence, they include the contributions from the transformation, dislocation and complementary
fields, including the transformation field connected to the martensitic plate where the driving
force is computed. Furthermore, observe that the (infinitesimal) strain tensor ε is used in (26)
instead of the deformation gradient for consistency with the assumptions used in section 2.2.

Under quasi-static conditions, the traction is continuous across the interface with unit
normal vector n, i.e.

σ+n = σ−n; (27)

however, the stress tensor is in general not continuous across the interface, i.e. σ+ �= σ−, even
if the austenite and martensite have the same stiffnesses.

Since plastic slip is represented by discrete dislocations, the Helmholtz energy refers
to the elastic strain energy (i.e. the defect energy is implicitly accounted for in ψ via the
elastic deformation associated with the dislocation fields away from the dislocation cores).
Consequently, consistent with the constitutive relations (16), the Helmholtz energy can be
expressed as

ρψ :=
{

1
2ε · C

aε in �a∗ ,

1
2

(
ε − εtr

k

) · C
m

(
ε − εtr

k

)
in �m∗

k , k = 1, . . . , Nm ,
(28)

where the domains �a∗ and �m∗
k exclude the dislocation cores. For simplicity, it is assumed

that dislocation cores are not exactly on the surface Sm
k , but that the distance from the core to

the interface is at least six times the magnitude of the Burgers vector.
It is convenient to express the jump in Helmholtz energy ρ [[ψ]] across an interface directly

in terms of the stress tensor since the contribution from the transformation field is readily
available in terms of stresses (see (13)). Inverting the constitutive laws in the austenitic and
martensitic sides of the interface, one has

ε+ = D
aσ+, ε− − εtr

k = D
mσ−, (29)

where D
a = (Ca)−1 and D

m = (Cm)−1 are the compliance tensors of the austenite and
martensite, respectively. For the isotropic case, D

p = (1/3)((3κp)−1 − (2µp)−1)I ⊗ I +
(2µp)−1

I, with phase p representing austenite (p = a) or martensite (p = m). Making use
of the constitutive relations (16) and in view of (28) and (29), the jump in Helmholtz energy
across the interface is given by

ρ [[ψ]] = 1
2σ+ · D

aσ+ − 1
2σ− · D

mσ−. (30)

If the elastic strains in the austenitic and martensitic sides of the interface are small in
comparison with the transformation strain, the jump in the strain tensor can be approximated
by (minus) the transformation strain, i.e.

[[ε]] ≈ −εtr
k . (31)

Making use of (27), (30) and (31) and rearranging the order of terms, the driving force defined
in (26) can be written as

f tr
k ≈ σ±n · εtr

k n + 1
2 D

aσ+ · σ+ − 1
2 D

mσ− · σ− on Sm
k , (32)

with εtr
k given by (7) for the specific transformation system that nucleated in platelet k. For the

computation of the driving force, the actual habit plane normal n has to be employed instead

10
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of the unconstrained habit plane normal mk in order to take into account the curvature of the
martensitic plate, particularly at the tips of the elliptical cross-section where mk and n are
perpendicular to each other.

3.2. Nucleation of martensitic plates and transformation kinetic law

To describe the onset and evolution of martensitic transformations, a nucleation criterion
and kinetic law need to be specified. In the present model, nucleation (point) sources
are randomly distributed in the material. At each source, all transformation systems are
monitored for possible nucleation and the most favorable is allowed to nucleate. To this
end, prior to nucleation, the driving force is estimated at each nucleation point k and for each
crystallographically distinct transformation system based only on the first term of the driving
force (32) for an ideally flat interface that coincides with the corresponding unconstrained
habit plane, i.e.

f nuc
k := σ · εtr

k = σ · (ak ⊗ mk) . (33)

A potentially active system is chosen when the maximum driving force exceeds a local critical
value f cr

k > 0, i.e.

f nuc
k � f cr

k . (34)

If the maximum nucleation driving force corresponds to more than one system, then
a potentially active system is randomly chosen among the maximally loaded systems.
Subsequently, the possible growth of an embryonic martensitic plate of semi-axes c0 and d0 and
centered at the source k is tested. The potentially active crystallographic system is temporarily
assigned as the system that appears in the embryonic plate k. The final criterion to allow
the actual nucleation of an embryonic plate is that it can grow, based on the growth criterion
introduced below. If the plate is allowed to nucleate, the system {ak, mk} is permanently
assigned to the plate and the source is removed from the set of transformation sources.
Embryonic plates that cannot grow are not allowed to nucleate; the source is monitored for
possible nucleation during later times.

