
Recommending Log Placement Based on Code Vocabulary

Konstantinos Lyrakis1 , Jeanderson Cândido2 , Maurı́cio Aniche 3
1TU Delft

Abstract
Logging is a common practice of vital importance
that enables developers to collect runtime informa-
tion from a system. This information is then used
to monitor a system’s performance as it runs in pro-
duction and to detect the cause of system failures.
Besides its importance, logging is still a manual
and difficult process. Developers rely on their ex-
perience and domain expertise in order to decide
where to put log statements. In this paper, we tried
to automatically suggest log placement by treating
code as plain text that is derived from a vocabu-
lary. Intuitively, we believe that the Code Vocabu-
lary can indicate whether a code snippet should be
logged or not. In order to validate this hypothesis,
we trained machine learning models based solely
on the Code Vocabulary in order to suggest log
placement at method level. We also studied which
words of the Code Vocabulary are more important
when it comes to deciding where to put log state-
ments. We evaluated our experiments on three open
source systems and we found that i) The Code Vo-
cabulary is a great source of training data when it
comes to suggesting log placement at method level,
ii) Classifiers trained solely on Vocabulary data are
hard to interpret as there are no words in the Code
Vocabulary significantly more valuable than others.

1 Introduction
Logging is a regular practice followed by software developers
in order to monitor the operation of deployed systems. Log
statements are placed in the source code to provide informa-
tion about the state of a system as it runs in production. In
case of a system failure, these log statements can be collected
and analyzed in order to detect what caused a system to fail.

Efficient and accurate analysis of log statements, depends
heavily on the quality of the log data. Therefore, it is of vi-
tal importance that developers decide correctly on where and
what to log. However, it is not always feasible to know what
kind of data should be logged during development time. Log
placement is currently a manual process, which is not stan-
dardized in the industry. Although there are various blog
posts about logging best practices [1], [2], [3],[4],[5], they

mostly concern how to create log statements, rather than
defining where or what to log. As a result, developers need to
make their own decisions when it comes to logging and they
have to rely on their experience and domain expertise to do
so.

In this paper, we focus on the ”where to log” problem and
propose a way to help developers to decide which parts of the
source code need to be logged. Prior studies have proposed
different approaches in order to achieve this goal [6], [7],
which exploit the textual features of the source code among
others in order to suggest log placement.

This research focuses solely on the value of textual
features for recommending log placement at method level.
We treat the source code as plain text and consider each
method to be a separate document, which consists of words
that belong to a vocabulary. Intuitively, we assume that each
method’s vocabulary can be used to decide whether it should
be logged or not. We conjecture that some words from
the vocabulary are more closely related to the logging of a
method than others. Specifically, we focus on the following
research questions:

RQ1: What is the performance of a Machine Learning
model based on Code Vocabulary for log placement at
method level? This is the main focus of the research. A
well performing classifier trained solely on Code Vocabulary
would verify our assumption that Code Vocabulary can
provide us with sufficient training data to recommend log
placement.

RQ2: What value do different words add to the classifier?
By answering this question we can explain why a classifier
performs well or not by examining which words provide the
most information. We could also detect patterns that lead
developers to decide which methods need to be logged or not.

RQ3: How does the size of a method affect the per-
formance of the trained classifier?
The long term goal of this research is to help developers
make better logging decisions. Answering this question
would help us decide what kind of tool we would be able
to build for this purpose. For example, if a classifier can
accurately predict log placement regardless of the size of a
method, we could implement a tool that suggests log place-

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

ment in real time as the developer types the code of a method.

Paper Organization Section 2 describes the methodology
that was followed in order to answer the research questions.
Section 3 presents the results for each research question. Sec-
tion 4 discusses the ethical implications of this research. Sec-
tion 5 contains a discussion on the results and Section 6 sur-
veys related work. Finally, Section 7 summarizes the paper,
provides the conclusions of the research and suggests ideas
for future work.

2 Methodology
This section describes the process that we followed to an-
swer the research questions mentioned in the introduction.
An overview of the methodology can be seen in Figure 1.
Subsection 2.1 provides information about the studied sys-
tems. The processes described in subsection 2.2 and subsec-
tion 2.3 were followed for each system separately.

2.1 Studied Systems
The systems that were studied during the research are Apache
CloudStack[8], Hadoop[9] and Airavata[10]. All the three
systems are open source projects built in Java. They were
selected because they are large systems with many years of
development, so we assume that they follow good logging
practices, therefore they constitute a valuable data source for
this research.

2.2 Creation of the dataset
The dataset that was used in this paper was created from the
source code files of the systems’ repositories. For the pur-
poses of this research, only the source code files were used,
because the test files are expected to have different logging
strategies which would be associated with a different vocab-
ulary.

Method Extraction
The first step towards the creation of the dataset, is to extract
the methods from the source code. In order to do so, the Java-
Parser [11] was employed. For each method, we collected its
statements and used CK [12] to count its Lines of Code. In
total, 38509 methods were collected, out of which 4040 were
logged.

