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in Active Sensing: New Insights Into Array Design
via the Cramér-Rao Bound

Ids van der Werf, Geert Leus
Department of Microelectronics
Delft University of Technology
Delft, The Netherlands
{i.vanderwerf,g j.t.leus} @tudelft.nl

Abstract—This paper investigates jointly optimal array geom-
etry and waveform designs for active sensing. Specifically, we
focus on minimizing the Cramér-Rao lower bound (CRB) of the
angle of a single target in white Gaussian noise. We first find
that several array-waveform pairs can yield the same CRB by
virtue of sequences with equal sums of squares, i.e., solutions
to certain Diophantine equations. Furthermore, we show that
under physical aperture and sensor number constraints, the
CRB-minimizing receive array geometry is unique, whereas the
transmit array can be chosen flexibly. We leverage this freedom
to design a novel sparse array geometry that not only minimizes
the single-target CRB given an optimal waveform, but also
has a nonredundant and contiguous sum co-array—a desirable
property when launching independent waveforms, with relevance
also to the multi-target case.

Index Terms—Active sensing, Cramér-Rao lower bound, sparse
arrays, waveform design.

I. INTRODUCTION

Multisensor active sensing systems have recently experi-
enced an increased research interest due to emerging appli-
cations such as automotive radar, and integrated sensing and
communications [1], [2]. An important goal of such systems
is high spatial resolution, including unambiguous and accurate
direction-of-arrival (DoA) estimation, whereas key factors
influencing performance are the array geometry and trans-
mit waveforms. Among the numerous optimization criteria
considered in literature, the Cramér-Rao lower bound (CRB)
remains a popular choice as it provides a fundamental limit
on unbiased DoA estimation performance. Past works have
focused on (sparse array [3]) geometry optimization based on
the CRB and related bounds in both passive [4]-[8] and active
sensing [9]-[11], [3, Ch. 10], as well as transmit waveform
optimization [12]-[16], [2, p. 220]. However, jointly optimal
array geometries and transmit waveforms that minimize the
CRB have not been investigated to the best of our knowledge.
This paper seeks to address this gap by focusing on the single-
target CRB. The single-target case provides valuable insight

This work was supported by the Netherlands Organisation for Applied
Scientific Research, Netherlands Defence Academy (TNO-10026587), as well
as projects Business Finland 6G-ISAC, Research Council of Finland FUN-
ISAC (359094), and EU Horizon INSTINCT (101139161).

Robin Rajamaki

Department of Information and Communications Engineering

Aalto University
Espoo, Finland
robin.rajamaki@aalto.fi

with relevance also to the multi-target case, and applications
such as beam alignment [17], target detection, and tracking [2,
pp. 122, 422].

The contributions of the paper are as follows. Firstly, we
show that multiple array-waveform pairs can yield equal
CRBs, which follows from the realization that designing
such array configurations corresponds to constructing integer
sequences with equal sums of squares—a classical problem
in number theory [18], [19]. Secondly, we derive the receive
array geometry minimizing the CRB given a family of optimal
waveforms corresponding to transmit beamforming, and cer-
tain physical constraints on the array aperture and number of
sensors. We find a curious asymmetry between the transmitter
and receiver: the optimal receive array is unique, whereas the
transmit array can be chosen quite freely. We then leverage
this freedom to design a novel jointly optimal sparse array
geometry that also has a contiguous and nonredudant sum co-
array. These properties are desirable for achieving high target
identifability and resolution in the general multi-target case
when launching independent waveforms [20], [21].

