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Abstract

Achieving universal and scalable quantum computing with reliably low error rates, despite the presence of

unreliable circuit components, requires fault-tolerant quantum error correction. In general, quantum error

correction imposes a significant overhead on the computation, motivating exploration of opportunities for

optimization. Flag fault tolerance protocols have emerged as important schemes to realize fault tolerance

experiments in the near term, because of their low qubit overhead, and absence of strict requirement

for elaborate ancillary state preparation, relative to traditional schemes. However, the existing fast-reset,

single-flag protocols for small codes generally employ a measurement of all stabilizer generators with

unflagged circuits to distinguish a limited set of errors via the syndrome, leading to high circuit depth.

In addition, the flagged measurement outcomes play a limited role in differentiating these errors. This

motivates the possibility of reducing the circuit depth fault-tolerantly in flag-based syndrome extraction

circuits. In this thesis, flag protocols with significantly reduced number of stabilizer measurements are

constructed for the J5, 1, 3K code and the Steane code. The new protocols are divided into two classes.

In the first class, the reduction is achieved by a dynamic choice of unflagged stabilizer measurements,

based on past syndromes, and the utilization of the complete stabilizer group, to distinguish restricted sets

of errors signalled by respective flagged measurements. In the second class, the reduction is achieved

by measuring three high-weight flagged stabilizers, with the capability to detect a single input error, for

the Steane code. The reduced stabilizer sequences are methodically constructed to yield unique and

nontrivial syndromes for the relevant error set. This ensures that the fundamental condition of errors being

detectable and distinguishable, which is the principal factor for the existing flag protocols to be fault-tolerant,

is preserved. Pseudothresholds competitive with the existing flag protocols are established via Monte Carlo

simulations under an error model consisting of two-qubit gate depolarizing errors, state preparation errors

and measurement errors. Additionally, computer search programs are developed to obtain analogous

reduced stabilizer sequences for both classes. These programs are also employed to assist in identifying

certain mathematical properties of the high-weight Steane code stabilizers which can detect a single input

error: namely, these stabilizers belong to different cosets of the X-stabilizer subgroup, and arise from

8-element subgroups within the stabilizer group. Furthermore, examples of such stabilizer sequences are

constructed for few other codes. This thesis highlights the potential of employing parity measurements

from the complete stabilizer group and extending beyond conventional adaptive measurements to improve

the resource efficiency of fault-tolerant quantum error correction.
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1
Introduction

Quantum computers, i.e. information processing devices based on the principles of quantum physics, are

believed to offer speedup in solving certain computational tasks [1]. In the present day, quantum information

processing devices are in the Noisy Intermediate-Scale Quantum (NISQ) era [2]. From the perspective of

hardware, this means the following: Present-day qubits are fragile and are in constant interaction with

their environment, which leads to uncontrolled evolution of the state over time. Therefore, qubits decohere,

leading to errors in the quantum state. Additionally, quantum gates, i.e. the operations used to perform

a desired evolution of qubit states, are imperfect and are also a source of noise. Furthermore, current

devices are able to coherently control only a limited number of qubits (in the range 10-100)[3], so the

number of qubits is a precious resource. Additionally, the number of gates which can be performed is

limited, because every gate may add noise, and the time for which qubits can be coherently controlled is

limited [2]. Besides, a significant number of quantum computing platforms only offer limited connectivity,

so it may not be possible to perform two-qubit gates between every possible pair of qubits accurately [4][5].

In particular, qubit decoherence and noise due to quantum gates lead to loss of information being

computed on. Both of these effects can cause the fidelity of a qubit’s state with its initial state to decay

exponentially with time [6][2].As a consequence, phase relations and entanglement between states,

necessary for meaningful computation, may not remain preserved over time. This is markedly different

from “classical” computers (i.e. those for which the computation is based on bits), for which contemporary

error rates are in the range 10−17 [1], making the computation highly reliable. In comparison, current

quantum devices have error rates in the range 10−3 − 10−2 [3]. A quantum advantage as powerful as an

exponential speedup may be rendered unsuccessful if the result of the computation becomes progressively

unreliable due to accumulation of errors, at a rate exponential in the depth of the circuit [2]. Therefore, to

achieve the full potential of quantum computing, the problem of errors and reliability of the computation

needs to be addressed [7].

There are multiple approaches which the research community has taken towards addressing errors

in quantum computing. The hardware solution utilizes advances in nanofabrication, materials science

and physics to develop better devices with lower error rates, and to improve hardwarw control techniques

[8],[9]. Modern approaches also focus on harnessing the predicted phenomenon of Majorana bound states,

expected to provide intrinsic protection from errors [10],[11]. In a different approach, error mitigation seeks

to analyze several samples of output from a noisy quantum circuit to derive insights about the errors, and

to compensate for or eliminate the effect of these errors on the result of the computation [7]. Distinct from

these approaches, Quantum Error Correction (QEC) is a theory of mathematical techniques to actively

keep track of, and correct, errors during the computation. However, QEC, being a circuit operation in

itself, may introduce errors due to imperfect gates. The theory of fault tolerance goes beyond QEC to

construct protocols to correct errors which may be introduced by the error correction circuits themselves.

The existence of threshold theorems makes QEC and fault tolerance mathematically rigorous theories

[12],[13]. These theorems prove that an arbitrarily low (encoded) error rate can be achieved for an arbitrarily

long computation, as long as the error rate of any unprotected component is below a certain accuracy

threshold value, with an overhead which does not scale inefficiently [1],[12]. While the significance of other

approaches for addressing the problem of errors in quantum computation needs to be acknowledged, it is

crucial to recognize that QEC is the only rigorous approach by which, in theory, scalable and universal

1
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fault-tolerant quantum computation can be achieved in the long term [12],[2],[7]. Therefore, QEC and fault

tolerance will be the main focus of this thesis.

Quantum error correction presents unique challenges compared to classical error correction. This

arises from the fundamental impossibility of cloning arbitrary quantum states with arbitrary accuracy, the

requirement of preserving superpositions of encoded states, and the continuous nature of quantum errors

[1]. The Pauli stabilizer formalism is the most widely used framework to analyze and develop quantum

error-correcting codes [14],[4]. In this framework, a quantum state is encoded into a subspace of a larger

state space, defined via a commuting subgroup of Pauli operators called the stabilizer group, to protect

information through redundancy. The subspace is called the codespace of a quantum error-correcting code

(QECC). The generators of the stabilizer group are measured as parity checks to extract error syndromes,

and decoded to identify and correct errors. Additionally, the choice of generators is not unique, and other

operators from the complete stabilizer group may also be used as parity measurements.

The study of quantum error-correcting codes is divided into many classes, the major ones broadly being

block codes[1] and topological codes[15]. Historically, among the block codes, the Shor code was the first

code to be developed, which corrects single-qubit bit flips, phase flips, and combined bit and phase flips

[16]. Another major development was the five qubit code, the smallest code which can correct arbitrary

errors [17]. The Calderbank-Shor-Steane (CSS) construction, which allows constructing quantum codes

from classical ones, and the smallest code of this type, the Steane code, were developed in [18],[19]. In

the topological family, the toric code was a major development, inspired by spins on a lattice [20]. Since

then, the field has seen many developments, leading to early experimental demonstrations of quantum

error correction in the present era [3],[8],[21]. The focus of this thesis is limited to fault-tolerant syndrome

extraction for small block codes, namely, the five qubit code and the Steane code, because their low qubit

requirement make them favourably suitable as candidates for near-term experimental demonstrations.

Physical implementation of QEC is challenging because of extremely low error rate required, and the

excessive overhead [2] in terms of qubits, gates, and ancillary state preparation, induced by traditional

fault-tolerance techniques, developed by Shor[22], Steane[23] and Knill[24]. Additionally, an error-corrected

quantum computation is envisioned to consist of multiple error correction cycles interleaved with algorithmic

computation steps [1]. Due to the resulting overhead, it is advantageous to perform error correction with as

little gate overhead as possible [2]. This motivates exploring methods to reduce this overhead by reducing

the number of stabilizer measurements in fault tolerance schemes. Such a reduction has the potential to

lead to savings in hardware resources and improving the efficiency of these protocols. Additionally, since

gates themselves may introduce errors, a reduction in their number leads to a reduction in the number of

locations where errors may occur. This may lead to an improvement in the accuracy threshold, relaxing

the constraints on accuracy of components.

Due to the possibility of significant improvement in hardware efficiency, and the potential for relaxed

accuracy requirements, this thesis focuses on developing techniques to reduce the number of stabilizer

measurements in syndrome extraction circuits for a particular class of fault tolerance protocols called flag

protocols [25]. Flag fault tolerance protocols are suitable for experimental implementation on near-term

hardware [21],[26], because of they induce lower overhead in terms of number of qubits and ancillary state

preparation circuits [25], compared to traditional schemes [22],[19],[24].

Flag techniques work by coupling an additional flag qubit to the ancillary qubits to detect and subse-

quently correct errors which can propagate to uncorrectable errors. In general, these protocols require fast

measurement and qubit reset. In terms of their functioning, flag protocols involve repeating all stabilizer

generator measurements with unflagged circuits to distinguish a restricted set of errors indicated by the

respective flagged measurement. Furthermore, the measurement outcomes from flagged stabilizer mea-

surements are only used to detect that an error has occurred, and are not directly used for differentiating

these error, which is done via unflagged measurements. These observations on restricted error sets

and limited role of flagged measurement outcomes on differentiating these errors imply that stabilizer

sequences employed in flag protocols may not be optimal, and offer a possibility for improving the efficiency

of syndrome extraction. Therefore, this thesis develops flag protocols with reduced number of stabilizer

measurements in syndrome extraction circuits, as compared to existing flag protocols [25], while preserving

detectability and distinguishability of errors, which is the principal reason for the existing flag protocols to

be fault-tolerant [25]. The new protocols are constructed for the J5, 1, 3K code and the Steane code.

The questions addressed in this thesis are the following: To unambiguously distinguish between a



1.1. Outline 3

limited set of Pauli errors arising in flag protocols, is it necessary to measure all stabilizer generators with

unflagged circuits? To achieve fault-tolerance, could it be advantageous to utilize operators from the

complete stabilizer group, instead of the standard stabilizer generators? In addition, can a decision tree

approach for distinguishing errors, where the choice of which stabilizer to be measured is based on past

measurement outcomes, lead to shorter, fault-tolerant constructions? It will turn out that these questions

can be answered positively, and it will be shown that these new approaches lead to flag protocols having

lower depth overhead and competitive pseudothreshold under the specified error model, as compared to

the existing protocols [25].

As a preview, the new protocols are divided into two classes. The Split-and-Diagnose protocols

uniquely identify a detected error by constructing shorter sequences specifically designed to distinguish a

given set of errors. Further, the stabilizers to be measured may be selected depending on measurement

outcomes from previously measured stabilizers. The Detect-and-Diagnose protocol is based on utilizing

combinations of high-weight stabilizers, capable of detecting a single input error on any data qubit, for

flagged stabilizer measurements.

1.1. Outline
The remainder of this thesis is organized in the following sections:

• In Sec. 2, the mathematical preliminaries for this thesis are reviewed.

• In Sec. 3, the contextual background for the thesis is presented. The stabilizer formalism, the J5, 1, 3K
code and the Steane code, on which the flag protocols in thesis are based [25], are presented.

This is followed by the Gottesman-Knill theorem for efficient simulation of stabilizer codes, and the

error propagation rules, which are used throughout this thesis. Fault-tolerant syndrome extraction

for distance-3 codes is summarized, and the Knill’s error model, used in this thesis, is presented.

Traditional fault tolerance schemes are reviewed to highlight the relative advantages of flag protocols,

with emphasis on the Shor’s scheme [22] due to a fundamental reference [27] for the present work

(see Sec. 5.1).

• In Sec. 4, the flag gadget, and the standard flag fault tolerance protocols for the J5, 1, 3K code and

the Steane code, developed by Chao and Reichardt [25], are presented. These protocols serve

as the fundamental basis for the construction of reduced stabilizer sequences in this thesis. Fault

tolerance of these protocols is analyzed.

• In Sec. 5, the main contributions of this thesis, consisting of syndrome extraction circuits for flag

protocols with reduced number of stabilizer measurements for the J5, 1, 3K code and the Steane code,

are presented. The methodology developed is presented, following which the new constructions and

theoretical analysis for fault tolerance are presented. In particular, one new protocol for the J5, 1, 3K
code, and two new protocols for the Steane code, with significant reduction in gate overhead, and

fault-tolerant error correction rules under the specified error model, are developed.

• In Sec. 6, numerical simulation results and analyses for the new flag protocols are presented.

Pseudothresholds are established for the new protocols under an error model consisting of two-qubit

gate depolarizing errors, preparation errors, and measurement errors [25],[28], via monte-carlo

simulations.

• In Sec. 7, other instances of reduced stabilizer sequences, applicability to other codes, and ob-

servations on potential mathematical properties of such sequences are explored, primarily via

computer-aided search.

• In Sec. 8, concluding remarks and future outlook are presented.

In addition, the thesis contains the following appendices:

• In Appendix A, definitions from classical error correction are presented as a reference for the CSS

construction.

• In Appendix B, the complete stabilizer groups for the J5, 1, 3K code and the Steane code, referred

throughout the thesis, are presented.

• In Appendix C, errors arising during flagged measurements in the protocols presented in Sec. 4 are

tabulated.
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• In Appendix D, syndromes obtained for the protocols with reduced stabilizer sequences, developed

in Sec. 5, are tabulated.

• In Appendix E, look-up tables used for syndrome decoding for the protocols in Sec. 4 and Sec. 5

are presented.

• In Appendices F and G, reduced stabilizer sequences obtained via computer search, analogous in

structure to the sequences developed in Sec. 5, are tabulated.



2
Definitions

This section reviews the terms and notation used in the thesis. We work in the Schrödinger picture of

quantum mechanics, and it is assumed that the reader is familiar with notions of linear algebra and set

theory. The main reference for this section is [1].

Quantum Computing
This work assumes familiarity with the concept of qubits as the elementary unit of quantum information,

qubit states in finite-dimensional Hilbert spaces, and the Dirac notation. The standard notation is followed,

for example, bra vectors in the dual space are denoted 〈ψ| = (|ψ〉)†, where † is the conjugate transpose,

and the n-qubit Hilbert space is spanned by {|0〉 , |1〉}⊗n. This work only considers pure states. Standard

quantum gates, like the Hadamard, CNOT, CZ, will be heavily used, and may be looked up in standard

references, like [1].

Definition 2.1 The single-qubit Pauli operators are unitary operators {I,X, Y, Z}, with the following

matrix representation:

I =

[
1 0

0 1

]
, X =

[
0 1

1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0

0 −1

]
. (2.1)

Depending on the context, the identity operator may be excluded from the Paulis. Pauli operators acting

on n qubits are formed by taking n-fold tensor products of single-qubit Pauli operators. Multi-qubit Pauli

operators are also called Pauli strings.

For example, the operator X ⊗ I ⊗X ⊗ Z ⊗ Z, denoted compactly as XIXZZ, is a Pauli operator acting

on 5 qubits.

For quantum error correction (QEC), the Pauli operators can be viewed as (discrete) errors acting on a

qubit. For example, for a state α |0〉+ β |1〉, where |α|2 + |β|2 = 1, the Paulis affect it as:

X(α |0〉+β |1〉) = α |1〉+β |0〉 , Y (α |0〉+β |1〉) = i(α |1〉−β |0〉), Z(α |0〉+β |1〉) = α |0〉−β |1〉 . (2.2)

Thus, X may be interpreted as a bit-flip error operator, Z as phase-flip error, and Y as a combined

bit-and-phase-flip. Some useful properties of Pauli operators are reviewed below:

The Pauli operators square to identity. The single-qubit Pauli operators other than I have two eigenval-

ues, {+1,−1}, with the respective eigenvectors determined as

X |+〉 = |+〉 , X |−〉 = − |−〉 ; Y |+i〉 = |+i〉 , Y |−i〉 = − |−i〉 ; Z |0〉 = |0〉 , Z |1〉 = − |1〉 ; (2.3)

with

|±〉 = 1√
2
(|0〉 ± |1〉), |±i〉 = 1√

2
(|0〉 ± i |1〉). (2.4)

An n-qubit Pauli operator has degenerate eigenvalues, with 2n−1 of them equal to +1 and 2n−1 of them

being −1.

5
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The single-qubit Pauli operators satisfy the following relations

XY = iZ, Y Z = iX, ZX = iY (2.5)

These give rise to the following commutation relations (where [A,B] = AB −BA):

[X,Y ] = 2iZ, [Y, Z] = 2iX, [Z,X] = 2iY, (2.6)

and the following anticommutation relations (where {A,B} = AB +BA):

{X,Y } = {Y, Z} = {Z,X} = 0, {X,X} = {Y, Y } = {Z,Z} = 2I. (2.7)

For example, XY = −Y X, and hence, Pauli X is said to anticommute with Pauli Y . Pauli strings

anticommute when they anticommute at an odd number of qubit positions, otherwise they commute (the

identity commutes with every operator).

Definition 2.2 The support of an n-qubit Pauli operator is the set of qubits on which it acts nontrivially,

i.e. where the operator acting on the qubit differs from I.

For example, the operator XIXZZ has support on qubits 1, 3, 4 and 5, where the qubits are counted from

the left, with indices starting from 1. This notation will be consistently used throughout this thesis.

Another convention used in this thesis is that the leftmost qubit corresponds to the top qubit in a circuit,

while the rightmost qubit appears at the bottom.

Definition 2.3 The weight of an n-qubit Pauli operator is the number of qubits on which it has support.

For example, the operator XIXZZ has weight equal to 4.

Group Theory
The notions in this part form the background for stabilizer codes and the CSS construction (see Sec. 3.1).

The main references are [1] and [29].

Definition 2.4 A group is a set G, along with a binary operation or a composition rule, ◦, denoted {G, ◦},
which obey the following axioms:

1. Closure: ∀u, v ∈ G, u ◦ v ∈ G.

2. Associativity: ∀u, v, w ∈ G, (u ◦ v) ◦ w = u ◦ (v ◦ w) = u ◦ v ◦ w.
3. Existence of an identity element: ∀u ∈ G,∃e ∈ G such that e ◦ u = u and u ◦ e = u.

4. Existence of inverse: ∀u ∈ G,∃v ∈ G such that u ◦ v = e and v ◦ u = e. The inverse of u ∈ G is

denoted as u−1.

The group can also be referred to by the symbol for the underlying set, for example G instead of {G, ◦}.
The composition symbol can also be suppressed to write u ◦ v as uv, for u, v ∈ G.

Definition 2.5 A subgroup of a group {G, ◦} is a subset H of G, such that {H, ◦} satisfies the axioms of a

group.

Definition 2.6 An abelian group or a commutative group is a group {G, ◦} such that the resultant of a

composition does not depend on the order of composing the elements. That is, ∀u, v ∈ G, u ◦ v = v ◦ u.

Definition 2.7 Let G be a group, and H be a subgroup of G, under the operation ◦. Consider the following

construction, where a new set is formed by composing an element of G with the entirety of H from the left,

like so:

uH = {u ◦ h : h ∈ H}, for u ∈ G. (2.8)

Subsets of this form are the left cosets of H in G. Analogously, the right cosets of H in G are defined as

Hu = {h ◦ u : h ∈ H}, for u ∈ G. (2.9)

Left cosets of different elements in G are either the same set or mutually disjoint. Similarly, this holds for

the right cosets.
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Theorem 2.0.1 Lagrange’s theorem: The number of elements in a subgroup H divides the number of

elements in the group G, with the ratio being equal to the number of cosets of H in G.

This is used to determine the number of codewords of a CSS code (see Section 3.2).

Definition 2.8 Let S be a subset of G. The centralizer, CG(S), of S in G is a subgroup of G containing all

elements of G which commute with every element of S. Formally, this may be written as CG(S) = {u ∈
G|∀s ∈ S, us = su}.

Definition 2.9 Let S be a subset of G. The normalizer, NG(S), of S in G is a subgroup of G, such
that any element of S, conjugated by any element of the normalizer, gives an element of S. Formally,

NG(S) = {u ∈ G|∀s ∈ S, usu−1 = s′, for s′ ∈ S}.

Definition 2.10 A subgroup N of G is a normal subgroup if unu−1 ∈ N ,∀u ∈ G,∀n ∈ N . That is, N is

invariant under conjugation by elements of G.

Definition 2.11 Given a normal subgroup N of group G, define the set G/N = {u ◦ N : u ∈ G}, i.e. the
set of left cosets of N in G. Define a composition rule on the elements of G/N using the composition rule

of G as (u ◦ N ) ◦G/N (v ◦ N ) := (u ◦ v) ◦ N . Then, {G/N , ◦G/N } obeys the group axioms and forms a

group, known as the Quotient group.

Definition 2.12 Given a group G, and a set S, G is said to act on S (from the left) if there exists a map

φ : G × S → S, such that, ∀s ∈ S, the following axioms are satisfied:

1. Identity: φ(e, s) = s, where e is the identity element in G
2. Compatibility: φ(u, φ(v, s)) = φ(u ◦ v, s),∀u, v ∈ G.

The map φ defines the group action of G on S.

Definition 2.13 The orbit of an element s ∈ S under a group action φ : G×S → S is the set of all elements

in S to which s can be moved by the group action. That is, the orbit of s is {φ(u, s) : u ∈ G}.

Definition 2.14 Given a group action φ on group G and set S. s ∈ S is a fixed point of some u ∈ G if

φ(u, s) = s, i.e. s is not moved by u. For every s ∈ S, the stabilizer, stabG(s) of s is the set of all elements

in G which fix s, i.e.
stabG(s) = {u ∈ G : φ(u, s) = s}. (2.10)

The stabilizer is a subgroup of G [1].

As mentioned previously, the main references for this subsection are [1] and [29].

Classical Error-Correcting Codes
Elementary notions from classical error correction [1] are useful as a reference for the CSS construction

(see Sec. 3.2), and are reviewed in Sec. A, to keep this section brief.



3
Background: Quantum Error Correction

And Fault Tolerance

This background section briefly review of quantum error correction using stabilizer codes in Sec. 3.1,

followed by the CSS construction, which is used to construct the Steane code, in Sec. 3.2. Following these,

the codes which are the main focus of this thesis, the J5, 1, 3K code and the Steane code, are described in

Sec. 3.3. This is followed by description of efficient simulation of stabilizer codes via the Gottesman-Knill

theorem in Sec. 3.4. Following this, the error propagation rules used throughout this thesis are presented

in Sec. 3.5. Sec. 3.6 to Sec. 3.11 form the second part of this section, and review the notions of fault

tolerance. In particular, the Knill’s error model, used for pseudothreshold simulations (see Sec. 6), is

presented in Sec. 3.9.

This section is primarily intended for establishing the contextual framework for the upcoming sections,

and for completeness. The experienced reader may prefer to focus on error propagation rules (Sec. 3.5),

refresh the terminology on fault tolerance (Sec. 3.8 and Sec. 3.10.3), and the Knill’s error model (Sec.

3.9).

The references for this section are [14],[1],[4],[30],[31],[13],[12].

3.1. Stabilizer Codes
In quantum error correction, a state of one or more qubits is mapped to an entangled state in a larger

Hilbert space. Consequently, distributing the information into a state of a larger number of qubits provides

redundancy to protect the information against errors.

As introduced in Sec. 1, a QECC is a k-dimensional subspace of an n-dimensional Hilbert space, k < n.
Mutually orthogonal vectors which span the codespace form a basis, and a codeword is a superposition

of these basis vectors. In this thesis, we’ll work with Pauli errors, defined in Sec. 2. The distance of a

quantum error-correcting code is the minimum weight of a Pauli operator which transforms one logical

codeword into another. Such a quantum error-correcting code is denoted as a Jn, k, dK code. The code

can correct up to t = dd−1
2 e errors. The unencoded n qubits are called physical qubits, and the encoded

k qubits are called logical qubits [14],[1].

For example, the 3-qubit quantum repetition code to protect against quantum bit-flip (Pauli X) errors is

the map

|0〉 7→ |000〉 , |1〉 7→ |111〉 . (3.1)

Fig. 3.1 illustrates the elements of quantum error correction, namely, encoding, errors, stabilizer

measurements, syndrome decoding, and correction, for the 3-qubit repetition code for bit-flip (Pauli X)

errors [1].

Ths stabilizer formalism is the most widely used framework to construct quantum error correcting

codes[14]. Therefore, some background on the Pauli operators is presented, which form the basis for the

stabilizer formalism. This is followed by description of the aforementioned elements of error correction in

the context of stabilizer codes.

8
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Figure 3.1: Encoding, stabilizer measurement, decoding and correction for the 3-qubit repetition code for

bit flip errors.

3.1.1. The Pauli Group and the Binary Symplectic Vector Representation
The 1-qubit Pauli operators, with operator composition ◦, form the 1-qubit Pauli group, (G1, ◦), or simply G1,

consisting of the elements:

G1 = {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ}. (3.2)

The composition rule is matrix multiplication (see Eq. 2.5). The phase factors are included for group

closure. The n-qubit Pauli group (Gn, ◦), or simply Gn, consists of all n-qubit Pauli strings, along with the

phase factors {±1,±i}:

Gn = {pP1 ⊗ P2 ⊗ · · · ⊗ Pn|Pj ∈ {I,X, Y, Z}, j = 1, 2, · · · , n, p ∈ {±1,±i}}. (3.3)

The group composition rule derived from G1 is:

(pP1P2 · · ·Pn) ◦ (qQ1Q2 · · ·Qn) = pq(P1 ◦Q1)(P2 ◦Q2) · · · (Pn ◦Qn), for pP1P2 · · ·Pn, qQ1Q2 · · ·Qn ∈ Gn.
(3.4)

The tensor product notation has been suppressed. In the context of error correction, it is useful to consider

the Pauli group with elements without the phase factors. Under the equivalence relation that two elements

of Gn are equivalent if they only differ in an overall phase, the said group is then the quotient group under

this equivalence. Modulo the phase factors, the Paulis commute, forming the commutative Pauli group.

The Binary Symplectic Vector Representation

Elements of the commuting n-qubit Pauli group can be represented as 2n-dimensional binary vectors with

addition modulo 2 [1],[14].

The vector is constructed as follows: if an X operator is present on the jth qubit in an n-qubit Pauli
string, the jth entry in the vector is 1, and the (n+ j)th entry is 0. If a Z is present on the jth qubit, the jth

entry is 0, and the (n+ j)th entry is 1. For a Y , both the jth and (n+ j)th element of the vector are 1, and
I is represented by both these elements being 0. Thus, the vector has separate X and Z components,

and is of the form

(x|z) = (x1, x2, . . . , xn|z1, z2, . . . , zn). (3.5)

For example, XZY IX is represented as (1, 0, 1, 0, 1|0, 1, 1, 0, 0). Multiplication of Pauli strings corresponds

to addition of respective binary vector representations modulo 2. Commutation relations among Pauli

operators P and Q, having vector representations v = (a|b) and w = (c|d), respectively, can be determined

as

PQ = (−1)ad−bcQP. (3.6)

More succinctly, ad− bc = vΛwT is the symplectic product between v and w, with Λ =

[
In 0

0 In

]
.
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3.1.2. Stabilizers and Stabilizer Generators
The stabilizer formalism[14] provides a foundation to construct quantum error-correcting codes, based

on the Pauli group, Gn. The resulting codes are called stabilizer codes. A subgroup S of Gn, called the

stabilizer group of the code, is constructed according to the following conditions:

1. S is an Abelian subgroup, i.e. all elements of S commute.

2. S does not contain the element −I.

Then, the codespace of the stabilizer code is the Hilbert space formed by the intersection of eigenspaces

corresponding to the +1 eigenvalue of all elements of S, that is, the simultaneous +1-eigenspace of

stabilizers.

The two conditions have the following significance. The codespace is a joint eigenspace of operators,

and for the operators to be diagonalizable in the same basis, they need to commute. Also, it can be seen

that there is no non-trivial state which is a +1 eigenstate of −I, because the solution of

−I |ψ〉 = |ψ〉 (3.7)

is the null vector, which does not correspond to a physical state. Therefore, constructing a codespace with

−I as a possible element of S leads to a trivial codespace, hence it is excluded. Operators which give −I
under composition are also excluded.

Stabilizer Generators

A generating set of the stabilizer group is the smallest subset of independent stabilizers, such that,

upon removing even one element from the generating set, one cannot construct the entire stabilizer

group via element composition. The elements of the generating set are called stabilizer generators, or,

generators. For a stabilizer subgroup of the Pauli group having 2r elements, there are r generators,
denoted {gi}, 1 ≤ i ≤ r. Formally,

S = 〈g1, g2, . . . , gr〉, (3.8)

and, an arbitrary stabilizer sj ∈ S can be expressed in terms of the generators as

sj = gj11 g
j2
2 . . . gjrr , (3.9)

where each jk ∈ {0, 1}, 1 ≤ k ≤ r. States within the codespace satisfy s |ψ〉 = |ψ〉 ,∀s ∈ S.

The generating set is not unique, and other stabilizers may be chosen as generators.

Check Matrix of a Stabilizer Code

A stabilizer code can be specified by a binary check matrix of size (n− k)× 2n, whose rows are formed by

the binary vector representations of stabilizer generators:

H =
[
H1 H2

]
, (3.10)

where H1 and H2 are (n− k)× n binary matrices representing the X and Z components of generators.

This representation is used in deriving the encoding circuit for a stabilizer code (see Sec. 3.1.4).

3.1.3. The Significance of Pauli Errors
Although general quantum errors can be continuous, it is sufficient to work with discrete Pauli errors, which

form a basis in which a general error can be expressed, [1]. Upon a stabilizer measurement, a general

error can be discretized to get a state on which either no error or a nontrivial Pauli error has occurred, and

is correctable if the Pauli errors can be corrected, via the Knill-Laflamme theorem [1]. Stabilizer codes can

be analyzed efficiently under Pauli errors via the Gottesman-Knill theorem (see Sec. 3.4).

The following sections describe how to perform error correction with stabilizer codes. State vectors will

be assumed to be normalized, or, depending on the context, normalization factors will be ignored.

3.1.4. Encoding to the Codespace
An encoding map, realized with an encoding circuit, encodes the state to be protected from errors in the

higher-dimensional Hilbert space.
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Encoding Circuit for a Stabilizer Code

The encoding circuits for the J5, 1, 3K code and the Steane code are used in the wavefunction simulations

in this thesis, described in Sec. 6. Therefore, their derivation is summarized.

The encoding circuit for a stabilizer code can be constructed from its check matrix and binary vectors

representing logical operators expressed in standard form [14],[32],[1].

For k = 1, the encoding maps |0〉 and |1〉 to orthogonal states in the codespace as

|0〉 7→
(∑

s∈S

s
)
|0〉⊗n

, |1〉 7→
(∑

s∈S

s
)
X̄ |0〉⊗n

, (3.11)

where X̄ represents the logical X operator. To implement the circuit corresponding to sum of stabilizers,

note that ∑
s∈S

s = (I + g1)(I + g2) . . . (I + gn−k), (3.12)

where g1, g2, . . . , gn−k are the stabilizer generators, and this composition of operators projects onto the

simultaneous +1 eigenspace of the generators [14],[32].

To implement the circuit corresponding to each (I + gj), the row corresponding to gj in the standard

form of the check matrix is considered. First, a hadamard gate is applied to the qubit j. If the same

qubit has a 1 in the Z-component, Z gate is applied to it. For other qubits which have a 1 in the Z or X
components, a controlled-Z or controlled-X gate is applied respectively, with qubit j as control. There is

no gate applied corresponding to 1 in the X-component of qubit j.

To implement X̄ unitarily, depending on whether the 1-qubit state is a |0〉 or |1〉, a qubit on which X̄, in

standard form, has support is chosen as the input qubit, and the remaining qubits are initialized in the |0〉
state. Controlled X or Z gates are applied from the input qubit to other qubits corresponding to the entries

in the standard form of the binary vector representing X̄.

The encoding circuits for the J5, 1, 3K code and the Steane code are presented in Sec. 3.3.

3.1.5. Stabilizer Measurement and The Syndrome
The syndrome is a string of classical bits, extracted from the encoded state by measuring stabilizer

generators, to diagnose a possible error.

The syndrome signifies the eigenvalue of the stabilizer with respect to the state. By definition, the

space of error-free codewords is the simultaneous +1 eigenspace of the stabilizers [1]. Further, each

stabilizer equally divides the n-qubit Hilbert space into its +1 and −1 eigenspaces.

If a detectable error occurs, the state gets modified and moves to the −1 eigenspace of one or more

stabilizers.

The eigenvalues of all generators forms the required parity information, i.e. the syndrome, to diagnose

the error. It is sufficient to measure all stabilizer generators, because they are a minimal set which can

represent all stabilizers [14].

Indirect Measurement

Stabilizer measurement on the data qubits is performed indirectly through an extra ancillary qubit, to

preserve a superposition of codewords. The circuit in Fig. 3.2 implements an indirect measurement of

unitary U with eigenvalues {−1,+1} [1].

Figure 3.2: Indirect measurement of U
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The circuit transforms an input state |0〉 |ψ〉, as shown in Fig. 3.2, as:

|0〉 |ψ〉 → 1

2
(|0〉 ((I + U) |ψ〉) + |1〉 ((I − U) |ψ〉)). (3.13)

It may be verified that the circuit works as follows [1]. (I + U) projects the state onto the +1 eigenspace of

U , which occurs when the ancilla is |0〉 after measurement, and (I −U) projects it onto the −1 eigenspace
of U , when the ancilla is |1〉 after the measurement. Since the encoding qubits (data qubits) are projected

to an eigenspace of a stabilizer generator, the data qubits and the ancilla are not entangled. Therefore,

the extracted syndrome depends on the error and not on the underlying state.

For brevity, the mapping+1 7→ 0,−1 7→ 1 from eigenvalues to bits will be used to express the syndrome,

so, for example, the syndrome {+1,−1} will be mapped to 01.

Syndrome and Commutation Relations

The syndrome for a given Pauli error may be determined by calculating the commutation relation between

the error and stabilizer generators. In Eq. 3.13, consider the state |ψ〉 in the codespace. Since the Pauli

operators either commute or anticommute, a Pauli error E , which commutes with a generator g1, gives the
+1 eigenvalue (syndrome bit 0) on measurement , because

I + g1
2

E |ψ〉 = E I + g1
2

|ψ〉 = E |ψ〉 , I − g1
2

E |ψ〉 = E I − g1
2

|ψ〉 = 0, (3.14)

while if E anticommutes with a generator g2, the measurement gives the −1 eigenvalue (syndrome bit 1):

I + g2
2

E |ψ〉 = E I − g2
2

|ψ〉 = 0,
I − g2

2
E |ψ〉 = E I + g2

2
|ψ〉 = E |ψ〉 . (3.15)

3.1.6. Decoding
Although decoding may refer to the inverse of encoding, in this thesis, decoding the syndrome refers

to determining the codeword closest to a given state, given the error syndrome. Once a syndrome has

been reliably obtained, it is decoded to infer the most likely Pauli error which could have resulted in that

syndrome [14]. The ‘most likely’ error is the error which can occur with highest probability corresponding

to the given syndrome.

In general, there could be multiple errors which lead to the same syndrome, which may occur with a

lower probability than the most likely error [13]. Decoding assuming the most likely error may corrupt the

state further and lead to a logical error, if the cause of the syndrome was an inequivalent, lower probability

error.

The set of inequivalent errors the code is expected to correct must lead to distinct syndromes, i.e., they

need to be distinguishable, so that they can be unambiguously decoded. A look-up table (LUT) which

maps the syndrome to the most likely error suffices for decoding for the codes in this thesis.

3.1.7. Correction
Once the syndrome has been decoded, the most likely error (or the minimum weight equivalent up to

stabilizer multiplication) is applied as the correction. If the decoding accurately identifies the error (up

to stabilizer multiplication), this correction restores the state to the one before the error. However, if the

decoding fails to infer the error correctly, the correction may lead to a logical error.

In practice, a physical correction via gates need not be applied [33].Instead, the cumulative error can

be tracked by updating a Pauli frame [33]. This means keeping track of the subspace of the n qubit space,

via the syndrome, to which the error has mapped the encoded state. The Pauli operator which restores

the state to codespace at the end of the computation can be classically accounted for. Therefore, the

corrections can be taken to be noiseless.

3.1.8. Operations on Encoded Qubits
In addition to quantum error correction cycles to preserve a state, to achieve a reliable quantum computation,

logical operations, belonging to the centralizer of the stabilizer (Sec. 2), are performed while the quantum

state is encoded in the QECC. The logical operators obey the commutation relations between the respective

unencoded operations. At the end of the desired computation, a logical measurement on the encoded

qubits extracts the result. These elements of the computation, however, are beyond the scope of this

thesis.
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3.2. The CSS Code Construction
Stabilizer codes, and in particular, the Steane code, can be constructed using two classical codes (see

Appendix A) through the CSS construction.

Let C1 be a [n, k1, d1] (classical) binary linear code, and C2 be a [n, k2, d2] (classical) binary linear code,
with parity check matricesHC1 andHC2 respectively, and with C2 ⊆ C1, i.e., C2 is a subspace (or subcode)

of C1. Further, let C
⊥
2 be the dual of C2, with parity check matrix HC⊥

2
, and distance d⊥2 . C1 and C

⊥
2 correct

up to t1 and t
⊥
2 errors respectively, where t1 = dd1−1

2 e, t⊥2 = dd⊥
2 −1
2 e. Then, the CSS construction defines

a Jn, k1 − k2, dK quantum code, CSS(C1, C2), with d ≥ min(d1, d
⊥
2 ) [18],[19].

Basis states for the codespace of CSS(C1, C2) are constructed from the classical codewords of C1

and C2, which are binary vectors in Fn
2 . An equivalence relation is defined on C1: two elements in

C1 are equivalent if they differ (modulo 2) by an element of C2, i.e., for xi, xj ∈ C1, xi ∼ xj if xi =
xj + v, for some v ∈ C2. This equivalence relation partitions C1 into equivalence classes, each of which

is used to form a basis state of the quantum code. This may be formulated in group-theoretic terms: Fn
2

forms a group under addition modulo 2, denoted by +. Then, C2 is a subgroup of C1, and the equivalence

classes are cosets of C2 in C1.

For x ∈ C1, the coset of C2 with respect to x is denoted as x+C2 = {x+v|v ∈ C2}. The basis codeword
for the quantum code, |x̄〉, labelled by the coset representative x, is defined as a uniform superposition of

ket vectors labelled by elements of the coset to which x belongs:

|x̄〉 = |x+ C2〉 =
1√
2k2

∑
v∈C2

|x+ v〉 . (3.16)

States corresponding to different cosets are orthogonal. This is because, for xi, xj in different cosets, the

inner product 〈xi + C2|xj + C2〉 does not contain any terms which have a non-zero overlap, and is hence

equal to zero.

The number of such orthogonal states is equal to the number of cosets, which is 2k1−k2 , by Lagrange’s

theorem, presented in Sec. 2. These form a basis for the CSS(C1, C2) codespace [4],[1]. The check

matrix of CSS(C1, C2) is constructed from the parity check matrices of the classical codes as:

H =

[
HC⊥

2
0

0 HC1

]
(3.17)

Therefore, the standard stabilizer generators for CSS codes contain either only X or only Z operators.

3.2.1. Correcting quantum errors using CSS codes
In CSS codes, bit-flip (Pauli X) errors and phase-flip (Pauli Z) errors can be decoded and corrected

separately [1]. If a bit-flip error occurs, it affects the CSS code’s codword analagous to a classical bit-flip on

codewords of C1. Hence, a bit-flip error on a CSS code can be corrected by measuring Z-type stabilizers

constructed from parity checks of C1. To correct phase-flip errors with a CSS code, applying the Hadamard

transform on the codeword, which entails applying the Hadamard gate on all data qubits, transforms

phase-flip errors into bit-flip errors on codewords of the dual code C⊥
2 . Hence, a phase-flip error can be

corrected by measuring X-type stabilizers constructed from parity checks of C⊥
2 . The Hadamard transform

is applied again to restore the original state. A Pauli Y error is corrected as a bit-flip followed by a phase-flip.

Additionally, the separate decoding can also correct bit-flips and phase-flips occurring on different qubits.

The details of these standard results may be found in the references [1], [31], and [4].

3.3. The J5, 1, 3K Code and the Steane Code
The J5,1,3K code, or the five qubit code, is the smallest possible quantum error-correcting code which

can correct an arbitrary error on a single qubit [17]. It is a perfect code, because every eigenspace of the

stabilizers in the 5-qubit Hilbert space other than the codespace corresponds to a different single qubit

error [1]. The stabilizer group of the J5, 1, 3K code is generated by:

〈XZZXI, IXZZX,XIXZZ,ZXIXZ〉 (3.18)



3.3. The J5, 1, 3K Code and the Steane Code 14

and can be obtained from one of these generators by cyclic permutation the qubits. This symmetry is also

reflected in the basis states for the codespace [1].

The check matrix with the generators from Eq. 3.18 is

H =


1 0 0 1 0 0 1 1 0 0

0 1 0 0 1 0 0 1 1 0

1 0 1 0 0 0 0 0 1 1

0 1 0 1 0 1 0 0 0 1

 . (3.19)

The operators XXXXX and ZZZZZ serve as the logical operators X̄ and Z̄, respectively.

The circuit to extract syndromes corresponding to the stabilizer generators on different ancilla qubits,

equivalent to the one derived from Fig. 3.2, is depicted in Fig. 3.3.

Figure 3.3: Circuit for measuring stabilizer generators of the J5, 1, 3K code.

Using row operations, the check matrix in Eq. 3.19 can be brought into the standard form:

H =


1 0 0 0 1 1 1 0 1 1

0 1 0 0 1 0 0 1 1 0

0 0 1 0 1 1 1 0 0 0

0 0 0 1 1 1 0 1 1 1

 . (3.20)

Using the procedure described in Sec. 3.1.4, the circuit to encode a single qubit state in the codespace of

the J5, 1, 3K code, after some simplifications, is shown in Fig. 3.4.

Figure 3.4: Encoding circuit for the J5, 1, 3K code. The fifth qubit is prepared in the qubit state to be

encoded.

The look-up table, which maps syndromes, obtained by measuring the generators presented in eq.

3.18, to weight-1 input errors is presented in Table 3.1.

The Steane code is the smallest distance-3 CSS quantum error-correcting code (for preliminaries

on classical error correcting codes with reference to CSS codes, see Appendix A). It is constructed,

with reference to the CSS construction, by taking C1 as the [7, 4, 3] Hamming code, presented in Eq.

A.1, so k1 = 4, and C2 = C⊥
1 [19],[1]. C⊥

1 is a k2 = 3-dimensional subspace of C1, hence, it satisfies

the conditions of the CSS construction. The resulting quantum code has distance-3 and parameters
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Syndrome Most likely error

0000 No error

0001 XIIII

0010 IIZII

0011 IIIIX

0100 IIIIZ

0101 IZIII

0110 IIIXI

0111 IIIIY

Syndrome Most likely error

1000 IXIII

1001 IIIZI

1010 ZIIII

1011 Y IIII

1100 IIXII

1101 IY III

1110 IIY II

1111 IIIY I

Table 3.1: Look-up table for decoding the syndrome for the J5, 1, 3K code.

Jn, k1 − k2, dK = J7, 1, 3K. It is also the smallest code of the quantum Hamming code family [1]. Since

C⊥
2 = (C⊥

1 )⊥ = C1, the check matrix of the Steane code is

H =

[
HC⊥

2
0

0 HC1

]
=



0 0 0 1 1 1 1 0 0 0 0 0 0 0

0 1 1 0 0 1 1 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 1 1 0 0 1 1

0 0 0 0 0 0 0 1 0 1 0 1 0 1


. (3.21)

The stabilizer group is generated by

〈IIIXXXX, IXXIIXX,XIXIXIX, IIIZZZZ, IZZIIZZ,ZIZIZIZ〉. (3.22)

The codewords of C⊥
1 are {0000000, 1010101, 0110011, 1100110, 0001111, 1011010, 0111100, 1101001}. The

cosets of C⊥
1 in C1 are used to form the basis of the codespace [1]. Due to separate decoding of X and Z

errors, the Steane code can correct two single-qubit errors which are composed of a single X and a single

Z occuring on different data qubits. The operators XXXXXXX and ZZZZZZZ serve as the logical

operators X̄ and Z̄, respectively. The circuit to measure the stabilizer generators in parallel using 6 ancilla

qubits can be derived from the general circuit in Section 3.1.5 and analogous to the circuit for the J5, 1, 3K
code, presented in Sec. 3.3.

The check matrix in Eq. (3.21) can be brought into the following standard form (using qubit permutation)

[1]:

H =



1 0 0 0 1 1 1 0 0 0 0 0 0 0

0 1 0 1 0 1 1 0 0 0 0 0 0 0

0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 1 1 0 0 1

0 0 0 0 0 0 0 0 1 1 0 1 0 1

0 0 0 0 0 0 0 1 1 1 0 0 1 0


. (3.23)

The encoding circuit for the Steane code derived from this matrix, and after reversing the qubit permutation

and some simplifications, is shown in Fig. 3.5. The look-up table for Z-type stabilizer measurements (in the

order IIIZZZZ,IZZIIZZ,ZIZIZIZ) is shown in Table 3.2. It can be derived analogously for X-type

stabilizers (see Tables E.4 and E.3).

3.4. The Gottesman-Knill Theorem
The Gottesman-Knill theorem [34] is an important result in the stabilizer formalism, which allows efficient

classical simulation of stabilizer codes under Pauli errors. This method of simulation, along with the binary

symplectic vector representation of Pauli operators, is the basis for the stabilizer formalism simulations



3.4. The Gottesman-Knill Theorem 16

Figure 3.5: Encoding circuit for the Steane code. The third qubit is prepared in the qubit state to be

encoded.

Syndrome Most likely error

000 No error

001 XIIIIII

010 IXIIIII

011 IIXIIII

100 IIIXIII

101 IIIIXII

110 IIIIIXI

111 IIIIIIX

Table 3.2: Look-up table for decoding the syndrome obtained by Z-type stabilizer measurements for the

Steane code. It can be derived analogously for the syndrome obtained from X-type stabilizers.

in this thesis (see Sec. 6). In general, simulating the evolution statevector of a quantum system scales

exponentially in the number of qubits, and this result shows that for circuits comprising of gates only from

the Clifford group, which is the normalizer of the Pauli group, and Pauli measurements, the simulation can

be performed classically in polynomial time.

Theorem 3.4.1 Any quantum computer performing only: a) Clifford group gates, b) measurements of

Pauli group operators, and c) Clifford group operations conditioned on classical bits, which may be the

results of earlier measurements, can be perfectly simulated in polynomial time on a probabilistic classical

computer [34].

Circuits for syndrome extraction in stabilizer codes consist only of Clifford group elements, therefore,

the simulation can be performed as follows. Suppose there is a Pauli error P on a qubit, and it is followed

by a gate, C, from the Clifford group. Being the normalizer, defined in Sec. 2, this gives CPC† = P ′,

where P ′ is also a Pauli operator.

Therefore, the effect of the gate C is to transform the Pauli P operator into another Pauli operator

P ′, which may or may not be the same as P , depending on the conjugation rule. This analysis can

be performed for all gates in the circuit, obtaining the transformed Pauli operator after every gate via

conjugation, which forms the input Pauli operator for the next gate. This method requires the knowledge of

how the Paulis are mapped under conjugation by a given Clifford. Once this process of “pushing the errors

through the gates” is done for all gates in the circuit, the resulting Pauli operator acting on the data qubits

can be used to determine whether there has been a logical error or not: if it commutes with all logical

operators, then it is not a logical error. A measurement in the Z(X) basis gives the −1 eigenvalue if the

X(Z) component of the error acting on that qubit is 1, and gives the +1 eigenvalue otherwise.
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3.5. Notation and Error Propagation Rules
This section presents the notation for quantum gates used in this thesis, and the error propagation rules

for these gates. These rules are derived by conjugating the Pauli errors by the gate, which belongs to the

Clifford group, giving the Pauli error after propagation through the gate.

The XNOT gate (see Fig. 3.6(a)), or dual CZ, is defined as the composite gate (H ⊗ I)(|0〉 〈0| ⊗ I +
|1〉 〈1| ⊗X)(H ⊗ I), or equivalently, as (I ⊗H)(I ⊗ |0〉 〈0|+X ⊗ |1〉 〈1|)(I ⊗H) [25]. The YNOT gate (see

Fig. 3.6(b)) is defined as the composite gate (I ⊗H)(I ⊗ |0〉 〈0|+ Y ⊗ |1〉 〈1|)(I ⊗H), i.e. the left qubit is

the target of the controlled-Y .

XNOT YNOT

(a) (b)

Figure 3.6: Definition and notation for the XNOT gate (a) and the YNOT (b) gate.

Although the XNOT and YNOT gates may not be commonly discussed in standard literature [1], they

are employed in analysis of flag fault tolerance protocols [25], [35]. In particular, the YNOT gate and

associated error propagation rules have been presented here because of its use in measuring Y parities

in Sec. 5, (in particular, Sec. 5.5).

Fig. 3.7, 3.8, 3.9 and 3.10 review the propagation rules for input Pauli errors on one qubit through

two-qubit gates.

Figure 3.7: Error propagation rules for the CNOT gate.

Figure 3.8: Error propagation rules for the CZ gate.
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Figure 3.9: Error propagation rules for the XNOT gate.

Figure 3.10: Error propagation rules for the YNOT gate

3.6. Fault-Tolerant Quantum Error Correction
In present-day computation, every circuit component, including state preparation, quantum gates, mea-

surements, qubit reset, and occasion for the qubit to be idle, may introduce errors [28]. This necessitates

the construction of a fault tolerance protocol based on a quantum error correcting code. The subject of

fault tolerance addresses how to perform an arbitrarily long quantum computation reliably, with arbitrary ac-

curacy, using quantum error correction, even if the individual components used to perform error correction

are themselves noisy [1],[12],[13]. An introductory definition of a fault-tolerant quantum error correction

circuit for distance-3 codes is that a single input error, or a single component failure occurring anywhere in

the circuit, should lead to at most a single qubit error in the output, so that the code is able to recover from

its effect [1].

This part of the background presents the effect of noisy circuit components on syndrome extraction in

Sec. 3.7, followed by standard terminology in Sec. 3.8, and fault tolerance conditions and the threshold

theorem in Sec. 3.10. This is followed by a brief review of traditional fault tolerance schemes in Sec.

3.11. The main focus of the thesis will only be on fault-tolerant syndrome measurement (and not on other

elements of a fault-tolerant quantum computation, namely, encoding, logical measurement, and logical

operations). The main references are [13],[1],[14],[4],[12].

3.7. Noisy Circuit Components and Syndrome Extraction
If circuit components are potential sources of error, the ability to perform syndrome extraction reliably is

impacted, and fault tolerance may get compromised. In general, the errors may be coherent. By the Pauli

error model argument, discussed in Sec. 3.1, only Pauli errors are considered. Thus, when discrete errors

may occur, the components are said to have a probability of failure. A single component may fail with a

probability O(p).

The component failures are described in the list below [1],[25]. See Fig. 3.11. These errors are

assumed to be uniformly distributed over the relevant error set. Following this description, the impact on

syndrome extraction is discussed.
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Figure 3.11: Possible errors due to component failures. From the left: idling error (shown in red, occurring

with probability pi), single-qubit gate error (shown in green, occurring with probability p1), two-qubit gate
error (shown in yellow, occurring with probability p2), preparation error (shown in purple, occurring with

probability pp), and measurement error (shown in blue, occurring with probability pm), respectively. The

dashed line connecting the errors after the two qubit gate signifies that the errors on the two qubits are not

independent.

• If a single qubit gate has a failure probability p1, the noiseless gate is followed by either X, Y or Z
on the qubit, each with probability p1

3 . The probability that the gate does not fail is 1− p1.

• If a two qubit-gate has a failure probability p2, the noiseless gate is followed by a two-qubit Pauli string

Pi ⊗ Pj 6= I ⊗ I, Pi, Pj ∈ {I,X, Y, Z} on the two qubits, each with probability p2

15 . This is because a

two qubit gate may introduce errors on both qubits with a probability linear in p2, as opposed to a

probability quadratic in p1, which corresponds to two independent single-qubit errors [28].

• An error in preparation of the state |0〉 (or |+〉) results in the erroneously prepared state |1〉 (or |−〉,
respectively), with probability pp [25].

• A measurement error results in the output classical bit to get flipped with probability pm [25].

• A qubit which is ‘resting’, i.e. undergoing no operation, may get affected by errors. This may occur

when another qubit is being prepared, measured, or acted upon by a gate. This is called an idling error

[35]. The idling location may get affected by an X, Y or Z error on the qubit, each with probability pi

3 .

Due to these errors, in general, syndrome extraction with the circuits presented so far (in Sec. 3.1)

is insufficient to correct all possible errors arising from single component failures. This is illustrated with

some examples below, to demonstrate that additional circuit constructions are needed to make syndrome

extraction fault tolerant.

The first example, shown in Fig. 3.12, shows that fault tolerance requires that inequivalent errors

resulting from single component failures need to be unambiguously distinguishable by their syndromes.

Consider syndrome measurement for the Steane code with an input X error on the first qubit. The

syndrome obtained by measuring the 3 Z-type stabilizer generators IIIZZZZ, IZZIIZZ, ZIZIZIZ is

001. However, another syndrome measurement scenario with no input error but an X error on the third

qubit after measuring IZZIIZZ results in the same syndrome, 001. This error may have resulted from a

two qubit gate error or an idling error. When the same syndrome arises from inequivalent errors, it will be

referred to as ‘syndrome collision’.

If the syndrome 001 is erroneously interpreted as an input errorXIIIIII, whereas its actual occurrence
corresponds to the second scenario, the correction would lead to the application of the weight-2 operator

XIXIIII on the data qubits. This operator differs from a logical error by only a weight-1 operator, because
the distance of the Steane code is 3. Therefore, application of this correction would further contribute an

error to the state. Thus, this syndrome extraction sequence is not fault-tolerant, and the resulting syndrome

is not reliable for decoding.
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Figure 3.12: The syndrome collision scenario described in the text for syndrome extraction for the Steane

code. The errors are coloured in red, and the qubits on which they act are enclosed in a box. The

syndrome obtained is the same, namely 001, if an X error happens on the first qubit before the first

stabilizer measurement, or on the third qubit before the third stabilizer measurement. Since these errors

are not equivalent, the collision of syndromes implies this stabilizer sequence is not fault-tolerant.

The second circumstance is propagation of errors to multiple qubits, which forms an impediment to

fault tolerance. The circuit for a single stabilizer measurement for the Steane code, shown in Fig. 3.13, is

not fault-tolerant, because of error propagation through the shared ancilla qubit. If the second CNOT gate

fails with a Z error on the ancilla qubit, this error forms an input Z error for the target of the next CNOT

gate. This results in a Z ⊗Z error, due to conjugation of the error by CNOT. That is, a Z error on the target

of a CNOT propagates to its control qubit. Subsequently, the Z error on the ancilla qubit propagates to

another data qubit throught the fourth CNOT gate. This results in a weight-2 Z error on the data qubits,

which is not correctable by the Steane code. Therefore, by the introductory definition of fault tolerance

presented in the Sec. 3.6, the circuit is not fault-tolerant because propagation of a single error may lead to

uncorrectable errors.

Data qubits

Ancilla qubit

Figure 3.13: Error propagation in the circuit for measuring a Z stabilizer of the Steane code. A Z error on

the ancilla after the second CNOT propagates to a weight-2 error on the data qubits. Therefore, this circuit

is not fault-tolerant. Data qubits on which the stabilizer does not have support are not shown.

As the third example, preparation and measurement errors on ancilla qubits may render the measured

syndrome unreliable for decoding. If a measurement error leads to an uncorrectable error, the circuit is not

fault-tolerant.

3.8. Terminology: Fault Tolerance
This section presents standard terminology used in fault tolerance literature [12],[13],[35],[36].

• The notion of a fault is used to denote the failure of a component within a circuit. In contrast, an

input error is an error occurring before a quantum error correction circuit. In general, the term ‘error’

will also be used to denote the resulting error from a fault.

• Every noisy gate, state preparation, measurement, and occasion for a qubit to be idle is a potential

fault location.

• The type and probability of errors at these locations, or whether some locations are considered

noiseless, is specified by the error model.
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• A gadget is a composite construction using elementary components (gates, state preparation and

measurement) to create a fault-tolerant operation for a gate, state preparation, measurement, or

idling location. Its purpose could be to reduce the propagation of errors, or, as in the case of

the flag stabilizer measurement gadget (chapter 4), first detect and then correct a propagated

error. A quantum error correction gadget is an fault-tolerant encoded gadget to perform stabilizer

measurements fault-tolerantly.

• In this thesis, a fault-tolerant protocol will be the quantum error correction gadget, to measure

syndromes and correct errors fault-tolerantly. In general, a fault-tolerant protocol additionally contains

gadgets corresponding to gate locations in the original circuit [13].

• For distance-3 codes, a location is bad if a single fault at that location has the potential to lead to

an error with minimum weight at least 2 (i.e. an uncorrectable error), where the minimum is over all

equivalent errors obtained by multiplication with stabilizers [35].