Labelling
A vital step of the data preparation, is to label the methods
that were collected. Each method was labeled as ”logged”
if it contained a log statement, otherwise it was labelled as
”not logged”. A log statement is a statement that contains
a method call to a logging library. All the studied systems
use the log4j [13] framework, which defines 6 levels of log-
ging that correspond to similarly named methods: fatal, error,
warning, info, debug, trace. So any statement that contains a
call to these methods is considered to be a log statement.

Data Cleaning
The source code files, contain many methods that are very
small, consisting of less than 3 lines of code. These methods,
are less likely to be logged, as they mostly implement very

simple functionalities (e.g. getters and setters). We decided
to filter out these methods to avoid introducing bias to the
classifiers. Table 1 shows that even after filtering out the small
methods, the number of logged methods remains the same, so
the removed methods would not provide extra information to
the classifiers, as they all belong to the ”not logged” class.

Methods Logged Filtered Filtered Logged

38509 4040 15282 4040

Table 1: Number of Methods

The second step of Data Cleaning was to remove the log
statements from the Logged Methods. Because the goal of
this research is to recommend log placement, keeping the log
statements would provide the classifiers with information that
they would not have in a ”real” setting.

Feature Extraction
In order to extract features from the collected methods, we
used the Bag of Words model [14]. First, we tokenized the
methods and created a vocabulary from the extracted tokens.
Afterwards we removed the stop words from the vocabulary.
For this research, the stop words constitute of Java’s key-
words, as all the studied systems are Java projects. Finally, we
used TF.IDF [15] term weighting in order to vectorize each
method. All of these steps were performed using scikit-learn
[16].

Balancing Data
The dataset that was created after the vectorization of the ex-
tracted methods, contains very unbalanced data. 26.4% of
the extracted methods were labeled as ”logged” and the rest
were labeled as ”not logged”. This could negatively affect the
performance of the trained models, so we decided to balance
the training data by oversampling the ”logged” class using
the Synthetic Minority Over-sampling Technique (SMOTE)
[17]. To do so, we employed the imbalanced [18] tool.

2.3 Model Training
As mentioned before, this paper focuses on suggesting log
placement based solely on textual features. As a result, we de-
cided to treat log placement as a binary document classifica-
tion problem [19], where each method constitutes a document
and can be classified as ”logged” or ”not logged”. We trained
5 different classifiers, namely Logistic Regression [20], Sup-
port Vector Machines (SVM) [21], Naive Bayes [22], De-
cision Tree [23] and Random Forest [24]. These classifiers
were selected because they are known to perform well in this
type of problem [25], [26], [27], [28], [29].

3 Results
This section describes how the results of the research were
evaluated and answers the questions posed in section 1.

3.1 Evaluation
After creating the dataset, we employed scikit-learn to train
and evaluate the selected classifiers. In order to avoid over-
fitting, all the classifiers were trained and evaluated on the

Figure 1: Methodology

whole dataset, by using 10-fold [30] cross evaluation. The
metrics that were selected for evaluation are Precision (P),
Recall (R) and the F1 score (F1). They are calculated in the
following way:

P =
Tp

Tp + Fp
, R =

Tp

Tp + Fn
, F1 = 2 · P ·R

P +R

where, Tp is the number of true positives, Fp is the number
of false positives and Fn is the number of false negatives. In
our case, ”logged” is considered to be the positive class, while
”not logged” is considered to be the negative class.

Both Precision and Recall are very important metrics when
it comes to log placement. If Precision is too low, then the
classifier predicts many false positives. Consequently, if the
same classifier was used to suggest log placement in a soft-
ware project, it could lead to unnecessary logging, which
could cause unintended problems[31]. On the other hand, a
classifier with low Recall, would miss methods that need to be
logged. Therefore, it could lead to the loss of important run-
time information that would be valuable to detect the cause
of a system failure[32]. The F1 score was also used, because
it summarizes Precision and Recall in one number, so it can
be used to quickly compare many different classifiers.

3.2 Results of RQ1: Performance of the models
The selected models were trained and evaluated by using their
scikit-learn implementations. As shown in Table 2, Table 3
and Table 4, all the models performed well with regards to the
selected metrics. Naive Bayes is a probabilistic classifier that
implicitly assumes a strong (naive) independence among the
features, which might have led to its lower performance. The
dataset that was created for this research contains very sparse
data, so this may have affected the performance of Logistic
Regression which is known to face estimation difficulties in
similar cases [33]. The other 3 models performed similarly
well, with SVM and Random Forest having the best perfor-
mance on average among the three studied systems.