II. BACKGROUND
A. Measurement model

We consider a monostatic active sensing multiple-input
multiple output (MIMO) system consisting of [V, transmit
(Tx) sensors collocated with N, receive (Rx) sensors. Thus,
the angle of incidence on the Rx array equals the angle of
departure of the Tx array. Assuming a single target located
in the far field of linear Tx and Rx arrays at unknown angle
w € [—m, ), a narrowband received signal model is given by
[20]

y = (S@I)(a(w) @ a;(w))y +n, (1)

where ® denotes the Kronecker product, S € CT*M is a
(known) spatio-temporal Tx waveform matrix, 7" > 1 is the
waveform length in samples, v € C is the unknown reflec-
tion coefficient, and n € CN7T denotes an additive (spatio-
temporally white) noise vector whose entries follow an i.i.d.
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circularly symmetric normal distribution with E(nn'!) = 21
Furthermore, a,(w) = [e/4lUe I&INI@)T and a (w) =
[eddlllw  edhINJ@]T represent the steering vectors of the
Tx and Rx arrays, respectively, whose sensor positions D; =
{di[n]}e, € Z and D, = {d,[m]}Y_, C Z are assumed to
lie on a grid of integer multiples of half a carrier wavelength.
Our goal is to estimate the target angle w, and understand
how the choice of Tx/Rx arrays Dy, D, and waveform matrix
S impact this task.

B. Single-target CRB and optimal transmit waveform

The single-target CRB of angle w, assuming the reflection
coefficient  and noise power o? are unknown nuisance
parameters, can be show to reduce to [22]

o2
=3 IPisgna, ) (S ® Dacw)[z?. @)
Here, Py denotes the projection onto the orthogonal comple-
ment of the range space of X; a,(w) = a(w) ® a;(w) is the
effective Tx-Rx steering vector; and a,(w) £ Zay(w) is its
derivative with respect to w. Fortsythe and Bliss [12], as well
as Li et al. [13], investigated waveforms S minimizing the
CRB given an array geometry. In the single-target case (2),
the optimal waveform depends on the “spatial variances” of
the Tx and Rx arrays [12], x: = x(D;) and x, 2 x(D;), where

Mvwé§;§jwfu@m% 3

deD

CRB(w)

and the corresponding spatial mean is u(D) £ ﬁ > gep d-
In particular, if the following condition is satisfied:

Xr > Xt “)
then the optimal waveform matrix has the form [12]:
uai(w)
JN

where u € C7T is an arbitrary unit norm vector ([Jullo = 1),
and the Tx power ||S||2 is w.l.0.g. constrained to < 1. Eq. (5)
simply corresponds to fully coherent transmission in the target
direction w, i.e., Tx beamforming. If x, = x4, then optimal
waveforms beyond (5) also exist [13]. Otherwise, if x, < Xxt,
then the optimal waveform corresponds to transmitting in-
finitesimal energy in the target direction—see [12], [13] for
details. As this solution has limited practical relevance, we
will henceforth focus on (5) which is optimal given (4).

We conclude by highlighting two interesting facts revealed
by (5). Firstly, any optimal waveform matrix is column rank-
deficient (when Ny >1). Hence, widely employed orthogonal
waveforms do not generally minimize the CRB—even in the
case of multiple targets [13]. Secondly, any optimal waveform
depends on the Tx array geometry D; (and true target angle w)
via steering vector a;(w). That is, different Tx arrays lead to
different optimal waveforms. While this was observed in [12],
[13], the impact of the array geometry on the CRB was not
fully explored. Hence, we attempt to fill this gap by asking
which Tx/Rx array geometries minimize the CRB in (2) jointly
with the optimal waveform in (5)?

S, 2 argmin {CRB(w): x: > x1,|[S||E <1} = (3)

SG(CTXNt

III. JOINTLY OPTIMAL ARRAY-WAVEFORM PAIRS

A. Equal CRB via Rx arrays with equal sums of squares

Substituting the optimal waveform in (5) into (2) can be
shown to simplify the single-target CRB into [12]

2
o 1 1

CRB(w) = 72|’Y|2 NN, Xs

(6)

Hence, the CRB (given an optimal waveform) is independent
of the target angle w and only depends on the Tx array
geometry via the number of Tx sensors, Ny. In contrast, for
a fixed number of Rx sensor NN,, the CRB depends on the
Rx array geometry via its spatial variance, x,. This suggests
an intriguing possibility: Rx array geometries with equal
spatial variances yield equal CRBs. Designing such arrays
actually corresponds to finding integer sequences with equal
sums of squares—a special class of Diophantine equations
that have a long history in number theory [18], [19]. For
example, 12482 = 424+ 7% can be used to construct arrays
Dy = {-8,-1,1,8} and Dy = {—7,—4,4,7} satisfying
X(D1) = x(Ds). While different array geometries can achieve
the same CRB, their practical DoA estimation performance
may differ, as Section IV will demonstrate. Fully exploring
this prospect is left for future work. Instead, we now turn our
attention to deriving the Rx array configuration minimizing
the CRB (6).

