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PREFACE

I'have always been fascinated by mechanics and electronics. My interest into mechanics
had steadily grown over time, resulting into the enrollment for mechanical engineer-
ing. However, I never really turned my back to electronics. Courses like mechatronics,
the electronics minor and especially my bachelor’s project on energy harvesting made
it clear that both of these worlds can be intertwined and that you can combine the best
of these two physical domains into one project. During my bachelor’s project it became
apparent that mechanical engineering meeting up with electronics can result in com-
plex yet interesting problems. No wonder I had to do my master’s thesis on a similar
subject, this time on the problem that arises when efficient operation is required at low
frequencies. Although much work is to be done before vibration energy harvesters will
see practical implementation to whatever the world sees fit, I believe that continued ef-
fort to expand knowledge about mechanisms, transducers and electronics will ensure
that vibration energy harvesters will do their part in creating a more sustainable world.

Erik van de Wetering
Delft, January 2021
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INTRODUCTION

The first chapter provides an introduction into low frequency vibration energy harvesting
and the challenges to be found when an energy harvester is miniaturized at these con-
ditions. The use of electromagnetic damping will be discussed and what problems this
introduces. From the miniaturization problems involved, it will be deduced why energy
harvesters utilising piezoelectric transduction may provide a good alternative, especially
statically balanced piezos. The problem statement will be formed followed by an outline
of the remainder of this thesis.



2 1. INTRODUCTION

1.1. RELEVANCE OF ENERGY HARVESTERS

Before diving into various aspects of energy harvesters, their usefulness is to be dis-
cussed first. The transition to renewable energy sources on a large scale has received
great attention and is widely known: think of wind turbines, solar panels, tidal energy
and solar power towers. Another, less recognized class of energy input is through am-
bient vibrations. Here, the scale is totally different. Think for instance of a mechanical
watch, scavenging energy from wrist motion.

In systems, processes often need to be monitored, through the use of all sorts of sen-
sors. Think of TPMS (Tyre Pressure Monitoring System) sensors to monitor the tyre pres-
sure in cars or systems to monitor the state of train railways [1]. Sensors may be used to
predict fatigue of components, accurately predicting the required moment of their re-
placement. This provides a better alternative to periodical checks and maintenance,
where components may be replaced prematurely, or too late. Medical applications are
also present, as in pacemakers, where the state of the heart is monitored and corrected
through electric pulses.

vy
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Figure 1.1: The principle of vibration energy harvesting: mechanical vibrations are fed into an energy
harvester that transduces it into useful electric power.

All these applications have at least one thing in common: they need batteries in or-
der to work. The lifetime of these may vary depending on how much power the sensor
draws and how frequently it transmits data. Inevitably, those sensors need replacement
when their batteries are depleted. As these sensors are often placed at locations that
are hazardous or hard to reach (think of pacemakers), in combination with the cost of
industrial-grade batteries to ensure reliability, it can become quite a costly operation
to replace such a device. All of this gives rise to the need of an energy harvester being
capable of scavenging energy from ambient vibrations found at its corresponding appli-
cation. This principle is shown in figure 1.1. Power in mechanical vibrations is tranduced
to electrical power that can be used to power all sorts of small devices.

1.2. THE MECHANICS OF AN ENERGY HARVESTER

To discuss the challenges found in low frequency vibration energy harvesting, first the
basic mechanics of a vibration energy harvester (VEH) are briefly discussed. A basic
linear single degree of freedom (SDoF) VEH can be described by a mass-spring-damper
system. A schematic diagram of such a system can be found in figure 1.2, which is valid
for VEHs utilising electromagnetic transduction.

In this figure, the VEH body is denoted by the blue frame. In this frame, there is a proof
mass M, affected by inertial forces, which is suspended by some spring or frame with
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Figure 1.2: Schematic overview of a single degree-of-freedom energy harvester.

a stiffness K. There is an inherent mechanical viscous damping C,, and an electrical
damping C,, which is associated with the amount of energy loss to the electrical do-
main. When the VEH is excited sinusoidally at steady state, its input power is a function
of the input displacement Y; and the radial frequency w. The length L, of the VEH is
associated with the dimension along which the proof mass moves and Z,, 4 is the max-
imum amplitude the proof mass can have before hitting the endstops. This parameter
sets the displacement limit of the proof mass.

1.3. LOW FREQUENCY ENERGY HARVESTING

To make VEHSs a viable alternative to electrochemical sources such as batteries, two main
important things need to be presented. First, the size of the harvester is important. In
the case of a pacemaker, its size will be one of the main determining parameters to de-
cide whether it is implantable or not. Considering harvester size, its length L, is even
more important. Many VEHs are used as a resonator: the operational frequency is at or
near its resonance frequency, resulting into the proof mass motion being an amplifica-
tion of the input motion. This is beneficial for the output power, as a large proof mass
motion can be achieved with little input motion. Depending on the level of damping
(electrical, preferably), resonance may greatly amplify the input amplitude provided to
the VEH. At large frequencies, this is usually not really a problem as input amplitudes
tend to be really small. At low frequency however, the problem becomes very real. For
a sinusoidal input motion, the displacement increases quadratically with a decreasing
frequency while keeping the input acceleration constant:

a

[ Yol =7 (L.

This means that if a VEH operating at low frequency is operated in resonant mode, the
amplitude will either be very large or the proof mass hits the endstops if the motion is
limited. In the first case the harvester is barely implementable as small devices are de-
sired, in the latter case the efficiency is reduced through losses in the endstop collisions.
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1.3.1. MOTION RATIO
To find out to what extent an energy harvester can be used as a resonator, the motion ra-
tio A can be used, which was introduced in [2]. This dimensionless parameter is defined

as follows:
L,

T 2Y,

(1.2)
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Figure 1.3: Schematic diagram of an optimal harvester configuration.

Figure 1.3 can quickly explain this parameter. Here, a harvester is shown with a grey
proof mass of half the harvester length, which has been shown to be the optimal length
when it comes to power generation [3]. It can be seen that 2Yp; is smaller than the in-
ternal displacement limit. Therefore, resonant amplification is possible by designing an
appropriate Q-factor >1. This Q-factor is the ratio between the maximum proof mass
amplitude and the input motion Y¥y. One can easily identify that for the case of figure
1.3 adampingratio { = 1/2Q equal to 1/A results in a proof mass motion where the end-
stop of the VEH is exactly hit. Furthermore, it can be seen that 2Yj, is larger than the
length of the VEH. It must be noted that the required damping level necessary to prevent
endstop hits will then quickly become large, i.e. the damping ratio approaches 1 or even
surpasses 1. These large amounts of damping can hardly be provided through electrical
damping due to poor scaling when coils are downsized [4]. The lower the motion ra-
tio, the larger the damping needed to remain within the displacement limits. As such,
resonant amplification at motion ratios just above 1 becomes very challenging and even
impossible below 1, resulting in a nonresonant device.

1.3.2. EFFICIENCY AND FIGURE OF MERIT

Next to size, the efficiency is very important: a sufficient level of power needs to be ex-
tracted from ambient vibrations in order to power the appliance connected to it. The
most straightforward way to define efficiency is by the ratio of output to input power:

n_Pout
Piy

(1.3)

Although this metric defines the fraction of energy that can be extracted from the envi-
ronment, there is a catch. The required input power is depending on a lot of variables,
which are partly geometrical and physical, but dynamic as well. A system at resonance
requires less input power than one that just starts moving from rest. Furthermore, input
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power is often not even measured, be it the case that it is even measurable. As a result,
this metric loses practicality. In addition, there are way more specifications of interest
that may be linked to efficiency performance. One may wonder at what conditions this
performance was found. At what frequency had the VEH been excited? How large was
the input acceleration? The efficiency doesn't tell. Another specification of interest is
the size of the VEH. Large proof mass amplitudes correlate positively with larger power
output [5]. Therefore, power density becomes of interest: it is desired to generate as
much power from an as small as possible volume, maximizing power density. When tak-
ing these specification into account as well, it becomes possible to benchmark and more
accurately compare different VEHs on their performance.

A metric that takes these findings into consideration is the generator figure of merit
FoMgp. This metric was introduced by [2] and is a modified version of the volume figure
of merit FoM, by [3], [6]. It is defined as follows:

Paug

FoM, = (1.4)

2= Yoppm VL w3

Here Payg, Yo, Ppm, V, Lz, w are the average RMS ouput power, input amplitude, proof
mass density, VEH volume, length and input radial frequency, respectively. The idea
behind this metric is as follows. The peak power of an energy harvester is taken and
is compared to a reference output power in the denominator. This reference output
power corresponds to a hypothetical cubic energy harvester with equal volume, mass
and length, under the exact same excitation conditions. As such, it can be estimated
how close the performance of the VEH under scrutiny is to its corresponding theoretical
maximum [3],[6]. In appendix D, it can be found how this metric can be derived.

Looking at eqn. 1.4, one can quickly identify how variables affect the overall per-
formance. A small volume and length have a positive effect as power density increases.
Enlarging the input amplitude lowers the efficiency, as more power is put into the sys-
tem. From this, it can be seen that a VEH with small length may be most promising.

In the work of [2], it was made clear that VEHs found in literature can attain a decent
FoMg more easily at an increased motion ratio. When it comes to small devices and
large input motions or low frequencies, FoM, tends to be quite poor. Designing and
manufacturing a small length VEH that performs efficiently at large input motions and
low frequency conditions can therefore be said to be challenge.

1.3.3. TWO-OUT-OF-THREE

In the previous section, three notable keywords may be found: low frequency, small har-
vester length and efficiency. These keyword have an interesting relation to each other, as
they pose a dilemma in designing an energy harvester composed of three of them. If one
is to design a harvester that operates on low frequency and is efficient too, it is likely to
have a large length. This is needed for the resonant amplification. Figure 1.4a shows an
example of this in the form of a Duffing oscillator, a type that tends to be relatively long
[7]. Next, when making a small-sized, efficient harvester it will not match with operation
at low frequency as the natural frequency rises withminiaturization. An example of this
is shown in figure 1.4b in the form of a 0.15 cm? cantilever implementation [8].
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Figure 1.4: Examples of harvesters failing to meet all three criteria [7], [8].
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Figure 1.5: Venn diagram representation of the problem of low frequency energy harvesting. Combin-
ing two juxtaposed characteristics will result in the contrary of the characteristic that is left over.
Combining all three is infeasible up till now.

Last, when designing a small-sized harvester at low input frequency; its efficiency will be
presumably low. For this combination, it is hard to find a prototype in literature. Many
works in literature tend to be the longest in the excitation direction and there is a good
reason to do so. This can be explained by an analysis carried out in [6] and is closely
related to figure 1.3. Assuming that the proof mass moves over the entire displacement
limit, it has been shown that the maximum power that can be theoretically extracted
over one cycle is equal to:

1
Prax = ELzsz Yo (1.5)

Writing the proof mass M as pV, one can quickly identify that V also depends on a factor
times L, resulting in a power that relates quadratically to L, and linearly to the other
dimensions. Therefore, it is way more beneficial to have an energy harvester that is long
in the excitation direction than in other directions. However, it is not always desired to
have the longest dimension in the excitation direction.

From these three examples it has become evident that low frequency, small length
in the excitation direction and high efficiency do not coexist easily. This phenomenon
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is schematically summarized in figure 1.5. It shows that when two characteristics are
picked, it results in the opposite of the one that is left over. Producing a VEH that has all
three of them is a challenge.

1.4. PIEZOELECTRIC ENERGY HARVESTING

Electromagnetic transduction has been most prevalent in the discussion until now. Coils
and magnets leave a relatively large geometrical footprint in the excitation direction,
making it hard to solve the problem introduced in figure 1.5. However, there are other
transduction methods, such as piezoelectricity. In a piezoelectric material, an electric
charge is built up after the material is deformed through an applied strain field. As a re-
sult of that, a potential difference is generated across the piezoelectric material. When
the electrodes are connected and the circuit is closed, a current is able to flow, thus being
able to generate electric output power. Figure 1.6 schematically shows how a bimorph
piezoelectric beam is built up. The basis of the beam is formed by a substrate layer. On
both sides, piezoceramic material is deposited, forming a bimorph configuration. The
electrodes can be found on the top and bottom sides of the piezoceramic layers, in the
same manner as in a capacitor. The blue arrows denote the polarization directions of the
piezoceramic layers and indicate that they must be connected in series. As piezolectric
beams claim little space in the bending direction, they are good candidates for forming
a VEH that is small in the excitation direction.

Substrate layer

Polarization

Piezoelectric layer
Electrode

Figure 1.6: Schematic view of a piezoelectric cantilever generating a voltage across its layers.

1.5. PROBLEM STATEMENT

Piezoelectric beams are generally very stiff, resulting in high resonance frequencies. Fig-
ure 1.7a shows the interaction of the proof mass with the forces acting on it: the exci-
tation force is distributed over an inertial, spring and damper force. At resonance, the
inertial and spring forces cancel eachother. The energy from the excitation now goes di-
rectly to the damper and therefore also to the output. The input motion is amplified by
the Q-factor and therefore, a larger Q-factor relates to a larger proof mass amplitude and
output power. In figure 1.7b, the frequency response of a piezoelectric beam is shown,
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Figure 1.7: a) Forces interacting on a proof mass. b) Frequency response function showing resonance oper-
ation. Red line denotes the stiffness line.

confined to the first mode. In red, it shows the region at low frequency compared to the
natural frequency, called the spring line. In this region the stiffness of the beam dom-
inates the response; the stiffness prevents the piezo from being deformed by inertial
forces at low frequencies. Therefore, the compliance is very low. Nevertheless, this prob-
lem of the stiffness forming an impediment to the compliance at low frequencies can
be solved by artificially compensating that stiffness. This can be done by introducing
elements that provide a negative stiffness, i.e. the force increases with displacement but
now it acts in the direction of the displacement. By careful design of the negative stiff-
ness, the applied force needed to deform the beam approaches zero. The system is now
statically balanced or neutrally stable; the beam will not return to its undeformed con-
figuration and its stored potential energy remains nearly the same over a certain range
of motion.

N VvV

strain strain

(@) (b)

Figure 1.8: Schematic diagram showing the distribution of energy in a) normal positive stiffness system b)
system with negative stiffness included.

The principle of operation for static balancing is schematically shown in figure 1.8. When
no static balancing is applied, part of the energy that is applied to the system will be used
for deforming the beam, leaving less energy that can be converted to kinetic energy of the
beam motion. A large part of the input energy is lost to reversible strain energy, which
is due to the large amount of stiffness in the piezo. When the stiffness of the piezo is
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compensated by adding negative stiffness, the energy that is normally put into reversible
strain, is now provided by the potential energy in the negative stiffness mechanism. As
such, the energy input to the system should mainly go to the kinetic energy of the piezo.
By bringing down the total amount of stiffness, large amplitude oscillations are made
possible at a low frequency. This concept is shown in figure 1.7b by the green line. The
compliance at the region normally demarcated as the stiffness line will now be much
larger as will be its kinetic energy.

It is hypothesized that applying static balancing or stiffness compensation allows for
relatively large amplitude oscillations at low frequency and should therefore provide a
competitive figure of merit. As piezoelectric elements can be produced into a small scale,
combination of this with the former hypothesis and excitation at low frequency may pro-
vide a solution to the problem discussed in section 1.3.3. It is not clear yet whether a real
statically balanced state can be achieved in a piezoelectric beam, therefore, the term
stiffness compensated’ is preferred. The research objectives and questions are therefore:

Research objective: Design, model and experimentally validate a stiffness compen-
sated piezoelectric energy harvester for low-frequency, large-amplitude excitation.

Research question: How does a stiffness compensated piezoelectric beam behave?

Research question: To what extent can a stiffness compensated piezoelectric vi-
bration energy harvester form a solution to the low efficiency at low motion ratios?

1.6. THESIS OUTLINE

In this thesis, the main focus is on designing a piezoelectric energy harvester that is
stiffness compensated and experimentally validated. The remainder of this thesis will
go through this in several steps. The second chapter presents the literature review pa-
per 'On the use of damping in low frequency vibration energy harvesting’. In this paper
the damping performance of VEHs is discussed with a strong focus on electromagnetic
transduction. An overview is presented that discusses various optimal load impedances
for several motion input types such as harmonic or random excitation. Data from har-
monically excited VEHs was analysed based on damping performance to assess what
levels of damping are used in practice. An intuitive approach to selecting the suitable
level of electrical damping was proposed, deviant from what is usually found in litera-
ture. The main conclusion was that damping ought to be used as a design parameter
and not as a given optimality when designing a VEH including motion constraints. The
findings in the paper have given rise to the research objective in this thesis. The third
chapter focusses on the design process. Here, the problem is broken into subproblems
and through a structural design methodology, the best concept is chosen and further
analysed. In the fourth chapter the modelling approach is discussed and developed.
A distributed parameter model based on modal analysis is used and further developed
to model the dynamics and output voltage of the VEH. In the fifth chapter the first re-
search paper is presented. Force-displacement measurements are carried out to assess
the mechanical behaviour of the balanced piezo. This is done by using a custom force-
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displacement setup. The sixth chapter presents the second research paper, which is
about the performance of the energy harvester. Here, the focus lies on the performance
of the model. The model is validated by experimental testing of the VEH on a linear
air bearing stage. Furthermore, the performance is benchmarked in terms of the mo-
tion ratio and figure of merit. In the seventh chapter the results and entire process are
discussed and conclusions are drawn. Also some recommendations for future research
are mentioned. The Appendices present early prototypes, some miscellaneous force-
displacement measurements, derivations of figures of merit, data of the piezo that was
used and briefly discusses some FEM models.



LITERATURE REVIEW

In this literature review paper the use of damping in low frequency energy harvesting is in-
vestigated. Optimal electrical damping levels with respect to mechanical damping are in-
vestigated and a list of optimal load resistances for various types of input motions is com-
piled. Damping performance of works from literature has been analysed and it has been
observed that in many cases, the electrical damping is matched to the mechanical damp-
ing. This is mainly due to this being a proven optimality in a specific case and through
an intuitive method, the paper demonstrates that matched damping is only conditionally
optimal and stresses that damping should be considered as a design parameter, not as a
given optimality.

11
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2. LITERATURE REVIEW

On the use of damping in low frequency vibration
energy harvesting

E. van de Wetering and T.W.A. Blad

Abstract— In the tremendous collection of vibration
energy harvesters found, it is often seen that only a
few strategies for damping are adopted in designs,
while applying different types of input excitations.
In this research, an overview is presented to signify
that different types of input motion also require
different loads and therewith different damping
levels. Works from literature operating on harmonic
excitation are analysed based on their motion ratio
and damping performance and an intuitive strategy to
choose damping levels in a single degree of freedom
energy harvester meeting dimensional constraints
is presented. It is found that if the attainable
electrical and mechanical damping levels are known,
maximizing the former and minimizing the latter may
provide a larger output power whilst maintaining the
same amplitude. Therefore, damping may rather be
considered as a design parameter as opposed to a
given optimality when dimensional constraints have to
be satisfied.

Keywords: Vibration energy harvesting, low-frequency,
damping, optimal load

1. Introduction

Real-time monitoring of processes by use of wire-
less sensors is a promising way to efficiently predict
and track the behaviour of systems [1]. A good
example is the tyre pressure monitoring system
(TPMS) in vehicles warning the driver when the
tyre pressure has exceeded a lower threshold. The
main drawback of the technology is the cost of re-
placing the sensor when the batteries are depleted.
Industry demands high reliability batteries, which
are more expensive. Furthermore, sensors are often
located at locations hard to reach. This introduces
high costs for replacing them.

A way to circumvent this problem is by using
vibration energy harvesting extracting electrical en-
ergy from ubiquitous mechanical vibrations in the
ambient. Much work has been done in this field
already, mostly on resonator types [2] and human
motion [3]. Also nonresonant devices have been
developed such as frequency up-converters [4].

A metric to characterize to which extent the
vibration energy harvester (VEH) is used as a
resonator is the motion ratio A\ = ZL;O [5]. This
metric describes the ratio between the VEH length
dimension L, along which the proof mass moves

and two times the input amplitude Y,, see Fig 1.
A large motion ratio thus means that the VEH is
a resonator and a motion ratio of e.g. smaller than
one indicates that resonance cannot occur.

In their analysis, it is seen that most VEHs
produced until now are in the motion ratio range of
about 3 to 100. Maximum efficiency, defined as the
generator figure of merit, tends to increase slightly
with the motion ratio, whereas the normalized
half-power bandwidth decreases. This is due the
inverse relation between (Q-factor and bandwidth
[6]. Problems are then likely to arise since many
real-life vibration sources tend to be rather random
in nature in stead of being narrowly centered
around a certain frequency [7]. A high Q-factor
resonator will then fail to effectively harvest
power, as it needs to build up its amplitude over
several cycles. When for instance a phase shift in
the input occurs, the built up amplitude will be lost.

A few methods have been developed to get
around this obstacle. Multimodal VEHs extract en-
ergy from multiple frequencies, effectively widen-
ing their bandwidth. Frequency upconverting has
proven to greatly increase bandwidth performance
[4]. Others have tried to develop a VEH with a
tunable resonance frequency [8], yet this method
rather fails to be united with the ’install and for-

Yo,w [ )
«>»| K
A Z
max
M S
-
& | Cm,Ce |
< >

Lz

Fig. 1: Generic model of a single degree of freedom
energy harvester. Y, w, K, C,,, C., M and L, are
the input amplitude, frequency, stiffness, mechanical
and electrical damping, mass and length in excitation
direction.
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get’ vision behind VEHs. The most fundamental
method is tuning an intrinsic property of the VEH:
the damping. The peak power and the bandwidth
have an inverse relation which depends on the
damping introduced into the system. By lowering
the ()-factor the peak lowers and the response
flattens, widening the bandwidth as a result.

