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Abstract

3D object detection models that exploit both LiDAR and
camera sensor features are top performers in large-scale
autonomous driving benchmarks. A transformer is a pop-
ular network architecture used for this task, in which so-
called object queries act as candidate objects. Initializ-
ing these object queries based on current sensor inputs
leads to state-of-the-art performance. Existing methods rely
strongly on LiDAR data however, and do not fully exploit
image features. Besides, they introduce significant latency.

To overcome these limitations we propose EfficientQ3M,
an efficient, modular, and multimodal solution for object
query initialization for transformer-based 3D object detec-
tion models. Using both the LiDAR and camera modalities
as input, we use efficient grid sampling and a lightweight
detection head to predict a set of initial object query lo-
cations and corresponding query feature vectors. The pro-
posed initialization method is combined with a “modality-
balanced” transformer decoder where the queries can ac-
cess all sensor modalities throughout the decoder.

We achieve state-of-the-art performance for both
LiDAR-camera and LiDAR-only sensor setups on the com-
petitive nuScenes benchmark while being up to 15 times
more efficient than the closest related method. The proposed
initialization can be applied with any combination of sensor
modalities as input, demonstrating its modularity.

1. Introduction

3D object detection is a vital part of autonomous driv-
ing systems, and the resulting detections serve as a starting
point for downstream tasks such as tracking or trajectory
prediction. In automotive scenes, we try to predict multi-
class 3D bounding boxes for all road users and other im-
portant objects around the ego vehicle. Models that exploit
multimodal sensor data are currently top performers in pop-
ular benchmarks [2,42] for 3D object detection. The sen-
sor suite typically consists of a roof-mounted LiDAR and
a set of monocular cameras, the former providing a sparse
3D point cloud and the latter high-resolution dense images.
These two sensor types are complementary: LiDAR brings
accurate depth information and the cameras offer texture in-
formation and higher resolution for small, far-away objects.
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Figure 1. Different query initialization approaches in transformer-
based LiDAR-camera object detection. We show the initial object
query locations in grey/blue from the bird’s eye view perspective.
(a) is input-agnostic initialization as in FUTR3D [7] and (b) is the
proposed feature-informed initialization.

In recent years, the transformer [44] architecture has suc-
cessfully been applied to 2D [3,55,63] and 3D [1,7,33,39]
object detection tasks. Besides performance improvements,
their architecture provides a natural extension to the object
tracking task [32, 38], and enables end-to-end training be-
cause it does not require non-maximum suppression (NMS)
post-processing to remove duplicate predictions [3]. Trans-
formers rely on object queries to detect objects, where each
query is an object candidate that can detect at most one ob-
ject. A query is essentially a feature vector in a latent space
that encodes all information needed to predict a classified
bounding box. Usually, each query is accompanied by a ref-
erence or anchor point, with respect to which the bounding
box is predicted [30]. The initialization of the query fea-
ture vectors and their locations is an active research topic,
and we distinguish two approaches: learning a fixed distri-
bution for the object queries during training, or initializing
them based on the current sensor inputs. In Fig. 1, we show
a learned distribution of initial query locations from input-
agnostic method FUTR3D [7] (a), and input-dependent ini-
tialization using our proposed method (b).



Methods with learned object queries need many queries
to sufficiently cover the large grid. Even then, they still
may miss objects if many are located in a small area, be-
cause there will not be enough queries close by to cover the
objects. Input-dependent initialization solves this by plac-
ing the queries at locations where we expect to find objects
after predictions from a first-stage network. The concept of
input-dependent query initialization in itself is not novel: it
has been applied in TransFusion [1] for LiDAR-camera 3D
detection. This state-of-the-art method has also been used
as the query initialization approach for other models like
Deeplnteraction [53].

We however find two limitations with TransFusion’s ini-
tialization that lead us to propose a novel method. First,
TransFusion takes a sequential approach to sensor fusion,
where camera features are only used to refine a set of initial
LiDAR-only predictions (Fig. 2a). Although their query lo-
cations are predicted from LiDAR and camera features, the
corresponding object query feature vectors are initialized
only with LiDAR features and their model does therefore
not fully exploit the camera features. Second, TransFusion
uses an elaborate transformer network solely to fuse LiDAR
and camera features into a shared bird’s eye view (BEV)
space, from which the initial query locations are predicted.
This approach adds significant overhead to the model.

To overcome these drawbacks, we propose a new input-
aware initialization approach to initialize object queries
with both LiDAR and camera features (Fig. 2b) while in-
troducing only minimal computational overhead.
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Figure 2. Different approaches to sensor fusion within a trans-
former decoder. We call (a) sequential fusion, found in TransFu-
sion [ 1] and (b) modality-balanced fusion in our proposed method.

Our main contributions are as follows. We propose a new
input-dependent object query initialization strategy to ini-
tialize the query feature vectors with both LiDAR and cam-
era features, which is also able to work with any other com-
bination of sensor modalities. We combine the proposed
initialization with a modality-balanced transformer decoder
to achieve state-of-the-art performance on the nuScenes [2]
benchmark. The proposed initialization outperforms alter-
native solutions while being up to 15 times more efficient
than state-of-the-art method TransFusion [1].

2. Related Work

Our work relates to two main disciplines in 3D object
detection: LiDAR-only and LiDAR-camera detection. In
addition, we also elaborate specifically on object query ini-
tialization for transformer-based object detection models.

2.1. LiDAR-based 3D Detection

For unimodal models, LiDAR-based detectors top the
tables of popular benchmarks like nuScenes [2] and
Waymo [42]. Most of these detectors quantize the LiDAR
point cloud into a regular grid of 3D voxels [50, 60], 2D
pillars [20] or perspective range views [4, 12,43] using con-
volutional backbones. Others operate directly on the un-
ordered, irregular point cloud [5,24,33,37,54]. Many detec-
tors adopt anchor boxes in their detection heads [9, 20, 60],
where objects are predicted as offsets to these anchor boxes.
Alternatively, center-based detectors [56, 61] capture ob-
jects as points and predict the 3D bounding box from this
center point representation.

After the pioneering work of DETR [3] that applied
transformers to 2D detection, transformer models have also
found their way to 3D object detection. Some works
apply transformers only in the LiDAR backbone for im-
proved feature extraction from any one point cloud rep-
resentation [1 1,31, 35,40] or to fuse multiple representa-
tions [13,51]. This is challenging from a memory view-
point as the self-attention operation in the encoder grows
quadratically with the number of input tokens (e.g. points,
pillars or voxels), the number of which can be in the order
of millions for the outdoor scenes in autonomous driving.
Because of this, many works adopt only a transformer de-
coder, with a more traditional convolutional backbone for
feature extraction [1, 7, 38, 61]. Contrary to DETR [3],
where the model directly predicts the bounding box loca-
tion in global image coordinates, most transformers for 3D
detection predict boxes relative to an anchor point. Note
that these anchor points are different from anchor boxes dis-
cussed above: only the bounding box location is predicted
as an offset to the anchor, contrary to both the location and
box size. Anchor locations are either fixed and independent
of the current input [7], or computed using the current point
cloud by a sampling method [33, 38] or center heatmap ap-
proach [1,56,61].

