

Delft University of Technology

Workflow Optimization for Parallel Split Learning

Tirana, Joana ; Tsigkari, Dimitra; Iosifidis, George; Chatzopoulos, Dimitris

DOI
10.1109/INFOCOM52122.2024.10621348
Publication date
2024
Document Version
Final published version
Published in
Proceedings of the IEEE INFOCOM 2024 - IEEE Conference on Computer Communications

Citation (APA)
Tirana, J., Tsigkari, D., Iosifidis, G., & Chatzopoulos, D. (2024). Workflow Optimization for Parallel Split
Learning. In Proceedings of the IEEE INFOCOM 2024 - IEEE Conference on Computer Communications
(pp. 1331-1340). IEEE. https://doi.org/10.1109/INFOCOM52122.2024.10621348

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/INFOCOM52122.2024.10621348
https://doi.org/10.1109/INFOCOM52122.2024.10621348

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Workflow Optimization for Parallel Split Learning
Joana Tirana⋆, Dimitra Tsigkari†, George Iosifidis†, Dimitris Chatzopoulos⋆
⋆School of Computer Science, University College Dublin & VistaMilk SFI, Ireland

†Delft University of Technology, The Netherlands
joana.tirana@ucdconnect.ie, D.Tsigkari@tudelft.nl, G.Iosifidis@tudelft.nl, dimitris.chatzopoulos@ucd.ie

Abstract—Split learning (SL) has been recently proposed as
a way to enable resource-constrained devices to train multi-
parameter neural networks (NNs) and participate in federated
learning (FL). In a nutshell, SL splits the NN model into
parts, and allows clients (devices) to offload the largest part
as a processing task to a computationally powerful helper.
In parallel SL, multiple helpers can process model parts of
one or more clients, thus, considerably reducing the maximum
training time over all clients (makespan). In this paper, we
focus on orchestrating the workflow of this operation, which
is critical in highly heterogeneous systems, as our experiments
show. In particular, we formulate the joint problem of client-
helper assignments and scheduling decisions with the goal of
minimizing the training makespan, and we prove that it is NP-
hard. We propose a solution method based on the decomposition
of the problem by leveraging its inherent symmetry, and a second
one that is fully scalable. A wealth of numerical evaluations using
our testbed’s measurements allow us to build a solution strategy
comprising these methods. Moreover, we show that this strategy
finds a near-optimal solution, and achieves a shorter makespan
than the baseline scheme by up to 52.3%.

I. INTRODUCTION

Motivation. The proliferation of devices that collect vo-
luminous data through their sensors motivated the design of
client-based distributed machine learning (ML) protocols, like
federated learning (FL) [1]. In FL, the training process is
organized in training rounds that include local model updates
at the devices (that act as clients) and the aggregation of all
the clients’ models at a server (the aggregator). During this
process, clients keep their dataset locally, while only sharing
their model’s updates with the aggregator.

Some of the main challenges in FL are: 1) system hetero-
geneity; 2) communication overhead; 3) constrained resources,
i.e., clients of limited memory and computing capacities [2].
As a result of these factors, the training time of some clients
might be prohibitively long, thus, slowing down this cross-
silo distributed ML process. Indeed, these clients (stragglers)
increase the training makespan, i.e., the maximum training
time over all clients, which is a key metric in highly hetero-
geneous systems because of the synchronous nature of FL [2],
[3]. While state-of-the-art FL approaches propose ways of
alleviating this phenomenon, e.g., via model pruning [4] or
asynchronous protocols [5], they may compromise the accu-
racy of the produced model. Moreover, clients with limited
memory capacity (e.g., IoT devices) might not be able to
participate in FL processes that train large ML models.

Acknowledgments: This work has been supported by SFI-VistaMilk grant
no 16/RC/3835 and EU Horizon project no 101092912 (MLSysOps).

CLIENT 1 HELPER 1

.

.

.

.

.

.

computing & memory
capacities

transmission
 delay

samples &
labels

AGGREGATOR

aggregates the model’s
updates received from all

entities

processes
Part-1 & Part-3

processes
Part-2

MEM

CLIENT 2

CLIENT J

HELPER I

MEM

Fig. 1: Parallel SL in this work. The considered network
topology, its resources, and the processing tasks per entity.

Split learning (SL) protocols have been recently proposed
in order to enable resource-constrained clients to train neural
networks (NNs) of millions of parameters [6]. In SL, clients
offload a part of their training task to a helper, which could
be a Virtual Machine (VM) on the cloud or a lightweight
container in a base station in beyond 5G networks. Formally,
a NN comprising L layers1 (1, . . . , L) is split into three parts
(part-1, part-2, and part-3) of consecutive layers ([1, . . . , σ1],
[σ1+1, . . . , σ2], [σ2+1, . . . , L]) using 2 cut layers σ1 and σ2.
Then, part-1 and part-3 are processed at the clients, and part-2
at the helper. This allows the resource-constrained clients to
offload computationally demanding processes to the helper.

In conventional SL, the clients share the same part-2, and
the helper collaborates with each client in a sequential order to
train the model parts. This can lead to long delays in the train-
ing process depending on the number of participating clients.
Whereas, in parallel SL [7], [8], the helper allocates a different
version of part-2 for each client, allowing clients to make
parallel model updates. At the end of each training round, all
clients synchronize their model versions, and thus, the training
makespan remains a key metric. Essentially, parallel SL is
the integration of SL in the FL protocol. In fact, parallel SL
reduces the makespan (when compared to the conventional
SL) without compromising the model accuracy [7], [9], [10].

The presence of multiple helpers working in parallel can
further reduce the training makespan [11]. Orchestrating the
workflow of parallel SL in this network of entities (as depicted
in Fig. 1) is one of the main challenges that the SL paradigm
faces, as discussed in [2]. In detail, the factors that one needs
to consider are the computation and memory resources of all
entities, and the connectivity of the clients to the helpers.

1Throughout this manuscript, a “layer” is the NN’s model part that is
indivisible, i.e., it cannot be further partitioned into more layers.

979-8-3503-8350-8/24/$31.00 ©2024 IEEE 1331

IE
EE

 IN
FO

C
O

M
 2

02
4

- I
EE

E
C

on
fe

re
nc

e
on

 C
om

pu
te

r C
om

m
un

ic
at

io
ns

 |
97

9-
8-

35
03

-8
35

0-
8/

24
/$

31
.0

0
©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

IN
FO

C
O

M
52

12
2.

20
24

.1
06

21
34

8

Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2024 at 08:12:41 UTC from IEEE Xplore. Restrictions apply.

Methodology & Contributions. Driven by the time mea-
surements of our testbed and their heterogeneity even among
devices of similar capabilities, we identify two key decisions:
1) the client-helper assignments that are tied to the helpers’
memory and computing capacities; 2) the scheduling, i.e.,
the order in which each helper processes the offloaded tasks.
Both decisions can be crucial for the training makespan by
alleviating the effect of stragglers while fully utilizing the
available resources. Hence, we formulate the problem of
jointly making these decisions with the goal of minimizing
the training makespan. To the best of our knowledge, this
is the first work that studies this joint problem. We analyze
this problem and its challenges both theoretically (proving it
is NP-hard) and experimentally (using measurements from a
realistic testbed). Therefore, we propose a solution method
based on an intuitive decomposition of the problem into two
subproblems, leveraging its inherent symmetry. The first one
involves the assignment and the forward-propagation schedul-
ing variables, and the second one involves the backward-
propagation scheduling variables. For the former, the Alter-
nating Direction Method of Multipliers (ADMM) is employed,
while for the latter, a polynomial-time algorithm is provided.
Moreover, we propose a second solution method based on
load balancing, that is more scalable, and thus, ideal for large
problem instances. Finally, our numerical evaluations provide
insights on the performance of the proposed methods, as well
as the achieved gains in makespan in representative scenarios.
The contributions of this work are summarized below.

• We formulate the joint problem of client-helper assign-
ments and scheduling decisions with the goal of minimizing
the training makespan in parallel SL, and prove it is NP-hard.

• We propose a solution method that is based on the
decomposition of the problem into two subproblems. For the
first one, ADMM is employed, while for the second one a
polynomial-time algorithm is provided.