• Circuit components are considered to fail linearly in the parameter p, the physical error rate. The
logical error rate will be the probability that the encoded state can undergo a logical error in an

iteration of error correction.

• A single error or fault, assumed to occur with probability which scales linearly in p, will be referred

to as an O(p) error. Independent errors resulting from two locations, will be assumed to occur with

probability which scales quadratically in p, will be referred to as O(p2) errors. Errors which occur

with probability scaling as p2, p3, . . . will be referred to as higher order errors.

• In the context of distance-3 codes, pairs of fault locations which lead to a logical error are called

malignant pairs, and those which don’t cause a logical error are benign.

3.9. Pauli Error Models
This section defines the Pauli error models for circuits, used to assess fault tolerance of a circuit in QEC

literature [15] via evaluation of the (pseudo)threshold, described in Sec. 3.10, under the specific noise

model. In this thesis, only Pauli errors are considered on qubits, and these models assume a uniform

distribution of errors, which are independently and identically distributed (i.i.d.) across fault locations.

Besides Pauli error models, more sophisticated error models are also possible, like biased noise and

continuous noise based on physical processes [1]. Working with Pauli errors for stabilizer codes provides

an efficient method of analysis due to the Gottesman-Knill theorem. (see Sec. 3.4). In addition, as

described in Sec. 3.1.3, analyzing Pauli error is sufficient to analyze QEC with continuous noise models,

which are the most accurate, but computationally expensive to simulate [1].

This thesis follows Knill’s error model for majority of the analysis, in line with the main reference [25].

3.9.1. Code Capacity Noise
In this error model [15], all state preparations, measurements, and single and two-qubit gates in the

quantum circuit are noiseless, and only the error correction capacity of the code is tested. Ancilla qubits

are also noiseless at all time steps. The data qubits can only experience an error with a probability p at
one time step, which is after encoding and before any stabilizer measurement.

The code capacity noise model is shown in Fig. 3.14. The error locations are shown with red boxes.

3.9.2. Phenomenological Noise
This error model [15] adds measurement errors to code capacity noise model. With probability pm, a
measurement outcome is flipped. The structure of the phenomenological noise model is shown in Fig.

3.15. Measurement errors are shown with blue boxes, and data qubit errors with red boxes.

3.9.3. Knill’s Error Model
To model failure of quantum operations, Knill introduced an error model in [28]. The parameter p is used
to specify the relative error rates. The structure of the Knill’s error model is shown in Fig. 3.16. The

component error rates under Knill’s error model are described in the list below, with reference to the figure.

• State preparation of |0〉 (|+〉) incorrectly prepares the state in |1〉 (|−〉) with probability pp = 4p
15 (shown

in purple).
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Ancilla

+
Remaining
generators

Figure 3.14: The code capacity noise model, for a part of the circuit where the first two stabilizers of the

Steane code (beginning with IIIXXXX and then IXXIIXX) are measured. Errors (i.i.d., shown in red)

act on data qubits prior to the first stabilizer measurement of a QEC cycle.

Ancilla

+
Remaining
generators

Figure 3.15: Phenomenological noise, for a part of the circuit where the first two two stabilizers of the

Steane code are measured. This noise model adds measurement errors (blue boxes) in addition to errors

occurring on data qubits present in the code capacity model (red boxes).
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• A single-qubit gate is followed by one of {X,Y, Z}, each with probability p1

3 , where p1 = 4p
5 (shown in

green).

• A two-qubit gate is followed by one of the 15 non-identity two-qubit Pauli operators, i.e. from

{Pi ⊗ Pj} \ I ⊗ I, Pi, Pj ∈ {I,X, Y, Z}, each with probability p2

15 , where p2 = p (shown in orange).

• A single qubit measurement outcome is flipped with probability pm = 4p
15 (shown in blue).

• There are no errors on idling locations.

Knill’s error model is considered in this thesis for pseudothreshold simulations (see Sec. 6), and introductory

treatment of the flag gadget (see Sec. 4), to establish a comparison of preliminary fault tolerance analysis

under identical conditions with the main reference on flag fault tolerance protocols for this work [25], wherein

this model has been employed.

Ancilla

Figure 3.16: Knill’s error model, for a stabilizer measurement (XZZXI) for the J5, 1, 3K code. This error
model includes state preparation errors (shown in purple), single qubit gate errors (green), two-qubit gate

errors (orange), and measurement errors (shown in blue).

3.9.4. Circuit Level Noise
This is the most stringent Pauli error model, as every circuit location can contribute a potential fault [15].

The structure of the circuit level noise model is shown in Fig. 3.17. The component errors under circuit

level noise are described in the list below, with reference to the figure.

• State preparation of |0〉 (|+〉) incorrectly prepares the state in |1〉 (|−〉) with probability pp (shown in

purple).

• A single-qubit gate is followed by one of {X,Y, Z}, each with probability p1

3 (shown in green).

• A two-qubit gate is followed by one of the 15 non-identity two-qubit Pauli operators, i.e. from

{Pi ⊗ Pj} \ I ⊗ I, Pi, Pj ∈ {I,X, Y, Z}, each with probability p2

15 (shown in orange).

• A single qubit measurement outcome is flipped with probability pm (shown in blue).

• For every occasion for a qubit to lie idle, for instance, when an operation occurs on another qubit, it

experiences a uniformly depolarizing error, i.e. one of {X,Y, Z}, each with probability pi

3 (shown in

red).

3.10. Conditions for Fault Tolerance and the Threshold Theorem
The threshold theorem [12], [13], [1] is the central result in fault-tolerance which guarantees that suppression

of errors using quantum error correction is possible, even if all circuit components can introduce errors,

provided the conditions of the theorem are satisfied. The introductory definition of fault tolerance for

distance-3 codes, presented in the Sec. 3.6, implies that the logical error rate should scale at least as

O(p2) [1]. If this holds, the error rate after encoding is suppressed, provided p is below a certain value,

called the accuracy threshold, or simply the threshold. If p is above the threshold, then the noisy circuit

contributes more errors than the circuit can correct. If the logical error rate has an O(p) component, then

the construction does not suppress errors [1]. In that case, it does not have a non-trivial threshold, which

means there is no value of p below which the logical error rate is suppressed, and is not fault-tolerant.
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Ancilla

Figure 3.17: Circuit level noise, for a stabilizer measurement (XZZXI) for the J5, 1, 3K code. This error
model includes state preparation errors (shown in purple), single qubit gate errors (green), two-qubit gate

errors (orange), measurement errors (blue), and idling errors (red).

3.10.1. Fault Tolerance Conditions
For block codes, two conditions for fault-tolerant error correction are required [13],[35],[27],[12]:

1. If the state input to the error correction gadget has r errors, and the gadget introduces s faults, such
that r+ s ≤ t, for a t-correcting QEC code, then the codeword closest to the output state is the same

codeword as the one closest to the input state. This means that correctable errors should not spread

to errors which are uncorrectable. For distance-3 codes, it means 1 input error or 1 fault should not

lead to a logical error.

2. If the state input to the error correction gadget has an arbitrary number of errors, and the gadget

introduces s faults, where s ≤ t, then the output state is at most a weight s error away from some

codeword, so that it can be returned to the codespace by a subsequent error correction cycle. The

J5, 1, 3K code and the Steane code, the main focus of this thesis, satisfy this condition, because every

corrupted state for these codes is a weight-1 error away from some codeword [27],[35].

3.10.2. The Threshold theorem
Theorem 3.10.1 Assuming errors act randomly and independently on circuit locations for a quantum

computation of size polynomial in the number of qubits, it is possible to perform the same computation

using a fault-tolerant protocol with an arbitrarily low error rate, with polylogarithmic overhead, provided the

error rate per physical component is less than a certain threshold value [12],[13],[1].

The threshold sets a target for the error rate of every component, because the logical error rate is

suppressed only if the physical error rates of all components are below the threshold.

For block codes, the theorem can be proved via code concatenation [1]. In code concatenation, the

encoded (logical) qubits of one code are again encoded into the logical qubits of another code. For a given

physical error rate, the logical error rate can be made arbitrarily low by increasing the distance of the code

via recursive concatenation. The suppression of error rate scales as an exponential of the distance [1].

For example, consider the 3-qubit repetition code for bit-flip errors, with the same error model (1 bit flip)

as in Fig. 3.1. The logical error rate is be plotted against the physical error rate in Fig. 3.18.

For p < 0.5, the logical error rate is lower than the physical error rate, seen by the intersection point

with the y = x line in Fig. 3.18. As the distance of the repetition code is increased, this suppression still

happens for p < 0.5 (not shown in Fig. 3.18), hence this is the threshold under the specified error model[1].

Going beyond the abstract statement, the threshold theorem [12] implies certain requirements need

to be satisfied to achieve fault tolerance [37]. The error rate of each component must be lower than the

accuracy threshold, and propagation of errors needs to be controlled. Additionally, the errors should affect

individual qubits independently.

3.10.3. Threshold vs Pseudothreshold
In general, different circuit components may fail with different error rates, and are replaced with different

gadgets in a fault tolerance protocol. The suppression of logical error rate may be analyzed as a function
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Figure 3.18: Logical error rate (blue curve) for the 3-qubit repetition code for bit-flip errors, assuming a

single, i.i.d. bit-flip error on data qubits, after encoding and before stabilizer measurements. This curve

can be obtained by either carrying out a Monte Carlo simulation, or by enumerating the malignant set of

errors under this error model. The threshold is the value of physical error rate (red curve) at which the

physical error rate and the logical error rate curves cross, which is 0.5. Below the threshold, the logical

error rate is lower than the physical error rate.

of increasing code distance, achieved via code concatenation [13]. As a consequence of differential

component error rates, the logical error rate curves for different code distance values may not intersect

the physical error rate curve at the same point [38]. The threshold is the point where the logical error rate

curves for different concatenation levels asymptotically converge.

In this thesis, logical error rates are analyzed for a single level of the code, without further concatenation.

Therefore, following the terminology in [38], the intersection point of the logical error rate curve with the

physical error rate curve is denoted as the pseudothreshold. This may be different from the asymptotic

threshold, and is a measure of performance for the single level of the code. A qualitative illustration of the

distinction between the concepts of threshold and pseudothreshold is shown in Fig. 3.19, adapted from

[38].

In addition, the pseudothreshold and the threshold values are contingent upon the specific error model

and failure probabilities associated with individual circuit components [15].

Physical error rate

Level-1
Level-2
Level-3

Physical error rate

Level-1
Level-2
Level-3

Physical error rate Physical error rate

Logical
error rate

Logical
error rate

(b)(a)

Figure 3.19: Qualitative illustration of the distinction between the concepts of threshold and

pseudothreshold. In (a), the logical error rate curves for different levels of code concatenation converge to

intersect the physical error rate curve (in red) at the same point (encircled). This corresponding physical

error rate value is referred to as the threshold. In (b), the logical error rate curves for different levels of

code concatenation intersect the physical error rate curve at different points (encircled). Each of these

points represents a pseudothreshold. The threshold may be computed from the point to which these

curves asymptotically converge. This figure is adapted from [38].
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3.11. Traditional Fault Tolerance Schemes
A variety of fault-tolerant syndrome extraction schemes, or fault-tolerant quantum error correction gadgets,

have been developed in the literature [13]. The traditional fault tolerance schemes developed by Shor [22],

Steane [23] and Knill [24] form three core families of these schemes. These established schemes continue

to hold significance for construction, analysis, and as a comparative reference for performance of modern

fault tolerance schemes [25]. Therefore, these are reviewed in this section. The extensive discussion

of Shor’s scheme is motivated by a fundamental reference [27] for the present work (see Sec. 5). The

schemes due to Steane and Knill, though not of direct relevance, are described briefly for completeness.

3.11.1. Shor Error Correction
In a stabilizer measurement circuit, if multiple two-qubit gates interact with a single ancilla qubit, a single

error on the ancilla can propagate through the gates to multiple data qubits, which may compromise

fault tolerance (see Sec. 3.7). Shor error correction [22],[13] restricts error propagation during stabilizer

measurement by replacing the ancilla qubit by an ancillary system consisting of multiple qubits, prepared

in a cat state. The number of ancilla qubits is equal to the weight of the stabilizer, and the cat state is

presented below:
|00 . . . 0〉+ |11 . . . 1〉√

2
. (3.24)

For fault tolerance, the cat state preparation needs to be checked for errors. This is done by measuring

the parity of a pair of qubits, and the cat state is verified to be correct if the parity is even. The Shor error

correction scheme (or the Shor fault tolerance scheme) is described in Fig. 3.20.

Ancilla qubit

Data qubits

Calculate
Parity and

Repeat

Stabilizer measurement
circuit (not fault-tolerant)

Cat state ancilla
preparation

Cat state
verification

Fault-tolerant syndrome
extraction

Figure 3.20: Schematic of the Shor error correction scheme [22], [13]. Fault tolerance is guaranteed by

suppressing error propagation via transversal two-qubit gates between data qubits and ancilla qubits

prepared in a verified cat state, and repetition of stabilizer measurements.

Syndrome measurement is carried out by measuring one stabilizer at a time, by allowing each two-qubit

gate from a data qubit to interact with only one of the ancilla qubits of the (verified) cat state (i.e., in a

transversal manner). As a consequence, even if a two qubit gate fails, the resulting error on the ancilla

qubit does not propagate to other data qubits, because the ancilla qubit is not acted upon by a subsequent

quantum gate.

The cat state is used because interaction with this state only extracts parity information about the

errors, and does not leave the data qubits entangled with the ancillas. Syndrome extraction is performed

as follows. For measuring a stabilizer with Z operators, the cat state is first converted to a state with

superposition of all even parity terms via hadamard gates, then CNOT gates are applied transversally

between data qubits and the ancillas, and the ancillas are measured in the Z basis. The parity (of the

number of ones) of the measured values forms the syndrome bit. X-type stabilizers can be measured

analogously, without using the hadamard gates, and by measuring the ancillas in theX basis. This controls

propagation of errors during syndrome extraction, because they do not spread to more than 1 qubit.

To guarantee fault tolerance, the stabilizer measurements through the cat state need to be repeated
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until the same syndrome is obtained a sufficient number of times [27]. Consider the same example

presented in Sec. 3.7 (see Fig. 3.12), namely, the occurrence of an X error on qubit 3 after measuring

the second stabilizer generator of the Steane code.The measurement of a stabilizer only once, even with

the use of a cat state ancilla, is still vulnerable to such a syndrome collision scenario. To unambiguously

diagnose errors, syndrome measured needs to be repeated, and the observation of the same syndrome

consecutively signifies that no error has occurred in between stabilizer measurement (with high probability).

The syndrome obtained consecutively from repetition of measurements is reliable for fault tolerance. For

every repetition, the process of cat state preparation, verification, and syndrome extraction is repeated, to

prevent syndrome collision.

Additionally, the scheme is fault-tolerant, through repetition of stabilizer measurements, against error

propagation during ancilla verification, because this may lead to at most a weight-1 error on a data qubits.

The repetition also guarantees fault-tolerance against measurement errors (see Fig. 3.20).

Shor error correction applies to any stabilizer code, and for measuring a weight w stabilizer, it requires

a qubit overhead of w + 1, due to the qubits in the cat state, and the verification qubit.

3.11.2. Steane and Knill Error Correction
Steane error correction [23] [13] applies specifically to CSS codes. In this scheme, the ancilla qubit is

encoded in the same quantum error-correcting code, and the ancilla preparation is verified by measuring

stabilizer generators as parity checks on the ancilla state, via an additional qubit [23],[13]. To measure

the Z-type stabilizers, the ancilla is prepared in the encoded state |+̄〉 = |0̄〉+|1̄〉√
2

, and CNOT gates are

applied transversally from data qubits to the (verified) ancilla block. The ancilla qubits are measured,

and the syndrome is obtained by classically calculating the parities corresponding to stabilizers from the

measurement outcomes. The X-type parities are extracted analogously by verified preparation of the

ancillas in |0̄〉, applying CNOT gates transversally from ancilla qubits to data qubits, and measuring in the

X basis.

With Steane error correction, syndromes corresponding to stabilizers of the same type (X or Z) can be

extracted in parallel. As a measure of qubit overhead, for an Jn, k, dK CSS code, Steane error correction

requires 2n ancillas per round of stabilizer measurements.

Knill error correction [24][13] applies to any stabilizer code, and employs verified preparation of ancillas

in the 2n-qubit logical Bell state |0̄0̄〉+|1̄1̄〉√
2

. A Bell basis measurement of the data qubit block and one

logical qubit from the logical Bell pair teleports the encoded state to the other half of the Bell pair, and the

measurement outcome is used to determine the syndrome [24].

Steane and Knill error correction allow syndromes to be extracted in parallel, i.e. with lower circuit

depth, in general, they may require more ancilla qubits than Shor error correction. This leads to an increase

in fault locations for the ancilla qubits. Preparation and verification of ancillary states also adds to circuit

overhead.



4
Flag Fault Tolerance Protocols

This section presents the flag gadget, in Sec. 4.1, followed by developing a terminology for flag fault

tolerance protocols in Sec. 4.2, and the flag fault tolerance protocols for the J5, 1, 3K code and the Steane

code, in Sec. 4.3, as originally developed by Chao and Reichardt [25]. The main reference for this section

is [25]. Flag fault tolerance protocols, based on using an extra qubit (called the flag) to detect badly

propagated errors, have emerged as powerful schemes [25], [35], because they are applicable to small

quantum error-correcting codes, require few extra ancilla/flag qubits, and do not require elaborate ancilla

state preparation, relative to traditional schemes [25]. Fault tolerance of these protocols is verified in Sec.

4.4, assuming at most 1 error or 1 fault, since the codes have distance 3. This section concludes with an

optional and brief outlook on the flag protocols in Sec. 4.5.

4.1. The Flag Gadget
This section presents the motivation to construct a flag gadget, namely, to detect propagation of errors

from bad gates during a stabilizer measurement in Sec. 4.1.1. This is followed by construction of the

flagged stabilizer measurement circuit in Sec. 4.1.2, and analysis to show that the flag gates do not add

bad locations in Sec. 4.1.3.

4.1.1. Motivation
The circuit to measure the stabilizer generator XZZXI of the J5, 1, 3K code (see Fig. 4.1, expressed using

the XNOT gate (see Fig. 3.6), is not fault-tolerant due to interaction with a shared ancilla. The two CNOTs

are bad locations (see Fig. 4.1(a)), because a single fault after these can propagate to an uncorrectable

error (analogous to Fig. 3.13).

The first XNOT gate is not a bad location, because a fault after this gate propagates to an error with

weight at most 1, up to stabilizer multiplication (see Fig. 4.1(b)). The fourth XNOT gate is also not a bad

location, because a fault after it leads to at most a weight-1 error (see Fig. 4.1(c)).

4.1.2. Flagged Stabilizer Measurement Circuit
The main idea behind flag fault tolerance protocols, developed in [25], is to measure stabilizer generators

using circuits with an additional flag qubit [25],[39],[35], to detect propagated errors resulting from bad

locations. Note that these are O(p) errors, and need to be corrected to ensure fault tolerance. This circuit

will be called a flagged circuit. Faults after two-qubit gates are allowed to propagate through subsequent

two-qubit gates connected to the shared ancilla. The circuit implements interactions between the ancilla

qubit with the flag, which causes faults from bad locations, or bad faults, to be detected by measuring the

flag. This will be referred to as flagging the bad locations, and the resulting stabilizer measurement circuit

as a flagged circuit.

Interaction of the ancilla qubit with the flag refers to the flag first being entangled with the ancilla, via a

two-qubit gate, and subsequently being disentangled via another two-qubit gate. These gates are placed

such that when a fault propagates from a bad location, it also propagates to the flag qubit, and is detected

by measuring the flag qubit.

Upon detecting a nontrivial flag measurement outcome, all stabilizer generators are measured again,

this time without the flag (i.e., with unflagged circuits). The resulting syndrome is used to decode and

28
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Ancilla qubit

Data qubits

(a) (b) (c)

Figure 4.1: The circuit to measure the generator XZZXI for the J5, 1, 3K code, without any fault tolerance
constructions. The letters beneath the gates are labels for reference. In (a), an XZ fault after CNOT b
propagates to an error on multiple qubits, IXZXI. This is equivalent to a weight-2 error XY III up to

stabilizer multiplication, because IXZXI ◦XZZXI = XY III. Therefore, CNOT b is a bad location, and

the circuit is not fault-tolerant. Similarly, CNOT c is also a bad location (not shown). In (b), XNOT a fails
with an error PZ, where P ∈ {I,X, Y, Z}. The resulting error on the data qubits due to propagation is

PZZXI, which is only a weight-1 error on the data qubits, because PZZXI ◦XZZXI = (P ◦X)IIII.
Therefore, CNOT a is not a bad location. In (c), a PX fault occurs after XNOT d, and it does not

propagate to an error on multiple data qubits through subsequent stabilizer measurement circuits, due to

the error propagation rules (section 3.5). The black star indicates a nontrivial syndrome.

correct the propagated error. Importantly, even though these errors may have weight greater than 1, they
can still be corrected, if the gates in the flagged circuit are placed in an order which leads to propagated

errors which are not logical errors, and result in distinct syndromes for inequivalent errors. Thus, the

additional flag measurement increases the space of syndrome information, allowing to correct errors

resulting from a single bad location.

In addition to these errors, it is also possible that an error which occurred prior to or during a flagged

stabilizer measurement leads to a nontrivial syndrome without the flag getting triggered. It is also possible

that a measurement error occurs during the flagged measurement. In both these cases as well, measuring

all stabilizer generators with unflagged circuits leads to syndromes which can be used to unambiguously

decode these errors. Thus, the use of flagged stabilizer measurements, followed by repeating stabilizer

measurements upon a nontrivial syndrome or flag measurement, makes these protocols fault-tolerant.

In addition, it is sufficient to measure the stabilizers subsequent to a nontrivial flag or syndrome outcome

without a flag qubit, i.e. with unflagged circuits, to achieve fault tolerance with a distance-3 code. This is
because when the unflagged measurements are initiated, the flagged measurement has already indicated

the occurrence of a single error, which is the number of required to be corrected with a distance-3 code.
The use of another flagged circuit is not necessary, because the flag qubit may detect another error, which

is not strictly required to be detected for fault tolerance.

As an example, consider the flagged measurement of XZZXI, a stabilizer of the J5, 1, 3K code, shown
in Fig. 4.2. The circuit is set up as follows: The ancilla qubit is initialized in |0〉, and the flag qubit in |+〉.
The two qubit gates between the data qubits and the ancilla extract the requiredXZZXI parity information.

Two CNOT gates, which entangle and disentangle the flag to the ancilla, enclose the bad CNOT gates

between the data qubits and the ancilla. Through the CNOT gates with the flag qubits, errors resulting from

bad faults also propagate to the flag, as explained below. After these gates, the ancilla qubit is measured

in the Z basis, and the flag qubit is measured in the X basis.

Faults after CNOTs b and c can propagate to multiple data qubits, and it is only necessary to consider

the cases with a Z error on the ancilla qubit [25]. These errors are enumerated in Table 4.1. The only

faults after bad two-qubit gates which need to be considered are those with a Z on the ancilla. This is

because an X on the ancilla does not propagate to data qubits, and a Y propagates to data qubits in the

same manner as a Z (Refer to the error propagation rules in Sec. 3.5).

The faults in Table 4.1 also propagate to the flag qubit (see Fig. 4.2). The ancilla is also the target

qubit of the second CNOT gate between the flag and the ancilla, therefore, the Z error propagates to its
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Figure 4.2: (a): Flagged circuit to measure XZZXI, a stabilizer generator for the J5, 1, 3K code. (b): As
an example, an XZ fault after CNOT b in the same circuit propagates to the flag and gives the −1
outcome after measuring the flag qubit, and can thus be detected. This is denoted by the red star.

Causal fault Propagated error on data

qubits

Syndrome from unflagged

stabilizer measurements

IZ fault after CNOT b or
ZZ fault after CNOT c

IIZXI 0100

XZ fault after CNOT b IXZXI 1100

Y Z fault after CNOT b IY ZXI 1001

ZZ fault after CNOT b IZZXI 0001

IZ fault after CNOT c IIIXI 0110

XZ fault after CNOT c IIXXI 1010

Y Z fault after CNOT c IIY XI 1000

Table 4.1: Errors on data qubits from bad gates during flagged XZZXI measurement, stabilizer

generator of the J5, 1, 3K code, using the circuit shown in Fig. 4.2. The first column denotes the fault which

can cause the flag to get triggered. As explained in the text, only those faults with a Pauli Z acting on the

ancilla need to be considered. The second column denotes the resulting error on data qubits due to

propagation. The third column denotes the corresponding syndrome from measuring all stabilizer

generators with unflagged circuits. Since these are unique and non-trivial, they can be used to identify

each of these errors unambiguously, and also to distinguish them from a flag measurement error (which

gives a trivial syndrome).

control, i.e. the flag, due to the propagation rules (see Sec. 3.5). The resulting Z error on the flag qubit

anticommutes with the X operator, which is the basis of measurement. Therefore, the Z error shows up

as a nontrivial flag measurement outcome (i.e., the flag gets triggered). As an example, an XZ fault after

CNOT b during the flagged XZZXI measurement circuit is shown in Fig. 4.2. Faults analogous to those

in Table 4.1, but with a Y in place of the Z on the ancilla qubit also propagate to the flag qubit in the same

manner, due to the error propagation rules in Sec. 3.5.

If such a propagated error has occurred and all stabilizer generators are measured by unflagged circuits,

these errors can be decoded via the resulting syndrome. This is because of two reasons. First, although

some of these errors are high-weight errors, none of these errors is a logical error. Therefore, they are

detectable by stabilizer measurements. Second, the syndrome obtained by measuring all generators is

unique for each (inequivalent) error, and is a nontrivial (i.e. non-zero) value. Therefore, these errors are

detectable and can be distinguished unambiguously. A nontrivial syndrome means these errors can be

distinguished from a measurement error on the flag as well, because this error gives a trivial syndrome from

unflagged measurements. This leads to fault-tolerant error correction rules for these errors, in the form of

a look-up table (LUT) in Table 4.2. This is constructed by inverting the error-to-syndrome map in Table 4.1.

The corrections may be the actual propagated errors on the data qubits, or equivalent minimum-weight
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corrections. These are calculated by multiplying the corrections with stabilizers, and selecting one of the

possible operators with minimum weight.

Syndrome from unflagged

stabilizer measurements

Correction for most likely

error

Minimum-weight

equivalent correction, up

to stabilizer multiplication

0100 IIZXI IIZXI

1100 IXZXI XY III

1001 IY ZXI XXIII

0001 IZZXI XIIII

0110 IIIXI IIIXI

1010 IIXXI IIXXI

1000 IIY XI IIY XI

Table 4.2: The look-up table (LUT) for corrections, given the syndrome resulting from subsequent

unflagged stabilizer generator measurements, when the flag gets triggered during flagged XZZXI
measurement. This is a stabilizer generator of the J5, 1, 3K code. Equivalent minimum-weight corrections

are calculated by multiplying the corrections with stabilizers, and selecting one of the possible operators

with minimum weight.

Therefore, faults due to bad locations can be detected by the flagged circuit, and subsequently corrected

using all unflagged stabilizer measurements. This also analogously holds for other flagged stabilizer

generator measurement circuits for the J5, 1, 3K code. The detectability and distinguishability of errors from

bad gates during the other flagged stabilizer generator measurement circuits can be seen in Table C.2,

Table C.3 and Table C.4. The errors presented in this table are used to derive the respective lookup-tables

for decoding.

A nontrivial syndrome outcome from this circuit without the flag getting triggered is also followed by

measuring all (unflagged) stabilizer generators. This leads to the flag fault tolerance protocol for the J5, 1, 3K
code, described in Sec. 4.3.

4.1.3. Flag CNOTs Do Not Add Bad Locations
Vital to fault tolerance of the flag schemes is that the two CNOT gates between the ancilla and flag qubits (in

the following called the ‘flag CNOTs’) do not add new bad locations. This can be seen by some examples

which are representative of the error propagation behaviour in the flagged XZZXI stabilizer generator
measurement, depicted in Fig. 4.3. These are explained below. Following this, fault tolerance against the

remaining two-qubit gate faults is discussed.

As the first example, consider an IX fault after CNOT e (the first flag CNOT) in the circuit of Fig. 4.2.

This is shown in Fig. 4.3(a). It does not propagate to data qubits, and propagates to the ancilla qubit via

the second flag CNOT. This will show up as a nontrivial syndrome, and subsequent measurement of all

unflagged stabilizers will yield the trivial syndrome. Thus, no correction is applied, based on decoding via

the usual look-up table (Table 3.1). Further, this fault is equivalent to a measurement error on the ancilla,

and also to an X fault on the ancilla after any of the two-qubit gates with an I on the other participating

qubit, including the flag CNOTs. Thus, the circuit can tolerate this fault.

The second example is a ZX fault after CNOT e, which propagates to give the same error on data

qubits as a ZZ fault after CNOT b (see Fig. 4.3(b)). The Z on the ancilla propagates to Z on the flag,

and the X on the flag propagates to X on the ancilla, leading to nontrivial measurement outcomes for

both. The flag protocol dictates measuring all unflagged stabilizer generators upon this occurrence, and

decoding according to the LUT in Table 4.2 corrects this error.

The third example is a ZZ fault after the second flag CNOT (CNOT f ), which propagates to a weight-1
error on the data qubits, and also triggers the flag (see Fig. 4.3(c)). This is equivalent to an IZ fault after

CNOT c (refer to Table 4.1). Therefore, it can be decoded by measuring all unflagged stabilizers and using

the LUT in Table 4.2.
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Figure 4.3: Different faults after flag CNOTs described in the text. (a): IX fault after the first flag CNOT

(CNOT e), (b): ZX fault after the first flag CNOT, (c): ZZ fault after the second flag CNOT (CNOT f ), (d):
ZX fault after the second flag CNOT, and (e): an XZ fault after the second flag CNOT.
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The fourth example is a ZX fault after the second flag CNOT (see Fig. 4.3(d)). It propagates to a

weight-1 X error on the data qubits, and does not lead to a nontrivial flag or ancilla measurement outcome.

This error can be detected by a subsequent flagged measurement as a data qubit error. It is shown that

this can be corrected in Sec. 4.3, where the complete flag protocol for the J5, 1, 3K code is presented.

The fifth example is an XZ fault after the second flag CNOT. It does not propagate to the data qubits,

and leads to both the flag and ancilla measurement giving a nontrivial outcome (see Fig. 4.3(e)). The

effect is the same as a measurement error on the flag qubit, as is shown in Sec. 4.3. Thus, this fault also

does not lead to an uncorrectable error. The effect of an XZ fault after the first flag CNOT is also the

same. Measuring all unflagged stabilizer generators because of the nontrivial flag outcome gives the trivial

syndrome, and using the LUT in Table 4.2, no correction needs to be applied.

The explanation for fault tolerance against the remaining two-qubit Pauli errors after CNOT gates e and
f in the circuit of Fig. 4.2 is summarized here, since the behaviour of the circuit has already been explained

graphically in Fig. 4.3. XX, IZ, XZ, IY , XY , XI faults after CNOT e do not propagate to multiple data

qubits. A Y X after CNOT e propagates to data qubits in the same manner as a ZX, which has already

been explained in Fig. 4.3. Y Z, ZZ, Y Y , ZY , Y I, ZI faults after CNOT e propagate to weight-1 errors
up to stabilizer multiplication. With respect to CNOT f , the IZ, IX, IY , XX, XY and XI faults after this
gate do not propagate to data qubits. ZI, ZY , Y I, Y X, Y Y , and Y Z faults propagate to weight-1 errors
on the data qubits. Therefore, combining all cases discussed in this section, there are at most weight-1
errors on data qubits resulting from at most 1 two-qubit gate fault after both the flag CNOT gates, which

signifies these do not add bad locations. Such analysis also extends to the remaining flagged stabilizer

generator measurement circuits for the J5, 1, 3K code, as well as for the Steane code.

4.2. Terminology: Flag Fault Tolerance
The flag gadget for a single stabilizer measurement is used to construct fault tolerance protocols for a QEC

cycle. Prior to the description of these protocols, in this section, we develop a terminology to describe

various elements of flag protocols. These are also illustrated in the figure for the flag fault tolerance protocol

for the J5, 1, 3K code (see Fig. 4.4).

• A stabilizer measurement with a flag gadget will be called a flagged stabilizer, and one without the

flag would be called an unflagged stabilizer.

• When a propagated error causes a flag measurement to give a nontrivial measurement outcome, the

flag will be said to have been triggered.

• In a flagged stabilizer measurement, if a flag has not been triggered, but the ancilla measurement

gives the −1 eigenvalue, it will be referred to as a nontrivial syndrome without flag.

• Flag fault tolerance protocols (to follow) may require repeating stabilizer generator measurements, in

order to arrive at the final syndrome suitable for decoding [25],[35]. Every time a new sequence of

stabilizer generator measurements is initiated, it will be called a new subround.

• The protocols in [25] start with flagged stabilizer measurements, which vary between one and all

generators being measured. This will be called the first subround. If a flag gets triggered or a

nontrivial syndrome without flag is observed, protocols in [25] require all stabilizer generators to be

measured once, with unflagged circuits. This will be called the second subround. The motivation

for this terminology is that more advanced flag protocols may require further repetitions of stabilizer

measurements [35]. Each of these may be numbered as consecutive subrounds.

• When the syndrome has been completely extracted using the required number of subrounds, including

flagged measurements, all measurements leading up to this stage will constitute a round.

• Once the syndrome has been decoded and the correction applied/tracked, all operations up to this

stage, starting from the first flagged measurement, will complete a cycle. When a new cycle begins,

it will start with the first subround (i.e. flagged measurements).

• The possible sequences of operations in a single cycle of a flag protocol will be denoted as a

decision tree. This is because the protocols require different subsequent circuits, depending on

flagged stabilizer measurement outcomes, at many stages.

• The possible circuits to be applied based on a decision on the measurement outcomes will form

branches of the tree. The unflagged stabilizers to be measured following a nontrivial flag outcome
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or a nontrivial syndrome without flag will also be referred to by variables representing measurement

outcomes leading to those circuits. The variables f and s represent a flag and ancilla measurement

outcome, respectively. The branches will be denoted as the f = 1 branch, when a flag getting

triggered is the cause to initiate unflagged measurements, and the (s, f) = (1,0) branch, when a

nontrivial syndrome without flag is the cause to initiate unflagged measurements.

4.3. Chao and Reichardt’s Flag Fault Tolerance Protocols for Syn-

drome Extraction
Flag fault tolerance protocols for several distance-3 codes were developed by Chao and Reichardt in

[25]. These have the advantage that they can achieve fault tolerance with only 2 extra qubits, which is, in

general, significantly lower than traditional schemes, for the codes considered. In this thesis, a subset

of the schemes developed in [25] are studied, in which the stabilizers are measured one at a time, for

the J5, 1, 3K code and the Steane code. From among the traditional fault tolerance schemes (see Sec.

3.11), these flag protocols are most similar to the Shor fault tolerance scheme. This is because, in both

schemes, stabilizers are measured one at a time, and measurements need to be repeated. However, there

are important differences as well: in flag techniques, faults at bad locations are allowed to propagate to

possible high-weight errors on data qubits, and are later corrected, while they are not allowed to propagate

to more than one data qubit in Shor fault tolerance, due to transversal interactions between data qubits

and the ancillary cat state.

In the protocols of [25], flagged stabilizers are measured to correct errors. If a flag is triggered or a

nontrivial syndrome without flag is obtained, the flagged measurements are discontinued, and all stabilizer

generators are measured with unflagged circuits. This feature, i.e. the need to actively decide what is to

be measured, and which circuit is to be used to measure it, depending on a measurement outcome, is not

present in the traditional fault tolerance schemes (see Sec. 3.11). Such a measurement, conditioned on a

past measurement outcome, or the resulting protocol, is referred to as adaptive [27].

This work builds on the protocols for the J5, 1, 3K code and the Steane code developed in [25]. These

are presented in the following sections, and, as an example, the protocol for the J5, 1, 3K code is analyzed

for fault-tolerance with examples.

4.3.1. Flag Fault Tolerance Protocol for the J5, 1, 3K Code
The flag fault tolerance protocol for the J5, 1, 3K code [25] is shown in Fig. 4.4, which represents the decision
tree for a single cycle of the protocol.

The protocol may be described as follows. A cycle of the protocol starts with the measurement of the

first stabilizer generator, XZZXI, with a flagged circuit. If the flag gets triggered or a nontrivial syndrome

without flag is observed, the flagged measurements are discontinued, and all stabilizer generators (including

the first) are measured, this time with unflagged circuits. The resulting second subround syndrome can be

decoded to correct the error, as explained previously. If both the flag and syndrome measurement result in

trivial outcomes, the second flagged stabilizer generator, IXZZX, is measured. If there is a nontrivial

outcome, all stabilizers are measured with unflagged circuits, and a syndrome is obtained, otherwise,

the next flagged stabilizer generator is measured. The process of measuring flagged generators, and

subsequently measuring all unflagged stabilizer generators on a nontrivial measurement outcome, or

measuring the next flagged generator otherwise, continues and ends in either of two ways:

1. All flagged generator measurements were carried out and gave trivial outcomes. In this case, nothing

is measured further, and no correction is applied. This completes the cycle.

2. A syndrome was obtained via unflagged generator measurements. This syndrome is then decoded,

and the correction completes the cycle.

The syndrome, resulting from unflagged measurements, is decoded as follows.

• If a nontrivial flag outcome (regardless of ancilla measurement outcome) was the result of initiating

the unflagged stabilizer measurements, the syndrome is decoded according the the look-up table

corresponding to faults which trigger the flag and propagate to data qubits for the respective flagged

stabilizer measurement. This will be referred to as the flag LUT. Thus, Table 4.2 is a flag LUT for
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Figure 4.4: Diagram for the flag fault tolerance protocol for syndrome extraction for the J5, 1, 3K code,
developed in [25]. The QEC cycle starts with the block labeled ‘Start’ and ends with decoding via either of

the LUTs, or in the ‘End’ block, where no correction is applied. The diagram can be traversed left to right

or bottom, and the lines denote which stabilizers to measure in the sequence. Annotations specify

whether the measurement is flagged or not, and the measurement outcomes leading to specific branches

of the protocol. Corrections for errors which trigger the flags may have weight greater than 1, inferred from

flag LUTs. LUTs other than the flag LUTs apply the usual, weight-1 corrections. Some terminology from

Sec. 4.2 is also shown.

flagged XZZXI measurement. In general, the flag LUT may contain high-weight (i.e. weight-2)
corrections.

• If, on the other hand, a nontrivial syndrome was the cause of initiating the unflagged measurements,

and the flag was trival, the syndrome is decoded like a weight-1 input error for the J5, 1, 3K code
(Table 3.1). This will be referred to as the usual LUT, or simply the LUT.

The circuits for measuring the flagged stabilizer generators XZZXI, IXZZX, XIXZZ, and ZXIXZ
are shown in Fig. 4.2 and Fig. 4.5. The resulting propagated errors on the data qubits, resulting from

bad two-qubit gate faults in these circuits, which cause the flags to get triggered during each of these

measurements, are listed in Table 4.1, Table C.2, Table C.3 and Table C.4.

The protocol requires only two extra qubits, which are the ancilla and the flag, because these qubits

are reset after every measurement. That is, the ancilla qubit and the flag are reset after every flagged

measurement, and the ancilla is reset after every unflagged measurement. This allows achieving fault-

tolerance with only two extra qubits via qubit reuse. Therefore, measurement and reset should be sufficiently

fast, so that more errors do not accumulate further during this time, and also because of the coherence

time limit.

Decoding the syndrome for the protocol in Fig. 4.4 requires a composite LUT, because a QEC cycle

can end in multiple ways in either a flag LUT or the weight-1 correction LUT. This LUT requires a composite
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Figure 4.5: Circuits for flagged stabilizer generator measurement for the J5, 1, 3K code. (a): IXZZX, (b):

XIXZZ and (c): ZXIXZ.

syndrome consisting of possible measurement outcomes from flagged measurements and the possible

measurement outcomes from subsequent unflagged measurements. Given this as input, the output of the

composite LUT is a correction corresponding to the most likely error given the syndrome. Additionally, a

particular choice of a minimum weight equivalent correction, up to multiplication by a stabilizer, may be

used as the correction. The composite LUT for the protocol in Fig. 4.4, using circuits shown in Fig. 4.2

and Fig. 4.5, is presented in the Appendix (Table E.2).

4.3.2. Flag Fault Tolerance Protocol for the Steane Code
Fig. 4.6 shows the decision tree for a single cycle of the flag fault tolerance protocol for the Steane code,

as developed in [25]. The essential idea is the same as for the protocol for the J5, 1, 3K code. For a single

cycle of the protocol, the first subround of the protocol starts by measuring all stabilizer generators by

flagged circuits. If a flag or ancilla measurement gives a nontrivial outcome, the flagged measurements

are discontinued, and the second subround of measurements is carried out. This consists of measuring

all stabilizer generators with unflagged circuits, including those already measured. This completes a

round. The resulting syndrome is then decoded to determine the correction. Applying or keeping track

of the correction completes a cycle. If a flagged measurement yields trivial measurement outcomes

for both the flag and the ancilla, the next flagged stabilizer is measured, with analogous subsequent

stabilizer measurements as described. If none of the flagged measurements gives a nontrivial flag or

ancilla measurement outcome, the first subround gets completed, there is no second subround consisting

of unflagged measurements, there is no correction applied, and the cycle ends.

Note, again, that the protocol requires only two extra qubits. The ancilla qubit and the flag are reset

after every flagged measurement, and the ancilla is reset after every unflagged measurement. This allows

achieving fault-tolerance with only two extra qubits via qubit reuse [25]. Therefore, the fast measurement

and reset requirement also applies here.

The details which follow are specific to the protocol for the Steane code. The circuits for the 6 flagged
stabilizer generator measurements are shown in Fig. 4.7. The resulting propagated errors on data qubits

due to faults which trigger the flag in a flagged stabilizer measurement, along with the resulting unique and
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Figure 4.6: Diagram for the flag fault tolerance protocol for syndrome extraction for the Steane code,

developed in [25]. The diagram may be interpreted analogously as Fig. 4.6. The X and Z errors are

decoded separately.
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nontrivial second subround syndromes, are presented in Table 4.3, Table C.6, Table C.7, Table C.8, Table

C.9, and Table C.10.

Ancilla

Data qubits

(d)

Flag

(e)

Ancilla

Data qubits

(a)

Flag

(f)

(b) (c)

Figure 4.7: Circuits for flagged stabilizer generator measurement for the Steane code. (a): IIIXXXX,

(b): IXXIIXX, (c): XIXIXIX, (d): IIIZZZZ, (e): IZZIIZZ, and (f): ZIZIZIZ. The letters below

the gates are annotations to refer to specific gates.

Causal fault Propagated error

on data qubits

Syndrome from

unflagged X-type

stabilizer

measurements

Syndrome from

unflagged Z-type
stabilizer

measurements

IZ fault after XNOT b or
XZ fault after XNOT c

IIIIIXX 000 001

XZ fault after XNOT b IIIIXXX 000 100

Y Z fault after XNOT b IIIIY XX 101 100

ZZ fault after XNOT b IIIIZXX 101 001

IZ fault after XNOT c IIIIIIX 000 111

Y Z fault after XNOT c IIIIIY X 110 001

ZZ fault after XNOT c IIIIIZX 110 111

Table 4.3: Errors on data qubits from bad gates during flagged IIIXXXX measurement, stabilizer

generator of the Steane code, using the circuit and gate annotations shown in Fig. 4.7(a). Syndromes

from X- and Z- type stabilizer generator measurements are shown separately.

As mentioned before, if a flagged measurement gives a nontrivial flag or syndrome outcome, the

generators are measured with unflagged circuits, in the order IIIXXXX, IXXIIXX, XIXIXIX,

IIIZZZZ, IZZIIZZ and ZIZIZIZ. This gives the syndrome for the second subround. Decoding this

syndrome is more nuanced in the case of the Steane code, and it is useful to look at it in more detail.

The decoding is performed separately for X-type stabilizers (which leads to Z corrections) and Z-type
stabilizers (which leads to X corrections). This is true for the f = 1 branches, as well as the (s, f) = (1, 0)
branches.
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Syndrome

from

unflagged

X-type

stabilizer mea-

surements

Z correction Syndrome

from

unflagged

Z-type
stabilizer mea-

surements

X correction Minimum-

weight

equivalent X
correction

Correspond-

ing

propagated

error

000 None 001 IIIIIXX IIIIIXX IIIIIXX

000 None 100 IIIIXXX IIIXIII IIIIXXX

101 IIIIZII 100 IIIIXXX IIIXIII IIIIY XX

101 IIIIZII 001 IIIIIXX IIIIIXX IIIIZXX

000 None 111 IIIIIIX IIIIIIX IIIIIIX

110 IIIIIZI 001 IIIIIXX IIIIIXX IIIIIY X

110 IIIIIZI 111 IIIIIIX IIIIIIX IIIIIY X

Table 4.4: The flag LUT for IIIXXXX, i.e., look-up table to decode the syndromes arising from

unflagged measurements, when a flagged IIIXXXX measurement results in the flag being triggered.

The syndromes are the same as in Table 4.3, and are decoded separately for X and Z corrections. The Z
corrections are at most weight-1, and are determined using the usual input error LUT (see Table 3.2). The

possibly higher-weight X corrections are determined by inverting the syndrome-to-error map in Table 4.3.

The minimum weight correction is an equivalent up to multiplication with a stabilizer. The last column

represents the propagated error appearing in Table 4.3, which gives this syndrome, repeated here for

reference. The corrections correspond to most likely errors, given the syndrome. As mentioned in the text,

due to separate decoding of X and Z syndromes, this table can be simplified, as presented in Table E.5

and Table E.6.

There is a further observation about this protocol, which influences the LUTs required for decoding.

For the faults which trigger the flag during flagged measurements for X-type stabilizer generators (see Fig.

4.7), the propagated errors on the data qubits require at most weight-1 Z corrections determined using

the usual LUT (see Table 3.2), as well as corrections for possibly higher-weight X errors, determined

using a flag LUT. For a flagged Z-type stabilizer generator measurement, the propagated errors require

at most weight-1 X corrections, and corrections for possibly higher-weight Z errors. This trend can be

observed by enumerating these errors which result from bad locations during flagged stabilizer generator

measurements. These are presented in Table 4.3, Table C.6, Table C.7, Table C.8, Table C.9, and Table

C.10.

The implication of this may be seen by an example: the faults occurring during a flagged stabilizer

measurement of IIIXXXX, using the circuit shown in Fig. 4.7, consist either of errors consisting of

Pauli X with weight ≥ 1, or a weight-1 Z error composed with errors consisting of Pauli X with weight ≥ 1
(see Table 4.3).The possible weight-1 Z error is corrected by decoding the syndrome from the 3 X-type

unflagged stabilizer measurements using the usual LUT. The possibly higher-weight X component is

corrected by decoding the syndrome from the 3 Z-type unflagged stabilizer generators and using a flag

LUT. The resulting flag LUT for IIIXXXX is presented in Table 4.4.

Decoding the syndromes for all possible branches requires a composite LUT, consisting of flag LUTs and

weight-1 correction LUTs. Besides, the syndromes for X-type and Z-type unflagged stabilizer generator

measurements are decoded separately, since the Steane code is a CSS code. This also means that, the

flag LUT in Table 4.4, shown only for illustration, is implemented as separate X and Z correction LUTs.

The composite Z correction and X correction LUTs for the protocol in Fig. 4.6, using circuits shown in Fig.

4.7, are presented in the Appendix (Table E.5 and Table E.6). These LUTs requires a composite syndrome

consisting of possible measurement outcomes from flagged measurements and the possible measurement

outcomes from subsequent unflagged measurements. Given this as input, the output of the composite

LUTs is a Z or X correction corresponding to the most likely error given the syndrome. Additionally, a

particular choice of a minimum weight equivalent correction, up to multiplication by a stabilizer, may be

used as the correction. Both Table E.5 and Table E.6 need to be used to determine X and Z corrections

separately, to correct all weight-1 input errors, or possibly high-weight errors resulting from a single fault.
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4.4. Analysis of Fault Tolerance
In this section, fault tolerance of the flag fault tolerance protocols is verified by analyzing particular errors,

assuming at most 1 error or fault, for the protocol for the J5, 1, 3K code as an example (see Fig. 4.4). The

arguments will also analogously apply to the protocol for the Steane code.

In Sec. 4.1, it was discussed that propagated errors which trigger the flag can be decoded unambigu-

ously, and that flag CNOTs do not add new bad locations. In addition to these, it is also useful to consider

other possible errors.

The J5, 1, 3K code is a distance-3 code, hence, t = 1. Therefore, it is sufficient to analyze the protocol in

Fig. 4.4 for fault tolerance in the case of at most 1 input error or at most 1 internal fault, based on the fault

tolerance conditions (see Sec. 3.10.1). If the combined number of errors and faults exceeds 1 and the

protocol is unable to correct them, this does not violate the fault tolerance conditions for a distance-3 code.

This is also the reason why, if a flag gets triggered or a nontrivial syndrome without flag is obtained, it is

sufficient to measure the stabilizer generators with unflagged circuits (i.e. in the second subround). This is

because, such an outcome already indicates that an error or a fault has occurred (including preparation

and measurement errors), and the flag qubit is no longer strictly necessary to determine if another fault

(detectable by the flag) has occurred.

The behaviour of the protocol under some examples of errors, representative of different scenarios

which may occur during protocol operation, is considered.

First, consider an input Z error on the 5th qubit of Fig. 4.8. The first subround begins by measuring

XZZXI with a flagged circuit. The error commutes with this stabilizer generator, so the measurement

outcomes are trivial. The protocol proceeds by measuring the second stabilizer generator, IXZZX, with

a flagged circuit. The error anticommutes with this stabilizer, so a nontrivial syndrome outcome (without

flag) is obtained, denoted by the black star in Fig. 4.8. Following the course of the protocol, this completes

the first subround, because flagged measurements are discontinued. This leads to the second subround,

in which all stabilizer generators are measured with unflagged circuits. This gives the syndrome 0100,
which completes this round, and this can be correctly decoded by the usual (weight-1) LUT (see Table

3.1). Applying/tracking the correction completes the cycle. Such an analysis can also be carried out for

other weight-1 input errors, which shows that the protocol can correct any input error on 1 qubit.

Figure 4.8: Behaviour of the protocol in Fig. 4.4 under an input Z error on the 5th qubit, as described in

the text. The black star denotes a nontrivial measurement outcome from the ancilla. The decoding and

correction after the last measurement are not shown.

As the second example, consider a situation which, in the absence of repeated stabilizer measurements,

could have led to a syndrome collision: an X error happening on the third qubit after the first flagged

stabilizer generator measurement, but before the second flagged measurement. This is shown in Fig. 4.9.

This error may have been caused by a two-qubit gate failure, or, by idling. This error anticommutes with

the first stabilizer generator, XZZXI, and would have given a nontrivial syndrome from this measurement,

had it occurred before it. However, it happens after it can be detected by the first measurement, so the

syndrome corresponding to the first flagged measurement will be 0. Subsequently, this error gives a

nontrivial syndrome from the second flagged measurement, IXZZX. Following the course of the protocol,

the second subround (unflagged stabilizer measurements) gives a syndrome 1100, which can be correctly

decoded by Table 3.1. The nontrivial syndromes are denoted by the black stars in Fig. 4.9. This highlights

the use of measuring all stabilizer generators, including those already measured with flagged circuits. To

unambiguously diagnose errors which can occur in between stabilizers, especially those which would have

given a nontrivial syndrome for a stabilizer measured previously, this protocol [25] repeats all stabilizer

measurements, including those already measured, with unflagged circuits.
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Figure 4.9: Behaviour of the protocol in Fig. 4.4 under an X error on the 3rd qubit, after the first but

before the second flagged stabilizer generator measurement, as described in the text. The decoding and

correction after the last measurement are not shown.

The third example is a measurement error on the ancilla qubit, shown in Fig. 4.10 by the dashed

blue box. Consider the second flagged stabilizer generator measurement, IXZZX, incorrectly giving a

nontrivial syndrome, denoted by the black star in Fig. 4.10. Upon observing this outcome, the flagged

measurements are discontinued, and the second subround, consisting of unflagged stabilizer generator

measurements, is carried out. Under the same assumption of at most 1 error or fault, the second subround

will give the trivial syndrome, 0000. This is decoded via Table 3.1, and no correction needs to be applied.

Figure 4.10: Behaviour of the protocol in Fig. 4.4 under a measurement error on the ancilla qubit during

the second flagged stabilizer measurement, denoted by the dashed blue box, as described in the text.

A preparation error on the ancilla gives the same analysis, so there is no need to analyze it separately.

Further, only the case of a measurement error giving the −1 outcome instead of the +1 outcome needs to

be considered. This is because, if a measurement error gives a +1 outcome when the actual value is −1,
it is an O(p2) error, because the nontrivial outcome before the error would already have resulted from an

error. Since the protocol for the J5, 1, 3K code does not strictly need to correct an O(p2) error, this case
does not need to be considered.

The fourth example is an idling error, or an error resulting from a two-qubit gate failure, on a data qubit,

which does not anticommute with any (flagged) stabilizer yet to be measured. This is shown in Fig. 4.11.

Consider a Z error on the 5th qubit after the second flagged stabilizer generator measurement (see Fig.

4.11). This does not anticommute with the remaining stabilizer generators, XIXZZ and ZXIXZ. This
error does not propagate to other qubits during these subsequent flagged measurements (see the error

propagation rules in Sec. 3.5). Therefore, the measurement outcomes in the round consisting only of

flagged measurements will all be trivial, and no correction will be applied. The error persists, and is a

weight-1 input error for the next QEC cycle. Therefore, it can be corrected in the same way as an input

error, as discussed earlier.

Figure 4.11: Behaviour of the protocol in Fig. 4.4 under a Z error on the 5th qubit after the second flagged

stabilizer generator measurement, as described in the text. This is a residual O(p) error for this cycle, as
no correction is applied. It is corrected because it is an input error for the next QEC cycle.
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Therefore, a single error on a data qubit either leads to a nontrivial syndrome without flag, or becomes

a weight-1 input error for the next QEC cycle.

Now, the errors which will trigger the flag are considered. In Sec. 4.1, it is explained how faults from

bad two-qubit gates in the original circuits lead to flag getting triggered, and can be corrected by measuring

all stabilizer generators by unflagged circuits. As the fifth example, the course of the protocol when an XZ
fault happens after CNOT b during the first flagged stabilizer measurement is shown in Fig. 4.12. The red

star in the figure denotes the flag being triggered.

Figure 4.12: Behaviour of the protocol in Fig. 4.4 when an XZ fault happens after CNOT b during the first

flagged stabilizer measurement. This triggers the flag, shown by a red star, and measuring all unflagged

stabilizer generators gives the syndrome. A black star indicates nontrivial syndrome bit. Decoding and

correction after the last measurement are not shown.

Subsequent unflagged stabilizer measurements give the syndrome 1100, and the nontrivial syndromes

are denoted be black stars in Fig. 4.12. The flag LUT for XZZXI (Table 4.2), which maps this syndrome

to the correction for a propagated error due to faults after bad gates is used to decode this error. The flag

LUTs for decoding such errors during the same or a different flagged measurement may be constructed

by inverting the error-to-syndrome map in Tables 4.1, Table C.2, Table C.3 and Table C.4. These are

incorporated in the composite LUT, presented in Table E.2.

The sixth example is a measurement error on the flag qubit during the second flagged stabilizer

measurement, shown in Fig. 4.13 by the dashed blue box and red star. Like the case with a measurement

error on the flag, the first subround (flagged stabilizer measurements) is stopped, and the second subround

(unflagged stabilizer measurements) gives the trivial syndrome. Referring to the list of propagated errors

from bad locations during the flagged second stabilizers measurement in Table C.2, no error corresponds

to the trivial syndrome. Hence, no correction needs to be applied, which is consistent with the fact that

there is no error on the data qubits.

Figure 4.13: Behaviour of the protocol in Fig. 4.4 under a measurement error on the flag qubit during the

second flagged stabilizer measurement, denoted by the dashed blue box, as described in the text.

This shows that if a measurement error happens on the ancilla qubit or on the flag qubit, and it is the

only error to have occurred, the syndrome used for decoding will be the trivial syndrome (i.e., all zeros).

This is an important consideration for the protocols developed in Sec. 5, because a different error indicated

by a flagged measurement should not lead to the same syndrome as a measurement error.

Finally, it was already shown in Sec. 4.1 that a single fault after the flag CNOTs does not lead to an

uncorrectable error. In addition, it can be shown that idling errors on the flag qubit either propagate to give

the same set of errors on data qubits as described in 4.1, or have the same effect as a measurement error

on the flag. Thus, the protocol can tolerate these faults as well.

This analysis, along with the cases analyzed in Sec. 4.1, may be extended to all errors of the type

discussed here, to show that the protocol is fault-tolerant against a single input error or internal fault. It
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may also be analogously extended to show that the protocol for the Steane code is fault-tolerant. A few

remarks on propagated errors and decoding conclude this discussion.