Subsequent to the precipitation of a small embryonic plate, growth is assumed to occur
by the lateral movement of the tips of the elliptical cross-section (i.e. in the direction of ±m⊥

k ,
along a line that passes through the nucleation point). In the present model, it is assumed
that the aspect ratio e := d/c of the martensitic plates is preserved during growth. The
locations of the tips (which are labeled as 1 and 2, see figure 3) together with the aspect ratio
e are sufficient to completely specify the shape of the plate at any time t . Consequently, the
growth of a plate can be specified in terms of the velocities of the tips, which are denoted
as v

(1)
t and v

(2)
t and are taken as positive (growth in both directions). Within the framework

of irreversible thermodynamics, the evolution of the phase transformation is determined by a
kinetic relation (constitutive relation) between an affinity (the driving force) and a flux (rate of
transformation). The product of the affinity and the flux is equal to the dissipation due to the
transformation. Following this approach, kinetic relations for moving austenite–martensite
interfaces Sm

k = Sm
k (t) are often specified as constitutive relations between the value of the

driving force f tr
k (x) and the normal velocity Vn(x) of the interface at a point x ∈ Sm

k . In
general, the transformation driving force f tr

k given by (32) varies along the interface since the
stress field is not uniform. Consequently, an ellipse will not retain its shape during growth for
homogeneous kinetic relations (such as a linear relation between f tr

k and Vn). Accordingly,
instead of specifying a pointwise growth relation for the interface, an ‘effective’ evolution law
is proposed for lateral growth such that (i) the total dissipation corresponds to the sum of the
local dissipations as the interface moves and (ii) the aspect ratio is kept constant. The goal is
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Figure 3. Growth of an elliptical martensitic plate: (a) growth due to movement of tip 1; (b) growth
due to tip 2; (c) combined growth, at a constant aspect ratio.

to find a relation between the tip velocities and an effective driving force while satisfying the
conditions (i) and (ii). To this end, let D(q)

k be the total dissipation due to the movement of tip
q while the opposite tip is held fixed (see figure 3(a) for q = 1 and figure 3(b) for q = 2).
In each case, the total dissipation is obtained from the local contributions at each point on the
interface, i.e.

D(q)

k :=
∫

Sm
k

f tr
k V (q)

n ds (q = 1, 2), (35)

where V
(q)

n = V
(q)

n (x) is the normal velocity of the interface during lateral growth. If tip q

is allowed to move while the opposite tip is held fixed, then the normal velocity V
(q)

n can be
expressed as

V (q)
n (x) = w(q)(x)v

(q)
t (q = 1, 2), (36)

where w(1) and w(2) are weighting functions that are independent of v
(1)
t and v

(2)
t . For brevity,

the expressions for the weighting functions w(1) and w(2) are not shown here, but can be
obtained by differentiating the equation of an ellipse with respect to the location of one tip.
The function w(1), as seen in figure 3(a), is equal to 1 at tip 1 and decays monotonically to 0 at
tip 2 as x varies along either side of the perimeter of the elliptical cross-section. The weighting
function w(2) is a mirror image of w(1) about the minor semi-axis of the elliptical cross-section
(see figure 3(b)). Using (36) in (35) provides the following expression for the dissipation:

D(q)

k =
(∫

Sm
k

f tr
k w(q) ds

)
v

(q)
t (q = 1, 2). (37)

The kinetic relation used in the present model for the lateral growth of a plate is expressed
in terms of an effective driving force f̄

(q)

k and the rate of change in the cross-sectional area

12
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of the martensitic plate �m
k . The effective driving force is defined such that the dissipation is

given by

D(q)

k = f̄
(q)

k

d

dt

(
�m

k

)(q)
, (38)

where (d/dt)
(
�m

k

)(q)
is the rate of change in the cross-sectional area of the martensitic plate

when tip q moves. Since the cross-sectional area is �m
k = πcd = πec2, the time rate of the

change in area at a constant aspect ratio when tip q moves while the opposite tip is held fixed is

d

dt

(
�m

k

)(q) = πecv
(q)
t , (39)

where the relation 2ċ = v
(q)
t was used (see figures 3(a) and (b)). Equating the dissipation

due to the movement of tip q given in (37) to the corresponding dissipation given in (38) and
making use of the expression for the rate of change in area (39) provides a relation for the
effective driving force f̄

(q)

k for each growth mode q, i.e.

f̄
(q)

k := 1

πec

∫
Sm

k

f tr
k w(q) ds (q = 1, 2). (40)

The transformation is considered to be crystallographically irreversible; hence, the plate is
not allowed to change if the driving force is negative. The following effective kinetic relation
is proposed for a plate �m

k :

d

dt

(
�m

k

)(q) = 0 if f̄
(q)

k � 0, (41)

d

dt

(
�m

k

)(q) = f̄
(q)

k

Bm
if 0 < f̄

(q)

k < f̄max, (42)

d

dt

(
�m

k

)(q) = �̇max if f̄
(q)

k � f̄max, (43)

where Bm is a (positive) drag coefficient and �̇max is the maximum rate of growth, for driving
forces exceeding the value f̄max = Bm�̇max. The dissipation given in (38), making use of
kinetic relation (42), is

D(q)

k = Bm

(
d

dt

(
�m

k

)(q)

)2

> 0 , (44)

which indicates that the kinetic relation is consistent with the second law of thermodynamics.
If growth occurs at the maximum rate �̇max, then the dissipation is also positive and if no
growth occurs, then the dissipation is trivially zero.