• We extend our model to account for preemption costs, and
propose a balanced-greedy algorithm with minimal overheads.

• We perform numerical evaluations of the proposed meth-
ods using collected data from our testbed.2 These findings
shape a solution strategy based on the scenario at hand.

• We show that our solution strategy finds a near-optimal
solution and achieves a shorter makespan than the baseline
scheme by up to 52.3%, and on average by 23.4%. Finally, we
assess the impact of the number of helpers on the makespan.

II. RELATED WORK

Client-based Distributed ML. Research on FL mainly
focuses on achieving good accuracy while minimizing the
wall-clock time, through client selection strategies [12], or
aggregation algorithms [13], [14], or by taking into account
the communication overhead [12], [15]. However, some clients
might not be able to support the computation demands of such
protocols, which is a less explored problem. Literature on SL
tackles exactly this issue [6], [7], [16]–[18]. A large body of
existing works model a system consisting of multiple clients

2The evaluation code and the collected testbed’s measurements are publicly
available at https://github.com/jtirana98/SFL-workflow-optimization.

and a single helper. In particular, it focuses on finding the NN’s
cut layers while trying to optimize the energy consumption
[19], [20], or the training makespan [20], [21], or privacy [9].
In presence of multiple clients, the system may need to be
scaled up in order to speed up the training process. In such sys-
tems, with multiple helpers, minimizing the training makespan
requires a careful workflow orchestration. Close to this idea,
the work in [11] jointly finds the cut layers and assignment
decisions without taking into account the scheduling decisions.
As our analysis shows, scheduling decisions are crucial in
systems of highly heterogeneous network resources. Hence,
it is clear that one needs to jointly optimize the client-helper
assignments and scheduling decisions in parallel SL.

Workflow Optimization. Joint problems of assignment and
scheduling decisions, such as the parallel machine scheduling
problem, are often NP-hard, see, e.g., [22]–[24]. While a first
approach would be to rely on methods such as branch-and-
bound or column or row generation methods (like benders
decomposition [25]), our experiments show that such methods
may lead to high computation overheads, even for small prob-
lem instances. Different from this approach or other existing
approaches (e.g., for edge computing policies [26], [27]), we
decompose the problem based on the inherent structure of
parallel SL operations. Next, we solve one of the resulting
subproblems with ADMM from the toolbox of convex opti-
mization [28]. This iterative method has been recently found to
perform remarkably well for non-convex problems [29], [30].
The advantage of employing this method lies in its versatility,
allowing us to use techniques that may constrain the problem’s
solution space or tune its penalty parameters [29], and thus,
we tailor it to leverage the nature of the subproblem at hand.

III. SYSTEM MODEL

Network Topology. We consider a system with a set J of
J = |J | clients, e.g., IoT or handheld devices, and a set I
of I= |I| helpers, that are connected over a wireless bipartite
network G=(J , I, E) with non-interfering links E , see Fig. 1.
The nodes are potentially heterogeneous in terms of hardware
and/or wireless connectivity. Namely, each node n ∈ N :=
J ∪ I has computing capacity kn (cycles/sec) and memory
capacity mn Gbytes. Further, we denote ωji the average delay3

for transmitting one byte from client j to helper i, ∀(j, i) ∈ E ,
and, w.l.o.g., we assume symmetric links, i.e., ωij =ωji. All
nodes are connected to an aggregator, indexed n=0, who may
collect the necessary information and orchestrate the workflow
using the solution strategy we develop.

Parallel SL. The clients collaborate with the helpers to train
a large NN using SL and FL. Each client owns a dataset that is
divided into batches of equal size. As discussed in Sec. I, the
NN is split into three parts, where σ1 and σ2 are the cut layers
and each client computes part-1 and part-3, and offloads part-2
to a helper4. This SL architecture [6] protects the privacy of

3In OFDMA-based systems, e.g., mobile networks, these assumptions are
satisfied by design. In shared-spectrum systems, these parameters capture the
effective (accounting for collisions) average delay.

4An interesting approach would be to split part-2 into more parts that are
offloaded and processed by more than one helper. However, this would require
a non-trivial coordination and communication among the helpers that we plan
to address in future work.

1332Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2024 at 08:12:41 UTC from IEEE Xplore. Restrictions apply.

CLIENT’S SIDE HELPER’S SIDE

local proc. (bwd)
+ gradient transm.

gradient reception
+ local proc. (bwd)

bwd
 prop.
begins

END OF
BATCH
PROC.

CLIENT’S SIDE

processing (bwd)
at the helper

local proc.(fwd)
+ transm. activ.
local proc.(fwd)
+ transm. activ.

processing (fwd)
at the helper

processing (fwd)
at the helper

activ. reception
+ local proc. (fwd)

activ. reception
+ local proc. (fwd)

BATCH
PROCESSING

BEGINS

BATCH
PROCESSING

BEGINS

F O R W A R D P R O P A G A T I O N

B A C K W A R D P R O P A G A T I O N

Fig. 2: The workflow of the batch processing for a single
client and helper pair, and the corresponding times (processing
and transmission). The queuing delay that a client might
experience at the helper is not depicted here.

the clients’ data since the samples and labels are kept locally.
Finally, our analysis is oblivious to: a) the cut layers, which
are decided in advance and may differ across the clients, and
b) the training hyperparameters (e.g., batch size, learning rate,
etc.), and thus, the resulting model accuracy is not affected.

Batch Processing Workflow. Fig. 2 depicts the steps of one
batch update for client j∈J and helper i∈ I, and introduces
the main time-related parameters of parallel SL. We employ a
time-slotted model [31] with time intervals that, w.l.o.g., are of
unit-length.5 The client applies forward-propagation of part-1
and transmits the activations of the first cut layer (σ1) to the
helper. We denote by rij the number of time slots required
for these two operations, which depends on kj and ωij . The
helper needs pij time slots to propagate these activations into
part-2 (i.e., to execute the fwd-prop task), which depend
both on the capacity ki and the choice of cut layers, i.e., the
“size” of the task. The client receives the activations of the last
layer of part-2 (σ2) from the helper and completes forward-
propagation by processing part-3 and computing the loss. We
denote by lij the time required for these operations, which
depends on ωij , the data size, and kj .

Then, the back-propagation of the training error starts. The
client updates the weights of part-3, computes the gradients,
and transmits them to the helper, consuming l′ij time slots.
The helper back-propagates these gradients into part-2, so
as to update its weights, spending p′ij time to execute this
bwd-prop task. Afterwards, it transmits the gradients of σ1

to the client, who then back-propagates part-1. We denote by
r′ij the time required for this final step. The time-related pa-
rameters (or delays) r=(rij , (i, j) ∈ E), r′=(r′ij , (i, j) ∈ E),
p=(pij , (i, j) ∈ E), p′=(p′ij , (i, j) ∈ E), l=(lij , (i, j)∈E),
and l′ = (l′ij , (i, j) ∈ E) represent average quantities6 for
these tasks or processes, and are considered available through
profiling and other offline measurement methods [32], [33].

Epochs & Aggregation. The batch processing workflow is
repeated for all batches. When the client has applied a batch
update using all batches of data, a local epoch is completed.

5We further discuss the choice of the time slot’s length in Sec. IV and VII.
6As is common in scheduling literature and, w.l.o.g., we assume that these

quantities are integers. If this assumption is violated, fractions can be handled
by multiplying by a proper factor. Also, one could adopt a more conservative
approach where worst-case values are considered instead of the average ones.

Clients repeat the processing of a local epoch for a predefined
number of times until a training round (or global epoch) is
completed. Subsequently, the updated model parts from each
node (client or helper) must be sent to and aggregated at the
aggregator, using methods such as FedAvg [1]. Typically, such
training processes require hundreds of training rounds, each
consisting of multiple batch updates [7], [20]. Hence, in order
to minimize the maximum training time across all clients, i.e.,
the training makespan, we leverage the structural nature of the
training process, and focus on the makespan of a single batch,
see [11], [20]. We note that, when compared to conventional
FL, the time required for the aggregation (comprising process-
ing and transmissions) is negligible since the size of the data
transferred is smaller per entity. Moreover, transmitting model
updates can start even before all entities have completed a
batch update, thus speeding up the procedure.