A fault with a Y error on the ancilla qubit propagates to give the same error on the data qubit as the

same fault with a Z on the ancilla. Fig. 4.14 shows an example. The Y error on ancilla causes both the

ancilla and flag measurement outcomes to be nontrivial, and the f = 1 branch of the protocol needs to be

followed to measure the syndromes, which is presented in Fig. 4.6. The decoding is done via the flag LUT.

Therefore, these errors do not need to be analyzed separately.

Figure 4.14: An XY fault after CNOT b during flagged measurement of XZZXI gives the same error on

data qubits after propagation as an XZ fault after the same gate (see Fig. 4.2).

In addition, note that the faults which cause a Z or a Y error on the ancilla are the only errors which can

propagate to the flag and trigger it. Errors on data qubits, possible due to idling, don’t propagate to flag,

because they can at most propagate to an X error on the ancilla qubit (see the error propagation rules in

Sec. 3.5). Therefore, while considering the set of errors to be corrected when a flag gets triggered, one

only needs to consider faults with a Z on the ancilla after the bad two-qubit gates, and errors/measurement

error on the flag qubit.

It is important to note that the set of possible propagated errors on data qubits resulting from a fault

triggering the flag in a flagged stabilizer measurement depends on the order in which gates are applied

between data qubits and the ancilla qubit. For example, these gates in Fig. 4.2 can be applied in a different

order between the qubits, and still extract the same parity, and lead to a different error on data qubits after

propagation. Since the propagated errors change, so does the corresponding flag LUT. Therefore, when

describing flag protocols, it is useful to specify the order of applying the gates in a flagged measurement,

with which fault tolerance is guaranteed.

Finally, decoding via the flag LUT following a nontrivial flag outcome gives the correction corresponding

to the most likely error for that syndrome. It is possible that the same syndrome can result from some higher

order error, however, those do not necessarily need to be corrected in order to maintain fault tolerance (for

a protocol for a distance-3 code).

4.5. Outlook on Flag Protocols
This section briefly describes related flag protocols and research directions in the field. It may be skipped

by readers who prefer to focus on the main content, without loss of continuity.

In [25], besides the flag protocols presented previously, other flag-based syndrome extraction circuits

have also been developed. These include protocols for other distance-3 codes (in particular, quantum

Hamming codes), Jn, n− 2, 2K error-detecting codes, protocols with multiple flag qubits to localize faults in

smaller sections of the stabilizer measurement circuit, and protocols to measure more than one stabilizer

generators with a shared flag qubit. In addition, flag-based circuits for fault-tolerant encoding and logical

measurements have been developed in [25]. In [40], flag-based fault-tolerant logical operations have been

developed. A unified reference is [39].

In [35], the flag fault-tolerant protocols have been expanded to a bigger class of distance-3 codes, and
codes of arbitrary large distances. Non-adaptive flag protocols, which use a larger number of flag qubits

for a flagged measurement, have been developed in [41].
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In [5], flag circuits are extended incorporate qubit connectivity constraints. In [42], extensions of the

flag gadget have been explored. In [36], a fault tolerance quantum error correction scheme based on flag

qubits and tailored to a physically realistic noise model has been developed. In [43], a computer algorithm

has been proposed to carry out X stabilizer (and Z stabilizer) measurements in parallel using a single flag

qubit, for CSS codes with distance 3, to reduce depth overhead. In [44], classical error-correcting codes

have been used to reduce the number of flag qubits in the protocols of [41]. These developments align

with the direction of overhead reduction in flag fault tolerance schemes, pursued in this thesis.



5
Reduced Stabilizer Measurements For

Flag-Based Syndrome Extraction Circuits

For The J5, 1, 3K Code And The Steane

Code

As discussed in the preceding section, flag fault tolerance protocols require lower overhead in terms of

number of qubits and ancillary state preparation circuits, relative to traditional fault tolerance schemes [25].

At the same time, there is significant benefit in resource efficiency to be gained in exploring if quantum

error correction can be carried out fault-tolerantly with as little gate overhead as possible [2].A reduction in

gate overhead, if possible, may allow for more efficient use of hardware resources to correct errors, and

also has the potential to lead to an increase in the pseudothreshold, because of reduction in the number of

fault locations.

This forms the motivation for the main contribution of this thesis, described in this section: constructing

flag qubit-based syndrome extraction circuits with reduced stabilizer measurements for flag protocols

developed in [25], for the J5, 1, 3K code and the Steane code. ‘Reduced stabilizer measurements’ refers to

a fewer number of these measurements in comparison with the original protocols. As explained in the

introduction (Sec. 1), the possibility such a reduction in flag-based syndrome extraction circuits is motivated

by the use of all stabilizer generators to distinguish a limited set of errors via unflagged measurements, and

the limited role of flagged measurement outcomes in differentiating these errors in existing flag protocols

[25].

In particular, one new protocol for the J5, 1, 3K code, and two new protocols for the Steane code, requiring

fewer stabilizer measurements, are developed. These protocols achieve a very significant reduction in

two-qubit gate overhead, in comparison to the original protocols [25]. These constructions are presented

in Sec. 5.3, Sec. 5.4 and Sec. 5.5. The main techniques (Sec. 5.2) used to achieve this reduction are

utilising operators from the complete stabilizer group of the code, especially stabilizers with weight higher

than the generators, carrying out stabilizer measurements conditioned on past measurement outcomes,

and constructing stabilizer sequences to distinguish errors belonging to a restricted (i.e. finite and limited)

set.

These techniques are adapted from and inspired by the significantly shorter syndrome extraction

sequences developed by Delfosse and Reichardt [27] for the Shor fault tolerance scheme (see Sec. 3.11).

The constructions in this thesis extend these techniques to flag protocols, while taking into account their

distinctive features. A review of the schemes in [27] is presented in Sec. 5.1.

The protocols with reduced stabilizer sequences in this thesis are methodically constructed to yield

unique and nontrivial syndromes for the relevant error set signalled by the respective flagged stabilizer

measurement. This ensures that the fundamental condition of errors being detectable and distinguishable

by flag protocols, which is the principal factor for the original protocols to be fault-tolerant, is preserved.

Theoretical arguments are developed to demonstrate fault tolerance of the new protocols when errors may

be present at every location (Sec. 5.3, Sec. 5.4 and Sec. 5.5)

45
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The new protocols are divided into two classes. The ‘Split-and-Diagnose’ protocols uniquely identify a

detected error by constructing shorter sequences specifically designed to distinguish a given set of errors.

Further, the stabilizers to be measured may be selected depending on measurement outcomes from

previously measured stabilizers. The new protocol for the J5, 1, 3K code (Sec. 5.3) and one new protocol

for the Steane code (Sec. 5.4) belong to this type. Therefore, these protocols lead to gate overhead

reduction in unflagged measurements (i.e. the second subround). The third new protocol for the Steane

code belongs to the ‘Detect-and-Diagnose’ class (Sec. 5.5). The main idea behind this scheme is to

identify combinations of 3 high-weight stabilizers, which are fewer in number than the (6) generators of the
Steane code stabilizer group, which can detect, but, by themselves, not necessarily correct for, any input

error on any data qubit. Such high-weight stabilizers are used for flagged stabilizer measurements. Upon

detecting a nontrivial measurement outcome, measuring all standard stabilizer generators with unflagged

circuits is then used to uniquely correct such a single qubit error, or propagated errors from fault resulting

from bad locations in flagged measurements. This protocol demonstrates a gate overhead reduction in

flagged measurements.

In this section, after a review of stabilizer reductions presented in [27] for Shor fault tolerance, it is

discussed that these techniques may not be directly applicable in the context of flag protocols, and the

methodology developed in this thesis for this extentsion is presented in Sec. 5.2. This is followed by

concrete constructions of the split-and-diagnose protocols for the J5, 1, 3K code (Sec. 5.3) and the Steane

code (Sec. 5.4). Subsequent to this, the detect-and-diagnose protocol for the Steane code is presented

(Sec. 5.5).

5.1. Delfosse and Reichardt’s Reduced Shor-Style Stabilizer Se-

quences
In [27], fault-tolerant Shor quantum error correction has been optimized to reduce the number of stabilizer

measurements. Fault tolerance of the schemes developed in [27] has been argued based on their capability

to distinguish input errors from internal faults, and using Shor-style syndrome extraction. The basis for

these reductions is to utilize stabilizers other than the standard generators, investigating how many times

the stabilizers need to be measured, measuring these stabilizers in a particular order, and deciding which

stabilizers to measure next based on observed syndromes.

This approach is shown to give substantial reductions in the number of stabilizers required for fault-

tolerant syndrome extraction. For standard Shor error correction with a distance d code, stabilizer mea-

surement circuits need to be repeated until the same syndrome is observed d+1
2 times, to guarantee fault

tolerance. This requires at most
(
d+1
2

)2
repetitions of stabilizer measurements [45]. As an example, the

Steane code has 6 stabilizer generators, and if each measurement needs to be repeated
(
d+1
2

)2
= 4 times,

then 24 stabilizer measurements need to be carried out in the worst case. Using the schemes in [27], this

number has been reduced to 10 with a non-adaptive scheme using only X-type and Z-type stabilizers, to 8
if Y -type stabilizers are also used, and to 7 in the best case, if high-weight stabilizers (which measure X,

Y and Z Paulis on different qubits in the same operator) are used. These great reductions approximately

lie in the range of 58% to 70.8%, making such investigations useful for NISQ applications.

From the schemes in [27], we only focus on the schemes for distance-3 codes, CSS codes, and

specifically for the Steane code. In this section, some representative schemes are reviewed, to present

the underlying principles as a reference for the new protocols, and arguments for their fault tolerance, as

presented in [27], are briefly discussed.

Fig. 5.1 shows a non-adaptive stabilizer sequence for syndrome extraction using Shor error correction

for a distance-3 CSS code [27]. The code is assumed to have rZ Z-type stabilizer generators, denoted

by g1, . . . , grZ , and rX X-type stabilizer generators. The sequence is shown only for Z-type stabilizer

generators, and an analogous sequence is implied for the X-type stabilizer generators. The sequence

starts by measuring all Z-type generators once, followed by measuring all except the last generator again.

Importantly, this sequence only requires measuring a fixed number (2rZ − 1) Z-type generators, instead of

measuring at most 4rZ Z-type generators (required by Shor error correction). The resulting reduction in the

number of stabilizer measurement circuits (and, by extension, of the number of gates and measurements

required) by about 58% over the worst case of standard Shor error correction.
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Start of
cycle LUT End of

cycle

Figure 5.1: Non-adaptive stabilizer sequence for fault-tolerant syndrome syndrome extraction using Shor

error correction for a distance-3 CSS code [27] The sequence is shown only for Z-type stabilizer

generators g1, . . . , grZ , and the X-type stabilizer generators need to be measured in an analogous

sequence (not shown).

In [27], the schemes are argued to be fault-tolerant if there is no internal fault which gives the same

syndrome as an (inequivalent) input error, to make them distinguishable. An internal fault is assumed to

occur in between two stabilizer measurements. These errors, and measurement errors, are the only errors

which are considered, because error propagation to multiple data qubits is assumed to be suppressed by

virtue of Shor error correction, and errors on data qubits due to idling or gates can be treated as occurring

in between two stabilizer measurements. Measurement errors cause at most a weight-1 correction to be

applied, hence, they are not included in the analysis in [27]. It is not directly evident from [27] whether the

schemes are intended to give different syndromes for inequivalent internal faults as well (refer to Sec. III B

and IV A of [27]). If all input errors can be distinguished from internal faults and from each other, and no

corrections are applied for syndromes which signal an internal fault not equivalent to an input error, the

fault becomes an input error for the subsequent cycle. In that case, it can be corrected and the protocol is

then fault-tolerant. This, however, is not elaborated upon in [27]. In the following explanation, a stabilizer

sequence will be considered fault-tolerant (following the arguments in [27]) if, assuming at most 1 input
error or fault between two stabilizer measurements occurs, input errors have syndromes distinct from

internal faults. The syndrome now consists of all measurement outcomes.

For the particular sequence in Fig. 5.1, if a weight-1 input X error occurs, the syndrome obtained by

measuring g1, . . . , grZ−1 the first time will be the same as that obtained by measuring them the second time.

If a weight-1 internal X fault occurs among the first rZ measurements, then there are two possibilities. If

the error resulting from the fault does not anticommute with any generator measured before it has occurred,

its effect is equivalent to that of an input error on the same qubit, and these do not need to be distinguished.

If it anticommutes with one or more generators measured before it, then the syndrome obtained by the first

rZ − 1 measurements is different from that obtained by the last rZ − 1 measurements. Thus, an internal

X fault among the first rZ measurements can be distinguished from an input error not equivalent to it. If

the fault occurs after the first rZ measurements, the syndrome from first rZ measurements will be trivial,

and can be distinguished from inequivalent input error. It is also worth discussing why grZ needs not be

measured again. If measuring grZ gives a nontrivial syndrome, it will again give a nontrivial syndrome,

if measured again, after the (2rZ − 1)th measurement. If it gives a trivial syndrome, then it means no

error which anticommutes with grZ occurred before it. Thus, the syndromes obtained from this stabilizer

sequence for input errors are different from those for internal faults. Thus, this sequence is considered

fault-tolerant. The same arguments can be extended to the analogous X-type stabilizer sequence for Z
errors.

The next sequence, shown in Fig. 5.2, reduces the sequence of Fig. 5.1 further by introducing adaptive

behaviour: deciding which stabilizers to measure based on observed syndromes. The sequence for

Z-type stabilizers starts by measuring the stabilizers. If a nontrivial syndrome outcome is observed, all

stabilizers are measured again, except for the one which gave the nontrivial syndrome. For example, if

g1, g2, . . . gj−1 all resulted in the syndrome 0, and gj resulted in the nontrivial outcome, then the stabilizers

measured subsequent to this outcome are g1, g2, . . . gj−1, gj+1, gj+2, . . . grZ . An analogous sequence of

X-type stabilizers also needs to be measured.

This sequence is fault-tolerant according to [27], because input errors (of weight up to t) can be

distinguished from each other because of the code, as every generator is measured at least once. Input

errors can be distinguished from internal faults, because, an internal fault which occurs before and

anticommutes with gj , and occurs after any stabilizer measurement with which it anticommutes, gives

different syndromes when g1, . . . gj−1 are measured before gj and then after the nontrivial outcome from
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Figure 5.2: Adaptive stabilizer sequence for fault-tolerant syndrome syndrome extraction using Shor error

correction for a distance-3 CSS code [27]. The values at the edges denote the syndrome bit for which the

following sequence of stabilizers is to be measured. The sequence is shown only for Z-type stabilizer

generators g1, . . . , grZ , and the X-type stabilizer generators need to be measured in an analogous

sequence (not shown).

gj . In contrast, the syndromes for an input error will be the same for these two sets of measurements, and

hence input errors can be distinguished from internal faults.

The sequence of Z-type stabilizers requires a minimum of rZ and a maximum of 2rZ −1measurements,

giving a variable reduction of 58%− 75% in the number of syndrome extractions over the worst case of

standard Shor error correction.

Start of
cycle LUT End of

cycle

Figure 5.3: Stabilizer sequence for fault-tolerant syndrome syndrome extraction using Shor error

correction for the Steane code, utilizing Y -type stabilizers [27].

In [27], it is also shown that, for CSS codes, stabilizers belonging to the complete stabilizer group

and different from the standard stabilizer generators can be used to construct short syndrome extraction

sequences for Shor error correction. Along these lines, the sequence shown in 5.3[27] for the Steane

code measures the 3 standard Z-type generators, followed by the 3 standard X-type generators, and then

measures 2 Y -type stabilizers. The Y -type stabilizers are used so that syndromes from internal faults turn

out to be different from those of input errors.

Since this scheme always requires 8 stabilizers to be measured, it gives a reduction of 66.7% over

the worst case of standard Shor error correction, which, as explained before, requires 24 stabilizer

measurements.

The stabilizer group of the Steane code (eq. B.2) also contains operators of weight 6, which is higher
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Start of
cycle LUT End of

cycle

Figure 5.4: Stabilizer sequence for fault-tolerant syndrome syndrome extraction using Shor error

correction for the Steane code, utilizing a stabilizer of weight higher than the generators, and Y -type
stabilizers [27].

than 4, the weight of the generators. A reduced sequence is constructed in [27] (shown in Fig.5.4) by using

1 high-weight stabilizer, 2 X-type stabilizers, 2 Z-type stabilizers, along with 2 Y -type stabilizers. Using

the high-weight stabilizer has the advantage that it contains 2 non-identity Paulis of each type, and has

support on a larger number of qubits than the generators. Hence, it extracts a different kind of parity than

the generators.The high-weight stabilizer used in Fig. 5.4 can detect a larger number of input errors earlier

in the sequence as compared to a weight-4 generator, and makes it easier to distinguish input errors from

internal faults by making it possible to use a shorter sequence.

The scheme shown in Fig.5.4 is the sequence requiring the fewest stabilizer measurements (7) for the
Steane code, among those proposed in [27]. It gives a reduction of 70.8% in the number of measurements,

over the worst case of standard Shor error correction. Since a high-weight stabilizer is used, which requires

more gates than a generator, the reduction in the number of gates, though quite significant, will not be as

high as the reduction in the number of measurements.

In [27], it is argued that the sequences in Fig. 5.3 and Fig. 5.4 are fault-tolerant, because the syndromes

for input errors are different from those of internal faults, which may be verified by an exhaustive calculation

of all syndromes due to a single input error or internal fault.

As a concluding remark, although theoretical arguments have been provided for fault-tolerance in [27],

fault-tolerant pseudothresholds have not been established for the sequences in [27]. Finally, the idea to

use operators from the full stabilizer group for fault-tolerant syndrome extraction has been explored in

earlier work as well [46].

5.2. Approach and Methodology
The sequences developed in [27] are applicable to Shor error correction, and may not extend to flag

protocols in a straightforward manner. Since Shor error correction uses transversal interactions with a cat

state ancilla, there are no gates acting between different data qubits and a shared ancilla qubit (see Fig.

3.20). Consequently, it is assumed in [27] that faults after two-qubit gates do not propagate to other data

qubits. In contrast, in flag protocols of [25], errors are allowed to propagate to multiple data qubits through

the shared ancilla qubit in the flag protocols. These errors need to be distinguished from each other, as

well as from measurement errors in flag protocols. Therefore, the criteria for fault tolerance in [27] may not

apply to flag protocols.

Based on these considerations, a naïve application of the sequences in [27] to the flag protocol for

the Steane code may be attempted as follows. There are at most 6 flagged measurements in the original

flag protocol for the Steane code (see Fig. 4.6). However, the sequences presented in Sec. 5.1 require

between 7 and 10 stabilizer measurements. If the flagged stabilizers in Fig. 4.6 are replaced by the

stabilizers used in the sequences of Fig. 5.1, Fig. 5.3, or Fig. 5.4, the resulting protocol may, in general,

require more stabilizer measurements than the original flag protocol. These flagged measurements may be

redundant, like the Y -type stabilizers in Fig. 5.3, because they are measured in addition to the 6 standard
generators. Furthermore, if using the sequence containing the high-weight stabilizer in Fig. 5.4, fault

tolerance requires that the errors resulting from faults at bad locations in these stabilizers (especially for the

weight-6 stabilizer) are detectable and distinguishable by subsequent unflagged stabilizer measurements.

Consequently, using the sequences from [45] directly for the flagged measurements is not expected to

lead to a shorter fault-tolerant protocol.
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Using the sequences of [27] for the second subround (unflagged measurements) is also redundant.

This is because, the function of the unflagged measurements is to obtain a syndrome to determine which

error has occurred, assuming a single input error or fault has already occurred in the preceding flagged

circuit. However, in addition to giving distinct syndromes for input errors, the stabilizer sequences of Sec.

5.1 are capable of distinguishing input errors from internal faults, which is, strictly speaking, is a feature not

required for the second subround. Moreover, if the unflagged measurements are replaced by sequences in

Fig. 5.1, Fig. 5.2, Fig. 5.3, or Fig. 5.4, it is expected to lead to protocols with a larger number of stabilizer

measurements than the original flag protocol. Therefore, these sequences are not directly applicable for

reducing the second subround.

While Delfosse and Reichardt’s sequences may not directly lead to reduced stabilizers in flag protocol,

the underlying principles can be extended to flag protocols. The approach and methods developed to

achieve this are an important contribution of this thesis, and are presented in the list below.

1. The Complete Stabilizer Group: The first technique inspired by [27] is to employ the complete

stabilizer group of the code for flag-based syndrome extraction circuits. These elements enable

the extraction of a different kind of parity information from the state, as compared to the stabilizer

generators. If the syndrome bit obtained by measuring a generator g1 is s1, and by measuring g2 is
s2, the syndrome bit obtained by measuring the stabilizer formed by their product, i.e. g1g2, is s1 + s2,
where the addition is modulo 2. This may be seen from the binary symplectic vector representation

[1]. Therefore, measuring products of generators gives the ability to extract linear combinations of

parities. This extends the space of information which can be extracted via a single measurement. The

existing flag protocols developed in [25] use only the standard stabilizer generators for both flagged

and unflagged measurements. In addition, the complete stabilizer group offers possibilities for more

diverse stabilizer sequences. The new constructions presented in this section demonstrate that it is

possible to use operators from the full stabilizer group for both flagged and unflagged measurements

to construct flag-based syndrome extraction circuits with reduced stabilizer measurements for the

flag protocols for the J5, 1, 3K code and the Steane code. The complete stabilizer groups of these

codes are presented in Eq. B.1 and Eq. B.2.

2. Restricted Error Sets: The second technique is based on analyzing the set of errors to be distin-

guished in the flag protocol, when a flag gets triggered or there is a nontrivial syndrome without the

flag. These are restricted sets of errors; for example, there are 7 errors to be distinguished via a syn-

drome when the flag gets triggered for the flagged XZZXI measurement for the J5, 1, 3K code (see

Table 4.1). The constructions in this thesis demonstrate that it is not necessary to measure the entire

sequence of standard stabilizer generators with unflagged circuits to distinguish errors belonging to

such restricted sets. For fault tolerance, it is only required to measure a sequence of stabilizers which

gives distinct syndromes for inequivalent errors in the set, with the added requirement that these

syndromes are nontrivial (i.e., non-zero bit strings). Such sequences may have fewer stabilizers than

the generators. In particular, we pose a problem about the efficiency of the extracted syndrome bits:

given a restricted set ofM inequivalent errors which are not logical errors, is it possible to distinguish

them with unique and nontrivial syndromes, having the minimum length dictated by the number of bits

required to representM + 1 quantities classically? This lower bound of dlog2(M + 1)e bits is placed
by the Shannon information contained in these quantities, and syndrome shorter than this may not

be able to distinguish these errors with nontrivial syndromes [1]. This is because, a syndrome with

fewer bits would necessarily map inequivalent errors to the same syndrome, according to the pigeon

hole principle. The +1 signifies that the trivial syndrome is always reserved for measurement errors,

and is not assigned to any nontrivial error. For the sets of errors pertaining to the flag protocols for

the J5, 1, 3K code and the Steane code, presented in the previous section, the constructions in this

thesis show that stabilizer sequences have the potential to achieve this limit, using the first and third

techniques. As a particular example, the 7 errors appearing in Table 4.1 can be distinguished using

a sequence of 3 stabilizers, instead of the 4 generators.

3. Dynamically Selected Stabilizers: The third technique, inspired by [27], is to shorten the decision

tree of a flag protocol, by selecting stabilizers to be measured based on previously observed outcomes.

This is the principle behind the adaptive sequence of Fig. 5.2, in which, once it is known that there is

an error, the existing sequence is discontinued, and all stabilizers (excluding the one which gave

a nontrivial outcome) are measured. Such an adaptive decision-making is already present in the

existing flag protocols [25], for example, when a flag gets triggered. However, in these protocols, the
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adaptive measurement only takes place when stabilizer measurements need to be repeated with

unflagged circuits. The constructions presented in this thesis take conventional adaptiveness beyond

this assumption, in the sense that the choice of subsequent unflagged stabilizers is conditioned

on past measurement outcomes. Such a dynamic stabilizer sequence more intelligently utilizes

the information already extracted from the state, to measure as little as possible, while maintaining

distinguishability of errors. This is the main idea behind the split-and-diagnose protocols.

4. High-Weight Stabilizers: Although a subset of using the complete stabilizer group, the fourth

technique is inspired from the high-weight stabilizer sequence for the Steane code in Fig. 5.4. The

constructions in this thesis shows that it is possible to employ high-weight stabilizers for flagged

measurements, to construct a shorter protocol. This technique forms the basis of the detect-and-

diagnose protocol for the Steane code (see Sec. 5.5).

The new constructions are now described in detail.

5.3. Split-and-Diagnose Protocol for the J5, 1, 3K Code with Reduced

Unflagged Measurements
The first new flag protocol developed in this thesis is the split-and-diagnose flag protocol for the J5, 1, 3K
code, which requires 3 stabilizers to be measured instead of 4, when a nontrivial flag measurement outcome

has been observed, while still rendering the errors which trigger the flag detectable and distinguishable.

The unflagged measurements in the case of a nontrivial syndrome without flag, as well as the flagged

measurements, are the same as in the original protocol (Fig. 4.4). This protocol is shown in Fig. 5.5. This

protocol will also be referred to as the flag protocol with f = 1 reduction for the J5, 1, 3K code.

5.3.1. Protocol Description
The protocol works as follows.

The cycle starts by measuring the flagged stabilizer XZZXI. If the flag has been triggered, the f = 1
branch is followed, in which XZZXI is measured again with an unflagged circuit, followed by unflagged

measurement of the stabilizer Y XXY I, which is not a standard stabilizer generator (see Eq. B.1). The

next stabilizer to be measured is decided as follows: if the Y XXY I measurement returned the syndrome

bit 0, the stabilizer ZIZY Y is measured, which is also different from the standard generators, otherwise,

the stabilizer XIXZZ is measured. Further, the next stabilizer to be measured is decided dynamically (i.e.

going beyond conventional adaptivenes), based on an already observed outcome, which underlies the

nomenclature: ‘split-and-diagnose’. The resulting 3-bit syndrome can be used to distinguish the errors

resulting in the triggered flag, including measurement errors, presented in Sec. 5.3.2.

If, instead, a nontrivial syndrome without the flag has been observed, the 4 unflagged generators are

measured, as the original protocol (see Fig. 4.4).

The stabilizer sequences for the f = 1 branches for the remaining flagged stabilizers follow an analogous

pattern: measuring the same generator, followed by a different stabilizer, and a stabilizer which depends

on the previous measured value, all with unflagged circuits. Stabilizer sequences to be measured when

a nontrivial syndrome is observed without a flag are unchanged from Fig. 4.4. Note that, like the flag

protocols presented previously, the ancilla qubit and the flag are reset after every flagged measurement,

and the ancilla is reset after every unflagged measurement. The cycle ends in either a decoding step,

either by a flag LUT or the input errors LUT, and applying a correction, or by applying no correction if all

flagged measurements gave trivial outcomes. The decoding of syndromes is performed unambiguously by

a composite LUT, presented in Table E.7.

5.3.2. Construction of the Stabilizer Sequences
The basis for this reduction and choice of stabilizers in the sequence is explained in this section.

The propagated errors from bad locations in flagged stabilizer measurement circuits are the same as

for the original protocol in Fig. 4.4, because they employ the same circuits as in Fig. 4.2 and Fig. 4.5.

For example, the propagated errors from bad gates which cause the flag to get triggered for the flagged

XZZXI measurement, and occur with probability O(p), presented in Table 4.1, are presented in Eq. 5.1.



5.3. Split-and-Diagnose Protocol for the J5, 1, 3K Code with Reduced Unflagged Measurements 52

Start of
cycle (flagged)

(all unflagged)
LUT End of

cycle

(flagged)

(flagged)

(flagged)

End of
cycle

(all unflagged)
LUT End of

cycle

(all unflagged)
LUT End of

cycle

(all unflagged)
LUT End of

cycle

(all unflagged)

Flag
LUT

End of
cycle

(all unflagged)
Flag
LUT

End of
cycle

(all unflagged)
Flag
LUT

End of
cycle

(all unflagged)
Flag
LUT

End of
cycle

Figure 5.5: The split-and-diagnose flag protocol for the J5, 1, 3K code. This protocol requires 3 unflagged
stabilizer measurements, instead of the 4 required by the original protocol of Fig. 4.4, when a flag gets

triggered.
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IIZXI, IXZXI, IY ZXI, IZZXI, IIIXI, IIXXI, IIY XI. (5.1)

These form a restricted or a finite set of 7 errors. The original flag protocol (Fig. 4.4) requires measuring

the 4 stabilizer generators to distinguish these errors. However, a 4-bit syndrome has the capability to

represent up to 24 = 16 different errors (including the no error case). This indicates a possibility for reduction
in syndrome bits, because some 4-bit syndrome strings may be unutilized, and motivates constructing

a stabilizer sequence consisting of dlog2(7 + 1)e = 3 stabilizers. Such a sequence provides 8 possible

syndromes, so that the 7 nontrivial syndromes can be mapped to each one of the errors in Eq. 5.1, and

the trivial syndrome to a flag measurement error. Thus, these constructions are motivated by making

measurements which are sufficient to distinguish a restricted set of errors.

To construct this sequence, some observations about the errors are employed. The support of the

errors in Eq. 5.1 on qubits 2 and 3 is highlighted in red, because these are the only two qubits where the

support of these operators varies. In the following discussion, these qubits will be called the deciding

qubits. The operators acting on the other qubits are observed to be the same for all these strings (Eq. 5.1).

Therefore, the key factor in selecting stabilizers to distinguish these errors is the Pauli operators acting on

the deciding qubits, because this is the only information that can be used to distinguish these errors.

For the sake of argument, as an example, if 2 operators, both of which measure XI on the deciding

qubits, are measured, both of them would given the same information about the errors (up to the actual

syndrome bit). It would be redundant to measure one if the other has been measured. As another example,

an operator which measures II on the deciding qubits, would give the same syndrome for all errors in Eq.

5.1, and it would be of no use to measure it.

Therefore, to achieve a sequence with the number of stabilizers as close as possible to a number

logarithmic in the number of errors, it is useful to choose stabilizers which partition the set of errors into

nearly half at each step. The classical algorithm for binary search of sorted items also motivates this

approach [1]. Therefore, the first (unflagged) stabilizer to distinguish the errors in Eq. 5.1 is chosen to be

the same stabilizer (XZZXI) as the flagged measurement, because it has support on both the deciding

qubits (3 and 4). Further, the resulting syndromes split the set in Eq. 5.1 into two nearly equal halves: a

set of 3 errors (corresponding to syndrome bit 0), shown in rows 1, 4, 5, column 2 in Table 5.1, and 4 errors

(corresponding to syndrome bit 1), shown in rows 2, 3, 6, 7, column 2 in Table 5.1.

Propagated error on data

qubits

Syndrome from

XZZXI
measurement

Syndrome from

Y XXY I
measurement

Syndrome from

third stabilizer

measurement

IIZXI 0 0 (ZIZY Y ) : 1

IXZXI 1 0 (ZIZY Y ) : 1

IY ZXI 1 1 (XIXZZ) : 0

IZZXI 0 1 (XIXZZ) : 0

IIIXI 0 1 (XIXZZ) : 1

IIXXI 1 1 (XIXZZ) : 1

IY XXI 1 0 (ZIZY Y ) : 0

Table 5.1: Unique and nontrivial syndromes obtained for errors which trigger the flag during flagged

XZZXI measurement (see Table 4.1), using the reduced stabilizer sequence used in the corresponding

f = 1 branch of the split-and-diagnose protocol for the J5, 1, 3K code in Fig. 5.5. Pauli operators acting on

the deciding qubits have been shown in red.

The second stabilizer is chosen to be Y XXY I, because it extracts a different kind of parity information

(XX, as opposed to ZZ from the previous stabilizer). With reference to Table 5.1, column 3, this measure-

ment partitions the set of errors which resulted in syndrome bit 0 fromXZZXI into two sets, consisting of 1
error (row 1) and 2 errors (rows 4, 5) respectively, and, at the same time, it partitions the set of errors which

resulted in syndrome bit 1 from XZZXI into two sets consisting of 2 errors each (rows 2, 7 and rows 3, 6).
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The third stabilizer in the sequence is chosen to extract yet another type of parity, not measured yet.

This stabilizer has support on only one of the deciding qubits. Further, this stabilizer depends on the

measurement outcome from Y XXY I (in the third column of Table 5.1): if the outcome is 0, ZIZY Y is

measured (see rows 1, 2, 7, column 3), otherwise, XIXZZ is measured (see rows 3, 4, 5, 6, column 3).
This choice also splits the errors having same syndromes from the previous measurement into two nearly

equally sized sets (rows 1, 2, 5, 6, and rows 3, 4, 7, column 4). The dynamic choice of the stabilizer based

on a previous measurement outcome lifts the restriction that the same stabilizer is expected to efficiently

partition all errors with same syndrome suffixes into nearly equal halves, and enables shorter stabilizer

sequences. The resulting syndromes (see Table 5.1) are unique and nontrivial for the errors in Eq. 5.1,

and thus, this stabilizer sequence renders these errors detectable and distinguishable.

Analogous stabilizer sequences are constructed for errors which cause the flag to get triggered for the

remaining flagged measurements, and give unique and nontrivial syndromes: for the f = 1 branches, the
first stabilizer is chosen as the same generator with an unflagged circuit, because it has support on both

deciding qubits. The second stabilizer is chosen to be different from a generator, and has support on both

deciding qubits. The third stabilizer to be measured has support on only one deciding qubit, depending on

the previous outcome. The resulting syndromes are unique and nontrivial, and are presented in Tables D.2,

D.3, D.4. The composite LUT for syndrome decoding for the complete protocol (Table E.7) is constructed

using Tables 5.1, D.2, D.3, D.4.

5.3.3. Analysis of Fault Tolerance
This section presents an analysis of the error-correction capabilities of the protocol in Fig. 5.7.

It is sufficient to analyze the correction of errors which trigger the flag in a flagged measurement. This

is because, the syndrome extraction circuits in this protocol are the same for the errors which yield a

nontrivial syndrome without the flag as the original protocol (see Fig. 4.4). Therefore, the new protocol

inherits error correction capability for these errors from the existing protocol. These may be weight-1 input

errors, weight-1 errors on data qubits occurring in between stabilizer measurements (due to idling or gate

faults), or measurement errors on the ancilla during a flagged measurement. In addition, the CNOT gates

between the ancilla and the flag do not add bad locations, as explained before in Sec. 4.1.

The proposed reduction in f = 1 branches is sufficient to distinguish errors which trigger the flag

because of the following reasons. Crucially, the errors presented in Tables 4.1, C.2, C.3 and C.4 are the

only inequivalent errors which are indicated by a triggered flag in the respective flagged measurement (and

need to be distinguished) for this protocol, although they may arise from different fault locations [25][39].

Although the analysis is based on Knill’s error model as in [25], it is expected to apply upon inclusion of

idling errors as well, since these error sets remain the same (see Sec. 4 and [25]).

For this analysis, recall that the purpose of the second subround (i.e. flagged measurements) in the

protocol in Fig. 4.4 is to yield unique syndromes for inequivalent errors indicated by a triggered flag. This is

the (first) requirement that the errors are distinguishable. This is also true for the reduced sequences used

in the protocol in Fig. 5.5, as seen from Tables 5.1, D.2, D.3, D.4: the sequences have been designed so

that the resulting syndromes are distinct for different errors. This is required for fault tolerance, so that

syndrome collision is avoided, and the the (O(p)) error can be unambiguously identified. The stabilizer

sequences used in the new protocol of Fig. 5.5 for the f = 1 branches preserve this property, while being

shorter than the sequence of 4 stabilizer generators used in the original protocol (Fig. 4.4), and using

stabilizers of the same weight.

The second requirement from the second subround measurements is that these errors, which are

not logical errors (see Sec. 4), are detectable. The stabilizer sequence used to distinguish them should

not give the trivial syndrome for any of these errors. This is because, if, instead, a measurement error is

the cause of the flag getting triggered, the subsequent syndromes would be all zeros, irrespective of the

stabilizers used in the sequence (assuming at most 1 error or fault). If an error indicated by a triggered flag

also gives the trivial syndrome, it may not be distinguishable from a measurement error on the flag, and

the resulting error correction rules will not be fault-tolerant. The requirement of nontrivial syndromes is

also satisfied by the stabilizer sequences used in the f = 1 branches in the new protocol of Fig. 5.5, as

seen from Tables 5.1, D.2, D.3, D.4. Therefore, in the new protocol, measurement errors can be identified

by the trivial syndrome in the second subround.
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Therefore, the rigorously derived LUT (see Table E.7), using Tables 5.1, D.2, D.3, D.4, demonstrates

that the derived stabilizer sequences can correct the errors which trigger the flags, due to the resulting

unique and non-trivial syndromes.

Furthermore, as presented in Sec. 4.4, a single error on a data qubit, possibly due to idling, either

leads to a nontrivial syndrome without flag, or becomes a weight-1 input error for the next error correction

cycle. These errors are also present in the Knill’s error model, due to two-qubit gate depolarizing errors.

Since the flagged measurements, and the unflagged measurements in the split-and-diagnose protocol

(Fig. 5.5) used to correct them are the same as those in the original protocol (Fig. 4.4), the new protocol

can correct these errors as well. This analysis demonstrates the fault tolerance of the split-and-diagnose

protocol in Fig. 5.5, under the errors discussed here.

5.3.4. Overhead Reduction
Given that a flag has been triggered, the protocol in Fig. 5.5 requires 3 stabilizer measurements instead of

4, which is a reduction of 25% for the f = 1 branches. Assuming that gates do not need to be decomposed

further, in line with [25],[35], a sequence of 3 unflagged stabilizers requires 3 × 4 = 12 two-qubit gates,
while 4 unflagged generators require 4× 4 = 16 two-qubit gates, which is also a reduction of 25%. This

assumes circuits of the form shown in Fig. 3.3 for individual stabilizer measurements.

If one views the second subround (unflagged measurements) collectively, then the number of measure-

ments and two qubit gates in the f = 1 branches goes down from 4 to 3, while this number is unchanged

(4) for the (s, f) = (1, 0) branches. Therefore, at an average, the number of stabilizer measurements gets

reduced by 12.5% in the second subround.

When viewed as a whole, the decision tree of Fig. 5.5 requires a minimum of 4 measurements,

which occurs for the f = 1 branch after the flagged XZZXI measurement. The minimum number of

measurements for the original protocol (see Fig. 4.4) is 5, which occurs in the same scenario. Therefore,

the new protocol gives a reduction of 20% on this metric. The maximum number of measurements required

for both protocols is 8, which occurs when a nontrivial syndrome without flag is obtained from the flagged

ZXIXZ measurement. Therefore, there is no reduction in this number.

5.3.5. Miscellaneous Remarks
It is worth pointing out that an analogous attempt to reduce the stabilizer sequences by analyzing the errors

for the (s, f) = (1, 0) branches may not lead to shorter sequences. For instance, the weight-1 errors which
can cause the outcome of a nontrivial syndrome without flag from the flagged XZZXI measurement,

based on anticommutation relations, and regardless of the location, are

ZIIII, Y IIII, IXIII, IY III, IIXII, IIY II, IIIZI, IIIY I, (5.2)

in addition to a measurement error. These are a total of 9 quantities to be distinguished, which requires

dlog2(9)e = 4 syndrome bits. The sequence used in the original protocol (see Fig. 4.4) already uses 4
generators, and a further reduction in this number, based on this approach, may not be possible.

5.4. Split-and-Diagnose Protocol for the Steane Code with Reduced

Unflagged Measurements
The second new protocol developed in this thesis is the flag protocol for the Steane code, with more

extensive reductions in the number of unflagged stabilizers over the original protocol [25] (see Fig. 4.6), as

compared to the reduction offered by the new protocol for the J5, 1, 3K code (see Fig. 5.5). This protocol

for the Steane code requires 3 unflagged stabilizers to be measured instead of 6, when a nontrivial flag

measurement outcome has been observed. In addition, it requires fewer unflagged stabilizers to be

measured for the cases when a nontrivial syndrome without flag is observed, down to 4 from 6. These
reduced stabilizer sequences are capable of distinguishing O(p) errors during flagged measurements

leading to these branches. This protocol is shown in Fig. 5.6. This protocol will also be referred to as the

flag protocol with f = 1 and s = 1 reduction for the Steane code.

5.4.1. Protocol Description
The cycle begins with flagged measurements of the 6 standard stabilizer generators. If the first flagged

measurement IIIXXXX gives a nontrivial flag outcome, a sequence of three unflagged stabilizers is



5.4. Split-and-Diagnose Protocol for the Steane Code with Reduced Unflagged Measurements 56

Start of
cycle

(flagged)

(flagged)

(flagged)

End of
cycle

(all unflagged)

(all unflagged)
LUT End of

cycle
(flagged)

(flagged)

(flagged)

(all unflagged)
Flag
LUT

End of
cycle

(all unflagged)
LUT End of

cycle

(all unflagged)

(all unflagged)
LUT End of

cycle

(all unflagged)

(all unflagged)
LUT End of

cycle

(all unflagged)

(all unflagged)
LUT End of

cycle

(all unflagged)

(all unflagged)
LUT End of

cycle

Flag
LUT

End of
cycle

Flag
LUT

End of
cycle

Flag
LUT

End of
cycle

Flag
LUT

End of
cycle

Flag
LUT

End of
cycle

Figure 5.6: The split-and-diagnose flag protocol for the Steane code. This protocol requires 3 unflagged
stabilizer measurements, instead of the 6 required by the original protocol of Fig. 4.4, when a flag gets

triggered, and 4 unflagged measurements instead of 6 when a nontrivial syndrome without flag is

observed. The measurement outcomes of the first two unflagged measurements in the f = 1 branches
are denoted by the variables (s1, s2).
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measured in the f = 1 branch to correct the possible (O(p)) error which would have caused this outcome.

The sequence consists of measuring the same generator again with an unflagged circuit, analogous to the

protocol in Fig. 5.5. This is followed by the corresponding conjugate Z-type generator IIIZZZZ. The third

stabilizer is chosen to be ZIZIZIZ if the unflagged IIIXXXX measurement gave a 0, otherwise, the
stabilizer XIXIXIX is measured. This adaptive measurement depends on the measurement outcome of

the first unflagged stabilizer, which is a difference from the protocol in Fig. 5.5, where it is based on the

second measurement. In Fig. 5.6, the measurement outcomes of the first two unflagged measurements in

the f = 1 branches are denoted by the variables (s1, s2).

As opposed to conventional CSS decoding where the X and Z corrections are applied separately even

for the f = 1 branches (see Fig. 4.6), there is a single flag LUT used for decoding the syndrome resulting

from the f = 1 branch of the flagged IIIXXXX measurement. This LUT contains a minimum number

of corrections needed to unambiguously correct these errors, to achieve a reduction in the number of

stabilizer measurements.

If, instead, the flagged IIIXXXX measurement results in a nontrivial syndrome without the flag, the

(s, f) = (1, 0) branch is followed, and this consists of the 3 unflagged X-type generators, and one Z-type
unflagged generator IIIZZZZ, which is the conjugate to IIIXXXX. The resulting 4-bit syndrome is

decoded via an LUT which applies weight-1 corrections, incorporated in a composite LUT (see Table E.8

and E.9). However, the syndrome-to-error mapping in this LUT is different from the ones for input errors

(which are presented in Table E.3 and Table E.4).

If the flagged IIIXXXX measurement results in trivial flag and syndrome, the next flagged generator,

IXXIIXX is measured. Analogous stabilizer sequences are measur,ed for the branches following this

and the remaining flagged measurements, depending on the flagged measurement outcomes. Note that,

like the flag protocols presented previously, the ancilla qubit and the flag are reset after every flagged

measurement, and the ancilla is reset after every unflagged measurement. The cycle ends in either a

decoding step, either by a flag LUT or a weight-1 correction LUT, and applying a correction, or by applying

no correction if all flagged measurements gave trivial outcomes. The decoding of syndromes is performed

unabiguously via a composite LUT, presented in Table E.8 and Table E.9.

5.4.2. Construction of the Stabilizer Sequences
This section discusses the basis for the stabilizer reductions in the protocol in Fig. 5.6.

The sequences for the f = 1 branches are constructed analogous to the previous protocol in Fig.

5.5, and will only be described briefly. The propagated errors from bad locations in flagged stabilizer

measurements are the same as for the protocol in Fig. 4.6, because they employ the same circuits as in Fig.

4.7. As an example, these errors due to faults which trigger the flag in a flagged IIIXXXX measurement

(see Table 4.3), are presented in Eq. 5.3, with the deciding qubits highlighted in red:

IIIIIXX, IIIIXXX, IIIIY XX, IIIIZXX, IIIIIIX, IIIIIY X, IIIIIZX. (5.3)

These are a restricted set of 7 errors, and, a 6-bit syndrome, capable of distinguishing up to 26 = 64
errors, as per the original protocol in Fig. 4.6, may be inefficient to distinguish these. This motivates

constructing a stabilizer sequence consisting of dlog2(7 + 1)e = 3 stabilizers.

Analogous to the previous protocol (Fig. 5.5), the unflagged stabilizers for f = 1 branches are chosen

according to their support on the deciding qubits, and in a manner that a stabilizer measurement (not

necessarily with the same stabilizer) divides the errors having the same syndrome from the previous

measurement into two nearly equal subsets. It is observed, for example, that the same stabilizer as the

flagged measurement, IIIXXXX, has support on both deciding qubits for the errors in Eq. 5.3 (and

this also holds for other flagged measurements, see Tables 4.3, C.6, C.7, C.8, C.9 and C.10). Thus,

IIIXXXX is chosen as the first stabilizer in the f = 1 sequence resulting from the flagged IIIXXXX
measurement. A convenient choice for the second stabilizer is the corresponding conjugate Z-type
stabilizer IIIZZZZ, because it also has support on the deciding qubits, and extracts a different kind

of parity. The third stabilizer is chosen such that it has support on only one of the deciding qubits. If

the unflagged IIIXXXX measurement gave a 0, ZIZIZIZ is measured, otherwise, XIXIXIX is

measured. The resulting syndromes are unique and nontrivial (see Table 5.2, which may be read in the

same manner as Table 5.1, explained before).
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Analogous stabilizer sequences are constructed for f = 1 branches of the remaining flagged measure-

ments, and lead to unique and nontrivial syndromes for the relevant set of errors, as shown in Tables D.6,

D.7,D.8,D.9, and D.10. These are used to form the composite LUT presented in Table E.8 and Table E.9,

and are used to unambiguously correct these errors.

Propagated error on data

qubits

Syndrome from

IIIXXXX
measurement

Syndrome from

IIIZZZZ
measurement

Syndrome from

third stabilizer

measurement

IIIIIXX 0 0 (ZIZIZIZ) : 1

IIIIXXX 0 1 (ZIZIZIZ) : 0

IIIIY XX 1 1 (XIXIXIX) : 1

IIIIZXX 1 0 (XIXIXIX) : 1

IIIIIIX 0 1 (ZIZIZIZ) : 1

IIIIIY X 1 0 (XIXIXIX) : 0

IIIIIZX 1 1 (XIXIXIX) : 0

Table 5.2: Unique and nontrivial syndromes obtained for errors which trigger the flag during flagged

IIIXXXX measurement (see Table 4.3) using the reduced stabilizer sequence used in the

corresponding f = 1 branch of the split-and-diagnose protocol for the Steane code in Fig. 5.6. The Pauli

operators acting on the deciding qubits have been shown in red.

In addition to the stabilizer count reductions in f = 1 branches, it is also possible to shorten the

(s, f) = (1, 0) branches, i.e. when the flagged measurement gives nontrivial syndrome without flag, in the

protocol for the Steane code (Fig. 4.6). For example, the O(p) errors, which can cause the (s, f) = (1, 0)
outcome from a flagged IIIXXXX measurement (in addition to a measurement error) are presented in

Eq. 5.4:

IIIZIII, IIIIZII, IIIIIZI, IIIIIIZ, IIIY III, IIIIY II, IIIIIY I, and IIIIIIY. (5.4)

Independent of whether these errors occur due to idling or gate faults, these are the only O(p) errors on
data qubits which can cause this outcome, by anticommutation relations. Including the measurement

error, these are 9 errors to be distinguished, which suggests the shortest possible sequence of stabilizers

may have size dlog2(8 + 1)e = 4. This sequence is constructed as follows: first, all 3 X-type stabilizers

are measured to determine the Z component of the errors in Eq. 5.4. These 3 measurements locate the

qubit on which the error has occurred. Subsequently, to determine whether the error contains a Z or a

Y operator (because these occur at the same locations, see Eq. 5.4), the conjugate Z-type stabilizer

corresponding to the flagged stabilizer (here, IIIZZZZ) is measured. The resulting syndromes, presented

in Table 5.3, are unique and nontrivial.

Note that, although measuring IIIXXXX again gives the same syndrome for all errors (bit 1), as
presented in Table 5.3, it is measured again to distinguish these errors from a measurement error. This is

because a measurement error which gives a nontrivial syndrome without flag for the flagged IIIXXXX
measurement will give a trivial syndrome when measuring IIIXXXX again with an unflagged circuit.

The same analysis can be applied to construct reduced stabilizer sequences for the (s, f) = (1, 0)
branches of the remaining flagged measurements, and the syndromes are presented in Tables D.12, D.13,

D.14, D.15, and D.16. The corrections applied due to these syndromes are always weight-1. These are

used to form the composite LUT presented in Table E.8 and Table E.9, and correct the relevant error set

unambiguously, by virtue of the unique and nontrivial syndromes.

5.4.3. Analysis of Fault Tolerance
This section presents an analysis of the error-correction capabilities of the split-and-diagnose protocol in

Fig. 5.6.

Similar to the arguments for the new protocol for the J5, 1, 3K code, it is discussed here that the

reduced unflagged stabilizer sequences for the protocol in Fig. 5.6 render the errors signalled by flagged

measurements detectable and distinguishable.
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Error Syndrome from

IIIXXXX
measurement

Syndrome from

IXXIIXX
measurement

Syndrome from

XIXIXIX
measurement

Syndrome from

IIIZZZZ
measurement

IIIZIII 1 0 0 0

IIIIZII 1 0 1 0

IIIIIZI 1 1 0 0

IIIIIIZ 1 1 1 0

IIIY III 1 0 0 1

IIIIY II 1 0 1 1

IIIIIY I 1 1 0 1

IIIIIIY 1 1 1 1

Table 5.3: Unique and nontrivial syndromes computed using the reduced stabilizer sequence used in the

split-and-diagnose protocol in Fig. 5.6 for errors which give a nontrivial syndrome without flag from the

flagged IIIXXXX measurement, and are diagnosed by the (s, f) = (1, 0) branch.

First, the propagated errors which lead to a flag getting triggered are considered, distinguished by the

f = 1 branches of the protocol. Tables 5.2, D.6, D.7, D.8, D.9, and D.10 demonstrate that the second

subround syndromes obtained for these errors for all f = 1 stabilizer sequences used in Fig. 5.6 are

unique and nontrivial. Crucially, the errors presented in these tables are the only inequivalent errors which

are indicated by a triggered flag in the respective flagged measurement (and need to be distinguished) for

this protocol, although they may arise from different faults [25],[39]. Since the syndromes are unique, the

relevant errors can be detected and distinguished unambiguously. Since they are nontrivial, measurement

errors on the flag can be identified by the trivial syndrome in the second subround. Therefore, these

reduced stabilizer sequences can unambiguously correct the errors from these sets.

Secondly, the same argument is used to show that the protocol can correct weight-1 errors which lead

to nontrivial syndrome without flag from a flagged measurement. These may be input errors, or weight-1
data qubit errors which occur between stabilizer measurements due to idling or gate faults. Tables 5.3,

D.12, D.13, D.14, D.15, and D.16 show that the second subround syndromes obtained for all such errors

are unique and nontrivial. As before, unique syndromes mean that the relevant errors can be detected and

distinguished unambiguously, and nontrivial syndromes mean that a measurement error on the ancilla can

be identified by the trivial syndrome in the second subround.

Furthermore, note that the data qubit errors appearing in these tables are the only errors which could

have caused a nontrivial syndrome without the flag, regardless of the location of the fault (such as a

two-qubit gate or idling location) leading to these errors. This is based on calculating all 7-qubit Pauli
strings with support on 1 qubit, which anticommute with, and can hence be signalled by, the respective

(flagged) stabilizer vis the nontrivial syndrome without flag outcome. Additionally, an error may occur in the

cycle where it cannot be detected by any subsequent flagged measurement (see Sec. 4.4). For example,

consider an X error occurring on the second qubit before the flagged ZIZIZIZ measurement. This error

does not anticommute with this stabilizer, so the second subround does not get initiated. This error also

does not get propagated to multiple data qubits (due to the error propagation rules presented in Sec. 3.5).

Thus, this error becomes a weight-1 input error at the beginning of the next cycle, and can be corrected

likewise. These errors are also present in the Knill’s error model, due to two-qubit gate depolarizing errors.

Since the flagged stabilizer measurements to detect input errors are the same for the split-and-diagnose

protocol (Fig. 5.6) as for the original protocol (Fig. 4.6), and the reduced unflagged stabilizer sequences in

the (s, f) = (1, 0) branches yield unique and nontrivial syndromes for these errors (see Tables 5.3, D.12,

D.13, D.14, D.15, and D.16), the new protocol is capable of correcting a weight-1 error on a data qubits.

Therefore, the rigorously derived LUT (see Table E.8 and Table E.9), which demonstrate that the derived

stabilizer sequences lead to unique and non-trivial syndromes for error sets signalled by particular flagged

measurements, and the preceding analysis, demonstrate the fault tolerance of the split-and-diagnose

protocol in Fig. 5.6 under the errors discussed here, which includes a single input error or internal fault.
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5.4.4. Overhead Reduction
Given that a flag has been triggered, the protocol in Fig. 5.6 requires 3 stabilizer measurements instead of

6, which is a reduction of 50%. Assuming that gates do not need to be decomposed further, in line with

[25],[35], a sequence of 3 unflagged stabilizers requires 3 × 4 = 12 two-qubit gates, while 6 unflagged

generators require 6× 4 = 24 two-qubit gates, which is also a reduction of 50%. This assumes circuits of

the form shown in Fig. 3.3 for individual stabilizer measurements.

Given that a nontrivial syndrome without flag has resulted from a flagged measurement, the protocol in

Fig. 5.6 requires 4 stabilizer measurements instead of 6, which is a reduction of 33.33%. Assuming that

gates do not need to be decomposed further, a sequence of 4 unflagged stabilizers requires 4× 4 = 16
two-qubit gates, while 6 unflagged generators require 6× 4 = 24 two-qubit gates, which is also a reduction

of 33.33%. This assumes circuits of the form shown in Fig. 3.3 for individual stabilizer measurements.

If one views the second subround (unflagged measurements) collectively, then the number of mea-

surements and two qubit gates in the f = 1 branches goes down from 6 to 3, and from 6 to 4 for the

(s, f) = (1, 0) branches. Therefore, at an average, the number of stabilizer measurements gets reduced

by 41.67% in the second subround.

When viewed as a whole, the decision tree of Fig. 5.6 requires a minimum of 4 measurements,

which occurs for the f = 1 branch after the flagged IIIXXXX measurement. The minimum number of

measurements for the original protocol (see Fig. 4.6) is 7, which occurs in the same scenario. Therefore, the

new protocol gives a reduction of 42.86% on this metric. The maximum number of measurements required

in Fig. 5.6 are 10, which occurs when the (s, f) = (1, 0) branch of the flagged ZIZIZIZ measurement

is followed. The maximum number of measurements for the original protocol (see Fig. 4.6) is 12, which
occurs in the same scenario. Therefore, the new protocol gives a reduction of 16.67% on this metric.

5.4.5. Miscellaneous Remarks
The reduction in the number of stabilizer measurements obtained for the Steane code, using the protocol

in Fig. 5.6, is much more substantial than that for the J5, 1, 3K code. For the f = 1 branches, this is

because the original flag protocol for the Steane code (see Fig. 4.6) requires 6 stabilizer measurements

in these branches, while the original flag protocol for the J5, 1, 3K code (see Fig. 4.4) requires 4 stabilizer
measurements in these branches. At the same time, the number of errors to be distinguished by f = 1
branches are the same for both protocols, namely, 7 (for example, those in Eq. 5.1 and Eq. 5.3). The

number of errors is the same because the number of bad two-qubit gates for stabilizer generators of both

codes is the same (2), because the generators for both codes have weight 4. The original Steane code

protocol (see Fig. 4.6) measures an even larger number of stabilizers than the J5, 1, 3K code protocol (see

Fig. 4.4) to distinguish the same number of errors, leading to larger superfluity and hence more possibility

for reduction. Further, the possibility of stabilizer reduction for the (s, f) = (1, 0) branches for the Steane

code protocol, which is not applicable to the J5, 1, 3K code protocol, is another contributing factor in the

higher reduction.

As an added advantage, the reduced stabilizer sequences used in the f = 1 branches, as well as in the

(s, f) = (1, 0) branches, in the new protocol for the Steane code (see Fig. 5.6) only make use of weight-4
stabilizers. It is not necessarily required to use the weight-6 Steane code stabilizers, whose circuits would

require a larger number of gates than the weight-4 stabilizers, to achieve the split-and-diagnose-style

reduction. Additionally, no Y -type stabilizers are used and, in fact, only the standard stabilizer generators

are used in all unflagged measurements, which may be advantageous for physical implementation.