Relations (38) and (40) together with the effective kinetic relation (42) yield the following
constitutive expression for the tip velocities:

v
(q)
t = 1

Bm (πec)2

∫
Sm

k

f tr
k w(q) ds (q = 1, 2). (45)

Although w(1) and w(2) are mirror images of each other, the tip velocities v
(q)
t are in general

different from each other since the local driving force f tr
k does not need to be symmetric with

respect to the minor semi-axis of the elliptical plate. For the implementation of the method,
the tip velocities are determined from (45), where the integral on the right-hand side can be
evaluated numerically for each martensitic platelet.

In the general case both tips are allowed to move simultaneously, as shown in figure 3(c).
In that case, the rate of change in area is equal to πec(v

(1)
t + v

(2)
t ) = (d/dt)

(
�m

k

)(1)
+
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(d/dt)
(
�m

k

)(2)
. However, since the interface normal velocity Vn depends non-linearly on

the tip velocities when these are simultaneously moving, the total dissipation Dk is not exactly
equal to the sum of the dissipations D(1)

k and D(2)
k associated with the individual movement of

one tip while the opposite is fixed. In general, the determination of the total dissipation requires
the solution of a nonlinear problem. Nevertheless, the approximation Dk ≈ D(1)

k + D(2)
k for the

total dissipation is relatively accurate since the weighting functions w(q) rapidly decay to zero
away from the tips; hence, the total dissipation depends mostly on the local dissipation at each
tip q (i.e. f tr

k v
(q)
t ) which is the same as in the case when both tips move simultaneously (see

figure 3).
The maximum growth rate condition (43) for the whole plate can be prescribed by a cut-off

value vm
max for each tip velocity separately, i.e. the following constraint is enforced:

0 � v
(q)
t � vm

max = �̇max

πec
(q = 1, 2). (46)

Since the length c varies as the plate growths, the maximum growth rate �̇max is assumed
to vary linearly with c such that the maximum velocity vm

max, a physically more meaningful
quantity, is taken as a constant parameter. To complete the growth model, additional rules
are used to handle special situations. In particular, if one martensitic plate encounters another
plate, a free end or a constrained part of the crystal (e.g. a grain boundary or part of the external
boundary where displacements are prescribed), the movement of the plate is limited up to the
intersection point. Coalescence of two plates occurs if the following conditions are met: (i) the
crystallographic transformation system associated with each plate is the same and (ii) due to
rapid growth, the new domain occupied by one plate (as predicted by the kinetic law) entirely
occupies the new domain occupied by the second plate. In such a case, the smaller martensitic
plate is merged with the larger one.

3.3. Discrete dislocation model

The plastic flow that arises due to the nucleation and motion of dislocations is modeled using
the discrete dislocation plasticity in [16], with additional constitutive rules to account for the
phase transformation. The main ingredients of the model are as follows: in a two-dimensional
plane-strain analysis, dislocations are modeled as line singularities in an elastic homogeneous
medium. Dislocation loops are modeled as edge dipoles in the plane of deformation. Edge
dislocations are restricted to glide in their slip planes along a slip direction. For a dislocation
i, with i = 1, . . . , Nd, the slip plane and direction are characterized, respectively, by the
slip plane normal ni and the Burgers vector bi . All Burgers vectors bi have a magnitude
b ≡ bi = bi · ni (no sum on i).

The glide motion of a dislocation i is determined by the Peach–Koehler force, f d
i , which

is the change in the potential energy of the body � associated with an infinitesimal variation
of dislocation position in the glide plane [16]. Hence, f d

i is the shear component of the total
stress at the current location of the dislocation (excluding the singular stress field σd

i of the
dislocation i itself), resolved on the slip system {bi , ni}, i.e.

f d
i := (

σ − σd
i

) · (bi ⊗ ni ) . (47)

The nucleation of dislocations is modeled by two-dimensional Frank–Read sources, each of
which is a point source on a slip plane. A dislocation dipole is nucleated when the magnitude
|f d

i | of the Peach–Koehler force at the location of source i exceeds a critical value f cr
i during

a prescribed time interval tnuc, i.e.

1

tnuc

∫ t+tnuc

t

|f d
i | dt � f cr

i =: bτ cr
i . (48)
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Here, τ cr
i is a critical resolved shear stress at source i. The dislocation cores are nucleated at

a distance Lnuc given by

Lnuc = µ

2π(1 − ν)

b

τ cr
i

, (49)

where µ(= µa) is the shear modulus and ν Poisson’s ratio of the austenite. This nucleation
distance is specified such that the shear stress of one dislocation acting on the other is balanced
by the slip plane shear stress. In contrast to transformation sources, dislocation sources are
related to a unique slip system and, after nucleation, they remain active to possibly nucleate
subsequent dislocation dipoles. The kinetic relation for the dislocation glide is written in
the form

vd
i = f d

i

Bd
, 0 � vd

i � vd
max , (50)

where vd
i is the velocity of the ith dislocation core along the slip direction, Bd is a drag

coefficient and vd
max is a cut-off value for the dislocation velocity. In addition, two dislocations

of opposite signs are annihilated if their distance is less than 6bi . More details can be
found in [16].