2.2. LIDAR-Camera 3D Detection

LiDAR-camera sensor fusion is widely used in multi-
modal 3D detectors because of the complementary nature of
irregular, sparse 3D point clouds and dense, high-resolution,
textured 2D images. Only in recent years were such mod-
els able to outperform LiDAR-only detectors [45]. Early
works mainly adopt proposal-level fusion [6, 18], where
proposals are generated in both modalities individually and



then shared to the other(s) by projection. Such methods
are unable to exploit the full potential of the two modali-
ties because of the information bottleneck imposed by the
low-dimensional proposals. Feature-level approaches show
more potential. Following PointPainting [45], other works
similarly apply semantic segmentation networks on images
to augment point clouds with richer features [14, 46, 48].
These methods are better able to exploit the multimodal fea-
tures but are more sensitive to feature alignment issues from
suboptimal sensor calibration because of the hard associa-
tion between points and pixels. Finally, there are methods
that fuse both modalities into a shared BEV space, either
with a direct BEV projection (view transform) of the image
pixels [10,22,25,29,58,59], or by explicitly lifting image
pixels into 3D space using projected LiDAR depth informa-
tion [15,16,26,53,57].

Within transformer-based models we see two main ap-
proaches in LiDAR-camera fusion: those that deploy trans-
formers only as the fusion mechanism for multimodal fea-
tures [17,48,52,59] and those that use transformers for both
sensor fusion and the actual object detection [1,7,49,53].

2.3. Object Query Initialization

Since our work encompasses object query initialization
in transformer-based models, we present an overview of re-
lated methods in this section. A more general introduction
to transformer models can be found in Appendix A.

Many advances in query initialization originate from 2D
object detectors in the image domain. In DETR’s [3] ini-
tial implementation, the object queries are a small set of
M = 100 learned embeddings. Each query is an abstract
feature vector with length d = 256, thus we have the ob-
ject queries {q;}, € R9. Deformable DETR [63] intro-
duces deformable attention and adds positional information
to the object queries to improve convergence speed and de-
tection performance. The object queries {q;}, € R? are
now accompanied by their 2D locations {c;}4; € R2. In
either case, the object queries (and their locations, in de-
formable DETR) are learned and independent of the cur-
rent sensor inputs at test time. Efficient DETR [55] applies
input-dependent initialization with a region proposal net-
work (RPN) to place object queries in locations with a high
likelihood of finding objects.

In 3D object detection, the total area spanned by
the scene is very large relative to the size of objects.
FUTR3D [7] operates with learned object queries and ref-
erence points similar to deformable DETR [63], but uses
3D locations and increases the number of object queries
to M = 900 to get sufficient coverage of the large space.
Other works [33,38] use farthest point sampling [37] on the
input point cloud to evenly spread query locations based on
the current input. Here, 3D query locations {c;}, € R?
are sampled from the point cloud, and the corresponding

feature vectors {q; }£, € R? are d-dimensional positional
embeddings computed from the respective locations. Fi-
nally, there are methods [I, 53, 61] that initialize object
queries from a predicted BEV center heatmap. In these
works, the 2D BEV query locations {c;}}/, € R? are taken
as the top-M peaks in a predicted heatmap, and the feature
vectors {q; }£, € R? are initialized with LIDAR BEYV fea-
tures sampled at the locations. Notably, none of these meth-
ods initialize object queries q with camera features.

3. Methodology

In this work, we propose Efficient3QM, a new mul-
timodal method for input-dependent object query initial-
ization where queries are initialized with both LiDAR
and camera features sampled at predicted 3D locations.
The proposed initialization method is combined with a
modality-balanced transformer decoder (Fig. 2b) following
FUTR3D [7]. Our implementation is explained below, and
an overview of our proposed model is presented in Fig. 3.

3.1. Multimodal Input-Dependent Initialization

In essence, we adopt a lightweight network to predict
bounding boxes from a large set of Mgepse proposal ob-
ject queries, and base the initial object queries for the trans-
former decoder on the top-M proposals. We choose M e se
to be much larger than M. In this way, we have a sufficient
number of proposals to not miss any objects and still keep
the number of queries M in the decoder manageable. The
proposed method is explained below in more detail.

We create a dense grid of query proposal locations C €
RX*Y*1 spread out uniformly over the detection range in
the (x,y) direction. Each 2D location in grid C is assigned
the same fixed height to get 3D query locations. We now
have a set of Myense = X - Y initial query proposal lo-
cations, which are not dependent on the current sensor in-
puts. For all My, se proposals, we sample sensor features
at instance level from the given sensor feature maps after
computing the respective view projections (Fig. 3 D) using
available intrinsic and extrinsic sensor parameters. The re-
sult is the corresponding query feature vectors. Queries are
then made location-aware by adding a positional embed-
ding based on their location using sine encoding following
DETR [3]. The query feature vectors now contain the in-
formation needed to predict a 3D bounding box relative to
their respective locations. For all M., se query proposals
we predict a classified bounding box, using the same re-
gression head ®,.., and classification head ®.;; found later
in the transformer decoder layers. From all proposal bound-
ing boxes, we select the top-M with the highest confidence
scores, and let the queries from which they are predicted be
our set of initial object queries.

For each query q; out of the M selected queries, the
location c; is updated with the predicted 3D offset Ax;
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Figure 3. Overview of EfficientQ3M, with the main contribution framed in red. We start with a fixed grid C of Mgense query location
proposals. We sample LiDAR and camera features at instance level for each proposal (D, and predict a bounding box relative to the grid
location. The 3D xyz centers of the top-M bounding boxes with the highest confidence scores are selected as the set of initial object query
locations. We re-sample LiDAR and camera features for these M object queries ) and pass them to the modality-balanced decoder, where
the queries have access to both sensor modalities in each layer of the decoder Q). A shared regression and classification head is used to
produce the final detections from the object queries at the output of the decoder.

from the regression head like ¢; = ¢; + Ax;. We finally
generate new query feature vectors from the updated loca-
tions, where the query feature vector q; is generated by re-
sampling features at the new location ¢} (Fig. 3 @). This
results in the object query feature vectors {q;}}, € R?
and their 3D locations {c;}, € R3, which we pass to the
decoder. In the decoder, the object queries interact through
self-attention, and have access to the sensor features from
all modalities in cross-attention (Fig. 3 Q).

Because we predict a 3D offset Ax; with ®,..,, we deem
it not necessary to initialize a 3D dense grid C € RX*Y*Z
with multiple heights as proposals.

Modular and Multimodal Our initialization method is
modular because it can work with any sensor combina-
tion, like camera-only, camera-RADAR, LiDAR-only and
LiDAR-camera, similar to the modality-balanced decoder
in FUTR3D [7]. The initial grid C with the proposal loca-
tions is identical in each case, but the modalities of features
sampled at the locations will differ.