The substantial stabilizer reduction in the Steane code protocol also comes with a price, that the

CSS-style decoding of X- and Z-type stabilizer measurements is no longer followed. The impact this

has can be seen by an example. Suppose a single fault from a bad location in the flagged ZIZIZIZ
measurement propagates to the error IIIIZIZ on the data qubits (see Table C.10). This error contains

only Z operators, and can be corrected using the syndrome from X-type stabilizer measurements only.

Now suppose that along with this fault, a single qubit error XIIIIII has also occurred, which makes

the cumulative error to be XIIIZIZ. This event occurs with probability O(p2). Although this error does

not appear in Table C.10, it can still be corrected by the original protocol, by correcting the X and Z
components separately. Thus, the original protocol has the capability to correct some higher order errors.

The new protocol (see Fig. 5.6) may not have the capability to correct such higher order errors, because

the stabilizer sequences have been designed to correct only O(p) errors.
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However, this does not prevent the new protocol (see Fig. 5.6) from being fault-tolerant, because the

protocol can still correct O(p) errors, discussed in the previous section, which is required for fault tolerance.

Finally, the split-and-diagnose-style stabilizer reductions, in which reduced stabilizer sequences are

constructed by analyzing the set of errors to be distinguished, are possible for flag protocols, because

different flagged measurements neatly and effectively separate the errors occurring in different parts of the

circuit into restricted sets.

5.5. Detect-and-Diagnose Protocol for the Steane Code with Reduced,

High-Weight Flagged Measurements
The third new protocol developed in this thesis is the flag protocol for the Steane code, in which flagged

measurements are carried out with high-weight stabilizers, instead of the stabilizer generators as in the

original protocol (see Fig. 4.6). This protocol is an extension of the technique behind Delfosse and

Reichardt’s sequence presented in Fig. 5.4 to flag protocols. This new protocol for the Steane code

requires 3 flagged measurements instead of 6, and this reduction happens in every cycle, regardless

of whether an error is detected or not. The reduced stabilizer sequences are capable of detecting, and

subsequently correcting a single weight-1 data qubit error, as well as detecting and distinguishing faults

which trigger the flag during flagged measurements. This protocol is shown in Fig. 5.7. This protocol will

also be referred to as the flag protocol with first subround reduction for the Steane code.
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Figure 5.7: The detect-and-diagnose flag protocol for the Steane code. This protocol requires 3 weight-6
flagged stabilizer measurements, instead of the 6 weight-4 generators required by the original protocol in

Fig. 4.6.

5.5.1. Protocol Description
The cycle begins by measuring 3 weight-6 (or high-weight) operators IZZXXY Y , XIXY ZY Z and

ZXY Y XZI with flagged circuits. If the flag or syndrome measurement outcome indicates that a fault

propagation from a bad location or an error has occurred, the flagged measurements are discontinued, and

all 6 generators are measured with unflagged circuits. The ancilla qubit and the flag are reset after every

flaggedmeasurement, and the ancilla is reset after every unflaggedmeasurement. The resulting syndromes

fromX- and Z- type stabilizer measurements are decoded separately, following the conventional CSS-style

decoding. The cycle ends when either a syndrome is decoded via look-up tables and the correction applied,

which could have resulted from flag or ancilla measurement outcomes, or, if all flagged measurement

outcomes are trivial, indicating that no (O(p)) error has occurred, in which case, no correction is applied.

The syndrome values on which adaptive measurements in Fig. 5.7 depend are explained as follows.
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The operators chosen for flagged measurements differ from the Steane code stabilizers by a negative

sign, see Eq. B.2. For example, the operator −IZZZXXY Y is a stabilizer of the Steane code, while the

operator measured is IZZXXY Y . Consequently, when no error has occurred, or the error commutes

with the high-weight stabilizer, the syndrome obtained is bit value 1, or the −1 eigenvalue. When the error

anticommutes with the stabilizer, the syndrome obtained is bit value 0. This is opposite to the convention

for measurement outcomes for the protocols discussed so far. Thus, only with respect to this protocol,

the phrase ‘nontrivial syndrome without flag’ from flagged measurements will refer to the (s, f) = (0, 0)
outcome, and a trivial syndrome from a flagged measurement will refer to the s = 1 outcome. This is also

depicted on the edges after adaptive measurements in Fig. 5.7. The convention for the flag measurement

stays the same: a flag getting triggered refers to the bit value 1, or the −1 eigenvalue. The convention for

the second subround (unflagged measurements) also stays the same: the trivial syndrome means the bit

value 0.

It may be worth mentioning that the initial state is still encoded in the codespace of the Steane code,

i.e. the simultaneous +1 eigenspace of all stabilizer generators, and not only the space which is the

simultaneous +1 eigenspace of the 3 high-weight stabilizers alone. Further, when the measurement of

one of the weight-6 operators gives a syndrome bit 1, the state is projected to the −1 eigenspace of that

operator, which is the +1 eigenspace of the corresponding stabilizer. Hence, if all flagged measurements

give the trivial outcome, the state is in the codespace.

The decoding of syndromes is performed using an Z correction LUT and a X correction LUT used

in conjunction, and presented in Table E.10 and Table E.10, respectively. A difference from the original

protocol (see Fig. 4.6) is that bothX and Z correction flag LUTs in the new protocol in Fig. 5.7 may contain

corrections of weight ≥ 1. This is explained by the propagated errors resulting from faults at bad locations

in flagged measurements.

5.5.2. Construction of the Stabilizer Sequences
The motivation for this construction is the observation that the syndrome information obtained from flagged

measurements in the original flag protocols (see Fig. 4.6, Fig. 4.4) is not directly used to distinguish

the actual error that has occurred. The role of the flagged measurements is only to detect and signal

that an error or fault at a bad location, belonging to a particular limited set, has occurred. This motivates

replacing the flagged stabilizer generator measurements by fewer, possibly high-weight flagged stabilizer

measurements, which are sufficient detect an arbitrary single-qubit input error. These stabilizers may

or may not necessarily be able to correct these errors by themselves. If such stabilizers can be found

from the complete stabilizer group, they may be used for flagged measurements, and the error can be

diagnosed by measuring all stabilizer generators with unflagged circuits in the second subround. The new

protocol in Fig. 5.7 relies on the realization that such stabilizers can indeed be found for the Steane code.

This justifies the name: ‘detect-and-diagnose’.

The weight-6 stabilizers of the Steane code have the structure that each Pauli operator (X,Y, Z) has
support on 2 qubits (see Eq. B.2). Consider the following triplet of stabilizers of the Steane code:

−IZZXXY Y,
−XIXY ZY Z,
−ZXY Y XZI. (5.5)

These stabilizers measure at least two different non-identity Pauli operators on every qubit. For example,

on qubit 7, the operators measured are Y , Z, and I. This gives these stabilizers the capability to detect any

single-qubit input error. This is because a Pauli operator, representing the error, must anticommute with at

least one of the two different non-identity Paulis which are a part of the parity check, due to anticommutation

relations (see Eq. 2.7). For the example above, an input X error on qubit 7 anticommutes with both Y and

Z in the stabilizers, an input Y error anticommutes with the Z only, and an input Z error anticommutes with

the Y only. Thus, every input error can be detected by at least one of the weight-6 stabilizer measurements.

This may also be seen from Table 5.4.

Once the input error is detected, the actual error can be identified by measuring all 6 stabilizer generators
in the second subround (the (s, f) = (0, 0) branch, Fig. 5.7). The correction is then determined from the

usual weight-1 input error LUTs (see Tables E.3 and E.4).
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To achieve fault tolerance, it is necessary that the inequivalent propagated errors resulting from bad

locations (indicated by the flag getting triggered) have unique and nontrivial syndromes, when a sequence

of unflagged stabilizers is measured in the second subround. This holds for the three weight-6 stabilizers,
which is discussed here. First, the circuits used to measure the high-weight operators in Fig. 5.7 are

shown in Fig. 5.8.

Figure 5.8: Flagged circuits for measuring the operators IZZXXY Y , XIXY ZY Z, and ZXY Y XZI
respectively, used in the detect-and-diagnose protocol in Fig. 5.7.

It is important to specify the circuits used for flagged measurements, because the propagated errors

from bad locations depend on the ordering of gates between data qubits and the ancilla. From Fig. 5.8, it

may be seen that since each weight-6 operator measurement circuit requires 6 two-qubit gates between the

data qubits and the ancilla, there are 4 bad gates, resulting in 13 inequivalent propagated errors, for each

circuit. The resulting propagated errors, and the faults which cause them, are specified in Tables D.17,

D.18 and D.19, for the circuits in Fig. 5.8 for IZZXXY Y , XIXY ZY Z and ZXY Y XZI respectively.

A rigorous calculation of the second subround syndromes for these propagated errors shows that

the syndromes obtained are unique for inequivalent errors, and further, this holds separately for the X
and Z components of the errors. This is also presented in Tables D.17, D.18 and D.19. In addition,

the syndromes from X- and Z-type stabilizers are nontrivial when the error has a non-identity Z or X
component, respectively. The 3 stabilizers −IZZXXY Y , −XIXY ZY Z, and −ZXY Y XZI have been

specifically chosen so that the circuits in Fig. 5.8 lead to such syndromes. Therefore, these errors are

detectable and distinguishable, and hence can be corrected by the protocol in Fig. 5.7.

From Tables D.17, D.18 and D.19, it may be observed that both the X corrections and Z corrections

may have weight ≥ 1 when the flag gets triggered (see columns 5 and 8). An example of this may be seen

in column 5, row 1 and column 8, row 11 in Table D.17. Decoding of syndromes using stabilizer sequence

used in Fig. 5.7 is done using the composite LUTs in Tables E.10 and E.11, which need to be used in

conjunction, because they apply the X and Z corrections separately. These LUTs incorporate the the

previously references tables for f = 1 branches, and the usual weight-1 LUTs (see Tables E.3 and E.4) for

(s, f) = (0, 0) branches.

5.5.3. Analysis of Fault Tolerance
First, it is essential to analyze that the protocol can correct any weight-1 input error. All such possible

error strings are presented in Table 5.4. The table also shows whether these errors anticommute with the

weight-6 stabilizers (indicated by 1) or not (0).

It may be observed that every input error anticommutes with at least one of the weight-6 stabilizers,
because there are no errors with the entry 0 for all three stabilizers. This is because the weight-6 stabilizers
measure at least 2 different Pauli operators on each data qubit, and can thus detect any weight-1 input
error. In the protocol in Fig. 5.7, a weight-1 input error will get detected by the flagged measurement of

the first weight-6 stabilizer it anticommutes with. This will give a nontrivial syndrome outcome without the

flag (for this protocol, that corresponds to (s, f) = (0, 0)), and initiate the second subround, consisting of

unflagged measurements of all stabilizer generators. Since all generators are measured, the resulting

syndrome can be decoded using the standard weight-1 correction LUTs for the Steane code (see Tables

E.3 and E.4). Thus, any weight-1 input error can be corrected.
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Input error Anticommutation

with −IZZXXY Y
Anticommutation

with −XIXY ZY Z
Anticommutation

with −ZXY Y XZI

XIIIIII 0 0 1

IXIIIII 1 0 0

IIXIIII 1 0 1

IIIXIII 0 1 1

IIIIXII 0 1 0

IIIIIXI 1 1 1

IIIIIIX 1 1 0

ZIIIIII 0 1 0

IZIIIII 0 0 1

IIZIIII 0 1 1

IIIZIII 1 1 1

IIIIZII 1 0 1

IIIIIZI 1 1 0

IIIIIIZ 1 0 0

Y IIIIII 0 1 1

IY IIIII 1 0 1

IIY IIII 1 1 0

IIIY III 1 0 0

IIIIY II 1 1 1

IIIIIY I 0 0 1

IIIIIIY 0 1 0

Table 5.4: Table showing that every weight-1 input error anticommutes with at least one of the high-weight

stabilizers (IZZXXY Y , XIXY ZY Z, and ZXY Y XZI) measured in the detect-and-diagnose protocol

for the Steane code in Fig. 5.7. This is because the 3 stabilizers chosen have the property that at least two

different Paulis are measured on every qubit. The entry in the columns is a 1 if the error anticommutes

with the stabilizer, and 0 otherwise.
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The next case to be analyzed is when a weight-1 error happens on a data qubit, when one flagged

stabilizer measurement has been completed and the next one is yet to commence (i.e. in-between stabilizer

measurements). This may be a result of a gate fault, or due to idling. If this error anticommutes with any of

the remaining stabilizer measured with a flagged circuit, it gets detected and gives the nontrivial syndrome

outcome, and can be corrected via the syndrome obtained from unflagged measurements.

If the error does not anticommute with any remaining flagged stabilizer, the error goes undetected, and

becomes a weight-1 input error for the next QEC cycle, as presented in Sec. 4.4. This is because it does

not propagate to multiple data qubits due to the subsequent circuits (it can at most propagate to the ancilla

and flip its measurement outcome in the case the error anticommutes with the stabilizer; see the error

propagation rules in Sec. 3.5). Thus, in this case, the error can be corrected like a weight-1 input error, as

described before. This means the protocol is fault-tolerant against weight-1 errors on data qubits in such

locations in the circuit.

Fault tolerance against faults propagating from bad two-qubit gates in flagged stabilizer measurements

has been described in the previous section, and is sketched here for completeness. The propagated errors

on data qubits resulting from these faults are presented in Tables D.17, D.18 and D.19. Analogous to the

protocols in Sec. 4, it can be argued that these are the only errors to be distinguished when a flag gets

triggered during the respective flagged stabilizer measurement, although they may arise from different

fault locations. The triggered flag causes the protocol to enter an f = 1 branch. This yields a syndrome

from measuring all 6 (unflagged) stabilizer generators. The tables show that these syndromes are unique

for inequivalent errors, separately for the X-type and Z-type measurements. Further, the syndromes from

X- or Z-type stabilizer measurements are nontrivial when the error has a Z or X component, respectively.

These tables are used to construct fault-tolerant flag LUTs, which are used to decode the second subround

syndrome. Therefore, these errors are detectable and distinguishable, and they can be unambiguously

identified and corrected by the protocol in Fig. 5.7.

To analyze measurement errors, note that non-identity errors which trigger the flag, or cause the flag to

get triggered, lead to nontrivial syndromes from the second subround (unflagged measurements). This

may be seen from Tables E.3 and E.4 for the (s, f) = (0, 0) branches, and Tables D.17, D.18 and D.19

for the f = 1 branches. Thus, a measurement error on the ancilla or the flag qubit results in the trivial

syndrome (all zeros) during the second subround. Since no other error corresponds to this syndrome,

measurement errors can be identified unambiguously, and the LUTs dictate that no correction needs to be

applied. Thus, the protocol can recover from single measurement errors as well.

The remaining analysis for fault tolerance, such as the fact that flag CNOTs do not add bad locations,

remains the same as the original flag protocols, discussed in Sec. 4.4.

The tables referred to in the preceding paragraphs are used to construct the composite decoding

LUTs for the protocol in Fig. 5.7. These are presented in Tables E.10 and E.11, separately for Z and X
corrections, and are used in conjunction. Therefore, the preceding analysis, and the rigorously derived

LUTs, with unique and nontrivial syndromes, render the relevant errors detectable and distinguishable,

signify the fault tolerance of this protocol against the specified errors.

5.5.4. Overhead Reduction
The protocol in Fig. 5.7 requires at most 3 flagged measurements instead of at most 6 required by the

original protocol, which is a reduction of up to 50% in the number of flagged measurements. Assuming no

further decomposition of two-qubit gates, in line with [25],[35], the reduction in the number of two-qubit

gates in flagged measurements is calculated as follows. Each flagged measurement in the original protocol

(see Fig. 4.6) requires 4 gates between the data qubits and the ancilla, and 2 gates between the ancilla

and the flag, leading to a total of at most 36 two-qubit gates in the first subround for the 6 generators. Each
high-weight stabilizer measurement in the new protocol (see Fig. 5.7) requires 6 gates between the data

qubits and the ancilla (because the stabilizer weight is 6), and 2 gates between the ancilla and the flag.

This leads to a maximum of 24 two-qubit gates in the first subround, for 3 stabilizers (this is a maximum

because all flagged stabilizers may not get measured in every cycle, due to the nature of the protocol).

Assuming all flagged measurements are carried out for both protocols, this is a reduction of 33.33% in the

number of two-qubit gates.

The decision tree of Fig. 5.7 requires a minimum of 7 measurements, which occurs when the protocol

enters the f = 1 or the (s, f) = (0, 0) branch after the first flagged measurement. This is also the minimum
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number of measurements required by the original protocol (see Fig. 4.6), which occurs in the same scenario.

Therefore, there is no reduction in this metric. The maximum number of measurements required by the

new protocol is 9, which occurs in the f = 1 or (s, f) = (0, 0) branches after the last flagged measurement,

while this number is 12 for the original protocol, which occurs in the same scenario. Therefore, the new

protocol gives a reduction of 25% on this metric.

The distinguishing feature of this protocol as compared to the other two new protocols proposed (see

Fig. 5.5 and Fig. 5.6) is that the savings offered by this protocol are present in every cycle, including

(especially) the ones where no errors are detected, while in the other two protocols, the savings are present

only when an error has been detected.

5.5.5. Miscellaneous Remarks
As the first remark, analogous to the argument for the split-and-diagnose protocol for the Steane code (see

Sec. 5.4.5), the detect-and-diagnose protocol may not be able to correct some higher order errors (such

as an input error with an X and a Z error on different qubits), which are correctable by the original protocol

[25]. This is because, the flagged stabilizer sequences have been selected to detect a single input error,

and may not be able to detect every higher order error (in general). This may be viewed as a trade-off in

exchange for the reduced circuit depth, and is highlighted in the future outlook (see Sec. 8).

The second remark is about the number of weight-6 stabilizers used for a detect-and-diagnose-style

protocol (like Fig. 5.7) for the Steane code. A combination of 2 weight-6 stabilizers does not satisfy the
requirement of measuring at least two different Paulis on every qubit. This is because, every weight-6
stabilizer has no support on one qubit (an identity operator acts on it), and choosing only 2 weight-6
stabilizers would mean that on those qubits, only at most one Pauli operator can be measured.

On the other hand, if 4weight-6 stabilizers were required to meet the same condition, it would significantly

reduce the savings in the number of gates for flagged measurements. This is because, measuring 4
flagged weight-6 requires 4(6+2) = 32 two-qubit gates, while the original protocol measures the 6 weight-4
flagged generators, leading to a two-qubit gate count of 6(4 + 2) = 36. This is only a reduction of 11.11%,

as opposed to 33.33% with 3 weight-6 stabilizers, calculated earlier.

Therefore, having to measure 3 weight-6 stabilizers provides the desired functionality, and still provides

a significant reduction.

The third remark is about stabilizer sequences used for unflagged measurements in the protocol in

Fig. 5.7.These have not been reduced, based on distinguishing only the relevant set of errors, as has

been done for the split-and-diagnose protocols. Instead, the 6 unflagged stabilizer generators have been

retained. This is because, due to the increased weight of the flagged stabilizer, a larger number of possible

errors are indicated when a flag is triggered, or a nontrivial syndrome is observed. In principle, it may be

possible to find reduced stabilizer sequences for unflagged measurements. However, this has not been

addressed in this thesis, because of the added complexity due to distinguishing an increased number of

errors. This is also highlighted in the future outlook (see Sec. 8).
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Numerical Results

The noise performance of the flag protocols developed in this thesis is analyzed by Monte Carlo simulations

to determine the pseudothreshold values under Knill’s error model, as used in [25], and compared to that

of the original protocols [25]. These results are presented in this section. Two types of simulation have

been performed. The first type simulates a single cycle of error correction per shot, in which only the error

correction gadget has faults. The second type simulates multiple (consecutive) cycles of error correction,

which allows weight-1 input errors, resulting from a previous error correction gadget, to be present before

the next cycle. This style has been followed in [25], and serves to verify the fault tolerance conditions

under at most 1 input error or 1 internal fault.

The simulations are implemented as follows. The protocols which are simulated, along with their

respective circuits, are presented in Sec. 4 (Fig. 4.4 and Fig. 4.6, the original protocols) and Sec. 5 (Fig.

5.5, Fig. 5.6, and Fig. 5.7, the protocls constructed in this thesis). For every Monte Carlo sample, i.i.d.

errors are applied probabilistically in the circuit for the relevant flag protocol, at locations dictated by the

specific noise model. The circuit is simulated, and according to the protocol, the syndromes are obtained

and possible corrections applied, if errors are indicated. This is followed by an ideal decoding round,

consisting of another cycle of error correction with the same flag protocol without errors. This is done to

remove the residual O(p) errors, as followed in [25], [35], and [36]. The purpose of the ideal decoder is to

verify the first fault tolerance condition presented in Subsec. 3.10. The ideal decoding step projects the

resulting state to the codespace, which is analyzed to determine if a logical error has occurred [35],[36].

The logical error rate for a given physical error rate is calculated from the ratio of the total count of logical

errors observed in the Monte Carlo samples, to the number of samples. The physical error rate is varied to

determine the pseudothreshold value, below which the protocol can correct the applied errors (see Subsec.

3.10).

All simulations are carried out on the DelftBlue supercomputer [47]. The system is employed to

parallelize the identical Monte Carlo samples over multiple cores via the message passing interface (MPI)

protocol. The logical error counts resulting from different cores are combined at the end of the simulation.

This enables execution of the required number of samples within meaningful timeframe. In particular,

384 cores from Intel Xeon compute nodes are used, each of 3.0 GHz, 192 GB of memory, and 480 GB of

hard-drive space. The simulations were developed from scratch using Python, some of which employ

Qiskit [48] , incorporating ease-of-use and software capability for potential future development as a flag

fault tolerance simulation tool. The source code for the simulation of the flag protocol for the J5, 1, 3K code
may be found in the public github repository: https://github.com/dhruvbhq/lowdepthflagqec.

The pseudothresholds are simulated under the Knill’s error model, described in Sec. 3.9 in Fig. 3.16,

which is the same model employed in [25]. The simulations allow establishing a comparison with the

original protocols in [25] under the same error model. The relative error probability values are taken as
4p
15 for state preparation errors, 4p

15 form measurement errors, and p for two-qubit gate depolarizing error,

which are be identical to those in [25]. In line with [25], single-qubit gate depolarizing error probability is

taken to be 0, since two-qubit gates have been simulated without further decomposition. This error model

does not include idling errors. The pseudothreshold values are established relative to the two-qubit gate

error probability, p.

The first simulation is based on wavefunction evolution, and is performed with a simulation developed

using Qiskit [48] as a base. In these simulations, the circuit is reset at the end of simulation for each sample,
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to simulate a single error correction gadget [35]. These simulations make use of noiseless encoding circuits

for the J5, 1, 3K code, presented in Fig. 3.4, and the Steane code, presented in Fig. 3.5. The encoding

circuits are assumed to be noiseless to restrict the scope of this simulation to assess pseudothresholds

when only the error correction gadget (syndrome extraction circuit) has faults. The initial state before

encoding is prepared by the Y rotation Ry(π/3) |0〉, so that all logical single-qubit Pauli errors can be

observed in the final state. The values of the physical error rate, p, are taken to be 13 equally, logarithmically

spaced values between 6.31×10−4 and 10−2, both included. For each value of physical error rate p ≤ 10−3,

107 Monte Carlo samples are taken, and 106 samples are taken for physical error rate p > 10−3, to make

efficient use of available processing capabilities.

The pseudothreshold simulation results under Knill’s error model, using wavefunction simulations and

resetting the circuit after every sample, are shown in Fig. 6.1. The logical error rate data are fit to curves

polynomial in the physical error rate [1], and pseudothreshold values are computed from intersection points

of these curves with the physical error rate line. The pseudothresholds, error bar values and polynomial

coefficients for simulation under Knill’s error model, using wavefunction simulations and resetting the circuit

after every sample, are presented in Table 6.1.

Flag Protocol Pseudothreshold Best fit polynomial

J5, 1, 3K code, unmodified

protocol

3.573×10−3±1.293×10−4 (−7.129× 10−2)p+
(3.332× 102)p2 +O(p3)

J5, 1, 3K code, f = 1
reduction

3.703×10−3±1.319×10−4 (−1.179× 10−1)p+
(3.462× 102)p2 +O(p3)

Steane code, unmodified

protocol

2.192×10−3±9.647×10−5 (−1.637× 10−1)p+
(5.515× 102)p2 +O(p3)

Steane code, f = 1 and
s = 1 reduction

2.430×10−3±1.064×10−4 (7.752× 10−2)p+
(3.941× 102)p2 +O(p3)

Steane code, first

subround reduction

2.361×10−3±1.422×10−4 (2.254× 10−1)p+
(3.389× 102)p2 +O(p3)

Table 6.1: Computed pseudothreshold values and best fit polynomial coefficients for the simulation results

presented in Fig. 6.1 (under Knill’s error model, using wavefunction simulations and resetting the circuit

after every sample). The error bars have been calculated from calculating pseudothresholds for ±2σ
values of logical error rate.

The error in computed pseudothresholds, presented in Table 6.1, is calculated using curves fit to logical

error rates ±2σ values, where σ =
√

pL(1−pL)
N , for a logical error rate pL computed using N i.i.d. samples.

In addition, the coefficients of the best fit curves (presented in Table 6.1) demonstrate quadratic scaling of

logical error rate with physical error rate, with the coefficient of the O(p) terms being smaller than 1 and at

least 3 orders of magnitude below the O(p2) coefficient for each protocol. This suppression of O(p) errors
signifies fault tolerance with distance-3 codes, as described in Subsec. 3.10.

It is observed that there is an increase in the pseudothreshold values for the new flag protocols

calculated from Fig. 6.1, with respect to the originally developed protocols [25]. The pseudothreshold

for the split-and-diagnose protocol (f = 1 reduction) for the J5, 1, 3K code is increased by 3.71%, for the

split-and-diagnose protocol (f = 1 and s = 1 reduction) for the Steane code, the improvement is 10.85%,

and for the detect-and-diagnose protocol (first subround reduction) for the Steane code, the improvement

is 7.71% with respect to the original protocols for the J5, 1, 3K code and the Steane code, respectively. This

increase in pseudothreshold values is attributed to a reduction in the number of fault locations in the new

protocols, which reduces the possible opportunities for errors in the circuit.

The second type of simulations are carried out to replicate the exact simulation style in [25], which

is different from the method implemented above. In these simulations, the accumulated error after the

syndrome extraction circuit is not reset after every sample. Rather, it is only reset if a logical error is

detected in a cycle via the ideal decoder. As explained in [25], this models consecutive QEC cycles. In

this simulation style, if a logical error has not been detected by the ideal decoder, then the state made
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Figure 6.1: Logical error rates, fit to polynomial curves, resulting from pseudothreshold simulations under

Knill’s error model (described in Subsec. 3.9), using wavefunction simulations and resetting the circuit

after every sample. The line coloured in red represents the physical error rate. The original protocols for

the J5, 1, 3K code and the Steane code [25] are labeled as ‘unmodified’. The split-and-diagnose protocol for

the J5, 1, 3K code (see Fig. 5.5) is labeled as ‘J5, 1, 3K code, f = 1 reduction’. The split-and-diagnose

protocol for the Steane code (see Fig. 5.6) is labeled as ‘Steane code, f = 1 and s = 1 reduction’. The
detect-and-diagnose protocol for the Steane code (see Fig. 5.7) is labeled as ‘Steane code, first subround

reduction’. The curves for the 2 protocols for the J5, 1, 3K code are coloured in blue, and those for the 3
protocols for the Steane code are coloured in green, for visual clarity. The values of the physical error rate,

p, are taken to be 13 equally, logarithmically spaced values between 6.31× 10−4 and 10−2, both included.

For each value of physical error rate p ≤ 10−3, 107 Monte Carlo samples are taken, and 106 samples are

taken for physical error rate p > 10−3. The mean pseudothreshold values obtained are: 3.573× 10−3 for

the unmodified protocol for the J5, 1, 3K code, 3.703× 10−3 for the J5, 1, 3K code with f = 1 reduction,
2.192× 10−3 for the unmodified protocol for the Steane code, 2.430× 10−3 for the Steane code with f = 1

and s = 1 reduction, and 2.361× 10−3 for the Steane code with first subround reduction. The

pseudothresholds, error bar values and polynomial coefficients are presented in Table 6.1.
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available as input to the next cycle is the one without the correction applied by the ideal decoder. This

provides an enhancement over the previous simulation, in the sense that error correction for input errors

is evaluated. These simulations are carried out to so that the new protocols may be compared with the

original protocols by a pseudothreshold simulation comparable to [25].

The second type of simulations are implemented from scratch in Python as stabilizer simulations based

on the Gottesman-Knill theorem, discussed in Sec. 3.4, and the binary symplectic vector representation,

described in Sec. 3, for computational efficiency. These simulations do not make use of the encoding circuits

presented in Sec. 3. The values of the physical error rate, p, are taken to be 13 equally, logarithmically

spaced values between 6.31×10−4 and 10−2, both included. For each value of physical error rate p ≤ 10−3,

107 Monte Carlo samples are taken, and 106 samples are taken for physical error rate p > 10−3, to compare

using the same number of samples as in [25].

The pseudothreshold simulation results under Knill’s error model, using stabilizer simulations and only

resetting the circuit in case a logical error is detected, are shown in Fig. 6.2. The logical error rate data

are fit to curves polynomial in the physical error rate [1], and pseudothreshold values computed from

intersections of these curves with the physical error rate line. The pseudothresholds, error bar values and

polynomial coefficients for simulation under Knill’s error model, using wavefunction simulations and only

resetting the circuit in case a logical error is detected, are presented in Table 6.2.

Flag Protocol Pseudothreshold Best fit polynomial

J5, 1, 3K code, unmodified

protocol

3.127×10−3±1.289×10−4 (3.679× 10−1)p+
(1.648× 102)p2 +O(p3)

J5, 1, 3K code, f = 1
reduction

3.177×10−3±1.266×10−4 (2.504× 10−1)p+
(2.176× 102)p2 +O(p3)

Steane code, unmodified

protocol

1.904×10−3±8.684×10−5 (−1.753× 10−1)p+
(6.344× 102)p2 +O(p3)

Steane code, f = 1 and
s = 1 reduction

1.828×10−3±8.757×10−5 (−1.546× 10−1)p+
(6.578× 102)p2 +O(p3)

Steane code, first

subround reduction

1.901×10−3±9.052×10−5 (−4.097× 10−1)p+
(7.076× 102)p2 +O(p3)

Table 6.2: Computed pseudothreshold values and best fit polynomial coefficients for Fig. 6.2 (under Knill’s

error model, using stabilizer simulations, and only resetting the circuit in case a logical error is detected).

The error bars have been calculated from calculating pseudothresholds for ±2σ values of logical error rate.

For the second type of simulations, the pseudothresholds obtained for the new protocols are comparable

to the corresponding unmodified original protocols, up to statistical error. Further analysis of this simulation

method may explain this result. The second simulation style is expected to yield lower pseudothresholds

than the first, because of additional errors possible at the input of an error correction gadget. In addition,

the coefficients of the best fit curves demonstrate quadratic scaling of logical error rate with physical error

rate, with the coefficient of the O(p) terms being smaller than 1 and at least 3 orders of magnitude below

the O(p2) coefficient for each protocol (see Table 6.2).

In conclusion, the three protocols developed in this thesis, which offer significant gate overhead

reduction, demonstrate nontrivial pseudothresholds under the restricted error model, both when a single

cycle is simulated, as well as when multiple consecutive cycles with the possibility of weight-1 input errors
are simulated. This demonstrates that the new protocols can correct errors applied by the specified error

model, which contains two-qubit depolarizing errors, preparation, and measurement errors, without idling

errors. As discussed in Sec. 3.10, an increase in pseudothreshold, which may need to be verified with

more extensive simulations, may be advantageous because it relaxes the physical error rate value to be

achieved for fault tolerance. Additionally, the pseudothresholds obtained from the second simulations

of multiple cycles are competitive with the original protocols, and demonstrate the capability of the new

protocols to correct input errors.

To further investigate the fault tolerance of these protocols, pseudothresholds need to be established

under more more extensive noise models, including circuit level noise with varying levels of idling error
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Figure 6.2: Logical error rates, fit to polynomial curves, resulting from pseudothreshold simulations under

Knill’s error model (described in Sec. 3.9), using stabilizer simulations and resetting the circuit only in case

a logical error is detected. The line coloured in red represents the physical error rate. The original

protocols for the J5, 1, 3K code and the Steane code [25] are labeled as ‘unmodified’. The original protocols

for the J5, 1, 3K code and the Steane code [25] are labeled as ‘unmodified’. The split-and-diagnose

protocol for the J5, 1, 3K code (see Fig. 5.5) is labeled as ‘J5, 1, 3K code, f = 1 reduction’. The
split-and-diagnose protocol for the Steane code (see Fig. 5.6) is labeled as ‘Steane code, f = 1 and s = 1
reduction’. The detect-and-diagnose protocol for the Steane code (see Fig. 5.7) is labeled as ‘Steane

code, first subround reduction’. The curves for the 2 protocols for the J5, 1, 3K code are coloured in blue,

and those for the 3 protocols for the Steane code are coloured in green, for visual clarity. The values of the

physical error rate, p, are taken to be 13 equally, logarithmically spaced values between 6.31× 10−4 and

10−2, both included. For each value of physical error rate p ≤ 10−3, 107 Monte Carlo samples are taken,

and 106 samples are taken for physical error rate p > 10−3. The mean pseudothreshold values obtained

are: 3.127× 10−3 for the unmodified protocol for the J5, 1, 3K code, 3.177× 10−3 for the J5, 1, 3K code with

f = 1 reduction, 1.904× 10−3 for the unmodified protocol for the Steane code, 1.828× 10−3 for the Steane

code with f = 1 and s = 1 reduction, and 1.901× 10−3 for the Steane code with first subround reduction.

The pseudothresholds, error bar values and polynomial coefficients are presented in Table 6.2.
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rate [15], as well as under physically realistic noise models. This investigation is beyond the scope of the

present work.



7
Towards Generalization of Reduced

Stabilizer Sequences

The development of particular instances of reduced stabilizer sequences in Fig. 5.5, Fig. 5.6 and Fig.

5.7, which have been derived analytically in Sec. 5, motivates exploration of other instances of reduced

stabilizer sequences with fault-tolerant error correction rules, applicability to other codes, and a potential

for mathematical description for such sequences.

This section briefly addresses performing a brute-force computer search for reduced stabilizer se-

quences, to assist in such generalization, and construction of stabilizer sequences of the detect-and-

diagnose type for certain other codes. These programs, developed with assistance from Qiskit [48],

exhaustively search over the complete stabilizer group to construct reduced stabilizer sequences. This

approach yields numerous candidate stabilizer sequences with the same general structure as the protocols

developed in this thesis. This is presented in Sec. 7.1 and Sec. 7.2. Further, computer search is used to

identify potentially interesting mathematical properties detect-and-diagnose-style stabilizer sequences,

capable of detecting 1 input error, for the Steane code (see Sec. 7.2). Finally, in Sec. 7.3, some high-weight

stabilizer sequences with the capability to detect 1 input error are presented for the J15, 7, 3K quantum
Hamming code and the J9, 1, 3K Shor code [1], indicating potential for generalization to other codes.

These preliminary observations and analyses may be useful to verify a theoretical formulation of these

sequences, as well as provide candidate stabilizer sequences which more suited to certain physical

implementations than others to construct fault-tolerant protocols with reduced overhead.

7.1. Computer Search for Split-and-Diagnose-Style Stabilizer Se-

quences
The starting point for the computer searches is the flag protocol for the J5, 1, 3K code. The aim of the

program is to find reduced stabilizer sequences for the f = 1 branch of the protocol which yield unique and

nontrivial syndromes for the errors which trigger the flag. The flagged measurements are left unchanged,

and so are the unflagged measurements for the (s, f) = (1, 0) (nontrivial syndrome without flag) branches.

The first ansatz, or constellation, of unflagged stabilizers for f = 1 branches is chosen as the one in

which the first and second stabilizers do not depend on the past syndrome values, while the third depends

on the second measurement outcome, analogous to the structure used in the new protocol presented in

Fig. 5.5. An indexed notation is used to label the stabilizers being searched for as follow. If the ith flagged

measurement results in a triggered flag, the first two stabilizers measured are Si,1 and Si,2 respectively.

If the measurement of Si,2 gives a syndrome bit 0, the stabilizer Si,2,1 is measured, otherwise Si,2,2 is

measured. In this notation, an additional index is added when a new adaptive measurement is carried out.

The algorithm for the computer search iterates over the complete stabilizer group of the J5, 1, 3K code
for stabilizer sequences consisting of a single adaptive stabilizer measurement in the f = 1 branches of
the protocol, analogous to the structure of the protocol in Fig. 5.5, calculates the syndromes for the error

set via anticommutation relations, and returns as output those stabilizer sequences which give unique and

nontrivial syndromes for the relevant error set, according to the criterion presented in Sec. 5.
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The resulting reduced stabilizer sequences for the J5, 1, 3K code are presented in the appendix in Tables

F.1, F.2, F.3, F.4, F.5, F.6, F.7, and F.8. For every stabilizer sequence in a f = 1 branch, the search

iterates over the full stabilizer group for a total of 4 stabilizers in the constellation (although, for diagnosing

an error, only 3 need to be measured, since the sequence is adaptive). The size of the search space for

every f = 1 branch is 164 = 65536, out of which, 256 stabilizer sequences giving unique and nontrivial

syndromes are obtained for every f = 1 branch. There are 4 f = 1 branches, and any of the solutions for

any of these branches is a potential candidate for the reduced stabilizer measurement sequence. The

particular sequences developed in the protocol in Fig. 5.5 are also part of these solutions, and are coloured

in red in these tables.

In view the derivation of the sequences in Fig. 5.5, some preliminary observations from these sequences

are made. The stabilizers Si,1 and Si,2 for every f = 1 sequence (i ∈ 1, 2, 3, 4) always have support on

the deciding qubits for the particular flagged stabilizer measurement. Although the subsequent stabilizers

Si,2,1 and Si,2,2 may have support on only one or both the deciding qubits, they measure a parity different

from Si,1 and Si,2.

Analogously, the computer searches are also carried out to find other reduced, unflagged stabilizer

sequences for the Steane code for the f = 1 branches of the protocol in Fig. 4.6. These errors are

presented in Tables 4.3, C.6, C.7, C.8, C.9, and C.10. The stabilizer sequences used in the f = 1
branch resulting from the ith flagged measure the unflagged stabilizers Si,1 and Si,2, followed by the

third unflagged stabilizer, Si,2,1 or Si,2,2, depending on the outcome of the Si,2 (i ∈ {1, 2, . . . , 6}). This is
equivalent in structure as in the newly-developed protocol in Fig. 5.6, with an inconsequential difference

that the stabilizer measurement on whose outcome the third stabilizer is decided is measured at a different

position, to make the program simpler. This only amounts to a change in the order of measuring Si,1 and

Si,2, i ∈ {1, 2, 3, 4, 5, 6}, and the same criterion of unique and nontrivial syndromes is used to select the

reduced stabilizer sequences.

This search is restricted to the weight-4 stabilizers of the Steane code, to keep the size of the search

space and solution set tractable. The stabilizers used for flagged measurements, as well as those for the

(s, f) = (1, 0) branches are kept the same as the original protocol (see Fig. 4.6).

The reduced, weight-4 stabilizer sequences which yield unique and nontrivial syndromes for the f = 1
branches of the Steane code, resulting from the computer search, are presented in the appendix in Tables

F.9, F.10, F.11, F.12, F.13, and F.14. The size of the search space for every f = 1 branch is 214 = 194481
stabilizer constellations, because there are 21 weight-4 stabilizers (see Eq. B.2). Out of these, 112 stabilizer
sequences giving unique and nontrivial syndromes are obtained for every f = 1 branch. For the 6 f = 1
branches, any of these solutions may be a potential candidate to construct a protocol with reduced stabilizer

sequences. The particular sequences developed in the protocol in Fig. 5.6 are also part of these solutions,

shown in red in these tables.

A trend is observed in the reduced stabilizer sequences, which yield unique and nontrivial synromesfor

errors which trigger the flag, resulting from the search over weight-4 stabilizers. For i ∈ {1, 2, 3}, i.e. when
the flagged measurement is an X-type stabilizer, one of the stabilizers Si,1 and Si,2 is always either a

Z-type or a Y -type stabilizer, having the same support as the stabilizer used for the flagged measurement.

For i ∈ {4, 5, 6}, one of Si,1 and Si,2 is always either a X-type or a Y -type stabilizer, having the same

support as the stabilizer used for the flagged measurement. As before, these observations may be helpful

for further analysis of these sequences.

Finally, it is explored whether non-adaptive sequences of 3 unflagged stabilizers in the f = 1 branches

of the J5, 1, 3K code and Steane code protocols can distinguish the errors which trigger the flag. These

errors are presented in Tables presented in Tables 4.1, C.2, C.3 and C.4 for the protocol for the J5, 1, 3K
codes, and in Tables 4.3, C.6, C.7, C.8, C.9, and C.10 for the protocol for the Steane code. Interestingly,

even with the complete stabilizer group, the computer searches do not yield any non-adaptive sequences

of 3 unflagged stabilizers, of the form {Si,1, Si,2, Si,3}, for the f = 1 branches which can give unique and

nontrivial syndromes for the relevant propagated errors which are indicated by a triggered, for both these

codes. Therefore, based on computer searches, a fault-tolerant protocol with such a descision tree may

not exist for these codes. This may also indicate that the problem of designing a stabilizer sequence

reaching the lower bound of log2d(M + 1)e sequences to distinguish a given set ofM inequivalent errors

[1] with unique, nontrivial syndromes, posed in Sec. 5, and the use of adaptive sequences for this purpose,

may have a nontrivial mathematical explanation.
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7.2. Computer Search for Detect-and-Diagnose-Style Stabilizer Se-

quences
The detect-and-diagnose protocol for the Steane code relies on using 3 high-weight stabilizers for flagged
measurements (see Fig. 5.7). These stabilizers measure at least two different Pauli operators on every

qubit. This gives them the capability to detect any single-qubit input error. This motivates constructing

other stabilizer triplets for the Steane code with the same property, to determine more such candidate

stabilizer sequences for these protocols for the Steane code.

The search algorithm iterates over the entire stabilizer group, and numerous triplets of weight-6
stabilizers of the Steane code, which measure at least 2 different Pauli operators on every qubit, are

found as solutions. More precisely, they are 1344 in number (stabilizer permutations are not counted

as separate), out of the 643 = 262144 possible stabilizer triplets. These are presented in the appendix

in Tables G.1-G.16. The exact sequences used in the newly-developed protocol in Fig. 5.7 are also

recovered in these solutions, and are coloured red in Table G.9, part of the previously referenced tables.

The computer search is also used to assist in identifying some mathematically interesting properties of

a potential underlying structure of these stabilizer triplets. To explore this, the fact that the Steane code’s

stabilizer group is divided into subgroups of X-type and Z-type stabilizers is employed in a preliminary

approach. This division motivates exploring whether the triplets of weight-6 stabilizers follow a structure

based on this. To that end, a partition of the stabilizer group is constructed via the cosets of the X-type

stabilizer subgroup. It is observed that, some triplets of weight-6 stabilizers follow the structure that the 3
stabilizers belong to different cosets of the X-type stabilizer subgroup. This is depicted in Fig. 7.1.

Figure 7.1: Graphic showing the stabilizer group of the Steane code partitioned into cosets of the X-type

stabilizer subgroup, outlined in red. Some stabilizer triplets, which measure at least 2 different Pauli
operators on each qubit are highlighted, and observed to belong to different cosets. On the bottom right of

each block containing the elements of the coset, an arbitrarily assigned number is written, which is used to

reference the coset later.

This observation is verified for all such stabilizer triplets via a computer program: all triplets of weight-6
stabilizers of the Steane code found by the search, which measure at least 2 different Pauli operators on
every qubit, belong to different cosets of the X-type stabilizer subgroup within the stabilizer group. This

may be verified from Tables G.1-G.16, in which the cosets to which each stabilizer belongs are presented.

The particular coset is identified by an arbitrarily assigned number, according to Fig. 7.1. Further, no

stabilizer in the triplet belongs to the coset numbered (0) in Fig. 7.1, because it is the subgroup of X-type

stabilizers, and only contains weight-4 operators.

This insight motivates further exploration into this group structure. A computer program is used to verify

that these stabilizer triplets which can detect 1 input error belong to different subgroups. If the 8-element

subgroups generated by each of these stabilizer triplets are computed, the number of distinct subgroups to

which these 1344 stabilizer triplets belong come out to be 48, via the program. This is also presented in

Tables G.1-G.16, in which the stabilizer triplets are organized according to the subgroup from which they

arise. This may also signify an underlying structure, identified with computer assistance.

Finally, a computer search is used to check whether any triplets of the stabilizers of the J5, 1, 3K code,
which measure at least 2 different Pauli operators on every qubit, exist. The result is that, even when

iterated over the complete stabilizer group, there are no sequences of 3 stabilizers found for the J5, 1, 3K
code which satisfy this criteria. Thus, by the computer search, it is concluded that a detect-and-diagnose-



7.3. Detect-and-Diagnose-Style Stabilizers for Other Codes 76

style protocol, of the form developed for the Steane code (see Fig. 5.7), may not exist for the J5, 1, 3K code
with fewer than 4 flagged stabilizer measurements.

7.3. Detect-and-Diagnose-Style Stabilizers for Other Codes
Motivated by the existence of high-weight stabilizer sequences which can detect 1 input error for the Steane
code, such sequences for two other codes are explored and are presented here.

The Shor code [1] is a J9, 1, 3K stabilizer code, with the following 8 stabilizer generators:

{ZZIIIIIII, IZZIIIIII, IIIZZIIII, IIIIZZIII, IIIIIIZZI, IIIIIIIZZ,
XXXXXXIII, IIIIIIXXX}. (7.1)

By observation, the following set of 3 stabilizers is constructed by composing stabilizer generators, which

has the property that at least 2 different Pauli operators are measured on every qubit:

ZZIIIIIII ◦ IIIZZIIII ◦ IIIIIIIZZ ◦ IIIXXXXXX ◦XXXXXXIII = Y Y XZZIXY Y

ZZIIIIIII ◦ IIIZZIIII ◦ IIIIIIZZI ◦ IIIXXXXXX = ZZIY Y XY Y X

IZZIIIIII ◦ IIIIZZIII ◦ IIIIIIIZZ ◦XXXXXXIII = XY Y XY Y IZZ (7.2)

The second code considered is the J15, 7, 3K code belonging to the quantum Hamming code family

[1],[25], to which the Steane code also belongs. This code has the following 8 weight-8 stabilizer generators:

{IIIIIIIZZZZZZZZ, IIIZZZZIIIIZZZZ, IZZIIZZIIZZIIZZ,ZIZIZIZIZIZIZIZ,
IIIIIIXXXXXXXX, IIIXXXXIIIIXXXX, IXXIIXXIIXXIIXX,XIXIXIXIXIXIXIX.}

(7.3)

For this code as well, certain sequences of 4 stabilizers can be constructed, which measure at least 2
different Paulis on most qubits, presented below:

{IIIZZZZXXXXY Y Y Y,
ZY XZIXY ZIXY IZY X,

IZZZZIIY Y XXXXY Y,

Y Y IY IIY XZZXZXXZ} (7.4)

{IIIIIIIY Y Y Y Y Y Y Y,
Y Y IXZZXZXXZY IIY,

Y XZIY XZZXY IZXY I,

XZY ZY IXIXZY ZY IX} (7.5)

These examples and the group-theoretic observations presented previously may be useful to explore a

potential generalization to other codes.
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Conclusion and Outlook

8.1. Conclusion
In this work, three new flag fault tolerance protocols with reduced stabilizer measurements have been

developed for the J5, 1, 3K code and the Steane code. The reductions have been achieved by adapting

the techniques behind the shorter stabilizer sequences for Shor-style error correction proposed in [27] –

namely, adaptive stabilizer measurements, utilizing the complete stabilizer group, particularly high-weight

stabilizers, and designing a fault-tolerant ordering for stabilizer measurements –- in the context of flag

fault tolerance protocols for these codes developed in [25]. The main contributions of this thesis are

summarized.

In Sec. 5, two new and shorter flag protocols of the split-and-diagnose type, one for the J5, 1, 3K
code and one for the Steane code have been derived. These shorter constructions have been achieved

by tailoring unflagged stabilizer sequences to distinguish specific sets of errors signaled by respective

flagged measurements, with nontrivial syndromes. These stabilizers are decided based on the support

of the error set, and may belong to the full stabilizer group. The key feature of the split-and-diagnose

protocols is the unique approach to dynamically select a different stabilizer to be measured, conditioned

on a previous stabilizer measurement outcome. This enables identifying the eigenspaces of stabilizer

generators, resulting from different errors, more efficiently by requiring fewer stabilizer measurements.

Additionally, in Sec. 5, the third new and shorter flag fault tolerance protocol of this thesis, the detect-

and-diagnose protocol for the Steane code, has been derived. This protocol achieves a reduction in flagged

stabilizer measurements by identifying and utilizing fewer high-weight stabilizers, sufficient to detect 1
input error, for flagged measurements. This protocol introduces a new approach to performing fault-

tolerant quantum error correction, wherein errors are initially detected by (flagged) stabilizer measurements

without the complete ability to correct them, and subsequently corrected via unflagged stabilizer generator

measurements.

Fault-tolerant error correction rules of the new protocols, under the specified error model, have been

established by the rigorously calculated look-up tables presented in the Appendix E. The newly developed

protocols offer significant reduction in circuit depth, as described in Sec. 5. In Sec. 6, results from numerical

Monte Carlo simulations are used to demonstrate nontrivial pseudothresholds for the three new protocols

under Knill’s error model. The pseudothresholds of new flag fault tolerance protocols are shown to be

competitive with those of the existing protocols [25].

In Sec. 7, the construction of additional reduced fault tolerant sequences, for protocols analogous in

structure to the new protocols, and for other codes, has been briefly investigated. By employing computer

searches as an assisting tool, numerous other candidate stabilizer sequences for split-and-diagnose

protocols have been obtained for the J5, 1, 3K code and the Steane code. Further, computer searches

have been used identify other stabilizer triplets which are capable of detecting a single input error for the

Steane code, and form candidate stabilizer sequences for the detect-and-diagnose protocol. Additionally,

these stabilizer triplets may be of interest independent of flag protocols, motivating further analysis. These

programs have also been used to assist in making certain interesting observations about mathematical

properties of such stabilizers for the Steane code. In addition, examples of high-weight stabilizers capable

of detecting 1 error have also been presented for 2 other distance-3 codes.
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In conclusion, the development of the protocols in this thesis highlights the potential of employing

parity measurements from the complete stabilizer group, and extending beyond conventional adaptive

stabilizer measurements present in existing flag protocols [25], to reduce the circuit depth overhead in

fault-tolerant quantum error correction. These constructions serve as a preliminary step in improving the

resource efficiency of quantum error correction, which is particularly valuable for applications in the NISQ

era, where resources are limited, as discussed earlier in Sec. 1.

8.2. Outlook
While the flag-based syndrome extraction circuits developed in this thesis may be valuable from the

perspective of resource efficiency, there are other aspects which may need to be addressed, and are

beyond the scope of the present work. These may form future research directions arising from this work,

or challenges yet to be overcome.

First, the pseudothresholds for the new protocols have been established under Knill’s error model, under

a single cycle, as well as consecutive cycles of error correction. This error model contains state preparation

errors, measurement errors, two-qubit gate depolarizing errors (which may lead to error propagation, as

well as weight-1 errors on data qubits), and can be used to assess fault tolerance under all these errors.

However, it is not a commonly used error model [15], and has been used in this thesis to establish a

comparison with the main reference [25]. Additionally, theoretical arguments have been developed in Sec.

5 to demonstrate fault tolerance of the new protocols when errors may be present at every location. To

further investigate the fault tolerance of these protocols, pseudothresholds need to be established under

more more extensive noise models, including circuit level noise with varying levels of idling error rate [15],

as well as under physically realistic noise models.

Additionally, the proposed protocols have been developed from an abstract standpoint, and do not

incorporate constraints or limitations on implementation posed by physical hardware [5]. For instance, while

stabilizers belonging to the full group allow measuring parities other than the generators, they may involve

Pauli operations which may not be natively supported by the hardware. Implementing such operations

would require a decomposition into the supported gate set, which may contribute to an increase in gate

overhead. This may be analyzed further for specific hardware platforms.

Another consideration for physical implementation is that the additional adaptive stabilizer measurement

in split-and-diagnose protocols may increase the time required for one cycle of error correction, due to

the delay required for the deciding measurement outcome to become available. This may consume

precious qubit coherence time. At the outset, however, this does not seem to pose a major drawback to the

implementation of the additional adaptive measurement. This is because the existing flag fault tolerance

protocols [25] already require waiting upon flagged measurement outcomes to decide subsequent stabilizer

measurements, and thus rely on fast measurement and reset times. A possible solution for the increased

cycle time in case of the split-and-diagnose protocols may be to schedule the measurement of the stabilizer

used to decide the subsequent measurement at an earlier time in the sequence.

In addition to taking into account implementation considerations, there is a broader scope for investi-

gation from a higher level of abstraction. The reductions obtained via the shorter, fault-tolerant stabilizer

sequences developed for flag protocols have been investigated independently for flagged and unflagged

measurements. It may be interesting to study whether a simultaneous reduction of both flagged and

unflagged measurements can lead to an even shorter flag protocol. This has not been addressed in the

detect-and-diagnose protocol for the Steane code, because of the added complexity due to increased

number of errors indicated by a triggered flag, or a nontrivial syndrome. A further question which may be

addressed is whether the obtained sequences are optimal, and how optimality of a stabilizer sequence

may be defined in the context of fault tolerance.

Moreover, an interesting extension would be a mathematical description which explains the protocols

developed. This may be used as a starting point for generalizing such constructions for other codes,

including those with higher distance, and for other flag protocols developed in literature (see Sec. 4.5). In

particular, the extension to topological codes [15] may be interesting, because of the potential impact of

adaptive or high-weight stabilizer measurements on syndrome decoding algorithms.

In addition, further improvements are possible in the performance analyses carried out for new protocols.

The analysis for gate overhead reduction, presented in Sec. 5, presents scope for further enhancement.
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In the presented analysis, the reduction for split-and-diagnose protocols is computed conditioned on a

flag having been triggered or a nontrivial syndrome measurement without flag having been observed. On

the other hand, the reduction for the detect-and-diagnose protocols is calculated with respect to number

of flagged measurements. A more realistic estimate of gate count reductions for both types of protocols

would be derived from the average number of flagged and unflagged stabilizers required to be measured

in the limit of large number of error correction cycles. For high-weight stabilizers, the increase in gate

count may need to be incorporated into such a calculation to get an accurate estimate of gate overhead

reduction.

Additionally, for analytically computing the expected improvements in pseudothreshold values, the

reduction in the number of malignant pairs of fault locations may be analyzed, as has been performed in

[36]. This may be used as a reference for values obtained by simulation, and is beyond the scope of the

present work.

As discussed in Sec. 5, the two new flag protocols for the Steane may not be able to correct some

O(p2) errors, consisting of an O(p) X-type error and an O(p) Z-type error. These may be correctable by

the original flag protocol for the Steane code [25]. This may be viewed as a trade-off in exchange for the

reduced circuit depth. In the present analysis, the circuit overhead reduction (discussed in Sec. 5) and

the competitive pseudothresholds under Knill’s error model (see Sec. 6) indicate this expense may be

justified for the small codes studied under the present conditions. However, more detailed analysis of error

correction performance [15] may be required for further insight.

In addition, the use of computer searches to design fault-tolerant stabilizer sequences has also been

briefly explored. These were limited to sequences consisting of few stabilizers. As the size of the sequence

or the stabilizer group is increased, these searches may become computationally intractable. This prohibits

performing a brute force search for the J15, 7, 3K quantum Hamming code, which was briefly discussed.

This motivates exploring more sophisticated, automated search algorithms for assisting in developing

stabilizer sequences for fault tolerance protocols. These approaches may also be useful in reducing the

number of unflagged stabilizers in the detect-and-diagnose protocol for the Steane code (Fig. 5.7).

Therefore, multiple avenues worthy of exploration emerge, spanning theoretical, applied, as well as

implementation-focused directions.
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A
Definitions: Classical Error-Correcting

Codes

These definitions, useful as a reference for the CSS construction (see Sec. 3.2), are presented here. The

main reference is [1].

Definition A.1 A binary linear code C, encoding strings of k bits into strings of n bits, with k < n, is a

specifically chosen k-dimensional subspace of the linear vector space Fn
2 over the binary field F2. The

binary field is a set of 2 elements, typically denoted by 0 and 1, equipped with the operations of addition

and multiplication, both modulo 2. The encoded bit strings are called codewords, and a linear combination

of codewords gives another codeword.

Definition A.2 A binary linear code is specified by a generator matrix G ∈ Fn×k
2 , which maps a k-bit

string y as Gy. The map is called an encoding. The rows of G form a basis for C. Equivalently, the

code can be defined as the null space/kernel of a parity check matrix H ∈ F(n−k)×n
2 , i.e. the code is

C = {x ∈ Fn
2 : Hx = 0}. For a given code, these matrices satisfy HG = 0.