3.3 Results of RQ2: Value of Words
After training and evaluating the classifiers, we tried to de-
termine which words of the source code’s vocabulary are the

Cloudstack
Classifier Precision Recall F1 score

Logistic Regression 0.724 0.878 0.793
SVM 0.906 0.860 0.874
Naive Bayes 0.728 0.631 0.675
Decision Tree 0.784 0.864 0.821
Random Forest 0.829 0.939 0.880

Table 2: Classifiers trained with Cloudstack’s source code.

Hadoop
Classifier Precision Recall F1 score

Logistic Regression 0.719 0.903 0.799
SVM 0.954 0.892 0.907
Naive Bayes 0.741 0.693 0.715
Decision Tree 0.779 0.894 0.831
Random Forest 0.835 0.968 0.896

Table 3: Classifiers trained with Hadoop’s source code.

Airavata
Classifier Precision Recall F1 score

Logistic Regression 0.873 0.991 0.928
SVM 0.971 0.994 0.982
Naive Bayes 0.863 0.993 0.923
Decision Tree 0.917 0.987 0.950
Random Forest 0.925 0.998 0.960

Table 4: Classifiers trained with Airavata’s source code.

most valuable (i.e. provided the most information to the clas-
sifiers). In order to do so, we calculated the information
gain[34] for each word of the obtained vocabulary. As can
be seen in Table 7, the top 20 words from Cloudstack’s vo-
cabulary provide almost the same information gain. Figure 2
shows the distribution gain for each word of Cloudstack’s vo-
cabulary. One can observe that most words from the vocab-
ulary seem to have an information gain of 0.25-0.30. There-

fore, we don’t expect any word to significantly affect the per-
formance of the trained classifiers.

Inspired by ablation studies common in the Deep Learning
community [35], we followed a similar process to determine
how would the classifiers perform if each one of the top 20
words was removed from the feature vector. For this experi-
ment, we chose the Random Forest classifier, because it was
among the two best performing classifiers, but also required
much less training time than SVM . As can be seen in Ta-
ble 7, there was no significant change in the classifier’s per-
formance. We followed the same process for the other two
systems, obtaining similar results. The interested reader can
see the full results of RQ2 in Appendix A.

Cloudstack
Word Information Gain F1 score

framework 0.289 0.879
nbe 0.289 0.879
param1 0.288 0.879
secstorage 0.288 0.880
yyyy 0.288 0.880
authenticators 0.288 0.878
localgw 0.288 0.878
ordered 0.288 0.879
chmod 0.288 0.880
spd 0.288 0.878
systemctl 0.288 0.879
thin 0.288 0.882
unbacked 0.288 0.880
ask 0.288 0.880
getstatus 0.288 0.878
hypervisorsupport 0.288 0.879
nop 0.288 0.881
preparing 0.288 0.879
processors 0.288 0.878
searchexludefolders 0.288 0.879

Table 5: Top 20 words by information gain in Cloudstack.

Figure 2: Information Gain distribution in CloudStack.

3.4 Results of RQ3: Method Size vs Performance
The last experiment of this study was to determine whether
the size of a method affects the classifiers’ ability to predict
whether it should be logged or not. In order to do so, we split
the test data according to the size of the methods in number
of words. Most of the methods in the studied systems con-
sist of 100 or less words, so we didn’t consider the methods
with more than 100 words for this experiment. We found that
bigger methods result to better performance. However, the
classifiers were able to perform well even for small methods
that consist of 10 or less words. As an example, Figures 3, 4
and 5 show how SVM’s performance improves as the meth-
ods’ size increases. Appendix B contains the results for all
the classifiers.

Figure 3: Performance of SVM against method size in Cloudstack.

Figure 4: Performance of SVM against method size in Hadoop.

4 Responsible Research
This section discusses the ethical implications of this re-
search; subsection 4.1 explores potential threats to the va-
lidity of the study, while subsection 4.2 examines the repro-
ducibility of the process that was followed.

4.1 Threats to validity
When conducting experimental research, it is essential to dis-
cuss issues that would threaten the validity of the obtained
results. For this study, we decided to focus on internal, ex-
ternal and construct validity, as these are the types of validity
that relate more to the chosen methodology.

Figure 5: Performance of SVM against method size in Airavata.

Internal Validity
Internal validity refers to what extend we can be confident
about the cause-effect relationship of the studied variables.
Different software projects vary in the quality of their log-
ging strategies. The human factor plays an important role
in this case, as most projects are maintained by different de-
velopers who mostly rely on their own experience to decide
which methods should be logged. Therefore, the quality of
the trained models heavily depends on the quality of the train-
ing data. For our research, we assumed that the developers of
the studied system follow good logging practices.

External Validity
External validity is related to the potential of generalizing the
obtained results. The results of this study should not be gen-
eralized to other systems beyond the three that were discussed
in this paper. It would be beneficial to perform the same
experiments in more systems in order to be more confident
about the obtained results. However, the similarity of the re-
sults across the three studied systems leads us to expect that
the answers to the research questions provided in this paper
can be extended to other systems.