Sensor features are sampled from the corresponding fea-
ture map around the projected query location. If there are
multiple sensor modalities available, we concatenate the
sampled features from both and fuse them as in Eq. (1) for
LiDAR-camera fusion. Here, SF}, are the sampled Li-
DAR features, S]-"Ciam the camera features, ®g,s the fusion
multi-layer perceptron (MLP) and SF. is the fused feature
vector for query q;. When there is only one sensor modality
available (e.g. LiDAR-only), @, is simply a linear projec-

tion since the dimension of the sampled features is already
equal to that of the object query feature vector q;.

S"rfzus = (I)fUS (S‘Flzld 2] S‘ngm) (1)

In contrast to TransFusion [ 1], where an elaborate trans-
former network is used to create a shared LiDAR-camera
heatmap to initialize the object queries, our implementation
is lightweight and straightforward. On top of that, it is not
specific to any sensor suite and may be used with a variety
of sensors as input.

Model Details The implementation of the backbones,
transformer decoder, and final detection head —i.e. all
components outside of the red frame in Fig. 3— follows
FUTR3D [7]. Details on the complete model, outside of the
object query initialization, can be found in Appendix B. Our
initialization method may be applied to other decoder im-
plementations with any combination of sensor modalities,
as long as there exist transformations from global 3D coor-
dinates to the respective sensor feature map coordinates.

3.2. Losses

We supervise the model in three locations, starting with
the object query initialization. As explained in Sec. 3.1,
we predict a large set of M e, se bounding boxes and ini-
tialize our object queries from the top-A/ with the high-
est confidence score. To supervise the Mg.,se bounding
boxes, we perform bipartite matching between the ground
truth objects and all M.,,se predicted boxes to get a set of



one-to-one matches. The Hungarian algorithm [19] is used
to produce these matches. The associated matching cost is
a weighted sum of classification and regression costs:

Cmatch = Achls(pap) + )‘QLT‘Gg(bv i)) (2)

where (p, b) are the predicted class confidence scores and
bounding box parameters and (p, l;) the corresponding su-
pervisory signals, L is the focal loss [28] and L,..4 the L1
regression loss, and Aq, A2 are the corresponding weights.
From the set of matched predictions, we compute the clas-
sification loss (focal loss) and regression loss (L1 loss).

Additionally, we supervise all M ¢, s predictions with a
dense heatmap to improve convergence, because the num-
ber of matched predictions is much smaller than the num-
ber of proposals M gense. For this, we take the class confi-
dence scores from all predictions as a class-specific dense
heatmap S € RX*Y <K "which is supervised by a ground
truth heatmap S € R¥*Y %X with the penalty reduced fo-
cal loss. Here, X x Y defines the spatial dimension of the
heatmap, which matches our dense grid of query locations
C € RX*Y We take the K confidence scores for each pre-
diction from grid C to obtain heatmap &. The ground truth
heatmap is computed following CenterPoint [56]. We find
that without this dense loss term, our initialization method
does not converge.

Next, the predicted bounding boxes at the output of each
transformer decoder layer are supervised as in FUTR3D [7].
The classification and regression loss are computed after
each decoder layer. Finally, because sparse supervision can
hinder learning in transformer-based models [64], we fol-
low FUTR3D and implement an auxiliary detection head
parallel to the transformer decoder for improved supervi-
sion of the LiDAR backbone. This CenterPoint [56] head is
only used to help the LiDAR backbone learn better features
during training, and is removed at test time.

4. Experiments

In this section we elaborate on the chosen dataset, per-
formance metrics, and hyperparameter settings before pre-
senting the main results and ablation studies.

4.1. Dataset and Metrics

We use nuScenes [2] to evaluate our model. nuScenes
is a large-scale autonomous driving dataset with 3D object
annotations. Its sensor suite consists of a single 360-degree
32-beam LiDAR and 6 cameras outputting multi-view im-
ages, each with a resolution of 1600 x 900. RADAR is also
available, but not used in this work. The dataset is a collec-
tion of 1000 scenes, each 20 seconds long and annotated at
2Hz. Objects are annotated with 3D bounding boxes with
a location (z,y, 2), size (w, h, ), yaw rotation (¢), veloc-
ity (vz, vy) and a class label out of & = 10 object classes.

Ground truth annotations of the train and validation set are
publicly available. To evaluate on the test set, predictions
have to be submitted to a test server.

Performance is measured with the popular mean average
precision (mAP) metric and the custom nuScenes detection
score (NDS). nuScenes uses the BEV center distance be-
tween a prediction and ground truth object as the threshold
for matching, instead of IoU. The AP is calculated for each
distance threshold for all ten classes, and then averaged to
obtain the mAP score. The NDS additionally measures the
quality of true positives. It is a weighted average of mAP
and other metrics that measure translation, scale, orienta-
tion, velocity and box attribute errors of true positives.

4.2. Implementation Details

Our implementation is written using PyTorch [36] in the
open-source MMDetection3D [34] framework. The code is
built on top of the public release of FUTR3D [7], and we
follow their model settings for all hyperparameters. The
most important model settings are listed below. Other im-
plementation details like the training schedule and the aug-
mentation strategy are presented in Appendix C.1.

Model Settings The LiDAR backbone is a VoxelNet [50,
] with a voxel size of (0.075m,0.075m,0.2m). The
image backbone is a VOVNET [21] and is pretrained on
nuScenes [2] using the camera-only version of FUTR3D.
The detection range is [—54 m, 54 m| for the X, Y grid and
[-5m, 3 m] for the Z axis. The number of levels in the
feature pyramid networks of the LiDAR and camera back-
bones is m = 4. The channel dimension of the sensor fea-
ture maps and the object queries is d = 256. The number
of sampling offsets in the deformable attention is V' = 4.
Like in nuScenes, the number of camera images is N = 6
and the number of object classes is K = 10. The number
of object query proposals is Mgense = 3600, spread out
uniformly over the X, Y detection range defined above. We
report results for both M = 200 and M = 900, with M the
number of object queries that are input to the decoder.

4.3. Main Results

The detection performance is evaluated on nuScenes and
the results are presented in Tab. 1. The proposed method
outperforms the FUTR3D [7] baseline for both LIDAR-only
detection and LiDAR-camera fusion, and achieves state-of-
the-art performance on the nuScenes val set.