It is important to stress the inherent coupling between
forward and backward propagation. When a client j ∈ J
transmits part-1 activations to a helper i ∈ I, the latter
allocates dj Gbytes of memory, where possibly dj ̸= dj′ if
j ̸= j′, in order to store and process these activations. The
helper stores this data during the fwd-prop, and reassigns
the (same) memory to the gradients received from the client
during the bwd-prop. This means that, in practice, a client
cannot use a different helper for each propagation direction.

Time Horizon & Decision Variables. As mentioned earlier,
we employ a time-slotted model with time intervals St, where
S0 = [0, 1], St = (t, t + 1], t = 1, . . . , T , and T = |T | is the
number of slots in time horizon T . The parameter T upper-
bounds the batch makespan, and can be calculated as follows:

T := max
(i,j)∈E

{
rij + lij + r′ij + l′ij

}
+

∑
j∈J

max
i∈I

{
pij + p′ij

}
,

where the first term finds the worst-case transmission, and
processing times in the network; and the second term measures
the worst helper’s processing time for any task.

Based on this time-slotted model, we introduce variables
that inject tasks to helpers towards minimizing the makespan.
In particular, we introduce the binary variables y = (yij ∈
{0, 1}, (i, j) ∈ E), where yij = 1 if client j is assigned
to helper i. Moreover, we define the slot-indexed variables
x = (xijt ∈ {0, 1}, (i, j) ∈ E , t ∈ T), where xijt = 1
if the fwd-prop task of client j is processed at helper i
during slot St, and xijt = 0 otherwise. Similarly, we define
z = (zijt ∈ {0, 1}, (i, j) ∈ E , t ∈ T) with zijt = 1 if the
bwd-prop task of client j is processed at i during St. These
vectors fully characterize the batch processing workflow.

IV. PROBLEM FORMULATION

The scheduling and assignment decision variables (x, z, and
y) should be consistent with the SL operation principles.

Scheduling Constraints. Each fwd-prop task can be
executed only after its input becomes available, i.e., after
activations of σ1 are transmitted to the helper. Hence,

xijt = 0, ∀t < rij , (i, j) ∈ E . (1)

In scheduling parlance, rij is the release time of this task,
i.e., when it becomes “available” at the helper. Similarly, the

1333Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2024 at 08:12:41 UTC from IEEE Xplore. Restrictions apply.

bwd-prop can start only after the gradients of σ2 + 1 have
been received by the helper (see Fig. 2), and thus,

zij(t+lij+l′ij)
≤ 1

pij

t−1∑
τ=0

xijτ , ∀(i, j) ∈ E , t ∈ T . (2)

That is, in order to assign the bwd-prop task of j to i at (or
after) slot t+ lij + l′ij , we need to allocate enough processing
time at i (at least pij) for fwd-prop until slot t. Essentially,
(2) are precedence constraints that ensure the bwd-prop of
a client’s part-2 strictly succeeds its fwd-prop. The next
constraints ensure that each helper will process a single task
during any time slot (assuming single-threaded computing):∑

j∈J
(xijt + zijt) ≤ 1, ∀i ∈ I, t ∈ T . (3)

Assignment Constraints. Regarding the assignment deci-
sions y, each client’s task is assigned to a single helper:∑

i∈I
yij = 1, ∀j ∈ J . (4)

Further, the assignments are bounded by the helper’s memory:∑
j∈J

yijdj ≤ mi, ∀i ∈ I, (5)

and recall that this memory is used in both directions. Clearly,
the assignment and scheduling constraints are tightly coupled.
Indeed, when an assignment is decided, we need to ensure
adequate processing time will be scheduled for the fwd-prop
and bwd-prop tasks. In other words, it should hold that:∑

t∈T
xijt=yijpij , ∀(i, j) ∈ E and (6)∑

t∈T
zijt=yijp

′
ij , ∀(i, j) ∈ E . (7)

Completion Times. Finally, we introduce additional vari-
ables to measure some key delays. In particular, we define
ϕ = (ϕj , j ∈ J), where ϕj is the slot when the bwd-prop
of client j ∈ J is completed. These variables should satisfy:

ϕj ≥ (t+ 1)zijt, ∀(i, j) ∈ E , t ∈ T . (8)

Similarly, we introduce the overall (batch) completion time
variable cj ,∀j ∈ J , which should satisfy:

cj = ϕj +
∑
i∈I

r′ijyij ∀j ∈ J . (9)

Essentially, the vector c=(cj , j ∈ J) contains the completion
times of one-batch model-training for all clients, and hence,
its maximum element dictates the makespan. Naturally, all
elements of ϕ and c are upper-bounded by T . Finally, we
observe that the quantity ϕj−

∑
i yij(rij+pij+ lij+ l′ij+p′ij)

is the total queuing delay that client j might experience during
fwd-prop and bwd-prop.

Preemption. A strong aspect of our model is that it allows
preemption, i.e., a task may be paused partway through
its execution and then resumed later, if this improves the
makespan. Specifically, preemptions may occur at the end of
each time slot St. Preemptive schedules may prioritize the

slowest client (straggler), thus reducing the makespan. This
is in contrast to previous work that follows more rigid non-
preemptive models [11], but in line with related work on
edge computing, e.g., [33], [34]. We further discuss this point
in Sec. VI. Finally, since the length of St determines the
frequency of preemptions, a smaller length implies a larger
benefit from preemption, i.e., shorter makespan. We investigate
this point using our testbed’s measurements in Sec. VII.

We can now formulate the joint scheduling and assignment
problem that minimizes the batch makespan of parallel SL.

Problem 1 (Batch Training Makespan).

P : minimize
x,z,y,ϕ,c

max
j∈J

{cj}

s.t. (1)− (9),

x, z ∈ {0, 1}|E|×|T |,ϕ, c ∈ {0 . . T}J , (10)
y ∈ {0, 1}|E|. (11)

This min-max problem can be written as an Integer Linear
Program (ILP) using standard transformations [35, Sec. 4.3.1],
i.e., by introducing the worst-case makespan variable ξ and
changing the objective to minξ,x,y,z,ϕ ξ with additional con-
straints ξ≥cj ,∀j∈J . Albeit elegant, such transformations do
not alleviate the computational challenges in solving large, or
even medium-sized instances of P. To exemplify, for a scenario
with J=20 clients, I=5 helpers, and horizon T =636, state-
of-the-art solvers, such as Gurobi [36], achieve only a 40%
optimality gap in 14 hours (off-the-shelf computer). Such long
delays are not surprising due to the following result.

Theorem 1. P (Problem 1) is NP-hard.

Proof. We first define a simpler instance of P: we assume
that all helpers have enough memory for all tasks, i.e., we
drop the memory constraints in (5), and r = r′ = l = l′ =
0, i.e., transmissions and propagations of part-1 and 3 are
instantaneous. Therefore, all fwd-prop tasks are released at
time 0 and each bwd-prop task may start instantly after the
fwd-prop task is processed. Moreover, we assume that p =
p′ = 1, i.e., all tasks are of unit-length (require one time
slot). We will show that there is a polynomial-time reduction
from the parallel machine scheduling problem in [37] to this
problem. The former is defined as follows: given a set of n jobs
and a set of m parallel machines, each job should be assigned
to a machine, while every machine can process at most one
job at a time. The processing time of all jobs is q = 1, jobs
are subject to precedence constraints, and the problem has as
objective to find a schedule and the job-machine assignments
to minimize the makespan, i.e., the time the last job will be
completed at the machine. The reduction is shown by setting
n = J , i.e., the fwd-prop and bwd-prop are the jobs
(with precedence constraints), m = I , i.e., the helpers are
the machines, and pij = p′ij = 1, ∀(i, j) ∈ E . Given this
reduction and the fact that the parallel machine scheduling
problem is NP-hard [22], [37], P is NP-hard as well.

Given this result, we develop a multi-fold solution strategy
consisting of a decomposition algorithm (Sec. V) and an
informed heuristic (Sec. VI).

1334Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2024 at 08:12:41 UTC from IEEE Xplore. Restrictions apply.