Our research used only the source code of the studied sys-
tems and excluded the test code. We preferred to make this
distinction instead of using all the code in the repository, be-
cause source and test code serve different purposes and there-
fore were expected to have a different vocabulary. In addition
to that, it is the source code that mostly contributes to the sys-
tems performance as it runs in production. However, it would
be interesting to extend this study so that the test code is also
included in the experiments. We expect future studies to train
models that use both the source and the test code’s vocabu-
lary as training data to evaluate how this would affect their
performance.

Construct Validity
Construct validity evaluates the appropriateness of the se-
lected metrics for the given problem. In our case, we used
Precision, Recall and the F1 score in order to evaluate the
performance of the classifiers. These metrics were selected
in order to estimate how a log-placement recommender sys-
tem would perform if it was built on top of these models.

4.2 Reproducibility of the research
Reproducibility is a vital aspect of any research in order for
the readers to be able to verify the obtained results [36].
In Empirical Software Engineering papers, the main reasons
why the conducted research cannot be fully reproduced is the
unavailability of the used data and unwillingness of the re-
searchers to use the shared code. In order to confirm that the
results obtained in this research are fully reproducible, we
created a reproducibility package [37] that contains all of the
necessary data and documented code. The interested reader is
welcome to use our reproducibility package in order to verify
the validity or our results.

In this study, the main issue that could affect the repro-
duciblity of the results would be changes in the code base
of the studied systems. If a large part of the code is sud-
dently added or removed from the repositories of the stud-
ied systems, then the Code Vocabulary would be affected as
a significant amount of words could be added or removed.
This would result to a different dataset than the one used for
this study which could potentially alter the results. For that
reason, the reproducibility package includes the dataset was
created. In addition to that, the interested readers can find a
reference to the Github URLs and specific commits that were
used for each project in Table 6, in case they wish to recre-
ate the dataset themselves. Finally, the obtained results could
also be affected by the hyperparameters that were passed to
the trained models. Therefore, the chosen hyperparameters
for each model are included in the reproducibility package.

5 Discussion
This section discusses the main outcomes of the paper.

5.1 Suggesting Log Placement Based on Code
Vocabulary

The results of RQ1 show that there is great value in the code’s
vocabulary when it comes to recommending log placement.
All the classifiers that were evaluated, performed well in pre-
dicting log placement at method level based solely on the
code’s vocabulary. Random Forest and SVM were the best
performing classifiers on average in the three studied systems
in terms of Precision, Recall and F1 score. Therefore, a log
recommendation tool based on one of these classifiers would
be able to suggest log placement without missing many meth-
ods that need to be logged, but at the same time without sug-
gesting too much logging. In addition to that, RQ3 showed
that the recommender would be able to perform well regard-
less of the size of the methods.

5.2 Interpretability of Results
RQ2 showed that in all three systems there were no words sig-
nificantly more valuable than others. This makes it very hard
to explain the good performance of the trained classifiers. As
in natural language, words in Code Vocabulary need to be in
context in order to have a meaning, so different approaches in
Feature Extraction, for example topic modelling [7], would
enable us to train more interpretable classifiers.

System URL Commit

Cloudstack https://gitbox.apache.org/repos/asf/cloudstack.git 280c13a4bb103dd748ec304bfe0714a148c24602
Hadoop https://github.com/apache/hadoop.git ae9630f580d73e81042f3b8b2b337aba86130653
Airavata https://github.com/apache/airavata.git 2172f74aa0231e13544e16bd4fb692568587fc8e

Table 6: Github commits of the studied systems.

5.3 Limitations
Our research was conducted on three well established and
large Java Systems that could provide us with a sufficiently
large dataset. However, many projects are either small or
new, so they would provided limited data to a classifier. The
quality of this data would also be questionable, as develop-
ers rely on their own experience when they decide where to
put log statements, so it is expected that some would make
poor logging decisions. In such cases, it would be valuable to
do cross-project evaluation i.e. train a classifier in one system
and use the model to predict log placement in another system.
In our research, this was not trivial, as our approach would
create different feature vectors for each system. We did not
perform cross-project evaluation due to the limited time that
was available for this research. However, we expect the clas-
sifiers to perform poorly in such cases, as different projects
are expected to have significantly different vocabularies.

6 Related Work
This section discusses the work related to our research.

6.1 Suggesting Log placement
Prior studies have proposed different ways to automatically
suggest log placement. Zhu et al. [6] proposed a way of sug-
gesting log placement at block level(i.e. whether a block of
code should be logged or not) and developed a tool named Lo-
gAdvisor. Their study focused on catch-blocks (from excep-
tion handling) and if-blocks with return statements. In order
to develop LogAdvisor, different machine learning models
were trained using structural, textual, and syntactic features
derived from the source code. A more recent study [7] related
the log placement problem with the code’s functionality. The
rationale is that the functionality of a software component can
affect the likelihood of this component being logged. Instead
of working with specific blocks of code, this study focused on
log placement at method-level, because usually each method
in the code has one specific functionality. So, some methods
are more likely to be logged than others (e.g. methods related
to database connections vs getter methods).