Definition A.3 The Hamming weight of an n-bit string is the number of non-zero entries in the string.

The Hamming distance between two n-bit strings, a and b, denoted d(a, b), is the Hamming weight of

(a+ b), where the addition is modulo 2.

Definition A.4 The distance of a code C, denoted by d, is the minimum Hamming distance between any

two codewords. For a linear code, this is equal to the minimum Hamming weight of a non-zero codeword.

A distance d code can correct up to t = dd−1
2 e errors; the code is then said to be t-error-correcting.

Definition A.5 A code C encoding k bits of information into n bits, and having distance d is denoted as an

[n, k, d] code.

The dual of a code is used in the CSS construction (see Sec. 3.2).

Definition A.6 The dual of a code C ⊂ Fn
2 , denoted C

⊥, is the orthogonal complement C, i.e. C⊥ = {w :
wTx = 0,∀x ∈ C}, where wTx =

∑n
i=1 wixi is an inner product, with the addition being defined modulo 2

over the binary field. C⊥ has a dimension equal to n− dim(C). It holds that (C⊥)⊥ = C.

Definition A.7 A linear code C is self-dual, if it is equal to its dual, i.e. C = C⊥. A linear code C is weakly

self-dual, if it is contained in its dual, i.e. C ⊆ C⊥.

Definition A.8 (Classical, binary) Hamming codes are a family of [2r −1, 2r − r−1, 3] binary linear codes
for r ≥ 2. Hamming codes are perfect codes.

For example, the [7, 4, 3] Hamming code (r = 3), used in the construction of Steane code (see Sec.

3.3), has the following parity check matrix:

H =

0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

 . (A.1)
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B
Stabilizer Groups: the J5, 1, 3K code and

the Steane code

The 16 elements of the full stabilizer group for the J5, 1, 3K code are presented in eq. B.1.

IIIII,XZZXI, IXZZX,XIXZZ,ZXIXZ,XY IY X, IZY Y Z, Y Y ZIZ,XXY IY, ZIZY Y,

Y XXY I, IY XXY, Y ZIZY,ZY Y ZI, Y IY XX,ZZXIX. (B.1)

The 64 elements of the full stabilizer group for the Steane code are presented in eq. B.2. They have

been labelled according to their type (the trivial stabilizer, stabilizers containing only X, Y or Z operators,

and high-weight stabilizers (which contain 2 non-identity Paulis of each type)).

trivial:

IIIIIII

X-type:

IIIXXXX, IXXIIXX,XIXIXIX, IXXXXII,XIXXIXI,XXIIXXI,XXIXIIX

Z-type:

IIIZZZZ, IZZIIZZ,ZIZIZIZ, IZZZZII, ZIZZIZI, ZZIIZZI, ZZIZIIZ

Y -type:

IIIY Y Y Y, IY Y IIY Y, Y IY IY IY, IY Y Y Y II, Y IY Y IY I, Y Y IIY Y I, Y Y IY IIY

mixed/high-weight:

− IZZXXY Y,−ZIZXYXY,−IXXZZY Y,−ZXY IZXY,−XIXZY ZY,−XZY IXZY,
− IXXY Y ZZ,−IY Y XXZZ,−ZXYXY IZ,−XIXY ZY Z,−XZYXIY Z,−Y IY XZXZ,
− IZZY Y XX,−ZIZY XY X,−ZZIXY Y X,−XXIZY Y Z,−XY ZIXY Z,−Y XZIY XZ,
− IY Y ZZXX,−ZXY ZIY X,−ZY XIZY X,−XZY ZY IX,−Y IY ZXZX,−Y ZXIY ZX,
−XXIY ZZY,−XY ZXIZY,−Y XZXZIY,−ZXY Y XZI,−ZY XXY ZI,−XZY Y ZXI,
− Y ZXXZY I,−ZZIY XXY,−XY ZZY XI,−Y XZZXY I,−ZY XZIXY,−Y ZXZXIY,
−XY ZY ZIX,−Y XZY IZX,−Y Y IXZZX,−ZY XYXIZ,−Y ZXY IXZ,−Y Y IZXXZ. (B.2)
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C
Errors Arising in Flag Protocols

Causal fault Propagated error on data

qubits

Syndrome from unflagged

stabilizer measurements

IZ fault after CNOT b or
ZZ fault after CNOT c

IIZXI 0100

XZ fault after CNOT b IXZXI 1100

Y Z fault after CNOT b IY ZXI 1001

ZZ fault after CNOT b IZZXI 0001

IZ fault after CNOT c IIIXI 0110

XZ fault after CNOT c IIXXI 1010

Y Z fault after CNOT c IIY XI 1000

Table C.1: Errors on data qubits from bad gates during flagged XZZXI measurement, stabilizer

generator of the J5, 1, 3K code, using the circuit shown in Fig. 4.2. The first column denotes the fault which

can cause the flag to get triggered. The second column denotes the resulting error on data qubits due to

propagation. The third column denotes the corresponding syndrome from measuring all stabilizer

generators with unflagged circuits.

Causal fault Propagated error on data

qubits

Syndrome from unflagged

stabilizer measurements

IZ fault after CNOT b or
ZZ fault after CNOT c

IIIZX 1010

XZ fault after CNOT b IIXZX 0110

Y Z fault after CNOT b IIY ZX 0100

ZZ fault after CNOT b IIZZX 1000

IZ fault after CNOT c IIIIX 0011

XZ fault after CNOT c IIIXX 0101

Y Z fault after CNOT c IIY XX 1100

Table C.2: Errors on data qubits from bad gates during flagged IXZZX measurement, stabilizer

generator of the J5, 1, 3K code, using the circuit and gate annotations shown in Fig. 4.5.
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Causal fault Propagated error on data

qubits

Syndrome from unflagged

stabilizer measurements

IZ fault after XNOT b or
ZZ fault after CNOT c

IIIZZ 1101

XZ fault after XNOT b IIXZZ 0001

Y Z fault after XNOT b IIY ZZ 0011

ZZ fault after XNOT b IIZZZ 1111

IZ fault after CNOT c IIIIZ 0100

XZ fault after CNOT c IIIXZ 0010

Y Z fault after CNOT c IIIY Z 1011

Table C.3: Errors on data qubits from bad gates during flagged XIXZZ measurement, stabilizer

generator of the J5, 1, 3K code, using the circuit and gate annotations shown in Fig. 4.5.

Causal fault Propagated error on data

qubits

Syndrome from unflagged

stabilizer measurements

IZ fault after XNOT b or
XZ fault after XNOT c

IIIXZ 0010

XZ fault after XNOT b IXIXZ 1010

Y Z fault after XNOT b IY IXZ 1111

ZZ fault after XNOT b IZIXZ 0111

IZ fault after XNOT c IIIIZ 0100

Y Z fault after XNOT c IIIY Z 1011

ZZ fault after XNOT c IIIZZ 1101

Table C.4: Errors on data qubits from bad gates during flagged ZXIXZ measurement, stabilizer

generator of the J5, 1, 3K code, using the circuit and gate annotations shown in Fig. 4.5.

Causal fault Propagated error

on data qubits

Syndrome from

unflagged X-type

stabilizer

measurements

Syndrome from

unflagged Z-type
stabilizer

measurements

IZ fault after XNOT b or
XZ fault after XNOT c

IIIIIXX 000 001

XZ fault after XNOT b IIIIXXX 000 100

Y Z fault after XNOT b IIIIY XX 101 100

ZZ fault after XNOT b IIIIZXX 101 001

IZ fault after XNOT c IIIIIIX 000 111

Y Z fault after XNOT c IIIIIY X 110 001

ZZ fault after XNOT c IIIIIZX 110 111

Table C.5: Errors on data qubits from bad gates during flagged IIIXXXX measurement, stabilizer

generator of the Steane code, using the circuit and gate annotations shown in Fig. 4.7(a). Syndromes

from X- and Z- type stabilizer generator measurements are shown separately.
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Causal fault Propagated error

on data qubits

Syndrome from

unflagged X-type

stabilizer

measurements

Syndrome from

unflagged Z-type
stabilizer

measurements

IZ fault after XNOT b or
XZ fault after XNOT c

IIIIIXX 000 001

XZ fault after XNOT b IIXIIXX 000 010

Y Z fault after XNOT b IIY IIXX 011 010

ZZ fault after XNOT b IIZIIXX 011 001

IZ fault after XNOT c IIIIIIX 000 111

Y Z fault after XNOT c IIIIIY X 110 001

ZZ fault after XNOT c IIIIIZX 110 111

Table C.6: Errors on data qubits from bad gates during flagged IXXIIXX measurement, stabilizer

generator of the Steane code, using the circuit and gate annotations shown in Fig. 4.7. Syndromes from

X- and Z- type stabilizer generator measurements are shown separately.

Causal fault Propagated error

on data qubits

Syndrome from

unflagged X-type

stabilizer

measurements

Syndrome from

unflagged Z-type
stabilizer

measurements

IZ fault after XNOT b or
XZ fault after XNOT c

IIIIXIX 000 010

XZ fault after XNOT b IIXIXIX 000 001

Y Z fault after XNOT b IIY IXIX 011 001

ZZ fault after XNOT b IIZIXIX 011 010

IZ fault after XNOT c IIIIIIX 000 111

Y Z fault after XNOT c IIIIY IX 001 010

ZZ fault after XNOT c IIIIZIX 101 111

Table C.7: Errors on data qubits from bad gates during flagged XIXIXIX measurement, stabilizer

generator of the Steane code, using the circuit and gate annotations shown in Fig. 4.7. Syndromes from

X- and Z- type stabilizer generator measurements are shown separately.

Causal fault Propagated error

on data qubits

Syndrome from

unflagged X-type

stabilizer

measurements

Syndrome from

unflagged Z-type
stabilizer

measurements

IZ fault after CNOT b or
ZZ fault after CNOT c

IIIIIZZ 001 000

XZ fault after CNOT b IIIIXZZ 001 101

Y Z fault after CNOT b IIIIY ZZ 100 101

ZZ fault after CNOT b IIIIZZZ 100 000

IZ fault after CNOT c IIIIIIZ 111 000

XZ fault after CNOT c IIIIIXZ 111 110

Y Z fault after CNOT c IIIIIY Z 001 110

Table C.8: Errors on data qubits from bad gates during flagged IIIZZZZ measurement, stabilizer

generator of the Steane code, using the circuit and gate annotations shown in Fig. 4.7. Syndromes from

X- and Z- type stabilizer generator measurements are shown separately.



88

Causal fault Propagated error

on data qubits

Syndrome from

unflagged X-type

stabilizer

measurements

Syndrome from

unflagged Z-type
stabilizer

measurements

IZ fault after CNOT b or
ZZ fault after CNOT c

IIIIIZZ 001 000

XZ fault after CNOT b IIXIIZZ 001 011

Y Z fault after CNOT b IIY IIZZ 010 011

ZZ fault after CNOT b IIZIIZZ 010 000

IZ fault after CNOT c IIIIIIZ 111 000

XZ fault after CNOT c IIIIIXZ 111 110

Y Z fault after CNOT c IIIIIY Z 001 110

Table C.9: Errors on data qubits from bad gates during flagged IZZIIZZ measurement, stabilizer

generator of the Steane code, using the circuit and gate annotations shown in Fig. 4.7. Syndromes from

X- and Z- type stabilizer generator measurements are shown separately.

Causal fault Propagated error

on data qubits

Syndrome from

unflagged X-type

stabilizer

measurements

Syndrome from

unflagged Z-type
stabilizer

measurements

IZ fault after CNOT b or
ZZ fault after CNOT c

IIIIZIZ 010 000

XZ fault after CNOT b IIXIZIZ 010 011

Y Z fault after CNOT b IIY IZIZ 001 011

ZZ fault after CNOT b IIZIZIZ 001 000

IZ fault after CNOT c IIIIIIZ 111 000

XZ fault after CNOT c IIIIXIZ 111 101

Y Z fault after CNOT c IIIIY IZ 010 101

Table C.10: Errors on data qubits from bad gates during flagged ZIZIZIZ measurement, stabilizer

generator of the Steane code, using the circuit and gate annotations shown in Fig. 4.7. Syndromes from

X- and Z- type stabilizer generator measurements are shown separately.



D
Syndromes from Reduced Stabilizer

Sequences

Propagated error on data

qubits

Syndrome from

XZZXI
measurement

Syndrome from

Y XXY I
measurement

Syndrome from

third stabilizer

measurement

IIZXI 0 0 (ZIZY Y ) : 1

IXZXI 1 0 (ZIZY Y ) : 1

IY ZXI 1 1 (XIXZZ) : 0

IZZXI 0 1 (XIXZZ) : 0

IIIXI 0 1 (XIXZZ) : 1

IIXXI 1 1 (XIXZZ) : 1

IY XXI 1 0 (ZIZY Y ) : 0

Table D.1: Unique and nontrivial syndromes obtained for errors which trigger the flag during flagged

XZZXI measurement (see Table 4.1), using the reduced stabilizer sequence used in the corresponding

f = 1 branch of the split-and-diagnose protocol for the J5, 1, 3K code in Fig. 5.5. Pauli operators acting on

the deciding qubits have been shown in red.

Propagated error on data

qubits

Syndrome from

IXZZX
measurement

Syndrome from

IY XXY
measurement

Syndrome from

third stabilizer

measurement

IIIZX 0 0 (Y ZIZY ) : 1

IIXZX 1 0 (Y ZIZY ) : 1

IIY ZX 1 1 (ZXIXZ) : 0

IIZZX 0 1 (ZXIXZ) : 0

IIIIX 0 1 (ZXIXZ) : 1

IIIXX 1 1 (ZXIXZ) : 1

IIIY X 1 0 (Y ZIZY ) : 0

Table D.2: Unique and nontrivial syndromes obtained for errors which trigger the flag during flagged

IXZZX measurement (see Table C.2), using the reduced stabilizer sequence used in the corresponding

f = 1 branch of the split-and-diagnose protocol for the J5, 1, 3K code in Fig. 5.5. Pauli operators acting on

the deciding qubits have been shown in red.
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Propagated error on data

qubits

Syndrome from

XIXZZ
measurement

Syndrome from

Y IY XX
measurement

Syndrome from

third stabilizer

measurement

IIIZZ 0 0 (Y ZIZY ) : 1

IIXZZ 0 1 (ZXIXZ) : 1

IIY ZZ 1 0 (Y ZIZY ) : 1

IIZZZ 1 1 (ZXIXZ) : 1

IIIIZ 0 1 (ZXIXZ) : 0

IIIXZ 1 1 (ZXIXZ) : 0

IIIY Z 1 0 (Y ZIZY ) : 0

Table D.3: Unique and nontrivial syndromes obtained for errors which trigger the flag during flagged

XIXZZ measurement (see Table C.3), using the reduced stabilizer sequence used in the corresponding

f = 1 branch of the split-and-diagnose protocol for the J5, 1, 3K code in Fig. 5.5. Pauli operators acting on

the deciding qubits have been shown in red.

Propagated error on data

qubits

Syndrome from

ZXIXZ
measurement

Syndrome from

Y ZIZY
measurement

Syndrome from

third stabilizer

measurement

IIIXZ 0 0 (Y IY XX) : 1

IXIXZ 0 1 (XIXZZ) : 1

IY IXZ 1 1 (XIXZZ) : 1

IZIXZ 1 0 (Y IY XX) : 1

IIIIZ 0 1 (XIXZZ) : 0

IIIY Z 1 0 (Y IY XX) : 0

IIIZZ 1 1 (XIXZZ) : 0

Table D.4: Unique and nontrivial syndromes obtained for errors which trigger the flag during flagged

ZXIXZ measurement (see Table C.4), using the reduced stabilizer sequence used in the corresponding

f = 1 branch of the split-and-diagnose protocol for the J5, 1, 3K code in Fig. 5.5. Pauli operators acting on

the deciding qubits have been shown in red.

Propagated error on data

qubits

Syndrome from

IIIXXXX
measurement

Syndrome from

IIIZZZZ
measurement

Syndrome from

third stabilizer

measurement

IIIIIXX 0 0 (ZIZIZIZ) : 1

IIIIXXX 0 1 (ZIZIZIZ) : 0

IIIIY XX 1 1 (XIXIXIX) : 1

IIIIZXX 1 0 (XIXIXIX) : 1

IIIIIIX 0 1 (ZIZIZIZ) : 1

IIIIIY X 1 0 (XIXIXIX) : 0

IIIIIZX 1 1 (XIXIXIX) : 0

Table D.5: Unique and nontrivial syndromes obtained for errors which trigger the flag during flagged

IIIXXXX measurement (see Table 4.3) using the reduced stabilizer sequence used in the

corresponding f = 1 branch of the split-and-diagnose protocol for the Steane code in Fig. 5.6. The Pauli

operators acting on the deciding qubits have been shown in red.
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Propagated error on data

qubits

Syndrome from

IXXIIXX
measurement

Syndrome from

IZZIIZZ
measurement

Syndrome from

third stabilizer

measurement

IIIIIXX 0 0 (ZIZIZIZ) : 1

IIXIIXX 0 1 (ZIZIZIZ) : 0

IIY IIXX 1 1 (XIXIXIX) : 1

IIZIIXX 1 0 (XIXIXIX) : 1

IIIIIIX 0 1 (ZIZIZIZ) : 1

IIIIIY X 1 0 (XIXIXIX) : 0

IIIIIZX 1 1 (XIXIXIX) : 0

Table D.6: Unique and nontrivial syndromes obtained for errors which trigger the flag during flagged

IXXIIXX measurement (see Table C.6) using the reduced stabilizer sequence used in the

corresponding f = 1 branch of the split-and-diagnose protocol for the Steane code in Fig. 5.6. The Pauli

operators acting on the deciding qubits have been shown in red.

Propagated error on data

qubits

Syndrome from

XIXIXIX
measurement

Syndrome from

ZIZIZIZ
measurement

Syndrome from

third stabilizer

measurement

IIIIXIX 0 0 (IZZIIZZ) : 1

IIXIXIX 0 1 (IZZIIZZ) : 0

IIY IXIX 1 1 (IXXIIXX) : 1

IIZIXIX 1 0 (IXXIIXX) : 1

IIIIIIX 0 1 (IZZIIZZ) : 1

IIIIY IX 1 0 (IXXIIXX) : 0

IIIIZIX 1 1 (IXXIIXX) : 0

Table D.7: Unique and nontrivial syndromes obtained for errors which trigger the flag during flagged

XIXIXIX measurement (see Table C.7) using the reduced stabilizer sequence used in the

corresponding f = 1 branch of the split-and-diagnose protocol for the Steane code in Fig. 5.6. The Pauli

operators acting on the deciding qubits have been shown in red.

Propagated error on data

qubits

Syndrome from

IIIZZZZ
measurement

Syndrome from

IIIXXXX
measurement

Syndrome from

third stabilizer

measurement

IIIIIZZ 0 0 (XIXIXIX) : 1

IIIIXZZ 1 0 (ZIZIZIZ) : 1

IIIIY ZZ 1 1 (ZIZIZIZ) : 1

IIIIZZZ 0 1 (XIXIXIX) : 0

IIIIIIZ 0 1 (XIXIXIX) : 1

IIIIIXZ 1 1 (ZIZIZIZ) : 0

IIIIIY Z 1 0 (ZIZIZIZ) : 0

Table D.8: Unique and nontrivial syndromes obtained for errors which trigger the flag during flagged

IIIZZZZ measurement (see Table C.8) using the reduced stabilizer sequence used in the corresponding

f = 1 branch of the split-and-diagnose protocol for the Steane code in Fig. 5.6. The Pauli operators acting

on the deciding qubits have been shown in red.
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Propagated error on data

qubits

Syndrome from

IZZIIZZ
measurement

Syndrome from

IXXIIXX
measurement

Syndrome from

third stabilizer

measurement

IIIIIZZ 0 0 (XIXIXIX) : 1

IIXIIZZ 1 0 (ZIZIZIZ) : 1

IIY IIZZ 1 1 (ZIZIZIZ) : 1

IIZIIZZ 0 1 (XIXIXIX) : 0

IIIIIIZ 0 1 (XIXIXIX) : 1

IIIIIXZ 1 1 (ZIZIZIZ) : 0

IIIIIY Z 1 0 (ZIZIZIZ) : 0

Table D.9: Unique and nontrivial syndromes obtained for errors which trigger the flag during flagged

IZZIIZZ measurement (see Table C.9) using the reduced stabilizer sequence used in the corresponding

f = 1 branch of the split-and-diagnose protocol for the Steane code in Fig. 5.6. The Pauli operators acting

on the deciding qubits have been shown in red.

Propagated error on data

qubits

Syndrome from

ZIZIZIZ
measurement

Syndrome from

XIXIXIX
measurement

Syndrome from

third stabilizer

measurement

IIIIZIZ 0 0 (IXXIIXX) : 1

IIXIZIZ 1 0 (IZZIIZZ) : 1

IIY IZIZ 1 1 (IZZIIZZ) : 1

IIZIZIZ 0 1 (IXXIIXX) : 0

IIIIIIZ 0 1 (IXXIIXX) : 1

IIIIXIZ 1 1 (IZZIIZZ) : 0

IIIIY IZ 1 0 (IZZIIZZ) : 0

Table D.10: Unique and nontrivial syndromes obtained for errors which trigger the flag during flagged

ZIZIZIZ measurement (see Table C.10) using the reduced stabilizer sequence used in the

corresponding f = 1 branch of the split-and-diagnose protocol for the Steane code in Fig. 5.6. The Pauli

operators acting on the deciding qubits have been shown in red.

Error Syndrome from

IIIXXXX
measurement

Syndrome from

IXXIIXX
measurement

Syndrome from

XIXIXIX
measurement

Syndrome from

IIIZZZZ
measurement

IIIZIII 1 0 0 0

IIIIZII 1 0 1 0

IIIIIZI 1 1 0 0

IIIIIIZ 1 1 1 0

IIIY III 1 0 0 1

IIIIY II 1 0 1 1

IIIIIY I 1 1 0 1

IIIIIIY 1 1 1 1

Table D.11: Unique and nontrivial syndromes computed using the reduced stabilizer sequence used in

the split-and-diagnose protocol in Fig. 5.6 for errors which give a nontrivial syndrome without flag from the

flagged IIIXXXX measurement, and are diagnosed by the (s, f) = (1, 0) branch.
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Error Syndrome from

IIIXXXX
measurement

Syndrome from

IXXIIXX
measurement

Syndrome from

XIXIXIX
measurement

Syndrome from

IZZIIZZ
measurement

IZIIIII 0 1 0 0

IIZIIII 0 1 1 0

IIIIIZI 1 1 0 0

IIIIIIZ 1 1 1 0

IY IIIII 0 1 0 1

IIY IIII 0 1 1 1

IIIIIY I 1 1 0 1

IIIIIIY 1 1 1 1

Table D.12: Unique and nontrivial syndromes computed using the reduced stabilizer sequence used in

the split-and-diagnose protocol in Fig. 5.6 for errors which give a nontrivial syndrome without flag from the

flagged IXXIIXX measurement, and are diagnosed by the (s, f) = (1, 0) branch.

Error Syndrome from

IIIXXXX
measurement

Syndrome from

IXXIIXX
measurement

Syndrome from

XIXIXIX
measurement

Syndrome from

ZIZIZIZ
measurement

ZIIIIII 0 0 1 0

IIZIIII 0 1 1 0

IIIIZII 1 0 1 0

IIIIIIZ 1 1 1 0

Y IIIIII 0 0 1 1

IIY IIII 0 1 1 1

IIIIY II 1 0 1 1

IIIIIIY 1 1 1 1

Table D.13: Unique and nontrivial syndromes computed using the reduced stabilizer sequence used in

the split-and-diagnose protocol in Fig. 5.6 for errors which give a nontrivial syndrome without flag from the

flagged XIXIXIX measurement, and are diagnosed by the (s, f) = (1, 0) branch.

Error Syndrome from

IIIZZZZ
measurement

Syndrome from

IZZIIZZ
measurement

Syndrome from

ZIZIZIZ
measurement

Syndrome from

IIIXXXX
measurement

IIIXIII 1 0 0 0

IIIIXII 1 0 1 0

IIIIIXI 1 1 0 0

IIIIIIX 1 1 1 0

IIIY III 1 0 0 1

IIIIY II 1 0 1 1

IIIIIY I 1 1 0 1

IIIIIIY 1 1 1 1

Table D.14: Unique and nontrivial syndromes computed using the reduced stabilizer sequence used in

the split-and-diagnose protocol in Fig. 5.6 for errors which give a nontrivial syndrome without flag from the

flagged IIIZZZZ measurement, and are diagnosed by the (s, f) = (1, 0) branch.
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Error Syndrome from

IIIZZZZ
measurement

Syndrome from

IZZIIZZ
measurement

Syndrome from

ZIZIZIZ
measurement

Syndrome from

IXXIIXX
measurement

IXIIIII 0 1 0 0

IIXIIII 0 1 1 0

IIIIIXI 1 1 0 0

IIIIIIX 1 1 1 0

IY IIIII 0 1 0 1

IIY IIII 0 1 1 1

IIIIIY I 1 1 0 1

IIIIIIY 1 1 1 1

Table D.15: Unique and nontrivial syndromes computed using the reduced stabilizer sequence used in

the split-and-diagnose protocol in Fig. 5.6 for errors which give a nontrivial syndrome without flag from the

flagged IZZIIZZ measurement, and are diagnosed by the (s, f) = (1, 0) branch.

Error Syndrome from

IIIZZZZ
measurement

Syndrome from

IZZIIZZ
measurement

Syndrome from

ZIZIZIZ
measurement

Syndrome from

XIXIXIX
measurement

XIIIIII 0 0 1 0

IIXIIII 0 1 1 0

IIIIXII 1 0 1 0

IIIIIIX 1 1 1 0

Y IIIIII 0 0 1 1

IIY IIII 0 1 1 1

IIIIY II 1 0 1 1

IIIIIIY 1 1 1 1

Table D.16: Unique and nontrivial syndromes computed using the reduced stabilizer sequence used in

the split-and-diagnose protocol in Fig. 5.6 for errors which give a nontrivial syndrome without flag from the

flagged ZIZIZIZ measurement, and are diagnosed by the (s, f) = (1, 0) branch.
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Causal

fault

Propa-

gated error

Syn-

drome

from

X-type

stabi-

lizer

mea-

sure-

ments

Z
correction

Minimum

weight

equivalent

Syn-

drome

from

Z-type
stabi-

lizer

mea-

sure-

ments

X
correction

Minimum

weight

equivalent

IZ after

gate b, or,
XZ after

gate c

IIIXXY Y 001 IIIIIZZ IIIIIZZ 000 IIIXXXX IIIIIII

XZ after

gate b
IIXXXY Y 001 IIIIIZZ IIIIIZZ 011 IIXXXXX IIXIIII

Y Z after

gate b
IIY XXY Y 010 IIZIIZZ IZIIIII 011 IIXXXXX IIXIIII

ZZ after

gate b
IIZXXY Y 010 IIZIIZZ IZIIIII 000 IIIXXXX IIIIIII

IZ after

gate c, or,
XZ after

gate d

IIIIXY Y 001 IIIIIZZ IIIIIZZ 100 IIIIXXX IIIXIII

Y Z after

gate c
IIIY XY Y 101 IIIZIZZ IIIIZII 000 IIIXXXX IIIIIII

ZZ after

gate c
IIIZXY Y 101 IIIZIZZ IIIIZII 100 IIIIXXX IIIXIII

IZ after

gate d, or,
Y Z after

gate e

IIIIIY Y 001 IIIIIZZ IIIIIZZ 001 IIIIIXX IIIIIXX

Y Z after

gate d
IIIIY Y Y 100 IIIIZZZ IIIZIII 100 IIIIXXX IIIXIII

ZZ after

gate d
IIIIZY Y 100 IIIIZZZ IIIZIII 001 IIIIIXX IIIIIXX

IZ after

gate e
IIIIIIY 111 IIIIIIZ IIIIIIZ 111 IIIIIIX IIIIIIX

XZ after

gate e
IIIIIXY 111 IIIIIIZ IIIIIIZ 001 IIIIIXX IIIIIXX

ZZ after

gate e
IIIIIZY 001 IIIIIZZ IIIIIZZ 111 IIIIIIX IIIIIIX

Table D.17: Propagated errors on data qubits from faults after bad gates in IZZXXY Y measurement,

the corresponding syndromes obtained by measuring the 6 standard Steane code generators, and the

corrections to be applied. The propagated errors result from the circuit shown in Fig. 5.8, and the gate

labels b, c, d, e are referred from the same figure. This table shows that the syndromes obtained are unique

for inequivalent errors, and further, this holds separately for the X and Z components of the errors. In

addition, the syndromes from X- and Z-type stabilizers are nontrivial when the error has a non-identity Z
or X component, respectively. Therefore, the protocol in Fig. 5.7 can correct these propagated errors.
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Causal

fault

Propa-

gated error

Syn-

drome

from

X-type

stabi-

lizer

mea-

sure-

ments

Z
correction

Minimum

weight

equivalent

Syn-

drome

from

Z-type
stabi-

lizer

mea-

sure-

ments

X
correction

Minimum

weight

equivalent

IZ after

gate b, or,
Y Z after

gate c

IIIY ZY Z 000 IIIZZZZ IIIIIII 010 IIIXIXI IIIXIXI

XZ after

gate b
IIXY ZY Z 000 IIIZZZZ IIIIIII 001 IIXXIXI XIIIIII

Y Z after

gate b
IIY Y ZY Z 011 IIZZZZZ IIZIIII 001 IIXXIXI XIIIIII

ZZ after

gate b
IIZY ZY Z 011 IIZZZZZ IIZIIII 010 IIIXIXI IIIXIXI

IZ after

gate c, or,
ZZ after

gate d

IIIIZY Z 100 IIIIZZZ IIIZIII 110 IIIIIXI IIIIIXI

XZ after

gate c
IIIXZY Z 100 IIIIZZZ IIIZIII 010 IIIXIXI IIIXIXI

ZZ after

gate c
IIIZZY Z 000 IIIZZZZ IIIIIII 110 IIIIIXI IIIIIXI

IZ after

gate d, or,
Y Z after

gate e

IIIIIY Z 001 IIIIIZZ IIIIIZZ 110 IIIIIXI IIIIIXI

XZ after

gate d
IIIIXY Z 001 IIIIIZZ IIIIIZZ 011 IIIIXXI IIIIXXI

Y Z after

gate d
IIIIY Y Z 100 IIIIZZZ IIIZIII 011 IIIIXXI IIIIXXI

IZ after

gate e
IIIIIIZ 111 IIIIIIZ IIIIIIZ 000 IIIIIII IIIIIII

XZ after

gate e
IIIIIXZ 111 IIIIIIZ IIIIIIZ 110 IIIIIXI IIIIIXI

ZZ after

gate e
IIIIIZZ 001 IIIIIZZ IIIIIZZ 000 IIIIIII IIIIIII

Table D.18: Propagated errors on data qubits from faults after bad gates in XIXY ZY Z measurement,

the corresponding syndromes obtained by measuring the 6 standard Steane code generators, and the

corrections to be applied. The propagated errors result from the circuit shown in Fig. 5.8, and the gate

labels b, c, d, e are referred from the same figure. This table shows that the syndromes obtained are unique

for inequivalent errors, and further, this holds separately for the X and Z components of the errors. In

addition, the syndromes from X- and Z-type stabilizers are nontrivial when the error has a non-identity Z
or X component, respectively. Therefore, the protocol in Fig. 5.7 can correct these propagated errors.
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Causal

fault

Propa-

gated error

Syn-

drome

from

X-type

stabi-

lizer

mea-

sure-

ments

Z
correction

Minimum

weight

equivalent

Syn-

drome

from

Z-type
stabi-

lizer

mea-

sure-

ments

X
correction

Minimum

weight

equivalent

IZ after

gate b, or,
Y Z after

gate c

IIY Y XZI 001 IIZZIZI ZIIIIII 010 IIXXXII IXIIIII

XZ after

gate b
IXY Y XZI 001 IIZZIZI ZIIIIII 000 IXXXXII IIIIIII

Y Z after

gate b
IY Y Y XZI 011 IZZZIZI IIIZIIZ 000 IXXXXII IIIIIII

ZZ after

gate b
IZY Y XZI 011 IZZZIZI IIIZIIZ 010 IIXXXII IXIIIII

IZ after

gate c, or,
Y Z after

gate d

IIIY XZI 010 IIIZIZI IIIZIZI 001 IIIXXII IIIXXII

XZ after

gate c
IIXY XZI 010 IIIZIZI IIIZIZI 010 IIXXXII IXIIIII

ZZ after

gate c
IIZY ZXI 001 IIZZIZI ZIIIIII 001 IIIXXII IIIXXII

IZ after

gate d, or,
Y Z after

gate e

IIIIXZI 110 IIIIIZI IIIIIZI 101 IIIIXII IIIIXII

XZ after

gate d
IIIXXZI 110 IIIIIZI IIIIIZI 001 IIIXXII IIIXXII

ZZ after

gate d
IIIZXZI 010 IIIZIZI IIIZIZI 101 IIIIXII IIIIXII

IZ after

gate e
IIIIIZI 110 IIIIIZI IIIIIZI 000 IIIIIII IIIIIII

XZ after

gate e
IIIIXZI 110 IIIIIZI IIIIIZI 101 IIIIXII IIIIXII

ZZ after

gate e
IIIIZZI 011 IIIIZZI IIIIZZI 000 IIIIIII IIIIIII

Table D.19: Propagated errors on data qubits from faults after bad gates in ZXY Y XZI measurement,

the corresponding syndromes obtained by measuring the 6 standard Steane code generators, and the

corrections to be applied. The propagated errors result from the circuit shown in Fig. 5.8, and the gate

labels b, c, d, e are referred from the same figure. This table shows that the syndromes obtained are unique

for inequivalent errors, and further, this holds separately for the X and Z components of the errors. In

addition, the syndromes from X- and Z-type stabilizers are nontrivial when the error has a non-identity Z
or X component, respectively. Therefore, the protocol in Fig. 5.7 can correct these propagated errors.



E
Look-up Tables for Decoding

Look-up tables for protocols discussed in the thesis are presented here. The mapping 1 7→ 0,−1 7→ 1 from
measured eigenvalues to bits is assumed.

The syndromes and flag measurement outcomes are formatted in a manner different from before, to

be able to represent them in a consistent notation along with flagged measurement syndrome outcomes.

For example, a syndrome 010 resulting from unflagged measurements is represented as the tuple (0, 1, 0),
enclosed in parentheses and with individual syndrome bits represented with commas. This will be used to

represent the second subround syndromes.

Sequences of flagged measurement outcomes are represented as a tuple of tuples, where a constituent

tuple has two elements, the syndrome measurement outcome, followed by the flag measurement outcome.

For example, a syndrome value 1 and a flag outcome 0 from a single flagged measurement is represented

as (1, 0). A (−,−) is used if no flagged measurement was made. Consider an example: for the J5, 1, 3K
code, if the first flagged measurement gave trivial outcomes for the syndrome and the flag, the second

flagged measurement gave a trivial syndrome but with the flag triggered, and the remaining two flagged

measurements were not carried out (due to the rules of the protocols discussed in this thesis), this

sequence of measurement outcomes is represented as ((0, 0), (0, 1), (−,−), (−,−)). This format will be

used to denote measurement outcomes from the first subround.

In this appendix, composite LUTs for flag protocols are presented. A composite LUT contains the

first subround syndrome (i.e. the sequence of flagged measurement outcomes), followed by the second

subround syndrome obtained from unflagged measurements, given that the first subround syndrome

specified before has been observed.
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Syndrome Correction

(0, 0, 0, 0) None

(0, 0, 0, 1) XIIII

(0, 0, 1, 0) IIZII

(0, 0, 1, 1) IIIIX

(0, 1, 0, 0) IIIIZ

(0, 1, 0, 1) IZIII

(0, 1, 1, 0) IIIXI

(0, 1, 1, 1) IIIIY

(1, 0, 0, 0) IXIII

(1, 0, 0, 1) IIIZI

(1, 0, 1, 0) ZIIII

(1, 0, 1, 1) Y IIII

(1, 1, 0, 0) IIXII

(1, 1, 0, 1) IY III

(1, 1, 1, 0) IIY II

(1, 1, 1, 1) IIIY I

Table E.1: Look-up table for input errors with weight-1 corrections (i.e., the usual LUT) for the J5, 1, 3K
code. This is the same as Table 3.1, and is reproduced here for convenience. The syndrome corresponds

to measuring the generators XZZXI, IXZZX, XIXZZ, and ZXIXZ, in this order. Equivalent

weight-1 corrections are omitted because they are the same as the correction in the second column.
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Flagged stabilizer measurement

outcome (first subround)

Syndrome from unflagged

stabilizer measurement

(second subround)

Correction Equivalent

minimum-

weight

correction

((0, 1), (−,−), (−,−), (−,−)), or,
((1, 1), (−,−), (−,−), (−,−))

(0, 1, 0, 0) IIZXI IIZXI

(1, 1, 0, 0) IXZXI XY III

(1, 0, 0, 1) IY ZXI XXIII

(0, 0, 0, 1) IZZXI XIIII

(0, 1, 1, 0) IIIXI IIIXI

(1, 0, 1, 0) IIXXI IIXXI

(1, 0, 0, 0) IIY XI IIY XI

((1, 0), (−,−), (−,−), (−,−)) Usual LUT with weight-1 corrections (Table E.1)

((0, 0), (0, 1), (−,−), (−,−)), or,
((0, 0), (1, 1), (−,−), (−,−))

(1, 0, 1, 0) IIIZX IIIZX

(0, 1, 1, 0) IIXZX XIIIY

(0, 1, 0, 0) IIY ZX IXXII

(1, 0, 0, 0) IIZZX IXIII

(0, 0, 1, 1) IIIIX IIIIX

(0, 1, 0, 1) IIIXX IIIXX

(1, 1, 0, 0) IIIY X IIIY X

((0, 0), (1, 0), (−,−), (−,−)) Usual LUT with weight-1 corrections (Table E.1)

((0, 0), (0, 0), (0, 1), (−,−)), or,
((0, 0), (0, 0), (1, 1), (−,−))

(1, 1, 0, 1) IIIZZ IIIZZ

(0, 0, 0, 1) IIXZZ XIIII

(0, 0, 1, 1) IIY ZZ XIZII

(1, 1, 1, 1) IIZZZ IXIIY

(0, 1, 0, 0) IIIIZ IIIIZ

(0, 0, 1, 0) IIIXZ IIIXZ

(1, 0, 1, 1) IIIY Z IIIY Z

((0, 0), (0, 0), (1, 0), (−,−)) Usual LUT with weight-1 corrections (Table E.1)

((0, 0), (0, 0), (0, 0), (0, 1)), or,
((0, 0), (0, 0), (0, 0), (1, 1))

(0, 0, 1, 0) IIIXZ IIIXZ

(1, 0, 1, 0) IXIXZ ZIIII

(1, 1, 1, 1) IY IXZ ZZIII

(0, 1, 1, 1) IZIXZ ZY III

(0, 1, 0, 0) IIIIZ IIIIZ

(1, 0, 1, 1) IIIY Z IIIY Z

(1, 1, 0, 1) IIIZZ IIIZZ

((0, 0), (0, 0), (0, 0), (1, 0)) Usual LUT with weight-1 corrections (Table E.1)

Table E.2: Composite LUT for the flag fault tolerance protocol for the J5, 1, 3K code (Fig. 4.4), for the

flagged circuits shown in Fig. 4.2 and Fig. 4.5.
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Syndrome Correction

(0, 0, 0) None

(0, 0, 1) ZIIIIII

(0, 1, 0) IZIIIII

(0, 1, 1) IIZIIII

(1, 0, 0) IIIZIII

(1, 0, 1) IIIIZII

(1, 1, 0) IIIIIZI

(1, 1, 1) IIIIIIZ

Table E.3: Look-up table for input errors with weight-1 Z corrections (i.e., the usual LUT) for the Steane

code. This can be derived analogously as Table 3.2. The syndrome corresponds to measuring the

generators IIIXXXX, IXXIIXX and XIXIXIX, in this order. Equivalent weight-1 corrections are
omitted because they are the same as the correction in the second column.

Syndrome Correction

(0, 0, 0) None

(0, 0, 1) XIIIIII

(0, 1, 0) IXIIIII

(0, 1, 1) IIXIIII

(1, 0, 0) IIIXIII

(1, 0, 1) IIIIXII

(1, 1, 0) IIIIIXI

(1, 1, 1) IIIIIIX

Table E.4: Look-up table for input errors with weight-1 X corrections (i.e., the usual LUT) for the Steane

code. This is the same as Table 3.2, and is reproduced here for convenience. The syndrome corresponds

to measuring the generators IIIZZZZ, IZZIIZZ and ZIZIZIZ, in this order. Equivalent weight-1
corrections are omitted because they are the same as the correction in the second column.
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Flagged stabilizer measurement outcome (first

subround)

Syndrome from

unflagged X-type

stabilizer

measurement

(second subround)

Z Correction Equivalent

minimum-

weight Z
correction

((0, 1), (−,−), (−,−), (−,−), (−,−), (−,−)), or,
((1, 1), (−,−), (−,−), (−,−), (−,−), (−,−))

Usual LUT with weight-1 Z corrections (Table E.3)

((1, 0), (−,−), (−,−), (−,−), (−,−), (−,−)) Usual LUT with weight-1 Z corrections (Table E.3)

((0, 0), (0, 1), (−,−), (−,−), (−,−), (−,−)), or,
((0, 0), (1, 1), (−,−), (−,−), (−,−), (−,−))

Usual LUT with weight-1 Z corrections (Table E.3)

((0, 0), (1, 0), (−,−), (−,−), (−,−), (−,−)) Usual LUT with weight-1 Z corrections (Table E.3)

((0, 0), (0, 0), (0, 1), (−,−), (−,−), (−,−)), or,
((0, 0), (0, 0), (1, 1), (−,−), (−,−), (−,−))

Usual LUT with weight-1 Z corrections (Table E.3)

((0, 0), (0, 0), (1, 0), (−,−), (−,−), (−,−)) Usual LUT with weight-1 Z corrections (Table E.3)

((0, 0), (0, 0), (0, 0), (0, 1), (−,−), (−,−)), or,
((0, 0), (0, 0), (0, 0), (1, 1), (−,−), (−,−))

(0, 0, 1) IIIIIZZ IIIIIZZ

(1, 0, 0) IIIIZZZ IIIZIII

(1, 1, 1) IIIIIIZ IIIIIIZ

((0, 0), (0, 0), (0, 0), (1, 0), (−,−), (−,−)) Usual LUT with weight-1 Z corrections (Table E.3)

((0, 0), (0, 0), (0, 0), (0, 0), (0, 1), (−,−)), or,
((0, 0), (0, 0), (0, 0), (0, 0), (1, 1), (−,−))

(0, 0, 1) IIIIIZZ IIIIIZZ

(0, 1, 0) IIZIIZZ IZIIIII

(1, 1, 1) IIIIIIZ IIIIIIZ

((0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (−,−)) Usual LUT with weight-1 Z corrections (Table E.3)

((0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 1)), or,
((0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 1))

(0, 0, 1) IIZIZIZ ZIIIIII

(0, 1, 0) IIIIZIZ IIIIZIZ

(1, 1, 1) IIIIIIZ IIIIIIZ

((0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0)) Usual LUT with weight-1 Z corrections (Table E.3)

Table E.5: Composite LUT for Z corrections for the flag fault tolerance protocol for the Steane code (Fig.

4.6), for the flagged circuits shown in Fig. 4.7. This table needs to be used with Table E.6 to correct all

weight-1 input errors or errors resulting from a single fault.



103

Flagged stabilizer measurement outcome (first

subround)

Syndrome from

unflagged Z-type
stabilizer

measurement

(second subround)

X Correction Equivalent

minimum-

weight X
correction

((0, 1), (−,−), (−,−), (−,−), (−,−), (−,−)), or,
((1, 1), (−,−), (−,−), (−,−), (−,−), (−,−))

(0, 0, 1) IIIIIXX IIIIIXX

(1, 0, 0) IIIIXXX IIIXIII

(1, 1, 1) IIIIIIX IIIIIIX

((1, 0), (−,−), (−,−), (−,−), (−,−), (−,−)) Usual LUT with weight-1 X corrections (Table E.4)

((0, 0), (0, 1), (−,−), (−,−), (−,−), (−,−)), or,
((0, 0), (1, 1), (−,−), (−,−), (−,−), (−,−))

(0, 0, 1) IIIIIXX IIIIIXX

(0, 1, 0) IIXIIXX IXIIIII

(1, 1, 1) IIIIIIX IIIIIIX

((0, 0), (1, 0), (−,−), (−,−), (−,−), (−,−)) Usual LUT with weight-1 X corrections (Table E.4)

((0, 0), (0, 0), (0, 1), (−,−), (−,−), (−,−)), or,
((0, 0), (0, 0), (1, 1), (−,−), (−,−), (−,−))

(0, 0, 1) IIXIXIX XIIIIII

(0, 1, 0) IIIIXIX IIIIXIX

(1, 1, 1) IIIIIIX IIIIIIX

((0, 0), (0, 0), (1, 0), (−,−), (−,−), (−,−)) Usual LUT with weight-1 X corrections (Table E.4)

((0, 0), (0, 0), (0, 0), (0, 1), (−,−), (−,−)), or,
((0, 0), (0, 0), (0, 0), (1, 1), (−,−), (−,−))

Usual LUT with weight-1 X corrections (Table E.4)

((0, 0), (0, 0), (0, 0), (1, 0), (−,−), (−,−)) Usual LUT with weight-1 X corrections (Table E.4)

((0, 0), (0, 0), (0, 0), (0, 0), (0, 1), (−,−)), or,
((0, 0), (0, 0), (0, 0), (0, 0), (1, 1), (−,−))

Usual LUT with weight-1 X corrections (Table E.4)

((0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (−,−)) Usual LUT with weight-1 X corrections (Table E.4)

((0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 1)), or,
((0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 1))

Usual LUT with weight-1 X corrections (Table E.4)

((0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0)) Usual LUT with weight-1 X corrections (Table E.4)

Table E.6: Composite LUT for X corrections for the flag fault tolerance protocol for the Steane code (Fig.

4.6), for the flagged circuits shown in Fig. 4.7. This table needs to be used with Table E.5 to correct all

weight-1 input errors or errors resulting from a single fault.
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Flagged stabilizer measurement

outcome (first subround)

Syndrome from unflagged

stabilizer measurement

(second subround)

Correction Equivalent

minimum-

weight

correction

((0, 1), (−,−), (−,−), (−,−)), or,
((1, 1), (−,−), (−,−), (−,−))

(0, 0, 1) IIZXI IIZXI

(1, 0, 1) IXZXI XY III

(1, 1, 0) IY ZXI XXIII

(0, 1, 0) IZZXI XIIII

(0, 1, 1) IIIXI IIIXI

(1, 1, 1) IIXXI IIXXI

(1, 0, 0) IIY XI IIY XI

((1, 0), (−,−), (−,−), (−,−)) Usual LUT with weight-1 corrections (Table E.1)

((0, 0), (0, 1), (−,−), (−,−)), or,
((0, 0), (1, 1), (−,−), (−,−))

(0, 0, 1) IIIZX IIIZX

(1, 0, 1) IIXZX IXY II

(1, 1, 0) IIY ZX IXXII

(0, 1, 0) IIZZX IXIII

(0, 1, 1) IIIIX IIIIX

(1, 1, 1) IIIXX IIIXX

(1, 0, 0) IIIY X IIIY X

((0, 0), (1, 0), (−,−), (−,−)) Usual LUT with weight-1 corrections (Table E.1)

((0, 0), (0, 0), (0, 1), (−,−)), or,
((0, 0), (0, 0), (1, 1), (−,−))

(0, 0, 1) IIIZZ IIIZZ

(0, 1, 1) IIXZZ XIIII

(1, 0, 1) IIY ZZ XIZII

(1, 1, 1) IIZZZ XIY II

(0, 1, 0) IIIIZ IIIIZ

(1, 1, 0) IIIXZ IIIXZ

(1, 0, 0) IIIY Z IIIY Z

((0, 0), (0, 0), (1, 0), (−,−)) Usual LUT with weight-1 corrections (Table E.1)

((0, 0), (0, 0), (0, 0), (0, 1)), or,
((0, 0), (0, 0), (0, 0), (1, 1))

(0, 0, 1) IIIXZ IIIXZ

(0, 1, 1) IXIXZ ZIIII

(1, 1, 1) IY IXZ ZZIII

(1, 0, 1) IZIXZ ZY III

(0, 1, 0) IIIIZ IIIIZ

(1, 0, 0) IIIY Z IIIY Z

(1, 1, 0) IIIZZ IIIZZ

((0, 0), (0, 0), (0, 0), (1, 0)) Usual LUT with weight-1 corrections (Table E.1)

Table E.7: Composite LUT for the split-and-diagnose protocol for the J5, 1, 3K code (reduced unflagged

measurements for f = 1 branches, Fig. 5.5), for the flagged circuits shown in Fig. 4.2 and Fig. 4.5.
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Flagged stabilizer measurement outcome (first

subround)

Syndrome from

unflagged stabilizer

measurement

(second subround)

Correction Equivalent

minimum-

weight

correction

((0, 1), (−,−), (−,−), (−,−), (−,−), (−,−)), or,
((1, 1), (−,−), (−,−), (−,−), (−,−), (−,−))

(0, 0, 1) IIIIIXX IIIIIXX

(0, 1, 0) IIIIXXX IIIXIII

(1, 1, 1) IIIIY XX IIIXZII

(1, 0, 1) IIIIZXX IIIXY II

(0, 1, 1) IIIIIIX IIIIIIX

(1, 0, 0) IIIIIY X IIIIIY X

(1, 1, 0) IIIIIZX IIIIIZX

((1, 0), (−,−), (−,−), (−,−), (−,−), (−,−))

(1, 0, 0, 0) IIIZIII IIIZIII

(1, 0, 1, 0) IIIIZII IIIIZII

(1, 1, 0, 0) IIIIIZI IIIIIZI

(1, 1, 1, 0) IIIIIIZ IIIIIIZ

(1, 0, 0, 1) IIIY III IIIY III

(1, 0, 1, 1) IIIIY II IIIIY II

(1, 1, 0, 1) IIIIIY I IIIIIY I

(1, 1, 1, 1) IIIIIIY IIIIIIY

((0, 0), (0, 1), (−,−), (−,−), (−,−), (−,−)), or,
((0, 0), (1, 1), (−,−), (−,−), (−,−), (−,−))

(0, 0, 1) IIIIIXX IIIIIXX

(0, 1, 0) IIXIIXX IXIIIII

(1, 1, 1) IIY IIXX IXZIIII

(1, 0, 1) IIZIIXX IXY IIII

(0, 1, 1) IIIIIIX IIIIIIX

(1, 0, 0) IIIIIY X IIIIIY X

(1, 1, 0) IIIIIZX IIIIIZX

((0, 0), (1, 0), (−,−), (−,−), (−,−), (−,−))

(0, 1, 0, 0) IZIIIII IZIIIII

(0, 1, 1, 0) IIZIIII IIZIIII

(1, 1, 0, 0) IIIIIZI IIIIIZI

(1, 1, 1, 0) IIIIIIZ IIIIIIZ

(0, 1, 0, 1) IY IIIII IY IIIII

(0, 1, 1, 1) IIY IIII IIY IIII

(1, 1, 0, 1) IIIIIY I IIIIIY I

(1, 1, 1, 1) IIIIIIY IIIIIIY

((0, 0), (0, 0), (0, 1), (−,−), (−,−), (−,−)), or,
((0, 0), (0, 0), (1, 1), (−,−), (−,−), (−,−))

(0, 0, 1) IIIIXIX IIIIXIX

(0, 1, 0) IIXIXIX XIIIIII

(1, 1, 1) IIY IXIX XIZIIII

(1, 0, 1) IIZIXIX XIY IIII

(0, 1, 1) IIIIIIX IIIIIIX

(1, 0, 0) IIIIY IX IIIIY IX

(1, 1, 0) IIIIZIX IIIIZIX

((0, 0), (0, 0), (1, 0), (−,−), (−,−), (−,−))

(0, 0, 1, 0) ZIIIIII ZIIIIII

(0, 1, 1, 0) IIZIIII IIZIIII

(1, 0, 1, 0) IIIIZII IIIIZII

(1, 1, 1, 0) IIIIIIZ IIIIIIZ

(0, 0, 1, 1) Y IIIIII Y IIIIII

(0, 1, 1, 1) IIY IIII IIY IIII

(1, 0, 1, 1) IIIIY II IIIIY II

(1, 1, 1, 1) IIIIIIY IIIIIIY

Table E.8: Composite LUT for the split-and-diagnose protocol for the Steane code (reduced unflagged

measurements for f = 1 as well as (s, f) = (1, 0) branches, Fig. 5.6), for the flagged circuits shown in Fig.

4.7. This is the first half of the table, with the remainder being in Table E.9.
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Flagged stabilizer measurement outcome (first

subround)

Syndrome from

unflagged stabilizer

measurement

(second subround)

Correction Equivalent

minimum-

weight

correction

((0, 0), (0, 0), (0, 0), (0, 1), (−,−), (−,−)), or,
((0, 0), (0, 0), (0, 0), (1, 1), (−,−), (−,−))

(0, 0, 1) IIIIIZZ IIIIIZZ

(1, 0, 1) IIIIXZZ IIIZY II

(1, 1, 1) IIIIY ZZ IIIZXII

(0, 1, 0) IIIIZZZ IIIZIII

(0, 1, 1) IIIIIIZ IIIIIIZ

(1, 1, 0) IIIIIXZ IIIIIXZ

(1, 0, 0) IIIIIY Z IIIIIY Z

((0, 0), (0, 0), (0, 0), (1, 0), (−,−), (−,−))

(1, 0, 0, 0) IIIXIII IIIXIII

(1, 0, 1, 0) IIIIXII IIIIXII

(1, 1, 0, 0) IIIIIXI IIIIIXI

(1, 1, 1, 0) IIIIIIX IIIIIIX

(1, 0, 0, 1) IIIY III IIIY III

(1, 0, 1, 1) IIIIY II IIIIY II

(1, 1, 0, 1) IIIIIY I IIIIIY I

(1, 1, 1, 1) IIIIIIY IIIIIIY

((0, 0), (0, 0), (0, 0), (0, 0), (0, 1), (−,−)), or,
((0, 0), (0, 0), (0, 0), (0, 0), (1, 1), (−,−))

(0, 0, 1) IIIIIZZ IIIIIZZ

(1, 0, 1) IIXIIZZ IZY IIII

(1, 1, 1) IIY IIZZ IZXIIII

(0, 1, 0) IIZIIZZ IZIIIII

(0, 1, 1) IIIIIIZ IIIIIIZ

(1, 1, 0) IIIIIXZ IIIIIXZ

(1, 0, 0) IIIIIY Z IIIIIY Z

((0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (−,−))

(0, 1, 0, 0) IXIIIII IXIIIII

(0, 1, 1, 0) IIXIIII IIXIIII

(1, 1, 0, 0) IIIIIXI IIIIIXI

(1, 1, 1, 0) IIIIIIX IIIIIIX

(0, 1, 0, 1) IY IIIII IY IIIII

(0, 1, 1, 1) IIY IIII IIY IIII

(1, 1, 0, 1) IIIIIY I IIIIIY I

(1, 1, 1, 1) IIIIIIY IIIIIIY

((0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 1)), or,
((0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 1))

(0, 0, 1) IIIIZIZ IIIIZIZ

(1, 0, 1) IIXIZIZ ZIY IIII

(1, 1, 1) IIY IZIZ ZIXIIII

(0, 1, 0) IIZIZIZ ZIIIIII

(0, 1, 1) IIIIIIZ IIIIIIZ

(1, 1, 0) IIIIXIZ IIIIXIZ

(1, 0, 0) IIIIY IZ IIIIY IZ

((0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0))

(0, 0, 1, 0) XIIIIII XIIIIII

(0, 1, 1, 0) IIXIIII IIXIIII

(1, 0, 1, 0) IIIIXII IIIIXII

(1, 1, 1, 0) IIIIIIX IIIIIIX

(0, 0, 1, 1) Y IIIIII Y IIIIII

(0, 1, 1, 1) IIY IIII IIY IIII

(1, 0, 1, 1) IIIIY II IIIIY II

(1, 1, 1, 1) IIIIIIY IIIIIIY

Table E.9: (Continued) Composite LUT for the split-and-diagnose protocol for the Steane code (reduced

unflagged measurements for f = 1 as well as (s, f) = (1, 0) branches, Fig. 5.6), for the flagged circuits

shown in Fig. 4.7. This is the second half of the table, with the remainder being in Table E.8.
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Flagged stabilizer measurement outcome (first

subround)

Syndrome from

unflagged X-type

stabilizer

measurement

(second subround)

Z Correction Equivalent

minimum-

weight Z
correction

((0, 1), (−,−), (−,−)), or,
((1, 1), (−,−), (−,−))

(0, 0, 1) IIIIIZZ IIIIIZZ

(0, 1, 0) IIZIIZZ IZIIIII

(1, 0, 1) IIIZIZZ IIIIZII

(1, 0, 0) IIIIZZZ IIIZIII

(1, 1, 1) IIIIIIZ IIIIIIZ

((1, 0), (−,−), (−,−)) Usual LUT with weight-1 Z corrections (Table E.3)

((0, 0), (0, 1), (−,−)), or,
((0, 0), (1, 1), (−,−))

(0, 1, 1) IIZIIII IIZIIII

(1, 0, 0) IIIZIII IIIZIII

(0, 0, 1) IIIIIZZ IIIIIZZ

(1, 1, 1) IIIIIIZ IIIIIIZ

((0, 0), (1, 0), (−,−)) Usual LUT with weight-1 Z corrections (Table E.3)

((0, 0), (0, 0), (0, 1)), or,
((0, 0), (0, 0), (1, 1))

(0, 0, 1) IIZZIZI ZIIIIII

(0, 1, 1) IZZZIZI ZZIIIII

(0, 1, 0) IIIZIZI IIIZIZI

(1, 1, 0) IIIIIZI IIIIIZI

((0, 0), (0, 0), (1, 0)) Usual LUT with weight-1 Z corrections (Table E.3)

Table E.10: Composite LUT for Z corrections for the detect-and-diagnose protocol for the Steane code

(reduced flagged measurements, Fig. 5.7), for the flagged circuits shown in Fig. 5.8. This table needs to

be used with Table E.11 to correct all weight-1 input errors or errors resulting from a single fault.