ℙ
ℙ𝑓

fwd-prop Schedule

Assignments

ADMM

Feasibility
Correction 𝒘∗, 𝒚∗

A L G O R I T H M 1

ℙ𝑏
opt. bwd-prop

Schedule 𝒛∗, 𝟇∗, 𝒄∗

A L G O R I T H M 2

decompo-

sition

Solution

for ℙ

The roadmap to our solution method

NP-hard

INPUT

Fig. 3: The roadmap to our ADMM-based solution method.

V. SOLUTION METHOD

The core idea of our solution method is to decompose P
into two subproblems (see Fig. 3): (i) Pf , which minimizes the
forward propagation makespan by deciding variables x and y;
(ii) Pb, which minimizes the backward makespan by deciding
z,ϕ, c. We solve Pf using ADMM (see discussion in Sec. II),
and, for Pb, we prove it admits a polynomial-time algorithm by
leveraging its coupling with Pf (due to y). As we will see in
Sec. VII, this approach will lead to considerable speedups (up
to 52×) when compared to exact solution methods.

A. Fwd-prop Optimization

Before introducing Pf , we need some additional nota-
tion. First, we note that the time horizon that is related
to fwd-prop can be confined to the set Tf with Tf :=

max(i,j)∈E{rij + lij}+
∑

j∈J maxi∈I pij . We denote by ϕf
j

the fwd-prop finish time for each client j ∈ J , which by
definition has to satisfy the constraints (similarly to (8)):

ϕf
j ≥ (t+ 1)xijt, ∀i ∈ I, t ∈ Tf . (12)

Also, we define the fwd-prop completion time cfj , j ∈ J ,
which is determined by ϕf

j and the times lij , i.e.,

cfj = ϕf
j +

∑
i∈I

lijyij , ∀j ∈ J . (13)

As before, ϕf = (ϕf
j , j ∈ J) and cf =(cfj , j ∈ J). Collecting

the above requirements, we can now formulate Pf :

Problem 2 (Fwd-prop makespan).

Pf : minimize
x,y,ϕf ,cf

max
j∈J

{
cfj
}

s.t. (1), (4) − (6), (11), (12), (13)∑
j∈J

xijt ≤ 1, ∀i ∈ I, t ∈ Tf , (14)

x ∈ {0, 1}|E|×|T |,ϕf , cf ∈ {0 . . Tf}J . (15)

Comparing the constraints of this reduced problem with P,
we observe that: Pf replaces constraints (8) and (9) with (12)
and (13); omits constraints (2) and (7); and replaces (3) with
(14). This yields a simpler problem, as Pf has fewer variables
(omits z and Tf < T) and less complicated constraints.
However, the solution of Pf will not necessarily be consistent
with the bwd-prop operations. For this, we properly tune the
bwd-prop scheduling problem Pb in Sec. V-B. Despite this
decomposition, there is not a known algorithm for Pf . In fact,
arguments as the ones in the proof of Theorem 1 can lead to
a reduction from the unrelated machine scheduling problem
with release dates, preemption, and no precedence constraints

Algorithm 1 ADMM-based fwd-prop Workflow

Input: λ(0),y(0) = 0, ε1, ε2, ρ, τmax, T f

1 for τ = 1, 2, . . . , τmax do
2 w(τ+1)= argmin

(1),(12)−(15),(20)
L
(
w,y(τ),λ(τ)

)
schedule

3 y(τ+1) = argmin
(4),(5),(11)

L
(
w(τ+1),y,λ(τ)

)
assignment

4 λ
(τ+1)
ij = λ

(τ)
ij +

(∑
t∈Tf

x
(τ+1)
ijt −y

(τ+1)
ij pij

)
, ∀(i, j) ∈ E

5 Exit for if (17) and (18) are satisfied.
6 Correct Pf feasibility with (19).
7 Return w∗=(x∗,ϕf∗, cf∗), y∗

to Pf . To the best of our knowledge, there is no polynomial-
time algorithm for this problem, except for some special cases,
e.g., for a specific number of machines, see [22], [38], [39].

To that end, we employ ADMM to decompose Pf and
obtain smaller subproblems, which, it turns out, can be solved
in reasonable time for many problem instances. Indeed, we ob-
serve that by relaxing the constraints in (6), we can decompose
Pf into a (forward-only) scheduling subproblem, involving
(x,ϕf , cf), and an assignment subproblem that optimizes y.
Then, we can solve these subproblems iteratively and penalize
their solution so as to gradually recover the relaxed constraints.
The first step is to define the Augmented Lagrange function:

L(w,y,λ) =max
j∈J

cfj +
∑

(i,j)∈E

λij

(∑
t∈Tf

xijt − yijpij

)
+
ρ

2

∑
(i,j)∈E

∣∣∣ ∑
t∈Tf

xijt − yijpij

∣∣∣, (16)

where we define w= (x,ϕf , cf) to streamline the notation;
introduce the dual variables λ = (λij , (i, j) ∈ E) for relaxing
(6); and use the ADMM penalty parameter ρ, see [28, Ch. 3].
Note that, unlike the vanilla version of ADMM that uses the
Euclidean norm ℓ2, we penalize the constraint violation using
the ℓ1 norm so as to improve the algorithm runtime.

The detailed steps can be found in Algorithm 1. At iteration
τ + 1, we first update the schedule w using the previous
assignment y(τ) and dual variables λ(τ) (line 2). Next, we
optimize the assignment y(τ+1) using the updated schedule
w(τ+1) (line 3), and finally we correct the dual variables based
on the violation of (6) in line 4. We repeat these steps until
convergence is achieved or a maximum number of iterations is
reached (τmax).7 As a convergence flag, we use the detection
of stationary assignments and objective values (line 5):∑

(i,j)∈E

∣∣∣y(τ+1)
ij −y

(τ)
ij

∣∣∣<ε1 and (17)∣∣∣max
j∈J

c
f,(τ+1)
j −max

j∈J
c
f,(τ)
j

∣∣∣<ε2. (18)

7The w- and y-subproblems (i.e., lines 2-3 of Alg. 1) could be solved either
with exact methods, e.g., branch and bound, or inexact methods, e.g., through
a tailored relaxation [30]. As for the former, we elaborate on the resulting
overhead in Sec. VII, and the latter is in line with the fact that ADMM can
(under certain conditions) tolerate inexact solutions for its subproblems [40].

1335Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2024 at 08:12:41 UTC from IEEE Xplore. Restrictions apply.

Finally, we correct any remaining infeasible constraints by
tuning the schedule to the final assignment y∗ (line 6):

w∗ = argmin
(1),(12)−(15),(6)

L
(
w,y∗,λ∗), (19)

where we additionally use the constraints (6) to ensure full
consistency between x∗ and y∗. Since the relaxed constraints
in (6) concern the processing times for each client’s task, we
can further accelerate the convergence of Alg. 1 by creating
a tighter constraint set [29]. In detail, we introduce a set
of constraints that limit the search to schedules that allocate
enough processing time for each client in the w-subproblem:∑

i∈I

1

pij

∑
t∈Tf

xijt = 1, ∀j ∈ J . (20)

Algorithm 1 is not guaranteed to converge to the optimal
solution of Pf . However, its efficacy is demonstrated with
a battery of trace-driven evaluations in Sec. VII, where in
most of the tested scenarios, it achieves less than 10.2%
suboptimality gap, with one corner case of 14.9%.

B. Bwd-prop Schedule

Given the assignment y∗ and fwd-prop schedule w∗ =
(x∗,ϕf∗, cf∗) from the solution of Pf , we can optimize the
bwd-prop schedule by solving the Pb subproblem. The latter
stems from P by removing the constraints which do not
involve z; and by further replacing variables x and y with
the respective values x∗ and y∗ that we obtained from Pf ,
wherever they appear in the constraints:

Problem 3 (Bwd-prop makespan; given y∗, w∗).

Pb : minimize
z,ϕ,c

max
j∈J

cj

s.t. (2), (3), (7) − (9)
z ∈ {0, 1}|E|×|T |,ϕ, c ∈ {T ∗

f . . T}J . (21)

We stress that the variables ϕ and c can be restricted in the
time window starting after the fwd-prop, which is provided
by Pf and denoted by T ∗

f . These provisions ensure that the
solution we obtain from successively solving subproblems Pf

and Pb will not induce constraint violations.