Both studies showed that there is value in textual features
in order to predict whether a code snippet should be logged
or not. In our study, we demonstrated how using solely tex-
tual features modeled with the Code Vocabulary, one can train
an accurate classifier that suggests log placement at method
level. This finding can reduce the overhead of extracting other
types of features (e.g. syntactic or structural) and as a result
this work can be more easily expanded to projects that follow
different programming paradigms.

6.2 Using Code Vocabulary on Software
Engineering Tasks

Many works have used the Code Vocabulary to tackle various
software engineering tasks, such as identifying technical debt
[38], assigning bug reports to developers [39], correcting syn-
tax errors [40] and code completion [41]. A recent study [42]
used Code Vocabulary to train a neural network that suggests
which variables of the source code should be logged. This
study partially tackles the ”what to log” problem. There is
no study that exploits only the Code Vocabulary to provide
”where to log” suggestions, so inspired from these works we
studied how the Code Vocabulary can help developers to de-
tect which methods of the source code need to be logged.

Pinto et al.’s [43] research on the vocabulary of flaky tests
showed that there are specific words in the Code Vocabulary
that were more valuable in predicting which tests would be
flaky. While conducting this research, we expected to also
discover words that would be more valuable in suggesting log
placement, but our findings did not confirm our expectations.

7 Conclusion
Log placement is vital but also difficult for software engi-
neers. Current logging practices are closely tied to their appli-
cation domain and in most cases developers rely on their own
experience when they have to decide whether a code snippet
needs to be logged or not. Prior studies have proposed dif-
ferent solutions to tackle these problems, which indicate that
textual features derived from a system’s source code can be
used to train a Machine Learning model that recommends log
placement. In our research, we focused on the value of Code
Vocabulary for suggesting log placement at method level. We
treated code as plain text where each method constitutes a
document that uses words taken from the Code Vocabulary.
We showed that classifiers based on Code Vocabulary can ac-
curately predict whether a method should be logged or not,
but they are also hard to interpret.

Classifiers based on Code Vocabulary can accu-
rately recommend Log Placement, but they are
hard to interpret.

7.1 Future work
We aim to produce several other works as derivatives of this
research. First, we aim to scale the code that was used in
order to massively study the value of Code Vocabulary in log
recommendation by applying the same process to many open
source projects. The studied systems are built in Java, so we

plan to study the performance of the classifiers in systems that
are built in other Object-Oriented Languages as well.

The ultimate purpose of this work is to create a log-
recommendation tool that will help developers make better
logging decisions. Initially, this could be a static-analysis
tool , where a Random Forest classifier is trained on existing
source code in order to recommend log placement at method
level. Ideally, we aim to be able to recommend log placement
in real time (i.e. as a developer is writing a method’s code).

References
[1] R. Kuc, “Java logging best practices: 10+ tips you

should know to get the most out of your logs,” 2020.
[Online]. Available: https://sematext.com/blog/java-
logging-best-practices

[2] J. Skowronski, “30 best practices for logging at scale,”
2017. [Online]. Available: https://www.loggly.com/
blog/30-best-practices-logging-scale

[3] D. McAllister, “Logging best practices: The 13 you
should know,” 2019. [Online]. Available: https://www.
scalyr.com/blog/the-10-commandments-of-logging

[4] T. A. Gamage, “Enterprise application log-
ging best practices (a support engineer’s
perspective),” 2020. [Online]. Available:
https://betterprogramming.pub/application-logging-
best-practices-a-support-engineers-perspective-
b17d0ef1c5df

[5] L. Tal, “9 logging best practices based on
hands-on experience,” 2017. [Online]. Avail-
able: https://www.loomsystems.com/blog/single-
post/2017/01/26/9-logging-best-practices-based-on-
hands-on-experience

[6] J. Zhu, P. He, Q. Fu, H. Zhang, M. R. Lyu, and
D. Zhang, “Learning to log: Helping developers make
informed logging decisions,” in 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineer-
ing, vol. 1, 2015, pp. 415–425.

[7] H. Li, T.-H. P. Chen, W. Shang, and A. E.
Hassan, “Studying software logging using topic
models,” Empirical Software Engineering, vol. 23,
no. 5, pp. 2655–2694, Oct 2018. [Online]. Available:
https://doi.org/10.1007/s10664-018-9595-8

[8] (2021) Apache cloudstack: Open source cloud comput-
ing. [Online]. Available: https://cloudstack.apache.org

[9] (2021) Apache hadoop. [Online]. Available: https:
//hadoop.apache.org

[10] (2021) Apache airavata. [Online]. Available: https:
//airavata.apache.org/

[11] “Javaparser,” 2021. [Online]. Available: https:
//javaparser.org/

[12] M. Aniche, “Java code metrics calculator (ck),” 2015,
available in https://github.com/mauricioaniche/ck/.