Concerning the test set, we differentiate between two
different scores obtained by the FUTR3D baseline: those
stated in their paper are listed first, while those obtainable
with their publicly available model weights are marked with
an asterisk. This discrepancy is likely caused by a differ-
ence in training strategy. FUTR3D’s top results are obtained
after training on the nuScenes training and validation set,



Method Modality Backbone validation test
Camera LiDAR mAP1T NDS1T mAP?T NDS 1

CenterPoint [56] L - VoxelNet 59.6 66.8 60.3 67.3
TransFusion-L [ 1] L - VoxelNet 65.1 69.9 65.5 70.2
FUTR3D [7] L - VoxelNet 63.7 69.0 65.3/64.6% 69.9/69.5*
EfficientQ3M (ours) L - VoxelNet 65.3 69.6 65.4 69.7
PointAugmenting [40] L+C DLA34  VoxelNet - - 66.8 71.0
TransFusion [ 1] L+C DLA34  VoxelNet 67.3 70.9 68.9 71.6
Deeplnteraction [53] L+C R50 VoxelNet 69.9 72.6 70.8 73.4
FUTR3D [7] L+C VoVNet  VoxelNet 70.3 73.1 69.4/68.0% 72.1/71.1*
EfficientQ3M (ours) L+C VoVNet  VoxelNet 71.2 73.5 69.2 71.7

Table 1. Comparison to the state of the art on the nuScenes validation and test set. The best and second best scores for each sensor modality
are in red and blue respectively. All LiDAR backbones use the same voxel size of (0.075, 0.075, 0.2) meters. We highlight the FUTR3D
baseline and the proposed method in gray. None of the listed methods use test-time augmentation or model ensemble.
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Figure 4. Detection performance over the number of decoder lay-
ers on the nuScenes val set. The top figure compares LiDAR-
only versions of our proposed method with 200 queries to the
FUTR3D [7] baseline with both 900 and 200 queries. The bottom
shows the same comparison but then for LIDAR-camera fusion.

while those marked with an asterisk are not. Our proposed
method is trained only on the training set, and is able to
outperform the corresponding® FUTR3D scores.

We find that the proposed input-dependent object query
initialization not only produces superior detection scores,
but also enables the use of fewer object queries and decoder
layers. In Fig. 4, we compare our model to FUTR3D with a
varying number of decoder layers. Where FUTR3D needs
multiple passes through the decoder to achieve high per-
formance, the input-dependent initialization already shows
good performance for a single-layer model. The proposed
method with 200 object queries outperforms the baseline
with 900 queries for any number of decoder layers. For
LiDAR-only detection (Fig. 4, top), the improvement on the
baseline is +1.0 mAP for 6 decoder layers and increases

to +6.5 mAP for 1 decoder layer. For LiDAR-camera fu-
sion we see similar results (Fig. 4, bottom). Improve-
ments on FUTR3D are 4+-0.5 mAP for the 6-layer model and
+9.4 mAP for the single-layer model.

Init. Method Mod. , mAP 1 Lat. (ms) | # M)
Learned distr. L 63.7 208.6 7.29
w/ TransFusion | L 64.5 w08y  212.7 (2.0%) 7.89
w/ ours L 64.7 (+1.0) 209.5 (+0.4%) 7.51

" Learned distr. | L+C | 70.3 6454 932
w/ TransFusion L+C 70.3 (+0.0) 751.1 (+16.4%) 11.79
w/ ours L+C | 70.8 405 652.3 +1.1%  9.80

Table 2. Comparisson of different query initialization methods
paired with the modality-balanced decoder on the nuScenes val
set. We take FUTR3D’s [7] learned distribution with 900 queries
as the baseline and compare it to TransFusion [ 1] and our proposed
method with 200 queries. The latency is the average duration of
one complete forward pass, measured on a V100 GPU. # is the
number of parameters in millions, excluding the backbones.

In Tab. 2 we compare the proposed method to the initial-
ization of the closest related work, TransFusion’s [1], with
FUTR3D’s [7] input-agnostic approach included for refer-
ence. Model settings such as the backbones, transformer de-
coder, and detection head are equal, only the object query
initialization method is varied. For TransFusion, we im-
plement their 2D query initialization and naively append a
fixed z coordinate to make it 3D, to be able to initialize the
query feature vectors with both LIDAR and camera features.

We find that both strategies achieve similar improve-
ments on the baseline in the LiDAR-only setting, but that
the proposed method is superior for LiDAR-camera fusion.
We contribute this to the benefit of directly predicting a
3D query location, with which the relevant image features
can be sampled already at initialization. Additionally, we
find that the proposed method is lightweight and efficient
compared to TransFusion. Especially for LIDAR-camera
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Figure 5. Two examples of output predictions with the proposed model on the nuScenes val set. We highlight difficult true positives in the
top sample and false positives in the bottom sample. The LiDAR BEV shows ground truth objects in dark green. Best viewed zoomed in.

fusion, our method remains efficient with only +6.9 ms of
added latency while TransFusion’s introduces +105.7 ms of
overhead compared to a model with learned queries (i.e. a
15x difference, highlighted in gray). This is explained by
the elaborate transformer network used in their query ini-
tialization, the size of which also shows when looking at
the number of model parameters.

Qualitative Analysis Fig. 5 shows two examples of de-
tections made with the proposed method. The top sample
highlights three successful detections in a difficult setting
(1.A-1.C), i.e. with rain and strong occlusions. The bottom
sample includes mistakes, with a duplicate detection (2.A),
and two false positives where traffic signs are detected as
pedestrians (2.B and 2.C). The false positive of 2.A is a rare
example of a duplicate prediction that would have been pre-
vented with NMS post-processing. We provide additional
qualitative analysis in Appendix D.1.

The benefits of the proposed method are summarized
as follows. Our proposed input-dependent query ini-
tialization combined with a modality-balanced decoder
achieves strong performance on the nuScenes benchmark,
outperforming related works like TransFusion [!] and
FUTR3D [7]. The initialization method adds minimal over-

head compared to employing a set of learned object queries,
as shown in Tab. 2. Because our method places the initial
query locations already close to the objects, we are able to
decrease the number of queries and decoder layers and still
achieve better performance than FUTR3D.

4.4. Ablation Studies

We evaluate our design choices by performing ablation
studies on the nuScenes validation set. First, we consider
the initialization of the query location and the query fea-
ture vector separately, before conducting experiments on the
number of object queries. Additional experiments can be
found in Appendix C.2 and C.3.

Query Initialization We test if it suffices to initialize the
query feature vectors with positional embeddings based on
their location, or if we instead need to initialize them with
sensor features sampled at their location. For this, we train
model variants on a reduced schedule for 6 epochs on half
of the training set with M/ = 200 object queries, see Tab. 3.

We find that the best performance is achieved with the
proposed initialization (w/ refs + feats) with 6 decoder lay-
ers. This brings a meaningful improvement of +3.4 mAP
compared to the input-agnostic initialization. When we de-



R. F #L mAP 1 NDS 1
Learned distr. 6 6094+02 67.1+0.1
w/ refs v 6 6434+0.1 69.1+0.1
w/refs +feats | vv Vv 6 643 +0.1 69.0+00
" Leamned distr. | 1 | 482+£02 568+02
w/ refs v 1 61.84+02 67.0+0.2
w/ refs + feats | vV 1 62.2+0.1 673+0.1

Table 3. Ablation on object query initialization components on the
nuScenes val set, for LIDAR-only. We run the training for each
experiment three times with different random seeds and report the
mean and standard deviation. #L. is the number of decoder layers.
R. is whether the query locations are predicted with the proposed
method, or are a learned distribution. F. is whether the query vec-
tors are initialized with LiDAR features at their location, or with a
positional embedding based on their location. Without either, we
have learned input-agnostic object queries like in FUTR3D [7].

crease the number of decoder layers to 1, we see the im-
provement on the baseline increase. The baseline perfor-
mance drops heavily because it needs multiple layers to it-
eratively update the query location if it is not located close
to an object at initialization. Notably, our approach only
shows a relatively small drop of 2.1 mAP. With only a single
decoder layer, we now also see the benefit of initializing the
query vectors with sensor features. This results in a small
performance increase compared to using the positional em-
bedding, for the single-layer model. Consequently, our pro-
posed initialization method uses sensor features as the query
feature vectors.