Theorem 2. Pb can be solved in polynomial time.

Proof. We first observe that, since the client-helper assign-
ments are fixed (y∗), we can parallelize Pb’s solution across
the helpers. That is, we can independently focus on the
bwd-prop tasks of the subset of clients Ji assigned to each
helper i ∈ I, where Ji := {j ∈ J : y∗ij = 1}. Also,
the w∗ obtained by Alg. 1 dictates a subset of time slots
where bwd-prop tasks can be scheduled. We denote by Ti
the remaining eligible slots for helper i. We can now state the
subproblem of minimizing the bwd-prop makespan for each
helper i ∈ I, while we abuse notation and drop the index i.

Pi
b : minimize

z,ϕ
max
j∈Ji

{ϕj + πj}

s.t.
∑
t∈Tj

zjt = p′j , ∀j ∈ Ji (22)

Client
(arrival time at helper)

initial schedule

optimal schedule

1 4 2 3 4 51 4 2 3 4 5
0 1 4 7 8 9 102

0 1 6 7 8 9 102 3

1 4 2 23 4 5

3 54 2 3 54 21

TIME

(proc. time of bwd-prop of part-2 at helper)

(trasm. + proc. time of bwd-prop of part-1 at client)

0 1 3 5 8 9 10

updated schedule
for

1 2 3 4 5

0 2 3 1 9
1 2 3 2 1
5 3 8 1 1

Fig. 4: Algorithm 2 for optimal bwd-prop schedule in a toy
example of 5 clients and 1 helper.

zj(t+lj+l′j)
≤ 1

pj

t−1∑
τ=0

x∗
jτ , ∀j ∈ Ji, t ∈ Ti (23)∑

j∈Ji

zjt ≤ 1, ∀t ∈ T (24)

ϕj ≥ (t+ 1)zjt, ∀j ∈ Ji, t ∈ Ti, (25)

where πj :=
∑

i∈I r′ijy
∗
ij ,∀j ∈ Ji and x∗

jτ are fixed param-
eters. We will show that there is a polynomial-time reduction
from Pi

b to the single machine scheduling problem of minimiz-
ing the maximum cost subject to release and precedence con-
straints, which is polynomially time solvable [41]. It suffices to
set the release times of the jobs as the {cf∗j + lj+ l′j}j∈Ji (i.e.,
the time the client needs to complete the back-propagation of
part-3 and transmit the gradients, given the cf∗j). Moreover, it
suffices to set as the cost function in [41] the quantity ϕj+πj ,
i.e., the makespan of the batch update (including the clients’
local computations).

We now present the algorithm that optimally solves Pb based
on [41] together with a worked example in a scenario of 5
clients and 1 helper, as depicted in Fig. 4.

Algorithm 2 and Worked Example. For each helper i, and
in parallel, we find the set of assigned clients Ji. We then or-
der the clients according to nondecreasing {cf∗j + lj+ l′j}j∈Ji

,
which are the arrival (release) times for their bwd-prop tasks
at the helper, and build an initial schedule where tasks are
processed according to the ordering of their arrival times. This
schedule naturally decomposes Ji into an initial set Bi of
blocks. Specifically, each block β ∈ Bi is the smallest set of
clients whose bwd-prop task has an arrival time at (or after)
s(β) := minj∈β{cf∗j + lj + l′j} and can be processed before
e(β) := s(β)+

∑
j∈β p

′
j . In fact, a client’s task h ̸∈ β is either

processed no later than s(β), i.e., ϕh ≤ s(β), or not released
at the helper before e(β), i.e., cf∗h +lh+l′h ≥ e(β). Essentially,
each block in Bi represents a non-idle period for the helper.
In our example, there are two blocks: β1 = {1, 4, 2, 3} and
β2 = {5} with s(β1) = 0, e(β1) = 8, s(β2) = 9, and
e(β2) = 10. We can now focus on each block separately [41].
For each block β ∈ Bi, we find client ℓ ∈ β such that

ℓ := argmin
j∈β

{e(β) + r′j}. (26)

In our example, that would be client 4 for β1 since 9 =
min{8 + 5, 8 + 3, 8 + 8, 8 + 1} and client 5 for β2. Then,
we reschedule the tasks in β such that the bwd-prop task

1336Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2024 at 08:12:41 UTC from IEEE Xplore. Restrictions apply.

of client ℓ is processed only during time intervals (between
s(β) and e(β)) where no other client’s task has arrived or
is being processed. In our case, since β2 contains a single
client, no reschedulings are required within β2, while, for β1,
client 2 “moves” to an earlier slot in the schedule (subject to
its arrival time) and the task of client 4 is scheduled in slots
where no other task is processed. This also decomposes the
remaining set β − {ℓ} into a set Γβ of subblocks (according
to the rule described above). In our example, Γ1 = {β11, β12}
as depicted in Fig. 4. Now, for each subblock in Γβ , we find
the client ℓ′ based on (26) and reschedule the tasks within
this subblock (based on the same rules as above). In our
example, β11 needs no rescheduling, while, for β12, ℓ′ is 2
since 10 = min{7 + 3, 7 + 8}. The resulting schedule is
optimal. In our case, client 3 will be processed upon arrival
at the helper. The final optimal schedule has a makespan of
14, where client 3 will be the last one to finish the back-
propagation of its part-1. This process runs in O(|Ji|2) time
for helper i, so Algorithm 2 will run in O(maxi∈I{|Ji|}2)
time due to parallelization.

The ADMM-based solution method can be easily adapted
in cases where clients own samples of different sizes. In such
cases, we can simply remove from the obtained schedules x∗

and z∗ the clients whose samples are completely processed
(after a number of batch updates) and “move” the remaining
clients earlier in the schedules (subject to availability of their
tasks at the helpers). Moreover, the assignments y∗ do not
need to change since helpers have already allocated memory
for the model copies of the assigned clients.

VI. MODEL EXTENSIONS & A (FASTER) HEURISTIC

Preemption Cost. In certain systems (e.g., with very limited
memory), preemption might induce further delays or costs
(e.g., due to context switch [42]) that need to be taken into
account while deciding on the schedule. This feature can
be readily incorporated in our model without affecting the
proposed solution method. In detail, let us denote with µi

the switching cost that captures the delay induced at helper
i ∈ I when switching between two tasks, i.e., xijt = 0 and
xij(t+1) = 1, for some client j ∈ J and time interval St.
Then, we can directly apply the ADMM algorithm with the
following modified constraint instead of (13) in Pf :

cfj =ϕf
j +

∑
i∈I

lijyij+
∑
i∈I

∑
t∈T

µi

∣∣xijt − xij(t+1)

∣∣, ∀j ∈ J ,

where the last term captures the cost of switching tasks when
a preemption occurs and when a task has just started being
processed. In a similar way, we can modify the constraints in
(9) in Pb for variables z, and use exact or inexact methods to
solve the problems Pi

b, as discussed in footnote 7.
A Scalable Heuristic (balanced-greedy). Since the sub-

problems of Alg. 1 are ILP problems, the ADMM-based
method might induce high overhead. To exemplify, running the
ADMM-based method on an ILP solver (with exact solution)
for a scenario of J = 70 clients and I = 10 helpers takes 14
min. While such overhead may be tolerable in scenarios of
this size, especially given the resulting time savings in total
training makespan when compared to a baseline (see Sec. VII),

TABLE I: Testbed devices and average computing time (in
sec) for a batch update, where the batch size is 128 samples.

Device ResNet101 VGG19
RPi 4 B Cortex-A72 (4 cores), 4GB 91.9 71.9
RPi 3 B+ Cortex-A5 (4 cores), 1GB not enough memory
NVIDIA Jetson Nano, 4 GB (CPU,GPU) (143, 1.2) (396, 2.6)
VM 8-core virtual CPU, 16GB 2 3.6
Apple M1 8-core CPU, 16GB 3.5 3.6

it might not be the case in larger problem instances. Moreover,
this method decides on the assignments (y) without taking
into account the times p′ of bwd-prop tasks. Specifically, in
our experiments, we noticed that when the processing times
of bwd-prop, i.e., p′, are much larger than the times of
fwd-prop tasks, i.e., p, long queues during bwd-prop may
occur. This phenomenon can be alleviated by balancing the
workload among the helpers. We, thus, propose a heuristic that
addresses these issues: it is of low complexity and balances
the client assignments among helpers in a greedy way.