[13] (2021) Log4j; download apache log4j 2. [On-
line]. Available: https://logging.apache.org/log4j/2.x/
download.html

[14] Wikipedia contributors, “Bag-of-words model —
Wikipedia, the free encyclopedia,” 2021, [On-
line; accessed 7-June-2021]. [Online]. Avail-
able: https://en.wikipedia.org/w/index.php?title=Bag-
of-words model&oldid=998080237

[15] L. Jure, R. Anand, and D. U. Jeffrey, Importance
of Words in Documents. Boston, MA: Cambridge
University Pres, 2020, pp. 19–21. [Online]. Available:
http://infolab.stanford.edu/∼ullman/mmds/booka.pdf

[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay, “Scikit-learn: Machine learning in Python,” Jour-
nal of Machine Learning Research, vol. 12, pp. 2825–
2830, 2011.

[17] K. W. Bowyer, N. V. Chawla, L. O. Hall, and
W. P. Kegelmeyer, “SMOTE: synthetic minority over-
sampling technique,” CoRR, vol. abs/1106.1813, 2011.
[Online]. Available: http://arxiv.org/abs/1106.1813

[18] G. Lemaı̂tre, F. Nogueira, and C. K. Aridas,
“Imbalanced-learn: A python toolbox to tackle the curse
of imbalanced datasets in machine learning,” J. Mach.
Learn. Res., vol. 18, no. 1, p. 559–563, Jan. 2017.

[19] D. Mladeni, J. Brank, and M. Grobelnik, Document
Classification. Boston, MA: Springer US, 2010, pp.
289–293. [Online]. Available: https://doi.org/10.1007/
978-0-387-30164-8 230

[20] V. Bewick, L. Cheek, and J. Ball, “Statistics review 14:
Logistic regression,” Critical care (London, England),
vol. 9, pp. 112–8, 03 2005.

[21] N. Cristianini and E. Ricci, Support Vector Machines.
Boston, MA: Springer US, 2008, pp. 928–932.
[Online]. Available: https://doi.org/10.1007/978-0-
387-30162-4 415

[22] D. Hand and K. Yu, “Idiot’s bayes: Not so stupid after
all?” International Statistical Review, vol. 69, pp. 385 –
398, 05 2007.

[23] J. R. Quinlan, “Induction of decision trees,” Machine
Learning, vol. 1, no. 1, pp. 81–106, Mar 1986. [Online].
Available: https://doi.org/10.1007/BF00116251

[24] L. Breiman, “Random forests,” Machine Learning,
vol. 45, no. 1, pp. 5–32, Oct 2001. [Online]. Available:
https://doi.org/10.1023/A:1010933404324

[25] J. R. Brzezinski and S. Lytinen, “Logistic regression
for classification of text documents,” Ph.D. dissertation,
2000, aAI9971843.

[26] L. M. Manevitz and M. Yousef, “One-class svms for
document classification,” J. Mach. Learn. Res., vol. 2,
p. 139–154, Mar. 2002.

[27] S. Ting, W. Ip, and A. Tsang, “Is naı̈ve bayes a good
classifier for document classification?” International
Journal of Software Engineering and its Applications,
vol. 5, 01 2011.

https://sematext.com/blog/java-logging-best-practices
https://sematext.com/blog/java-logging-best-practices
https://www.loggly.com/blog/30-best-practices-logging-scale
https://www.loggly.com/blog/30-best-practices-logging-scale
https://www.scalyr.com/blog/the-10-commandments-of-logging
https://www.scalyr.com/blog/the-10-commandments-of-logging
https://betterprogramming.pub/application-logging-best-practices-a-support-engineers-perspective-b17d0ef1c5df
https://betterprogramming.pub/application-logging-best-practices-a-support-engineers-perspective-b17d0ef1c5df
https://betterprogramming.pub/application-logging-best-practices-a-support-engineers-perspective-b17d0ef1c5df
https://www.loomsystems.com/blog/single-post/2017/01/26/9-logging-best-practices-based-on-hands-on-experience
https://www.loomsystems.com/blog/single-post/2017/01/26/9-logging-best-practices-based-on-hands-on-experience
https://www.loomsystems.com/blog/single-post/2017/01/26/9-logging-best-practices-based-on-hands-on-experience
https://doi.org/10.1007/s10664-018-9595-8
https://cloudstack.apache.org
https://hadoop.apache.org
https://hadoop.apache.org
https://airavata.apache.org/
https://airavata.apache.org/
https://javaparser.org/
https://javaparser.org/
https://logging.apache.org/log4j/2.x/download.html
https://logging.apache.org/log4j/2.x/download.html
https://en.wikipedia.org/w/index.php?title=Bag-of-words_model&oldid=998080237
https://en.wikipedia.org/w/index.php?title=Bag-of-words_model&oldid=998080237
http://infolab.stanford.edu/~ullman/mmds/booka.pdf
http://arxiv.org/abs/1106.1813
https://doi.org/10.1007/978-0-387-30164-8_230
https://doi.org/10.1007/978-0-387-30164-8_230
https://doi.org/10.1007/978-0-387-30162-4_415
https://doi.org/10.1007/978-0-387-30162-4_415
https://doi.org/10.1007/BF00116251
https://doi.org/10.1023/A:1010933404324