Number of Queries One key hyperparameter of
transformer-based models in object detection is the number
of object queries M. FUTR3D [7] uses M = 900 to get
sufficient coverage of the large 3D space. With our input-
dependent query initialization, we are able to use fewer
queries and still have them located close to the objects in
the scene. We compare our method with FUTR3D for 200
and 900 queries, where we fine-tune FUTR3D’s pretrained
model to learn a new distribution with M = 200. The
results are shown in Tab. 4.

Mod. #200 #900

FUTR3D L 61.3 (24 63.7
FUTR3D L+C 65.8 (.45 70.3
EfficientQ3M (ours) L

EfficientQ3M (ours) L+C

Table 4. Detection performance (mAP 1) on the nuScenes val set
for the number of object queries M = 200 and 900. The proposed
method with 200 queries already outperforms the FUTR3D [7]
baseline with 900 queries for both sensor setups.

We find that the proposed method can still achieve strong
performance even with many fewer queries, thanks to the
input-dependent initialization. Specifically, our method
with 200 queries outperforms FUTR3D with 900 queries.

We still see a marginal benefit of using 900 queries with
the proposed input-dependent initialization method, even
though 200 queries are enough to cover the maximum num-
ber of objects in nuScenes. We hypothesize this to be
caused by the larger self-attention operation in the decoder
which allows for querying more information, and by the ad-
ditional queries compensating for imperfect initialization.

5. Discussion and Conclusion

We introduced EfficientQ3M, a novel and efficient ap-
proach for initializing object queries in transformer-based
3D object detection models from any sensor modality. Ex-
isting methods primarily rely on a LiDAR-only first stage,
which limited the model’s recall to that of the LiDAR-
only stage. EfficientQ3M overcomes this limitation by ini-
tializing object queries with features from any combina-
tion of sensor modalities. The proposed method, when
combined with a modality-balanced transformer decoder,
achieves state-of-the-art performance on both LiDAR-only
and LiDAR-camera sensor setups in the nuScenes bench-
mark. Additionally, EfficientQ3M demonstrates significant
efficiency gains, being up to 15 times more efficient than the
closest related method. Furthermore, the modularity of the
proposed method allows its application to other transformer
decoders as well.

One point of discussion is the general benefit of input-
dependent initialization. It is expected that such initializa-
tion enables a reduction of the number of object queries and
the number of transformer decoder layers while achieving
similar performance to a model with input-agnostic object
queries (i.e. improving efficiency). We however find that
there is also a performance improvement, even though the
input-agnostic queries in FUTR3D [7] should be able to de-
tect the same objects. We hypothesize that this advantage is
caused by densely populated areas. The learned queries in
FUTR3D cover 13 m? on average. If there are many objects
in a small area, there will not be enough queries around to
detect all of them. The proposed method is less sensitive to
this problem.

For future work, it would be interesting to extend the
scope of the experiments to obtain results for more sensor
setups such as RADAR-camera and camera-only. Addition-
ally, the proposed initialization can be applied to different
decoder designs like Deeplnteraction [53]. Finally, an in-
teresting direction for research would be to investigate the
use of a soft-association sensor fusion mechanism for the
query feature vectors. The current implementation concate-
nates the sampled features and fuses them with an MLP, but
a form of attention may also be a good option.
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Supplementary Material
The supplementary material is organized as follows:

* Appendix A introduces the concept of transformer
models and their application to object detection.

* Appendix B describes the sensor backbones and ex-
plains the modality-balanced decoder.

» Appendix C contains details on the training strategy, as
well as additional ablation studies. It also includes an
experiment on evaluation with grouped object classes
to provide insight into how image features improve de-
tection scores compared to the LiDAR-only setting.

* Appendix D finally presents additional results in the
form of the distribution for multiple training runs, as
well as class-specific detection scores.

A. Background on Transformers

Transformer [44] models consist of an encoder and a de-
coder, both of which contain attention mechanisms. Atten-
tion lets the model selectively focus on relevant data. We
differentiate between self-attention and cross-attention. In
self-attention, the tokens of an input sequence can interact
with each other. We denote an input sequence x = {x;}¥;
of N tokens, where each token is a feature vector. In object
detection, this input sequence would for example represent
the NV pixels of an image or the N points of a point cloud.
Since each token can interact with any other token, there ex-
ists a quadratic memory relation to N. Attention works as
follows. From each token x;, a query q;, key k; and value
v; vector are computed. To obtain the attention weight be-
tween two tokens x, and x; with a,b € {1,..., N} we
take the dot product of their respective query and key vec-
tors: qq - k. Repeating this for q, with all other keys in
k gives us N attention weights from token x, to all tokens
in x. After normalization and a softmax operation, these
weights are used to query information from all value vec-
tors in v onto q,, completing the attention operation. This
process is repeated for each query q;. The operation is typ-
ically computed efficiently with the query, key, and value
vectors stacked in matrix form as defined in 3, where d is
the dimensionality of the query, key, and value vectors.

.
Attention (Q, K, V) = softmax <QK> vV 3

Vd

In cross-attention, the tokens of two sequences x.\ ,,
and yjj‘il can interact with each other, where N and M do
not have to be equal. The attention formulation is equal to
that of self-attention in 3, but the queries q are now com-
puted from the second sequence y, whereas the keys k and
values v are from x. Cross-attention enables the tokens
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in y to query information from sequence x, by selectively
spreading attention over it.

As for the complete transformer model, self-attention is
applied to sequence x in the encoder. In the decoder, both
self- and cross-attention are used: self-attention between
the tokens of y, and cross-attention each query q; origi-
nating from y, and keys k and values v from the encoded
sequence x. Most implementations stack the encoder and
decoder blocks multiple times, where a typical number of
layers is L = 6. As stated in Sec. 2.1, most models for 3D
object detection in automotive scenes omit the encoder due
to the size of the self-attention operation, and replace it with
a convolutional backbone instead.