We propose balanced-greedy that consists of two steps; it
first decides on the client-helper assignments, and then on the
scheduling. Specifically, it starts with x, z,y = 0 and:

1) The assignments follow a static load balancing algo-
rithm [43], where the load of helper i is defined as the number
of assigned clients, i.e., Gi =

∑
j yij . For each client j ∈ J , it

finds the subset of helpers Qj with enough available memory
to allocate for j (i.e., Qj := {i ∈ I : mi −

∑
h dhyih ≥ dj})

and, based on Qj , it finds the helper η with the least load, i.e.,
η = argmini∈Qj

{Gi}. Balanced-greedy assigns client j to η,
i.e., yηj = 1, before proceeding to the next client.

2) The scheduling decisions x and z are made at each
helper in a first-come-first-served (FCFS) order [44], i.e., for
the fwd-prop tasks, the schedule x and the completion times
cf are based on the release times r, and, for the bwd-prop
tasks, z is based on cf+l+l′. In contrast to the ADMM-based
method, balanced-greedy is non-preemptive.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our solution
methods using measurements from our testbed’s devices.

Dataset & Models. We use CIFAR-10 [45] and two NN
models: (i) ResNet101 [46], and (ii) VGG19 [47] for our
training tasks. They are both deep convolutional NNs with
0.42 and 2.4 million parameters, and organized in 37 and 25
layers respectively. Hence, they may push resource-constrained
devices to their limits when trained locally.

Testbed. The testbed’s devices are listed in Table I, where
the last two were employed as helpers. We also list the
collected time measurements for a batch update for ResNet101
and VGG19. One of the devices (RPi 3) cannot fully train
any of the two models locally due to its memory limitations.
Furthermore, Jetson GPU’s training times are comparable to
the helpers’ times, however, in practice, the memory allocation
for the GPU training can be very challenging [48].

Setup. In our simulations, the values of the input parameters
of P, i.e., r, r′,p,p′, l, l′, are set according to the profiling
data of the testbed (for the computation times) and findings on
Internet connectivity in France [49, p.56] (for the transmission

1337Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2024 at 08:12:41 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Suboptimality and speedup achieved by the
ADMM-based method when compared to an ILP solver.

J I T suboptimality (%) speedup (×)

Sc
en

ar
io

1

R
es

ne
t1

01 10
2 294 0 32.2
5 294 2.6 13.2

15 5 399 14.9 37

V
G

G
19 10

2 176 0 12.5
5 176 0 18.5

15 5 211 0 22

Sc
en

ar
io

2

R
es

ne
t1

01 10
2 321 8.2 26.4
5 324 10.2 22.8

15 5 445 4.2 17.2

V
G

G
19 10

2 263 3.2 20.5
5 265 0 31.2

15 5 331 2 52

times). We explore two scenarios that represent two levels of
heterogeneity in terms of devices, resources, and cut layers:
• Scenario 1 (low heterogeneity): Clients and helpers have
the same parameters as in Table I, where the selection of the
type of device for each client and helper is uniformly random.
Moreover, the entities’ memory capacities are limited by their
RAM size and all the clients’ NNs have the same cut layers:
layers 3 and 33 for Resnet101, and layers 3 and 23 for VGG19.
• Scenario 2 (high heterogeneity): To capture higher hetero-
geneity, the input parameters are devised by interpolating the
time measurements of the profiled devices. Also, the entities’
memory capacities can vary from device to device, but upper-
bounded by their RAM size. In this scenario, clients participate
in the training with different cut layers (randomly selected).

Results and Observations. We proved that P is NP-
hard, which led us to propose two scalable solution methods.
Table II shows the suboptimality and speedup achieved by the
ADMM-based method when compared to Gurobi [36], one
of the fastest ILP solvers [50], that optimally solves P. We
observe that, in most cases, our method achieves less than
10.2% suboptimality, with one corner case of 14.9%. However,
even in this case, there is a 37× speedup when compared to
the solver. We highlight that these results derive from running
less than 5 iterations of Algorithm 1, while we may achieve
smaller suboptimality with a larger number of iterations using
techniques like the ones in [29]. Actually, ADMM may be
tailored so that we can balance suboptimality and speed.

Observation 1. The ADMM-based method finds the optimal
solution for P in several problem instances and achieves up to
52× speedup when compared to an ILP solver.

We note that the numerical evaluations in Table II were
performed in small instances (up to 15 clients and 5 helpers)
that can be handled by ILP solvers. We observe that the lowest
suboptimality gap is achieved for VGG19, which comes from
the choice of cut layers (see above). In particular, Fig. 5 shows
the processing times between forward and backward propaga-
tion per device for the two NNs. We see that these times can
highly differ between forward and backward operation. Such
asymmetries that can occur in SL further corroborate our ap-
proach towards jointly optimized assignments and scheduling.

Next, in Table II, we see that the time horizon (T) increases
with the problem size, and our method achieves considerable
speedups in execution time for very large T . In particular, T is
directly related to the number of variables of the problem. This

forward backward
10°2

10°1

1

10

C
om

pu
tin

g
tim

e
(s

ec
)

forward backward
10°2

10°1

1

10
jetson-gpu
RPI-4
RPI-3
jetson-cpu

Operation

ResNet101 VGG

Fig. 5: Profiled computing time (ms.) of part-1 for each device.

VGG19ResNet101

Fig. 6: Batch makespan obtained by the ADMM-based method
for time slot length |St| equal to 200 ms, 150 ms, and 50 ms,
in Scenario 1. The speedup is relative to the case |St| = 50.

dependency can be critical in cases where the input parameters
r,p, l, etc. are in the order of thousands (e.g., when in ms).
For this reason, we explore next how tuning the time slot’s
length can affect the obtained solution (batch makespan).

In Sec. IV, we discussed the impact of the time slot’s length,
i.e., |St|, on the frequency of preemptions. Furthermore, as |St|
decreases, the time horizon T and the number of the problem’s
variables increase. To exemplify, a processing time of 400ms
would be translated into 2, 3, or 8 time slots when |St| = 200
ms, |St| = 150 ms, and |St| = 50 ms respectively. Since T is
defined based on the input processing and transmission times,
its length will be the largest when |St| = 50. Moreover, in the
case where |St| = 150, the processing time of our example is
interpreted as 3 slots, which can overestimate the makespan.
In fact, since the helper will need a bit less than 3 slots to
process the task, in a real-life implementation of the obtained
schedule, it may be able to start processing the next task before
the end of the 3rd slot. Therefore, in such cases, the time slot’s
length may affect the accuracy of the obtained schedule.

Observation 2. As the length of the considered time slots
St increases, the obtained makespan increases, while the ex-
ecution time decreases. This confirms an algorithmic tradeoff
between the solution’s precision and size of the solution space.

Fig. 6 depicts the makespan obtained by the ADMM-based
method for 3 different |St|. The numbers on top of the bars
are the speedups relative to the case |St| = 50, which has
the highest overhead. We observe that the makespan is higher,
in principle, as the |St| increases. This is because large |St|
implies less frequent preemptions and a less precise solution.
Of course, as |St| increases, the length of the time horizon (T)
decreases, which results in a speedup of up to 4.9%. Finally,
we note that, for all the other experiments, we have used |St|
equal to 180ms, for Resnet101, and to 550ms, for VGG19.

Next, in Fig. 7, we compare the proposed methods (ADMM-
based and balanced-greedy) between them, and with a baseline
scheme that first decides on the client-helper assignments in
a random way (subject, of course, to memory constraints),
and then schedules the tasks in a FCFS order. This baseline
could be seen as a naive real-time implementation of parallel
SL without proactive decisions on assignments or scheduling.

1338Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2024 at 08:12:41 UTC from IEEE Xplore. Restrictions apply.