In order to take into account the elastic behavior of the martensitic plates (see section 2.3),
the discrete dislocation model is augmented with the following constitutive rules: (i)
dislocations that appeared in the austenitic phase are inherited in the martensitic phase but
become immobile, (ii) no new dislocations nucleate in the martensitic regions, i.e. dislocation
sources that become part of a martensitic region are de-activated, and (iii) the austenite–
martensite interface acts as an impenetrable barrier for mobile dislocations gliding in the
austenitic phase. Using the constitutive rules indicated in this section, the configuration of the
sample is updated for time t + �t (based on the stress state at time t) and a new equilibrium
state for time t + �t is computed using the method outlined in section 2.

4. Single crystal simulations

To illustrate the basic features of the model, simulations of single crystal specimens under
uniaxial and biaxial deformations are presented. In order to study the strengthening due to
the martensitic transformation, other mechanisms are suppressed from the simulations and, in
particular, the specimens contain no dislocation obstacles except for habit planes that appear
during the simulation and constrained external boundaries. For all simulations, plane-strain
conditions are assumed in the (1 1 0)a plane and two slip systems are considered, which are
meant to represent the movement of edge dislocations in the (1̄ 1 1)a and (1 1̄ 1)a planes in
an FCC lattice [20]. These slip plane normals are perpendicular to the out of plane direction
[1 1 0]a and form an angle of approximately 60◦ between them. As mentioned in section 2.2.1,
none of the actual 24 transformation systems found in an FCC to BCT transformation are
compatible with plane-strain conditions (i.e. none of the habit plane vectors are perpendicular
to the [1 1 0]a direction). However, for consistency with plane-strain conditions in the (1 1 0)a

plane, the transformation systems used in the simulations are taken such that the habit plane
normal vectors mk and the shape strain vectors ak are perpendicular to the [1 1 0]a direction. In
particular, two crystallographically distinct habit plane normal vectors are chosen oriented at
angles of 40◦ and 80◦ with respect to the slip plane normals. These angles are chosen to mimic
the actual three-dimensional angles between slip planes and habit planes, which vary between
27◦ and 153◦ in a high-carbon FCC austenitic lattice. Dislocation sources are randomly
distributed on slip planes spaced 200b apart and each source is randomly assigned a nucleation
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Table 1. Parameters for the transformation–dislocation model.

Parameter(s) Value(s) Equation(s)

Elastic moduli
Austenite κa = 150 GPa, µa = 69.2 GPa (9)
Martensite κm = 195 GPa, µm = 90 GPa (9)

Transformation
Strain δ = 4 × 10−3, γ = 2 × 10−2 (8)
Source strength f cr

k (Gaussian) mean = 4 MPa, Std.dev. = 0.8 MPa (34)
Embryonic plate c0 = 0.1 µm, e = 0.125 (45)
Kinetic law Bm = 108 Pa s m−2, vm

max = 4800 m s−1 (45), (46)

Dislocation
Burgers vector b = 0.25 nm (47),(48)
Source strength τ cr

i (Gaussian) mean = 170 MPa, Std.dev. = 34 MPa (48)
tnuc = 10 ns

Kinetic law Bd = 10−4 Pa s, vd
max = 20 m s−1 (50)

strength from a Gaussian distribution. The dislocation source density is approximately
20 µm−2. The location and strength of the transformation sources are distributed in similar
ways, with a density (per unit depth) of approximately 8 µm−2. The initial configuration of the
specimens for all simulations corresponds to a stress-free, dislocation-free and fully austenitic
state.

4.1. Transformation and dislocation systems and material parameters

The material parameters for the transformation–dislocation model are shown in table 1. The
stiffness of the martensitic phase is taken 30% higher than that of the austenitic phase, and the
values are representative for phases in carbon steels [11]. The parameters for the transformation
strain are chosen as scaled values of the actual crystallographic values typical of high-carbon
retained austenite [11] (scaled by a factor of 0.1). The purpose of this scaling is to obtain
representative stress values while keeping the number of dislocations within a computationally
tractable range. Although the simulations are carried out under quasi-static conditions (hence,
nominally, the sound speed is infinite), the maximum transformation velocity is set equal
close to the actual sound speed of the austenitic phase. The size of the embryonic plate c0 is
chosen such that the density of martensitic twins is large enough to use (8) as a representative
transformation strain. The dislocation strength is calibrated to provide a representative initial
yield strength for the austenitic phase, while the transformation strength is based on typical
effective critical values for multiphase steels [11]. The transformation drag coefficient is
estimated by relating representative values of the driving force and the tip velocity. The
representative driving force is computed based on the mean critical value for the nucleation
driving force f cr

k acting on an embryonic plate without dislocations and the corresponding tip
velocity is set at a fraction of the sound speed.