Flagged stabilizer measurement outcome (first

subround)

Syndrome from

unflagged Z-type
stabilizer

measurement

(second subround)

X Correction Equivalent

minimum-

weight X
correction

((0, 1), (−,−), (−,−)), or,
((1, 1), (−,−), (−,−))

(0, 1, 1) IIXXXXX IIXIIII

(1, 0, 0) IIIIXXX IIIXIII

(0, 0, 1) IIIIIXX IIIIIXX

(1, 1, 1) IIIIIIX IIIIIIX

((1, 0), (−,−), (−,−)) Usual LUT with weight-1 X corrections (Table E.4)

((0, 0), (0, 1), (−,−)), or,
((0, 0), (1, 1), (−,−))

(0, 1, 0) IIIXIXI IIIXIXI

(0, 0, 1) IIXXIXI XIIIIII

(1, 1, 0) IIIIIXI IIIIIXI

(0, 1, 1) IIIIXXI

((0, 0), (1, 0), (−,−)) Usual LUT with weight-1 X corrections (Table E.4)

((0, 0), (0, 0), (0, 1)), or,
((0, 0), (0, 0), (1, 1))

(0, 1, 0) IIXXXII IXIIIII

(0, 0, 1) IIIXXII IIIXXII

(1, 0, 1) IIIIXII IIIIXII

((0, 0), (0, 0), (1, 0)) Usual LUT with weight-1 X corrections (Table E.4)

Table E.11: Composite LUT for X corrections for the detect-and-diagnose protocol for the Steane code

(reduced flagged measurements, Fig. 5.7), for the flagged circuits shown in Fig. 5.8. This table needs to

be used with Table E.10 to correct all weight-1 input errors or errors resulting from a single fault.
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Split-and-Diagnose-Style Stabilizer

Sequences

This section presents the reduced stabilizer sequences for f = 1 branches, which yield unique and nontrivial
syndromes for errors which trigger the flag, obtained by computer search for the split-and-diagnose-style

flag protocol for the J5, 1, 3K code and the Steane code.

J5, 1, 3K code
The stabilizer sequences are tabulated separately for the f = 1 branches resulting from the 4 flagged

measurements, in Tables F.1-F.8. In the f = 1 branch following the ith flaggedmeasurement, i ∈ {1, 2, 3, 4},
the stabilizers Si,1 and Si,2 are measured, followed by Si,2,1 if Si,2 gives the outcome 0, or Si,2,2 if Si,2

gives the outcome 1.
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S1,1 S1,2 S1,2,1 Possible choices for S1,2,2

XZZXI Y XXY I IXZZX XIXZZ, ZXIXZ, IZY Y Z, Y Y ZIZ

XZZXI Y XXY I XY IY X XIXZZ, ZXIXZ, IZY Y Z, Y Y ZIZ

XZZXI Y XXY I XXY IY XIXZZ, ZXIXZ, IZY Y Z, Y Y ZIZ

XZZXI Y XXY I ZIZY Y XIXZZ, ZXIXZ, IZY Y Z, Y Y ZIZ

XZZXI Y XXY I IY XXY XIXZZ, ZXIXZ, IZY Y Z, Y Y ZIZ

XZZXI Y XXY I Y ZIZY XIXZZ, ZXIXZ, IZY Y Z, Y Y ZIZ

XZZXI Y XXY I Y IY XX XIXZZ, ZXIXZ, IZY Y Z, Y Y ZIZ

XZZXI Y XXY I ZZXIX XIXZZ, ZXIXZ, IZY Y Z, Y Y ZIZ

XZZXI ZY Y ZI XXY IY IXZZX, XY IY X, Y IY XX, ZZXIX

XZZXI ZY Y ZI ZIZY Y IXZZX, XY IY X, Y IY XX, ZZXIX

XZZXI ZY Y ZI IY XXY IXZZX, XY IY X, Y IY XX, ZZXIX

XZZXI ZY Y ZI Y ZIZY IXZZX, XY IY X, Y IY XX, ZZXIX

IZY Y Z Y Y ZIZ IXZZX XY IY X, XXY IY , ZIZY Y , ZZXIX

IZY Y Z Y Y ZIZ IY XXY XY IY X, XXY IY , ZIZY Y , ZZXIX

IZY Y Z Y Y ZIZ Y ZIZY XY IY X, XXY IY , ZIZY Y , ZZXIX

IZY Y Z Y Y ZIZ Y IY XX XY IY X, XXY IY , ZIZY Y , ZZXIX

IZY Y Z Y XXY I IXZZX XZZXI, XIXZZ, ZXIXZ, ZY Y ZI

IZY Y Z Y XXY I XY IY X XZZXI, XIXZZ, ZXIXZ, ZY Y ZI

IZY Y Z Y XXY I XXY IY XZZXI, XIXZZ, ZXIXZ, ZY Y ZI

IZY Y Z Y XXY I ZIZY Y XZZXI, XIXZZ, ZXIXZ, ZY Y ZI

Table F.1: Reduced, adaptive stabilizer sequences obtained by computer search, which yield unique and

nontrivial syndromes, for the f = 1 branches resulting from the first flagged stabilizer measurement

(XZZXI) for the J5, 1, 3K code. Refer to Sec. 7. The particular sequences derived analytically in the

protocol in Fig. 5.5 are coloured in red. Continued in Table F.2.
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S1,1 S1,2 S1,2,1 Possible choices for S1,2,2

IZY Y Z Y XXY I IY XXY XZZXI, XIXZZ, ZXIXZ, ZY Y ZI

IZY Y Z Y XXY I Y ZIZY XZZXI, XIXZZ, ZXIXZ, ZY Y ZI

IZY Y Z Y XXY I Y IY XX XZZXI, XIXZZ, ZXIXZ, ZY Y ZI

IZY Y Z Y XXY I ZZXIX XZZXI, XIXZZ, ZXIXZ, ZY Y ZI

Y Y ZIZ IZY Y Z XY IY X IXZZX, IY XXY , Y ZIZY , Y IY XX

Y Y ZIZ IZY Y Z XXY IY IXZZX, IY XXY , Y ZIZY , Y IY XX

Y Y ZIZ IZY Y Z ZIZY Y IXZZX, IY XXY , Y ZIZY , Y IY XX

Y Y ZIZ IZY Y Z ZZXIX IXZZX, IY XXY , Y ZIZY , Y IY XX

Y Y ZIZ Y XXY I IXZZX XZZXI, XIXZZ, ZXIXZ, ZY Y ZI

Y Y ZIZ Y XXY I XY IY X XZZXI, XIXZZ, ZXIXZ, ZY Y ZI

Y Y ZIZ Y XXY I XXY IY XZZXI, XIXZZ, ZXIXZ, ZY Y ZI

Y Y ZIZ Y XXY I ZIZY Y XZZXI, XIXZZ, ZXIXZ, ZY Y ZI

Y Y ZIZ Y XXY I IY XXY XZZXI, XIXZZ, ZXIXZ, ZY Y ZI

Y Y ZIZ Y XXY I Y ZIZY XZZXI, XIXZZ, ZXIXZ, ZY Y ZI

Y Y ZIZ Y XXY I Y IY XX XZZXI, XIXZZ, ZXIXZ, ZY Y ZI

Y Y ZIZ Y XXY I ZZXIX XZZXI, XIXZZ, ZXIXZ, ZY Y ZI

Y XXY I XZZXI IXZZX XXY IY , ZIZY Y , IY XXY , Y ZIZY

Y XXY I XZZXI XY IY X XXY IY , ZIZY Y , IY XXY , Y ZIZY

Y XXY I XZZXI Y IY XX XXY IY , ZIZY Y , IY XXY , Y ZIZY

Y XXY I XZZXI ZZXIX XXY IY , ZIZY Y , IY XXY , Y ZIZY

Y XXY I IZY Y Z XY IY X IXZZX, IY XXY , Y ZIZY , Y IY XX

YXXY I IZY Y Z XXY IY IXZZX, IY XXY , Y ZIZY , Y IY XX

YXXY I IZY Y Z ZIZY Y IXZZX, IY XXY , Y ZIZY , Y IY XX

YXXY I IZY Y Z ZZXIX IXZZX, IY XXY , Y ZIZY , Y IY XX

YXXY I Y Y ZIZ IXZZX XY IY X, XXY IY , ZIZY Y , ZZXIX

Y XXY I Y Y ZIZ IY XXY XY IY X, XXY IY , ZIZY Y , ZZXIX

Y XXY I Y Y ZIZ Y ZIZY XY IY X, XXY IY , ZIZY Y , ZZXIX

Y XXY I Y Y ZIZ Y IY XX XY IY X, XXY IY , ZIZY Y , ZZXIX

Y XXY I ZY Y ZI XXY IY IXZZX, XY IY X, Y IY XX, ZZXIX

Y XXY I ZY Y ZI ZIZY Y IXZZX, XY IY X, Y IY XX, ZZXIX

Y XXY I ZY Y ZI IY XXY IXZZX, XY IY X, Y IY XX, ZZXIX

Y XXY I ZY Y ZI Y ZIZY IXZZX, XY IY X, Y IY XX, ZZXIX

ZY Y ZI XZZXI IXZZX XXY IY , ZIZY Y , IY XXY , Y ZIZY

ZY Y ZI XZZXI XY IY X XXY IY , ZIZY Y , IY XXY , Y ZIZY

ZY Y ZI XZZXI Y IY XX XXY IY , ZIZY Y , IY XXY , Y ZIZY

ZY Y ZI XZZXI ZZXIX XXY IY , ZIZY Y , IY XXY , Y ZIZY

ZY Y ZI Y XXY I IXZZX XIXZZ, ZXIXZ, IZY Y Z, Y Y ZIZ

ZY Y ZI Y XXY I XY IY X XIXZZ, ZXIXZ, IZY Y Z, Y Y ZIZ

ZY Y ZI Y XXY I XXY IY XIXZZ, ZXIXZ, IZY Y Z, Y Y ZIZ

ZY Y ZI Y XXY I ZIZY Y XIXZZ, ZXIXZ, IZY Y Z, Y Y ZIZ

ZY Y ZI Y XXY I IY XXY XIXZZ, ZXIXZ, IZY Y Z, Y Y ZIZ

ZY Y ZI Y XXY I Y ZIZY XIXZZ, ZXIXZ, IZY Y Z, Y Y ZIZ

ZY Y ZI Y XXY I Y IY XX XIXZZ, ZXIXZ, IZY Y Z, Y Y ZIZ

ZY Y ZI Y XXY I ZZXIX XIXZZ, ZXIXZ, IZY Y Z, Y Y ZIZ

Table F.2: Continued from Table F.1.
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S2,1 S2,2 S2,2,1 Possible choices for S2,2,2

IXZZX IZY Y Z Y Y ZIZ XZZXI, XIXZZ, XY IY X, XXY IY

IXZZX IZY Y Z Y XXY I XZZXI, XIXZZ, XY IY X, XXY IY

IXZZX IZY Y Z Y ZIZY XZZXI, XIXZZ, XY IY X, XXY IY

IXZZX IZY Y Z Y IY XX XZZXI, XIXZZ, XY IY X, XXY IY

IXZZX IY XXY XZZXI ZXIXZ, ZIZY Y , ZY Y ZI, ZZXIX

IXZZX IY XXY XIXZZ ZXIXZ, ZIZY Y , ZY Y ZI, ZZXIX

IXZZX IY XXY XY IY X ZXIXZ, ZIZY Y , ZY Y ZI, ZZXIX

IXZZX IY XXY Y Y ZIZ ZXIXZ, ZIZY Y , ZY Y ZI, ZZXIX

IXZZX IY XXY XXY IY ZXIXZ, ZIZY Y , ZY Y ZI, ZZXIX

IXZZX IY XXY Y XXY I ZXIXZ, ZIZY Y , ZY Y ZI, ZZXIX

IXZZX IY XXY Y ZIZY ZXIXZ, ZIZY Y , ZY Y ZI, ZZXIX

IXZZX IY XXY Y IY XX ZXIXZ, ZIZY Y , ZY Y ZI, ZZXIX

IZY Y Z IXZZX XZZXI Y Y ZIZ, Y XXY I, Y ZIZY , Y IY XX

IZY Y Z IXZZX XIXZZ Y Y ZIZ, Y XXY I, Y ZIZY , Y IY XX

IZY Y Z IXZZX XY IY X Y Y ZIZ, Y XXY I, Y ZIZY , Y IY XX

IZY Y Z IXZZX XXY IY Y Y ZIZ, Y XXY I, Y ZIZY , Y IY XX

IZY Y Z IY XXY XZZXI ZXIXZ, ZIZY Y , ZY Y ZI, ZZXIX

IZY Y Z IY XXY XIXZZ ZXIXZ, ZIZY Y , ZY Y ZI, ZZXIX

IZY Y Z IY XXY XY IY X ZXIXZ, ZIZY Y , ZY Y ZI, ZZXIX

IZY Y Z IY XXY Y Y ZIZ ZXIXZ, ZIZY Y , ZY Y ZI, ZZXIX

IZY Y Z IY XXY XXY IY ZXIXZ, ZIZY Y , ZY Y ZI, ZZXIX

IZY Y Z IY XXY Y XXY I ZXIXZ, ZIZY Y , ZY Y ZI, ZZXIX

IZY Y Z IY XXY Y ZIZY ZXIXZ, ZIZY Y , ZY Y ZI, ZZXIX

IZY Y Z IY XXY Y IY XX ZXIXZ, ZIZY Y , ZY Y ZI, ZZXIX

ZIZY Y IY XXY XZZXI IXZZX, ZXIXZ, IZY Y Z, ZZXIX

ZIZY Y IY XXY XIXZZ IXZZX, ZXIXZ, IZY Y Z, ZZXIX

ZIZY Y IY XXY XY IY X IXZZX, ZXIXZ, IZY Y Z, ZZXIX

ZIZY Y IY XXY Y Y ZIZ IXZZX, ZXIXZ, IZY Y Z, ZZXIX

ZIZY Y IY XXY XXY IY IXZZX, ZXIXZ, IZY Y Z, ZZXIX

ZIZY Y IY XXY Y XXY I IXZZX, ZXIXZ, IZY Y Z, ZZXIX

ZIZY Y IY XXY Y ZIZY IXZZX, ZXIXZ, IZY Y Z, ZZXIX

ZIZY Y IY XXY Y IY XX IXZZX, ZXIXZ, IZY Y Z, ZZXIX

Table F.3: Reduced, adaptive stabilizer sequences obtained by computer search, which yield unique and

nontrivial syndromes, for the f = 1 branches resulting from the second flagged stabilizer measurement

(IXZZX) for the J5, 1, 3K code. Refer to Sec. 7. The particular sequences derived analytically in the

protocol in Fig. 5.5 are coloured in red. Continued in Table F.4.
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S2,1 S2,2 S2,2,1 Possible choices for S2,2,2

ZIZY Y ZY Y ZI XIXZZ XZZXI, XXY IY , Y XXY I, Y ZIZY

ZIZY Y ZY Y ZI XY IY X XZZXI, XXY IY , Y XXY I, Y ZIZY

ZIZY Y ZY Y ZI Y Y ZIZ XZZXI, XXY IY , Y XXY I, Y ZIZY

ZIZY Y ZY Y ZI Y IY XX XZZXI, XXY IY , Y XXY I, Y ZIZY

IY XXY IXZZX XZZXI Y Y ZIZ, Y XXY I, Y ZIZY , Y IY XX

IY XXY IXZZX XIXZZ Y Y ZIZ, Y XXY I, Y ZIZY , Y IY XX

IY XXY IXZZX XY IY X Y Y ZIZ, Y XXY I, Y ZIZY , Y IY XX

IY XXY IXZZX XXY IY Y Y ZIZ, Y XXY I, Y ZIZY , Y IY XX

IY XXY IZY Y Z Y Y ZIZ XZZXI, XIXZZ, XY IY X, XXY IY

IY XXY IZY Y Z Y XXY I XZZXI, XIXZZ, XY IY X, XXY IY

IY XXY IZY Y Z Y ZIZY XZZXI, XIXZZ, XY IY X, XXY IY

IY XXY IZY Y Z Y IY XX XZZXI, XIXZZ, XY IY X, XXY IY

IY XXY ZIZY Y XZZXI XIXZZ, XY IY X, Y Y ZIZ, Y IY XX

IY XXY ZIZY Y XXY IY XIXZZ, XY IY X, Y Y ZIZ, Y IY XX

IY XXY ZIZY Y Y XXY I XIXZZ, XY IY X, Y Y ZIZ, Y IY XX

IY XXY ZIZY Y Y ZIZY XIXZZ, XY IY X, Y Y ZIZ, Y IY XX

IY XXY ZY Y ZI XIXZZ XZZXI, XXY IY , Y XXY I, Y ZIZY

IY XXY ZY Y ZI XY IY X XZZXI, XXY IY , Y XXY I, Y ZIZY

IY XXY ZY Y ZI Y Y ZIZ XZZXI, XXY IY , Y XXY I, Y ZIZY

IY XXY ZY Y ZI Y IY XX XZZXI, XXY IY , Y XXY I, Y ZIZY

ZY Y ZI ZIZY Y XZZXI XIXZZ, XY IY X, Y Y ZIZ, Y IY XX

ZY Y ZI ZIZY Y XXY IY XIXZZ, XY IY X, Y Y ZIZ, Y IY XX

ZY Y ZI ZIZY Y Y XXY I XIXZZ, XY IY X, Y Y ZIZ, Y IY XX

ZY Y ZI ZIZY Y Y ZIZY XIXZZ, XY IY X, Y Y ZIZ, Y IY XX

ZY Y ZI IY XXY XZZXI IXZZX, ZXIXZ, IZY Y Z, ZZXIX

ZY Y ZI IY XXY XIXZZ IXZZX, ZXIXZ, IZY Y Z, ZZXIX

ZY Y ZI IY XXY XY IY X IXZZX, ZXIXZ, IZY Y Z, ZZXIX

ZY Y ZI IY XXY Y Y ZIZ IXZZX, ZXIXZ, IZY Y Z, ZZXIX

ZY Y ZI IY XXY XXY IY IXZZX, ZXIXZ, IZY Y Z, ZZXIX

ZY Y ZI IY XXY Y XXY I IXZZX, ZXIXZ, IZY Y Z, ZZXIX

ZY Y ZI IY XXY Y ZIZY IXZZX, ZXIXZ, IZY Y Z, ZZXIX

ZY Y ZI IY XXY Y IY XX IXZZX, ZXIXZ, IZY Y Z, ZZXIX

Table F.4: Continued from Table F.3.
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S3,1 S3,2 S3,2,1 Possible choices for S3,2,2

XIXZZ ZIZY Y XZZXI XY IY X, Y Y ZIZ, IY XXY , ZY Y ZI

XIXZZ ZIZY Y IXZZX XY IY X, Y Y ZIZ, IY XXY , ZY Y ZI

XIXZZ ZIZY Y ZXIXZ XY IY X, Y Y ZIZ, IY XXY , ZY Y ZI

XIXZZ ZIZY Y IZY Y Z XY IY X, Y Y ZIZ, IY XXY , ZY Y ZI

XIXZZ ZIZY Y XXY IY XY IY X, Y Y ZIZ, IY XXY , ZY Y ZI

XIXZZ ZIZY Y Y XXY I XY IY X, Y Y ZIZ, IY XXY , ZY Y ZI

XIXZZ ZIZY Y Y ZIZY XY IY X, Y Y ZIZ, IY XXY , ZY Y ZI

XIXZZ ZIZY Y ZZXIX XY IY X, Y Y ZIZ, IY XXY , ZY Y ZI

XIXZZ Y IY XX XZZXI IXZZX, ZXIXZ, XXY IY , Y XXY I

XIXZZ Y IY XX IZY Y Z IXZZX, ZXIXZ, XXY IY , Y XXY I

XIXZZ Y IY XX Y ZIZY IXZZX, ZXIXZ, XXY IY , Y XXY I

XIXZZ Y IY XX ZZXIX IXZZX, ZXIXZ, XXY IY , Y XXY I

ZIZY Y XIXZZ IXZZX XZZXI, IZY Y Z, Y ZIZY , ZZXIX

ZIZY Y XIXZZ ZXIXZ XZZXI, IZY Y Z, Y ZIZY , ZZXIX

ZIZY Y XIXZZ XXY IY XZZXI, IZY Y Z, Y ZIZY , ZZXIX

ZIZY Y XIXZZ Y XXY I XZZXI, IZY Y Z, Y ZIZY , ZZXIX

ZIZY Y IY XXY XZZXI IXZZX, ZXIXZ, IZY Y Z, ZZXIX

ZIZY Y IY XXY XXY IY IXZZX, ZXIXZ, IZY Y Z, ZZXIX

ZIZY Y IY XXY Y XXY I IXZZX, ZXIXZ, IZY Y Z, ZZXIX

ZIZY Y IY XXY Y ZIZY IXZZX, ZXIXZ, IZY Y Z, ZZXIX

ZIZY Y ZY Y ZI IXZZX XZZXI, XXY IY , Y XXY I, Y ZIZY

ZIZY Y ZY Y ZI ZXIXZ XZZXI, XXY IY , Y XXY I, Y ZIZY

ZIZY Y ZY Y ZI IZY Y Z XZZXI, XXY IY , Y XXY I, Y ZIZY

ZIZY Y ZY Y ZI ZZXIX XZZXI, XXY IY , Y XXY I, Y ZIZY

ZIZY Y Y IY XX XZZXI IXZZX, ZXIXZ, XXY IY , Y XXY I

ZIZY Y Y IY XX IZY Y Z IXZZX, ZXIXZ, XXY IY , Y XXY I

ZIZY Y Y IY XX Y ZIZY IXZZX, ZXIXZ, XXY IY , Y XXY I

ZIZY Y Y IY XX ZZXIX IXZZX, ZXIXZ, XXY IY , Y XXY I

IY XXY ZIZY Y XZZXI XIXZZ, XY IY X, Y Y ZIZ, Y IY XX

IY XXY ZIZY Y IXZZX XIXZZ, XY IY X, Y Y ZIZ, Y IY XX

IY XXY ZIZY Y ZXIXZ XIXZZ, XY IY X, Y Y ZIZ, Y IY XX

IY XXY ZIZY Y IZY Y Z XIXZZ, XY IY X, Y Y ZIZ, Y IY XX

Table F.5: Reduced, adaptive stabilizer sequences obtained by computer search, which yield unique and

nontrivial syndromes, for the f = 1 branches resulting from the third flagged stabilizer measurement

(XIXZZ) for the J5, 1, 3K code. Refer to Sec. 7. The particular sequences derived analytically in the

protocol in Fig. 5.5 are coloured in red. Continued in Table F.6.
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S3,1 S3,2 S3,2,1 Possible choices for S3,2,2

IY XXY ZIZY Y XXY IY XIXZZ, XY IY X, Y Y ZIZ, Y IY XX

IY XXY ZIZY Y Y XXY I XIXZZ, XY IY X, Y Y ZIZ, Y IY XX

IY XXY ZIZY Y Y ZIZY XIXZZ, XY IY X, Y Y ZIZ, Y IY XX

IY XXY ZIZY Y ZZXIX XIXZZ, XY IY X, Y Y ZIZ, Y IY XX

IY XXY ZY Y ZI IXZZX XZZXI, XXY IY , Y XXY I, Y ZIZY

IY XXY ZY Y ZI ZXIXZ XZZXI, XXY IY , Y XXY I, Y ZIZY

IY XXY ZY Y ZI IZY Y Z XZZXI, XXY IY , Y XXY I, Y ZIZY

IY XXY ZY Y ZI ZZXIX XZZXI, XXY IY , Y XXY I, Y ZIZY

ZY Y ZI ZIZY Y XZZXI XIXZZ, XY IY X, Y Y ZIZ, Y IY XX

ZY Y ZI ZIZY Y IXZZX XIXZZ, XY IY X, Y Y ZIZ, Y IY XX

ZY Y ZI ZIZY Y ZXIXZ XIXZZ, XY IY X, Y Y ZIZ, Y IY XX

ZY Y ZI ZIZY Y IZY Y Z XIXZZ, XY IY X, Y Y ZIZ, Y IY XX

ZY Y ZI ZIZY Y XXY IY XIXZZ, XY IY X, Y Y ZIZ, Y IY XX

ZY Y ZI ZIZY Y Y XXY I XIXZZ, XY IY X, Y Y ZIZ, Y IY XX

ZY Y ZI ZIZY Y Y ZIZY XIXZZ, XY IY X, Y Y ZIZ, Y IY XX

ZY Y ZI ZIZY Y ZZXIX XIXZZ, XY IY X, Y Y ZIZ, Y IY XX

ZY Y ZI IY XXY XZZXI IXZZX, ZXIXZ, IZY Y Z, ZZXIX

ZY Y ZI IY XXY XXY IY IXZZX, ZXIXZ, IZY Y Z, ZZXIX

ZY Y ZI IY XXY Y XXY I IXZZX, ZXIXZ, IZY Y Z, ZZXIX

ZY Y ZI IY XXY Y ZIZY IXZZX, ZXIXZ, IZY Y Z, ZZXIX

Y IY XX XIXZZ IXZZX XZZXI, IZY Y Z, Y ZIZY , ZZXIX

Y IY XX XIXZZ ZXIXZ XZZXI, IZY Y Z, Y ZIZY , ZZXIX

Y IY XX XIXZZ XXY IY XZZXI, IZY Y Z, Y ZIZY , ZZXIX

Y IY XX XIXZZ Y XXY I XZZXI, IZY Y Z, Y ZIZY , ZZXIX

Y IY XX ZIZY Y XZZXI XY IY X, Y Y ZIZ, IY XXY , ZY Y ZI

Y IY XX ZIZY Y IXZZX XY IY X, Y Y ZIZ, IY XXY , ZY Y ZI

Y IY XX ZIZY Y ZXIXZ XY IY X, Y Y ZIZ, IY XXY , ZY Y ZI

Y IY XX ZIZY Y IZY Y Z XY IY X, Y Y ZIZ, IY XXY , ZY Y ZI

Y IY XX ZIZY Y XXY IY XY IY X, Y Y ZIZ, IY XXY , ZY Y ZI

Y IY XX ZIZY Y Y XXY I XY IY X, Y Y ZIZ, IY XXY , ZY Y ZI

Y IY XX ZIZY Y Y ZIZY XY IY X, Y Y ZIZ, IY XXY , ZY Y ZI

Y IY XX ZIZY Y ZZXIX XY IY X, Y Y ZIZ, IY XXY , ZY Y ZI

Table F.6: Continued from Table F.5.
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S4,1 S4,2 S4,2,1 Possible choices for S4,2,2

XZZXI IXZZX YXXY I XIXZZ, IZY Y Z, XXY IY , IY XXY

XZZXI IXZZX ZY Y ZI XIXZZ, IZY Y Z, XXY IY , IY XXY

XZZXI IXZZX Y IY XX XIXZZ, IZY Y Z, XXY IY , IY XXY

XZZXI IXZZX ZZXIX XIXZZ, IZY Y Z, XXY IY , IY XXY

XZZXI XY IY X XIXZZ ZXIXZ, Y Y ZIZ, ZIZY Y , Y ZIZY

XZZXI XY IY X IZY Y Z ZXIXZ, Y Y ZIZ, ZIZY Y , Y ZIZY

XZZXI XY IY X XXY IY ZXIXZ, Y Y ZIZ, ZIZY Y , Y ZIZY

XZZXI XY IY X Y XXY I ZXIXZ, Y Y ZIZ, ZIZY Y , Y ZIZY

XZZXI XY IY X IY XXY ZXIXZ, Y Y ZIZ, ZIZY Y , Y ZIZY

XZZXI XY IY X ZY Y ZI ZXIXZ, Y Y ZIZ, ZIZY Y , Y ZIZY

XZZXI XY IY X Y IY XX ZXIXZ, Y Y ZIZ, ZIZY Y , Y ZIZY

XZZXI XY IY X ZZXIX ZXIXZ, Y Y ZIZ, ZIZY Y , Y ZIZY

IXZZX XZZXI XIXZZ Y XXY I, ZY Y ZI, Y IY XX, ZZXIX

IXZZX XZZXI IZY Y Z Y XXY I, ZY Y ZI, Y IY XX, ZZXIX

IXZZX XZZXI XXY IY Y XXY I, ZY Y ZI, Y IY XX, ZZXIX

IXZZX XZZXI IY XXY Y XXY I, ZY Y ZI, Y IY XX, ZZXIX

IXZZX XY IY X XIXZZ ZXIXZ, Y Y ZIZ, ZIZY Y , Y ZIZY

IXZZX XY IY X IZY Y Z ZXIXZ, Y Y ZIZ, ZIZY Y , Y ZIZY

IXZZX XY IY X XXY IY ZXIXZ, Y Y ZIZ, ZIZY Y , Y ZIZY

IXZZX XY IY X Y XXY I ZXIXZ, Y Y ZIZ, ZIZY Y , Y ZIZY

IXZZX XY IY X IY XXY ZXIXZ, Y Y ZIZ, ZIZY Y , Y ZIZY

IXZZX XY IY X ZY Y ZI ZXIXZ, Y Y ZIZ, ZIZY Y , Y ZIZY

IXZZX XY IY X Y IY XX ZXIXZ, Y Y ZIZ, ZIZY Y , Y ZIZY

IXZZX XY IY X ZZXIX ZXIXZ, Y Y ZIZ, ZIZY Y , Y ZIZY

ZXIXZ XY IY X XIXZZ XZZXI, IXZZX, Y Y ZIZ, ZIZY Y

ZXIXZ XY IY X IZY Y Z XZZXI, IXZZX, Y Y ZIZ, ZIZY Y

ZXIXZ XY IY X XXY IY XZZXI, IXZZX, Y Y ZIZ, ZIZY Y

ZXIXZ XY IY X Y XXY I XZZXI, IXZZX, Y Y ZIZ, ZIZY Y

ZXIXZ XY IY X IY XXY XZZXI, IXZZX, Y Y ZIZ, ZIZY Y

ZXIXZ XY IY X ZY Y ZI XZZXI, IXZZX, Y Y ZIZ, ZIZY Y

ZXIXZ XY IY X Y IY XX XZZXI, IXZZX, Y Y ZIZ, ZIZY Y

ZXIXZ XY IY X ZZXIX XZZXI, IXZZX, Y Y ZIZ, ZIZY Y

Table F.7: Reduced, adaptive stabilizer sequences obtained by computer search, which yield unique and

nontrivial syndromes, for the f = 1 branches resulting from the fourth flagged stabilizer measurement

(ZXIXZ) for the J5, 1, 3K code. Refer to Sec. 7. The particular sequences derived analytically in the

protocol in Fig. 5.5 are coloured in red. Continued in Table F.8.
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S4,1 S4,2 S4,2,1 Possible choices for S4,2,2

ZXIXZ Y ZIZY IZY Y Z XIXZZ, Y XXY I, IY XXY , ZZXIX

ZXIXZ Y ZIZY XXY IY XIXZZ, Y XXY I, IY XXY , ZZXIX

ZXIXZ Y ZIZY ZY Y ZI XIXZZ, Y XXY I, IY XXY , ZZXIX

ZXIXZ Y ZIZY Y IY XX XIXZZ, Y XXY I, IY XXY , ZZXIX

XY IY X XZZXI XIXZZ Y XXY I, ZY Y ZI, Y IY XX, ZZXIX

XY IY X XZZXI IZY Y Z Y XXY I, ZY Y ZI, Y IY XX, ZZXIX

XY IY X XZZXI XXY IY Y XXY I, ZY Y ZI, Y IY XX, ZZXIX

XY IY X XZZXI IY XXY Y XXY I, ZY Y ZI, Y IY XX, ZZXIX

XY IY X IXZZX YXXY I XIXZZ, IZY Y Z, XXY IY , IY XXY

XY IY X IXZZX ZY Y ZI XIXZZ, IZY Y Z, XXY IY , IY XXY

XY IY X IXZZX Y IY XX XIXZZ, IZY Y Z, XXY IY , IY XXY

XY IY X IXZZX ZZXIX XIXZZ, IZY Y Z, XXY IY , IY XXY

XY IY X ZXIXZ XIXZZ IZY Y Z, XXY IY , ZY Y ZI, Y IY XX

XY IY X ZXIXZ Y XXY I IZY Y Z, XXY IY , ZY Y ZI, Y IY XX

XY IY X ZXIXZ IY XXY IZY Y Z, XXY IY , ZY Y ZI, Y IY XX

XY IY X ZXIXZ ZZXIX IZY Y Z, XXY IY , ZY Y ZI, Y IY XX

XY IY X Y ZIZY IZY Y Z XIXZZ, Y XXY I, IY XXY , ZZXIX

XY IY X Y ZIZY XXY IY XIXZZ, Y XXY I, IY XXY , ZZXIX

XY IY X Y ZIZY ZY Y ZI XIXZZ, Y XXY I, IY XXY , ZZXIX

XY IY X Y ZIZY Y IY XX XIXZZ, Y XXY I, IY XXY , ZZXIX

Y ZIZY ZXIXZ XIXZZ IZY Y Z, XXY IY , ZY Y ZI, Y IY XX

Y ZIZY ZXIXZ Y XXY I IZY Y Z, XXY IY , ZY Y ZI, Y IY XX

Y ZIZY ZXIXZ IY XXY IZY Y Z, XXY IY , ZY Y ZI, Y IY XX

Y ZIZY ZXIXZ ZZXIX IZY Y Z, XXY IY , ZY Y ZI, Y IY XX

Y ZIZY XY IY X XIXZZ XZZXI, IXZZX, Y Y ZIZ, ZIZY Y

Y ZIZY XY IY X IZY Y Z XZZXI, IXZZX, Y Y ZIZ, ZIZY Y

Y ZIZY XY IY X XXY IY XZZXI, IXZZX, Y Y ZIZ, ZIZY Y

Y ZIZY XY IY X Y XXY I XZZXI, IXZZX, Y Y ZIZ, ZIZY Y

Y ZIZY XY IY X IY XXY XZZXI, IXZZX, Y Y ZIZ, ZIZY Y

Y ZIZY XY IY X ZY Y ZI XZZXI, IXZZX, Y Y ZIZ, ZIZY Y

Y ZIZY XY IY X Y IY XX XZZXI, IXZZX, Y Y ZIZ, ZIZY Y

Y ZIZY XY IY X ZZXIX XZZXI, IXZZX, Y Y ZIZ, ZIZY Y

Table F.8: Continued from Table F.7.
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Steane code
The reduced, adaptive stabilizer sequences are tabulated separately for the f = 1 branches resulting from

the 6 flagged measurements, in Tables F.9-F.14. The search is restricted to weight-4 stabilizers, with the

notation presented in in Sec. 7.

S1,1 S1,2 S1,2,1 Possible choices for S1,2,2

IIIXXXX IIIZZZZ Y IY IY IY IZZIIZZ, ZIZIZIZ, IZZZZII, ZIZZIZI

IIIXXXX IIIZZZZ Y IY Y IY I IZZIIZZ, ZIZIZIZ, IZZZZII, ZIZZIZI

IIIXXXX IIIY Y Y Y ZIZIZIZ IY Y IIY Y , Y IY IY IY , IY Y Y Y II, Y IY Y IY I

IIIXXXX IIIY Y Y Y ZIZZIZI IY Y IIY Y , Y IY IY IY , IY Y Y Y II, Y IY Y IY I

XXIIXXI IIIZZZZ Y IY IY IY IZZIIZZ, ZIZIZIZ, IZZZZII, ZIZZIZI

XXIIXXI IIIZZZZ Y IY Y IY I IZZIIZZ, ZIZIZIZ, IZZZZII, ZIZZIZI

XXIIXXI IIIY Y Y Y ZIZIZIZ IY Y IIY Y , Y IY IY IY , IY Y Y Y II, Y IY Y IY I

XXIIXXI IIIY Y Y Y ZIZZIZI IY Y IIY Y , Y IY IY IY , IY Y Y Y II, Y IY Y IY I

IIIZZZZ IIIXXXX ZIZIZIZ IXXIIXX, XIXIXIX, IXXXXII, XIXXIXI

IIIZZZZ IIIXXXX ZIZZIZI IXXIIXX, XIXIXIX, IXXXXII, XIXXIXI

IIIZZZZ IIIXXXX Y IY IY IY IXXIIXX, XIXIXIX, IXXXXII, XIXXIXI

IIIZZZZ IIIXXXX Y IY Y IY I IXXIIXX, XIXIXIX, IXXXXII, XIXXIXI

IIIZZZZ XXIIXXI ZIZIZIZ IXXIIXX, XIXIXIX, IXXXXII, XIXXIXI

IIIZZZZ XXIIXXI ZIZZIZI IXXIIXX, XIXIXIX, IXXXXII, XIXXIXI

IIIZZZZ XXIIXXI Y IY IY IY IXXIIXX, XIXIXIX, IXXXXII, XIXXIXI

IIIZZZZ XXIIXXI Y IY Y IY I IXXIIXX, XIXIXIX, IXXXXII, XIXXIXI

IIIZZZZ IIIY Y Y Y ZIZIZIZ IY Y IIY Y , Y IY IY IY , IY Y Y Y II, Y IY Y IY I

IIIZZZZ IIIY Y Y Y ZIZZIZI IY Y IIY Y , Y IY IY IY , IY Y Y Y II, Y IY Y IY I

IIIY Y Y Y IIIXXXX ZIZIZIZ IXXIIXX, XIXIXIX, IXXXXII, XIXXIXI

IIIY Y Y Y IIIXXXX ZIZZIZI IXXIIXX, XIXIXIX, IXXXXII, XIXXIXI

IIIY Y Y Y IIIXXXX Y IY IY IY IXXIIXX, XIXIXIX, IXXXXII, XIXXIXI

IIIY Y Y Y IIIXXXX Y IY Y IY I IXXIIXX, XIXIXIX, IXXXXII, XIXXIXI

IIIY Y Y Y XXIIXXI ZIZIZIZ IXXIIXX, XIXIXIX, IXXXXII, XIXXIXI

IIIY Y Y Y XXIIXXI ZIZZIZI IXXIIXX, XIXIXIX, IXXXXII, XIXXIXI

IIIY Y Y Y XXIIXXI Y IY IY IY IXXIIXX, XIXIXIX, IXXXXII, XIXXIXI

IIIY Y Y Y XXIIXXI Y IY Y IY I IXXIIXX, XIXIXIX, IXXXXII, XIXXIXI

IIIY Y Y Y IIIZZZZ Y IY IY IY IZZIIZZ, ZIZIZIZ, IZZZZII, ZIZZIZI

IIIY Y Y Y IIIZZZZ Y IY Y IY I IZZIIZZ, ZIZIZIZ, IZZZZII, ZIZZIZI

Table F.9: Reduced, adaptive stabilizer sequences obtained by computer search, which yield unique and

nontrivial syndromes, for the f = 1 branches resulting from the first flagged stabilizer measurement

(IIIXXXX) for the Steane code. Refer to Sec. 7 The particular sequences derived analytically in the

protocol in Fig. 5.6 are coloured in red.
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S2,1 S2,2 S2,2,1 Possible choices for S2,2,2

IXXIIXX IZZIIZZ Y IY IY IY IIIZZZZ, ZIZIZIZ, IZZZZII, ZZIIZZI

IXXIIXX IZZIIZZ Y Y IIY Y I IIIZZZZ, ZIZIZIZ, IZZZZII, ZZIIZZI

IXXIIXX IY Y IIY Y ZIZIZIZ IIIY Y Y Y , Y IY IY IY , IY Y Y Y II, Y Y IIY Y I

IXXIIXX IY Y IIY Y ZZIIZZI IIIY Y Y Y , Y IY IY IY , IY Y Y Y II, Y Y IIY Y I

XIXXIXI IZZIIZZ Y IY IY IY IIIZZZZ, ZIZIZIZ, IZZZZII, ZZIIZZI

XIXXIXI IZZIIZZ Y Y IIY Y I IIIZZZZ, ZIZIZIZ, IZZZZII, ZZIIZZI

XIXXIXI IY Y IIY Y ZIZIZIZ IIIY Y Y Y , Y IY IY IY , IY Y Y Y II, Y Y IIY Y I

XIXXIXI IY Y IIY Y ZZIIZZI IIIY Y Y Y , Y IY IY IY , IY Y Y Y II, Y Y IIY Y I

IZZIIZZ IXXIIXX ZIZIZIZ IIIXXXX, XIXIXIX, IXXXXII, XXIIXXI

IZZIIZZ IXXIIXX ZZIIZZI IIIXXXX, XIXIXIX, IXXXXII, XXIIXXI

IZZIIZZ IXXIIXX Y IY IY IY IIIXXXX, XIXIXIX, IXXXXII, XXIIXXI

IZZIIZZ IXXIIXX Y Y IIY Y I IIIXXXX, XIXIXIX, IXXXXII, XXIIXXI

IZZIIZZ XIXXIXI ZIZIZIZ IIIXXXX, XIXIXIX, IXXXXII, XXIIXXI

IZZIIZZ XIXXIXI ZZIIZZI IIIXXXX, XIXIXIX, IXXXXII, XXIIXXI

IZZIIZZ XIXXIXI Y IY IY IY IIIXXXX, XIXIXIX, IXXXXII, XXIIXXI

IZZIIZZ XIXXIXI Y Y IIY Y I IIIXXXX, XIXIXIX, IXXXXII, XXIIXXI

IZZIIZZ IY Y IIY Y ZIZIZIZ IIIY Y Y Y , Y IY IY IY , IY Y Y Y II, Y Y IIY Y I

IZZIIZZ IY Y IIY Y ZZIIZZI IIIY Y Y Y , Y IY IY IY , IY Y Y Y II, Y Y IIY Y I

IY Y IIY Y IXXIIXX ZIZIZIZ IIIXXXX, XIXIXIX, IXXXXII, XXIIXXI

IY Y IIY Y IXXIIXX ZZIIZZI IIIXXXX, XIXIXIX, IXXXXII, XXIIXXI

IY Y IIY Y IXXIIXX Y IY IY IY IIIXXXX, XIXIXIX, IXXXXII, XXIIXXI

IY Y IIY Y IXXIIXX Y Y IIY Y I IIIXXXX, XIXIXIX, IXXXXII, XXIIXXI

IY Y IIY Y XIXXIXI ZIZIZIZ IIIXXXX, XIXIXIX, IXXXXII, XXIIXXI

IY Y IIY Y XIXXIXI ZZIIZZI IIIXXXX, XIXIXIX, IXXXXII, XXIIXXI

IY Y IIY Y XIXXIXI Y IY IY IY IIIXXXX, XIXIXIX, IXXXXII, XXIIXXI

IY Y IIY Y XIXXIXI Y Y IIY Y I IIIXXXX, XIXIXIX, IXXXXII, XXIIXXI

IY Y IIY Y IZZIIZZ Y IY IY IY IIIZZZZ, ZIZIZIZ, IZZZZII, ZZIIZZI

IY Y IIY Y IZZIIZZ Y Y IIY Y I IIIZZZZ, ZIZIZIZ, IZZZZII, ZZIIZZI

Table F.10: Reduced, adaptive stabilizer sequences obtained by computer search, which yield unique

and nontrivial syndromes, for the f = 1 branches resulting from the second flagged stabilizer

measurement (IXXIIXX) for the Steane code. Refer to Sec. 7. The particular sequences derived

analytically in the protocol in Fig. 5.6 are coloured in red.
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S3,1 S3,2 S3,2,1 Possible choices for S3,2,2

XIXIXIX ZIZIZIZ IY Y IIY Y IIIZZZZ, IZZIIZZ, ZIZZIZI, ZZIIZZI

XIXIXIX ZIZIZIZ Y Y IIY Y I IIIZZZZ, IZZIIZZ, ZIZZIZI, ZZIIZZI

XIXIXIX Y IY IY IY IZZIIZZ IIIY Y Y Y , IY Y IIY Y , Y IY Y IY I, Y Y IIY Y I

XIXIXIX Y IY IY IY ZZIIZZI IIIY Y Y Y , IY Y IIY Y , Y IY Y IY I, Y Y IIY Y I

IXXXXII ZIZIZIZ IY Y IIY Y IIIZZZZ, IZZIIZZ, ZIZZIZI, ZZIIZZI

IXXXXII ZIZIZIZ Y Y IIY Y I IIIZZZZ, IZZIIZZ, ZIZZIZI, ZZIIZZI

IXXXXII Y IY IY IY IZZIIZZ IIIY Y Y Y , IY Y IIY Y , Y IY Y IY I, Y Y IIY Y I

IXXXXII Y IY IY IY ZZIIZZI IIIY Y Y Y , IY Y IIY Y , Y IY Y IY I, Y Y IIY Y I

ZIZIZIZ XIXIXIX IZZIIZZ IIIXXXX, IXXIIXX, XIXXIXI, XXIIXXI

ZIZIZIZ XIXIXIX ZZIIZZI IIIXXXX, IXXIIXX, XIXXIXI, XXIIXXI

ZIZIZIZ XIXIXIX IY Y IIY Y IIIXXXX, IXXIIXX, XIXXIXI, XXIIXXI

ZIZIZIZ XIXIXIX Y Y IIY Y I IIIXXXX, IXXIIXX, XIXXIXI, XXIIXXI

ZIZIZIZ IXXXXII IZZIIZZ IIIXXXX, IXXIIXX, XIXXIXI, XXIIXXI

ZIZIZIZ IXXXXII ZZIIZZI IIIXXXX, IXXIIXX, XIXXIXI, XXIIXXI

ZIZIZIZ IXXXXII IY Y IIY Y IIIXXXX, IXXIIXX, XIXXIXI, XXIIXXI

ZIZIZIZ IXXXXII Y Y IIY Y I IIIXXXX, IXXIIXX, XIXXIXI, XXIIXXI

ZIZIZIZ Y IY IY IY IZZIIZZ IIIY Y Y Y , IY Y IIY Y , Y IY Y IY I, Y Y IIY Y I

ZIZIZIZ Y IY IY IY ZZIIZZI IIIY Y Y Y , IY Y IIY Y , Y IY Y IY I, Y Y IIY Y I

Y IY IY IY XIXIXIX IZZIIZZ IIIXXXX, IXXIIXX, XIXXIXI, XXIIXXI

Y IY IY IY XIXIXIX ZZIIZZI IIIXXXX, IXXIIXX, XIXXIXI, XXIIXXI

Y IY IY IY XIXIXIX IY Y IIY Y IIIXXXX, IXXIIXX, XIXXIXI, XXIIXXI

Y IY IY IY XIXIXIX Y Y IIY Y I IIIXXXX, IXXIIXX, XIXXIXI, XXIIXXI

Y IY IY IY IXXXXII IZZIIZZ IIIXXXX, IXXIIXX, XIXXIXI, XXIIXXI

Y IY IY IY IXXXXII ZZIIZZI IIIXXXX, IXXIIXX, XIXXIXI, XXIIXXI

Y IY IY IY IXXXXII IY Y IIY Y IIIXXXX, IXXIIXX, XIXXIXI, XXIIXXI

Y IY IY IY IXXXXII Y Y IIY Y I IIIXXXX, IXXIIXX, XIXXIXI, XXIIXXI

Y IY IY IY ZIZIZIZ IY Y IIY Y IIIZZZZ, IZZIIZZ, ZIZZIZI, ZZIIZZI

Y IY IY IY ZIZIZIZ Y Y IIY Y I IIIZZZZ, IZZIIZZ, ZIZZIZI, ZZIIZZI

Table F.11: Reduced, adaptive stabilizer sequences obtained by computer search, which yield unique

and nontrivial syndromes, for the f = 1 branches resulting from the first flagged stabilizer measurement

(XIXIXIX) for the Steane code. Refer to Sec. 7. The particular sequences derived analytically in the

protocol in Fig. 5.6 are coloured in red.
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S4,1 S4,2 S4,2,1 Possible choices for S4,2,2

IIIXXXX IIIZZZZ XIXIXIX IZZIIZZ, ZIZIZIZ, IZZZZII, ZIZZIZI

IIIXXXX IIIZZZZ XIXXIXI IZZIIZZ, ZIZIZIZ, IZZZZII, ZIZZIZI

IIIXXXX IIIZZZZ Y IY IY IY IZZIIZZ, ZIZIZIZ, IZZZZII, ZIZZIZI

IIIXXXX IIIZZZZ Y IY Y IY I IZZIIZZ, ZIZIZIZ, IZZZZII, ZIZZIZI

IIIXXXX ZZIIZZI XIXIXIX IZZIIZZ, ZIZIZIZ, IZZZZII, ZIZZIZI

IIIXXXX ZZIIZZI XIXXIXI IZZIIZZ, ZIZIZIZ, IZZZZII, ZIZZIZI

IIIXXXX ZZIIZZI Y IY IY IY IZZIIZZ, ZIZIZIZ, IZZZZII, ZIZZIZI

IIIXXXX ZZIIZZI Y IY Y IY I IZZIIZZ, ZIZIZIZ, IZZZZII, ZIZZIZI

IIIXXXX IIIY Y Y Y XIXIXIX IY Y IIY Y , Y IY IY IY , IY Y Y Y II, Y IY Y IY I

IIIXXXX IIIY Y Y Y XIXXIXI IY Y IIY Y , Y IY IY IY , IY Y Y Y II, Y IY Y IY I

IIIZZZZ IIIXXXX Y IY IY IY IXXIIXX, XIXIXIX, IXXXXII, XIXXIXI

IIIZZZZ IIIXXXX Y IY Y IY I IXXIIXX, XIXIXIX, IXXXXII, XIXXIXI

IIIZZZZ IIIY Y Y Y XIXIXIX IY Y IIY Y , Y IY IY IY , IY Y Y Y II, Y IY Y IY I

IIIZZZZ IIIY Y Y Y XIXXIXI IY Y IIY Y , Y IY IY IY , IY Y Y Y II, Y IY Y IY I

ZZIIZZI IIIXXXX Y IY IY IY IXXIIXX, XIXIXIX, IXXXXII, XIXXIXI

ZZIIZZI IIIXXXX Y IY Y IY I IXXIIXX, XIXIXIX, IXXXXII, XIXXIXI

ZZIIZZI IIIY Y Y Y XIXIXIX IY Y IIY Y , Y IY IY IY , IY Y Y Y II, Y IY Y IY I

ZZIIZZI IIIY Y Y Y XIXXIXI IY Y IIY Y , Y IY IY IY , IY Y Y Y II, Y IY Y IY I

IIIY Y Y Y IIIXXXX Y IY IY IY IXXIIXX, XIXIXIX, IXXXXII, XIXXIXI

IIIY Y Y Y IIIXXXX Y IY Y IY I IXXIIXX, XIXIXIX, IXXXXII, XIXXIXI

IIIY Y Y Y IIIZZZZ XIXIXIX IZZIIZZ, ZIZIZIZ, IZZZZII, ZIZZIZI

IIIY Y Y Y IIIZZZZ XIXXIXI IZZIIZZ, ZIZIZIZ, IZZZZII, ZIZZIZI

IIIY Y Y Y IIIZZZZ Y IY IY IY IZZIIZZ, ZIZIZIZ, IZZZZII, ZIZZIZI

IIIY Y Y Y IIIZZZZ Y IY Y IY I IZZIIZZ, ZIZIZIZ, IZZZZII, ZIZZIZI

IIIY Y Y Y ZZIIZZI XIXIXIX IZZIIZZ, ZIZIZIZ, IZZZZII, ZIZZIZI

IIIY Y Y Y ZZIIZZI XIXXIXI IZZIIZZ, ZIZIZIZ, IZZZZII, ZIZZIZI

IIIY Y Y Y ZZIIZZI Y IY IY IY IZZIIZZ, ZIZIZIZ, IZZZZII, ZIZZIZI

IIIY Y Y Y ZZIIZZI Y IY Y IY I IZZIIZZ, ZIZIZIZ, IZZZZII, ZIZZIZI

Table F.12: Reduced, adaptive stabilizer sequences obtained by computer search, which yield unique

and nontrivial syndromes, for the f = 1 branches resulting from the first flagged stabilizer measurement

(IIIZZZZ) for the Steane code. Refer to Sec 7. The particular sequences derived analytically in the

protocol in Fig. 5.6 are coloured in red.
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S5,1 S5,2 S5,2,1 Possible choices for S5,2,2

IXXIIXX IZZIIZZ XIXIXIX IIIZZZZ, ZIZIZIZ, IZZZZII, ZZIIZZI

IXXIIXX IZZIIZZ XXIIXXI IIIZZZZ, ZIZIZIZ, IZZZZII, ZZIIZZI

IXXIIXX IZZIIZZ Y IY IY IY IIIZZZZ, ZIZIZIZ, IZZZZII, ZZIIZZI

IXXIIXX IZZIIZZ Y Y IIY Y I IIIZZZZ, ZIZIZIZ, IZZZZII, ZZIIZZI

IXXIIXX ZIZZIZI XIXIXIX IIIZZZZ, ZIZIZIZ, IZZZZII, ZZIIZZI

IXXIIXX ZIZZIZI XXIIXXI IIIZZZZ, ZIZIZIZ, IZZZZII, ZZIIZZI

IXXIIXX ZIZZIZI Y IY IY IY IIIZZZZ, ZIZIZIZ, IZZZZII, ZZIIZZI

IXXIIXX ZIZZIZI Y Y IIY Y I IIIZZZZ, ZIZIZIZ, IZZZZII, ZZIIZZI

IXXIIXX IY Y IIY Y XIXIXIX IIIY Y Y Y , Y IY IY IY , IY Y Y Y II, Y Y IIY Y I

IXXIIXX IY Y IIY Y XXIIXXI IIIY Y Y Y , Y IY IY IY , IY Y Y Y II, Y Y IIY Y I

IZZIIZZ IXXIIXX Y IY IY IY IIIXXXX, XIXIXIX, IXXXXII, XXIIXXI

IZZIIZZ IXXIIXX Y Y IIY Y I IIIXXXX, XIXIXIX, IXXXXII, XXIIXXI

IZZIIZZ IY Y IIY Y XIXIXIX IIIY Y Y Y , Y IY IY IY , IY Y Y Y II, Y Y IIY Y I

IZZIIZZ IY Y IIY Y XXIIXXI IIIY Y Y Y , Y IY IY IY , IY Y Y Y II, Y Y IIY Y I

ZIZZIZI IXXIIXX Y IY IY IY IIIXXXX, XIXIXIX, IXXXXII, XXIIXXI

ZIZZIZI IXXIIXX Y Y IIY Y I IIIXXXX, XIXIXIX, IXXXXII, XXIIXXI

ZIZZIZI IY Y IIY Y XIXIXIX IIIY Y Y Y , Y IY IY IY , IY Y Y Y II, Y Y IIY Y I

ZIZZIZI IY Y IIY Y XXIIXXI IIIY Y Y Y , Y IY IY IY , IY Y Y Y II, Y Y IIY Y I

IY Y IIY Y IXXIIXX Y IY IY IY IIIXXXX, XIXIXIX, IXXXXII, XXIIXXI

IY Y IIY Y IXXIIXX Y Y IIY Y I IIIXXXX, XIXIXIX, IXXXXII, XXIIXXI

IY Y IIY Y IZZIIZZ XIXIXIX IIIZZZZ, ZIZIZIZ, IZZZZII, ZZIIZZI

IY Y IIY Y IZZIIZZ XXIIXXI IIIZZZZ, ZIZIZIZ, IZZZZII, ZZIIZZI

IY Y IIY Y IZZIIZZ Y IY IY IY IIIZZZZ, ZIZIZIZ, IZZZZII, ZZIIZZI

IY Y IIY Y IZZIIZZ Y Y IIY Y I IIIZZZZ, ZIZIZIZ, IZZZZII, ZZIIZZI

IY Y IIY Y ZIZZIZI XIXIXIX IIIZZZZ, ZIZIZIZ, IZZZZII, ZZIIZZI

IY Y IIY Y ZIZZIZI XXIIXXI IIIZZZZ, ZIZIZIZ, IZZZZII, ZZIIZZI

IY Y IIY Y ZIZZIZI Y IY IY IY IIIZZZZ, ZIZIZIZ, IZZZZII, ZZIIZZI

IY Y IIY Y ZIZZIZI Y Y IIY Y I IIIZZZZ, ZIZIZIZ, IZZZZII, ZZIIZZI

Table F.13: Reduced, adaptive stabilizer sequences obtained by computer search, which yield unique

and nontrivial syndromes, for the f = 1 branches resulting from the first flagged stabilizer measurement

(IZZIIZZ) for the Steane code. Refer to Sec. 7. The particular sequences derived analytically in the

protocol in Fig. 5.6 are coloured in red.
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S6,1 S6,2 S6,2,1 Possible choices for S6,2,2

XIXIXIX ZIZIZIZ IXXIIXX IIIZZZZ, IZZIIZZ, ZIZZIZI, ZZIIZZI

XIXIXIX ZIZIZIZ XXIIXXI IIIZZZZ, IZZIIZZ, ZIZZIZI, ZZIIZZI

XIXIXIX ZIZIZIZ IY Y IIY Y IIIZZZZ, IZZIIZZ, ZIZZIZI, ZZIIZZI

XIXIXIX ZIZIZIZ Y Y IIY Y I IIIZZZZ, IZZIIZZ, ZIZZIZI, ZZIIZZI

XIXIXIX IZZZZII IXXIIXX IIIZZZZ, IZZIIZZ, ZIZZIZI, ZZIIZZI

XIXIXIX IZZZZII XXIIXXI IIIZZZZ, IZZIIZZ, ZIZZIZI, ZZIIZZI

XIXIXIX IZZZZII IY Y IIY Y IIIZZZZ, IZZIIZZ, ZIZZIZI, ZZIIZZI

XIXIXIX IZZZZII Y Y IIY Y I IIIZZZZ, IZZIIZZ, ZIZZIZI, ZZIIZZI

XIXIXIX Y IY IY IY IXXIIXX IIIY Y Y Y , IY Y IIY Y , Y IY Y IY I, Y Y IIY Y I

XIXIXIX Y IY IY IY XXIIXXI IIIY Y Y Y , IY Y IIY Y , Y IY Y IY I, Y Y IIY Y I

ZIZIZIZ XIXIXIX IY Y IIY Y IIIXXXX, IXXIIXX, XIXXIXI, XXIIXXI

ZIZIZIZ XIXIXIX Y Y IIY Y I IIIXXXX, IXXIIXX, XIXXIXI, XXIIXXI

ZIZIZIZ Y IY IY IY IXXIIXX IIIY Y Y Y , IY Y IIY Y , Y IY Y IY I, Y Y IIY Y I

ZIZIZIZ Y IY IY IY XXIIXXI IIIY Y Y Y , IY Y IIY Y , Y IY Y IY I, Y Y IIY Y I

IZZZZII XIXIXIX IY Y IIY Y IIIXXXX, IXXIIXX, XIXXIXI, XXIIXXI

IZZZZII XIXIXIX Y Y IIY Y I IIIXXXX, IXXIIXX, XIXXIXI, XXIIXXI

IZZZZII Y IY IY IY IXXIIXX IIIY Y Y Y , IY Y IIY Y , Y IY Y IY I, Y Y IIY Y I

IZZZZII Y IY IY IY XXIIXXI IIIY Y Y Y , IY Y IIY Y , Y IY Y IY I, Y Y IIY Y I

Y IY IY IY XIXIXIX IY Y IIY Y IIIXXXX, IXXIIXX, XIXXIXI, XXIIXXI

Y IY IY IY XIXIXIX Y Y IIY Y I IIIXXXX, IXXIIXX, XIXXIXI, XXIIXXI

Y IY IY IY ZIZIZIZ IXXIIXX IIIZZZZ, IZZIIZZ, ZIZZIZI, ZZIIZZI

Y IY IY IY ZIZIZIZ XXIIXXI IIIZZZZ, IZZIIZZ, ZIZZIZI, ZZIIZZI

Y IY IY IY ZIZIZIZ IY Y IIY Y IIIZZZZ, IZZIIZZ, ZIZZIZI, ZZIIZZI

Y IY IY IY ZIZIZIZ Y Y IIY Y I IIIZZZZ, IZZIIZZ, ZIZZIZI, ZZIIZZI

Y IY IY IY IZZZZII IXXIIXX IIIZZZZ, IZZIIZZ, ZIZZIZI, ZZIIZZI

Y IY IY IY IZZZZII XXIIXXI IIIZZZZ, IZZIIZZ, ZIZZIZI, ZZIIZZI

Y IY IY IY IZZZZII IY Y IIY Y IIIZZZZ, IZZIIZZ, ZIZZIZI, ZZIIZZI

Y IY IY IY IZZZZII Y Y IIY Y I IIIZZZZ, IZZIIZZ, ZIZZIZI, ZZIIZZI

Table F.14: Reduced, adaptive stabilizer sequences obtained by computer search, which yield unique

and nontrivial syndromes, for the f = 1 branches resulting from the first flagged stabilizer measurement

(ZIZIZIZ) for the Steane code. Refer to Sec. 7. The particular sequences derived analytically in the

protocol in Fig. 5.6 are coloured in red.
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Detect-and-Diagnose-Style Stabilizer

Sequences

This section presents sequences of 3 high-weight stabilizers of the Steane code, obtained by computer

search, which can detect 1 input error. These may be useful as candidate sequences for detect-and-

diagnose-style flag protocols. These are presented in Tables G.1-G.16. Refer to Sec. 7.