What exactly is represented in the decoder input y de-
pends on the task at hand. In object detection, the decoder
is used as either a detection- or fusion mechanism. In the
former case, each token in y represents a candidate ob-
ject [1,7,22,33,38,61], where the number of tokens M
is equal to the maximum number of objects that can be
detected, typically in the order of hundreds. The tokens
in x are sensor features, e.g. camera or LiDAR features.
Each object query q; interacts with all other queries in the
decoder’s self-attention, and with the input sequence x in
cross-attention to query information from the sensor fea-
tures. The object queries are finally passed to a separate
regression and classification head to generate a bounding
box from each query. In case of sensor feature fusion, both
x and y are sensor features. Cross-attention is then used
as a soft association fusion mechanism to let the tokens
in y query information from x. Examples include fusing
LiDAR-camera features [17,23, 59], LIDAR-RADAR fea-
tures [52] and multiple LiDAR representations [ 13, 48].

In this work, we consider transformer implementations
that use the decoder as the detection mechanism for 3D ob-
ject detection in automotive scenes. One benefit of using
a transformer decoder for object detection is the ability to
do end-to-end training, because NMS post-processing can
be left out since this task is carried out in the self-attention
operation between object queries in the decoder [3]. Ad-
ditionally, object queries naturally extend to tracking tasks,
because their high-dimensional representations serve as bet-
ter candidate objects for the following frame than the low-
dimensional bounding boxes typically used [38].

B. Model Details
B.1. Backbones

Following FUTR3D [7], the LiDAR backbone is a Vox-
elNet [50, 60] followed by a feature pyramid network
(FPN) [27] to obtain multi-scale BEV feature maps Fj; €
RE*H;xW; with C the channel dimension, and H i x W
the size of the j-th feature map for all j € {1,2,...,m}
with m the number of levels in the FPN. The camera back-



bone is a VoVNet [21], again followed by an FPN [27].
With NV surrounding cameras as input, the backbone out-
puts multi-scale features for each image, resulting in Fhi e
REXHixW; for all k € {1,2,...,N} and for all j €
{1,2,...,m}.

B.2. Modality-Balanced Decoder

Following FUTR3D [7] we employ a modality-balanced
decoder. In contrast to TransFusion [ 1], the object queries
can access features from all sensor modalities in every de-
coder layer. The conceptual difference between these ap-
proaches can be seen in Fig. 2. In the decoder, the query’s
3D location is projected onto the corresponding camera im-
age(s) and the BEV LiDAR features to allow querying in-
formation from both modalities, after which the selected
features are fused and used to update the query.

We now briefly explain the essence of this decoder. Our
implementation follows that of FUTR3D [7] unless stated
otherwise, and we refer the reader to their work for more
details.

Decoder Overview The decoder follows a typical im-
plementation of transformers for object detection. Object
queries interact with each other in multi-head self-attention,
and with sensor features in multi-head cross-attention. Mul-
tiple of these decoder layers are stacked, where the current
layeris I € {1,2,...,L}. Each decoder layer is accompa-
nied by a regression- and classification head @lreg and @,
which are shared among the object queries. In the [-th layer,
the object queries are defined as {q'}}%, € R, and their
locations as {c!}}, € R3. For each object query q', the
regression head @’ outputs the offset Ax} € R? from the
query’s location to the predicted object’s center coordinate,
together with other bounding box regression targets. The
classification head @ils predicts a categorical label ..

The predicted offset Ax! is used to iteratively update the
query’s location before the next decoder layer as shown in 4,
following other works [39,47,63].

ot

H=cl 4+ Ax! 4)
Cross-Attention The LiDAR-camera fusion is done at
instance-level for each object query individually in the
cross-attention of the decoder. LiDAR features are sampled
using deformable attention [63]. From query q;, we pre-
dict V' x m sampling offsets and corresponding attention
weights to sample V' LiDAR features around the query’s
BEV location P(c;), for all m multi-scale BEV feature
maps. Here, P(c;) is the projection of the 3D query lo-
cation c; onto the 2D BEV grid. The result is a LiDAR
feature vector SF,, € R for query q;.

Camera features are sampled around the query’s pro-
jected image location after computing a projection 7T, (c;)
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forall k € {1,2,..., N}, with N the number of cameras.
Features are sampled using bilinear sampling between the
features in Fd, corresponding to 7y, (c;), for the j-th fea-
ture map of the k-th image. Attention weights are predicted
from the query once again to perform a weighted sum over
all sampled features, resulting in a single camera feature
vector SF: € R for query q;.

The sampled LiDAR and camera features for each query
are then concatenated and fused with an MLP &y, asin 5,

with SFi, € RY, the same channel dimension as query g;.

S]:fius = By (S]:lzld 2] S]:ciam) (5)
Before updating the query, the fused features are made
location aware by adding a positional embedding PE(c;)
based on the location of the query. At last, the query is
updated as q; = q; + Aq;, where Aq; = SF.. + PE(c;).
C. Experiments
C.1. Implementation Details

Data Augmentation nuScenes is annotated at 2 Hz but
LiDAR data is captured at 20 Hz, so we follow the com-
mon practise of combining the annotated sample with the
previous 9 sweeps to get a denser point cloud. We addition-
ally adopt a common augmentation pipeline for the LIDAR
data, where we use random rotation with r € [r/4,7/4],
random scaling with s € [0.9,1.1], random xyz transla-
tion with a standard deviation 0.5, and random horizontal
and vertical flipping. We use CBGS [62] class-balanced
sampling, which repeats samples that contain uncommon
classes to improve the class balance in nuScenes. Finally,
we use ground truth copy-paste augmentation [50], and dis-
able it for the final epochs to match the real data distribution
again [46]. We do not adopt any augmentation at test time.

Training Schedule We first train the LiDAR branch of
our model, using a pretrained LiDAR backbone. The sched-
ule is set to 6 epochs, with GT copy-paste augmentation
disabled in the final 3 epochs. From there, the pre-trained
image backbone is added, and the LiDAR-camera model is
trained for another 4 epochs with both backbones frozen.
Such a sequential approach has shown to yield better per-
formance than joint training from the start, because it al-
lows for better augmentation in the LiDAR-only stage of
training [1,7]. We use an initial learning rate of 1.0 x 10~*
for both LiDAR-only and LiDAR-camera training, with a
cyclic learning rate policy [41]. We train the proposed
model multiple times and report the mean and standard de-
viation of the resulting scores in Appendix D.2.

C.2. Ablation

LiDAR-Camera Fusion We ablate on the LiDAR-
camera fusion components, specifically on the locations in



the model where we include image features. We can use
image features in the proposed initialization to find better
query locations, and in the decoder to let the queries sam-
ple image features based on their location. The results are
shown in Tab. 5, where use the LiDAR-only version of the
proposed method as the baseline.

mAP 1 NDS 1
_ EfficientQ3V-L | 643+0.1 _69.00.0
w/ cam init 64.4+0.1 69.1£0.1
w/ cam decoder | 69.6 £0.0 72.4+0.1
EfficientQ3M 70.1+0.1 72.6+0.1

Table 5. Ablation on the fusion components on the nuScenes val
set. w/ cam init is whether we use image features to predict ini-
tial query locations. /w cam decoder denotes if image features
are available to the queries in the decoder’s cross-attention. The
proposed model EfficientQ3M has both.