4.2. Uniaxial extension and contraction

In this section, a rectangular specimen with in-plane dimensions L = 12 µm and h = 4 µm, as
shown in figure 4, is subjected to plane-strain uniaxial deformation by imposing the following
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Figure 4. Schematic illustration of the specimen.

Table 2. Orientations A and B: slip planes and (unconstrained) habit planes (see figure 4).

Orientation θd
1 θd

2 θm
1 θm

2

A 30◦ 150◦ 70◦ 110◦

B 340◦ 100◦ 20◦ 60◦

boundary conditions:

u1(x1 = ±L/2, t) = ± 1
2Lε̇t, u2(x1 = ±L/2, t) = 0, (51)

σ12(x2 = ±h/2, t) = 0 , σ22(x2 = ±h/2, t) = 0, (52)

with a nominal strain rate ε̇ = ±(1/6) × 104 µm s−1 for extension and compression,
respectively. The left and right sides of the specimen (x1 = ±L/2) are taken to be impenetrable
boundaries for dislocations in order to satisfy the applied displacements according to (51). The
top and bottom sides (x2 = ±h/2) are traction-free; hence, dislocations can exit from these
boundaries and form a step.

Two crystal orientations are analyzed in this section, referred to as orientations A and B, as
indicated in table 2. For orientation A the slip systems are oriented symmetrically with respect
to the loading direction while orientation B is obtained as a 50◦ clockwise rotation of orientation
A. For each crystal orientation, three simulations are performed: (1) a simulation where the
dislocation mechanism is suppressed; (2) one where the transformation mechanism is not taken
into account and (3) a coupled dislocation–transformation simulation. The benchmark cases
1 and 2 are used in conjunction with the general case 3 to investigate the interaction between
plastic flow and phase transformation.

The stress–strain responses for orientations A and B are shown in figures 5(a) and (b),
respectively, where in each case the results are given for configurations 1, 2 and 3. The stress–
strain responses are presented in terms of the average axial stress σ̄11 as a function of the
average axial strain ε̄11 := ε̇t . The onset of transformation for configuration 1 and the onset
of plastic slip for configuration 2 are indicated by arrows in figures 5(a) and (b).

For both orientations A and B, the response to extension for the transformation-only
configuration 1 is characterized by sudden reductions in stress as platelets of martensite nucleate
and grow. Each discrete stress relaxation event is followed by an elastic stress build-up until new
platelets of martensite nucleate. The remaining transformation sources need to be activated
at a higher average stress. The net effect of this sequence of events is characterized by a
significant hardening as the transformation proceeds and eventually the average stress actually
increases with the nucleation of new platelets. Under uniaxial compression, the response of
the specimen with orientation A and configuration 1 shown in figure 5(a) is purely elastic
since the martensitic systems are not favorably oriented for transformation under uniaxial
compression, giving a negative driving force. In contrast, the specimen with orientation B
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Figure 5. Average axial stress σ̄11 versus average axial strain ε̄11 for (a) orientation A and (b)
orientation B. Each case includes the following configurations: (1) transformation sources only, (2)
dislocation sources only and (3) transformation and dislocation sources.

and configuration 1 has one martensitic system favorably oriented under compression and
transformation is observed (see figure 5(b)).

For both orientations, the tensile and compressive responses for the case of dislocations
only (configuration 2) are identical, apart from the sign. The initial elastic deformation is
followed by a plateau-type response typical of a simulation without internal obstacles (i.e. no
hardening). The stress level at which the plateau begins is higher for orientation B than for
orientation A, which is consistent with the Schmid factors under homogeneous uniaxial stress
states. The stress–strain curve for orientation B is shown only up to a limited strain level. For
higher strains (and also for orientation A), the predictions with dislocations only give rise to
a strong softening. This softening is an artifact mainly due to a localization of deformation
connected to the specimen’s grips, which act as impenetrable barriers for dislocations.

Comparing curves 1 and 2 in figure 5, it can be seen that the average stress at which the
transformation starts is higher than that when dislocations are generated. Consequently, for the
coupled transformation–dislocation case (configuration 3), the onset of the inelastic response
is controlled by plastic slip. For orientation A in compression, the curve for configuration 3
is identical to that of configuration 2 (dislocation-only case) since there is no transformation.
For orientation A in tension, the simulations indicate that the transformation mechanism is
activated shortly after the onset of plastic deformation at an average stress level well below
that of configuration 1 (i.e. transformation-only case). In this case, transformation sources are
activated by a locally high stress associated with dislocations. The axial stress for the combined
transformation–dislocation case (curve 3 in figure 5(a)) lies initially below the dislocation-only
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curve 2, suggesting that a combination of transformation and plastic slip is more efficient
in relaxing the stress than by plastic deformation only. Nevertheless, as the strain level is
increased, the dislocation-only case provides the largest stress relaxation (i.e. curve 2 lies
below curve 3 for larger strains) while the response of the coupled transformation–dislocation
configuration follows a hardening behavior similar to that of configuration 1.