B. Optimal Rx array geometry: Clustered array

The CRB in (6) is a monotonically decreasing function
in increasing ),. Since the CRB can be made arbitrarily
small simply by expanding the Rx aperture without bound,
a more meaningful question is: which array geometry is
optimal under a constraint on the physical array aperture? To
answer this question, we make use of the following Lemma,
which shows that the sparse array geometry whose sensors
are clustered around the extremes of the array maximizes the
spatial variance under an aperture constraint. For simplicity
and brevity, we denote the set of nonnegative integers smaller
than N, i.e., the N-sensor uniform linear array (ULA), by
Un={0,1,...,N—1}, and focus on the case of even N.

Lemma 1 (Clustered array). Let L = Uy 1, where L € N
is fixed. Then, given an even N < L + 1, the subset D C L
of size |D| = N maximizing x(D) in (3) is D = K%, where

K% éarpgcrrzin{x(l)) (| D|=N} = Uy U(L —Unss). (T)

Moreover, the (optimal) value of the spatial variance is
X(KR) = HE+1-5P+300 1) ®
The proof of (7) follows directly via negation and is

omitted for brevity. Similarly, the value of y(K%) follows by
straightforward computation after substituting (7) into (3).
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We can now characterize the set of array-waveform pairs
jointly minimizing the single-target CRB (2), i.e., solutions to
|Dt| = Nta |Dr| = Nr7
ISIIE < 1,
max D, —minD, < L,
X(Dr) > X(Dy).

In addition to the number of Tx/Rx sensors and Tx power, we
have also constrained the Rx aperture (to < L). Moreover, the

spatial variance of the Tx array should be smaller than that of
the Rx array to ensure that Tx beamforming (5) is optimal.

minimize CRB(w) s.t.
D¢, D, CN
S G(CT X Ng

€))

Theorem 1 (Jointly optimal array-waveform pairs). Suppose
(9) is feasible for given Ny, N.,L € N, where N, is even.
Then the solutions (D}, D}, S*) to (9) are: S* given by (5),

D; = K§, (10)
given by (1), and any D} satisfying (4) and |Df| = Ny.

Proof. Per [12], (5) is optimal when (4) holds. Hence, the
CRB (2) simplifies to (6). By Lemma 1, (6) is minimized by
(10), when the Rx aperture is < L. Finally, any Dy satisfying
(4) and |Dy| = Ny, has the same CRB, and is thus optimal. [J

Remark 1. By Theorem 1, the clustered array in (10) is the
unique optimal Rx array, whereas several optimal waveforms
and Tx arrays exist: S* follows (5) and therefore depends on
Dy, which can be chosen freely provided it satisfies (4).

The subtle question remains for which values of tuple
(Nt, Ny, L) optimization problem (9) is feasible? A simple
sufficient condition is N; < N, < L+1, since then the feasible
set of (9) contains D, = Uy, and D; = Uy,, which trivially
satisfy (4). Deriving necessary and sufficient conditions in
terms of (N, Ny, L) is beyond the scope of this paper and
left for future work. Instead, we now turn our attention to
how to pick an optimal Tx array among the possible choices.

C. How should the Tx array geometry be chosen?

The minimum single-target CRB—jointly optimized over
the waveform and array geometry—may be achieved by mul-
tiple choices of the Tx array (cf. Remark 1). Nevertheless,
some Tx array configurations might be preferable over others
in terms of performance indicators beyond the CRB. Herein,
we consider identifiability, which quantifies if for a fixed
number of K targets, any given (noiseless) measurement can
be associated with a unique set of DoAs. In active sensing,
identifiability depends on the geometry of the sum co-array
[21]:

Dzépt+pr:{dt+dr | thDt;drEDr}.