Using both LiDAR and camera features to find initial
query locations (w/ cam init) on an otherwise LiDAR-only
model does not bring any significant gain. Even if the ini-
tialization produces better queries, the LIDAR-only decoder
is not able to turn these into better predictions. Allowing
the queries to access camera features in the decoder’s cross-
attention (denoted as w/ cam decoder) brings the major-
ity of the performance improvement on the LiDAR-only
model. Using camera features in both the initialization of
query locations and the decoder’s cross-attention results in
the best performance.

mAP 1
[Om,15m] [15m,30m] [30m, +inf]
EfficientQ3M-L | 78.8 67.6 45.1
EfﬁcientQ3M 82.0 (+3.2) 74.1 (+6.5) 55.5 (+10.4)

Table 6. Performance breakdown for different object distances to
the ego vehicle on the nuScenes val set.

Next, to show where the camera modality adds detection
performance, we compare the LiDAR-only version of the
proposed method to the LiDAR-camera version by dividing
detections into different groups based on distance thresh-
olds to the ego vehicle. In Tab. 6, we find that image fea-
tures improve detections the most on far-away objects when
compared to the LIDAR-only model. This can be explained
by the fact that such objects are typically more difficult to
detect from LiDAR data alone, due to the limited density of
point clouds at longer distances.

Ground Truth Query Initialization To gain insight into
the upper performance limits of input-dependent object
query initialization, we initialize object queries based on
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Figure 6. Example of predicted query locations with the proposed
method, seen from the bird’s eye view. The opacity of the blue
query locations indicates the confidence of the respective predic-
tion. Ground truth object locations are overlayed in orange.

the locations of ground truth objects. The object query loca-
tions are taken as the top-M peaks in ground truth heatmap
S € RX*Y*K ‘introduced in Sec. 3.2. The corresponding
object query feature vectors are then initialized with fea-
tures at these locations. Next to our proposed method, we
also conduct the experiment for TransFusion [ 1] using the
public source code and model weights. Neither model is
trained specifically to receive these “perfect” object queries.

Mod. mAPT GTmAPT
TransFusion L 65.1 69.2 (441
_ TransFusion | I+C | 673 = 699 26
EfficientQ3M | L 64.7 68.7 (+4.0)
EfficientQ3M | L+C 70.8 70.5 (0.3

Table 7. Detection performance on the nuScenes val set for various
models with input-dependent object query initialization. We also
initialize the object queries using ground truth annotations, and
denote the resulting scores as GT mAP. We use the number of
queries M = 200 for all models.

As seen in Tab. 7, we find that, in general, the ground
truth (GT) initialization boosts performance significantly.
Only the LiDAR-camera version of the proposed method
does not improve with this initialization. It may be that at
some point, the decoder cannot produce better detections
from GT object queries because the sensor features are not
sufficient to do so. As an example of the query distribution
generated by the proposed method, we see in Fig. 6 that the
predicted locations already cover the objects well.

We also find that the performance gap between LiDAR-
only models and LiDAR-camera models shrinks when ap-
plying ground truth initialization. One explanation is that
since the LiDAR-camera mAP scores are already higher to
begin with, it is more difficult to improve upon those.



Method LiDAR-only LiDAR-camera Extra # TP w/ Camera

# TP #TPg  # Miscl. # TP #TPg # Miscl. | Normal Grouped
TransFusion [1] 114799 115847 1048 | 115132 116134 1002 333 287
EfficientQ3M (ours) | 116819 117456 637 | 118103 118601 498 1284 1145

Table 8. Grouped evaluation experiment on the nuScenes val set. # TP is the total number of true positives over all classes, # TPg is
the total number of true positives when evaluating with grouped classes, and # Miscl. is the difference between the two, representing
the number of misclassified objects in normal evaluation. When comparing the number of true positives between the LIDAR-only setting
and LiDAR-camera setting, we additionally find the number of newly-found objects from having the camera modality available, both for
normal evaluation and evaluation with grouped classes. The contributing components of the latter metric are highlighted for each model.

C.3. Grouped Evaluation for Sensor Fusion

To provide context to our hypothesis that a sequential
fusion approach like in TransFusion [ 1] does not make opti-
mal use of image features, we design an experiment where
we group certain object classes during evaluation. The phi-
losophy behind the experiment is as follows. There are three
ways in which adding the camera modality can improve de-
tection scores compared to a LIDAR-only model:

1. Increase the confidence scores of true positives to
move them ‘higher’ in the PR-curve relative to false
positives, thus increasing the gap between them.

2. Correctly classity a previously misclassified prediction
to turn a false positive into a true positive.

3. Create new true positives by finding new objects.

Our expectation is that TransFusion [ ] mainly improves
from the first and second point, because it only samples
image features that fall within the projected bounding box
of existing LiDAR-only predictions. The recall of the full
model is thus limited to that of the LIiDAR-only predictions.
We expect that the modality-balanced decoder with the pro-
posed initialization method should be able to exploit camera
features better, and would see improvements from all three
points above because of it.

In this experiment, we measure how many new objects
(new true positives) are found for a given model using
LiDAR-camera fusion, relative to the LiDAR-only version
of the same model. To remove the effect of better classi-
fication (point 2), we group object classes to reduce the
number of classes in evaluation from 10 to 5. We group the

[car, truck, construction_vehicle, Dbus,
trailer] classes into a single vehicle class, and
similarly group the [bicycle, motorcycle] classes
into a single bike class. We leave the pedestrian,
traffic cone and barrier classes as is, because
we assume negligible misclassification to occur between
those. The model still assigns each prediction with one
out of K = 10 class labels, but we no longer count a false
positive if the model would for example confuse a bicycle
and a motorcycle.
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We conduct this experiment for TransFusion [1] and the
proposed method, and present the results in Tab. 8. We eval-
uate both models twice on the nuScenes validation set, once
with normal evaluation and once with the grouped classes.
For the latter, we assume to have mostly removed any ef-
fects of misclassification. When we compare the total num-
ber of true positives between a LiDAR-only and LiDAR-
camera model using the grouped evaluation, we should
measure only the effect of camera features helping to find
new objects (right-most column in Tab. 8).

Since these metrics are measured as integers, we do not
base them on the average of multiple distance matching
thresholds like nuScenes does in the mAP metric, but in-
stead only consider a single threshold of 2.0 m.

Grouped Evaluation Results We find that the proposed
method is able to make better use of the camera modality to
improve the model’s recall (i.e. finding more true positives)
compared to TransFusion. We see that the recall of Trans-
Fusion is indeed somewhat limited by LiDAR-only stage
of the model, since the LIDAR-camera model does not find
many new objects (287 objects, compared to 1145 in the
proposed method).

We note that the relative increase in true positives is
small in either case (0.2% for TransFusion and 1.0% for
the proposed method). Considering that we find a perfor-
mance improvement of +6.1 mAP with the LIDAR-camera
version of the proposed model compared to the LIDAR-only
version, it appears that most of the benefit of adding the
camera modality comes not from finding new objects, but
rather from assigning better confidence scores to existing
predictions (i.e. point 1, defined above).