The most favorable inelastic mechanism is typically the one that provides the largest
decrease in energy (e.g. more stress relaxation). According to the results of the simulations, at
the end of the loading program, the largest relaxation can be achieved by plastic deformation
alone (i.e. without transformation), as the stress–strain curves of configuration 3 show in
figure 5. Although the transformation releases energy, it increases the strength of the material
eventually. Notwithstanding the long term benefit of plastic deformation alone, transformation
is also activated in the coupled case due to the fact that (i) the combined effect of plasticity
and transformation is to provide the largest relaxation at a given instant and (ii) the activation
of relaxation mechanisms is independent of the behavior at subsequent strains (i.e. the current
response of the material is independent of its future behavior).

For orientation B, see figure 5(b), the coupled stress–strain curves in tension and
compression are qualitatively similar to that of orientation A in tension. In particular, the
transformation mechanism in configuration 3 is activated shortly after the onset of plastic
deformation and the strength of the material falls below that of the dislocation-only case.
This trend continues for a longer strain range for orientation B than for orientation A.
Eventually, however, the hardening behavior of configuration 3 becomes similar to that of
configuration 1 and the strength of the coupled case becomes higher than that of the dislocation-
only configuration. Hence, for both orientations, the effect of the phase transformation is to
eventually strengthen the material.

The martensitic volume fraction ξm as a function of the average axial strain ε̄11 is shown
in figures 6(a) and (b) for orientation cases A and B, respectively, and, in each case, for
configurations 1 and 3 (i.e. without and with plastic deformation, respectively). The volume
fraction is computed as

ξm := 1

�

Nm∑
k=1

�m
k , (53)

where �m
k refers in this expression to the volume (area per unit depth) of the martensitic plate

k. Comparing the responses of configurations 1 and 3 shown in figure 6 it can be observed
that the effect of plastic flow is to lower the average strain (and stress) at which transformation
initially occurs. In general, the appearance of martensitic platelets occurs soon after plastic
flow is initiated. However, as the deformation proceeds, the number of martensitic plates in the
specimen is generally lower for the coupled case (configuration 3) than for the transformation-
only case (configuration 1), which indicates that the effect of plastic slip is to reduce the
transformation rate.

The density of dislocations ρd := Nd/� as a function of the average axial strain ε̄11

is shown in figures 7(a) and (b) for orientation cases A and B, respectively and, in each
case, for configurations 2 and 3 (i.e. without and with phase transformation, respectively).
The dislocation density includes the dislocations in the martensitic regions that have become
immobile.

Comparing the responses of configurations 2 and 3 shown in figure 7 it can be observed
that the net amount of dislocations is substantially higher due to the phase transformation
in uniaxial tension (for both orientations) and in uniaxial compression for orientation B. For
orientation A in compression, the dislocation density is the same for configurations 2 and 3
since there is no transformation.
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Figure 6. Martensitic volume fraction ξm versus average axial strain ε̄11 for (a) orientation A and
(b) orientation B. Each case includes the following configurations (1) transformation sources only
and (3) transformation and dislocation sources.

To gain more insight into the detailed interaction between phase transformation and plastic
flow, the spatial distributions of dislocations, martensitic plates and the axial stress σ11 are
shown in figure 8 for orientation A. The martensitic plates are represented by elliptical plates
and the dislocations are represented by ‘+’ and ‘−’ symbols corresponding to positive and
negative dislocations, with the colors indicating the slip system (black for system 1 and white
for system 2).

The plot for the transformation-only case for orientation A shown in figure 8(a) indicates
that both transformation systems are approximately evenly active, forming a pattern where
platelets of the same system tend to be clustered. In the plot for the dislocation-only case
shown in figure 8(b), it can be observed that several dislocation pile-ups have developed
due to the constrained grips, although some internal pile-ups appear due to the constraining
effect of dislocations in other slip systems. A comparision of the transformation-only case
(configuration 1) and the coupled transformation–dislocation case (configuration 3 shown in
figure 8(c)) reveals some interesting points regarding the effect of the plastic deformation on
transformation. It can observed that, as for the transformation-only case, both transformation
systems are active in the coupled case, although the plastic deformation tends to limit the
growth of individual plates. The plates occupy less volume and are less clustered than in
the transformation-only case. A comparision of the dislocation-only case (configuration 2)
and the coupled transformation–dislocation case (configuration 3) shows that the effect of
the transformation on plastic deformation is to increase the number of dislocations despite
the reduction of dislocation sources (the dislocation sources trapped in the martensitic plates
become inactive). The remaining sources nucleate more dislocations than in the dislocation-
only case, particularly those that are close to martensitic plate tips. In addition, dislocations
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Figure 7. Dislocation density ρd versus average axial strain ε̄11 for (a) orientation A and (b)
orientation B. Each case includes the following configurations (2) dislocation sources only and (3)
transformation and dislocation sources.

are prevented from escaping the specimen due to the restraining effect of the martensitic plates;
hence, the dislocation density remains higher than in the dislocation-only case.