That last solution, damping, is actually a grey
area. Some authors state that it is best to match the
electrical damping (¢.) to the mechanical damping
(Cm) [2]. Others invoke the maximum power
transfer theorem to obtain the best performance:
here the load resistance is matched to the resistance
of the transducer [9]. An excellent analysis on
the performance limits was shown in [10], where
regions for the desired damping level were
determined as a function of input- and proof mass
amplitude. In [11], it was found that in order to
keep the proof mass within the constraints, the
electrical damping had to be designed much larger
than the mechanical damping. On the other hand,
there might be cases where the electrical damping
is desired to be lower, e.g. in a piezoelectric
cantilever to allow more strain [12]. Thus it can
be seen that a variety of work is already done
considering damping optimality.

However, it is far from clear what optimal load
or damping level is best suited in what type of
harvester and their corresponding types of opera-
tion. This gives rise to the pitfall that designers
take certain optimalities for granted, while it is
actually not the most suitable for their design.
When the operational frequency becomes low or
input amplitude becomes large (low motion ratio),
it is seen that the figure of merit efficiency is
typically low [5], and poor design of damping or
load could be a reason for this.

In this paper a classification is presented which
provides an overview of what solutions to optimal
performance are known from literature for differ-
ent input motions, considering damping and load
impedances. Providing such an overview is crucial
to understand what assumptions are made to find
a certain optimality or to find out what type of
VEH operation an optimality actually belongs to.
This suggests that in theory, for every type of input
signal an optimal load could be found, and an opti-
mal load could be found working best for all types
of inputs within a certain application. Furthermore,
VEHs found in literature are analysed and evaluated
based on their motion ratios, damping and load
characteristics, to find the general trends in their
use.

In section ii, common methods to model the
electromechanical coupling and its relation to

motion constraints are discussed. The limitations
of these constraints give rise to a classification for
optimal loads for different types of input motion.
In section iii, it is shown what is done in practice
in literature considering motion ratios and damping
performance, of which the results are discussed in
section iv. Conclusions are made in section V.

2. Method

A. Coupling methods

As pointed out in [13], three methods for the elec-
tromagnetic coupling can be distinguished. These
are the uncoupled, velocity coupling and magnetic
field interaction approach.

In the uncoupled case the dynamics on the me-
chanical and electrical domain are, as it suggests,
uncoupled. A good example can be found in [9],
where extensive work was spent on the nonlin-
ear spring forces yet the coupling seemed to be
subordinated. While the total damping (mechanical
and electrical) was included in the equations of
motion (EoM), it was assessed experimentally by
a log decrement. Although convenient, this method
forces the design process to become iterative. Fur-
thermore, the effect of backward coupling from the
electric circuit is absent in the EoM.

In the velocity coupling method, the mechanical
and electrical domains are coupled through a force
proportional to the relative proof mass velocity
[13]. The electrical damping coefficient can then
be found as [14]:

(NBL)?

Cp = R R, )]
Here N,B,L are the coil turns, average radial flux
density at the coil and coil length, respectively.
R. and Rj, are the coil and load resistances. This
method has been used by various authors [2],
[15], [16]. For simple cylindrical magnets, B can
be found analytically [2]. However, care must be
taken when the design of the proof mass becomes
more intricate, e.g. when making a stack of poled
magnets as in [11]. In this case the flux linkage
derivative will be nonlinear and a function of proof
mass displacement. The same goes if the coil is
short compared to the proof mass length. The
magnet may then move entirely out of the control
volume of the coil, ending up with very low flux
linkage. When the magnet then enters the control
volume, a large flux derivative and thus a large
damping force is to be expected. When the magnet
then remains in the control volume, a much lower
damping is found since the flux derivative is now
way lower.
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Magnetic field interaction coupling is mainly
based on FEM evaluation, which is the resort when
analytical methods fail to work. Analytical formu-
lations exist to find the force between the proof
mass and endstop magnet (Duffing oscillator), as
well as to find the induced voltage by Faraday’s law
[17]. However, this only works for rather simple
geometrical implementations and complex designs
will require FEM evaluation.

When using the field-field interaction approach,
the magnetic flux linkage to the coil is evaluated as
function of the proof mass position. Consequently
the instantaneous electromagnetic damping coeffi-
cient and force interaction can be found and linked
to the EoM. A comprehensive treatment about this
approach can be found in [18]. As [19] pointed
out, care must be taken since results only converge
asymptotically to the physically true value. This can
introduce large errors when not taken care of.

B. Motion constraints

From a practical point of view, the coupling or
damping in the VEH is inherently related to some
motion constraint; there is likely to be an endstop
to limit the motion of the proof mass. It is therefore
sensible to consider the damping level with respect
to the motion constraint. In [10], such an analysis
was done and operating regions for harmonic
motion were found in terms of Q.,, Qc¢; Zmaz
and Y,, which are the mechanical and electrical
Q-factors, the proof mass displacement limit and
the input amplitude, respectively. In [10], four
regions of operation were found by making use
of the combination of Q-factors Q7' = Q-1 +Q; 1

Zmaz
o

< min(Qr.achievaie): Here harmonic

motion is not possible since the proofmass hits

the endstops and (. should be maximized.

Z:;—OT = QT’": Here the proof mass exactly hits

the endstops if (. = (,,. Slightly increasing (.

ensures harmonic operation.

o Zmes > %: Now the proof mass moves within
the bounds and Ce = G should be applied.

e Q. > @, The electrical damping cannot be
made larger than or equal to the mechanical.
Then (. should be maximized.

Although this method is quite transparent, it has
some practical limitations as well. First, it is based
on the assumption that the input motion is har-
monic. This introduces a restriction to the valid-
ity of using it. Next to that, when the excitation
frequency becomes low, the result becomes im-
practical. Since the amplitude inversely scales with
the square of the frequency, it becomes large at
low frequencies, i.e. larger than the input amplitude

to allow resonant operation [4]. This implies that
either a large VEH is required, or that the proof
mass hits the endstops and thus energy is lost. The
former option is hard to reconcile with the goal
of energy harvesting and the latter is less efficient,
yet implementable. As the application is limited to
harmonic excitation, the need arises for a scheme
that assesses the optimal damping or load for a
VEH while taking the type of input motion into
account.

C. Classification

In this section a classification in the form of
optimal loads is presented for various types
of input signals. The demarcation criteria for
distinguishing between input signal types are out
of the scope of this paper; they are also partly
dependent on the judgement of the designer. The
optimality conditions found in literature will be
presented per class and it will be mentioned
when literature is falling short. It should be noted
that the optimality conditions found are valid
for the condition where the power is dissipated
in a resistor. When the circuit becomes more
intricate by e.g. adding a rectifier, the relation
between the velocity and electromagnetic damping
is guaranteed to become nonlinear [20]. While
it is certainly not the most realistic case to
directly dissipate in a resistor, it provides the most
transparent way to understand the dynamics. Fig.
2 presents an overview of all optimal impedances
that will follow.

1) Linear dynamics: First the optimal loads of
electromagnetic (EM) and piezoelectric (PE) en-
ergy harvesters comprising linear dynamics will be
discussed.

a) EM-harmonic: Harmonic input means
that the input consists of a sine function, or a
combination of sines. This type of input signal is
most commonly found in the literature, for it is
the most convenient in practical testing. Sinusoidal
frequency sweeps can be applied easily, thus form-
ing the most straightforward method to benchmark
a VEH. However, in the real world this type of
signal is not quite often represented, introducing a
mismatch between benchmarking results and real
world applicability [7]. As a consequence, the op-
timality conditions for harmonic excitation are the
most studied in literature as well. The class can
be dichotomized into the resonant and nonresonant
state, respectively. In [21], [22], the optimal load
has been derived for general operational frequen-
cies. This was done by translating the mechanical
dynamics to the electrical domain through a two-
port transformation. The optimal load is a complex
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impedance and is dependent on the frequency of
operation, i.e. the load ought to be tuned when the
frequency of operation changes:

0%¢,,w?
Ry, =R, 2
o + (k — mw?)? + c2w? 22)
0w (k — muw?
L

(k — mw?)? 4 2 w?

Here Ry, xr, Re, 0, ¢, k, m, L. are the load re-
sistance and reactance, coil resistance, coupling co-
efficient, mechanical damping coefficient, stiffness,
proof mass and the coil inductance, respectively.
Filling in the resonance conditions in the results
of (2), the optimal load conditions are found when
the system operates at resonance:
2
R=R+ L

“m

(3a)

XL = _UJL(: (Sb)

The optimal load impedance simplifies to the coil
resistance and the electrical equivalent of the me-
chanical damping. The imaginary part of the op-
timal load impedance simplifies to the effect of
the coil inductance. When the coil inductance is
negligible with respect to the real part, it can be
omitted. This result agrees to the findings in [23].

Note that when proof mass magnet stacks are
used, the magnetic flux linkage derivative may
turn out to be more fluctuating. Consequently, the
output voltage signal may have frequency content
that is a multiple of the excitation frequency,
which may render the inductance on par with the
resistance. Then it may turn out that the inductance
should not be neglected [13].

Transduction Piezoelectric

b) EM-white Gaussian noise: White Gaus-
sian noise (WGN) excitation comes closer to vi-
brations encountered in the real world. Mostly, a
certain frequency band is selected over which the
power is evenly spread, making it band-limited
WGN. Considering the optimality in WGN excita-
tion, there is fewer literature to be found, although
a few authors have published an optimal load
condition. In [20], the general power efficiency! of
a VEH has been derived. It has also been found that
generally, the load to ensure maximum power effi-
ciency deviates from the load to maximize output
power, which is a common phenomenon in batteries
[14], [24]. However, as the input power remains
nearly constant for white noise excitation, a single
load can be found in this case that satisfies both
maximum power transfer and efficiency [25]. The
optimal load can then be found in [20] as:

C)

¢) EM-shock loading: When it comes to
shock loading or combinations of shock and har-
monic, it is seen that there’s not much to find in lit-
erature considering optimality. If human motion is
considered as shock motion (e.g. from heel strikes),
practical implementations can be found, often in
the form of a Duffing oscillator [3], [11], [26].
Interestingly, the load resistance in these papers
has a wide spread when compared to their coil

"Power efficiency here means 1;‘,’“. While it must be noted that
P;,, cannot be known in a lot of cases, the expression for the load
that maximizes this efficiency can actually be found through the ratio

of electrical to total damping [20].

Electromagnetic

|Linear
Dynamics
— Hamonic mpact)
® # y
CatPIC,) Z1} =R+ —|R{ZL} = R Gena &
s "JC (emw)? + ((k — me)P+ 62/C,)? ( ul pirs [E2] L e g G—m2P + o) ||[Re=q/RE+ R‘Z
$(2y) = L (" + (k= mad)(k = mo?) + €C,) ‘ZL’ = S(Z1) = _% i,
oC,  (en®)? + ((k — ma?) + 62/Cy)? (k — ma?)? + (cne)
Optimal load R =Z 2Q? - )

™ QY[ 2@ - 0R) - 26,0,(@2 ~ )

v

ZmCm,,

Fig. 2: Chart overview of the optimal resistance R}, and reactance x, for electromagnetic and piezoelectric VEHs

for different types of input motions. The results are valid for linear circuits. Parameters m, c¢,,((n), k, ks,

w(Q),

Wny Cp, 0, R., L. denote mass, mechanical damping, stiffness, cubic stiffness, operational frequency, natural
frequency, capacitance, coupling, coil resistance and coil inductance, respectively.
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resistances. Nevertheless, the load resistance was
experimentally confirmed to be the optimal in all
cases.

To the author’s best knowledge, there isn’t
really a guideline to be found which maps out
the optimal damping or load resistance when it
comes to shock load inputs. However, intuitively,
optimalities may be found. If shock loads do
somewhat intermittently appear, the total damping
may be designed as such that there’s a slow
ringdown to the next shock load. This ensures that
the proof mass continues oscillating as much as
possible until the next impact. On the other hand,
when shocks do appear frequently in a timespan,
the damping can be maximized to extract as much
energy as possible inbetween the shock loads.

d) PE-harmonic: Next to the electromag-
netic transducer optimalities, the optimality for
piezoelectric transduction is briefly investigated.
The focus is on harmonic excitation. In [27], an
extensive analysis is shown considering the optimal
load for harmonically excited piezoelectric VEHs.
The authors have also shown that the theoretical
maximum power level can only be obtained when
a certain level of electromechanical coupling is
maintained. From [27], the following general load
optimality can be found:

1 (cmw) (6%/C,)

In [29], the optimum resistive load for a monos-
table stiffening VEH is derived. Here, the load ad-
justs the frequency response as such that the jump
down frequency coincides with the operational fre-
quency while maximizing the power transfer. This
can be interpreted as first having the undamped
response, upon which an excitation frequency is
selected. Then the jump down frequency is shifted
downwards over the backbone curve to match that
excitation frequency, whilst transferring the maxi-
mum power to the load. The load to accomplish
this is given as:

2 2 2
=" 2(¥ —w;)
may, %k’g(QQ — w2) — 2w, (22 — w2)
(6
In (6), ©, w, and k3 are the excitation frequency,
natural frequency and cubic stiffness, respectively.
In deriving this optimal load, a few assumptions
have been made in [29]. The resistance and induc-
tance of the coil were considered to be negligible
compared to the load resistance. However, inclusion
of the coil resistance can be realized by some
scaling. Furthermore, it is assumed that the losses
in the mechanical and electrical parts are equal.
b) Nonlinear EM-random: Next to har-
monic inputs to Duffing oscillators, they are also
often subjected to random excitation. In [30], the
optimal load resistance for a VEH subjected to

R, = — - - (5a) broadband white noise was derived and experimen-
wCy (cmw)? + ((k — mw?) + 62/C,)? tally verified: '
1 (emw)? + (B — mw?)((k — mw?) + 62/C,)
XL = UJCp (me)2 + ((k — mwQ) + 62/Cp)2 Rl — \/(Qm/<mwch)2 + QmCch92 (7)
In (5), C, and c, are the capacitance and
mechanical damping, respectively.
3. Results

2) Nonlinear dynamics: Next to the VEHs
including linear dynamics, nonlinear dynamics
can be exploited as well and these cases require
different types of optimal loads. Two cases will be
discussed for electromagnetic VEHs in the form
of Duffing oscillators.

a) Nonlinear EM-harmonic: When stiffen-
ing nonlinearities (Duffing) are included in the dy-
namics, the optimality becomes more complicated
for harmonic input. In a linear system, the (electri-
cal) damping only influences the (Q-factor, and if
the damping ratio becomes large it will influence
the resonance frequency as well. However, in a
nonlinear system the damping has a much stronger
influence on the resonance frequency, better known
as the jump down frequency. A low damping ratio
will bend the frequency response and displace the
jump down frequency [28].

After having found the optimalities for various
types of VEH operation, an analysis is done to
assess what is actually done in practice in the
literature. This includes information about the
motion ratios, damping levels and resistances. As
the motion ratio is of major concern, the results are
based on data from harmonically excited VEHs;
the motion ratio is not defined for VEHs loaded
with shock or random excitations. Fig. 3 presents
the ratios of the damping to the resistances to
find the relation between those parameters. Fig. 4
shows the total damping in VEHSs as function of \.
The datapoints have been classified into frequency
up converter (FupC, low frequency impulses
exciting a high frequency oscillator), gradual
endstop (stiffening, Duffing), hardstop and no
stop. Fig. 5 eleborates on the damping and shows
the ratio between the electrical and mechanical
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Fig. 3: Ratio of electrical damping (. to mechanical
damping (,, as function of ratio of load R, to trans-
ducer resistance R;.. Dots denote electromechanical
transduction, squares piezoelectric.

damping as function of A. In all these figures,
dots are used for electromagnetic harvesters and
squares for the piezoelectric ones. Note that some
of the data points belong to the same VEH, yet
under different testing conditions.

4. Discussion

A. Discussion of coupling

Considering the modelling of electromechanical
coupling in electromagnetic VEHs, it is often seen
that the transduction is assumed to be linear vis-
cous, whereas this is not always physically correct
(e.g. when using a poled magnet stack). In practice
however, it may turn out that merging the coupling
in to a single constant, may capture the dynamics
quite well as the dynamics may average out. An
example of this can be found in [31], where the
flux linkage derivative is sinusoidal over the motion
range, and the RMS value is taken as coupling
coefficient. That means that an exponentially de-
caying impulse response may be found, implying
that linear viscous damping is present, whereas the
physics behind the electrical damping are actually
more involved.

The displacement dependence of the coupling
also has a consequence for the optimal load, as
these often depend on the coupling coefficients.
Here, however, it will be rather a necessity to
capture the coupling into a single, average number.
If the coupling were captured into a function of
displacement, then the optimal load would also be
a function of (proof mass) displacement, which

0.3 T i
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B * No-stop
oM —1/\
0.2 \ 1
J 015
01+ “ [34]
na o\ 135 .
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0 - P, e )
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A

Fig. 4: Total damping (7 in the VEH as function of
motion ratio \. Dots denote electromagnetic trans-
duction, squares piezoelectric. The 1/)\ curve denotes
the optimal total damping to prevent hitting endstops,
idealized as in taking the proof mass volume to half of
the volume of the VEH.

renders the optimization impracticable.

B. Discussion of analysed data

In Fig. 3 the ratios of damping to resistance are
shown. Here, a noticeable trend is to be seen: either
matched damping or resistance matching is used,
with a few points deviating from this. Further-
more, it is seen that mostly FupC harvesters and
VEHs without endstops are found at the resistance
matching line, whereas the latter are also found
on the matched damping line together with some
Duffing oscillators. In [32], the relation between
load resistance and electrical damping has been
investigated. It has been found experimentally that
when the electrical damping is low compared to the
mechanical damping, the optimum load matched
the coil load. When the electrical damping becomes
on par with the mechanical, the load resistance be-
comes larger than the coil resistance. These results
are consistent with what is shown in Fig. 3 and also
in line with equation 3a. It is remarkable though,
that the data points make a sudden sharp turn to
the right; one would perhaps expect a more gradual
path to the right.

From Figs. 4,5 it can be deduced that most
VEHs can be found in the higher regime of
A > 10. This is consistent with the findings in [5],
where is has been shown as well that when A does
get low, its figure of merit is typically low as well.
Various reasons may be found to explain this.
First, lots of research is done into resonant VEHs,
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Fig. 5: Ratio of electrical damping (. to mechanical
damping (,,, as function of motion ratio \. Dots denote
electromechanical transduction, squares piezoelectric.

which, when at a high frequency automatically
results into a higher A\. Second, the input amplitude
Yy on which A depends, mostly depends on the
input excitation frequency. To practically obtain
a low )\, a low excitation frequency can be used,
which is typically hard to achieve with standard
shaker setups. To excitate a VEH at low frequency
and large amplitude, using a linear stage would
be most convenient, yet in most literature a setup
like this is not seen. Last, the VEH length L,
influences A and thus it comes down to scaling.
Electromagnetic transducers usually scale down
poorly when it comes to miniaturization and
thus influences the performance in a detrimental
manner [33].

Considering single degree of freedom (SDoF) har-
vesters it can be seen from Fig. 4 that in the low-
end range of A the total damping is quite higher
compared to the rest of the data points. This is ex-
pected as the lower allowable proof mass amplitude
requires larger amounts of damping. Most VEHs
without endstops use low levels of damping; a large
output can either be achieved through large flux
linkage or large velocity and here the latter option
is chosen. Duffing oscillators tend to use a higher
damping. In Fig. 5 the results show some difference
compared to Fig. 4. First, in the low range of A it
can be seen that for the high total damping cases,
the ratios of the damping parameters differ a lot due
to different levels of (,,. Duffing oscillators tend to
have a ratio of at least one, which is likely due to
their larger size and therefore larger coupling. On
the other hand, piezos tend to use a lower amount
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Fig. 6: Contour plot of total ()-factor (); as function
of (,, and (. superimposed on a contour plot of
the normalized electrical power P, ~ (./(C. + Cm)?.
Contours have been normalized between zero and one,
so the more to red, the closer to one. Dashed lines
demarcate the feasible region of the proof mass motion
and attainable damping values. The dash-dotted line
denotes the damping matching criterion.

of electrical damping, which may ensure larger
amplitudes and with that more strain and output.
Nevertheless, due to the shortage of data points,
these statements cannot really be generalized; more
data will be necessary to draw sharp conclusions on
this.

Fig. 4 also includes the 1/ curve, which would
be the ideal total damping for a SDoF harvester
with a proof mass length of half the harvester
length and negligible endstop volume (see section
C of discussion). Interestingly, it is seen that near
A = 10 and lower the total achieved damping is
not to be found above that curve anymore. This
may indicate that the achievable level of damping
may reach its limit near this region. However, to
find the location more accurately, more data points
will we necessary. Next to that, it is only valid for
SDoF harvesters; it doesn’t count for FupC types.

FupC harvester types denote interesting damping
characteristics. The total damping is mostly seen
to be quite low in Fig. 4. On the other hand, the
electrical damping seems mostly to be matched to
the mechanical in Fig. 5. This may be a proper
solution to FupC harvesters as one would like
to have the high frequency oscillator (HFO) to
oscillate as long as possible between subsequent
impulses, which implies that low damping must be
used. Next to that, as the space claimed by the
HFO is usually small, a sufficient amount of total
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damping will be required, which in case of a coil
transducer is unlikely to be delivered electrically.
Therefore matching the damping in this case may
be a good solution. The same line of reasoning may
be applied to MEMS resonating harvesters.

C. Damping as a design variable

It is often seen that the damping is matched in de-
signing a harmonically excited VEH, as can be seen
in Fig. 5. If the VEH has no displacement limit,
then differentiating the output power as in [33]
with respect to (., will indeed yield the maximum
power. However, this is mostly unrealistic. Consider
a VEH of length L., proof mass length of % and
negligible spring geometry, which is considered as
the ideal distribution in a VEH to gain maximum
output power [6]. The maximum total ()-factor
allowing harmonic motion can then be found as
QTmaz = f;o. This implies that (rim = %
If Znww = QrmaaYo = % then the matching
conditions are indeed optimal, provided that @,
is invariable. In practice however, L, is likely to
be fixed through design specifications, as well as
Zmaz- As long as @, is variable, it will be better
then to maximize @,, while minimizing Q., as
long as Q7,maezYo < Zmas is satisfied. This implies
that the designer should be aware of the attainable
mechanical and electrical damping levels.