The columns on the left hand side present the actual sequences enclosed in braces and separated

by commas. Sequences resulting from permutations among stabilizers are not counted separately. The

number in parentheses following the stabilizer is the arbitrarily assigned coset number presented in Fig.

7.1. These numbers are presented here so that it may be verified that, for every triplet which satisfies the

criteria, each stabilizer belongs to a different coset, and none belongs to the subgroup of X-type stabilizers

(coset (0)). The columns on the right hand side present the 8-element subgroup of the stabilizer group

generated by each of the sequences on the left (which are organized according to the distinct subgroup

they generate). The weight-6 stabilizers are presented without the negative signs for brevity. The particular

sequence derived analytically for the protocol in Fig. 5.7 is coloured in red (see Table G.9).
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Stabilizer triplets which measure at least 2 different Paulis on every qubit Generated

subgroups

{IXXZZY Y (1), XZY IXZY (2), ZXY XY IZ(3)}, {IXXZZY Y (1), ZIZY XY X(5),
XZY IXZY (2)}, {IXXZZY Y (1), Y Y IXZZX(6), XZY IXZY (2)}, {IXXZZY Y (1),
Y ZXY IXZ(7), XZY IXZY (2)}, {IXXZZY Y (1), ZXY XY IZ(3), XY ZZY XI(4)},
{IXXZZY Y (1), Y Y IXZZX(6), ZXY XY IZ(3)}, {IXXZZY Y (1), Y ZXY IXZ(7),
ZXY XY IZ(3)}, {IXXZZY Y (1), ZIZY XY X(5), XY ZZY XI(4)}, {IXXZZY Y (1),
Y Y IXZZX(6), XY ZZY XI(4)}, {IXXZZY Y (1), Y ZXY IXZ(7), XY ZZY XI(4)},
{IXXZZY Y (1), ZIZY XY X(5), Y Y IXZZX(6)}, {IXXZZY Y (1), ZIZY XY X(5),
Y ZXY IXZ(7)}, {XZY IXZY (2), ZXY XY IZ(3), XY ZZY XI(4)}, {ZIZY XY X(5),
XZY IXZY (2), ZXY XY IZ(3)}, {Y ZXY IXZ(7), XZY IXZY (2), ZXY XY IZ(3)},
{ZIZY XY X(5), XZY IXZY (2), XY ZZY XI(4)}, {Y Y IXZZX(6), XZY IXZY (2),
XY ZZY XI(4)}, {Y ZXY IXZ(7), XZY IXZY (2), XY ZZY XI(4)}, {ZIZY XY X(5),
Y Y IXZZX(6), XZY IXZY (2)}, {Y ZXY IXZ(7), Y Y IXZZX(6), XZY IXZY (2)},
{ZIZY XY X(5), ZXY XY IZ(3), XY ZZY XI(4)}, {Y Y IXZZX(6), ZXY XY IZ(3),
XY ZZY XI(4)}, {ZIZY XY X(5), Y Y IXZZX(6), ZXY XY IZ(3)}, {ZIZY XY X(5),
Y ZXY IXZ(7), ZXY XY IZ(3)}, {Y Y IXZZX(6), Y ZXY IXZ(7), ZXY XY IZ(3)},
{ZIZY XY X(5), Y ZXY IXZ(7), XY ZZY XI(4)}, {Y Y IXZZX(6), Y ZXY IXZ(7),

XY ZZY XI(4)}, {ZIZY XY X(5), Y Y IXZZX(6), Y ZXY IXZ(7)}

{IXXZZY Y,
XY ZZY XI,
XZY IXZY,
Y Y IXZZX,
Y ZXY IXZ,
ZIZY XY X,
ZXY XY IZ,
IIIIIII}

{IXXZZY Y (1), Y IY XZXZ(3), XZY IXZY (2)}, {IXXZZY Y (1), Y XZY IZX(5),
XZY IXZY (2)}, {IXXZZY Y (1), ZZIXY Y X(6), XZY IXZY (2)}, {IXXZZY Y (1),
ZY XY XIZ(7), XZY IXZY (2)}, {IXXZZY Y (1), Y IY XZXZ(3), XY ZZY XI(4)},
{IXXZZY Y (1), Y IY XZXZ(3), ZZIXY Y X(6)}, {IXXZZY Y (1), Y IY XZXZ(3),
ZY XY XIZ(7)}, {IXXZZY Y (1), Y XZY IZX(5), XY ZZY XI(4)}, {IXXZZY Y (1),
ZZIXY Y X(6), XY ZZY XI(4)}, {IXXZZY Y (1), ZY XY XIZ(7), XY ZZY XI(4)},
{IXXZZY Y (1), Y XZY IZX(5), ZZIXY Y X(6)}, {IXXZZY Y (1), Y XZY IZX(5),
ZY XY XIZ(7)}, {Y IY XZXZ(3), XZY IXZY (2), XY ZZY XI(4)}, {Y IY XZXZ(3),
Y XZY IZX(5), XZY IXZY (2)}, {Y IY XZXZ(3), ZY XY XIZ(7), XZY IXZY (2)},
{Y XZY IZX(5), XZY IXZY (2), XY ZZY XI(4)}, {ZZIXY Y X(6), XZY IXZY (2),
XY ZZY XI(4)}, {ZY XYXIZ(7), XZY IXZY (2), XY ZZY XI(4)}, {Y XZY IZX(5),
XZY IXZY (2), ZZIXY Y X(6)}, {ZY XYXIZ(7), ZZIXY Y X(6), XZY IXZY (2)},
{Y IY XZXZ(3), Y XZY IZX(5), XY ZZY XI(4)}, {Y IY XZXZ(3), ZZIXY Y X(6),
XY ZZY XI(4)}, {Y IY XZXZ(3), Y XZY IZX(5), ZZIXY Y X(6)}, {Y IY XZXZ(3),
Y XZY IZX(5), ZY XY XIZ(7)}, {Y IY XZXZ(3), ZZIXY Y X(6), ZY XY XIZ(7)},
{Y XZY IZX(5), ZY XY XIZ(7), XY ZZY XI(4)}, {ZZIXY Y X(6), ZY XY XIZ(7),

XY ZZY XI(4)}, {Y XZY IZX(5), ZY XY XIZ(7), ZZIXY Y X(6)}

{IXXZZY Y,
XY ZZY XI,
XZY IXZY,
Y IY XZXZ,
Y XZY IZX,
ZY XY XIZ,
ZZIXY Y X,
IIIIIII}

{IXXZZY Y (1), ZIZXY XY (3), XZY XIY Z(2)}, {IXXZZY Y (1), ZXY Y XZI(5),
XZY XIY Z(2)}, {IXXZZY Y (1), Y ZXIY ZX(6), XZY XIY Z(2)}, {IXXZZY Y (1),
Y Y IZXXZ(7), XZY XIY Z(2)}, {IXXZZY Y (1), ZIZXY XY (3), XY ZY ZIX(4)},
{IXXZZY Y (1), Y ZXIY ZX(6), ZIZXY XY (3)}, {IXXZZY Y (1), ZIZXY XY (3),
Y Y IZXXZ(7)}, {IXXZZY Y (1), ZXY Y XZI(5), XY ZY ZIX(4)}, {IXXZZY Y (1),
Y ZXIY ZX(6), XY ZY ZIX(4)}, {IXXZZY Y (1), Y Y IZXXZ(7), XY ZY ZIX(4)},
{IXXZZY Y (1), ZXY Y XZI(5), Y ZXIY ZX(6)}, {IXXZZY Y (1), ZXY Y XZI(5),
Y Y IZXXZ(7)}, {ZIZXYXY (3), XY ZY ZIX(4), XZY XIY Z(2)}, {ZXY Y XZI(5),
ZIZXY XY (3), XZY XIY Z(2)}, {ZIZXYXY (3), Y Y IZXXZ(7), XZY XIY Z(2)},
{ZXY Y XZI(5), XY ZY ZIX(4), XZY XIY Z(2)}, {Y ZXIY ZX(6), XY ZY ZIX(4),
XZY XIY Z(2)}, {XY ZY ZIX(4), Y Y IZXXZ(7), XZY XIY Z(2)}, {ZXY Y XZI(5),
Y ZXIY ZX(6), XZY XIY Z(2)}, {Y ZXIY ZX(6), Y Y IZXXZ(7), XZY XIY Z(2)},
{ZXY Y XZI(5), ZIZXY XY (3), XY ZY ZIX(4)}, {Y ZXIY ZX(6), ZIZXY XY (3),
XY ZY ZIX(4)}, {ZXY Y XZI(5), ZIZXY XY (3), Y ZXIY ZX(6)}, {ZXY Y XZI(5),
ZIZXY XY (3), Y Y IZXXZ(7)}, {Y ZXIY ZX(6), ZIZXY XY (3), Y Y IZXXZ(7)},
{ZXY Y XZI(5), Y Y IZXXZ(7), XY ZY ZIX(4)}, {Y ZXIY ZX(6), Y Y IZXXZ(7),

XY ZY ZIX(4)}, {ZXY Y XZI(5), Y Y IZXXZ(7), Y ZXIY ZX(6)}

{IXXZZY Y,
XY ZY ZIX,
XZY XIY Z,
Y Y IZXXZ,
Y ZXIY ZX,
ZIZXY XY,
ZXY Y XZI,
IIIIIII}

Table G.1: Detect-and-diagnose-style stabilizer triplets for the Steane code, obtained by computer search.

Refer to Sec. 7. The left columns present the sequences. Permutations among stabilizers are not counted

separately. The number in parentheses following the stabilizer is the arbitrarily assigned coset number

presented in Fig. 7.1. The right column presents the subgroup of the stabilizer group generated by each of

the sequences on the left. Negative signs are dropped from weight-6 stabilizers for brevity. The particular

sequence derived analytically for the protocol in Fig. 5.7 is coloured in red (see Table G.9). Continued in

Tables G.2-G.16.
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Stabilizer triplets which measure at least 2 different Paulis on every qubit Generated

subgroups

{IXXZZY Y (1), Y XZIY XZ(3), XZY XIY Z(2)}, {IXXZZY Y (1), Y IY ZXZX(5),
XZY XIY Z(2)}, {IXXZZY Y (1), ZY XXY ZI(6), XZY XIY Z(2)}, {IXXZZY Y (1),
ZZIY XXY (7), XZY XIY Z(2)}, {IXXZZY Y (1), Y XZIY XZ(3), XY ZY ZIX(4)},
{IXXZZY Y (1), ZY XXY ZI(6), Y XZIY XZ(3)}, {IXXZZY Y (1), ZZIY XXY (7),
Y XZIY XZ(3)}, {IXXZZY Y (1), Y IY ZXZX(5), XY ZY ZIX(4)}, {IXXZZY Y (1),
ZY XXY ZI(6), XY ZY ZIX(4)}, {IXXZZY Y (1), ZZIY XXY (7), XY ZY ZIX(4)},
{IXXZZY Y (1), Y IY ZXZX(5), ZY XXY ZI(6)}, {IXXZZY Y (1), Y IY ZXZX(5),
ZZIY XXY (7)}, {Y XZIY XZ(3), XY ZY ZIX(4), XZY XIY Z(2)}, {Y IY ZXZX(5),
Y XZIY XZ(3), XZY XIY Z(2)}, {ZZIY XXY (7), Y XZIY XZ(3), XZY XIY Z(2)},
{Y IY ZXZX(5), XY ZY ZIX(4), XZY XIY Z(2)}, {ZY XXY ZI(6), XY ZY ZIX(4),
XZY XIY Z(2)}, {ZZIY XXY (7), XY ZY ZIX(4), XZY XIY Z(2)}, {Y IY ZXZX(5),
ZY XXY ZI(6), XZY XIY Z(2)}, {ZZIY XXY (7), ZY XXY ZI(6), XZY XIY Z(2)},
{Y IY ZXZX(5), Y XZIY XZ(3), XY ZY ZIX(4)}, {ZY XXY ZI(6), Y XZIY XZ(3),
XY ZY ZIX(4)}, {Y IY ZXZX(5), Y XZIY XZ(3), ZY XXY ZI(6)}, {Y IY ZXZX(5),
Y XZIY XZ(3), ZZIY XXY (7)}, {ZY XXY ZI(6), Y XZIY XZ(3), ZZIY XXY (7)},
{Y IY ZXZX(5), ZZIY XXY (7), XY ZY ZIX(4)}, {ZZIY XXY (7), ZY XXY ZI(6),

XY ZY ZIX(4)}, {Y IY ZXZX(5), ZY XXY ZI(6), ZZIY XXY (7)}

{IXXZZY Y,
XY ZY ZIX,
XZY XIY Z,
Y IY ZXZX,
Y XZIY XZ,
ZY XXY ZI,
ZZIY XXY,
IIIIIII}

{IXXZZY Y (1), XY ZIXY Z(2), ZIZXY XY (3)}, {IXXZZY Y (1), ZXY Y XZI(5),
XY ZIXY Z(2)}, {IXXZZY Y (1), XY ZIXY Z(2), Y Y IXZZX(6)}, {IXXZZY Y (1),
XY ZIXY Z(2), Y ZXY IXZ(7)}, {IXXZZY Y (1), ZIZXY XY (3), XZY ZY IX(4)},
{IXXZZY Y (1), Y Y IXZZX(6), ZIZXY XY (3)}, {IXXZZY Y (1), ZIZXY XY (3),
Y ZXY IXZ(7)}, {IXXZZY Y (1), ZXY Y XZI(5), XZY ZY IX(4)}, {IXXZZY Y (1),
Y Y IXZZX(6), XZY ZY IX(4)}, {IXXZZY Y (1), Y ZXY IXZ(7), XZY ZY IX(4)},
{IXXZZY Y (1), ZXY Y XZI(5), Y Y IXZZX(6)}, {IXXZZY Y (1), ZXY Y XZI(5),
Y ZXY IXZ(7)}, {XZY ZY IX(4), XY ZIXY Z(2), ZIZXY XY (3)}, {ZXY Y XZI(5),
XY ZIXY Z(2), ZIZXY XY (3)}, {XY ZIXY Z(2), ZIZXY XY (3), Y ZXY IXZ(7)},
{XZY ZY IX(4), ZXY Y XZI(5), XY ZIXY Z(2)}, {XZY ZY IX(4), XY ZIXY Z(2),
Y Y IXZZX(6)}, {XZY ZY IX(4), XY ZIXY Z(2), Y ZXY IXZ(7)}, {ZXY Y XZI(5),
XY ZIXY Z(2), Y Y IXZZX(6)}, {XY ZIXY Z(2), Y Y IXZZX(6), Y ZXY IXZ(7)},
{XZY ZY IX(4), ZXY Y XZI(5), ZIZXY XY (3)}, {XZY ZY IX(4), Y Y IXZZX(6),
ZIZXY XY (3)}, {ZXY Y XZI(5), ZIZXY XY (3), Y Y IXZZX(6)}, {ZXY Y XZI(5),
ZIZXY XY (3), Y ZXY IXZ(7)}, {Y Y IXZZX(6), ZIZXY XY (3), Y ZXY IXZ(7)},
{XZY ZY IX(4), ZXY Y XZI(5), Y ZXY IXZ(7)}, {XZY ZY IX(4), Y Y IXZZX(6),

Y ZXY IXZ(7)}, {ZXY Y XZI(5), Y Y IXZZX(6), Y ZXY IXZ(7)}

{IXXZZY Y,
XY ZIXY Z,
XZY ZY IX,
Y Y IXZZX,
Y ZXY IXZ,
ZIZXY XY,
ZXY Y XZI,
IIIIIII}

{IXXZZY Y (1), Y IY XZXZ(3), XY ZIXY Z(2)}, {IXXZZY Y (1), Y XZY IZX(5),
XY ZIXY Z(2)}, {IXXZZY Y (1), XY ZIXY Z(2), ZY XXY ZI(6)}, {IXXZZY Y (1),
XY ZIXY Z(2), ZZIY XXY (7)}, {IXXZZY Y (1), Y IY XZXZ(3), XZY ZY IX(4)},
{IXXZZY Y (1), Y IY XZXZ(3), ZY XXY ZI(6)}, {IXXZZY Y (1), Y IY XZXZ(3),
ZZIY XXY (7)}, {IXXZZY Y (1), Y XZY IZX(5), XZY ZY IX(4)}, {IXXZZY Y (1),
ZY XXY ZI(6), XZY ZY IX(4)}, {IXXZZY Y (1), ZZIY XXY (7), XZY ZY IX(4)},
{IXXZZY Y (1), Y XZY IZX(5), ZY XXY ZI(6)}, {IXXZZY Y (1), Y XZY IZX(5),
ZZIY XXY (7)}, {XZY ZY IX(4), Y IY XZXZ(3), XY ZIXY Z(2)}, {Y IY XZXZ(3),
Y XZY IZX(5), XY ZIXY Z(2)}, {Y IY XZXZ(3), XY ZIXY Z(2), ZZIY XXY (7)},
{XZY ZY IX(4), Y XZY IZX(5), XY ZIXY Z(2)}, {XZY ZY IX(4), XY ZIXY Z(2),
ZY XXY ZI(6)}, {XZY ZY IX(4), XY ZIXY Z(2), ZZIY XXY (7)}, {Y XZY IZX(5),
XY ZIXY Z(2), ZY XXY ZI(6)}, {XY ZIXY Z(2), ZY XXY ZI(6), ZZIY XXY (7)},
{XZY ZY IX(4), Y IY XZXZ(3), Y XZY IZX(5)}, {XZY ZY IX(4), Y IY XZXZ(3),
ZY XXY ZI(6)}, {Y IY XZXZ(3), Y XZY IZX(5), ZY XXY ZI(6)}, {Y IY XZXZ(3),
Y XZY IZX(5), ZZIY XXY (7)}, {Y IY XZXZ(3), ZZIY XXY (7), ZY XXY ZI(6)},
{XZY ZY IX(4), Y XZY IZX(5), ZZIY XXY (7)}, {XZY ZY IX(4), ZZIY XXY (7),

ZY XXY ZI(6)}, {Y XZY IZX(5), ZZIY XXY (7), ZY XXY ZI(6)}

{IXXZZY Y,
XY ZIXY Z,
XZY ZY IX,
Y IY XZXZ,
Y XZY IZX,
ZY XXY ZI,
ZZIY XXY,
IIIIIII}

Table G.2: Continued from Table G.1 and in Tables G.3-G.16.
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Stabilizer triplets which measure at least 2 different Paulis on every qubit Generated

subgroups

{IXXZZY Y (1), ZXY XY IZ(3), XY ZXIZY (2)}, {IXXZZY Y (1), ZIZY XY X(5),
XY ZXIZY (2)}, {IXXZZY Y (1), Y ZXIY ZX(6), XY ZXIZY (2)}, {IXXZZY Y (1),
Y Y IZXXZ(7), XY ZXIZY (2)}, {IXXZZY Y (1), XZY Y ZXI(4), ZXY XY IZ(3)},
{IXXZZY Y (1), Y ZXIY ZX(6), ZXY XY IZ(3)}, {IXXZZY Y (1), Y Y IZXXZ(7),
ZXY XY IZ(3)}, {IXXZZY Y (1), ZIZY XY X(5), XZY Y ZXI(4)}, {IXXZZY Y (1),
Y ZXIY ZX(6), XZY Y ZXI(4)}, {IXXZZY Y (1), XZY Y ZXI(4), Y Y IZXXZ(7)},
{IXXZZY Y (1), Y ZXIY ZX(6), ZIZY XY X(5)}, {IXXZZY Y (1), ZIZY XY X(5),
Y Y IZXXZ(7)}, {XZY Y ZXI(4), ZXY XY IZ(3), XY ZXIZY (2)}, {ZIZY XY X(5),
ZXY XY IZ(3), XY ZXIZY (2)}, {Y Y IZXXZ(7), ZXY XY IZ(3), XY ZXIZY (2)},
{ZIZY XY X(5), XZY Y ZXI(4), XY ZXIZY (2)}, {Y ZXIY ZX(6), XZY Y ZXI(4),
XY ZXIZY (2)}, {XZY Y ZXI(4), Y Y IZXXZ(7), XY ZXIZY (2)}, {Y ZXIY ZX(6),
ZIZY XY X(5), XY ZXIZY (2)}, {Y ZXIY ZX(6), Y Y IZXXZ(7), XY ZXIZY (2)},
{ZIZY XY X(5), XZY Y ZXI(4), ZXY XY IZ(3)}, {Y ZXIY ZX(6), XZY Y ZXI(4),
ZXY XY IZ(3)}, {Y ZXIY ZX(6), ZIZY XY X(5), ZXY XY IZ(3)}, {Y Y IZXXZ(7),
ZIZY XY X(5), ZXY XY IZ(3)}, {Y ZXIY ZX(6), Y Y IZXXZ(7), ZXY XY IZ(3)},
{ZIZY XY X(5), XZY Y ZXI(4), Y Y IZXXZ(7)}, {Y ZXIY ZX(6), XZY Y ZXI(4),

Y Y IZXXZ(7)}, {Y ZXIY ZX(6), ZIZY XY X(5), Y Y IZXXZ(7)}

{IXXZZY Y,
XY ZXIZY,
XZY Y ZXI,
Y Y IZXXZ,
Y ZXIY ZX,
ZIZY XY X,
ZXY XY IZ,
IIIIIII}

{IXXZZY Y (1), Y XZIY XZ(3), XY ZXIZY (2)}, {IXXZZY Y (1), Y IY ZXZX(5),
XY ZXIZY (2)}, {IXXZZY Y (1), ZZIXY Y X(6), XY ZXIZY (2)}, {IXXZZY Y (1),
ZY XY XIZ(7), XY ZXIZY (2)}, {IXXZZY Y (1), Y XZIY XZ(3), XZY Y ZXI(4)},
{IXXZZY Y (1), ZZIXY Y X(6), Y XZIY XZ(3)}, {IXXZZY Y (1), Y XZIY XZ(3),
ZY XY XIZ(7)}, {IXXZZY Y (1), Y IY ZXZX(5), XZY Y ZXI(4)}, {IXXZZY Y (1),
ZZIXY Y X(6), XZY Y ZXI(4)}, {IXXZZY Y (1), ZY XY XIZ(7), XZY Y ZXI(4)},
{IXXZZY Y (1), ZZIXY Y X(6), Y IY ZXZX(5)}, {IXXZZY Y (1), Y IY ZXZX(5),
ZY XY XIZ(7)}, {Y XZIY XZ(3), XZY Y ZXI(4), XY ZXIZY (2)}, {Y IY ZXZX(5),
Y XZIY XZ(3), XY ZXIZY (2)}, {Y XZIY XZ(3), ZY XY XIZ(7), XY ZXIZY (2)},
{Y IY ZXZX(5), XZY Y ZXI(4), XY ZXIZY (2)}, {ZZIXY Y X(6), XZY Y ZXI(4),
XY ZXIZY (2)}, {ZY XYXIZ(7), XZY Y ZXI(4), XY ZXIZY (2)}, {ZZIXY Y X(6),
Y IY ZXZX(5), XY ZXIZY (2)}, {ZZIXY Y X(6), ZY XY XIZ(7), XY ZXIZY (2)},
{Y IY ZXZX(5), Y XZIY XZ(3), XZY Y ZXI(4)}, {ZZIXY Y X(6), Y XZIY XZ(3),
XZY Y ZXI(4)}, {ZZIXY Y X(6), Y IY ZXZX(5), Y XZIY XZ(3)}, {Y IY ZXZX(5),
Y XZIY XZ(3), ZY XY XIZ(7)}, {ZZIXY Y X(6), Y XZIY XZ(3), ZY XY XIZ(7)},
{ZY XYXIZ(7), Y IY ZXZX(5), XZY Y ZXI(4)}, {ZY XYXIZ(7), ZZIXY Y X(6),

XZY Y ZXI(4)}, {ZZIXY Y X(6), Y IY ZXZX(5), ZY XY XIZ(7)}

{IXXZZY Y,
XY ZXIZY,
XZY Y ZXI,
Y IY ZXZX,
Y XZIY XZ,
ZY XY XIZ,
ZZIXY Y X,
IIIIIII}

{IZZXXY Y (2), XIXZY ZY (1), ZXY XY IZ(3)}, {IZZXXY Y (2), XIXZY ZY (1),
Y XZY IZX(5)}, {IZZXXY Y (2), XIXZY ZY (1), ZY XIZY X(6)}, {IZZXXY Y (2),
XIXZY ZY (1), Y Y IZXXZ(7)}, {XIXZY ZY (1), XZY Y ZXI(4), ZXY XY IZ(3)},
{XIXZY ZY (1), ZXY XY IZ(3), ZY XIZY X(6)}, {Y Y IZXXZ(7), XIXZY ZY (1),
ZXY XY IZ(3)}, {Y XZY IZX(5), XIXZY ZY (1), XZY Y ZXI(4)}, {XIXZY ZY (1),
XZY Y ZXI(4), ZY XIZY X(6)}, {XIXZY ZY (1), XZY Y ZXI(4), Y Y IZXXZ(7)},
{Y XZY IZX(5), XIXZY ZY (1), ZY XIZY X(6)}, {Y XZY IZX(5), XIXZY ZY (1),
Y Y IZXXZ(7)}, {IZZXXY Y (2), XZY Y ZXI(4), ZXY XY IZ(3)}, {IZZXXY Y (2),
ZXY XY IZ(3), Y XZY IZX(5)}, {Y Y IZXXZ(7), IZZXXY Y (2), ZXY XY IZ(3)},
{IZZXXY Y (2), XZY Y ZXI(4), Y XZY IZX(5)}, {IZZXXY Y (2), XZY Y ZXI(4),
ZY XIZY X(6)}, {IZZXXY Y (2), XZY Y ZXI(4), Y Y IZXXZ(7)}, {IZZXXY Y (2),
Y XZY IZX(5), ZY XIZY X(6)}, {IZZXXY Y (2), Y Y IZXXZ(7), ZY XIZY X(6)},
{Y XZY IZX(5), XZY Y ZXI(4), ZXY XY IZ(3)}, {XZY Y ZXI(4), ZXY XY IZ(3),
ZY XIZY X(6)}, {Y XZY IZX(5), ZXY XY IZ(3), ZY XIZY X(6)}, {Y Y IZXXZ(7),
Y XZY IZX(5), ZXY XY IZ(3)}, {Y Y IZXXZ(7), ZXY XY IZ(3), ZY XIZY X(6)},
{Y XZY IZX(5), XZY Y ZXI(4), Y Y IZXXZ(7)}, {XZY Y ZXI(4), Y Y IZXXZ(7),

ZY XIZY X(6)}, {Y XZY IZX(5), Y Y IZXXZ(7), ZY XIZY X(6)}

{IZZXXY Y,
XIXZY ZY,
XZY Y ZXI,
Y XZY IZX,
Y Y IZXXZ,
ZXY XY IZ,
ZY XIZY X,
IIIIIII}

Table G.3: Continued from Tables G.1-G.2 and in Tables G.4-G.16.



127

Stabilizer triplets which measure at least 2 different Paulis on every qubit Generated

subgroups

{IZZXXY Y (2), XIXZY ZY (1), Y XZIY XZ(3)}, {IZZXXY Y (2), XIXZY ZY (1),
ZXY ZIY X(5)}, {Y Y IXZZX(6), IZZXXY Y (2), XIXZY ZY (1)}, {IZZXXY Y (2),
XIXZY ZY (1), ZY XY XIZ(7)}, {Y XZIY XZ(3), XIXZY ZY (1), XZY Y ZXI(4)},
{Y Y IXZZX(6), Y XZIY XZ(3), XIXZY ZY (1)}, {Y XZIY XZ(3), XIXZY ZY (1),
ZY XY XIZ(7)}, {ZXY ZIY X(5), XIXZY ZY (1), XZY Y ZXI(4)}, {Y Y IXZZX(6),
XIXZY ZY (1), XZY Y ZXI(4)}, {ZY XYXIZ(7), XIXZY ZY (1), XZY Y ZXI(4)},
{Y Y IXZZX(6), XIXZY ZY (1), ZXY ZIY X(5)}, {ZY XYXIZ(7), XIXZY ZY (1),
ZXY ZIY X(5)}, {IZZXXY Y (2), Y XZIY XZ(3), XZY Y ZXI(4)}, {IZZXXY Y (2),
Y XZIY XZ(3), ZXY ZIY X(5)}, {IZZXXY Y (2), Y XZIY XZ(3), ZY XY XIZ(7)},
{IZZXXY Y (2), ZXY ZIY X(5), XZY Y ZXI(4)}, {IZZXXY Y (2), Y Y IXZZX(6),
XZY Y ZXI(4)}, {ZY XYXIZ(7), IZZXXY Y (2), XZY Y ZXI(4)}, {IZZXXY Y (2),
Y Y IXZZX(6), ZXY ZIY X(5)}, {IZZXXY Y (2), Y Y IXZZX(6), ZY XY XIZ(7)},
{ZXY ZIY X(5), Y XZIY XZ(3), XZY Y ZXI(4)}, {Y Y IXZZX(6), Y XZIY XZ(3),
XZY Y ZXI(4)}, {Y Y IXZZX(6), Y XZIY XZ(3), ZXY ZIY X(5)}, {ZY XYXIZ(7),
Y XZIY XZ(3), ZXY ZIY X(5)}, {Y Y IXZZX(6), Y XZIY XZ(3), ZY XY XIZ(7)},
{ZY XYXIZ(7), ZXY ZIY X(5), XZY Y ZXI(4)}, {ZY XYXIZ(7), Y Y IXZZX(6),

XZY Y ZXI(4)}, {ZY XYXIZ(7), Y Y IXZZX(6), ZXY ZIY X(5)}

{IZZXXY Y,
XIXZY ZY,
XZY Y ZXI,
Y XZIY XZ,
Y Y IXZZX,
ZXY ZIY X,
ZY XY XIZ,
IIIIIII}

{IY Y XXZZ(2), XIXZY ZY (1), ZXY IZXY (3)}, {IY Y XXZZ(2), XIXZY ZY (1),
Y XZZXY I(5)}, {IY Y XXZZ(2), XIXZY ZY (1), ZZIXY Y X(6)}, {IY Y XXZZ(2),
XIXZY ZY (1), Y ZXY IXZ(7)}, {XIXZY ZY (1), XY ZY ZIX(4), ZXY IZXY (3)},
{ZZIXY Y X(6), XIXZY ZY (1), ZXY IZXY (3)}, {XIXZY ZY (1), Y ZXY IXZ(7),
ZXY IZXY (3)}, {XIXZY ZY (1), Y XZZXY I(5), XY ZY ZIX(4)}, {ZZIXY Y X(6),
XIXZY ZY (1), XY ZY ZIX(4)}, {XIXZY ZY (1), Y ZXY IXZ(7), XY ZY ZIX(4)},
{ZZIXY Y X(6), XIXZY ZY (1), Y XZZXY I(5)}, {Y ZXY IXZ(7), XIXZY ZY (1),
Y XZZXY I(5)}, {IY Y XXZZ(2), XY ZY ZIX(4), ZXY IZXY (3)}, {IY Y XXZZ(2),
Y XZZXY I(5), ZXY IZXY (3)}, {IY Y XXZZ(2), Y ZXY IXZ(7), ZXY IZXY (3)},
{IY Y XXZZ(2), Y XZZXY I(5), XY ZY ZIX(4)}, {IY Y XXZZ(2), ZZIXY Y X(6),
XY ZY ZIX(4)}, {IY Y XXZZ(2), Y ZXY IXZ(7), XY ZY ZIX(4)}, {IY Y XXZZ(2),
Y XZZXY I(5), ZZIXY Y X(6)}, {IY Y XXZZ(2), Y ZXY IXZ(7), ZZIXY Y X(6)},
{Y XZZXY I(5), XY ZY ZIX(4), ZXY IZXY (3)}, {ZZIXY Y X(6), XY ZY ZIX(4),
ZXY IZXY (3)}, {ZZIXY Y X(6), Y XZZXY I(5), ZXY IZXY (3)}, {Y ZXY IXZ(7),
Y XZZXY I(5), ZXY IZXY (3)}, {ZZIXY Y X(6), Y ZXY IXZ(7), ZXY IZXY (3)},
{Y ZXY IXZ(7), Y XZZXY I(5), XY ZY ZIX(4)}, {ZZIXY Y X(6), Y ZXY IXZ(7),

XY ZY ZIX(4)}, {ZZIXY Y X(6), Y ZXY IXZ(7), Y XZZXY I(5)}

{IY Y XXZZ,
XIXZY ZY,
XY ZY ZIX,
Y XZZXY I,
Y ZXY IXZ,
ZXY IZXY,
ZZIXY Y X,
IIIIIII}

{IY Y XXZZ(2), XIXZY ZY (1), Y XZIY XZ(3)}, {IY Y XXZZ(2), XIXZY ZY (1),
ZXY ZIY X(5)}, {Y ZXXZY I(6), IY Y XXZZ(2), XIXZY ZY (1)}, {IY Y XXZZ(2),
ZZIY XXY (7), XIXZY ZY (1)}, {Y XZIY XZ(3), XIXZY ZY (1), XY ZY ZIX(4)},
{Y ZXXZY I(6), Y XZIY XZ(3), XIXZY ZY (1)}, {Y XZIY XZ(3), ZZIY XXY (7),
XIXZY ZY (1)}, {XIXZY ZY (1), ZXY ZIY X(5), XY ZY ZIX(4)}, {Y ZXXZY I(6),
XIXZY ZY (1), XY ZY ZIX(4)}, {ZZIY XXY (7), XIXZY ZY (1), XY ZY ZIX(4)},
{Y ZXXZY I(6), XIXZY ZY (1), ZXY ZIY X(5)}, {ZZIY XXY (7), XIXZY ZY (1),
ZXY ZIY X(5)}, {IY Y XXZZ(2), Y XZIY XZ(3), XY ZY ZIX(4)}, {IY Y XXZZ(2),
Y XZIY XZ(3), ZXY ZIY X(5)}, {IY Y XXZZ(2), ZZIY XXY (7), Y XZIY XZ(3)},
{IY Y XXZZ(2), ZXY ZIY X(5), XY ZY ZIX(4)}, {IY Y XXZZ(2), Y ZXXZY I(6),
XY ZY ZIX(4)}, {IY Y XXZZ(2), ZZIY XXY (7), XY ZY ZIX(4)}, {IY Y XXZZ(2),
Y ZXXZY I(6), ZXY ZIY X(5)}, {IY Y XXZZ(2), ZZIY XXY (7), Y ZXXZY I(6)},
{Y XZIY XZ(3), ZXY ZIY X(5), XY ZY ZIX(4)}, {Y ZXXZY I(6), Y XZIY XZ(3),
XY ZY ZIX(4)}, {Y ZXXZY I(6), Y XZIY XZ(3), ZXY ZIY X(5)}, {ZZIY XXY (7),
Y XZIY XZ(3), ZXY ZIY X(5)}, {Y ZXXZY I(6), ZZIY XXY (7), Y XZIY XZ(3)},
{ZZIY XXY (7), ZXY ZIY X(5), XY ZY ZIX(4)}, {Y ZXXZY I(6), ZZIY XXY (7),

XY ZY ZIX(4)}, {Y ZXXZY I(6), ZZIY XXY (7), ZXY ZIY X(5)}

{IY Y XXZZ,
XIXZY ZY,
XY ZY ZIX,
Y XZIY XZ,
Y ZXXZY I,
ZXY ZIY X,
ZZIY XXY,
IIIIIII}

Table G.4: Continued from Tables G.1-G.3 and in Tables G.5-G.16.
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Stabilizer triplets which measure at least 2 different Paulis on every qubit Generated

subgroups

{ZXY IZXY (3), XIXZY ZY (1), XZY XIY Z(2)}, {XIXZY ZY (1), Y XZZXY I(5),
XZY XIY Z(2)}, {Y Y IXZZX(6), XIXZY ZY (1), XZY XIY Z(2)}, {XIXZY ZY (1),
ZY XY XIZ(7), XZY XIY Z(2)}, {IZZY Y XX(4), XIXZY ZY (1), ZXY IZXY (3)},
{Y Y IXZZX(6), XIXZY ZY (1), ZXY IZXY (3)}, {XIXZY ZY (1), ZY XY XIZ(7),
ZXY IZXY (3)}, {IZZY Y XX(4), XIXZY ZY (1), Y XZZXY I(5)}, {IZZY Y XX(4),
Y Y IXZZX(6), XIXZY ZY (1)}, {IZZY Y XX(4), XIXZY ZY (1), ZY XY XIZ(7)},
{Y Y IXZZX(6), XIXZY ZY (1), Y XZZXY I(5)}, {ZY XYXIZ(7), XIXZY ZY (1),
Y XZZXY I(5)}, {IZZY Y XX(4), ZXY IZXY (3), XZY XIY Z(2)}, {ZXY IZXY (3),
Y XZZXY I(5), XZY XIY Z(2)}, {ZXY IZXY (3), ZY XY XIZ(7), XZY XIY Z(2)},
{IZZY Y XX(4), Y XZZXY I(5), XZY XIY Z(2)}, {IZZY Y XX(4), Y Y IXZZX(6),
XZY XIY Z(2)}, {IZZY Y XX(4), ZY XY XIZ(7), XZY XIY Z(2)}, {Y Y IXZZX(6),
Y XZZXY I(5), XZY XIY Z(2)}, {Y Y IXZZX(6), ZY XY XIZ(7), XZY XIY Z(2)},
{IZZY Y XX(4), Y XZZXY I(5), ZXY IZXY (3)}, {IZZY Y XX(4), Y Y IXZZX(6),
ZXY IZXY (3)}, {Y Y IXZZX(6), Y XZZXY I(5), ZXY IZXY (3)}, {ZY XYXIZ(7),
Y XZZXY I(5), ZXY IZXY (3)}, {Y Y IXZZX(6), ZY XY XIZ(7), ZXY IZXY (3)},
{IZZY Y XX(4), ZY XY XIZ(7), Y XZZXY I(5)}, {IZZY Y XX(4), Y Y IXZZX(6),

ZY XY XIZ(7)}, {ZY XYXIZ(7), Y Y IXZZX(6), Y XZZXY I(5)}

{IZZY Y XX,
XIXZY ZY,
XZY XIY Z,
Y XZZXY I,
Y Y IXZZX,
ZXY IZXY,
ZY XY XIZ,
IIIIIII}

{Y XZXZIY (3), XIXZY ZY (1), XZY XIY Z(2)}, {ZXY Y XZI(5), XIXZY ZY (1),
XZY XIY Z(2)}, {ZY XIZY X(6), XIXZY ZY (1), XZY XIY Z(2)}, {XIXZY ZY (1),
Y Y IZXXZ(7), XZY XIY Z(2)}, {IZZY Y XX(4), XIXZY ZY (1), Y XZXZIY (3)},
{ZY XIZY X(6), XIXZY ZY (1), Y XZXZIY (3)}, {XIXZY ZY (1), Y Y IZXXZ(7),
Y XZXZIY (3)}, {IZZY Y XX(4), ZXY Y XZI(5), XIXZY ZY (1)}, {IZZY Y XX(4),
XIXZY ZY (1), ZY XIZY X(6)}, {IZZY Y XX(4), XIXZY ZY (1), Y Y IZXXZ(7)},
{ZXY Y XZI(5), XIXZY ZY (1), ZY XIZY X(6)}, {ZXY Y XZI(5), XIXZY ZY (1),
Y Y IZXXZ(7)}, {IZZY Y XX(4), Y XZXZIY (3), XZY XIY Z(2)}, {ZXY Y XZI(5),
Y XZXZIY (3), XZY XIY Z(2)}, {Y XZXZIY (3), Y Y IZXXZ(7), XZY XIY Z(2)},
{IZZY Y XX(4), ZXY Y XZI(5), XZY XIY Z(2)}, {IZZY Y XX(4), ZY XIZY X(6),
XZY XIY Z(2)}, {IZZY Y XX(4), Y Y IZXXZ(7), XZY XIY Z(2)}, {ZXY Y XZI(5),
ZY XIZY X(6), XZY XIY Z(2)}, {ZY XIZY X(6), Y Y IZXXZ(7), XZY XIY Z(2)},
{IZZY Y XX(4), ZXY Y XZI(5), Y XZXZIY (3)}, {IZZY Y XX(4), ZY XIZY X(6),
Y XZXZIY (3)}, {ZXY Y XZI(5), ZY XIZY X(6), Y XZXZIY (3)}, {ZXY Y XZI(5),
Y Y IZXXZ(7), Y XZXZIY (3)}, {ZY XIZY X(6), Y Y IZXXZ(7), Y XZXZIY (3)},
{IZZY Y XX(4), ZXY Y XZI(5), Y Y IZXXZ(7)}, {IZZY Y XX(4), Y Y IZXXZ(7),

ZY XIZY X(6)}, {ZXY Y XZI(5), Y Y IZXXZ(7), ZY XIZY X(6)}

{IZZY Y XX,
XIXZY ZY,
XZY XIY Z,
Y XZXZIY,
Y Y IZXXZ,
ZXY Y XZI,
ZY XIZY X,
IIIIIII}

{XY ZIXY Z(2), XIXZY ZY (1), ZXY XY IZ(3)}, {Y XZY IZX(5), XY ZIXY Z(2),
XIXZY ZY (1)}, {Y ZXXZY I(6), XY ZIXY Z(2), XIXZY ZY (1)}, {XY ZIXY Z(2),
XIXZY ZY (1), ZZIY XXY (7)}, {IY Y ZZXX(4), XIXZY ZY (1), ZXY XY IZ(3)},
{Y ZXXZY I(6), XIXZY ZY (1), ZXY XY IZ(3)}, {ZZIY XXY (7), XIXZY ZY (1),
ZXY XY IZ(3)}, {Y XZY IZX(5), IY Y ZZXX(4), XIXZY ZY (1)}, {Y ZXXZY I(6),
IY Y ZZXX(4), XIXZY ZY (1)}, {IY Y ZZXX(4), XIXZY ZY (1), ZZIY XXY (7)},
{Y ZXXZY I(6), Y XZY IZX(5), XIXZY ZY (1)}, {Y XZY IZX(5), ZZIY XXY (7),
XIXZY ZY (1)}, {XY ZIXY Z(2), IY Y ZZXX(4), ZXY XY IZ(3)}, {Y XZY IZX(5),
XY ZIXY Z(2), ZXY XY IZ(3)}, {XY ZIXY Z(2), ZXY XY IZ(3), ZZIY XXY (7)},
{Y XZY IZX(5), XY ZIXY Z(2), IY Y ZZXX(4)}, {Y ZXXZY I(6), XY ZIXY Z(2),
IY Y ZZXX(4)}, {XY ZIXY Z(2), IY Y ZZXX(4), ZZIY XXY (7)}, {Y XZY IZX(5),
XY ZIXY Z(2), Y ZXXZY I(6)}, {Y ZXXZY I(6), XY ZIXY Z(2), ZZIY XXY (7)},
{Y XZY IZX(5), IY Y ZZXX(4), ZXY XY IZ(3)}, {Y ZXXZY I(6), IY Y ZZXX(4),
ZXY XY IZ(3)}, {Y XZY IZX(5), Y ZXXZY I(6), ZXY XY IZ(3)}, {Y XZY IZX(5),
ZZIY XXY (7), ZXY XY IZ(3)}, {Y ZXXZY I(6), ZZIY XXY (7), ZXY XY IZ(3)},
{Y XZY IZX(5), ZZIY XXY (7), IY Y ZZXX(4)}, {Y ZXXZY I(6), ZZIY XXY (7),

IY Y ZZXX(4)}, {Y XZY IZX(5), ZZIY XXY (7), Y ZXXZY I(6)}

{IY Y ZZXX,
XIXZY ZY,
XY ZIXY Z,
Y XZY IZX,
Y ZXXZY I,
ZXY XY IZ,
ZZIY XXY,
IIIIIII}

Table G.5: Continued from Tables G.1-G.4 and in Tables G.6-G.16.
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Stabilizer triplets which measure at least 2 different Paulis on every qubit Generated

subgroups

{XY ZIXY Z(2), XIXZY ZY (1), Y XZXZIY (3)}, {ZXY Y XZI(5), XY ZIXY Z(2),
XIXZY ZY (1)}, {ZZIXY Y X(6), XY ZIXY Z(2), XIXZY ZY (1)}, {XY ZIXY Z(2),
XIXZY ZY (1), Y ZXY IXZ(7)}, {IY Y ZZXX(4), XIXZY ZY (1), Y XZXZIY (3)},
{ZZIXY Y X(6), XIXZY ZY (1), Y XZXZIY (3)}, {XIXZY ZY (1), Y ZXY IXZ(7),
Y XZXZIY (3)}, {ZXY Y XZI(5), IY Y ZZXX(4), XIXZY ZY (1)}, {ZZIXY Y X(6),
IY Y ZZXX(4), XIXZY ZY (1)}, {IY Y ZZXX(4), XIXZY ZY (1), Y ZXY IXZ(7)},
{ZXY Y XZI(5), ZZIXY Y X(6), XIXZY ZY (1)}, {ZXY Y XZI(5), XIXZY ZY (1),
Y ZXY IXZ(7)}, {XY ZIXY Z(2), IY Y ZZXX(4), Y XZXZIY (3)}, {ZXY Y XZI(5),
XY ZIXY Z(2), Y XZXZIY (3)}, {XY ZIXY Z(2), Y ZXY IXZ(7), Y XZXZIY (3)},
{ZXY Y XZI(5), XY ZIXY Z(2), IY Y ZZXX(4)}, {ZZIXY Y X(6), XY ZIXY Z(2),
IY Y ZZXX(4)}, {XY ZIXY Z(2), IY Y ZZXX(4), Y ZXY IXZ(7)}, {ZXY Y XZI(5),
ZZIXY Y X(6), XY ZIXY Z(2)}, {ZZIXY Y X(6), XY ZIXY Z(2), Y ZXY IXZ(7)},
{ZXY Y XZI(5), IY Y ZZXX(4), Y XZXZIY (3)}, {ZZIXY Y X(6), IY Y ZZXX(4),
Y XZXZIY (3)}, {ZXY Y XZI(5), ZZIXY Y X(6), Y XZXZIY (3)}, {ZXY Y XZI(5),
Y ZXY IXZ(7), Y XZXZIY (3)}, {ZZIXY Y X(6), Y ZXY IXZ(7), Y XZXZIY (3)},
{ZXY Y XZI(5), IY Y ZZXX(4), Y ZXY IXZ(7)}, {ZZIXY Y X(6), IY Y ZZXX(4),

Y ZXY IXZ(7)}, {ZXY Y XZI(5), ZZIXY Y X(6), Y ZXY IXZ(7)}

{IY Y ZZXX,
XIXZY ZY,
XY ZIXY Z,
Y XZXZIY,
Y ZXY IXZ,
ZXY Y XZI,
ZZIXY Y X,
IIIIIII}

{IXXY Y ZZ(1), ZIZXY XY (3), XZY IXZY (2)}, {IXXY Y ZZ(1), ZXY ZIY X(5),
XZY IXZY (2)}, {IXXY Y ZZ(1), Y ZXXZY I(6), XZY IXZY (2)}, {IXXY Y ZZ(1),
XZY IXZY (2), Y Y IZXXZ(7)}, {IXXY Y ZZ(1), ZIZXY XY (3), XY ZY ZIX(4)},
{IXXY Y ZZ(1), Y ZXXZY I(6), ZIZXY XY (3)}, {IXXY Y ZZ(1), ZIZXY XY (3),
Y Y IZXXZ(7)}, {IXXY Y ZZ(1), ZXY ZIY X(5), XY ZY ZIX(4)}, {IXXY Y ZZ(1),
Y ZXXZY I(6), XY ZY ZIX(4)}, {IXXY Y ZZ(1), Y Y IZXXZ(7), XY ZY ZIX(4)},
{IXXY Y ZZ(1), Y ZXXZY I(6), ZXY ZIY X(5)}, {IXXY Y ZZ(1), ZXY ZIY X(5),
Y Y IZXXZ(7)}, {ZIZXYXY (3), XZY IXZY (2), XY ZY ZIX(4)}, {ZXY ZIY X(5),
ZIZXY XY (3), XZY IXZY (2)}, {ZIZXYXY (3), XZY IXZY (2), Y Y IZXXZ(7)},
{ZXY ZIY X(5), XZY IXZY (2), XY ZY ZIX(4)}, {Y ZXXZY I(6), XZY IXZY (2),
XY ZY ZIX(4)}, {XZY IXZY (2), Y Y IZXXZ(7), XY ZY ZIX(4)}, {Y ZXXZY I(6),
ZXY ZIY X(5), XZY IXZY (2)}, {Y ZXXZY I(6), XZY IXZY (2), Y Y IZXXZ(7)},
{ZIZXYXY (3), ZXY ZIY X(5), XY ZY ZIX(4)}, {Y ZXXZY I(6), ZIZXY XY (3),
XY ZY ZIX(4)}, {Y ZXXZY I(6), ZIZXY XY (3), ZXY ZIY X(5)}, {ZIZXYXY (3),
ZXY ZIY X(5), Y Y IZXXZ(7)}, {Y ZXXZY I(6), ZIZXY XY (3), Y Y IZXXZ(7)},
{ZXY ZIY X(5), Y Y IZXXZ(7), XY ZY ZIX(4)}, {Y ZXXZY I(6), Y Y IZXXZ(7),

XY ZY ZIX(4)}, {Y ZXXZY I(6), ZXY ZIY X(5), Y Y IZXXZ(7)}

{IXXY Y ZZ,
XY ZY ZIX,
XZY IXZY,
Y Y IZXXZ,
Y ZXXZY I,
ZIZXY XY,
ZXY ZIY X,
IIIIIII}

{IXXY Y ZZ(1), XZY IXZY (2), Y IY XZXZ(3)}, {Y XZZXY I(5), IXXY Y ZZ(1),
XZY IXZY (2)}, {IXXY Y ZZ(1), ZZIXY Y X(6), XZY IXZY (2)}, {IXXY Y ZZ(1),
ZY XZIXY (7), XZY IXZY (2)}, {IXXY Y ZZ(1), XY ZY ZIX(4), Y IY XZXZ(3)},
{IXXY Y ZZ(1), ZZIXY Y X(6), Y IY XZXZ(3)}, {IXXY Y ZZ(1), ZY XZIXY (7),
Y IY XZXZ(3)}, {IXXY Y ZZ(1), Y XZZXY I(5), XY ZY ZIX(4)}, {IXXY Y ZZ(1),
ZZIXY Y X(6), XY ZY ZIX(4)}, {IXXY Y ZZ(1), ZY XZIXY (7), XY ZY ZIX(4)},
{IXXY Y ZZ(1), ZZIXY Y X(6), Y XZZXY I(5)}, {IXXY Y ZZ(1), ZY XZIXY (7),
Y XZZXY I(5)}, {Y IY XZXZ(3), XZY IXZY (2), XY ZY ZIX(4)}, {Y XZZXY I(5),
Y IY XZXZ(3), XZY IXZY (2)}, {Y IY XZXZ(3), ZY XZIXY (7), XZY IXZY (2)},
{Y XZZXY I(5), XZY IXZY (2), XY ZY ZIX(4)}, {ZZIXY Y X(6), XZY IXZY (2),
XY ZY ZIX(4)}, {ZY XZIXY (7), XZY IXZY (2), XY ZY ZIX(4)}, {Y XZZXY I(5),
ZZIXY Y X(6), XZY IXZY (2)}, {ZY XZIXY (7), ZZIXY Y X(6), XZY IXZY (2)},
{Y IY XZXZ(3), Y XZZXY I(5), XY ZY ZIX(4)}, {Y IY XZXZ(3), ZZIXY Y X(6),
XY ZY ZIX(4)}, {Y IY XZXZ(3), ZZIXY Y X(6), Y XZZXY I(5)}, {Y IY XZXZ(3),
ZY XZIXY (7), Y XZZXY I(5)}, {Y IY XZXZ(3), ZZIXY Y X(6), ZY XZIXY (7)},
{ZY XZIXY (7), Y XZZXY I(5), XY ZY ZIX(4)}, {ZY XZIXY (7), ZZIXY Y X(6),