[28] W. Noormanshah, P. Nohuddin, and Z. Zainol, “Doc-
ument categorization using decision tree: Preliminary
study,” International Journal of Engineering and Tech-
nology, vol. 7, pp. 437–440, 12 2018.

[29] M. Klassen and N. Paturi, “Web document classifica-
tion by keywords using random forests,” in Networked
Digital Technologies, F. Zavoral, J. Yaghob, P. Pichap-
pan, and E. El-Qawasmeh, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 256–261.

[30] F. Azuaje, I. Witten, and F. E, “Witten ih, frank e:
Data mining: Practical machine learning tools and tech-
niques,” Biomedical Engineering Online - BIOMED
ENG ONLINE, vol. 5, pp. 1–2, 01 2006.

[31] C. Eberhardt. (2014) The art of logging. [On-
line]. Available: https://www.codeproject.com/Articles/
42354/The-Art-of-Logging

[32] D. Yuan, S. Park, P. Huang, Y. Liu, M. M. Lee,
X. Tang, Y. Zhou, and S. Savage, “Be conservative:
Enhancing failure diagnosis with proactive logging,” in
10th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 12). Hollywood, CA:
USENIX Association, Oct. 2012, pp. 293–306. [On-
line]. Available: https://www.usenix.org/conference/
osdi12/technical-sessions/presentation/yuan

[33] D. Walker and T. Smith, “Logistic regression under
sparse data conditions,” Journal of Modern Applied Sta-
tistical Methods, vol. 18, pp. 2–18, 09 2020.

[34] J. Lutes, “Entropy and information gain
in decision trees,” 2020. [Online]. Avail-
able: https://towardsdatascience.com/entropy-and-
information-gain-in-decision-trees-c7db67a3a293

[35] R. Meyes, M. Lu, C. W. de Puiseau, and T. Meisen, “Ab-
lation studies in artificial neural networks,” 2019.

[36] L. Madeyski and B. Kitchenham, “Would wider
adoption of reproducible research be beneficial
for empirical software engineering research?”
Journal of Intelligent & Fuzzy Systems, vol. 32,
pp. 1509–1521, 2017, 2. [Online]. Available:
https://doi.org/10.3233/JIFS-169146

[37] K. Lyrakis, “lyrakisk/log-recommendation: Repro-
ducibility package for my bsc research project,” 2020.
[Online]. Available: https://github.com/lyrakisk/log-
recommendation

[38] M. A. de Freitas Farias, M. G. de Mendonça Neto,
A. B. d. Silva, and R. O. Spı́nola, “A contextualized vo-
cabulary model for identifying technical debt on code
comments,” in 2015 IEEE 7th International Workshop
on Managing Technical Debt (MTD), 2015, pp. 25–32.

[39] D. Matter, A. Kuhn, and O. Nierstrasz, “Assigning bug
reports using a vocabulary-based expertise model of
developers,” in 2009 6th IEEE International Working
Conference on Mining Software Repositories, 2009, pp.
131–140.

[40] E. A. Santos, J. C. Campbell, D. Patel, A. Hin-
dle, and J. N. Amaral, “Syntax and sensibility:

Using language models to detect and correct syn-
tax errors,” in 25th IEEE International Conference
on Software Analysis, Evolution, and Reengineer-
ing (SANER 2018), 2018, inproceedings, pp. 1–11.
[Online]. Available: http://softwareprocess.ca/pubs/
santos2018SANER-syntax.pdf

[41] V. Raychev, M. Vechev, and E. Yahav, “Code
completion with statistical language models,” SIGPLAN
Not., vol. 49, no. 6, p. 419–428, Jun. 2014. [Online].
Available: https://doi.org/10.1145/2666356.2594321

[42] Z. Liu, X. Xia, D. Lo, Z. Xing, A. E. Hassan, and S. Li,
“Which variables should i log?” IEEE Transactions on
Software Engineering, pp. 1–1, 2019.