Let Ny, 2 |Ds;| denote the number of sum co-array elements.
A sufficient condition for identifying any K < Ny /2 targets
is that the sum co-array is contiguous and the Tx waveform
has full column rank, i.e., Dy, =Un,, and rank(S) = N; [23].
Since Ny < NyN,, up to NyN,/2 targets can be identified
by a contiguous sum co-array with appropriately chosen (e.g.,

orthogonal) waveforms.! An array achieving Ny, = NN, is
called nonredundant. The following Corollary establishes a set
of (N, Ny, L) tuples solving (9) and yielding a contiguous and
nonredundant sum co-array. For a proof, see Appendix A.

Corollary 1 (Optimal contiguous nonredundant co-array).
Given Ny, N, € N, where N, is even, if L = (Ny+1)N,/2—
1, then the following Tx array is a solution to (9):

* __ N,
Df = Nty .

(11

The sum co-array of (11) and the optimal Rx array (10) is
contiguous (Dy, = Uy, ) and nonredundant (Ny, = Ny N;).

To the best of our knowledge, the sparse Tx-Rx array
geometry in (10) and (11) has not appeared in the literature
before. Neither has its optimality w.r.t. minimizing the single-
target CRB been established, nor the fact that it can achieve a
contiguous nonredundant sum co-array. We note that the clus-
tered array in (7) has empirically [5] been found to minimize
the so-called unconditional CRB corresponding to a different
(single-target) measurement model typically arising in passive
sensing. This is nevertheless different from the active sensing
model (1) and conditional CRB considered herein, and hence
does not imply our results. Moreover, in stark contrast to
passive sensing, in active sensing one has the freedom to
choose both the Tx array geometry (as in Section III-C)
and the transmitted waveforms, despite the optimal Rx array
being a clustered array in both cases. Exploring generalizations
of the array geometry in (10) and (11) is left for future
work. Such generalizations, possibly with a redundant or even
noncontiguous sum co-array, may be of interest in minimizing
the CRB given an S differing from the (optimal) choice in (5).

IV. NUMERICAL EXAMPLES

Next, we illustrate the results of Section III numerically. We
focus on the four array geometries depicted in Fig. 1, where
(a) shows the optimal array defined by (10) and (11). We
consider the maximum-likelihood estimator (MLE) of w for
a fixed waveform matrix S. Given (1), the MLE can be shown
to reduce to the following joint Tx-Rx beamformer [24]:
& = argmaxge (o [y (Sa (@)@ a, (@) /||Sa(@)||3 We
assume the optimal waveform in (5) is used, with u = %IT
and 7" = N;. Since S is a function of the true angle, an initial
estimate of w would be needed in practice; see [13] for a
discussion and examples. The ground truth target angle and
reflectivity are set to w = 0 and v = 1, respectively, whereas
entries of noise vector n are drawn from an i.i.d. circularly
symmetric normal distribution with variance 2. The squared
error of the MLE is averaged over 10* Monte Carlo trials.
Fig. 2 shows the (single-target) CRBs and empirical MLE
performance of the array configurations in Fig. 1 as a function
of SNR £ 101og(|y|?/0?). The optimal array in Fig. 1(a) min-
imizes the CRB among all geometries with aperture L =14. By
using a larger aperture, one can construct array configurations

IFully leveraging the sum co-array would hence in general require transmitting
a suboptimal waveform, i.e., one that does not minimize the CRB.
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(a) Clustered array (optimal)

e000  ogesccesee | se0e,
0 2 4 6 8 1012141618 202224

(b) Array with same x. as (a) (c) Uniform linear array (ULA)

s000000ee | | | | | | |
0 2 4 6 8 10121416 18202224

900000000000000000000000
0 2 4 6 8 10121416 18202224

(d) Canonical MIMO array

Fig. 1: Array geometries with /Ny =4 transmitter and N, =6 receiver sensors. Array (a) maximizes the Rx spatial variance yx,
given physical aperture L =14, and has a contiguous nonredudant sum co-array. The Rx array in (b) has equal ., but larger

L.