Another observation from this experiment is that the
number of misclassifications does not drop significantly af-
ter adding the camera modality to the LiDAR-only version
of each model. We find a reduction in misclassified ob-
jects of only 46 objects with TransFusion and 139 with the
proposed method. It should be noted that these results are
also affected by a general increase in detected objects with
LiDAR-camera fusion, which may cause an increase in mis-
classified objects. The exact reduction of misclassified ob-



jects may therefore be higher than reported here.

C.4. Memory Requirements

One advantage of reducing the number of object queries
is that less GPU memory may be required to run the model.
This enables us to increase the batch size in training or use
more accessible GPU cards with less memory. The self-
attention operation has a quadratic memory requirement
O(M?) to the number of queries M. With our proposed
model we can reduce M from 900 to 200, which would re-
duce the memory requirement for this operation by a factor
of ~ 20. We measure the memory usage for various values
of M and report the results in Tab. 9.

200 900
775 801

1800 3600
1071 2335

# queries

GPU memory

Table 9. GPU memory usage in MegaByte as a function of
the number of object queries for the LiDAR-only version of
the proposed model. Memory is measured at test time us-
ing torch.cuda.max.memory_allocated(), which re-
turns the maximum allocated memory over the entire run time.

We find that the influence of M on the maximum mem-
ory usage is not significant for the order of magnitude that
we are considering. For reference, we also report results for
1800 and 3600 object queries. We do start see the quadratic
relation then, but only for M much larger than required for
our use case. We conclude that we need not to limit our
number of object queries for the purpose of managing GPU
memory usage. On top of our findings, the latest versions
of PyTorch [36] offer memory-efficient implementations of
attention like FlashAttention [8], which reduces the mem-
ory requirement to O(M). Although the latency is now
quadratically dependent on M, the memory usage is no is-
sue anymore.

Init. Method Mod. = Train Mem. | Test Mem. |
Learned distr. L 11032 1426
w/ TransFusion | L 11424 1473
w/ ours L 10636 1427

" Learned distr. | L+C | 23682 23282
w/ TransFusion | L+C 51006 23306
w/ ours L+C 23698 23286

Table 10. GPU memory usage for a batch size of 4, with the num-
ber of queries M = 200. Memory usage is measured in MegaByte
using torch.cuda.max memory_allocated (), which re-
turns the maximum allocated memory over the entire run time.

Tab. 10 additionally shows the GPU memory usage for
different query initialization strategies for both LIDAR-only
and LiDAR-camera settings. We find that the proposed
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method does not result in increased maximum memory us-
age compared to the learned queries used in FUTR3D [7].
Surprisingly, we find that the transformer network used to
fuse LiDAR and camera features in TransFusion’s [1] ini-
tialization method consumes more than double the memory
of the FUTR3D baseline during training. This may restrict
training because it only allows the use of half the batch size
of the baseline for a given GPU.

D. Additional nuScenes Results
D.1. Qualitative Analysis

Below, we provide additional qualitative analysis of the
predictions made by the proposed model. Fig. 7 shows a
succesful sample from a dense scene at a busy intersection.
Looking at the LIDAR BEV window, we do see a number
of missed objects but these however entail either heavily
occluded objects or objects outside of the detection range.

Fig. 8 shows two samples from an interesting traffic
scene, with the top sample containing false positives. The
bottom sample occurs 2 seconds later than the top sample.
We highlight the same region of interest in each sample,
both in the relevant camera image and the LIDAR BEV. We
first consider the top sample. We see one duplicate detec-
tion resulting in a false positive in the front-left camera view
(1.A). Additionally, there are three cars detected in the park-
ing lot (1.B, 1.C and 1.D, in the LiDAR BEV) that do not
have a matching ground truth annotation. When looking at
the bottom sample however, we see that these objects actu-
ally do exist and are now also annotated (2.B, 2.C and 2.D).
The top sample thus includes three detections that are la-
beled a false positive during evaluation, even though they
should be true positives.

D.2. Distribution of Detection Scores

We run the training of our main LiDAR-only and
LiDAR-camera models three times each with different ran-
dom seeds, and report the resulting mAP and NDS scores
in Tab. 11 together with the mean and standard deviation of
the scores. We find that the deviation between runs is small,
and that any run outperforms the FUTR3D [7] baseline.

D.3. Class-Specific Results

Since FUTR3D [7] does not report class-specific AP
scores on the nuScenes fest set, we compare our results
on the nuScenes val set in Tab. 12. TransFusion [1] is
also included for reference. We see improvements on the
baseline for all classes except the Bus class. Notable re-
sults for the LiDAR-only model are large improvements
for the Truck (+3.3mAP), Barrier (+4.7mAP) and
Bike class (4+2.5 mAP). For the LiDAR-camera model, we
find strong improvements for the C.V. (4+2.1 mAP) and
Trailer class (+3.7 mAP).



@ pedestrian @ barrier @ traffic cone @ bicycle

bus car construction vehicle

@ motorcycle

trailer truck

Figure 7. Example of a densely populated scene with correct detections. Best viewed zoomed in.

@ pedestrian @ barrier @ traffic cone @ bicycle car construction vehicle

@ motorcycle

trailer truck

Figure 8. Two consecutive samples from the same scene where the top sample occurs 2 seconds before the bottom sample. We highlight
the same region of interest in bright green in both the camera view and the LIDAR BEV for both samples. Best viewed zoomed in.

Method Mod. mAP 1 NDS 1

Runl Run2 Run3 Mean + std Runl Run2 Run3 Mean + std
EfficientQ3M | L 65.08 6493 6534 65.11+£0.17 | 6945 6938 69.60 69.48 +0.09
EfficientQ3M | L+C 71.10 7123  71.13 71.15£0.05 | 73.47 73,52 7343 73.474+0.04

Table 11. Detection scores on the nuScenes val set for multiple training runs of both the LiDAR-only version and the LiDAR-camera
version of the proposed model with M = 900 queries. The high scores for each modality are reported as the main results in Tab. 1.
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Method Mod. | mAP1T NDS1 | Car Truck C.V. Bus Trailer Barrier Motor. Bike Ped. T.C.

FUTR3D L 637 690 |89 557 271 757 446 642 727 549 843 715
TransFusion | L 651 699 |87.0 618 279 729 431 696 708 563 87.0 740
EfficientQ3M | L 653 696 |89 590 286 741 450 699 732 574 857 735

"FUTR3D [ L+C | 703 731 | 884 671 337 785 467 714 796 723 867 785

TransFusion L+C 67.3 70.9 879 640 298 74.1 43.5 70.1 74.3 635 883 7.1
EfficientQ3M | L+C 71.1 73.5 891 672 358 778 50.4 72.6 80.5 72.1 879 1789

Table 12. Class-specific mAP scores on the nuScenes validation set. The best results for each modality are highlighted in bold text. C.V.
is construction vehicle, Motor. is motorcycle, Ped. is pedestrian and T.C. is traffic cone.
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