[43] G. Pinto, B. Miranda, S. Dissanayake, M. d’Amorim,
C. Treude, and A. Bertolino, “What is the vocabulary
of flaky tests?” in Proceedings of the 17th International
Conference on Mining Software Repositories, ser. MSR
’20. New York, NY, USA: Association for Computing
Machinery, 2020, p. 492–502. [Online]. Available:
https://doi.org/10.1145/3379597.3387482

https://www.codeproject.com/Articles/42354/The-Art-of-Logging
https://www.codeproject.com/Articles/42354/The-Art-of-Logging
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/yuan
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/yuan
https://towardsdatascience.com/entropy-and-information-gain-in-decision-trees-c7db67a3a293
https://towardsdatascience.com/entropy-and-information-gain-in-decision-trees-c7db67a3a293
https://doi.org/10.3233/JIFS-169146
https://github.com/lyrakisk/log-recommendation
https://github.com/lyrakisk/log-recommendation
http://softwareprocess.ca/pubs/santos2018SANER-syntax.pdf
http://softwareprocess.ca/pubs/santos2018SANER-syntax.pdf
https://doi.org/10.1145/2666356.2594321
https://doi.org/10.1145/3379597.3387482

A Results of RQ2

Cloudstack
Word Information Gain F1 score

framework 0.289 0.879
nbe 0.289 0.879
param1 0.288 0.879
secstorage 0.288 0.880
yyyy 0.288 0.880
authenticators 0.288 0.878
localgw 0.288 0.878
ordered 0.288 0.879
chmod 0.288 0.880
spd 0.288 0.878
systemctl 0.288 0.879
thin 0.288 0.882
unbacked 0.288 0.880
ask 0.288 0.880
getstatus 0.288 0.878
hypervisorsupport 0.288 0.879
nop 0.288 0.881
preparing 0.288 0.879
processors 0.288 0.878
searchexludefolders 0.288 0.879

Table 7: Top 20 words by information gain in Cloudstack.

Figure 6: Information Gain distribution in CloudStack.

Figure 7: Information Gain distribution in Hadoop.

Figure 8: Information Gain distribution in Airavata.

Hadoop
Word Information Gain F1 score

hierarchical 0.228 0.941
progressing 0.228 0.940
proc 0.227 0.941
sections 0.227 0.940
sink 0.227 0.940
sleeptime 0.227 0.940
al 0.227 0.941
amtype 0.227 0.940
colons 0.227 0.941
dlisting 0.227 0.940
perspective 0.227 0.940
privileged 0.227 0.940
purged 0.227 0.940
qp 0.227 0.940
restarts 0.227 0.941
scheduling 0.227 0.940
skyline 0.227 0.941
subcluster 0.227 0.941
tmpjars 0.227 0.940
wake 0.227 0.940

Table 8: Top 20 words by information gain in Hadoop.

Airavata
Word Information Gain F1 score

subject 0.181 0.960
authenticator 0.181 0.961
node 0.181 0.959
look 0.180 0.960
request 0.180 0.959
verify 0.180 0.961
action 0.180 0.961
ahead 0.180 0.962
atleast 0.180 0.961
core 0.180 0.959
driver 0.180 0.961
initially 0.180 0.960
jsch 0.180 0.958
ls 0.180 0.960
making 0.180 0.960
mark 0.180 0.961
modify 0.180 0.960
os 0.180 0.961
projects 0.180 0.961
ps 0.180 0.962

Table 9: Top 20 words by information gain in Airavata.

B Results of RQ3

Figure 9: Performance of Logistic Regression against method size
in Cloudstack.

Figure 10: Performance of SVM against method size in Cloudstack.

Figure 11: Performance of Naive bayes against method size in
Cloudstack.

Figure 12: Performance of Decision Tree against method size in
Cloudstack.

Figure 13: Performance of Random Forest against method size in
Cloudstack.

Figure 14: Performance of Logistic Regression against method size
in Hadoop.

Figure 15: Performance of SVM against method size in Hadoop.

Figure 16: Performance of Naive Bayes against method size in
Hadoop.

Figure 17: Performance of Decision Tree against method size in
Hadoop.

Figure 18: Performance of Random Forest against method size in
Hadoop.

Figure 19: Performance of Logistic Regression against method size
in Airavata.

Figure 20: Performance of SVM against method size in Airavata.

Figure 21: Performance of Naive Bayes against method size in Aira-
vata.

Figure 22: Performance of Decision Tree against method size in
Airavata.

Figure 23: Performance of Random Forest against method size in
Airavata.

	Introduction
	Methodology
	Studied Systems
	Creation of the dataset
	Method Extraction
	Labelling
	Data Cleaning
	Feature Extraction
	Balancing Data

	Model Training

	Results
	Evaluation
	Results of RQ1: Performance of the models
	Results of RQ2: Value of Words
	Results of RQ3: Method Size vs Performance

	Responsible Research
	Threats to validity
	Internal Validity
	External Validity
	Construct Validity

	Reproducibility of the research

	Discussion
	Suggesting Log Placement Based on Code Vocabulary
	Interpretability of Results
	Limitations

	Related Work
	Suggesting Log placement
	Using Code Vocabulary on Software Engineering Tasks

	Conclusion
	Future work

	Results of RQ2
	Results of RQ3