achieving equal or larger CRB, as the array in Fig. 1(b) with
L = 20 shows. Indeed, the spatial variances of the Rx arrays in
(a) and (b) are identical by virtue of the following equal sums
of squares: 52 +62+72 = 12+32+102. Although the CRBs of
arrays (a) and (b) are identical, their MLE performance in the
threshold region differs. This is related to the difference in the
beampatterns of the two arrays. Understanding exactly how
the array geometry affects MLE, especially for arrays with
equal spatial variance in (3), is an open question. Finally, we
contrast the clustered array in Fig. 1 (a) to the well-known
(c) ULA and (d) canonical MIMO (radar) array with a nested
structure. The ULA has a significantly higher CRB than the
other arrays due to its smaller spatial variance. In contrast, the
MIMO array, due to its larger Rx aperture (L = 20), has a
slightly lower CRB than the clustered array in (a). However,
the clustered array requires only half the physical aperture
to realize the same sum co-array. This is advantageous when
high identifiability and angular resolution yet small physical
array size is desirable, as in automotive radar [1]. The MLE of
the MIMO array suffers from poor performance due to spatial
aliasing, as its Rx array (a dilated ULA) lacks consecutive
elements, unlike the Clustered array. Although the issue can
be alleviated by restricting the search space of the MLE to the
vicinity of w based on the region illuminated upon Tx, it also
illustrates that upon coherent transmission, angle estimation
performance heavily depends on the Rx array geometry, as
opposed to the sum co-array which is key when transmitting
independent waveforms [21]. Judicious array design is thus
needed to ensure robust performance across various transmis-
sion strategies.

V. CONCLUSION

This paper investigated waveform-array geometry pairs min-
imizing the single-target CRB in active sensing. Focusing
on a family of optimal waveforms [12], [13] corresponding
to Tx beamforming in the target direction, we showed that
the optimal linear Rx array places sensors at the edges of
its aperture to maximize its spatial variance—the sums of
squares of its centered sensor positions. The Tx array geometry
can be chosen freely, provided its spatial variance does not
exceed that of the Rx array. We established that the Tx array
can be selected such that the sum co-array of the joint Tx-
Rx array is both contiguous and nonredundant. The derived
array geometry therefore has optimal properties both (in the
single and multi-target cases) when launching coherent and
independent waveforms, in contrast to the ULA, which has

CRB: -==(c)

—#k— (b) —+—(0)

--=- (@, (b

MLE: —e— (a)

—A— (d)

A A A A

5 0
SNR (dB)

Fig. 2: Single-target CRB and MLE performance of array
geometries in Fig. 1 using an optimal waveform following

3.
substantially higher CRB and lower identifiability, and the
(nonredundant nested) MIMO array, which requires a larger
physical aperture to achieve a comparable CRB and sum co-
array.
A. PROOF OF COROLLARY 1

We first show that if L = (Ny + 1)NV;/2 — 1 then (11) is
a solution of (9). This reduces to showing that (11) satisfies
(4) given D} = K, , which Theorem 1 established was the
optimal Rx array configuration. By (3), we have

*\ (Do _ N2 _ 1 (n2 2
Since D} = K§ ., where L = (N; + 1)N,/2 — 1, condition
X (D) > x(Df) can be rewritten using (8) and (12) as
tiVr Nxz
(=) + 5 (5 — 1)) > (N = 1N

Rearranging terms yields 2N2(NZ2 + 1) — 4 > 0, which holds
for any even N, > 2. Hence, (4) is satisfied, which implies
that the feasible set of (9) is nonempty, and per Theorem 1,
that (11) is an optimal solution to (9).

We now show that the sum co-array is contiguous and
nonredundant. Let «= N, /2 and 8= Nya= N;N, /2. Then

Ds. = CVZ/{Nt + (Z/[a U (L —Z/[a))
= (OéZ/[Nt +L{a) U (OLZ/[Nt - U, + L),
where ally, +Us, = {am +n | m € Un,;n € Us} = Us.
Furthermore, note that —/y; = Upn; — M + 1. Hence,
oy, —Uy+ L =0y, + Uy + L —a+1

Recalling that L = 4+ a — 1 then yields the desired result

Dy, ZUQU(UﬁJrﬂ) =Uzp = UN, N, - 0
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