In the dislocation–transformation configuration, discrete dislocations are generated first
and, due to the local modification of the stress field, they trigger the nucleation of martensitic
plates. In turn, more dislocations are generated due to the transformation and the process
continues with a strong coupling between these two phenomena. Moreover, dislocation pile-
ups are visible between martensitic plates, which indicates a hardening effect related to a
reduction in the effective austenitic grain size (an effect that can be thought of as an ‘evolving’
Hall–Petch effect). In addition, the increase in strength is related to the higher stiffness of the
product martensitic phase.

For orientation B, the spatial distributions of dislocations, martensitic plates and the axial
stress σ11 under uniaxial extension are shown in figure 9 at an average strain level ε̄11 = 0.4%.
Figure 9(a) for the transformation-only case reveals that only a single transformation system
(system 1) is active and that the transformation region is somewhat localized. The simulation
results for dislocations only, as observed in figure 9(b), are qualitatively similar to those of
orientation A in the sense that pile-ups appear at the constrained ends of the specimen as
well as internal pile-ups due to the stress field generated by dislocations in neighboring slip
planes. The coupled transformation–dislocation case presented in figure 9(c) shows that both
transformation systems are active under uniaxial extension (although system 1 remains the
preferentially activated system). In view of the stress distributions for configurations 1 and
3, it can be seen that one effect of the plastic deformation is to modify the stress field locally
such that the transformation system 2 also becomes active. Similar to the case of orientation
A, dislocation pile-ups are visible between martensitic plates in figure 9(c).
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Figure 8. Distribution of axial stress σ11 and distribution of dislocations and martensitic plates
when ε̄11 = 0.42% for orientation A and (a) transformation sources only, (b) dislocation sources
only and (c) transformation and dislocation sources.

4.3. Loading/unloading cycle

Displacement-controlled simulations of a loading/unloading cycle were carried out to gain
further insight into the coupling between plastic flow and transformation. To this end, the
strain rate appearing in (51) is taken to have the value ε̇ = (1/6)×104 µm s−1 for 0 � t � T/2
and −(1/6) × 104 µm s−1 for T/2 � t � T . The time T is chosen such that the axial strain
at time T/2 is 0.28%.

The stress–strain response, given in terms of the average axial stress σ̄11 as a function of the
average axial strain ε̄11, is shown in figure 10 for the transformation-only case (configuration 1),
the plasticity-only case (configuration 2) and the coupled transformation–dislocation case
(configuration 3). The unloading part of the stress–strain curves is indicated with an asterisk
next to the configuration number. The dashed vertical line indicates the strain at which the
displacement is reversed from extension to contraction (same strain for all cases). In order
to analyze the stress–strain responses, it is useful to refer to the evolutions of the martensitic
volume fraction ξm and the density of dislocations ρd as functions of the average axial strain
ε̄11, which are shown in figures 11(a) and (b), respectively.

The transformation-only case (configuration 1) unloads elastically (see figure 11(a)) and
the additional effective elastic stiffness gained due to the appearance of a stiffer martensitic
phase is evidenced from the higher slope in the unloading curve shown in figure 10 (compared
with the elastic loading portion). For the plasticity-only case (configuration 2) new dislocation
dipoles that nucleate during unloading are subsequently annihilated since the dislocations
attract each other as the load is further reduced. From this point of view, the unloading
stage can be characterized as being elastic. The reduction in the dislocation density (shown
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Figure 9. Distribution of axial stress σ11 and distribution of dislocations and martensitic plates
when ε̄11 = 0.42% for orientation B and (a) transformation sources only, (b) dislocation sources
only and (c) transformation and dislocation sources.
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Figure 10. Average axial stress σ̄11 versus average axial strain ε̄11 for orientation A and cases (1)
transformation sources only, (2) dislocation sources only and (3) transformation and dislocation
sources. The asterisk in the corresponding case number indicates the evolution during unloading.

in figure 11(b)) is related to dislocations that exit the domain through the free boundaries
of the domain (top and bottom surfaces). For the coupled case (configuration 3), limited
transformation is observed during unloading (see figure 11(a)) but, interestingly, the dislocation
density increases substantially during unloading (see figure 11(b)). This behavior can be
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Figure 11. (a) Martensitic volume fraction ξm versus average axial strain ε̄11 for orientation A
and for cases (1) transformation sources only and (3) transformation and dislocation sources; (b)
Dislocation density ρd versus average axial strain ε̄11 for orientation A and cases (2) dislocation
sources only and (3) transformation and dislocation sources.

traced back to the following: (i) during transformation, martensitic platelets nucleate in the
specimen and obstruct the path of dislocations towards the free boundaries. In this case,
dislocations pile up at habit planes and (ii) although the average stress is reduced during
unloading, significant stress concentrations remain in the specimen, which keep the dislocation
sources active throughout the process.