In most cases, the mechanical damping is not
fixed and can be reduced to a minimum. Then while
reducing the mechanical damping, the electrical
damping could be increased to retain the same
amount of total damping. In this way, a set of
damping levels can be found which yields the same
Q-factor and total amount of dissipated energy.

This concept is demonstrated in Fig. 6: the con-
tour plot of the combined ()-factor ), is shown and
is superimposed on a contour plot of the normalized
electrical power at resonance, which scales by
¢/ (Ce+Gn)? [33]. Given is a minimum mechanical
and maximum electrical damping achievable and
a maximum ()-factor as constraint denoted by the
dashed lines. The dashed lines indicate the direction
to the feasible region. Then several combinations
of damping can be used to achieve that ()-factor:
matched damping (black square) or maximized
electrical damping (red dot). In both cases the total
damping is constant, yet in the red dot case more
power is dissipated to the electrical domain as
seen from the power contours. On the other hand,
when (,, is fixed and no constraint on the ()-factor
is imposed, it is indeed seen that when matched
damping is applied, the output power is maximized.
This is often the approach taken in literature. From
Fig. 6 it can thus be seen that if the maximum
allowable Q)7 is known, damping values can really

be considered as design variables.

D. Limitations of study

The classification of optimal loads may be thought
of to be incomplete; for instance in the nonlinear
dynamics category the FupC and bistable VEHs
are missing. The same goes for the piezo part.
However, the main goal of making an overview is
to provide clarity to something indistinct. Hereto,
the cases that had no clear optimality available in
literature or that were too specific, were omitted
from the classification to keep it clear. The main
purpose is to provide the insight that damping levels
are design parameters and are not necessarily to be
taken for granted.

It must be noted that it is likely that many works
found in literature had their primary focus on other
aspects of the VEH (e.g. the stiffness or potential
well), instead of optimizing the damping. It may
therefore be debatable how representative certain
data points are with respect to their harvester class.

Next to that, there’s another uncertainty in the
data. Literature is quite scarce on documenting the
damping parameters. As a consequence, to ensure
having a dataset large enough to generate some
meaningful figures, some damping parameters had
to be constructed from other data. This includes
finding the damping ratio from the dimensional
damping coefficient or from the (-factor. For
VEHSs without an endstop, L. had to be estimated
by using the Q)-factor and the proof mass size. No
matter how carefully these data are reconstructed, it
will introduce some uncertainty in the data points.

Lastly, it must be noted that some of the data
points also belong to the same VEH, but under
different testing conditions.

E. Recommendations

Finding a sufficiently large set of damping data
from VEHs is not easy; many papers do not specify
their used damping values, while these can provide
a significant amount of information. Therefore, in
order to get a more clear view on VEH damping
performance in literature, it is recommended to
specify the used damping levels. In most cases,
the dimensionless damping ratios (,, and (., can
be easily determined though an experimental im-
pulse response. The output voltage can be mea-
sured and a log decrement will yield the damping
ratio. Under open circuit conditions, (,, can be
determined, closed circuit conditions provides the
largest (. achievable and under optimal load, (.
under operational conditions can be found. Along
with those damping values, it is very valuable to
report excitation conditions and parameters needed
to find FoM, from [5]. In this way, relations
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between damping, motion ratio and efficiency may
be found. The current data set is suggesting, yet too
incomplete to find patterns relating those variables.
When more complete, design flowcharts may be
generated to enable accelerated VEH design for
proposed input signals.

F. Future research

It is seen from the Figs. 4,5 that the low range of
A is somewhat unrepresented; most harvesters are
designed as resonators. It therefore seems that there
is still a challenge where the input motion is large
and the harvester length is small. As a small L, has
a better influence to efficiency than Yj at low A [5],
using piezos may be promising to find VEHs with
a low motion ratio and high efficiency.

As seen from from Fig. 2, an optimality for
shock loading is not yet found. This type of
motion input may need some more attention in
analysing the optimal damping level and may be
tightly connected to VEHs utilizing high levels of
electrical damping.

5. Conclusion

Despite the large amount of work found in energy
harvesting, the amount of work done in cases where
the input motion is large and the energy harvester
length is small is less represented. Most VEHs
built are of a resonator type. In this research, it
is seen that when it comes to choosing a suitable
level of damping, various levels of damping may be
chosen to satisfy the motion constraint. In practice
though, it is seen that mostly matched damping
or matched resistance is chosen as the solution.
This may indeed provide a good solution when
the maximum allowable amplitude is very low
and the maximum achievable electrical damping
is weak. It is also feasible when the mechanical
damping is fixed and no displacement constraint
is imposed. However, it has been shown that if
a certain maximum (-factor has to be satisfied,
the mechanical damping ratio may be minimized
while maximizing the electrical damping ratio. In
this way, the total damping remains the same, yet
more power is dissipated to the electrical domain
opposed to the matching criteria. It is also seen
that the optimal load resistances actually depend on
what type of motion input is used. It seems that this
is not often taken into consideration in works found
in literature; most optimalities used are valid for
harmonic inputs, yet they are used in various types
of excitation. As a result, it can be concluded that
the damping levels should be considered as design
variables, which is often overlooked by designers.
The optimality should not be taken for granted;

it should be designed with respect to the motion
ratio.

Contributions to paper

« Provided a comprehensive overview of damp-
ing strategies and optimal loads for different
motion inputs.

« Analysed VEHs in literature to find out what is
actually done in practise considering damping
performance.

« Provided an intuitive graph to clarify the way
how many works in literature select damping
levels and how it could be done differently
from a design perspective, starting at fixed
motion constraints.
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DESIGN PROCESS

In the design process, the design requirements are formulated along with their subprob-
lems. Subsolutions are found to these and through a structural design method, a suited
prototype is found. Furthermore, finite element simulations are carried out to achieve an
appropriate stiffness compensation of the piezoelectric beam.
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3.1. CONCEPT GENERATION

To design a zero stiffness piezoelectric beam, many approaches can be found in order to
find a suitable design. For instance, the negative stiffness that is induced can be realized
in a multiple of ways, all having their advantages and disadvantages. In order to ensure
that all subsolutions result into the best assembly, a systematic design procedure is used.
First, the features to be found in the harvester have to be assessed. These are as
follows. A positive stiffness is to be found through the deformation of the piezoelectric
beam. This stiffness is to be compensated by a negative stiffness, to bring their sum arti-
ficially to zero. The shape of the piezo is an important design parameter as well, as it has
been shown that tapering a piezoelectric beam can greatly increase output performance
through an improved strain distribution [9]. Furthermore, endstops need to be included
to limit the deflection of the beam. These act as a strain limiter and protect the beam
from strain overloading. This is important as the material is very brittle. Next to that,
the endstops are also used to transfer momentum into the system. Table 3.1 shows an
overview of the features to be found in the VEH with their corresponding solutions.

Table 3.1: Morphological chart comprising subcomponents featured in the design and their corresponding
subsolutions. Green flexures denote piezoelectric elements, blue denote negative stiffness elements.

Features Solutions

1: Positive stiffness I 4' @ m
2: Negative stiffness '/\-I :.: I . I. ‘
e

C

3: Piezo [/\ \b \ %
4: Endstop “ ./3\. ' ? A

/) I D

2N
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3.1.1. ELIMINATION OF SUBSOLUTIONS

Some subsolutions are hard to implement in combination with other solutions or are
simply infeasible. Therefore, these designs are removed before moving on to the compi-
lation of designs. Subsolutions are elimated due to lack of applicability, manufacturabil-
ity issues or undesired interference with other solutions.
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 1d. Rotational folded suspension: this solution is suboptimal for rectilinear (SDoF)
vibrations and favors rotational vibrations. Those are of less interest and also more
difficult to test in practice.

e 2c. Double-tapered cantilever: although it may be superior in performance when
it comes to S-shape deformation due to improved strain distribution, it becomes
rather hard to manufacture when it comes to abrasive cutting of piezoelectric ma-
terial.

» 3d. Meandering cantilever: may be efficient in terms of active area, but also hard
to manufacture and to balance.

° 4c. Opposing magnet endstop: is likely to interfere with other (magnetic) subsolu-
tions and may introduce undesired dynamics such as stiffening nonlinearity.

 4g. Deformation-compliant endstop: while this solution is a good fit to limit strain
in the cantilever, it is likely to underperform in transferring kinetic energy to the
cantilever through impacts. Also, as the cantilever gradually makes contact with
the endstop, friction due to sliding may occur, resulting into extra losses.

3.1.2. DESIGN CRITERIA

From the subsolutions that are left, many solutions can be assembled. However only one
or a few designs will be used in the end for further analysis. To assess which design(s)
will be most promising, assessment criteria need to be formulated to provide a solution
to the issue posed in section 1.3.3:

1. The design should be as such that the length dimension in the excitation direction
(L2) is as small as possible in order to obtain a low motion ratio.

2. The total stiffness of the system should be as near as possible to zero.

3. The zero stiffness condition should the most tunable. This allows for quick testing
of the mechanics and reduces design iterations.

4. The design should be manufacturable. The implementation of the piezo should
be viable, also in terms of output power.

3.1.3. MOST PROMISING CONCEPTS

From the full set of possible designs generated by combining all of the subsolutions left,
six of them were selected on the account of being the most feasible. These are shown
in figure 3.1. As can be seen, folded suspensions are excluded, as they are a bit over-
complicated with respect to the problem. Therefore, the bistable fixed-guided stage is
rendered obsolete as well, as these provide a pure rectilinear motion. Endstops are not
yet included in the figure as these can be chosen more freely later on.
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Figure 3.1: Most promising concepts generated. Endstops have not been included into the figures.

3.1.4. SENSITIVITY OF NEGATIVE STIFFNESS ELEMENTS

In the design criteria, it was mentioned that the amount of negative stiffness should be
tunable. Various reasons can be found to see why this is important. First, the stiffness
behaviour of the piezo is not entirely known in advance: a piezo is an electromechani-
cal element, so the mechanical behaviour depends in part on the details of the electrical
circuit to which it is connected. It is also known that the load resistance connected to
a resonating piezo has an effect on the resonance frequency [10]. A larger load results
into a higher resonance frequency, so an additional stiffness must be present due to that
larger load. A piezo with a large electromechanical coupling is desired for the power
output, so this effect can be of major influence. Furthermore, piezoelectric elements are
known to display a rate dependent hysteresis in their relation between applied voltage
and displacement [11]. For a transducer, it is likely that effects on the electrical domain
could also be translated to the mechanical domain. Therefore it is likely that hysteresis
will also have a strong effect in the force-displacement behaviour. As it is not exactly a
priori known what effects this will cause, it is desirable to have a versatile stiffness char-
acteristic. This means that the negative stiffness must be tuneable by altering a parame-
ter such as a preload. Therefore, for the negative stiffness elements found in figure 3.1, a
FEM simulation of negative stiffness behaviour is carried out to uncover the qualitative
behaviour of these elements considering tunability.



3.1. CONCEPT GENERATION 27

0.3 Preload di (mm)
—
—_—9

3

20 -15  -10 -5 0 5 10 15 20
Top lateral displacement (mm)

(@) (b)

3 T T -
Magnet spacing (mm)

Force on middle magnet (N)

3 . . .
-10 -5 0 5 10

Middle magnet displacement (mm)

20 T T T T T

Magnet ing (mm)
15 —4
—3

10 2

1

Force on displaced magnet (N)
o

T l
!

(e) )

20 . . . . .
-3 2 -1 0 1 2 3

Magnet displacement (mm)

Figure 3.2: Sensitivity of negative stiffness elements to displacement tuning. (a),(b): buckled flexure, (c),(d):
attracting magnets, (e), (f): repulsive magnets. Double arrows denote movement direction, dotted arrow
the varied displacement parameter.
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First, the buckled flexure’s negative stiffness behaviour is analysed in ANSYS APDL.
Here, a flexure of 50x5x0.1 mm is modelled, as can be seen in figure 3.2a. One side of
the beam is fully constrained, except for the direction of the beam length, to provide for
a preload displacement in this direction. The other end is also fully constrained except
for the lateral displacement, this is to measure the force-displacement behaviour. The
analysis is done for different preload displacements and its results can be seen in figure
3.2b.

Next to that, the configuration of attracting magnets is investigated. This case is
modelled in COMSOL Multiphysics as it easily allows modelling of magnetic fields. Fig-
ure 3.2c shows the configuration that is modelled. It consists of three 1.22 T 10x1 mm
disk magnets. The upper and lower magnets are fixed and a displacement sweep is ap-
plied to the middle magnet. The distance between the fixed magnets is variation param-
eter to investigate its influence on the stiffness. The results are shown in figure 3.2c.

Lastly, the configuration of repulsive magnets is modelled. The modelled configura-
tion is shown in figure 3.2e. It consists of two 1.43 T rectangular magnets of 4.5x4.5x2
mm. In this case, the right magnet is fixed and a vertical displacement sweep is applied
to the left magnet. The distance between them is the variation parameter. Figure 3.2f
shows the results.

From the simulation results, the differences between the various negative stiffness
methods become evident. A buckled flexure retains its stiffness whilst changing the
preload. Adjusting the preload only results into a larger stroke and thus a larger po-
tential barrier. Consequentially, a buckled flexure is unable to compensate for stiffness
perturbations through preload tuning. It will require using a flexure with different ge-
ometry. The attracting magnet configuration shows quite a different behaviour. It be-
comes evident that varying the distance between the fixed magnets alters the negative
stiffness as well. Moving the magnets closer together raises the stiffness and lowers the
linear regime; the curves display a stiffness hardening. Last, the repelling configuration
also shows alteration of the stiffness through varying the distance between the magnets.
Here, the configuration rapidly stiffens if the magnets are getting close. However, op-
posed to the previous configuration, now stiffness softening is present.

3.1.5. ASSESSMENT OF BEST DESIGN

As the criteria, most promising concepts and their abilities are now known, their per-
formance can be assessed by use of a morphological chart. First, for each of the crite-
ria, scores need to assigned for certain features that correspond to that criterion. These
scores are between 2. The scores are defined as follows:

1. Small length:
* +2 Buckled flexure: a planar design may be realized, which takes little space

in out of plane direction.

e -1.5 Parallel guided stage: a second piezo beam for a parallel guided stage
claims more space in excitation direction.

* +1 Repelling magnet: this configuration allows for a collinear design, taking
less space in the excitation direction.
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* +0.5 Attracting magnet: the magnets need to be placed in excitation direc-
tion, claiming more space.

2. Zero stiffness proximity:

* +1 Buckled flexure: depending on implementation, the reaction moment of
the buckling flexure may force the system to bistability.

movements that need to be compensated. May be beneficial in combination

* +0.5 Parallel guided stage: no rotations of the piezo flexure and less parasitic
with buckling flexure of opposing magnet. -

* -1 Opposing magnet: due to opposing polarity, there is a torque on the mag-
net. This may result into a position bifurcation, forcing the cantilever into
bistability.

° +2 Attracting magnet: low magnetic torque exerted on magnet and it is a
stable configuration.
3. Negative stiffness tunability
-1 Buckled flexure: only the motion range or energy barrier can be adjusted
by preloading, stiffness can not be tuned.
* +0.5 Parallel guided stage: may provide stability against bifurcation behaviour.

* +1 Opposing magnet: stiffness can be tuned through adjusting distance be-
tween the magnets, yet the system may become rapidly unstable due to bi-
furcations.

° +2 Attracting magnet: stiffness can be tuned through distance between mag-
nets, and the attracting forces can be used to stabilize the system.

4. Manufacturability

* +1 Buckled flexure: endstops are not mandatory as the flexure limits the mo-
tion range. Planar design out of a single metal sheet is possible.

e -1 Parallel guided stage: this configuration will induce an s-shape or inflec-
tion point in the deflection pattern of the piezo. This results into charge can-
cellation which can be avoided, but complicates the design.

* +1 Opposing magnet: easy to implement yet the placement of the magnets
will demand great accuracy.

* +1 Attracting magnet: also easy to implement, also sensitive to magnet place-
ment but probably less problematic in this case.

This morphological chart to assess the best concept is shown in figure 3.3. The columns
show the concepts and the rows the criteria. Each criterion can attain a score between +
2.
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Figure 3.3: Morphological chart used to assess the best concept.

From the morphological chart it can be seen that Concept 3 has the best score, followed
by Concept 1. Concept 3 performs best when it comes to approaching zero stiffness and
tuning capabilities, although the length in the excitation direction may be a bit larger.
Concept 1 on the other hand may perform very well when it comes to length in excitation
direction. The extent to which it can approach zero stiffness is considered lower, as the
buckled flexure induces a bending moment at the tip of the piezo, rendering it easily
bistable. Concept 1 has no tuning capability as was demonstrated in figure 3.2b.

3.2. ENDSTOPS

One thing may be noticed in the design process up till now. Endstops were a subsolution
included in the morphological chart in figure 3.1. However, they aren’t included yet in
the concept choice. The main reason for this is that almost every type of endstop could
be combined with the designs so far, thus creating a very large set of possible designs.
Therefore, a design is chosen based on the first three functional requirements and the
choice of endstops comes afterwards. The best type of endstop can be deduced from a
short line of reasoning.

* Asalready pointed out in section 3.1.1, opposing magnets (4c) are infeasible due to
magnetic interference and deformation-conforming endstops (4g) are infeasible
due to friction.

* No bistable mechanism is utilized in the chosen concept so (4b) is eliminated.

* Gradually stiffening endstops such as springs (4d,e) have to be designed with ex-
treme care with respect to the force-displacement characteristics. The spring ma-
terial should be non-magnetic and non-conductive to prevent eddy current losses.
Considering these points renders these suboptimal.

* Hyperelastic endstop (4f): a rubber endstop is beneficial when it comes to pro-
tection from collision damage. However, losses in the material may also render it
suboptimal as it may result into a very low coefficent of resistitution.

This leaves only one solution behind, which is the hard stop (4a). What remains is to
choose from what material the endstop is made. As mentioned before, the endstop must
be non magnetic to prevent the magnetic proof mass from adhering to it. Furthermore,
a non conductive material is more suitable to exclude the presence of eddy currents.
These will provide an additional damping to the proof mass motion. Although it is an
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effect that occurs at rather larger velocities, it is always preferred to exclude potentially
detrimental effect when exploring something novel.

Considering the points just mentioned, a plastic may be a good solution as endstop
implementation. As it is softer than a metal, it helps to prevent the impact from being
so hard that it damages the piezo. A disadvantage of using plastics is that plastic defor-
mation is more likely to occur, resulting into energy losses. However, as the proof mass
is rectangular and the filleted edges makes contact with the endstop, the contact can be
seen a a line contact. As a result, plastic deformation will require an amount of force that
is unlikely to be encountered in this case.

3.3. EARLY DESIGNS

Before the manufacturing of the final protoype, a few early prototypes were made to
investigate the behaviour of a statically balanced piezo. The designs of those prototypes
and accompanying prelimary results from measurements can be found in appendix A.

3.4. DESIGN FOR FINAL PROTOTYPE

Most designs found in appendix A preceding the final prototype have a tunable magnet
configuration: by turning the screws, the distance between the magnets can be adjusted,
enabling the stiffness levels to be tuned. While this is very convenient, it results into a
prototype that is quite large, also in the excitation direction, which is exactly againt the
problem that is to be solved. Consequentially, the need arises for a prototype that has a
fixed distance between the magnets, enabling a small length in the exitation direction. As
such, a COMSOL model is used to determine the correct distance between the magnets.

3.4.1. DETERMINATION OF THE MAGNET DISTANCE

To find the required distance between the magnets, first the force required to deflect the
beam must be found experimentally. Therefore, a force-displacement measurement has
been taken for the piezo in uncompensated condition. A load resistance of 1IMQ was
connected to the piezo during the measurement. The results can be found in figure 3.5b.

To find the distance between the magnets, first one needs to have magnets. As can
be seen in appendix A, one of the preceding prototypes has disc magnets clamped to the
tip of the beam. The mass of these disc magnets forming the proof mass proved to be
suitable, therefore a rectangular block magnet of about equal size and mass was sourced
from HKCM Engineering. After having found the proof mass magnet, the endstop mag-
nets needed to be found. Bar magnets were chosen with equal height of that of the proof
mass, allowing 2D magnetics simulation (So the out of plane dimension in the simula-
tion is the same).

Next, the distance between the magnets can be found by simulation of magnetic
forces by using COMSOL Multiphysics 2D magnetics. Figure 3.4 shows the flux density
contour plot of the simulation. The upper and lower magnets are the fixed magnets, the
middle is the proof mass magnet. It is shown in the upper outmost position and it can
be seen that the proof mass magnet is slightly rotated which is due to the tip rotation of
the piezoelectric beam. A rectangle of air is modelled around the magnets to represent
the medium in which the magnets are present.
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To find the force-displacement relation, the parametric sweep function is used. In
this way, a certain calculation can be repeated by sweeping over a parameter. In this
case, it is the lateral displacement of the proof mass. The proof mass is displaced in steps
over its displacement limit and at each step, the magnetic force between the proof mass
magnet and fixed magnet is evaluated. As a result, a force-displacement relationship is
found.

However, this only results into a force-displacement for a certain magnet distance.
Therefore, to find the correct magnet distance, another parametric sweep is applied over
the magnet distance. In this way the correct magnet distance can be easily found by
checking which negative stiffness curve matches best with the measured curve of the
piezo. In figure 3.5a the negative stiffness is shown for magnet distances between 4 and
7 mm. Comparing the results to figure 3.2d, a difference may be spotted. In figure 3.2d,
the stiffness is pretty nonlinear whereas it is linear in figure 3.5a. Apparently, the ge-
ometry of the magnet influences the stiffness nonlinearity. It has been observed that
this nonlinearity plays a larger role in axisymmetric models/disc magnets than in the
magnets that are used now; it has been observed that enlarging the fixed magnets does
introduce nonlinearity, but not as extreme as in figure 3.2d. Figure 3.5b shows the result-
ing negative stiffness that is close to the stiffness of the piezo and that is used for further
developing the harvester. To verify the model, the negative stiffness has been verified
with the setup from 5. As can be seen from figure 3.5b, the negative stiffness is indeed
linear.
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Figure 3.4: Flux density plot in the simulation.
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Figure 3.5: (a) Negative stiffness for various magnet distances, (b) measured positive stiffness of the piezo
with simulated and measured negative stiffness from the magnets.