(20,5)(20,10)(30,5)(30,10)(50,5)(50,10)(70,5)(70,10)
0

50

100

14.216.5 13.2 7.8 19
8 18.4

19

(20,5)(20,10)(30,5)(30,10)(50,5)(50,10)(70,5)(70,10)
0

20

40

60

80

100

relative gain (%) ADMM balanced-greedy baseline

31.9
41.5

14.5
41.4

21.3

11.7

15

16.8

(20,5)(20,10)(30,5)(30,10)(50,5)(50,10)(70,5)(70,10)
0

200

400ba
tc

h
m

ak
es

pa
n

(s
ec

)

38.7
28.8

20.2
22.6

17.4 28.1

12.6 20.1

(20,5)(20,10)(30,5)(30,10)(50,5)(50,10)(70,5)(70,10)
0

200

400

600

41.0
52.3

19
27.4

24.1
38.7

17.3
31.4

(number of clients, number of helpers)

ResNet101

Sc
en
ar
io
1

VGG19

Sc
en
ar
io
2

Fig. 7: Comparison of the proposed methods with the baseline.

We note that a straightforward comparison with related work
(e.g., [11]) is not possible since, typically, its client-helper
assignments are coupled with decisions on cut layers or other
considerations, while it usually adopts a FCFS schedule.

We focus first on the comparison between the two proposed
methods. We observe that the ADMM-based method finds a
shorter makespan (up to 32%) than the balanced-greedy in
medium-sized scenarios (1 & 2), i.e., up to 50 clients, and thus,
it should be the preferred method. However, as the number
of clients grows and the queuing delays risk to increase,
balancing the helpers’ loads provides a better solution. Indeed,
in Scenario 1 (top), the balanced-greedy achieves a better
makespan than the ADMM-based method, making it, hence,
the method of choice.

Next, as the heterogeneity of the network resources in-
creases (Scenario 2, bottom Fig. 7), the scheduling and as-
signment decisions become more crucial for the makespan.
Therefore, it is not surprising that the ADMM-based method
outperforms the balanced-greedy by up to 48%, and thus, it
should be the preferred method. We note that the problem
instances of Scenario 2 contain a few helpers with very limited
memory capacities that were not fully utilized by balanced-
greedy. The presence of such helpers explains the fact that
the batch makespan is larger in Scenario 2 than in Scenario
1, since this implies long queuing delays in the other helpers.
Nevertheless, these performance gains decrease as the number
of clients increase, and given the discussion on the overhead
of the two methods in Sec. VI, balanced-greedy should be
preferred for very large scenarios (e.g., ≥ 100 clients in our
case) to avoid excess overhead.

Observation 3. The numerical evaluations allow us to build
a solution strategy based on the scenario’s characteristics that
achieves a shorter makespan than the baseline by up to 52.3%.

The observations above shape a solution strategy that com-
prises the two proposed methods, and it is tailored based on the
scenario at hand (i.e., its heterogeneity and size). Also, we see
that any improvement of one method over the other is larger
in the VGG19. This reveals a dependency on the NN, since
NNs may differ on the cut layers, the size of the processing

1
2

5
10

20
25

100

200

300

batch makespan (sec)

relative
gain

(%
)

47.6%

21.5%
23.9%

15.7%
3.1%

1
2

5
10

20
25

100

200

300
47%

32.7%

41.2%

25.5%
4.67%

num
berofcom

pute
nodes

1 2 5 10 20 25

100

200

300

ba
tc

h
m

ak
es

pa
n

(s
ec

)

ralative gain (%)

47.6%

21.5%
23.9%

15.7%3.1%

1 2 5 10 20 25

100

200

300
47%

32.7%

41.2%

25.5%
4.67%

number of compute nodes

1 2 5 10 20 25
30

90

150

210

270

330

ba
tc

h
m

ak
es

pa
n

(s
ec

)

relative gain ()

47.6

21.5 23.9 15.7 3.1

1 2 5 10 20 25
30

90

150

210

270

330
47

32.7
41.2

25.5 4.67

number of helpers

ResNet101 VGG19

Fig. 8: Batch makespan obtained by the balanced-greedy
method in Scenario 1 for J = 100 clients and varying I .

tasks [9], etc. We plan to further explore this dependency and
its implications on the makespan in future work.

Focusing now on the comparison of our strategy (i.e.,
ADMM-based or balanced-greedy depending on the scenario,
as discussed above) to the baseline scheme, we observe that
our proposed strategy consistently outperforms the baseline,
achieving a shorter makespan. In detail, the baseline scheme
decides on the assignments y without taking into account
processing and transmission delays, which results in a larger
makespan. Essentially, this confirms the need for workflow
optimization in parallel SL. We notice that, in some instances
where the preferred method is the ADMM-based one (e.g.,
(30,5) for VGG19), the baseline with random client-helper
allocation may find a shorter makespan than balanced-greedy.
This is because balanced-greedy may allocate clients to slower
helpers, without taking into account that queuing delays might
not be long in faster helpers for such medium-sized instances.

Finally, in Fig. 8, we perform a sensitivity analysis with
respect to the number of helpers in Scenario 1 where we depict
the relative gains in batch makespan. Given the scenario’s type
and size, we employ balanced-greedy.

Observation 4. In a scenario of 100 clients and 1 helper,
adding one more helper can dramatically decrease the batch
makespan by up to 47.6%.

Whereas, in the presence of 10 helpers, the relative gains of
adding more helpers are decreasing. Such observations provide
useful insights for a real-life implementation of parallel SL
and lead us towards future extensions of our approach where
deployment or energy costs are included in our model.

VIII. CONCLUSIONS AND FUTURE WORK

In this work, we formulated the joint problem of client-
helper assignments and scheduling for parallel SL. We ana-
lyzed it both theoretically, proving it is NP-hard, and exper-
imentally, using measurements from a realistic testbed. We
proposed two solution methods, one based on the decompo-
sition of the problem, and the other characterized by a low
computation overhead. Our performance evaluations led us to
build a bespoke solution strategy comprising these methods
that are chosen based on the scenario’s characteristics. We
showed that this strategy finds a near-optimal makespan, while
it can be tuned to balance suboptimality and speed. Also,
it outperforms the baseline scheme by achieving a shorter
makespan by up to 52.3%. A natural direction for future
work would be to decide on the NN’s cut layers per client
in conjunction with the proposed solution strategy.

1339Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2024 at 08:12:41 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in AISTATS. PMLR, 2017, pp. 1273–1282.

[2] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang,
D. Niyato, and C. Miao, “Federated learning in mobile edge networks:
A comprehensive survey,” IEEE Communications Surveys & Tutorials,
vol. 22, no. 3, pp. 2031–2063, 2020.

[3] L. L. Pilla, “Optimal task assignment for heterogeneous federated
learning devices,” in 2021 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 2021, pp. 661–670.

[4] Y. Jiang, S. Wang, V. Valls, B. J. Ko, W.-H. Lee, K. K. Leung, and
L. Tassiulas, “Model pruning enables efficient federated learning on edge
devices,” IEEE Trans. on Neural Networks and Learning Systems, 2022.

[5] M. R. Sprague, A. Jalalirad, M. Scavuzzo, C. Capota, M. Neun,
L. Do, and M. Kopp, “Asynchronous federated learning for geospatial
applications,” in Joint European Conference on Machine Learning and
Knowledge Discovery in Databases. Springer, 2018, pp. 21–28.

[6] P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, “Split learning
for health: Distributed deep learning without sharing raw patient data,”
arXiv preprint arXiv:1812.00564, 2018.

[7] C. Thapa, P. C. M. Arachchige, S. Camtepe, and L. Sun, “Splitfed: When
federated learning meets split learning,” in Proc. of the AAAI Conf. on
Artificial Intelligence, vol. 36, no. 8, 2022, pp. 8485–8493.

[8] J. Jeon and J. Kim, “Privacy-sensitive parallel split learning,” in Inter-
national Conf. on Information Networking. IEEE, 2020, pp. 7–9.

[9] Z. Zhang, A. Pinto, V. Turina, F. Esposito, and I. Matta, “Privacy
and efficiency of communications in federated split learning,” IEEE
Transactions on Big Data, 2023.