5. Concluding remarks

Despite the limitations of a two-dimensional framework, the present discrete dislocation–
transformation model provides useful information regarding the complex interaction between
plastic slip and martensitic phase transformations. The simulations for a single crystal
of austenite under uniaxial deformation indicate that instantaneously the most efficient
mechanism for stress relaxation can be achieved by a combination of transformation and plastic
deformation. However, these mechanisms are quickly depleted and the material experiences
a strong hardening. The appearance of hard martensitic plates that cannot deform plastically
increases the overall strength, reduces the number of dislocation sources and generates multiple
barriers for dislocations. The subdivision of the austenitic grain by martensitic platelets
reduces the effective austenitic grain and creates a pronounced Hall–Petch effect. In general,
plastic slip reduces the average stress at which transformation begins but eventually reduces
the transformation rate under uniaxial deformation. Furthermore, local stress fluctuations
caused by dislocations can activate transformation systems that a priori would not appear to
be favorable based on the average stress.

In contrast to a purely elasto-plastic behavior, the discrete elasto-plastic-transformation
model predicts plastic deformations during unloading, with a significant increase in dislocation
density. This information is relevant for the development of meso- and macroscopic theories
of transformation-induced plasticity. In particular, theories based on a stress that represents an
average over the austenitic and martensitic phases would not be able to predict the activation
of secondary transformation systems, which suggests that secondary activations have to be
included phenomenologically. Furthermore, a macroscopic model for plastic deformation

24



Modelling Simul. Mater. Sci. Eng. 16 (2008) 055005 J Shi et al

would need to take into account a size effect formally similar to an evolving Hall–Petch
relation, where the grain size is reduced as the transformation proceeds. Accordingly, the
calibration of a plastic model in a macroscopic model cannot be based on a purely austenitic
plastic behavior.
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Appendix A. Solution to void problem

Consider an infinite homogeneous and isotropic medium with a traction-free elliptical void
with semi-axes c and d centered at the origin of coordinates. Let x1 and x2 be Cartesian
coordinates along directions aligned with the principal directions of the ellipse and let κa and
µa be the bulk and shear moduli of the medium. The infinite domain is subjected to a remote
uniaxial stress field characterized by a loading σ∞ applied in a direction that forms an angle
θ with respect to the x1-axis. Mushkelishvili’s potentials used to solve this problem are given
by (see, e.g. [26])

ϕ(ζ ) = σ∞R

4

(
1

ζ
+

[
2e2iθ − m

]
ζ

)
,

ψ(ζ ) = −σ∞R

2

(
1

ζ
e−2iθ +

[
1 − me2iθ + m2

]
ζ − e2iθ ζ 3

1 − mζ 2

)
, (A.1)

where R = (c + d)/2, m = (c − d)/(c + d), i2 = −1 and ζ is a complex variable in a
domain where the ellipse has been transformed into a circle of radius R. The components of
the stress field σv and the displacement field uv in the Cartesian coordinate system x1, x2 can
be computed as

σ v
22 + σ v

11 = 4Reϕ∗′(z),
σ v

22 − σ v
11 + 2iσ v

12 = 2
[
z̄ϕ∗′′(z) + ψ∗′(z)

]
, (A.2)

2µa(uv
1 + iuv

2) =
(

3κa + 7µa

3κa + µa

)
ϕ∗(z) − zϕ∗′(z) − ψ∗′(z),

where z = x1 + ix2, Re refers to the real part, an overbar indicates the complex conjugate, ()′

stands to d/dz and ϕ∗ and ψ∗ are Mushkelishvili’s potentials expressed in terms of the complex
variable z in the original domain [26]. To solve this problem, one has to use a mapping to
transform a circle into an ellipse, i.e.

ζ±(z) = z ± √
z2 − 4mR2

2mR
, (A.3)

where ζ± refers to the two branches of mapping, which generate two sets of functions, namely,
ϕ±

∗ (z) = ϕ(ζ±(z)) and ψ±
∗ (z) = ψ(ζ±(z)). Inserting (A.3) in (A.1) and solving (A.2)

provide expressions for the stress and displacement components. Care must be exercised
when choosing the appropriate branch (i.e. either ζ + or ζ−) for each part of the domain.

It is noted that, since Mushkelishvili’s potentials provide the solution only for uniaxial
loading, to obtain the actual solution to the void problem under general loading one has to
determine the in-plane principal stresses and directions of −σb (as indicated in section 2.2.2),
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compute the stress and displacements fields separately for each principal stress and use the
principle of superposition to determine the total in-plane components of σv and uv.
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