3.5. FINAL PROTOTYPE

In figure 3.6 renders, cross section views and an exploded view of the final prototype can
be seen. The large block magnet is glued to the tip of the piezo by means of metal epoxy
glue. A header is soldered to the terminals of the piezo to allow connection of wires. This
avoids the risk of stripping off the terminals when a directly soldered wire is pulled to
hard. Two frames printed in PLA with 100% infill clamp the piezo from both sides. Two
M3 socket head cap screws in combination with M3 brass threaded inserts are used to
firmly clamp the piezo. The threaded inserts have been pressed into the plastic with a
soldering iron, melting the plastic around the insert to obtain a good fit of the insert.
The other four threaded inserts are used to connect the VEH. Four nylon M2 screws are
used to clamp the two frames together around the magnets. Non-conductive screw were
chosen here to prevent possible eddy currents. The frame was printed just a little larger
in the excitation direction. This is for the reason that the magnet distances are not a
perfect prediction and of course there is a tolerance in the printing. By printing it a little
larger, sanding it down and iteratively testing for stability, a good zero-stiffness condition
can be obtained.
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Figure 3.6: Renders and cross-sections of the final design.




MODEL

In this chapter, the approach for modelling the dynamics of the stiffness compensated en-
ergy harvester is extensively discussed. A distributed parameter model is used from litera-

ture and its derivation is shown. The model is further developed by including the mechan-
ics of the harvester in this work.

35
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4.1. MECHANICS OF A PIEZOELECTRIC ELEMENT

Piezoelectric elements can be classified as transducers. That means, dynamics in the
electrical domain are transduced to for example the mechanical domain and the other
way around. This working principle can already be noticed in the constitutive equations
of a piezoelectric element [12] .

sET+dE 4.1)
= dT+¢"E (4.2)

n
Il

Where S is the strain, s is the compliance under constant electric field, T is the stress,
d is the charge constant, E the electric field, D the electric displacement and el the
permittivity under constant stress. The interpretation of the constitutive equations is
straightforward: the induced strain in the element is equal to the sum of the mechani-
callyinduced strain and the strain induced due to the electric field that is formed through
polarization of the material. When the element is short-circuited, no electric field can
be generated and thus the strain is merely present due to mechanical stresses. Further-
more, the electric displacement is equal to the displacement induced by stresses and by
the electric field. If no mechanical stress is applied, the charge distribution will only be
aresult of the applied electric field, as in the case of a capacitor.

The foregoing clearly indicates the need for a model that considers the dynamics in
both domains and that couples them together. Therefore, the model will consist of a sys-
tem of two equations, similar to the constitutive equations shown above. The derivation
of those will be shown in the following sections.

4.2. MODELLING APPROACH

Modelling a piezoelectric energy harvester in this specific case is far from straightfor-
ward. First, in order to obtain an accurate result in terms of output voltage and power,
the distribution of displacement and strain along the beam length must be accurately
known. This necessitates the use of a distributed parameter or continuum model. Lumped
parameter models are available as well [13], but these are known to show inaccuracies
and correction factors from distributed parameter models as in [14] are neccessary to
compensate for the loss of accuracy.

In [15], a distributed parameter model is discribed for a cantilever piezo beam that
is used as a resonator. The model shows very accurate results compared to experiments.
Modal analysis is used to find its dynamic deflection and voltage output. As the beam is
driven into resonance, a certain mode shape is dominant which renders modal analysis
as a useful tool. Now in the case of a statically balanced piezo beam, there is virtually
no stiffness present. As a consequence, there will be no resonance (or at least a very
low resonance frequency due to some remanent stiffness) and its accompanying mode
shape.

Nevertheless, a deflection pattern must be present and it is likely to remain quite
constant throughout low frequencies. The fixed magnets introduce a tip force on the
proof mass magnet, resulting in a static deflection pattern. In the limit, a zero stiffness
condition is achieved and then one could reason that the deflection can be described by
that static deflection pattern of a cantilever beam with tip force and moment multiplied
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Figure 4.1: Normalized deflection and strain for static deflection pattern and mode shape of the first eigen-
mode.
by some temporal function:

_(Px*(3L-x) . Pdx*
- 6Y1I 2Y1I

0 sinwt (4.3)

Where P is the load on the beam tip induced by the magnets, x is the beam coordinate, L
the beam length, Y I the bending stiffness and d the distance between beam tip and the
center of gravity of the tip magnets, which induces a moment at the beam tip. The static
deflection § is plotted along with the first eigenmode from [15] in figure 4.1. The second
derivative, which directly relates to strain is plotted as well. All curves have been nor-
malized with respect to the largest value. As can be seen from the figure, the deflections
from the static pattern and the eigenmode are very similar. The second derivatives show
an increasing difference when moving toward the beam tip. Nevertheless, at the region
where the strain is the largest, the difference is the lowest. Now the following can be
deduced. Be it the case that all stiffness would be compensated, i.e. a perfect zero stiff-
ness mechanism is produced, then the static deflection pattern § could be used. On the
other hand, if no stiffness were reduced, the eigenfunction of the first eigenmode could
be used, so this sets the extremes inbetween which the deflection could be. It is observed
that both cases are pretty similar in deflection and partially in strain. As it not clear yet
what the exact condition is going to be, it is justifiable to assume that the eigenfunction
can be used to describe the deflection pattern.

The modelling approach is therefore as follows. First, modal analysis is used and
for this, the model from [15], [14] is used. The derivation of this model is discussed in
section 4.4-4.6. Once the equations of motion have been found for a cantilever piezo
beam, the endstops are included in the model. Next, the negative stiffness is added and
the force-displacement data is added into the equations of motion. This is to account
for hysteresis and remanent stiffness.
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4.3. MODE OF OPERATION

Piezoelectric elements can be manufactured in all sorts of shapes and can also have dif-
ferent modes of operation. Piezoelectric constants denote the relation between mechan-
ical and electric quantities, e.g. the relation between mechanical strain and electric field
[12]. The vectorial direction of these quantities depend on the mode of operation. Con-
stants as the piezoelectric constant d;; have two subscripts i and j, which are the direc-
tions of poling and strain, respectively. In piezoelectric ceramics, there is a convention
stating that '3’ is by default denoted as the poling direction and all perpendicular direc-
tions to the poling direcion as "1’ [12]. So as a result, d33 means strain and electric field
are in the same direction, enabling use as a linear actuator. In the case of a bending bi-
morph beam the ds; constant is used. This implies that the bending moment induced
in the beam stretches the beam in its length direction, inducing an electric field in the
transverse direction. This principle is shown in figure 4.2, where the directions have been
indicated as well.

4.4. BEAM EQUATION

hl

b

Figure 4.2: Diagram indicating model parameters. The lower figure shows the cross section of the beam.

The differential equation for the equation of motion (EoM) can be found as follows:

mﬁwuﬁ+61&wmn+cdwuﬁ+6%ﬂmn_4m+Mﬁu_Dﬁﬁ%uﬁ
012 S axtor Y a2 ! 012 wa)

With
Pwx1) _ 0wk 0 FMx1 s)
ox*dt ot ox* ot 0x? '
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Here M is the internal moment, C; the Kelvin-Voigt strain rate damping, I the area mo-
ment of inertia, w the transverse displacement of the beam, C, the viscous damping
coefficient, m the mass per length, M; the tip mass, w,, is the base excitation and § is
the Dirac delta function. The internal moment can be found by integration of the axial
stresses encountered in the beam cross-section. As the beam is composite, this needs to
be done for the piezoelectric and substrate layers separately. The internal moment can
therefore be found as follows:

hs

M(x,t) = —b(f_h2
_hs _p

2 p

P # s Fely P
T ydy+f e T ydy+fhs T ydy (4.6)
2 2

Where b is the width of the beam, h; the height of the substrate layer, hj, the height

of the piezoelectric layer and TIP'S the axial stress in piezoelectric and substrate layer,
respectively. These can be formulated as follows:

Ty = Y,S) 4.7)

7 = cfSP—es3Es 4.8)
Pw(x, b

Six, ) = - T (4.9)

With Y the Young's modulus of the substrate, Sf's the bending strain, cf; the Young’s
modulus of the piezoelectric layer, es; the piezoelectric constant and E3 the electric field.
Substitution of eqns. 4.8-4.9 in eqn. 4.6 results in:

hs

o _L([? g Pw , Evd 5 dew 24
(x, )=~ f—";—h,,_cnﬁy —es1E3y J’+j:ﬂ— sﬁy y+

ﬁ+h,,
ﬁ 11 6 > y —e31Esydy| (4.10)

Evaluation of eqn. 4.10 results into:

bek, 0% w hs)3 hs 5\ bes Ez h? 2w

T G 0 =)+ PR G s )+ Vg
bek 02w h h bes, E
g et G

M(x,t) =

2
((— hp)* - (f)) (4.11)

It is important to note that if the piezoelectric layers are connected in series, the polar-
isation of the bottom layer has to be in opposite direction with respect to the top layer.
As the strain at bottom has an opposite sign with respect to the top, the direction of the
generated charge or voltage is opposite as well. However, the due to series connection
the voltages are summed up and a zero voltage will result if the polarisation direction is
the same. Therefore opposite polarisation is necessary at one of the piezoelectric layers.
This means that a minus sign may be added before the last term as this is the moment
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term due to generated voltage. As a result, eqn. 4.11 can be simplified to:

%w 2bcyy h hs s
M(x 1) = o Vsl + ((hp 2 —(Es)) +
6‘3119 h% hs)z)
) V(4 hp+ 2 (Hx)-H(x-L1L)) 4.12)

Notice the inclusion of the Heaviside step function H(x). The reason of the inclusion of
this function is twofold: first, it is necessary as to guarantee that the voltage coupling
term remains to exist when plugging it into eqn. 4.6. Otherwise, the term would drop
due to double differentiation in x. Furthermore, it allows for introducing the case where
only a patch of piezoelectric layer instead of the full beam length. Notice that a voltage
term V is present in eqn. 4.12 by recognizing that

Ey=— (4.13)
°7 2h, '

Furthermore, the bending stiffness Y I and coupling coefficient 8 can be recognized as:

2b h3 5 hs®
vio= 3 v+ . ((h,,+—) . )) 4.14)
0 = efﬂle(h__(hp 3)2) (4.15)

Substituting in eqn. 4.4, the following coupled beam equation is obtained:

2

L AL aw+YI£ ev(dé(x) S L)) —(m+M,5(x— L))a el
a2 axtor %ot 8x2 dx dx ! 012
(4.16)

4.5. MODAL ANALYSIS

Solving the equations as partial differential equations is fairly complicated. A method
to simplify the process is modal analysis. Here, a certain deformation pattern, called
an eigenfunction or mode shape ¢; is dominant at a corresponding natural frequency
w;. As such, the response can be split into a spatial eigenfunction ¢;(x) depending only
on geometry and a temporal function g(#) depending only on time. Multiplying these
two will result in the response at or near that certain frequency. Repeating this process
for every natural frequency and summing them, the infinite series in eqn. 4.17 shows the
displacement for a general condition. Note the similarity to separation of variables, used
for solving partial differential equations.

(o]

wx, 1) =) ¢i(x)q;(t) 4.17)

i=1

The eigenfunction is defined as :

B Ai Ai . A .
(bi—Al(cosfx—coshfx+al(smfx—smhfx)) (4.18)
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with
sinA; —sinhA; + Ai% (cosA; —cosh ;)
cosA; +coshi; —A; %(sin/li —sinh ;)
Details on the derivations of the derivations in this section can be found in suited text-
books [16], [14] In eqgs. (4.18) and (4.19) A; is the eigenvalue corresponding to the jth
vibration mode and is related to its natural frequencies. It can be found through the
following characteristic equation:

(of} (4.19)

AiM
1+cosA;coshA; + = Lt (cosA;jsinhA; —sinA; coshA;)—
m

A1, ASM I,

_mlL3 (coshA;sinA; +sinhA;cosA;) + —

(1—cosA;coshA;)=0 (4.20)
In eqn. 4.18, the eigenfunction has a scaling factor A;. The magnitude of this scaling
factor can be found by using mass normalization of the eigenfunction, which is imple-

mented through the following orthogonality condition:
doi(x) . dej(x)
1 =0; 4.21
' dx Ly (4.21)

Substituting for ¢»; and separating A;, the following equation can be obtained, which can
be evaluated numerically in MATLAB. From now on, i becomes a 1 since only the first
eigenmode is of importance.

L
fo Pi(x)mepj(x)dx +p; (L) M (L) +

L A A A A 2
A%(m/ (cos—lx—cosh—1x+01(sin—1x—sinh—lx)) dx+
0 L L L L
2
Mt(cosﬁl —cosh; +o1(sin, —sinh)Ll)) +

1 2
Itfl(—sinﬂtl —sinhA; +01(cosy —cosh/h)) ) =1 (4.22)

Having completely found ¢;, by making use of equation 4.17, the beam equation 4.16
can be transformed into modal coordinates:

0%q (¢ 0t g (t 0q:(t
(;7]:12()+C81 éb;ix) cg;)+cu¢l(x) q1(1)

2
Ly P

e () ot 02

q()+0V = fi(1)
(4.23)
Through premultiplication of the same eigenfunction, vibration mode orthogonality con-

ditions will result into:

d*q, (1) du( de (x) B
a2 +2( 1w ar +w7iq1(1) +6 dx x:LV(t) =fi(» (4.24)
where for sinusoidal excitations:
L
(D) = —You? sinwt(mf (l)l(x)dx+M[(p1(L)) (4.25)
0

As can be seen, the viscous damping terms have been replaced by a single modal damp-
ing term ({;, which can be experimentally assessed by e.g. measuring the logarithmic
decrement in an impulse response. This provides a more straightforward method to ob-
taining the damping parameters.
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4.6. CIRCUIT EQUATION
The electric displacement in the piezoelectric layer can be found as:

D3=ds Ty + el Es = e3,SY + €5, E3 (4.26)

The relative permeability is mostly given in case of constant load, 53?3. The constant
strain case egg can be found as a function of it. Next to that, the electric field E3 can be
expressed in terms of the voltage and the height of the piezoelectric layer.

£33 = £33~ di 01y (4.27)
140)
D3 =e318 — eggh— (4.28)
p

The piezoelectric constant e3; can be related to the charge constant and Young’s modu-
lus through:

ds1
es1 = — =daic} (4.29)
i
The strain can be found by substituting eqn. 4.9 for S;. An average bending strain is used
through the use of /), which is the distance between the center of the piezoelectric layer
and the neutral axis of the composite beam.

Fwx,) 5 V@)
— &
ox2 3 h,

Ds(x, ) = —dz1 ¢}y hpe (4.30)

Next, Gauss’s law can be used to relate the electric displacement to the built up charge

A 4

+++++4!+++++++ / b

L —

Figure 4.3: Schematic depiction of a piezoelectric capacitive element for the use of Gauss’s law. Green
indicates the piezoelectric material, yellow the electrodes.
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and thus to the current. Figure 4.3 shows a depiction of how it is applied.

d v
d—t(fAD-ndA)— R, =1i(1) (4.31)

The charge can be found as:

Fw(x, 1 ¢ V()
+

92 £33 hp dx (4.32)

L
Qr) = —bfo dsicty hpe

o d L 2 w(x, 1) €5, bL dV (1)
l(t):d—?:—bfo dz1 ¢ty Rpe S 0% 32 P (4.33)
14
S 3
ebLAV (D) V(1) B fLa w(x, 1)
= —bdsicE h ——d 4.34
n, dr ' R s1e e | Toax2 F 4-34)

Having found the circuit equation, modal substitution may be used though the use of
eqn. 4.17.

S L ;2
e3bLdV () V(1) E f 0“1 (x) | dqi (1)
=—bds cE h dx——— =
h, dt | R snftpe | 5 g
h,+ hs d dgi (¢
—bdlefl p s dgpp(x) q1(2)
2 dx |,-; dt

(4.35)

Looking at the circuit equation, one can identify the capacity and output current terms of
the piezo. As a result, it can be seen that the output current is dependent on the applied
strain and the velocity by which it deforms, i.e. it is related to the strain rate.

CpdV() V(1)
il 2Py 4.
2 dr RmR P (4.36)

Equation 4.36 can also be found by making use of Kirchhoff’s circuit laws. A piezoelectric
element can be modelled as a current source parallel to a capacitor. Connecting the
lower and upper layer in series will result in the electric circuit as shown in figure 4.4.
From the figure, one can easily deduce eqn. 4.36.
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v R

Figure 4.4: Electrical circuit representation of two in series connected piezoelectric elements.

4.7. MECHANICAL DAMPING

The mechanical damping of the cantilever is one of the parameters that is hard to find
analytically. However, it can be assessed in a straightforward manner through experi-
ments. One method is to put an impulse response to the cantilever and measure the
response of the tip mass. Then through a logarithmic decrement the damping ratio can
be assessed [16]. The logarithmic decrement method is defined as follows:

Vi
Yi+1

(=(1/2m)-In

(4.37)

This is only valid for { « 1. To find the damping, the unbalanced piezo was clamped and
a Keyence LK-H052 laser sensor was used to measure the tip deflection. After flicking
the tip, an impulse response is created. The results of this are shown in figure 4.5a. To
find the real damping intrinsic to the piezo, it needs to be short circuited. In this way,
no charge is built up influencing the stiffness and damping, thus measuring mechanical
damping only. The open circuit condition is measured as well for comparison. Figure
4.5b shows the damping ratio found by eqn. 4.37. Their responses appear to be similar,
however it can be seen that the open circuit damping ratio  is just a little lower, which
can be explained by the increase in stiffness due to the built up charge. Interestingly,
it is seen that in both cases no constant value for ¢ can be found. Its value decreases
almost linearly. At lower amplitudes uncertainty increases as the signal has an increased
noise level and quantization errors become more prominent. Normally, when damping
is purely viscous, ¢ should remain about constant. This measurement indicicates that
damping in strongly coupled piezos is not purely viscous, as also pointed out in [10].
Nevertheless, an average vicous damping coefficient can be assessed by filtering out the
uncertainty and taking the average. This amounts to an average damping ratio { of 0.026
for short circuit condition and 0.02 for open circuit.
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Figure 4.5: Measurements for finding the damping ratio, (a) impulse response, (b) damping ratios defined
by consecutive peaks.

4.8. NEGATIVE STIFFNESS

As the mechanics and parameters for the resonating cantilever are known by now, neg-
ative stiffness can be added to the equation. One way to do it is to measure the stiffness
of the cantilever or simulate it in FEM and add a negative stiffness to the equation. That
means that the results from figure 3.5b could be used. However, this is prone to errors
and it is hard to guarantee that the protoype has the exact same conditions. Further-
more, by subtracting the negative stiffness, a remanent stiffness is present, which is also
present in the hysteresis measurement that will be included. As a result, the remanent
stiffness will then be present twice. A better way is to use the bending stiffness Y I that
is already present in the equations. Then to compensate the stiffness of the cantilever
beam, a static tip deflection force must be counterbalanced. This tip force can be found
by the following beam tip deflection equation:

w(l) = Lillg (4.38)
T 3Y1 :

Note that only a tip force is used and no tip bending moment. As the tip boundary condi-
tion in the model is located at the tip of the beam, only the tip force needs to be included
to deform it.

Subtraction of this force in the EoM will remove all bending stiffness of the beam
resulting into a situation of F = 0 as bending stiffness. So in this case, a zero stiffness
condition is achieved. This results into a clean slate for the bending stiffness. Measuring
the force-displacement of the stiffness compensated prototype will yield the real level of

stiffness in the VEH. Adding this into the EoM will result into an accurate respresentation
of the bending stiffness that is left in the compensated condition.
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4.9, ENDSTOPS

To avoid overload of the piezoelectric beam and to transfer kinetic energy to it through
impact, endstops need to be included and thus need to be included in the model as
well. In the case where the proof mass attached to the beam collides with a hard surface,
a rapid stiffening occurs in the force-displacement graph. This allows the endstop to
be modelled as a spring with a large stiffness. Furthermore, energy is partly converted
to heat as well through the impact. This energy loss can be modelled by introducing a
viscous damper element in parallel to the spring [17].

In figure 4.6, a diagram is shown that depicts how the endstop is modelled. In gen-
eral, inclusion of endstops in the equations of motion can be implemented as shown in
the following lumped parameter equation:

M+ Ci+ Kw + f5°P(w) = F(t) (4.39)

where
Kstop(W — wstop) + Csrop W ifwz= Wstop

[P w) =10 if |wl < wrop (4.40)
Kstop(W + Wstop) + Csrop W if W < —Wstop

TW l Wstop

stop stop

Figure 4.6: Spring-damper representation of the endstops.

4.9.1. ENDSTOP STIFFNESS

The stiffness and damping parameters of the endstops are not defined in a straightfor-
ward manner as in practise they are not embodied by spring or dampers; they are rather
properties of the rigid material of which the endstop is made. As such, in this case it is
a contact stiffness that is encountered, which may be modelled through the use of Hertz
contact mechanics. As the proof mass magnet is filleted in its corners and only these
corners make contact with the endstop, it may be seen as a contact between a cylinder
and a plate. The relevant equations for Hertz contact mechanics are given by [18]:

2 2
1-vs5 _
Ly 2! (4.41)

Y,_(l—v
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1 1 1 1 1 1 1 1
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F
K= 2—6 =Y'(2R'6)V/? (4.43)

Here Y’ is the reduced Young’s modulus, v; is the Poisson’s ratio, Y the Young’s modulus,
R’ is the combined contact radius, that is comprised of the radii in r;, and riy of the
components. The contact stiffness K is dependent on the indentation ¢ of the magnet
in the endstop, generating a nonlinear stiffness profile.