[10] K. Palanisamy, V. Khimani, M. H. Moti, and D. Chatzopoulos,
“Spliteasy: A practical approach for training ml models on mobile
devices,” in Proc. of the 22nd International Workshop on Mobile
Computing Systems and Applications (ACM HotMobile), 2021, p. 37–43.

[11] Z. Wang, H. Xu, Y. Xu, Z. Jiang, and J. Liu, “CoopFL: Accelerating
federated learning with dnn partitioning and offloading in heterogeneous
edge computing,” Computer Networks, vol. 220, p. 109490, 2023.

[12] Z. Jiang, Y. Xu, H. Xu, Z. Wang, and C. Qian, “Adaptive control of client
selection and gradient compression for efficient federated learning,”
arXiv preprint arXiv:2212.09483, 2022.

[13] A. Rodio, F. Faticanti, O. Marfoq, G. Neglia, and E. Leonardi, “Fed-
erated learning under heterogeneous and correlated client availability,”
Proc. of IEEE INFOCOM, pp. 1–10, 2023.

[14] C. Chen, H. Xu, W. Wang, B. Li, B. Li, L. Chen, and G. Zhang, “GIFT:
Toward accurate and efficient federated learning with gradient-instructed
frequency tuning,” IEEE Journal on Selected Areas in Communications,
vol. 41, no. 4, pp. 902–914, 2023.

[15] H. Liu, F. He, and G. Cao, “Communication-efficient federated learning
for heterogeneous edge devices based on adaptive gradient quantization,”
in Proc. of IEEE INFOCOM, 2023, pp. 1–10.

[16] X. Liu, Y. Deng, and T. Mahmoodi, “Energy efficient user scheduling
for hybrid split and federated learning in wireless uav networks,” in
Proc. of IEEE ICC, 2022, pp. 1–6.

[17] S. Wang, X. Zhang, H. Uchiyama, and H. Matsuda, “Hivemind: Towards
cellular native machine learning model splitting,” IEEE Journal on
Selected Areas in Communications, vol. 40, no. 2, pp. 626–640, 2021.

[18] J. Tirana, C. Pappas, D. Chatzopoulos, S. Lalis, and M. Vavalis, “The
role of compute nodes in privacy-aware decentralized ai,” in Proc. of the
6th International Workshop on Embedded and Mobile Deep Learning,
2022, pp. 19–24.

[19] M. Kim, A. DeRieux, and W. Saad, “A bargaining game for personalized,
energy efficient split learning over wireless networks,” in Wireless
Communications and Networking Conf.(WCNC). IEEE, 2023, pp. 1–6.

[20] E. Samikwa, A. Di Maio, and T. Braun, “ARES: Adaptive resource-
aware split learning for internet of things,” Computer Networks, vol.
218, p. 109380, 2022.

[21] W. Wu, M. Li, K. Qu, C. Zhou, X. Shen, W. Zhuang, X. Li, and W. Shi,
“Split learning over wireless networks: Parallel design and resource
management,” IEEE Journal on Selected Areas in Communications,
vol. 41, no. 4, pp. 1051–1066, 2023.

[22] E. L. Lawler, J. K. Lenstra, A. H. R. Kan, and D. B. Shmoys,
“Sequencing and scheduling: Algorithms and complexity,” Handbooks
in operations research and management science, 1993.

[23] J. K. Lenstra, D. B. Shmoys, and É. Tardos, “Approximation algorithms
for scheduling unrelated parallel machines,” Mathematical program-
ming, vol. 46, pp. 259–271, 1990.

[24] B. Chen, C. N. Potts, and G. J. Woeginger, “A review of machine
scheduling: Complexity, algorithms and approximability,” Handbook of
Combinatorial Optimization: Volume1–3, pp. 1493–1641, 1998.

[25] A. M. Geoffrion, “Generalized benders decomposition,” Journal of
optimization theory and applications, vol. 10, pp. 237–260, 1972.

[26] J. Lou, Z. Tang, W. Jia, W. Zhao, and J. Li, “Startup-aware dependent
task scheduling with bandwidth constraints in edge computing,” IEEE
Transactions on Mobile Computing, 2023.

[27] H. Wang, W. Li, J. Sun, L. Zhao, X. Wang, H. Lv, and G. Feng, “Low-
complexity and efficient dependent subtask offloading strategy in iot
integrated with multi-access edge computing,” IEEE Transactions on
Network and Service Management, pp. 1–1, 2023.

[28] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends® in Machine learning, 2011.

[29] S. Diamond, R. Takapoui, and S. Boyd, “A general system for heuristic
solution of convex problems over nonconvex sets,” arXiv preprint
arXiv:1601.07277, 2016.

[30] C. Leng, Z. Dou, H. Li, S. Zhu, and R. Jin, “Extremely low bit neural
network: Squeeze the last bit out with ADMM,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018.

[31] A. S. Schulz and M. Skutella, “Scheduling unrelated machines by
randomized rounding,” SIAM journal on discrete mathematics, vol. 15,
no. 4, pp. 450–469, 2002.

[32] N. H. Tran, W. Bao, A. Zomaya, M. N. Nguyen, and C. S. Hong,
“Federated learning over wireless networks: Optimization model design
and analysis,” in Proc. of IEEE INFOCOM, 2019, pp. 1387–1395.

[33] Z. Fu, J. Ren, D. Zhang, Y. Zhou, and Y. Zhang, “Kalmia: A heteroge-
neous qos-aware scheduling framework for dnn tasks on edge servers,”
in Proc. of IEEE INFOCOM, 2022, pp. 780–789.

[34] J. Meng, H. Tan, C. Xu, W. Cao, L. Liu, and B. Li, “Dedas: Online
task dispatching and scheduling with bandwidth constraint in edge
computing,” in Proc. of IEEE INFOCOM, 2019, pp. 2287–2295.

[35] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[36] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2023. [Online]. Available: https://www.gurobi.com

[37] S. Ullman, “Complexity of sequencing problems,” Computers and Job-
shop Scheduling, 1967.

[38] T. Gonzalez, E. L. Lawler, and S. Sahni, “Optimal preemptive scheduling
of two unrelated processors,” ORSA Journal on Computing, vol. 2, no. 3,
pp. 219–224, 1990.

[39] W. Horn, “Some simple scheduling algorithms,” Naval Research Logis-
tics Quarterly, vol. 21, no. 1, pp. 177–185, 1974.

[40] J. Eckstein and D. P. Bertsekas, “On the Douglas—Rachford splitting
method and the proximal point algorithm for maximal monotone oper-
ators,” Mathematical Programming, vol. 55, no. 1, pp. 293–318, 1992.

[41] K. R. Baker, E. L. Lawler, J. K. Lenstra, and A. H. Rinnooy Kan,
“Preemptive scheduling of a single machine to minimize maximum
cost subject to release dates and precedence constraints,” Operations
Research, vol. 31, no. 2, pp. 381–386, 1983.

[42] C. Li, C. Ding, and K. Shen, “Quantifying the cost of context switch,”
in Proc. of the workshop on Experimental computer science, 2007.

[43] J. M. Shah, K. Kotecha, S. Pandya, D. Choksi, and N. Joshi, “Load
balancing in cloud computing: Methodological survey on different types
of algorithm,” in International conference on trends in electronics and
informatics (ICEI). IEEE, 2017, pp. 100–107.

[44] M. Harchol-Balter, Performance modeling and design of computer
systems: queueing theory in action. Cambridge University Press, 2013.

[45] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[46] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 770–778.

[47] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[48] L. Bai, W. Ji, Q. Li, X. Yao, W. Xin, and W. Zhu, “Dnnabacus: Toward
accurate computational cost prediction for deep neural networks,” arXiv
preprint arXiv:2205.12095, 2022.

[49] D. Belson, “State of the Internet Q4 2016 report,” Akamai Technologies,
vol. 9, no. 4, 2017.

[50] R. Anand, D. Aggarwal, and V. Kumar, “A comparative analysis of
optimization solvers,” Journal of Statistics and Management Systems,
vol. 20, no. 4, pp. 623–635, 2017.

1340Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2024 at 08:12:41 UTC from IEEE Xplore. Restrictions apply.