In figure 4.7, it can be seen that the contact force behaves in a nonlinear relation to
the indentation, which is generally seen in contact mechanics [19]. As the indentation
increases, the contact load increases more rapidly. The contact stiffness between the
endstop and the magnet is load dependent and therefore no singular stiffness value is
to be found that characterizes the endstop stiffness. Therefore, a tangent stiffness must
be found by constructing a tangent line to the contact load curve. To find the correct
indentation and with that the correct endstop stiffness, a method of trial and error was
used. An endstop stiffness value was used in the ODE-solver and then it was checked
how much the displacement would overshoot the endstop distance (meaning indenta-
tion in the endstop material). This was iteratively done for a few frequencies and input
accelerations. Eventually, this resulted in an endstop stiffness of 250kN/m with a corre-
sponding indentation of 5um.

2571

— Contact force Hertz
— Contact stiffness at d=5um

Contact force (N)

0 1 2 3 4 5
Displacement(m) x10®

Figure 4.7: Contact force resulting from the Hertz contact stiffness formulation. Black tangent line indicates
the contact stress at an indentation of 5um.

4.9.2. ENDSTOP DAMPING

Unlike the stiffness of the endstop, its damping coefficient is less easily found through
simulations. Therefore, it is more straightforward to assess its order of magnitude through
experimental methods. A method to find the endstop damping is through finding the co-
efficient of restitution and then convert that to a damping coefficient. The coefficient of
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restitution (CoR) is defined as the ratio between the outgoing and ingoing velocity of the
proof mass hitting the endstop, see eqn. 4.44.
U2

CoR=—-— (4.44)
U1

In [20], a method is provided to transform the CoR e into a damping coefficient:

(= ___In@ (4.45)

V72 +1n(e)?

mimsy
c= 2(\ / Kstopm ~ 20/ Kstop M (4.46)
1 2

Here masses m; and m are assigned to the proof mass and endstop, respectively. As the
endstop can be thought of as aimmovable object, its mass can be assumed to be infinite,
which simplifies the formula.

To find the CoR, the velocities have to be found. Measuring them directly is not
straightforward so they need to be derived from another measurement. One way is to
measure the displacement and then numerically derive it to velocity, or derive it from
the voltage output. The first option is more reliable as the latter requires a few intrinsic
parameters of the piezo which introduces extra uncertainty.

Figure 4.8: Setup used to assess the coefficient of restitution of the endstops.

In figure 4.8 the setup is shown that is used to measure the displacements. The energy
harvester is attached to a shaker and an accelerometer is attached to the harvester to
assess the acceleration to which it is subjected. Two laser sensors measure the displace-
ment of the harvester frame and the displacement of the proof mass. Subtracting these
from one another results in the relative displacement of the proof mass, which is shown
in figure 4.9a. In blue the displacement of the proof mass is shown. It can be seen that it
bounces from one endstop, whereas it only hits the other. In black the velocity is shown
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Figure 4.9: Displacement and velocity in(a) measurement and (b) simulation at 16Hz and 2g.

through numerical differentiation. Compared to the simulation, shown in figure 4.9b, it
can be seen that displacement and velocity are quite similar in the general trend. The
velocity has a large noise level, which is due to differentiation of the noise present in the
displacement signal. Nevertheless, the dynamics are the same.

Taking the velocities just before and after the endstop collision, the CoR can be found.
This has been done for 18 impacts, resulting in a CoR of ¢=0.615+0.071, which is equal
to a damping coefficient of 15 Ns/m. Figure 4.10 shows the relation between the CoR
and the damping ratio. The uncertainty propagation to the damping coefficient can be
found through eqn. 4.48 and is equal to 2.85 Ns/m.

oc
o, = —| _-0e (4.47)
Oele=¢
2(vV72 +1n (e)? — —n@~_
( T ne) \/n2+ln(e)2) —
O¢ = . Kstoth (448)

e(m2 +1In(e)?)

4.10. INCLUSION OF FORCE-DISPLACEMENT DATA

Up till now, the zero stiffness condition is implemented as F=0 since the entire bending
stiffness has been removed from the EoM. This is in the limit the ideal case of zero stiff-
ness and is far from realistic, as piezos are known to behave hysteretically. Therefore,
the force-displacement characteristics of the stiffness compensated piezo are measured
and this is used as an input to the EoM to make the situation more realistic. Figure 4.12a
shows the measurement taken for a compensated piezo connected to a 1IMQ load, which
is the load used to compensate the system. The figure shows the raw data as well as the
spline interpolated data in order to make it processable. The data has been split into
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Figure 4.10: Relation between CoR and damping coefficient.

two curves and has been fitted by spline interpolation as seen in figure 4.12b. These two
curves are used as an input to the EoM. The ODE-solver detects when an endstop is hit
and when that happens, the input to the EoM swithes to the other curve. This process is
shown in figure 4.11. The hysteretic force may then be interpreted as follows:

fhyst(w) —

hyst _
{ ase (w) after w+ wstop =0 (4.49)

hyst
fdeysc (w) after w— wspop =0

continue integration

Store results
Stop integration Restart integration

Use ascending curve
sign( w(end) )

Use descending curve
1

Figure 4.11: Flowchart indicating how the ODE-solver deals with hysteresis curve switching.

Note must be taken that this method of describing the hysteretic force in compensated
state during quasi-static deflection is far from complete. With this implementation, the
hysteretic force remains on a curve once an endstop is hit. It will only flip to the other
curve once the other endstop is hit afterwards. This is not necessarily what happens in
practice, as figure 4.12c demonstrates. Here, first the peak-peak displacement is applied
after which the displacement amplitude is consecutively lowered. This clearly demon-
strates that when a displacement is reversed before hitting an endstop, a new distinctive
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Figure 4.12: Measured force-displacement at compensated condition with in (a) raw measured and interpo-
lated data, in (b) interpolated data split into two functions. Figure (c) shows small-displacement behaviour,
(d) exaggeration of what happens after a rebounce from an endstop.

internal load path is created. Nevertheless, the force eventually converges back to the
peak force-displacement point, which is a phenomenon named curve alignment. This
can also be found in actuators in the relation between input voltage and displacement
[21]. Methods are available to model this behaviour as shown in chapter 5.
Furthermore, when the proof mass bounces from an endstop, according to this ap-
proach the hysteretic force would remain on the curve it has just switched to. This is also
not entirely the case, as demonstrated in figure 4.12d. In the figure, a bounce from the
left endstop is shown with an exaggerated magnitude. Once it bounces from an endstop,
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another smaller internal loop is created near the endstop. In practice, this effect shall
not have much influence, as the amplitudes from a rebounce are quite small (i.e. less
than 0.1 mm).

Although the previous things pointed out may devaluate the method, they don’t nec-
essarily form a problem. As long as full peak-peak displacements are obtained, the
method is respresentative, and peak-peak displacements are mostly of interest as they
generate the most power. It is more likely to be problematic when only one endstop is
made contact with. All in all, the approach taken is a good start for now. The results in
figure 4.12c follow a certain pattern that could be captured in a model as well and that
could be a potential improvement when non-peak peak displacements are to be studied.

4.11. COMPLETE FORM OF EQUATIONS OF MOTION

Now all parts of the mechanics have been analysed, they can be assembled into the final
form of the EoM. Eqn. 4.24 formed the mechanical equation and eqn. 4.36 the circuit
equation. The mechanics of the endstops, negative stiffness and hysteresis can then be
added to former equation resulting into:

dz(h(t) dbh() d¢ (%) 2 pstop
T +20 1w, ar wiq (D) +0—— ax x:LV(t)+(b1(L) f
—(l>1(L) 0I1(t)+</>1(L) 2S5 (4.50)
Crdvn) V@) _ hp+hsdpi(x)|  dq1(9)
2 d R ~bdyie— dx |, dr @50
where for sinusoidal excitations:

L

fl(t)z—Yszsinwt(mf gbl(x)dx+Mt¢1(L)) (4.52)
0

Note that the added terms are premultiplied by <p§ (L). The reason for that is as follows:
going to modal coordinates requires the modal transformation from eqn. 4.17. Further-
more, through the orthogonality condition, the terms need to be premultiplied by ¢, (x)
once again. The mechanics act at the tip of the beam, resulting in a (/)% (L) term. As the
added mechanics are actually part of the partial differential equation, these terms need
the orthogonality multiplications as well.
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In this paper, force-displacement measurements are carried out for the uncompensated
and compensated piezoelectric beam. The effect of load resistance on the stiffness of the
compensated beam is investigated as well as the effect of deformation rate. Furthermore,
memory effects encountered in the hysteresis of piezoelectric actuators are also found in
the force-displacement behaviour. It has been shown that the effect of a load resistance on
the stiffness stongly depends on the deformation rate.
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On the mechanical behaviour in stiffness
compensated piezoelectric beams - an experimental
investigation towards energy harvesting

E. van de Wetering, T.W.A. Blad and R.A.J. van Ostayen

Abstract—In  this work, the stiffness of a
piezoelectric cantilever beam is compensated
through addition of attracting magnets
which add a negative stiffness. The main
purpose for this mechanism is low frequency
energy harvesting at large input motions.
To investigate the effect of deformation
speed on the stiffness of the compensated
beam, force-displacement measurements are
taken at different speeds and with different
load resistors connected. It has been found
that the effect of the load resistance on the
stiffness of the mechanism strongly depends
on the deformation speed. A load that results
in the same stiffness as in a closed circuit
at low deformation speed results in a stiffer
response at a faster deformation speed.
Due to charge reduction, this stiffening is
temporary. Therefore, the stiffness decreases
over time to the stiffness of the closed circuit
condition corresponding to that deformation
speed. Furthermore, memory effects in the
hysteresis found in piezoelectric actuators
(curve alignment, wipeout), related between
input voltage and displacement, were also
confirmed between displacement and force in
sensor application through force-displacement
measurements. It has been concluded that
stiffness compensation of a piezoelectric
beam through addition of attracting magnets
is a feasible method to produce a statically
balanced piezoelectric beam that can be used
as an energy harvester.

Keywords: Piezoelectricity, static balancing, zero stiff-
ness, stiffness compensation, hysteresis, vibration en-
ergy harvesting

1. Introduction

In vibration energy harvesting, one method for
transducing vibrations into electricity is by means
of a piezoelectric element. A piezoelectric beam
is frequently utilized in such a way that it is
driven into one of its resonant vibration modes,
preferably the first mode [1], [2]. Others use piezos
by impacting them at a low frequency, generating
an impulse response in the piezo at its resonant
frequency, known as frequency upconversion [3],
[4]. Another relatively unexplored method is static
balancing of a piezoelectric beam. In this way, the

stiffness of a beam or mechanism is compensated
through addition of negative stiffness elements [5].
In the limit, the total stiffness reduces to zero. The
mechanism is then said to be statically balanced
and as a result, the mechanism becomes neutrally
stable within a certain displacement range. This
configuration can be a solution to the problem that
was discussed in [6], where prior art in energy
harvesting was analysed. It was found that energy
harvesters have a relatively poor performance at
low frequency excitation with large input ampli-
tudes. Stiffness compensation ensures that a stiff
piezo can be deformed easily at these conditions so
that a decent amount of power may be generated.

To successfully bring a piezo in a stiffness
compensated condition and to model its behaviour,
knowledge about the piezoelectric mechanics is
necessary. Piezoelectric elements are known to
show a wide range of nonlinear behaviour. When it
comes to piezoelectric actuators, a lot can be found
in prior art. Piezoelectric actuators are known
to behave hysteretically. In [7], a model was
developed to compensate for hysteretic effects in
actuation. In [8] several types of hysteresis models
were reviewed, among which rate-independent and
rate-dependent. This rate dependence influences
the shape of the hysteresis loop. When a sinusoidal
voltage is applied as input and the frequency is
varied, it was shown that the peak displacement
reduces and the hysteresis loop widens [9], [10].
Furthermore, certain memory effects in hysteresis
such as curve alignment and wipeout were
investigated in [11].

However, when it comes to sensory or energy
harvester applications, specifically in a statically
balanced state, little is known about the electrome-
chanical behaviour of such a piezoelectric beam.
In general, there is an electromechanical coupling
that in the easiest case of energy harvesting is
affected by the load resistance connected to the
piezo [12]. This is often the impedance matched
load to maximize power output [13]. Besides that,
the effects mentioned in prior art considering piezos
in actuation mode, could also play a major role
in the force-displacement behaviour of a statically
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balanced piezo.

In this paper, the force-displacement behaviour of
a piezoelectric beam that is stiffness compensated
through the use of attracting magnets is investigated
experimentally. This concerns measuring the force-
displacement characteristics at different speeds and
different load resistances.

Section 2 will present the prototype, a short back-
ground on the electromechanic coupling and mem-
ory effects and it discusses the measurement setup
used in the research. The results that were found
are presented in section 3 to be discussed in sec-
tion 4. The main findings and conclusions will be
summarized in section 5.

2. Method
A. Mechanical design

In Fig. 1, a top view schematic of the stiffness com-
pensated piezo and a render and cross-section of
the implementation is shown. A Morgan Ceramics
bimorph PZT-508 beam is clamped in a frame that
is 3D printed at 100% infill in PLA. The physical
and electromechanical parameters of the beam are
shown in table 1. Attracting magnets are used to
introduce a negative stiffness that counteracts the
stiffness of the beam. To find the right distance be-
tween the magnets, the stiffness of the uncompen-
sated beam was found experimentally by quasistatic
force-displacement measurements with a load of
IMQ connected. Then, an electromagnetic finite
element simulation was carried out in COMSOL
Multiphysics to find the right magnet distance to
generate a force counteracting that of the beam.
To find the negative stiffness, the tip magnet was
displaced by a parametric sweep. Another paramet-
ric sweep was applied on the magnet distances to
find the setup to counteract the measured positive
stifness. The negative stiffness is shown in Fig. 5.

B. Electromechanical background

It is known in literature that the piezoelectric
coupling affects the resonance frequency of the
piezoelectric beam [1]. A closed circuit condition
results into a lower resonance frequency than open
circuit. This is for the reason that in an open circuit
the charge is unable to flow away, resulting in an
additional bending moment and stiffening of the
beam. When a load resistance is connected, the
magnitude of the load resistance determines how
quickly the built up charge can flow away, thus
affecting the stiffness. As a result, the resonance
frequency can be altered by selection of the load
resistance.

As buildup and flow of charge are directly related
to stiffness, it also determines how persistent a

Fig. 1: Top view schematic, render and lateral section
view of the statically balanced piezoelectric beam.

TABLE I: PZT-508 beam and magnet specifications.

Parameter Symbol Value

Beam length L 46 mm

Free length L. 32 mm
Beam width b 6 mm
Substrate thickness hs 0.37 mm
Piezo thickness hp 0.19 mm
Capacitance single layer C 36.22 nF
Relative permittivity el 3900

Charge constant ds1 -315 pC/N
Piezoelectric constant €31 -19.2
Elasticity Piezo YE 61 GPa
Elasticity Substrate Ys 200 GPa
Beam mass m 095 ¢g

Tip magnet size - 15x10x5 mm
Fixed magnet size - 15x2x1.8 mm
Distance between magnets dio 5.65/5.82 mm
Tip magnet flux density Br 1.17T

Fixed magnet flux density Br 1.08 T

stiffening effect can be. This effect is schematically
depicted in Fig. 2. Here, the force-displacement
graph of the compensated beam is sketched. The
open circuit (OC) and closed cicuit (CC) condi-
tions form the upper and lower boundaries for the
stiffness. The endstops introduce a rapid stiffening
when the tip magnet hits the PLA frame. This is
shown by the bold black line. A curve that starts
from the endstop stiffens increasingly with the load
resistance. This stiffening is temporary, as the built
up charge flows away.

C. Memory effects

In [11], memory effects of piezoelectric hysteresis
were investigated for a piezoelectric element in
actuation mode (voltage as input and displacement
as output). It introduced the concept of turning
points, which are local extrema in displacement,
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see the numbered dots in Fig. 3. The theory of
turning points was as follows. If a displacement-
voltage curve starting from a turning point reaches
a new turning e.g. 2 to 3, then the next curve that
is in reverse direction to 4 slowly converges back
to the previous turning point 2. The curves are seen
to align themselves to converge to that point and
the effect was therefore named curve alignment.
Furthermore, when a voltage-displacement loop is
closed, all curves inside the loop are erased from
the hysteretic memory effect. This was called the
wipeout effect. This means that if the curve from 6
reaches 5 again and continues to 3, the closed loop
5-6-5 within the closed loop 3-4-3 does not affect
the memory anymore.

As can be seen from Fig. 3, the inner curves (e.g.
5-6) have the same shape as the outer curve, 1-2.
The same goes for the descending curve. In [11],
a model was developed to predict the trajectories
of these inner curves, by only using characteristics
of the outer curves. The following type of fit was
used:

y(z) = k(1 + ae‘T("_“))(z —z)+uy (D)

k= Yo — U (1 + ae—r(zgfm))fl (2)
To — X1

Where = and y are the data on the horizontal
and vertical axes, respectively. To predict an inner
ascending curve, one takes the outer ascending
curve and fits eqns. 1 and 2 to it. Here, xy, 2o,
Y1, Yo are the voltage and displacement at the start
and endpoints, respectively. Furthermore, a and 7
are fitting parameters. Once the fitting parameters
are found for the outer ascending curve, any inner
ascending curve can be predicted by using the same
constant values for ¢ and 7 and by knowing the
start and endpoints. The same procedure is taken
for the descending curves. These effects will also be
investigated for the case of a stiffness compensated
piezo.

D. Measurement setup

To measure the mechanical behaviour, a setup
is built to measure the force-displacement at the
uncompensated and compensated conditions. An
overview of that setup is shown in Fig. 4. The
setup consists of a Moons’ 24Q-3AG stepper motor
connected to an Almotion LT50-TR-G8-200 linear
stage. A Futek LSB200 sensor is used to measure
the force of which the signal is amplified by a
Scaime CPJ analog transmitter. The displacement is
measured by a Micro-Epsilon optoNCDT1300 laser
distance sensor and ELC DRO7 resistance decade
boxes are used to set the load resistance. An ME-
systeme AS28e accelerometer is used to record the

Increasing load

Force

Displacement

= QOpen circuit (OC)
= Closed circuit (CC)

= = Small resistive load
- = Large resistive load

v Endstop stiffness

Fig. 2: Schematic diagram indicating the force-
displacement behaviour of a stiffness compensated
piezo under open circuit, closed circuit and load re-
sistances.

Displacement
(o)}

Voltage

Fig. 3: Schematic displacement-voltage diagram in-
dicating the curve alignment effect. Numbered dots
are turning points and indicate the direction of the
measurement.

Fig. 4: Force-displacement setup with (1) power supply,
(2) DAQ, (3) signal amplifier, (4) nema 24 stepper,
(5) laser sensor, (6) resistance decade box, (7) ac-
celerometer, (8) load cell, (9) magnetic contact and
(10) prototype. Cabling has been removed to improve
visibility.



acceleration applied to the stage. This is to check
whether inertial forces are large enough to play a
role in the measurements or whether they may be
neglected. The outputs are measured by an NI 9215
DAQ which is analysed with the MATLAB data
acquisition toolbox. The bracket connected to the
load cell has magnets that magnetically attach to
the screws attached to the tip magnet of the piezo.

E. Measurement procedure

The force-displacement measurements are taken at
different rates expressed in a time period, which is
the time it takes to go from one peak displacement
to the other and back. At these rates, different load
resistances are connected during the measurents.
In this way, the rate dependent behaviour can be
assessed.

As force-displacement measurements are carried
out at different rates, inertial forces may come into
play. To check whether these are negligable, first a
spring steel flexure with a known bending stiffness
equal to the bending stiffness of the piezoelectric
beam and equal tip mass was deflected at faster
rates. At the fastest rate in uncompensated condi-
tion, the maximum error would amount to 10%.
Next, the flexure was compensated in stiffness as
much as possible. The inertial forces encountered
at the speeds for the stiffness compensated mea-
surements were indistinguishable and can therefore
be neglected.

To assess whether the curve alignment and wipe-
out effects also occur in the (compensated) force-
displacement, a displacement pattern similar to the
applied voltage in [11] is applied to the piezo.
During this applied displacement, the force is mea-
sured.

3. Results

The force-displacement diagram of the uncompen-
sated piezoelectric beam is shown in Fig. 5. The
measurements are taken for different rates between
11.7 and 0.12 s. The negative stiffness from the
FEM simulation is shown as well.

In Fig. 6a and 6b force-displacement measure-
ments are shown for the beam in compensated
condition and with different load resistances con-
nected to the piezo, cf. Fig. 2. In Fig. 6a the time
period equals 11.7 s and in Fig. 6b 1 s, so this
measurement is taken at a faster rate. The same
load resistances are used for comparison.

It can be seen in Figs. 5, 6a that within £ 0.5
mm the most linear stiffness is obtained. For the
ascending curves at 1M(2, the uncompensated state
in Fig. 5 has a stiffness of 324 N/m whereas the
compensated state in Fig. 6a has a stiffness of
26.3 N/m. This amounts to a linearized stiffness

Rate increases

Negative stiffness

03} Period T (s)
® 117
-0.4 ® 0.15
05 0.12
-1 -0.5 0 0.5 1

Displacement (mm)

Fig. 5: Force-displacement measurement of the uncom-
pensated beam at different speeds and a 1MQ load.
The loop widens at larger speeds and the peak lowers.
The negative stiffness is introduced by the magnets
used for stiffness compensation.

reduction of 92 %. Comparing the uncompensated
IMS2 to the compensated OC in the same region,
a stiffness reduction of only 76% is obtained.

In Fig. 7 and 8, the force-displacement and
applied displacement are shown for the assessment
of the curve alignment and wipeout effects. The
curve alignment is shown in blue and the wipeout in
red. The results from the curve alignment are also
fitted to predict the behaviour of the inner curves
and this is shown in Fig. 9.

4. Discussion
A. Rate dependence and directionality

Piezoelectric elements that are used as actuators
are known to have a rate dependent hysteresis:
the shape of the hysteresis loop is affected by
the frequency of the input voltage [9], [10]. This
phenomenon is also clearly visible in the uncom-
pensated measurement in Fig. 5. For a fixed applied
displacement, the hysteresis loop greatly widens at
the faster rates and the peak force is reduced.

A certain directionality can also be seen in the
peak forces. There is a slight difference in the
positive and negative peak forces. Consequentially,
the distance between the tip magnet and fixed
magnets is not the same; one magnet needs to be
positioned a bit closer to obtain a good stiffness
compensation.

B. Load resistances and characteristic
loads
Looking at Figs. 6a and 6b, several things can be

noted. At peak displacement, a rapid stiffening is
seen, which is due to the contact made with the
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Fig. 6: Force-displacement measurements at compensated state at (a) slow and (b) faster rate. At the faster rate, the
curves with lower load resistance become distinguishable from the closed circuit (CC) curve. Blue arrows at open

circuit (OC) curve indicate the direction.

frame, acting as an endstop. The stiffness depends
on the load connected to the piezo, as was clearly
demonstrated by the stiffness reduction in section
3. The upper bound is set by the OC condition, the
lower by the CC. Furthermore, it can be seen that
when the displacement is reversed after an endstop
hit, the curve stiffens. How persistent this stiffening
is depends on the magnitude of the load. In the
black encircled region in Fig. 6b, it can be seen that
the 1MXS2 load crosses the 2MS? load, meaning that
its stiffness is reduced just a little faster. Eventually,
this stiffening diminishes due to reduction in charge
and attains the same stiffness as the CC condition,
i.e. it runs parallel to it. An exception to this is the
OC curve.

This effect is also dependent on the speed by
which the deformation took place. To characterize
this, the load resistance R; can be compared to a
characteristic load R., which is from the impedance

TABLE II: Comparison between load resistance and
characteristic load impedance

T (s) R.(MSQ) R (M) R./R.
11.7 (Fig. 6a) 103 20 0.19
1.7 103 1 0.0097
1 (Fig. 6b ) 8.8 20 2.27
1 8.8 1 0.11

matching criterion [13].

1
R.=— (3
T wC

Table II shows a few of the characteristic loads,
load resistances and their ratios for the two time
periods. The first row shows a ratio of 0.19 result-
ing in a curve that is distinguishable from CC. The
second row shows a ratio of 0.0097 and the result
is indistinguishable from CC: the load resistance
of 1M corresponding to this deformation speed
is low enough to consider it as closed circuit. The
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Fig. 7: Curve alignment and wipeout memory effects in the compensated beam. Numbered dots indicate the
turning points and the order in which the measurement was taken.

third row is at a faster rate and shows a ratio larger
than one. The effect is clearly seen in Fig. 6b,
starting from the lower left corner: For the most
part, the stiffness is equal to OC, but when the
displacement becomes positive, it is seen that it
slowly reduces due to charge reduction and the
curve crosses OC in the region encircled in red.
The last row shows a ratio of 0.11 and now at a
faster rate its corresponding 1M(2 load curve isn’t
indistiguishable from CC anymore. At the faster
speed the 1MXS2 load is not to be considered the
same as CC whereas it certainly was for the lower
speed.

From the previous discussion, it can be seen
that when R; << Rg, then its corresponding
curve approaches that of the CC condition. When
R, reaches the order of magnitude of R., the
curve dissociates from the CC curve and becomes
distinguishable. Furthermore, it can be seen that
the basics of the force-displacement are defined by
the CC condition. In this condition, virtually no
charge can be built up. When a load is connected,
charge can be built up and the system stiffens as
the load impedes the charge from flowing away.
Therefore, the magnitude of the load determines
how persistent the stiffening effect is in time and
displacement. The larger the load, the more persis-
tent the stiffening is. Eventually, the charge reduces
as much that the stiffness is equal to that of the CC
condition: the curve corresponding to that load is
then parallel to the CC curve.

C. Curve alignment and wipeout

In Figs. 7 and 8 the force-displacement and its
corresponding applied displacement are shown to
assess the memory effects. The turning points are
indicated by the numbered dots. From the dis-
placement plot, it can be seen that first a large

)

Displacement (mm

10 20 30 40 50
Time (s)

Fig. 8: Corresponding applied displacement to assess
memory effects in the piezoelectric beam.

loop is created, after which the displacement am-
plitude is reduced with each subsequent curve.
The force curve emanating from 3 reaches 4, then
the displacement is reversed and the force slowly
converges back to 3 (it actually doesn’t reach it
as the displacement is once again reversed at 5 to
reach 6). This process repeats itself until point 12
and was named curve alignment in [11].

The other phenomenon that was found in ac-
tuators was the wipeout effect. This is effect is
shown in red in the plots: after being reduced for
several consecutive times, the displacement is now
increased. The following curve now passes through
previous turning points to escape from surrounding
loops, ending up in the endstop at the right again.
Now it follows the outmost path again to 14 and
the foregoing history has no influence anymore: the
memory is said to be wiped out.

From this, the following is observed, which is
fully in line with [11]: a hysteretic force curve
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Fig. 9: By fitting the outer curves, parameters can be
obtained to predict the inner curves.

surrounded by other curves is unable to cross
those curves. It can only converge to the turning
points previously created. These turning points are
found when a curve is halted and the displacement
direction is reversed. When a curve passes through
a previous turning point forming a closed loop,
the history associated to everything in that formed
closed loop is then wiped out from the internal
memory. When a loop is wiped out by passing
through turning point n, the curve converges to
turning point n — 2 if the displacement direction
remains the same and to n — 1 if it reverses.

In Fig. 9, the curve alignment measurement is
shown along with the dashed fit curves from eqns.
1 and 2 corresponding to the outer curves. It can
be seen that fitting a and 7 to an outer curve and
using these to predict an inner curve results in a
satisfactory prediction. The equations from [11] can
be said to perform very well to predict the memory
behaviour in the hysteretic force-displacement of
a piezoelectric beam. It performs better for the
ascending curves than the descending curves, which
is likely due to the outer descending curve being
a little different in shape compared to the inner
descending curves.

This procedure can be very valuable for mod-
elling the output of a stiffness compensated energy
harvester. If the force-displacement data is used as
an input to the equations of motion, only the outer
curves are necessary to predict inner curves, i.e. to
predict any form of non-peak-peak displacement.
Furthermore, the findings considering the memory
effects again depict the duality of piezoelectric
elements between it being used as an actuator or
as a sensor, or, the magnitude equality between the
inverse and direct piezoelectric effect [12].

5. Conclusion

In this research, force-displacement measurements
were taken for a piezoelectric beam that was stiff-
ness compensated through the addition of attract-
ing magnets. Compensated with a 1MS2 load con-
nected, the stiffness is reduced by 92% over a 1 mm
range when it is deflected quasistatically. The force-
displacement measurements were taken at different
speeds and load resistances. It was found that the
connected load resistance relative to the impedance
matched load can be interpreted as an indication
of how the force-displacement behaves in terms of
stiffness. If the load resistance is equal to or larger
than the impedance matched load the stiffness
is temporarily equal to that of the open circuit
condition. Due to charge reduction, this stiffness
decreases over time. If the load resistance is several
orders of magnitude lower than the matched load,
the stiffness can be fully considered as short circuit
condition. As such, a single load resistance can
be seen as open circuit, short circuit or inbetween
depending on the rate with which the piezo is
deformed.

After a strain reversal at peak displacement, a
stiffening occurs due to buildup of charge. The
magnitude of the load affects this stiffening in such
a manner that a larger load results into a stiffening
that is more persistent throughout the displacement.
Eventually, the stiffening effect diminishes due to
a decrease in charge and the same stiffness as in
closed circuit condition is obtained.

Furthermore, it was found that memory effects
in the hysteretic behaviour, named curve alignment
and wipeout, acting between voltage and displace-
ment in actuators, are also seen in the relation
between force and displacement. It was observed
that fitting techniques used to predict hysteretic
trajectories in piezoelectric actuators are very use-
ful for predicting the force-displacement behaviour
within a closed loop. This can be very useful when
modeling the output of a stiffness compensated
energy harvester. Last, it can be concluded that the
act of compensating the stiffness of a piezo with
attracting magnets can be a suitable procedure for
designing a statically balanced piezoelectric beam,
which can be used as an energy harvester.
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In this paper, the performance of the model from chapter 4 is evaluated by comparing it
to the measured performance of the energy harvester. The harvester is excited at low fre-
quency with a linear air bearing stage. It has been shown that for low frequencies, the
model can predict the performance in terms of output power very well, but the error di-
verges as the frequency increases. Furthermore, the performance is benchmarked in terms
of motion ratio and generator figure of merit. It has been demonstrated that for a certain
range in motion ratio, this energy harvester has the largest generator figure of merit with
respect to the known literature.
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A stiffness compensated piezoelectric energy
harvester for low frequency and large input excitations

E. van de Wetering, T.W.A. Blad and R.A.J. van Ostayen

Abstract—In  this  work, a stiffness
compensated piezoelectric vibration energy

harvester is modelled and tested for low
frequency excitations and large input
amplitudes. Attracting magnets are used
to introduce a negative stiffness that

counteracts the stiffness of the piezoelectric
beam. This results into a nearly statically
balanced condition and makes the harvester a
nonresonant device. A distributed parameter
model based on modal analysis is used to
model the output of the energy harvester.
This model is extended by including the
negative stiffness, endstop mechanics and
force-displacement data to the model. The
peak RMS power amounts 1.20 mW at 9
hz and 3 g input acceleration. Furthermore,
to benchmark the energy harvester in this
work, the efficiency is evaluated in terms of
generator figure of merit and is compared
to prior art. This peak efficiency amounts to
0.567%, which is the highest value reported
for its range of excitation. It is observed that
only a factor of 1.38 is seen in the efficiency
across the frequency reponse, which greatly
contrasts the behaviour of resonating single-
degree of freedom energy harvesters.

Keywords: Vibration energy harvesting, low-frequency,
piezoelectricity, static balancing, zero stiffness, stiffness
compensation

1. Introduction

In a world that increasingly implements remote
sensors to monitor all sorts of processes, the
demand for ways to power these rises as well.
Nowadays, battereries are commonly used to power
them. However, they deplete over time and must
be replaced, which can be challenging when the
sensor is placed somewhere harzardous or hard to
reach. As vibrations are omnipresent, transducing
the vibrational power into useful electric power can
provide a suitable alternative [1].

In many cases, a dominant frequency is present
in the vibration signal as demonstrated in Rantz and
Roundy, allowing a tuned resonating mechanism to
be a good solution to extract power from the signal
[1]. However, this only works well at higher fre-
quencies. At low frequencies (< 10 Hz), the driving
motion amplitude rapidly increases for constant ac-
celeration. As a resonator relies on amplifying the

input amplitude, the length of the vibration energy
harvester (VEH) then rapidly grows to dimensions
unsuitable for its intended applications.

Nevertheless, there are methods to keep the size
of the VEH within bounds. Geisler et al [2] made
a tubular electromagnetic energy harvester with an
increased amount of electrical damping to allow
larger input amplitudes from human motion. Smilek
et al [3] used a rolling mass in a circular cavity and
as such the proof mass has no displacement limit.
Others use the principle of frequency up-conversion
(FupC) where a low frequency oscillator induces an
impulse response in a high frequency oscillator that
generates the output. Halim ez a/ [4] made a tubular
electromagnetic FupC harvester and Galchev et al
[5] produced a piezoelectric variant.

However, there is something that they all have
in common: the largest dimension of the VEH
is in the direction of the excitation. This makes
sense as the output power scales quadratically with
the internal displacement limit and linearly with
the other dimensions [6]. Furthermore, electromag-
netic transducers scale down poorly as shown in
O’Donnell et al [7]. So a small length VEH excited
at low frequency tends to perform poorly due to
scaling issues. When a high efficiency, defined
as the generator figure of merit (FolM,) [8], is
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DIRECTION

HIGH

INEFFICIENT REQUENCY

Low

FREQUENCY LONG

IN EXC.
DIR.
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Fig. 1: Venn diagram representation of the problem
of low frequency energy harvesting. Combining two
juxtaposed characteristics will result in the opposite
of the one left. The intersection of all three seems
infeasible till now.



to be found at low frequency it will require a
greater length of the VEH as seen in [9], [10],
[11]. On the other hand, when a small length in
excitation direction is needed in conjunction with
high efficiency, the VEH tends to operate at higher
frequencies as in [12].

The problem that arises due to this is summarized
in Fig. 1. It shows that two characteristics can
be picked, and their intersection results in the
opposite of the characteristic that is left. The
intersection of all three, an energy harvester small
in excitation direction operating efficiently at low
frequency with large inputs seems infeasible up
till now.

The research objective of this work is to end
up in the intersection of all three characteristics
by taking a new approach for energy harvester
design. A piezoelectric cantilever beam is brought
close to a statically balanced condition, i.e. most
of its stiffness is compensated through addition
of negative stiffness counteracting the positive
stiffness of the piezo. This negative stiffness
can be introduced by buckled flexures, attracting
or repelling magnets [13], [14]. In this work,
attracting magnets are used. A piezoelectric
beam is generally stiff at low freugencies and by
compensating the stiffness, the required force to
deform it becomes much lower. A piezo claims
little space in the excitation direction and can
therefore be a good canditate for ending up in the
intersection of the three characteristics. A model
will be developed throughout this work to predict
the dynamics and voltage output, which will be
validated experimentally.

The next sections are organized as follows: in
section 2, two important parameters that are used
to benchmark the harvester performance with re-
spect to prior art are discussed. The design of
the harvester is discussed along with the approach
for modelling the voltage output. In section 3,
the results from the simulation are compared to
experimental results and are discussed in section
4 along with the performance of the harvester with
respect to literature. Finally, the main conclusions
are summarized in section 5.

2. Method

A. Motion ratio and generator figure of
merit

Two parameters that are of major importance
throughout this work are the motion ratio A and
the generator figure of merit F'olM, introduced in
the work of Blad and Tolou [8]. These are defined

Fig. 2: Two harvester configurations of equal volume
and proof mass. The upper is often found in literature
as it is beneficial for power generation, the lower
configuration is the focus of this work. Double arrows
indicate excitation directions.

as:
L,

A =
2Yo

1)

Prus
1
Eyl)ppmVL,zws

Where L, is the length of the VEH along the exci-
tation direction, Y is the input motion amplitude,
Prars is the RMS output power, p,, is the density
of the proof mass, V' is the package volume of the
VEH and w is the radial frequency corresponding
to the driving motion.

The motion ratio is the ratio between the length
of the VEH and the applied driving motion. In the
ideal case where the frame claims no space, this
length would be the displacement limit of the proof
mass. It is a measure to determine to what extent
the VEH can be used as a resonator. For instance,
it can be used as a resonator when A > 1 as in this
case, resonant amplification of the input motion is
possible. Hence, a resonator with a large ()-factor
has a large motion ratio as well. When \ < 1, the
input motion is larger than that of the proof mass
and resonant amplification is not possible, resulting
into a nonresonant device.

The generator figure of merit F'oM, is an im-
proved version of the volume figure of merit FolM,
introduced in [6]. It uses the density of the proof
mass and instead of using V*/3, it uses V'L, as the
power output is more dependent on L, than the
other directions [6]. This principle is shown in Fig.
2. The upper tubular configuration with larger L,
is often seen in literature due to its larger potential
for power generation. The lower configuration with
smaller L, is the configuration that is focussed on
in this work for obtaining a lower motion ratio.
The F'oM, enables a fair performance comparison

FoM, 100% ()
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.
Fig. 3: Force-displacement test setup with (1) power
supply, (2) DAQ, (3) signal amplifier, (4) stepper
motor, (5) laser sensor, (6) resistance decade box, (7)
load cell, (8) magnetic contact and (9) harvester.

between both configurations by removing the exci-
tation length bias.

B. Force-displacement setup

For the design and modelling of the VEH, force-
displacement measurements are necessary. The
setup to measure these are shown in Fig. 3. The
setup consists of a Moons’ 24Q-3AG stepper motor
connected to an Almotion LT50-TR-G8-200 linear
stage. A Futek LSB200 sensor is used to measure
the force followed by a SCAIME CPJ analog trans-
mitter. The displacement is measured by a Micro-
Epsilon optoNCDT1300 laser distance sensor and
ELC DRO7 resistance decade boxes are used to set
the load resistance. The outputs are measured by
an NI 9215 DAQ of which the data is analysed in
MATLAB.

C. Mechanical design

To compensate the stiffness of the piezoelectric
beam, attracting magnets have been chosen in the
configuration shown in Fig. 4. Details on the spec-
ifications can be found in table I. By using attract-
ing magnets in this setup, the introduced negative
stiffness can be tuned best through adjusting the
distance between the magnets. As can be seen from
Fig. 4, the frame acts as an endstop to limit the
motion of the proof mass. A few reasons for this
are: (1) the strain needs to be limited as to not
damage the piezo, (2) it prevents the proof mass
magnet from clinging to the fixed magnets and (3)
it is a mechanism to transfer momentum into the
proof mass motion.

The VEH is designed to function around exci-
tations of lower than 10 hz with input amplitudes
that are such that the motion ratio is lower than
one. Normally, to ensure that maximum power is
extracted from the energy harvester, the load resis-
tance is assessed by using the impedance matching

Fig. 4: Schematic diagram, render and lateral cross
section of the energy harvester.

criterion as in [15]. It must be noted that the load
must remain constant, as the load resistance will
affect the stiffness due to the electromechanical
coupling. Altering the load may result into an
increase or decrease in the stiffness, which can be
detrimental to the harvester performance. There-
fore, a load of 1M is used and is kept constant.

In order to compensate the stiffness of the piezo-
electric beam, its stiffness needs to be known.
Therefore, a force-displacement measurement was
taken to assess the stiffness at the uncompensated
condition with a load of 1M(2 connected. This
measurement can be seen in Fig. 8a. Then, a
COMSOL Multiphysics electromagnetic simulation
was carried out to find the distances d,,; and d,,»
between the proof mass magnet and fixed magnets
to provide an appropriate negative stiffness. The
proof mass magnet was displaced inbetween the
fixed magnets by a parametric sweep and the force
was evaluated, resulting in a force-displacement
relation. A parametric sweep was applied on d,,,
dmo and the proof mass displacement to find the
negative stiffness that fits best to the positive stiff-
ness of the beam. The stiffness has been verified
with the setup from Fig. 3. This results are shown
in Fig. 8a.

D. Fabrication

The piezoelectric beam used in the energy harvester
is a Morgan Ceramics PZT-508 of 46x6x0.76 mm.
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TABLE I: Specifications of the energy harvester.

Parameter Symbol Value Parameter Symbol Value
Clamped length L 32 mm Damping ratio (1 0.021
Beam width b 6 mm Tip magnet size - 15x10x5 mm
Substrate thickness hs 0.37 mm Fixed magnet size - 15x2x1.8 mm
Piezo thickness hp 0.19 mm Magnet spacing 1,2 dm12 5.65/5.82 mm
Capacitance single layer — C 36.22 nF Tip magnet flux density Br 1.17 T
Relative permittivity elis 3900 Fixed magnet flux density Br 1.08 T
Charge constant d3y -315 pC/N VEH package volume v 60x20x20 mm?
Piezoelectric constant es1 -19.2 N/Vm Tip mass M, 65¢g
Elasticity Piezo ) 61 GPa Tip inertia 1y 0.0677 kg - mm?
Elasticity Substrate Y, 200 GPa Endstop stiffness Kstop 250 kN/m
Mass per beam length m 0.0217 g/mm Endstop damping Cstop 15 Ns/m
Endstop position Ws 1.5 mm Length in excitation direction L. 20 mm
. 1
An N35 Neodymium block magnet has been fixed S —— Static defl.
to its tip with epoxy glue to form a proof mass. S o 1s ot eigznfr;node
. . . . N tati . strai
The frame of the VEH is printed with 100% infill 0.8 e | Claticdel strain
> 1" eigenmode strain

in PLA. As the stiffness compensation becomes in-
creasingly delicate as the total stiffness approaches
zero and to account for printing tolerances, the
frame was printed a few tens of millimeters larger
in the L, direction. It was then manually sanded
down and iteratively tested for neutral stability.

E. Model

To model the dynamics and voltage output of the
stiffness compensated piezo, a distributed param-
eter model is preferred over a lumped parameter
model as an accurate description of the strain distri-
bution is necessary. Futhermore, it was shown that
the distributed parameter model from [16] could be
used to provide corrections to a lumped model [17].
The main question is what this strain distribution
looks like. One could reason that if no stiffness
is reduced, modal analysis is suitable if resonance
occurs. On the other hand, if the stiffness is fully
removed, it could be reasoned that the deflection
pattern can be described by the static deflection
pattern of a cantilever beam multiplied by some
temporal forcing function:

5(t) = (sz(?)L —xz)  Ma?

2YI

a )i @

Where § is the tip deflection, P the tip load, L
the beam length, x the beam length coordinate,
Y'I the bending stiffness, M the tip moment and
f the temporal forcing function. The eigenfunc-
tion from modal analysis and the static deflection
pattern form the bounds where the real deflection
pattern should be in. To compare them, they are
plotted Fig. 5 along with their second derivatives
which are related to strain. All functions have been
normalized.

The figure shows that the deflections are very
similar and that the strain diverges with the beam
length. However, near the clamping the largest

o o
IS )

Normalized displacement/strain
o
N

0 0.2 0.4 0.6 0.8 1
Dimensionless beam position (x/L)

Fig. 5: Normalized deflection and strain for static
deflection pattern and first eigenmode.

strain can be found and here the error is minimal.
It can therefore be assumed modal analysis can be
a representative method for modelling.

The modelling approach is as follows. First,
modal analysis is used for the case of a cantilever
beam. Next, the endstops are included in the
equations and then the negative stiffness is
added. Finally, the force-displacement data of the
compensated beam is added to the equations. This
last step makes sure that the remanent stiffness
and hysteresis are included in the model. These
steps will be discussed next.

1) Modal analysis: Since many energy harvesters
operate at a certain resonance frequency to deliver
peak power, it is useful to use modal analysis as this
is centered around that certain resonance frequency.
The distributed parameter model of Erturk and In-
man [16], [18] utilized this principle. In their work,
they had found closed-form solutions for the output
voltage. However, these are based on the Laplace
transform and are not suited when nonlinear terms
from the endstops and hysteresis are introduced.
Therefore, in this work the coupled equations in
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Fig. 6: Schematic diagram of the in series connected
piezo. The red plates form the endstop contact surface,
the lower left shows the cross-section of the piezo.
Hashed platforms denote the vibrating world.

modal coordinates for an in series connected piezo
are used and will be solved numerically. Their
derivation is concisely shown. The nomenclature
is kept the same for easy reference. In Fig. 6,
a schematic diagram of the piezo is shown. To
transform the deflection w to modal coordinates the
following infinite series is used:

w(z,t) = Z or(z)n:(t) @

Here, ¢,(x) is the mass-normalized eigenfunction
corresponding to eigenmode 7 and 7,(t) is the tem-
poral response corresponding to that same mode.
The eigenfunction is defined as:

¢r(x) = C, [ cos %1 — cosh %x
)

A A
+, ( sin f:n — sinh fl)}

where

~_sinA. —sinh A, + )\T%(cos A — cosh \,.)
o cos \, + cosh \, — )\,,%(sin Ar —sinh A,.)
(6)
The modal eigenvalue )\, is found by solving the
characteristic equation:

M,
Tt ( cos A\, sinh A, —
mL

sin A\, cosh )\T) —

1+ cos A, cosh \, +

N

mTLg ( cosh A, sin A\, + sinh A, cos /\T)
MM,
m2L*

Where M,;, m, L and I; are the tip mass, beam

mass per length, clamped beam length and tip

inertia, respectively. To find the amplitude C,, the

(1 — cos A, cosh )\T) =0 (7)

eigenfunction is normalized by the orthogonality
condition:

n |:d¢7'('r) ]tM:| =05 (8)
x=L

dz dz

The bending stiffness is defined as:

(R

hs hs®
YI== (YS— + ety ((hy + =

5 -3 )) ©)

Where b, Y;, cfj, h, and h, are the beam width,
Young’s moduli and layer thicknesses of the sub-
strate and piezo layer, respectively. Using the bend-
ing stiffness, the eigenfrequency can be found as:

YT
Ny [ ——
"V mL*
The coupled beam and electric circuit equations

confined to the first mode in modal coordinates are
as follows:

3 8

(10)

wy =

dn (t) dn (1)
a2 +2ClwlT+wfn1(t) "
d¢y(x) _
= “_IV(t)_Fl(t)
C,dv t)+V(t) oyl hedin@) | di()
2 dt R U2 e |t
= 12)

where the forcing term F} (¢) and electromechanical
coupling 6 are equal to:

L
Fi(t) = —Yow?sinwt (m/ i1 (:L')d:L'+]\/ft¢1(L))
0
(13)

(14)

Where (1, V, Cp, Ry, €31, Yp and w are the damping
ratio, output voltage, single layer capacitance, load
resistance, piezoelectric constant, driving motion
amplitude and driving motion radial frequency.
Most parameters can be found in table I. The
details on the derivation of these equations can be
found in [16], [18].
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2) Endstops: The endstops are defined as an addi-
tional spring and damper placed in parallel [19].
Fig. 6 shows a schematic interpretation of the
endstop. The force encountered by endstop contact
can be described as:

Ki(w—ws) + Cap if w > wy
F(w)=<0 if || < w,
Ky (w+w,) + Cap if w < —w,
(15)

Here F* is the endstop force, K the endstop
stiffness, w, is the amplitude after which the
stopper is hit and C; is the endstop damping. The
endstop stiffness K is found by Hertz contact
mechanics. As Hertz contact stiffness behaves
nonlinearly with indentation, its stiffness value
was raised until its corresponding indentation
matched the indentation in the final simulations.
The endstop damping was assessed experimentally
by a shaker test at 16 hz and 2 g. By measuring
the tip mass displacement and velocity with laser
sensors, the coefficient of restitution was found,
which can be translated to the endstop damping
[19].

3) Negative stiffness: To add negative stiffness, the
negative stiffness from the finite element simulation
or the measurement could be used. However, as
indicated, the next step is to include the hysteresis
force-displacement measurement at the compen-
sated state. The remanent stiffness is also present
in this measurement. As a result, this remanent
stiffness would then be present twice in the model.
Therefore, it is chosen to numerically add a neg-
ative stiffness that fully compensates the positive
stiffness through addition of a tip deflection force:

3Y1
FN = ?w(L) (16)
By fully removing the stiffness and using

the remanent stiffness present in the force-
displacement measurement of the compensated
beam, an accurate description of the stiffness can
be obtained.

4) Hysteresis: As the stiffness has been fully
erased in the model to provide a “clean slate”,
the remanent bending stiffness and the hysteresis
are to be found. These are found by quasistati-
cally measuring the force-displacement of the com-
pensated beam with the setup in Fig. 3. In Fig.
8b the measured hysteresis is shown in a force-
displacement diagram and is named F¥. The data
has been filtered with a Savitzky-Golay filter and
has been fitted with a cubic interpolant in order to
implement it into the model. The time period to

move from one peak displacement to the other and
back is equal to 11.7 s. The measurement is taken
for a connected load resistance of 1M(2.

The implementation of the force-displacement
data is as follows: at peak displacement, one of
the endstops is hit. This hit is detected as an event
in the MATLAB ODE-solver. After the hit, the
hysteretic force switches from curve, e.g. the left
endstop is approached from the red curve and
the force switches to the blue curve afterwards
and stays on it until the right endstop is hit. A
smaller loop is shown as well in Fig. 8b in black
and green. This is for the a specific case when no
peak-peak motion is obtained and the proof mass
bounces from one endstop only. This case will
also be validated.

5) Integration in the modal equations: As the
descriptions of the endstops, the negative stiffness
and the force-displacement have been found, they
can be integrated into the coupled modal beam
equation 11. The resulting equation is found by
eq. 17. Note that the added terms are premultiplied
by ¢;(L). This is because the terms have to be
converted to modal coordinates given by eqn. 4 and
are premultiplied by the mode shape through mode
shape orthogonality. The equations of motion are
thus formed by eqns. 12, 13 and 17.

d*m(t) dm(t) don ()
g 2w (0= = 7LV(t)
W3V

+ ¢ (L) FS (m(t)) — ¢1(L) ?Ul(t)—k
o1 (L)*FH (m(t) = Fu(t) (17)

There is one thing that must be noted by taking
this approach. As pointed out in Erturk and Inman
[20], in a clamped-free beam, no tip force may
be present at the free tip as this is one of the
boundary conditions. In this model, the first vibra-
tion mode shape of the clamped-free condition is
used and the added negative stiffness acting as a tip
force theoretically violates the boundary condition.
However, for now it is assumed that the mode
shape will not differ that much and that it may
be negligable for the output, more about this in
section 4. An improvement would be to include
the negative stiffness in the tip boundary condition
when solving for the mode shape function ¢ ().

F. Harvester excitation setup

In order to validate the model, a custom air bear-
ing stage with a linear motor is used to excite
the energy harvester at low frequencies and large
amplitudes. The setup that is used is shown in
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Fig. 7: Linear motion stage to excite the energy har-
vester at low frequency with large amplitudes.

Fig. 7. An ME-systeme AS28e accelerometer is
used to record the applied acceleration and an NI
cDAQ-9174 with NI-9263 and NI-9215 modules is
used to create input signals and record the output,
respectively. A resistive divider is used to lower the
voltage from the piezo to the NI-9215.

G. Measurement procedure

In order to assess how accurately the simulation
can predict the performance of the VEH, the RMS
power frequency reponse is measured. In order
to do so, a sinusoidal excitation is applied at an
acceleration between 1.5 and 3 g and frequency
between 2 and 10 hz. The measurement is not really
taken as a sweep: at every single frequency, the
measurement is started from zero initial conditions.

H. Benchmarking with respect to prior art

In order to benchmark the performance of the VEH
in this work, it is compared to prior art found in
literature. This is done by plotting the A — FolM,
space. This approach was also taken in [8], where
a comprehensive comparison of VEH performance
for different classes of VEHs was carried out. It
must be noted that literature falls short on reporting
all the variables needed to calculate the motion
ratio A and FoM,. In some cases however, the
necessary parameters could be derived from other
parameters or be estimated. For instance, in the case
of a resonating cantilever, the size of the proof mass
and the Q-factor are used to find L..

3. Results

In Fig. 8 the force-displacement measurements are
shown. Fig. 8a shows the force-displacement of the
unbalanced beam with a 1IM(2 load connected along

with the simulated and validated negative stiffness.
Fig. 8b shows the force-displacement measure-
ments for the compensated state of the VEH. A
large loop is shown that indicates peak-peak motion
and a smaller loop as well for smaller motions. In
Fig. 9 the simulated displacement and voltage along
with the measured voltage is shown at the condition
of 4 hz and 1.5/3 g. Fig. 9d shows the RMS power
frequency response. This is done at a constant
sinusoidal acceleration between 1.5 and 3 g and
between 2 and 10 hz. The simulation is compared
to the measurements in terms of RMS output power
at 2.5 and 3 g. The performance of the energy
harvester in terms of motion ratio A and FolM,
is depicted in Fig. 10 and is compared to prior
art from literature. Here, two classes can be seen,
single degree-of-freedom (SDoF) and frequency-
upconverters (FupC).

4. Discussion

A. Time domain

The results in Figs. 9a, 9b are typical throughout
the frequency response. The blue line in Fig. 9a
shows that both endstops are hit, which is the case
for all measurements at 2.5 and 3 g. In this case,
the measurements match the simulations best, as
the used hysteresis loop is also based on full peak-
peak motion. Figs. 9a, 9c show what happens if
no peak-peak motion is obtained, e.g. at 1.5 g.
From the displacement in Fig. 9a it is seen that the
proof mass detaches from the lower endstop and
remains within negative displacement. Then if the
simulation is used with a full peak-peak hysteresis
loop, it greatly overestimates the output voltage as
shown in Fig. 9c.

To improve the simulation performance for this
specific case, a hysteresis loop should be used
that is representative for the lower displacement.
This measured loop is shown in Fig. 8b. Using
this smaller loop as input for the simulation, it is
seen that the voltage is resembled more closely.
The consequences of this are however severe: for
every separate non-peak-peak motion, a separate
hysteresis loop is necessary in order to predict the
output within acceptable accuracy. In [21] it was
demonstrated for piezoelectric actuators that inner
hysteresis loops could be predicted by using fitting
curves to the outer loops. Unpublished work of
the authors has confirmed this to work for force-
displacement as well. This can be a good starting
point to model non-peak-peak motion.

B. Frequency response

The RMS power frequency response is shown in
Fig. 9d. The frequency response was measured at
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Fig. 8: Force-displacement diagrams with (a) measured force-displacement of the uncompensated beam and negative
stiffness result from finite element simulation, (b) measured hysteresis paths for the compensated beam with a load
resistance of 1IM2. The time period equals 11.7 s.
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1.5, 2, 2.5 and 3 g yet only for 2.5 and 3 g it
is compared to the simulations due to the prob-
lems discussed previously. The peak performance
is found at 9 hz and 3 g where an RMS power of
1.20 mW is delivered.

The effect of increased input acceleration is also
very clear. At 1.5g only one endstop is hit, resulting
in a low linear response. This makes sense as the
output voltage depends on the strain rate integrated
over the beam length, which is lower in this case
[16]. At 2 g, the second endstop is hit slightly at
some frequencies and at others it is not, resulting
in a larger scatter in power. At 2.5 and 3 g both
endstops are hit. These curves show an interesting
behaviour. First, the response is linear until 6 hz.
This is also seen in other nonresonant devices such
as in [22]. After 6 hz, the response continues in
a sublinear trend and a power saturation seems to
appear.

The simulated output power response at 2.5 and
3 g is also shown in Fig. 9d. It can be seen that at
frequencies lower than 6 hz, the simulated power
closely predicts the measured. The error remains
below 10%. However, from 7 hz and onwards, the
simulation rapidly diverges from the measurement
and overestimates. The simulated voltage starts to
increase, resulting in a rapid increase in RMS
power. The results suggest that the exclusion of
the negative stiffness in the mode shape function
¢-(x) is admissible; the difference in power is
small at frequencies lower than 6 hz. If the mode
shape function were not representative, a larger
error should be seen for all frequencies, as in the
simulation the deflection pattern remains constant
for all frequencies.

The exact reason behind the rapid error growth
is not fully understood yet. A possible explana-
tion could be that the hysteresis loop measured
at quasistatic condition starts to become less resp-
resentative at higher frequencies. Hysteresis loops
in piezoelectric actuators show a rate dependence
[23], [24] and unpublished work of the authors
has confirmed this effect to be seen in force-
displacement measurements as well. Therefore, ad-
ditional terms may be necessary in the equations of
motion which is a subject for future work.

C. Performance comparison to prior art

In Fig. 10, the measured performance of the energy
harvester is compared to prior art in terms of F'oM,
and A. From the plot it can be noted that prior
art is inclined to larger motion ratios. The FupC
harvesters tend to be less efficient than SDoF. To
the author’s best knowledge, this work has the
highest F'oM, for a motion ratio under 0.6. The
FoM, peaks at 0.567% at a motion ratio of 0.18.
Although this is still low, larger values can be
expected as no optimization has been applied yet.

Several things can be noted from the perfor-
mance belonging to this work. First, the FolM,
is relatively constant thoughout A at constant ac-
celeration. For instance, at 2.5 g a factor of 25
can be found in A\ but only a factor of 1.38 in
FoM,. To put this in perspective, resonating VEHs
without endstops were analysed in [8] and showed
a factor 16 in A and 344 in FoM,. This clearly
demonstrates the operational differences between
resonant and nonresonant devices.

From the zoom view in Fig. 10, it is seen that the
peak F'oM, does not correspond to the peak power
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or peak acceleration. The peak Fol, is found at
a motion ratio of 0.18 which corresponds to a fre-
quency of 3 hz and acceleration of 2 g. So although
a higher frequency or input acceleration results into
more output power, this clearly does not benefit the
efficiency. This implies that after a certain value
for the acceleration or input frequency, although
the output power increases, the FolM, does not.
Hence, there is a certain threshold after which the
VEH starts making less practical use of its physical
dimensions and properties.

5. Conclusion

In this work, the stiffness of a piezoelectric vi-
bration energy harvester is compensated through
addition of attracting magnets. It was conceived
in order to provide an energy harvester that has
a small length in the excitation direction, that op-
erates at low frequency with large inputs and that is
efficient. A distributed parameter model from liter-
ature based on modal analysis was further extended
by the addition of endstops, negative stiffness and
hysteretic force-displacement data. For peak-peak
displacements, the RMS power difference between
simulation and measurement has been analysed.
Between 2 and 6 hz, the error between simula-
tion and measurement remained below 10%, yet
it rapidly grows when the frequency is further
increased until 10 hz. Therefore, a modal analysis
based distributed parameter model can be found
to be promising for modeling the dynamics and
output of a cantilever-based stiffness compensated
piezoelectric beam. However, work is necessary to
improve the simulation performance over a wider
range of frequencies.

The measured RMS peak power was obtained at
9 hz and 3 g and was equal to 1.20 mW. When it
comes to performance in terms of generator figure
of merit (FoM,), a peak value of 0.567% was
obtained. To the author’s knowledge, the efficiency
is the largest reported in literature for the case of
excitations below 6 hz and larger than 2 g. No
optimization has been applied until now, so even
larger values can be expected.
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REFLECTION, CONCLUSIONS AND
RECOMMENDATIONS

This chapter provides an overview of all activities throughout this research. The entire pro-
cess is being reflected upon and the most important conclusions are drawn. Furthermore,
some future research recommendations are listed.
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7.1. PROJECT OVERVIEW

To get a clear overview of the entire process of this thesis, the main research activities
and their relations are shown in an overview in figure 7.1.

Low frequency energy harvesting

Increased electromagnetic damping

Assessment of correct damping Load resistances for various
levels in confined space sets of excitations

On the use of damping in low frequency
vibration energy harvesting Static balancing of piezo as alternative

Rate dependent Design of statically balanced

force-displacement piezoelectric VEH Piezoelectric fundamentals

Building force-displacement

setup FEM of endstop and

piezoelectric beam

Modal analysis

Assess memory effects Varying rate at fixed loads Hertz mechanics
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( On the mechanical behaviour in stiffness
compensated piezoelectric beams- an
experimental investigation towards energy
\ harvesting

Measurement on linear stage flMeasurement on crank-slider

e
A stiffness compensated piezoelectric
energy harvester for low frequency and

large amplitude excitations

Figure 7.1: Overview of activities during the project. Yellow indicates the main focus of this thesis, blue the
research activities and green indicates articles.

7.2. LEARNING PROCESS

The start of the thesis was a bit rough and chaotic. As static balancing is quite novel in the
field of energy harvesting, it wasn't directly clear what the main issues would be. The only
thing known at the start was the conception that electromagnetic transduction would
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have very limited application when it comes to small VEHs operating at low frequency
and large amplitudes; and that static balancing of a piezoelectric beam could form an
interesting alternative. After deriving the why and what for concerning this project, the
how was the next thing to tackle: the design process. Here, practicality outweighed real
life implementability. After this point, the project started to split into two directions:
first, the modelling of the dynamics and output and second the effect of taking force-
displacement measurements at different rates. Strangely, these two directions remained
independent from eachother for quite some time. It took quite a while to realise that
a force-displacement measurement of the hysteresis along with the remanent stiffness
was the missing piece in the puzzle of a model. The force-displacement measurements
formed a lengthy process, mainly as it was not known in advance what parameters were
interesting to vary and which to keep constant.

In retrospect, the process could have been accelerated if more time was spent on
finding out what exactly was to be measured and if the prototypes could have been dy-
namically tested in an earlier stage. Much time was consumed by not exactly knowing
what was to be measured. This is something that would be done differently in a future
project.

7.3. UNSUCCESSFUL ATTEMPTS

The least successes were found in the finite element simulations. First, a FEM Hertz con-
tact model was developed to find the endstop stiffness, but the model seemed to over-
estimate by at least a factor of twenty. The cause of this was never found and analytical
equations were used in stead.

Next to that, a FEM model for the piezoelectric beam was developed. This model
worked quite well. It was attempted to further develop it in order to predict hysteretic
force-displacement curves. This attempt was no success. This was mainly for the rea-
son that it was unclear what the exact mechanism behind the hysteresis was (this is still
ongoing research), not to mention how one is to implement it in FEM. The model was
also judged to be inadequate for simulation of the balanced system, as it would involve
mechanics, electrostatics, electrics and electromagnetics at a very fine meshing. The
computational effort would be quite inefficient and the provided insight too little. Nev-
ertheless, the model still proved to be useful, as it was used to validate the modal analysis
based model for a linear resonator. The results from these models can be found in ap-
pendix E.
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7.4. CONCLUSIONS

The research goal of this thesis was to find an energy harvester that has a small length in
the excitation direction, operates at low frequency with large input motions and that is
efficient in terms of generator figure of merit. In the introduction, the research objective
was as follows:

Design, model and experimentally validate a stiffness compensated piezoelectric
energy harvester for low-frequency, large-amplitude excitation.

* The design has proven to be very suitable for the art of stiffness compensation.
Early prototypes with tuneable magnets (appendix A, B) have shown that magnet
distances can be tuned as such that a region can be created with extremely low
stiffness: a near zero stiffness or neutrally stable region can be created by accurate
tuning of the magnets. Achieving the same with a fixed magnet design is harder
as when zero stiffness is approached, the tuning becomes more delicate. The de-
sign has its drawbacks. First, magnets limit the range of applications that the VEH
can be used for. Second, repeatability is an issue. Deviations in beam stiffness of
the piezo samples and in field strength of the magnets potentially prohibits mass
production and enforces custom design.

* The model has been validated experimentally by sinusoidal excitation on a lin-
ear air bearing stage. Conclusions on this are a bit mixed. In most cases, voltage
time signals are closely resembled, although average output power is the most im-
portant. From the results, it was seen that at frequencies below 6 hz the power is
closely resembled and the error between the model and measurement remained
below 10%. However, at higher frequencies, this error rapidly explodes up to 38%
at 10 hz as the peak voltage is overestimated. The exact reason for this remains un-
clear. It raises the question whether quasistatic force-displacement measurements
remain a representative input when the frequency increases or whether dielectric
losses start to kick in. The best that can be said is that this modeling approach
is very promising considering statically balanced cantilevers, but further research
and development is definitely necessary.

Two research questions were posed:
How does a stiffness compensated piezoelectric beam mechanically behave?

 This question was fairly open and has been answered by means of rate-dependent
force-displacement measurements. The behaviour of a piezo with a load con-
nected strongly depends on the strain rate by which it is deformed. A load re-
sistance can behave as if it were a closed circuit at quasistatic rate, yet may be-
have as if it were open circuit at a faster rate. This effect was quantized by com-
paring a load to the impedance matched load. At a faster strain rate, a larger
amount of charge is built up, resulting in a (temporal) stiffening. Furthermore,
the memory effects in hysteresis called curve alignment and wipeout that have
been observed in piezoelectric actuators in literature, have also been comfirmed
in force-displacement measurements. The fitting curve-based method to predict
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hysteretic curves inside a hysteresis loop of an actuator has also been shown to
work for force-displacement measurements. This can be an excellent method for
predicting the output when the full range motion is not attained. By only knowing
the hysteresis data belonging to the full range motion, non-full range motion can
be predicted, resulting in a large reduction of required input data.

* Another, phenomenological find is that the act of balancing a piezoelectric beam
is way easier than balancing a flexure with equal bending stiffness. That means, it
is easier to end up in to a statically balanced or neutrally stable state. The piezo is
less sensitive to the tuning of the magnet distance compared to the flexure. A con-
sequence of this is that the piezo, although neutrally stable, requires more force to
be displaced. In terms of dynamics, a larger input amplitude is required compared
to the flexure. An explanation behind this could be that a flexure is a pure stiffness
component whereas a piezoelectric beam could be seen as a spring-damper ele-
ment. This could mean that it behaves viscoelastically, which can be backed up
by nonlinear behaviour such as creep [22], also seen in the force-displacement
measurements. However, true viscoelastic behaviour has not been seen to be con-
firmed in literature.

To what extent can a stiffness compensated piezoelectric vibration energy harvester form
a solution to the low efficiency at low motion ratios?

It was observed that a peak generator figure of merit efficiency of 0.567% was ob-
tained at a motion ratio of 0.18. For motion ratios below 0.6, the generator figure of
merit performance is the highest according to the author’s best knowledge. That
is very promising for a harvester that has seen virtually no optimization yet. The
volume is still pretty large to allow for quick assembly and disassembly. The pack-
age volume can be easily reduced be a factor of 3 and assuming the frame stiffness
remains about the same, the efficiency also increases with a factor of 3. Further-
more, the efficiency was observed to remain relatively constant over the motion
ratio. This suggests that this type of energy harvester could also harvest efficiently
over a wide band of frequencies.

7.5. ON THE PERFORMANCE DECREASE OF THE MODEL

As discussed previously, after a certain frequency the model quickly starts to overesti-
mate the voltage and the power even more. The true cause for is has not been found yet,
and identification of the cause is far from straightforward. Nevertheless, a few points will
be discussed that could be an influence in this. Some references are presented as well
that back it up or to provide a starting point.

* As indicated in the paper the 'free’ boundary condition is actually not free as the
magnets introduce a force on the tip. As the deflection pattern remains the same in
the simulation throughout all frequencies, a rather static error would be expected
between simulation and measurement. This is not the case, at low frequency the
error is small but increases with frequency. Therefore, it seems that this is not to
the main problem. Nevertheless, improvements should be expected by including
the negative stiffness into the mode shape.
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* The electromechanical coupling term in the beam equation represents an addition
in stiffness as function of the output voltage. This work also confirmed that the
stiffness rises in hysteresis loops at faster rates. However, the shape of the loop
changes as well at a faster rate, which is also seen in actuators [11], [23]. This effect
is not included in the equations and could affect the output. For instance, when
the hysteresis loops are amplified by a certain factor, the simulation starts to match
again with the measurements at higher frequencies.

 Certain input variables were taken to be constant in the model and were used as
specified by the manufacturer. However, literature shows that these parameters
are conditionally constant. The dielectric loss tangent tand, which isn't directly
used in the model, is a criterion for internal losses and behaves nonlinearly with
the electric field accross the piezo [24], [25]. An increased electrical field resuls in
a larger loss tangent, and large voltages actually are generated in the piezo. Data
from [24] suggests that for PZT, the loss tangent could be quadrupled for the peak
voltage attained in this piezo.

The same goes for the piezoelectric charge constant d3; and the permittivity erng

[26]. The former increases the backward electromechanical coupling, which im-
pedes the output. The latter increases the capacitance Cj, which also results into
a lower output voltage.

However, on the one hand, large voltages are obtained at low frequencies where
the error is low as well as at the high frequencies where the error is large. Fur-
thermore, in [15] this model was applied to a linear resonating cantilever and the
model was in good correspondence with the measurement. It is therefore not en-
tirely clear whether this plays a role in the large error at high frequency.

* Lastly, the formulation of the endstop model may be insufficient. The linearized
stiffness and damping seem to work fine and are confirmed to work properly in
energy harvesting litererature [17]. The coefficient of restitution has been shown
to behave nonlinearly with impact speed [27]. As such, the endstop damping
changes as well. Altering levels of damping at the frequencies with large error did
not improve the performance. It could still be possible that the formulation of the
endstops is not accurate enough and that a better formulation could increase the
model’s performance.

7.6. RECOMMENDATIONS

* What do noisy signals, spikes, medfilt1() and lots of frustration have in common?
Exactly, the use of poor power supplies. Whether grounded or not, simple power
supplies have proven to perform quite poorly for these measurement purposes.
The solution: the use of lab power supplies. Seriously, the prefix labhas a meaning
and its significance is not to be overstated.

* When measuring something novel, think about what is to be measured and what
is to be expected. When the measurements are obtained, compare them to prior
art related to what is measured to check if it could make sense. In this way errors



7.7. FUTURE RESEARCH RECOMMENDATIONS 81

can be quickly identified, such as a calibration error in the load cell in this case.
This can save a lot of time and effort.

* Watch out for being biased by experience and results from previous projects. From
a previous project where a tubular Duffing oscillator was designed, it was found
that the stiffness formed by magnetic forces is nonlinear; it formed a cubic func-
tion. It was therefore assumed that the negative stiffness should be nonlinear in
this design as well. However, it turned out to depend strongly on magnet size and
strength. By holding on to previous experience, new results may be judged to be
unjustifiably incorrect, whereas they are correct in practise.

7.7. FUTURE RESEARCH RECOMMENDATIONS

Only the tip of the iceberg has been shed light on when it comes to statically balanced
piezoelectric energy harvesting. There is much work to do before it can see practical
implementations. A few projects or research proposals are listed below.

 Explore the output response for non-sinusoidal excitations. Human motion is also
a type of motion that has large amplitudes. Could static balancing of a piezo form
a solution for human motion driven devices? Can the curve fitting method from
chapter 5 be used to simulate arbitrary input/output?

* Damage mitigation: prolonged endstop collision is likely to induce cracking in the
piezo. Endstop optimization is important to ensure the viability of the concept for
a long period of time. Next to that, optimization of the endstop modelling could
be a subject for future research.

* Damage mitigation: strain homogenization along the length of the cantilever. By
lateral tapering of the cantilever, the strain is more evenly distributed, resulting in
a larger power density, see [9]. This could further reduce the VEHs physical foot-
print and could increase reliability due to better strain distribution. Development
of the corresponding mode shape functions will also be interesting.

° Miniaturization of the VEH. As abrasive cutting has shown to be successful to cut
piezos in various shapes, they can be cut to smaller sizes [9]. By proper optimiza-
tion the package volume may be reduced to relay-size, paving the road for low-
frequency VEHs that can be socketed on a PCB.

* Implementation based on buckled beams: although the downsides of using buck-
led beams for negative stiffness were thouroughly discussed in chapter 3, these
may turn out to be less prominent in the case of strongly coupled piezoceramics.
Static balancing of piezoceramics is way easier than that of a flexure, possibly due
to viscoelastic effects. This provides room for investigation using buckling, which
may further reduce the footprint in excitation direction. It also elminates the pos-
sible parasitic magnetic interference with surrounding objects.

* Investigate the influence of dielectric losses for low frequency piezoelectric energy
harvesting. The dielectric loss tangent is known to increase nonlinearly with the
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electric field. As these become large, dielectric losses could be detrimental to har-
vester performance and could also be a reason for power saturation. If this has an
influence, how is this to be mitigated?
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PROTOTYPES

Prior to the manufacturing of the final prototype, several prototypes were built and in-
vestigated. This chapter briefly discusses them and shows a few of their characteristics.

A.1. TESTING OF STATIC BALANCING THROUGH MAGNETS

To assess whether magnets could be useful in the art of static balancing of a cantilever
beam, a quick setup was built where a flexure was clamped at its base. Two magnets were
clamped around its tip and magnets glued to threaded rods were used to accurately tune
the distance between the magnets and thereby the negative stiffness encountered by
the beam. Aluminium 2020 profiles and 3D printed parts were used to quickly build the
prototype. The result is shown in figure A.1. The prototype was also used in combination
with a piezoelectric beam clamped in. As the results were satisfactory, the prototype was
further developed into a compact successor that could be used for shaker testing.

Figure A.1: Prototype to assess the effect of static balancing by magnetic forces.
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A.2. BALANCED ENERGY HARVESTER MK.1

The previous prototype was downsized and geometrically adapted to allow shaker and
force-displacement tests. The principle remains the same: magnets attached to threaded
rods allow for highly accurate tuning of the zero stiffness condition. The prototype was
built as such to quickly and easily swap and replace componenets. In stead of using two
disc magnets as proof mass, a block magnet is attached to the piezo by metal epoxy glue.
This allows for an improved definition of the contact stiffness between the proof mass
and the endstop, as there is a line contact now. This simplifies the simulation of the
contact stiffness. Two locknuts are glued on the top and bottom side of the proof mass
magnet. This allows for connection of bolts to the proof mass in order to connect the
energy harvester to the force-displacement setup. This new version is shown in figure
A2

(b)

Figure A.2: Improved design of the previous prototype to allow shaker testing. In (a) a piezo is clamped, in
(b) a flexure with equal bending stiffness.

A.3. BALANCED ENERGY HARVESTER MK.2

In the previous prototype it was hard to maintain reproducable measurements, as the
negative stiffness could be tuned through the adjustment screws. Therefore it could also
easily be detuned. As a result the necessity arose to manufacture a prototype that has a
fixed geometry: the distance between proof mass and endstop magnets is fixed and can-
not be changed. This results into measurements that are more reliable and reproducible,
however potentially at the expense of the proximity to zero stiffness: with tuning screws
it is very straightforward to reach zero stiffness as close as possible, but with a fixed mag-
net position this may turn out to be challenging. Figure A.3 shows the new prototype
with fixed geometry. It was observed that in this configuration, it was nearly impossi-
ble to end up close to a statically balanced state. The clamping of the piezo performed
poorly and had a large influence on the mechanics. The clamping was simply not stiff
enough after tightening the bolts. Therefore, the need arises for a frame that clamps the
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piezo symmetrically from both sides with a much larger frame stiffness. This is embod-
ied in the final prototype.

Figure A.3: Balanced harvester mk.2 with fixed magnet design.






MISCELLANEOUS MEASUREMENTS

Many force-displacement measurements were taken in this work, of which only a few
were shown in the research papers. There were too many to fit it all in one coherent
storyline for a paper. In this section, some of these measurements are shown. This in-
cludes measurements from early prototypes shown in appendix A. It must be noted that
these measurements are not symmetric around the x-axis. There is a static offset in the
measurements, which was due to a calibration error. In principle, the measurements
could simply be shifted down in the force direction and they still display the qualitative
behaviour.

B.1. BALANCED HARVESTER MK.1

In appendix A the Mk.1 harvester was shown, both for the case of a piezo and a flexure
that had an equal bending stiffness. The force-displacement characteristics are shown
in figure B.1 for comparison. As can be seen from the figure, the uncompensated states
are nearly the same. However, for the compensated conditions, great differences can be
spotted. The hysteresis loop of the piezo is much larger than that of the flexure. Further-
more, the required force to move the flexure is also a lot less compared to the piezo. In
practice, is was found that is was way easier to balance the piezo compared to the flex-
ure. This observation also relates to the figure: with a much lower force level, the flexure
is perturbed more easily, making it harder to balance it. This also means that it needs
less input acceleration to move the beam, introducing a tradeoff: easier to balance and
harder to move it dynamically or harder to balance and easier to move dynamically.

The piezo has a zero stiffness region around zero displacement and then the stiff-
ness becomes positive. The magnets were not close enough to provide full range zero
stiffness. For the flexure, the opposite is true. First around zero displacement the stiff-
ness is slightly positive, then it decreases and becomes slightly negative. In this case, the
fixed magnets are larger disk magnets and therefore likely provide a nonlinear negative
stiffness, opposed to the magnets used in the final prototype which provided a nearly
linear negative stiffness.
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Figure B.1c shows what can be truly achieved in terms of zero stiffness when the fixed
magnet distance is tuned to the best position. In this case, around two-thirds of the
displacement limit has a zero stiffness condition. The figure really shows the advantage
of having a tunable negative stiffness.
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Figure B.1: Force-displacement graph of the MK.1 harvesters in unbalanced and balanced state. Figure (c)
shows the best tuning configuration resulting in a large zero stiffness region.

B.2. MEASUREMENTS AT FIXED LOAD AND VARIED SPEED

In the force-displacement research paper, the plots shown were at fixed speed and dif-
ferent loads. Turning it around, plotting at fixed load and different speeds, the plots in
figure B.2 are obtained. The measurements were not taken at full displacement range.
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A few interesting things may be noted. First, it can be seen that for the open circuit, the
hysteresis loop becomes thinner at faster rates, whereas it grows for the other cases. Fur-
thermore, it can be seen that there is barely any difference between the 10MQ and 1MQ
case. Perhaps the stiffening effects that were found in the force-displacement paper are
less pronounced at lower displacements or without endstop hits.
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Figure B.2: Force-displacement measurements at fixed loads and varied speeds. In the legend, T indicates
the time period to close a full loop.

B.3. FURTHER APPLICATION OF HYSTERESIS MAPPING

In chapter 5 it was shown that inner hysteresis curves could be predicted by fitting curves
to the outer hysteresis loop. The inner curves could be predicted by ‘'mapping’ the outer
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curves to a certain start and end point while retaining the same fit parameters, similar
to what had been done in [21]. Figure B.3 shows another application of this method.
The blue curve is the full range motion curve along with the response for a smaller in-
put displacement. This could occur at low input accelerations or it can be considered
as an exaggerated endstop bounce. The figure shows that once the outer ascending and
descending curves have been fitted, the inner ascending and descending curves can be
predicted by using the same fitting parameters but different start and endpoints. Al-
though this is not very different than what is shown in the paper in chapter 5, the ap-
plication of this is worth to mention. In chapter 6 it was shown that using the full range
motion curve for non-full range motion results in poor simulation performance. Using
the non-full range motion curves, the performance increased. It was mentioned that for
every distinctive non-full range displacement, a separately measured hysteresis curve
would need to be used, which is far from efficient. This fitting technique shows a possi-
ble solution to that. By knowing the outer/full range curves, technically any inner curve
should be predictable. This implies that for non-full range motion, the hysteresis curves
could be predicted in real time by the ode solver by continuously generating a hysteresis
curve based on current and past displacement data.
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Figure B.3: By fitting curves to the outer loop, the trajectories of the inner loop can be predicted.



DATA OF PIEZOELECTRIC BEAM

In this section the specifications of the used piezoelectric element are shown. The ele-
ments are from Morgan Ceramics, made from PZT-508. Figure C.1 shows the piezo that
is used. On the right the gilded terminals can be seen.

Figure C.1: PZT-508 piezo used throughout the research.

The yellow tip at the very left (left of the gilded strip left) is the actual colour of the piezo-
electric material and reveals many of its properties, according to [12]: a yellow colour
indicates that is belongs to the class of soft’ piezoelectric materials. This class is known
for its large dielectric constant and large coupling coefficient. It has a larger electric re-
sistance and is less stiff. Furthermore, its quality factor is relatively low, indicating larger
dielectric losses. These losses will even increase when large electric fields are present
within the material [24], which is not really beneficial in the case of a balanced piezo.
The low frequency operation enforces the use of large load resistances, leading to large
voltages. Table C.1 displays the numerical data belonging to the used piezo.
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Table C.1: Manufacturer data for PZT-508 material of which the piezoelectric beams are made. Data are
retrieved from [9].

Description symbol quantity unit
Relative permittivity el 3900
Dielectric loss tangent  tané 0.02
Coupling factors kp 0.71
k15 0.72
ks 0.41
K33 -0.75
Charge constants dss 720 x10712C/N
ds -315 x10712C/N
dis 750 x107'2C/IN
Voltage constants 833 18.5 x1073Vm/N
g31 -9 x1073Vm/N
Quality factor Qm 55
Compliance S§3 22 x1072m?/N
Sh 164  x1072m?/N
s 8.8 x1072m?/N
S 139  x107%m?/N
Elasticity Y 49 x10°Pa
vt 61 x10°Pa
vh 110 x10°Pa
Y 70 x10°Pa
Density o 7900 kg/m®

Curie Temperature T, 208 °C




FIGURE OF MERIT

The generator figure of merit from [2], derived from the volume figure of merit [6], [3] is
a parameter that plays a central role in this work. It allows for a more fair comparison
between energy harvesters. However, the formula is not that straightforward. Therefore,
in this section it is shown how it can be derived and interpreted. One can start with the
most simple equation for a mass-spring-damper system:

MZ+(Ce+Cp)z+Kz=May (D.1)

Where M, C,, Cy, K, z, ag are the mass, electrical and mechanical damping, stiffness,
relative proof mass displacement and input acceleration, respectively. At resonance, the
inertial and stiffness terms cancel eachother, and only the damping and forcing terms
are left:

(Ce+ Cyp) 2wy, = Mag (D.2)

Note that for the case of sinusoidal excitation, the velocity can be written in terms of the
natural frequency w,. The amplitude can be found while the assumption is made that
the electrical damping equals the mechanical:

May May
zZ= =

(D.3)

The average power can be found by integrating the power over a cycle and once again
assuming sinusoidal motion:

1 T 1 T
Pavg = 7](; P(t)dt: ?j(; Cez'zdt (D4)
21wy M2 a? 1 M?a?
Pavg = 22 f Co——— cos? widt = — Cp——O— (D.5)
21 Jo (Ce+Cy) 2 " (Ce+Cp)
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With the electrical damping matched to the mechanical and using eqn. D.3, the maxi-
mum average power is found as:

M? a% _ Magzw,
8Cy, 4

Pavg,max = (D.6)
It can be seen that the maximum power at resonance depends on the mass, input accel-
eration, displacement limit and natural frequency. The mass and displacement limit can
be designed for, and should thus be maximized. The idea of the volume figure of merit
FoM, is to compare the output power to a reference benchmark harvester that forms
the performance limit. This reference harvester is defined by having a cubic shape with
a volume and input conditions equal to the harvester that is benchmarked. Figure D.1
shows the reference harvester. The proof mass density is defined to be of gold, which
is to set a high standard and it is beneficial for MEMS devices [3]. So to maximize the
reference harvester power, the product of the proof mass and displacement limit must
be maximized, defined as follows:

paua’b(a—Db)ayw,
Pref: 4

The term a? b(a— b) must therefore be maximized and it can be easily identified that this
is achieved at b = a/2. This means that the proof mass length is equal to half the length
of the harvester. As a result, the reference power is equal to:

D.7)

PAudowna®  pauaow, V3 04, V3 y003
Prof = - = (D.8)
16 16 16

The FoM, is then defined as the ratio between the average power of the built VEH and
that of the performance limit set by the reference harvester:

Figure D.1: Reference energy harvester of cubic shape and volume and proof mass equal to the bench-
marked harvester.

Pavg,vEH PaygvEH
FoM, = —¢ = g

= (D.9)
Pref ﬁPAu Yo V4B w3



99

As pointed out in [2], it was shown in [6] that the maximum power in a VEH depends
nonlinearly on the length of the VEH and linearly on the other dimensions, see eqn. 1.5.
It could therefore be argued that given two VEHs of equal volume and mass, the har-
vester that is the longest in the excitation direction will always perform better in terms of
FoM,. As aresult, it can be argued that this performance metric is biased toward certain
shapes of a VEH. To remove this bias, [2] proposed a variation on the FoM, by chang-
ing V43 to VL, where L, is the VEH’s length. In this way, the metric also takes shape
into consideration. Furthermore, the density of gold was changed into the density of the
proof mass, which would also be a more fair comparison. This variation was named the
generator figure of merit and is defined as:

Pavg,vEH Payg,vEH
FoM, = —=% =5 - (D.10)
Prey PP YoVL w3







COMSOL MODELS OF
PIEZOELECTRIC BEAM AND
ENDSTOP STIFFNESS

E.1. PIEZOELECTRIC MODEL

The force-displacement data of the stiffness compensated piezo were mainly used to
investigate the behaviour of the piezo in this state and to use this as an input to the
ODE-solver in MATLAB. Although this is a straightforward method, it forces the design
of such an energy harvester somewhat into an iterative of forward-backward process.
Dimensions of the piezo have to be assessed and then once the piezo is acquired mea-
surements have to be done and to be judged whether everything is satisfactory. It would
be a great improvement if the hysteretic behaviour of the piezo could be simulated as
well, enabling more freedom in the design process and making it more unidirectional.

As COMSOL Multiphysics includes a piezoelectric and electrostatic package, piezo-
electric cantilevers and accompanying electrical circuits can be easily modelled. Figure
E.1 shows the geometry of the piezo cantilever. In the figure, the two-dimensional ge-
ometry of the beam can be seen. The middle layer is the substrate layer with the piezo-
electric layer on top and bottom of it. The two rectangular blocks on the left form the
clamping. At the right end of the cantilever, a proof mass is connected. Figure E.2 shows
the stress of the cantilever at resonance.

Unfortunately, a model to predict the hysteresis behaviour in the piezo couldn’t be
constructed successfully. A reason for this is that, unlike hysteresis in magnets, hystere-
sis in piezoelectric elements is still quite in its infancy. The real origins and mechanisms
behind the hysteresis aren't entirely known yet. Consequentially, there is virtually noth-
ing to refer to when constructing such a model. Furthermore, most hysteresis models in
literature are based on actuation mode, so putting a voltage on the piezo and measuring
displacement. In this case however, a displacement is imposed and the force measured.

In order to still make use from the model and not to discard it, the frequency response
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of the cantilever was simulated to provide a comparison to the results from the MATLAB
ODE model. In this way the results can be verified. In figure E.3 a comparison is shown
between both models for an applied frequency response of an unbalanced cantilever. As
can be seen, the results match very closely. A few differences can be spotted which are
mainly due to variations in the used material parameters. All in all, these results confirm
the suitability of the electromechanical model in MATLAB.
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Figure E.3: Comparison of results from (a) COMSOL simulation and (b) MATLAB simulation.

E.2. ENDSTOP STIFFNESS

Besides the Hertz contact mechanics modelling, a COMSOL model was developed to
find the the endstop stiffness. This was for the reason that it wasn't certain whether the
contact could really be defined as a cylinder on a plate.

Figure E.4 shows the proof mass magnet on top making contact with energy harvester
frame below it, consequentially forming a contact stress region. The red boundaries
indicate the fixed constraints and the green arrow indicates the applied displacement.
The variables of interest are the indentation of the magnet into the endstop and the to-
tal contact force that the magnet encounters. Evaluating this for a set of indentations,
a force-indentation graph can be found showing the required force to indent the end-
stop, which is shown in figure E.5. As can be seen, the contact force and corresponding
contact stiffness are way higher in comparison to the Hertz mechanics. The contact stiff-
ness amounts 5.5MN/m compared to the 250kN/m from Hertz. It was expected that the
COMSOL simulation should closely match the analytical formulations from the Hertz
mechanics. Unfortunately, the problem couldn’t be resolved and the results from Hertz
mechanics were continued to be used.
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indicate the fixed constraints, green arrow the applied displacement.
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