XY ZY ZIX(4)}, {ZY XZIXY (7), ZZIXY Y X(6), Y XZZXY I(5)}

{IXXY Y ZZ,
XY ZY ZIX,
XZY IXZY,
Y IY XZXZ,
Y XZZXY I,
ZY XZIXY,
ZZIXY Y X,
IIIIIII}

Table G.6: Continued from Tables G.1-G.5 and in Tables G.7-G.16.
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Stabilizer triplets which measure at least 2 different Paulis on every qubit Generated

subgroups

{IXXY Y ZZ(1), ZXY IZXY (3), XZY XIY Z(2)}, {IXXY Y ZZ(1), ZIZY XY X(5),
XZY XIY Z(2)}, {IXXY Y ZZ(1), Y Y IXZZX(6), XZY XIY Z(2)}, {IXXY Y ZZ(1),
Y ZXZXIY (7), XZY XIY Z(2)}, {IXXY Y ZZ(1), XY ZZY XI(4), ZXY IZXY (3)},
{IXXY Y ZZ(1), Y Y IXZZX(6), ZXY IZXY (3)}, {IXXY Y ZZ(1), Y ZXZXIY (7),
ZXY IZXY (3)}, {IXXY Y ZZ(1), ZIZY XY X(5), XY ZZY XI(4)}, {IXXY Y ZZ(1),
Y Y IXZZX(6), XY ZZY XI(4)}, {IXXY Y ZZ(1), Y ZXZXIY (7), XY ZZY XI(4)},
{IXXY Y ZZ(1), ZIZY XY X(5), Y Y IXZZX(6)}, {IXXY Y ZZ(1), ZIZY XY X(5),
Y ZXZXIY (7)}, {ZXY IZXY (3), XY ZZY XI(4), XZY XIY Z(2)}, {ZXY IZXY (3),
ZIZY XY X(5), XZY XIY Z(2)}, {ZXY IZXY (3), Y ZXZXIY (7), XZY XIY Z(2)},
{XY ZZY XI(4), ZIZY XY X(5), XZY XIY Z(2)}, {XY ZZY XI(4), Y Y IXZZX(6),
XZY XIY Z(2)}, {XY ZZY XI(4), Y ZXZXIY (7), XZY XIY Z(2)}, {ZIZY XY X(5),
Y Y IXZZX(6), XZY XIY Z(2)}, {Y Y IXZZX(6), Y ZXZXIY (7), XZY XIY Z(2)},
{XY ZZY XI(4), ZIZY XY X(5), ZXY IZXY (3)}, {XY ZZY XI(4), Y Y IXZZX(6),
ZXY IZXY (3)}, {ZIZY XY X(5), Y Y IXZZX(6), ZXY IZXY (3)}, {ZIZY XY X(5),
Y ZXZXIY (7), ZXY IZXY (3)}, {Y Y IXZZX(6), Y ZXZXIY (7), ZXY IZXY (3)},
{ZIZY XY X(5), Y ZXZXIY (7), XY ZZY XI(4)}, {Y Y IXZZX(6), Y ZXZXIY (7),

XY ZZY XI(4)}, {ZIZY XY X(5), Y Y IXZZX(6), Y ZXZXIY (7)}

{IXXY Y ZZ,
XY ZZY XI,
XZY XIY Z,
Y Y IXZZX,
Y ZXZXIY,
ZIZY XY X,
ZXY IZXY,
IIIIIII}

{IXXY Y ZZ(1), Y XZXZIY (3), XZY XIY Z(2)}, {IXXY Y ZZ(1), Y IY ZXZX(5),
XZY XIY Z(2)}, {IXXY Y ZZ(1), ZY XIZY X(6), XZY XIY Z(2)}, {IXXY Y ZZ(1),
ZZIY XXY (7), XZY XIY Z(2)}, {IXXY Y ZZ(1), XY ZZY XI(4), Y XZXZIY (3)},
{IXXY Y ZZ(1), ZY XIZY X(6), Y XZXZIY (3)}, {IXXY Y ZZ(1), ZZIY XXY (7),
Y XZXZIY (3)}, {IXXY Y ZZ(1), Y IY ZXZX(5), XY ZZY XI(4)}, {IXXY Y ZZ(1),
ZY XIZY X(6), XY ZZY XI(4)}, {IXXY Y ZZ(1), ZZIY XXY (7), XY ZZY XI(4)},
{IXXY Y ZZ(1), Y IY ZXZX(5), ZY XIZY X(6)}, {IXXY Y ZZ(1), Y IY ZXZX(5),
ZZIY XXY (7)}, {XY ZZY XI(4), Y XZXZIY (3), XZY XIY Z(2)}, {Y XZXZIY (3),
Y IY ZXZX(5), XZY XIY Z(2)}, {Y XZXZIY (3), ZZIY XXY (7), XZY XIY Z(2)},
{XY ZZY XI(4), Y IY ZXZX(5), XZY XIY Z(2)}, {XY ZZY XI(4), ZY XIZY X(6),
XZY XIY Z(2)}, {XY ZZY XI(4), ZZIY XXY (7), XZY XIY Z(2)}, {Y IY ZXZX(5),
ZY XIZY X(6), XZY XIY Z(2)}, {ZY XIZY X(6), ZZIY XXY (7), XZY XIY Z(2)},
{XY ZZY XI(4), Y IY ZXZX(5), Y XZXZIY (3)}, {XY ZZY XI(4), ZY XIZY X(6),
Y XZXZIY (3)}, {Y IY ZXZX(5), ZY XIZY X(6), Y XZXZIY (3)}, {Y IY ZXZX(5),
ZZIY XXY (7), Y XZXZIY (3)}, {ZY XIZY X(6), ZZIY XXY (7), Y XZXZIY (3)},
{Y IY ZXZX(5), ZZIY XXY (7), XY ZZY XI(4)}, {ZY XIZY X(6), ZZIY XXY (7),

XY ZZY XI(4)}, {Y IY ZXZX(5), ZZIY XXY (7), ZY XIZY X(6)}

{IXXY Y ZZ,
XY ZZY XI,
XZY XIY Z,
Y IY ZXZX,
Y XZXZIY,
ZY XIZY X,
ZZIY XXY,
IIIIIII}

{IXXY Y ZZ(1), XY ZIXY Z(2), ZIZXY XY (3)}, {IXXY Y ZZ(1), XY ZIXY Z(2),
ZXY ZIY X(5)}, {IXXY Y ZZ(1), XY ZIXY Z(2), Y Y IXZZX(6)}, {IXXY Y ZZ(1),
XY ZIXY Z(2), Y ZXZXIY (7)}, {IXXY Y ZZ(1), ZIZXY XY (3), XZY Y ZXI(4)},
{IXXY Y ZZ(1), ZIZXY XY (3), Y Y IXZZX(6)}, {IXXY Y ZZ(1), ZIZXY XY (3),
Y ZXZXIY (7)}, {IXXY Y ZZ(1), ZXY ZIY X(5), XZY Y ZXI(4)}, {IXXY Y ZZ(1),
Y Y IXZZX(6), XZY Y ZXI(4)}, {IXXY Y ZZ(1), Y ZXZXIY (7), XZY Y ZXI(4)},
{IXXY Y ZZ(1), Y Y IXZZX(6), ZXY ZIY X(5)}, {IXXY Y ZZ(1), Y ZXZXIY (7),
ZXY ZIY X(5)}, {XY ZIXY Z(2), ZIZXY XY (3), XZY Y ZXI(4)}, {XY ZIXY Z(2),
ZIZXY XY (3), ZXY ZIY X(5)}, {XY ZIXY Z(2), ZIZXY XY (3), Y ZXZXIY (7)},
{ZXY ZIY X(5), XY ZIXY Z(2), XZY Y ZXI(4)}, {XY ZIXY Z(2), Y Y IXZZX(6),
XZY Y ZXI(4)}, {Y ZXZXIY (7), XY ZIXY Z(2), XZY Y ZXI(4)}, {XY ZIXY Z(2),
Y Y IXZZX(6), ZXY ZIY X(5)}, {XY ZIXY Z(2), Y Y IXZZX(6), Y ZXZXIY (7)},
{ZXY ZIY X(5), ZIZXY XY (3), XZY Y ZXI(4)}, {Y Y IXZZX(6), ZIZXY XY (3),
XZY Y ZXI(4)}, {Y Y IXZZX(6), ZIZXY XY (3), ZXY ZIY X(5)}, {Y ZXZXIY (7),
ZIZXY XY (3), ZXY ZIY X(5)}, {Y Y IXZZX(6), ZIZXY XY (3), Y ZXZXIY (7)},
{Y ZXZXIY (7), ZXY ZIY X(5), XZY Y ZXI(4)}, {Y ZXZXIY (7), Y Y IXZZX(6),

XZY Y ZXI(4)}, {Y ZXZXIY (7), Y Y IXZZX(6), ZXY ZIY X(5)}

{IXXY Y ZZ,
XY ZIXY Z,
XZY Y ZXI,
Y Y IXZZX,
Y ZXZXIY,
ZIZXY XY,
ZXY ZIY X,
IIIIIII}

Table G.7: Continued from Tables G.1-G.6 and in Tables G.8-G.16.
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Stabilizer triplets which measure at least 2 different Paulis on every qubit Generated

subgroups

{IXXY Y ZZ(1), XY ZIXY Z(2), Y XZXZIY (3)}, {Y IY ZXZX(5), IXXY Y ZZ(1),
XY ZIXY Z(2)}, {IXXY Y ZZ(1), ZZIXY Y X(6), XY ZIXY Z(2)}, {IXXY Y ZZ(1),
ZY XZIXY (7), XY ZIXY Z(2)}, {IXXY Y ZZ(1), XZY Y ZXI(4), Y XZXZIY (3)},
{IXXY Y ZZ(1), ZZIXY Y X(6), Y XZXZIY (3)}, {IXXY Y ZZ(1), ZY XZIXY (7),
Y XZXZIY (3)}, {IXXY Y ZZ(1), Y IY ZXZX(5), XZY Y ZXI(4)}, {IXXY Y ZZ(1),
ZZIXY Y X(6), XZY Y ZXI(4)}, {IXXY Y ZZ(1), ZY XZIXY (7), XZY Y ZXI(4)},
{IXXY Y ZZ(1), ZZIXY Y X(6), Y IY ZXZX(5)}, {IXXY Y ZZ(1), ZY XZIXY (7),
Y IY ZXZX(5)}, {XY ZIXY Z(2), XZY Y ZXI(4), Y XZXZIY (3)}, {Y IY ZXZX(5),
XY ZIXY Z(2), Y XZXZIY (3)}, {ZY XZIXY (7), XY ZIXY Z(2), Y XZXZIY (3)},
{Y IY ZXZX(5), XY ZIXY Z(2), XZY Y ZXI(4)}, {ZZIXY Y X(6), XY ZIXY Z(2),
XZY Y ZXI(4)}, {ZY XZIXY (7), XY ZIXY Z(2), XZY Y ZXI(4)}, {Y IY ZXZX(5),
ZZIXY Y X(6), XY ZIXY Z(2)}, {ZY XZIXY (7), ZZIXY Y X(6), XY ZIXY Z(2)},
{Y IY ZXZX(5), XZY Y ZXI(4), Y XZXZIY (3)}, {ZZIXY Y X(6), XZY Y ZXI(4),
Y XZXZIY (3)}, {ZZIXY Y X(6), Y IY ZXZX(5), Y XZXZIY (3)}, {ZY XZIXY (7),
Y IY ZXZX(5), Y XZXZIY (3)}, {ZY XZIXY (7), ZZIXY Y X(6), Y XZXZIY (3)},
{ZY XZIXY (7), Y IY ZXZX(5), XZY Y ZXI(4)}, {ZY XZIXY (7), ZZIXY Y X(6),

XZY Y ZXI(4)}, {ZY XZIXY (7), ZZIXY Y X(6), Y IY ZXZX(5)}

{IXXY Y ZZ,
XY ZIXY Z,
XZY Y ZXI,
Y IY ZXZX,
Y XZXZIY,
ZY XZIXY,
ZZIXY Y X,
IIIIIII}

{IXXY Y ZZ(1), ZXY IZXY (3), XY ZXIZY (2)}, {IXXY Y ZZ(1), ZIZY XY X(5),
XY ZXIZY (2)}, {IXXY Y ZZ(1), Y ZXXZY I(6), XY ZXIZY (2)}, {IXXY Y ZZ(1),
Y Y IZXXZ(7), XY ZXIZY (2)}, {XZY ZY IX(4), IXXY Y ZZ(1), ZXY IZXY (3)},
{IXXY Y ZZ(1), Y ZXXZY I(6), ZXY IZXY (3)}, {IXXY Y ZZ(1), Y Y IZXXZ(7),
ZXY IZXY (3)}, {XZY ZY IX(4), IXXY Y ZZ(1), ZIZY XY X(5)}, {XZY ZY IX(4),
IXXY Y ZZ(1), Y ZXXZY I(6)}, {XZY ZY IX(4), IXXY Y ZZ(1), Y Y IZXXZ(7)},
{IXXY Y ZZ(1), Y ZXXZY I(6), ZIZY XY X(5)}, {IXXY Y ZZ(1), ZIZY XY X(5),
Y Y IZXXZ(7)}, {XZY ZY IX(4), ZXY IZXY (3), XY ZXIZY (2)}, {ZXY IZXY (3),
ZIZY XY X(5), XY ZXIZY (2)}, {ZXY IZXY (3), Y Y IZXXZ(7), XY ZXIZY (2)},
{XZY ZY IX(4), ZIZY XY X(5), XY ZXIZY (2)}, {XZY ZY IX(4), Y ZXXZY I(6),
XY ZXIZY (2)}, {XZY ZY IX(4), Y Y IZXXZ(7), XY ZXIZY (2)}, {Y ZXXZY I(6),
ZIZY XY X(5), XY ZXIZY (2)}, {Y ZXXZY I(6), Y Y IZXXZ(7), XY ZXIZY (2)},
{XZY ZY IX(4), ZIZY XY X(5), ZXY IZXY (3)}, {XZY ZY IX(4), Y ZXXZY I(6),
ZXY IZXY (3)}, {Y ZXXZY I(6), ZIZY XY X(5), ZXY IZXY (3)}, {ZIZY XY X(5),
Y Y IZXXZ(7), ZXY IZXY (3)}, {Y ZXXZY I(6), Y Y IZXXZ(7), ZXY IZXY (3)},
{XZY ZY IX(4), ZIZY XY X(5), Y Y IZXXZ(7)}, {XZY ZY IX(4), Y ZXXZY I(6),

Y Y IZXXZ(7)}, {Y ZXXZY I(6), ZIZY XY X(5), Y Y IZXXZ(7)}

{IXXY Y ZZ,
XY ZXIZY,
XZY ZY IX,
Y Y IZXXZ,
Y ZXXZY I,
ZIZY XY X,
ZXY IZXY,
IIIIIII}

{IXXY Y ZZ(1), Y IY XZXZ(3), XY ZXIZY (2)}, {IXXY Y ZZ(1), Y XZZXY I(5),
XY ZXIZY (2)}, {IXXY Y ZZ(1), ZY XIZY X(6), XY ZXIZY (2)}, {IXXY Y ZZ(1),
ZZIY XXY (7), XY ZXIZY (2)}, {XZY ZY IX(4), IXXY Y ZZ(1), Y IY XZXZ(3)},
{IXXY Y ZZ(1), ZY XIZY X(6), Y IY XZXZ(3)}, {IXXY Y ZZ(1), ZZIY XXY (7),
Y IY XZXZ(3)}, {XZY ZY IX(4), IXXY Y ZZ(1), Y XZZXY I(5)}, {XZY ZY IX(4),
IXXY Y ZZ(1), ZY XIZY X(6)}, {XZY ZY IX(4), IXXY Y ZZ(1), ZZIY XXY (7)},
{IXXY Y ZZ(1), Y XZZXY I(5), ZY XIZY X(6)}, {IXXY Y ZZ(1), ZZIY XXY (7),
Y XZZXY I(5)}, {XZY ZY IX(4), Y IY XZXZ(3), XY ZXIZY (2)}, {Y IY XZXZ(3),
Y XZZXY I(5), XY ZXIZY (2)}, {Y IY XZXZ(3), ZZIY XXY (7), XY ZXIZY (2)},
{XZY ZY IX(4), Y XZZXY I(5), XY ZXIZY (2)}, {XZY ZY IX(4), ZY XIZY X(6),
XY ZXIZY (2)}, {XZY ZY IX(4), ZZIY XXY (7), XY ZXIZY (2)}, {ZY XIZY X(6),
Y XZZXY I(5), XY ZXIZY (2)}, {ZY XIZY X(6), ZZIY XXY (7), XY ZXIZY (2)},
{XZY ZY IX(4), Y IY XZXZ(3), Y XZZXY I(5)}, {XZY ZY IX(4), Y IY XZXZ(3),
ZY XIZY X(6)}, {Y IY XZXZ(3), Y XZZXY I(5), ZY XIZY X(6)}, {Y IY XZXZ(3),
ZZIY XXY (7), Y XZZXY I(5)}, {Y IY XZXZ(3), ZZIY XXY (7), ZY XIZY X(6)},
{XZY ZY IX(4), ZZIY XXY (7), Y XZZXY I(5)}, {XZY ZY IX(4), ZZIY XXY (7),

ZY XIZY X(6)}, {ZZIY XXY (7), Y XZZXY I(5), ZY XIZY X(6)}

{IXXY Y ZZ,
XY ZXIZY,
XZY ZY IX,
Y IY XZXZ,
Y XZZXY I,
ZY XIZY X,
ZZIY XXY,
IIIIIII}

Table G.8: Continued from Tables G.1-G.7 and in Tables G.9-G.16.
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Stabilizer triplets which measure at least 2 different Paulis on every qubit Generated

subgroups

{IZZXXY Y (2), XIXY ZY Z(1), ZXY IZXY (3)}, {IZZXXY Y (2), XIXY ZY Z(1),
Y XZY IZX(5)}, {IZZXXY Y (2), ZY XXY ZI(6), XIXY ZY Z(1)}, {IZZXXY Y (2),
XIXY ZY Z(1), Y Y IZXXZ(7)}, {XZY ZY IX(4), XIXY ZY Z(1), ZXY IZXY (3)},
{ZY XXY ZI(6), XIXY ZY Z(1), ZXY IZXY (3)}, {XIXY ZY Z(1), Y Y IZXXZ(7),
ZXY IZXY (3)}, {XZY ZY IX(4), Y XZY IZX(5), XIXY ZY Z(1)}, {XZY ZY IX(4),
ZY XXY ZI(6), XIXY ZY Z(1)}, {XZY ZY IX(4), XIXY ZY Z(1), Y Y IZXXZ(7)},
{Y XZY IZX(5), ZY XXY ZI(6), XIXY ZY Z(1)}, {Y XZY IZX(5), XIXY ZY Z(1),
Y Y IZXXZ(7)}, {XZY ZY IX(4), IZZXXY Y (2), ZXY IZXY (3)}, {IZZXXY Y (2),
Y XZY IZX(5), ZXY IZXY (3)}, {IZZXXY Y (2), Y Y IZXXZ(7), ZXY IZXY (3)},
{XZY ZY IX(4), IZZXXY Y (2), Y XZY IZX(5)}, {XZY ZY IX(4), IZZXXY Y (2),
ZY XXY ZI(6)}, {XZY ZY IX(4), IZZXXY Y (2), Y Y IZXXZ(7)}, {IZZXXY Y (2),
ZY XXY ZI(6), Y XZY IZX(5)}, {IZZXXY Y (2), ZY XXY ZI(6), Y Y IZXXZ(7)},
{XZY ZY IX(4), Y XZY IZX(5), ZXY IZXY (3)}, {XZY ZY IX(4), ZY XXY ZI(6),
ZXY IZXY (3)}, {Y XZY IZX(5), ZY XXY ZI(6), ZXY IZXY (3)}, {Y XZY IZX(5),
Y Y IZXXZ(7), ZXY IZXY (3)}, {ZY XXY ZI(6), Y Y IZXXZ(7), ZXY IZXY (3)},
{XZY ZY IX(4), Y XZY IZX(5), Y Y IZXXZ(7)}, {XZY ZY IX(4), ZY XXY ZI(6),

Y Y IZXXZ(7)}, {Y XZY IZX(5), ZY XXY ZI(6), Y Y IZXXZ(7)}

{IZZXXY Y,
XIXY ZY Z,
XZY ZY IX,
Y XZY IZX,
Y Y IZXXZ,
ZXY IZXY,
ZY XXY ZI,
IIIIIII}

{IZZXXY Y (2), Y XZIY XZ(3), XIXY ZY Z(1)}, {ZXY Y XZI(5), IZZXXY Y (2),
XIXY ZY Z(1)}, {IZZXXY Y (2), Y Y IXZZX(6), XIXY ZY Z(1)}, {ZY XZIXY (7),
IZZXXY Y (2), XIXY ZY Z(1)}, {XZY ZY IX(4), Y XZIY XZ(3), XIXY ZY Z(1)},
{Y Y IXZZX(6), Y XZIY XZ(3), XIXY ZY Z(1)}, {ZY XZIXY (7), Y XZIY XZ(3),
XIXY ZY Z(1)}, {XZY ZY IX(4), ZXY Y XZI(5), XIXY ZY Z(1)}, {XZY ZY IX(4),
Y Y IXZZX(6), XIXY ZY Z(1)}, {XZY ZY IX(4), ZY XZIXY (7), XIXY ZY Z(1)},
{ZXY Y XZI(5), Y Y IXZZX(6), XIXY ZY Z(1)}, {ZXY Y XZI(5), ZY XZIXY (7),
XIXY ZY Z(1)}, {XZY ZY IX(4), IZZXXY Y (2), Y XZIY XZ(3)}, {ZXY Y XZI(5),
IZZXXY Y (2), Y XZIY XZ(3)}, {ZY XZIXY (7), IZZXXY Y (2), Y XZIY XZ(3)},
{XZY ZY IX(4), ZXY Y XZI(5), IZZXXY Y (2)}, {XZY ZY IX(4), IZZXXY Y (2),
Y Y IXZZX(6)}, {XZY ZY IX(4), ZY XZIXY (7), IZZXXY Y (2)}, {ZXY Y XZI(5),
IZZXXY Y (2), Y Y IXZZX(6)}, {ZY XZIXY (7), IZZXXY Y (2), Y Y IXZZX(6)},
{XZY ZY IX(4), ZXY Y XZI(5), Y XZIY XZ(3)}, {XZY ZY IX(4), Y Y IXZZX(6),
Y XZIY XZ(3)}, {ZXY Y XZI(5), Y XZIY XZ(3), Y Y IXZZX(6)}, {ZXY Y XZI(5),
ZY XZIXY (7), Y XZIY XZ(3)}, {Y Y IXZZX(6), ZY XZIXY (7), Y XZIY XZ(3)},
{XZY ZY IX(4), ZXY Y XZI(5), ZY XZIXY (7)}, {XZY ZY IX(4), ZY XZIXY (7),

Y Y IXZZX(6)}, {ZXY Y XZI(5), ZY XZIXY (7), Y Y IXZZX(6)}

{IZZXXY Y,
XIXY ZY Z,
XZY ZY IX,
Y XZIY XZ,
Y Y IXZZX,
ZXY Y XZI,
ZY XZIXY,
IIIIIII}

{ZXYXY IZ(3), XIXY ZY Z(1), XZY IXZY (2)}, {Y XZZXY I(5), XIXY ZY Z(1),
XZY IXZY (2)}, {Y Y IXZZX(6), XIXY ZY Z(1), XZY IXZY (2)}, {ZY XZIXY (7),
XIXY ZY Z(1), XZY IXZY (2)}, {IZZY Y XX(4), XIXY ZY Z(1), ZXY XY IZ(3)},
{Y Y IXZZX(6), XIXY ZY Z(1), ZXY XY IZ(3)}, {ZY XZIXY (7), XIXY ZY Z(1),
ZXY XY IZ(3)}, {IZZY Y XX(4), Y XZZXY I(5), XIXY ZY Z(1)}, {IZZY Y XX(4),
Y Y IXZZX(6), XIXY ZY Z(1)}, {IZZY Y XX(4), ZY XZIXY (7), XIXY ZY Z(1)},
{Y XZZXY I(5), Y Y IXZZX(6), XIXY ZY Z(1)}, {Y XZZXY I(5), ZY XZIXY (7),
XIXY ZY Z(1)}, {IZZY Y XX(4), XZY IXZY (2), ZXY XY IZ(3)}, {Y XZZXY I(5),
XZY IXZY (2), ZXY XY IZ(3)}, {ZY XZIXY (7), XZY IXZY (2), ZXY XY IZ(3)},
{IZZY Y XX(4), Y XZZXY I(5), XZY IXZY (2)}, {IZZY Y XX(4), Y Y IXZZX(6),
XZY IXZY (2)}, {IZZY Y XX(4), ZY XZIXY (7), XZY IXZY (2)}, {Y XZZXY I(5),
Y Y IXZZX(6), XZY IXZY (2)}, {ZY XZIXY (7), Y Y IXZZX(6), XZY IXZY (2)},
{IZZY Y XX(4), Y XZZXY I(5), ZXY XY IZ(3)}, {IZZY Y XX(4), Y Y IXZZX(6),
ZXY XY IZ(3)}, {Y Y IXZZX(6), Y XZZXY I(5), ZXY XY IZ(3)}, {ZY XZIXY (7),
Y XZZXY I(5), ZXY XY IZ(3)}, {ZY XZIXY (7), Y Y IXZZX(6), ZXY XY IZ(3)},
{IZZY Y XX(4), ZY XZIXY (7), Y XZZXY I(5)}, {IZZY Y XX(4), ZY XZIXY (7),

Y Y IXZZX(6)}, {ZY XZIXY (7), Y Y IXZZX(6), Y XZZXY I(5)}

{IZZY Y XX,
XIXY ZY Z,
XZY IXZY,
Y XZZXY I,
Y Y IXZZX,
ZXY XY IZ,
ZY XZIXY,
IIIIIII}

Table G.9: Continued from Tables G.1-G.8 and in Tables G.10-G.16.
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Stabilizer triplets which measure at least 2 different Paulis on every qubit Generated

subgroups

{XIXY ZY Z(1), XZY IXZY (2), Y XZXZIY (3)}, {ZXY ZIY X(5), XIXY ZY Z(1),
XZY IXZY (2)}, {ZY XXY ZI(6), XIXY ZY Z(1), XZY IXZY (2)}, {Y Y IZXXZ(7),
XIXY ZY Z(1), XZY IXZY (2)}, {IZZY Y XX(4), XIXY ZY Z(1), Y XZXZIY (3)},
{ZY XXY ZI(6), XIXY ZY Z(1), Y XZXZIY (3)}, {XIXY ZY Z(1), Y Y IZXXZ(7),
Y XZXZIY (3)}, {IZZY Y XX(4), ZXY ZIY X(5), XIXY ZY Z(1)}, {IZZY Y XX(4),
ZY XXY ZI(6), XIXY ZY Z(1)}, {IZZY Y XX(4), XIXY ZY Z(1), Y Y IZXXZ(7)},
{ZXY ZIY X(5), ZY XXY ZI(6), XIXY ZY Z(1)}, {ZXY ZIY X(5), XIXY ZY Z(1),
Y Y IZXXZ(7)}, {IZZY Y XX(4), XZY IXZY (2), Y XZXZIY (3)}, {ZXY ZIY X(5),
XZY IXZY (2), Y XZXZIY (3)}, {XZY IXZY (2), Y Y IZXXZ(7), Y XZXZIY (3)},
{IZZY Y XX(4), ZXY ZIY X(5), XZY IXZY (2)}, {IZZY Y XX(4), ZY XXY ZI(6),
XZY IXZY (2)}, {IZZY Y XX(4), XZY IXZY (2), Y Y IZXXZ(7)}, {ZXY ZIY X(5),
ZY XXY ZI(6), XZY IXZY (2)}, {ZY XXY ZI(6), XZY IXZY (2), Y Y IZXXZ(7)},
{IZZY Y XX(4), ZXY ZIY X(5), Y XZXZIY (3)}, {IZZY Y XX(4), ZY XXY ZI(6),
Y XZXZIY (3)}, {ZY XXY ZI(6), ZXY ZIY X(5), Y XZXZIY (3)}, {ZXY ZIY X(5),
Y Y IZXXZ(7), Y XZXZIY (3)}, {ZY XXY ZI(6), Y Y IZXXZ(7), Y XZXZIY (3)},
{IZZY Y XX(4), ZXY ZIY X(5), Y Y IZXXZ(7)}, {IZZY Y XX(4), ZY XXY ZI(6),

Y Y IZXXZ(7)}, {ZY XXY ZI(6), ZXY ZIY X(5), Y Y IZXXZ(7)}

{IZZY Y XX,
XIXY ZY Z,
XZY IXZY,
Y XZXZIY,
Y Y IZXXZ,
ZXY ZIY X,
ZY XXY ZI,
IIIIIII}

{IY Y XXZZ(2), XIXY ZY Z(1), ZXY IZXY (3)}, {IY Y XXZZ(2), XIXY ZY Z(1),
Y XZY IZX(5)}, {IY Y XXZZ(2), XIXY ZY Z(1), ZZIXY Y X(6)}, {Y ZXZXIY (7),
IY Y XXZZ(2), XIXY ZY Z(1)}, {XY ZZY XI(4), XIXY ZY Z(1), ZXY IZXY (3)},
{ZZIXY Y X(6), XIXY ZY Z(1), ZXY IZXY (3)}, {Y ZXZXIY (7), XIXY ZY Z(1),
ZXY IZXY (3)}, {Y XZY IZX(5), XIXY ZY Z(1), XY ZZY XI(4)}, {ZZIXY Y X(6),
XIXY ZY Z(1), XY ZZY XI(4)}, {Y ZXZXIY (7), XIXY ZY Z(1), XY ZZY XI(4)},
{Y XZY IZX(5), XIXY ZY Z(1), ZZIXY Y X(6)}, {Y ZXZXIY (7), Y XZY IZX(5),
XIXY ZY Z(1)}, {XY ZZY XI(4), IY Y XXZZ(2), ZXY IZXY (3)}, {IY Y XXZZ(2),
Y XZY IZX(5), ZXY IZXY (3)}, {IY Y XXZZ(2), Y ZXZXIY (7), ZXY IZXY (3)},
{IY Y XXZZ(2), Y XZY IZX(5), XY ZZY XI(4)}, {IY Y XXZZ(2), ZZIXY Y X(6),
XY ZZY XI(4)}, {IY Y XXZZ(2), Y ZXZXIY (7), XY ZZY XI(4)}, {IY Y XXZZ(2),
Y XZY IZX(5), ZZIXY Y X(6)}, {IY Y XXZZ(2), Y ZXZXIY (7), ZZIXY Y X(6)},
{XY ZZY XI(4), Y XZY IZX(5), ZXY IZXY (3)}, {XY ZZY XI(4), ZZIXY Y X(6),
ZXY IZXY (3)}, {Y XZY IZX(5), ZZIXY Y X(6), ZXY IZXY (3)}, {Y XZY IZX(5),
Y ZXZXIY (7), ZXY IZXY (3)}, {ZZIXY Y X(6), Y ZXZXIY (7), ZXY IZXY (3)},
{Y XZY IZX(5), Y ZXZXIY (7), XY ZZY XI(4)}, {ZZIXY Y X(6), Y ZXZXIY (7),

XY ZZY XI(4)}, {Y XZY IZX(5), Y ZXZXIY (7), ZZIXY Y X(6)}

{IY Y XXZZ,
XIXY ZY Z,
XY ZZY XI,
Y XZY IZX,
Y ZXZXIY,
ZXY IZXY,
ZZIXY Y X,
IIIIIII}

{IY Y XXZZ(2), XIXY ZY Z(1), Y XZXZIY (3)}, {IY Y XXZZ(2), ZXY ZIY X(5),
XIXY ZY Z(1)}, {Y ZXIY ZX(6), IY Y XXZZ(2), XIXY ZY Z(1)}, {IY Y XXZZ(2),
ZZIY XXY (7), XIXY ZY Z(1)}, {XY ZZY XI(4), XIXY ZY Z(1), Y XZXZIY (3)},
{Y ZXIY ZX(6), XIXY ZY Z(1), Y XZXZIY (3)}, {ZZIY XXY (7), XIXY ZY Z(1),
Y XZXZIY (3)}, {ZXY ZIY X(5), XIXY ZY Z(1), XY ZZY XI(4)}, {Y ZXIY ZX(6),
XIXY ZY Z(1), XY ZZY XI(4)}, {ZZIY XXY (7), XIXY ZY Z(1), XY ZZY XI(4)},
{Y ZXIY ZX(6), ZXY ZIY X(5), XIXY ZY Z(1)}, {ZXY ZIY X(5), XIXY ZY Z(1),
ZZIY XXY (7)}, {XY ZZY XI(4), IY Y XXZZ(2), Y XZXZIY (3)}, {IY Y XXZZ(2),
ZXY ZIY X(5), Y XZXZIY (3)}, {IY Y XXZZ(2), ZZIY XXY (7), Y XZXZIY (3)},
{IY Y XXZZ(2), ZXY ZIY X(5), XY ZZY XI(4)}, {Y ZXIY ZX(6), IY Y XXZZ(2),
XY ZZY XI(4)}, {IY Y XXZZ(2), ZZIY XXY (7), XY ZZY XI(4)}, {Y ZXIY ZX(6),
IY Y XXZZ(2), ZXY ZIY X(5)}, {Y ZXIY ZX(6), IY Y XXZZ(2), ZZIY XXY (7)},
{XY ZZY XI(4), ZXY ZIY X(5), Y XZXZIY (3)}, {Y ZXIY ZX(6), XY ZZY XI(4),
Y XZXZIY (3)}, {Y ZXIY ZX(6), ZXY ZIY X(5), Y XZXZIY (3)}, {ZZIY XXY (7),
ZXY ZIY X(5), Y XZXZIY (3)}, {Y ZXIY ZX(6), ZZIY XXY (7), Y XZXZIY (3)},
{ZZIY XXY (7), ZXY ZIY X(5), XY ZZY XI(4)}, {Y ZXIY ZX(6), ZZIY XXY (7),

XY ZZY XI(4)}, {Y ZXIY ZX(6), ZZIY XXY (7), ZXY ZIY X(5)}

{IY Y XXZZ,
XIXY ZY Z,
XY ZZY XI,
Y XZXZIY,
Y ZXIY ZX,
ZXY ZIY X,
ZZIY XXY,
IIIIIII}

Table G.10: Continued from Tables G.1-G.9 and in Tables G.11-G.16.
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Stabilizer triplets which measure at least 2 different Paulis on every qubit Generated

subgroups

{XIXY ZY Z(1), ZXY XY IZ(3), XY ZXIZY (2)}, {Y XZZXY I(5), XIXY ZY Z(1),
XY ZXIZY (2)}, {Y ZXIY ZX(6), XIXY ZY Z(1), XY ZXIZY (2)}, {ZZIY XXY (7),
XIXY ZY Z(1), XY ZXIZY (2)}, {IY Y ZZXX(4), XIXY ZY Z(1), ZXY XY IZ(3)},
{Y ZXIY ZX(6), XIXY ZY Z(1), ZXY XY IZ(3)}, {ZZIY XXY (7), XIXY ZY Z(1),
ZXY XY IZ(3)}, {Y XZZXY I(5), IY Y ZZXX(4), XIXY ZY Z(1)}, {Y ZXIY ZX(6),
IY Y ZZXX(4), XIXY ZY Z(1)}, {ZZIY XXY (7), IY Y ZZXX(4), XIXY ZY Z(1)},
{Y XZZXY I(5), Y ZXIY ZX(6), XIXY ZY Z(1)}, {Y XZZXY I(5), ZZIY XXY (7),
XIXY ZY Z(1)}, {IY Y ZZXX(4), ZXY XY IZ(3), XY ZXIZY (2)}, {Y XZZXY I(5),
ZXY XY IZ(3), XY ZXIZY (2)}, {ZZIY XXY (7), ZXY XY IZ(3), XY ZXIZY (2)},
{IY Y ZZXX(4), Y XZZXY I(5), XY ZXIZY (2)}, {Y ZXIY ZX(6), IY Y ZZXX(4),
XY ZXIZY (2)}, {ZZIY XXY (7), IY Y ZZXX(4), XY ZXIZY (2)}, {Y ZXIY ZX(6),
Y XZZXY I(5), XY ZXIZY (2)}, {Y ZXIY ZX(6), ZZIY XXY (7), XY ZXIZY (2)},
{IY Y ZZXX(4), Y XZZXY I(5), ZXY XY IZ(3)}, {Y ZXIY ZX(6), IY Y ZZXX(4),
ZXY XY IZ(3)}, {Y ZXIY ZX(6), Y XZZXY I(5), ZXY XY IZ(3)}, {ZZIY XXY (7),
Y XZZXY I(5), ZXY XY IZ(3)}, {Y ZXIY ZX(6), ZZIY XXY (7), ZXY XY IZ(3)},
{ZZIY XXY (7), IY Y ZZXX(4), Y XZZXY I(5)}, {Y ZXIY ZX(6), ZZIY XXY (7),

IY Y ZZXX(4)}, {Y ZXIY ZX(6), ZZIY XXY (7), Y XZZXY I(5)}

{IY Y ZZXX,
XIXY ZY Z,
XY ZXIZY,
Y XZZXY I,
Y ZXIY ZX,
ZXY XY IZ,
ZZIY XXY,
IIIIIII}

{XY ZXIZY (2), XIXY ZY Z(1), Y XZIY XZ(3)}, {XY ZXIZY (2), XIXY ZY Z(1),
ZXY Y XZI(5)}, {XY ZXIZY (2), ZZIXY Y X(6), XIXY ZY Z(1)}, {XY ZXIZY (2),
XIXY ZY Z(1), Y ZXZXIY (7)}, {IY Y ZZXX(4), XIXY ZY Z(1), Y XZIY XZ(3)},
{ZZIXY Y X(6), XIXY ZY Z(1), Y XZIY XZ(3)}, {XIXY ZY Z(1), Y ZXZXIY (7),
Y XZIY XZ(3)}, {IY Y ZZXX(4), XIXY ZY Z(1), ZXY Y XZI(5)}, {ZZIXY Y X(6),
IY Y ZZXX(4), XIXY ZY Z(1)}, {IY Y ZZXX(4), XIXY ZY Z(1), Y ZXZXIY (7)},
{ZZIXY Y X(6), XIXY ZY Z(1), ZXY Y XZI(5)}, {XIXY ZY Z(1), ZXY Y XZI(5),
Y ZXZXIY (7)}, {XY ZXIZY (2), IY Y ZZXX(4), Y XZIY XZ(3)}, {XY ZXIZY (2),
ZXY Y XZI(5), Y XZIY XZ(3)}, {XY ZXIZY (2), Y ZXZXIY (7), Y XZIY XZ(3)},
{XY ZXIZY (2), IY Y ZZXX(4), ZXY Y XZI(5)}, {ZZIXY Y X(6), XY ZXIZY (2),
IY Y ZZXX(4)}, {XY ZXIZY (2), IY Y ZZXX(4), Y ZXZXIY (7)}, {XY ZXIZY (2),
ZZIXY Y X(6), ZXY Y XZI(5)}, {XY ZXIZY (2), ZZIXY Y X(6), Y ZXZXIY (7)},
{IY Y ZZXX(4), ZXY Y XZI(5), Y XZIY XZ(3)}, {ZZIXY Y X(6), IY Y ZZXX(4),
Y XZIY XZ(3)}, {ZZIXY Y X(6), ZXY Y XZI(5), Y XZIY XZ(3)}, {Y ZXZXIY (7),
ZXY Y XZI(5), Y XZIY XZ(3)}, {ZZIXY Y X(6), Y ZXZXIY (7), Y XZIY XZ(3)},
{IY Y ZZXX(4), Y ZXZXIY (7), ZXY Y XZI(5)}, {ZZIXY Y X(6), IY Y ZZXX(4),

Y ZXZXIY (7)}, {ZZIXY Y X(6), Y ZXZXIY (7), ZXY Y XZI(5)}

{IY Y ZZXX,
XIXY ZY Z,
XY ZXIZY,
Y XZIY XZ,
Y ZXZXIY,
ZXY Y XZI,
ZZIXY Y X,
IIIIIII}

{XXIZY Y Z(1), ZXY IZXY (3), IZZXXY Y (2)}, {XXIZY Y Z(1), IZZXXY Y (2),
Y IY ZXZX(5)}, {XXIZY Y Z(1), IZZXXY Y (2), ZY XXY ZI(6)}, {XXIZY Y Z(1),
Y ZXY IXZ(7), IZZXXY Y (2)}, {XXIZY Y Z(1), ZXY IZXY (3), XY ZY ZIX(4)},
{XXIZY Y Z(1), ZXY IZXY (3), ZY XXY ZI(6)}, {XXIZY Y Z(1), Y ZXY IXZ(7),
ZXY IZXY (3)}, {XXIZY Y Z(1), XY ZY ZIX(4), Y IY ZXZX(5)}, {XXIZY Y Z(1),
XY ZY ZIX(4), ZY XXY ZI(6)}, {XXIZY Y Z(1), Y ZXY IXZ(7), XY ZY ZIX(4)},
{XXIZY Y Z(1), ZY XXY ZI(6), Y IY ZXZX(5)}, {XXIZY Y Z(1), Y ZXY IXZ(7),
Y IY ZXZX(5)}, {ZXY IZXY (3), IZZXXY Y (2), XY ZY ZIX(4)}, {ZXY IZXY (3),
IZZXXY Y (2), Y IY ZXZX(5)}, {Y ZXY IXZ(7), ZXY IZXY (3), IZZXXY Y (2)},
{XY ZY ZIX(4), IZZXXY Y (2), Y IY ZXZX(5)}, {XY ZY ZIX(4), IZZXXY Y (2),
ZY XXY ZI(6)}, {Y ZXY IXZ(7), XY ZY ZIX(4), IZZXXY Y (2)}, {IZZXXY Y (2),
Y IY ZXZX(5), ZY XXY ZI(6)}, {Y ZXY IXZ(7), IZZXXY Y (2), ZY XXY ZI(6)},
{Y IY ZXZX(5), ZXY IZXY (3), XY ZY ZIX(4)}, {ZXY IZXY (3), ZY XXY ZI(6),
XY ZY ZIX(4)}, {ZXY IZXY (3), ZY XXY ZI(6), Y IY ZXZX(5)}, {Y ZXY IXZ(7),
ZXY IZXY (3), Y IY ZXZX(5)}, {Y ZXY IXZ(7), ZXY IZXY (3), ZY XXY ZI(6)},
{Y ZXY IXZ(7), XY ZY ZIX(4), Y IY ZXZX(5)}, {Y ZXY IXZ(7), XY ZY ZIX(4),

ZY XXY ZI(6)}, {Y ZXY IXZ(7), ZY XXY ZI(6), Y IY ZXZX(5)}

{IZZXXY Y,
XXIZY Y Z,
XY ZY ZIX,
Y IY ZXZX,
Y ZXY IXZ,
ZXY IZXY,
ZY XXY ZI,
IIIIIII}

Table G.11: Continued from Tables G.1-G.10 and in Tables G.12-G.16.



135

Stabilizer triplets which measure at least 2 different Paulis on every qubit Generated

subgroups

{XXIZY Y Z(1), IZZXXY Y (2), Y IY XZXZ(3)}, {XXIZY Y Z(1), ZXY Y XZI(5),
IZZXXY Y (2)}, {XXIZY Y Z(1), IZZXXY Y (2), Y ZXIY ZX(6)}, {ZY XZIXY (7),
XXIZY Y Z(1), IZZXXY Y (2)}, {XXIZY Y Z(1), XY ZY ZIX(4), Y IY XZXZ(3)},
{XXIZY Y Z(1), Y IY XZXZ(3), Y ZXIY ZX(6)}, {ZY XZIXY (7), XXIZY Y Z(1),
Y IY XZXZ(3)}, {XXIZY Y Z(1), XY ZY ZIX(4), ZXY Y XZI(5)}, {XXIZY Y Z(1),
XY ZY ZIX(4), Y ZXIY ZX(6)}, {ZY XZIXY (7), XXIZY Y Z(1), XY ZY ZIX(4)},
{XXIZY Y Z(1), ZXY Y XZI(5), Y ZXIY ZX(6)}, {ZY XZIXY (7), XXIZY Y Z(1),
ZXY Y XZI(5)}, {XY ZY ZIX(4), IZZXXY Y (2), Y IY XZXZ(3)}, {ZXY Y XZI(5),
IZZXXY Y (2), Y IY XZXZ(3)}, {ZY XZIXY (7), IZZXXY Y (2), Y IY XZXZ(3)},
{ZXY Y XZI(5), XY ZY ZIX(4), IZZXXY Y (2)}, {XY ZY ZIX(4), IZZXXY Y (2),
Y ZXIY ZX(6)}, {ZY XZIXY (7), XY ZY ZIX(4), IZZXXY Y (2)}, {ZXY Y XZI(5),
IZZXXY Y (2), Y ZXIY ZX(6)}, {ZY XZIXY (7), IZZXXY Y (2), Y ZXIY ZX(6)},
{XY ZY ZIX(4), ZXY Y XZI(5), Y IY XZXZ(3)}, {XY ZY ZIX(4), Y IY XZXZ(3),
Y ZXIY ZX(6)}, {ZXY Y XZI(5), Y IY XZXZ(3), Y ZXIY ZX(6)}, {ZY XZIXY (7),
ZXY Y XZI(5), Y IY XZXZ(3)}, {ZY XZIXY (7), Y IY XZXZ(3), Y ZXIY ZX(6)},
{ZY XZIXY (7), XY ZY ZIX(4), ZXY Y XZI(5)}, {ZY XZIXY (7), XY ZY ZIX(4),

Y ZXIY ZX(6)}, {ZY XZIXY (7), ZXY Y XZI(5), Y ZXIY ZX(6)}

{IZZXXY Y,
XXIZY Y Z,
XY ZY ZIX,
Y IY XZXZ,
Y ZXIY ZX,
ZXY Y XZI,
ZY XZIXY,
IIIIIII}

{XZY IXZY (2), XXIZY Y Z(1), ZIZXY XY (3)}, {Y XZY IZX(5), XZY IXZY (2),
XXIZY Y Z(1)}, {XZY IXZY (2), XXIZY Y Z(1), Y ZXXZY I(6)}, {XZY IXZY (2),
XXIZY Y Z(1), ZY XY XIZ(7)}, {XXIZY Y Z(1), ZIZXY XY (3), IY Y ZZXX(4)},
{XXIZY Y Z(1), Y ZXXZY I(6), ZIZXY XY (3)}, {XXIZY Y Z(1), ZIZXY XY (3),
ZY XY XIZ(7)}, {Y XZY IZX(5), XXIZY Y Z(1), IY Y ZZXX(4)}, {XXIZY Y Z(1),
Y ZXXZY I(6), IY Y ZZXX(4)}, {XXIZY Y Z(1), ZY XY XIZ(7), IY Y ZZXX(4)},
{Y XZY IZX(5), XXIZY Y Z(1), Y ZXXZY I(6)}, {Y XZY IZX(5), XXIZY Y Z(1),
ZY XY XIZ(7)}, {XZY IXZY (2), ZIZXY XY (3), IY Y ZZXX(4)}, {Y XZY IZX(5),
XZY IXZY (2), ZIZXY XY (3)}, {XZY IXZY (2), ZIZXY XY (3), ZY XY XIZ(7)},
{Y XZY IZX(5), XZY IXZY (2), IY Y ZZXX(4)}, {XZY IXZY (2), Y ZXXZY I(6),
IY Y ZZXX(4)}, {XZY IXZY (2), ZY XY XIZ(7), IY Y ZZXX(4)}, {Y XZY IZX(5),
XZY IXZY (2), Y ZXXZY I(6)}, {XZY IXZY (2), Y ZXXZY I(6), ZY XY XIZ(7)},
{Y XZY IZX(5), IY Y ZZXX(4), ZIZXY XY (3)}, {IY Y ZZXX(4), Y ZXXZY I(6),
ZIZXY XY (3)}, {Y XZY IZX(5), Y ZXXZY I(6), ZIZXY XY (3)}, {Y XZY IZX(5),
ZIZXY XY (3), ZY XY XIZ(7)}, {Y ZXXZY I(6), ZIZXY XY (3), ZY XY XIZ(7)},
{Y XZY IZX(5), IY Y ZZXX(4), ZY XY XIZ(7)}, {IY Y ZZXX(4), Y ZXXZY I(6),

ZY XY XIZ(7)}, {Y XZY IZX(5), Y ZXXZY I(6), ZY XY XIZ(7)}

{IY Y ZZXX,
XXIZY Y Z,
XZY IXZY,
Y XZY IZX,
Y ZXXZY I,
ZIZXY XY,
ZY XY XIZ,
IIIIIII}

{XZY IXZY (2), XXIZY Y Z(1), Y XZXZIY (3)}, {XZY IXZY (2), XXIZY Y Z(1),
ZIZY XY X(5)}, {XZY IXZY (2), XXIZY Y Z(1), ZY XXY ZI(6)}, {XZY IXZY (2),
XXIZY Y Z(1), Y ZXY IXZ(7)}, {XXIZY Y Z(1), Y XZXZIY (3), IY Y ZZXX(4)},
{XXIZY Y Z(1), Y XZXZIY (3), ZY XXY ZI(6)}, {XXIZY Y Z(1), Y ZXY IXZ(7),
Y XZXZIY (3)}, {XXIZY Y Z(1), ZIZY XY X(5), IY Y ZZXX(4)}, {XXIZY Y Z(1),
ZY XXY ZI(6), IY Y ZZXX(4)}, {XXIZY Y Z(1), Y ZXY IXZ(7), IY Y ZZXX(4)},
{XXIZY Y Z(1), ZIZY XY X(5), ZY XXY ZI(6)}, {XXIZY Y Z(1), Y ZXY IXZ(7),
ZIZY XY X(5)}, {XZY IXZY (2), Y XZXZIY (3), IY Y ZZXX(4)}, {XZY IXZY (2),
ZIZY XY X(5), Y XZXZIY (3)}, {XZY IXZY (2), Y ZXY IXZ(7), Y XZXZIY (3)},
{XZY IXZY (2), ZIZY XY X(5), IY Y ZZXX(4)}, {XZY IXZY (2), ZY XXY ZI(6),
IY Y ZZXX(4)}, {XZY IXZY (2), Y ZXY IXZ(7), IY Y ZZXX(4)}, {XZY IXZY (2),
ZIZY XY X(5), ZY XXY ZI(6)}, {XZY IXZY (2), Y ZXY IXZ(7), ZY XXY ZI(6)},
{IY Y ZZXX(4), ZIZY XY X(5), Y XZXZIY (3)}, {IY Y ZZXX(4), Y XZXZIY (3),
ZY XXY ZI(6)}, {ZIZY XY X(5), Y XZXZIY (3), ZY XXY ZI(6)}, {Y ZXY IXZ(7),
ZIZY XY X(5), Y XZXZIY (3)}, {Y ZXY IXZ(7), Y XZXZIY (3), ZY XXY ZI(6)},
{IY Y ZZXX(4), Y ZXY IXZ(7), ZIZY XY X(5)}, {IY Y ZZXX(4), Y ZXY IXZ(7),

ZY XXY ZI(6)}, {Y ZXY IXZ(7), ZIZY XY X(5), ZY XXY ZI(6)}

{IY Y ZZXX,
XXIZY Y Z,
XZY IXZY,
Y XZXZIY,
Y ZXY IXZ,
ZIZY XY X,
ZY XXY ZI,
IIIIIII}

Table G.12: Continued from Tables G.1-G.11 and in Tables G.13-G.16.
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Stabilizer triplets which measure at least 2 different Paulis on every qubit Generated

subgroups

{IY Y XXZZ(2), XXIZY Y Z(1), ZIZXY XY (3)}, {IY Y XXZZ(2), XXIZY Y Z(1),
Y XZY IZX(5)}, {IY Y XXZZ(2), XXIZY Y Z(1), ZY XIZY X(6)}, {IY Y XXZZ(2),
XXIZY Y Z(1), Y ZXZXIY (7)}, {XZY Y ZXI(4), XXIZY Y Z(1), ZIZXY XY (3)},
{XXIZY Y Z(1), ZY XIZY X(6), ZIZXY XY (3)}, {XXIZY Y Z(1), Y ZXZXIY (7),
ZIZXY XY (3)}, {XZY Y ZXI(4), XXIZY Y Z(1), Y XZY IZX(5)}, {XZY Y ZXI(4),
XXIZY Y Z(1), ZY XIZY X(6)}, {XZY Y ZXI(4), XXIZY Y Z(1), Y ZXZXIY (7)},
{Y XZY IZX(5), XXIZY Y Z(1), ZY XIZY X(6)}, {Y XZY IZX(5), XXIZY Y Z(1),
Y ZXZXIY (7)}, {IY Y XXZZ(2), XZY Y ZXI(4), ZIZXY XY (3)}, {IY Y XXZZ(2),
ZIZXY XY (3), Y XZY IZX(5)}, {IY Y XXZZ(2), Y ZXZXIY (7), ZIZXY XY (3)},
{IY Y XXZZ(2), XZY Y ZXI(4), Y XZY IZX(5)}, {IY Y XXZZ(2), XZY Y ZXI(4),
ZY XIZY X(6)}, {IY Y XXZZ(2), XZY Y ZXI(4), Y ZXZXIY (7)}, {IY Y XXZZ(2),
ZY XIZY X(6), Y XZY IZX(5)}, {IY Y XXZZ(2), ZY XIZY X(6), Y ZXZXIY (7)},
{XZY Y ZXI(4), ZIZXY XY (3), Y XZY IZX(5)}, {XZY Y ZXI(4), ZY XIZY X(6),
ZIZXY XY (3)}, {Y XZY IZX(5), ZY XIZY X(6), ZIZXY XY (3)}, {Y XZY IZX(5),
Y ZXZXIY (7), ZIZXY XY (3)}, {ZY XIZY X(6), ZIZXY XY (3), Y ZXZXIY (7)},
{XZY Y ZXI(4), Y ZXZXIY (7), Y XZY IZX(5)}, {XZY Y ZXI(4), ZY XIZY X(6),

Y ZXZXIY (7)}, {Y XZY IZX(5), ZY XIZY X(6), Y ZXZXIY (7)}

{IY Y XXZZ,
XXIZY Y Z,
XZY Y ZXI,
Y XZY IZX,
Y ZXZXIY,
ZIZXY XY,
ZY XIZY X,
IIIIIII}

{IY Y XXZZ(2), XXIZY Y Z(1), Y XZXZIY (3)}, {IY Y XXZZ(2), XXIZY Y Z(1),
ZIZY XY X(5)}, {IY Y XXZZ(2), XXIZY Y Z(1), Y ZXIY ZX(6)}, {IY Y XXZZ(2),
ZY XZIXY (7), XXIZY Y Z(1)}, {XZY Y ZXI(4), XXIZY Y Z(1), Y XZXZIY (3)},
{XXIZY Y Z(1), Y XZXZIY (3), Y ZXIY ZX(6)}, {ZY XZIXY (7), XXIZY Y Z(1),
Y XZXZIY (3)}, {XZY Y ZXI(4), XXIZY Y Z(1), ZIZY XY X(5)}, {XZY Y ZXI(4),
XXIZY Y Z(1), Y ZXIY ZX(6)}, {XZY Y ZXI(4), ZY XZIXY (7), XXIZY Y Z(1)},
{XXIZY Y Z(1), ZIZY XY X(5), Y ZXIY ZX(6)}, {ZY XZIXY (7), XXIZY Y Z(1),
ZIZY XY X(5)}, {IY Y XXZZ(2), XZY Y ZXI(4), Y XZXZIY (3)}, {IY Y XXZZ(2),
ZIZY XY X(5), Y XZXZIY (3)}, {IY Y XXZZ(2), ZY XZIXY (7), Y XZXZIY (3)},
{IY Y XXZZ(2), XZY Y ZXI(4), ZIZY XY X(5)}, {IY Y XXZZ(2), XZY Y ZXI(4),
Y ZXIY ZX(6)}, {IY Y XXZZ(2), ZY XZIXY (7), XZY Y ZXI(4)}, {IY Y XXZZ(2),
ZIZY XY X(5), Y ZXIY ZX(6)}, {IY Y XXZZ(2), ZY XZIXY (7), Y ZXIY ZX(6)},
{XZY Y ZXI(4), ZIZY XY X(5), Y XZXZIY (3)}, {XZY Y ZXI(4), Y XZXZIY (3),
Y ZXIY ZX(6)}, {ZIZY XY X(5), Y XZXZIY (3), Y ZXIY ZX(6)}, {ZY XZIXY (7),
ZIZY XY X(5), Y XZXZIY (3)}, {ZY XZIXY (7), Y XZXZIY (3), Y ZXIY ZX(6)},
{XZY Y ZXI(4), ZY XZIXY (7), ZIZY XY X(5)}, {XZY Y ZXI(4), ZY XZIXY (7),

Y ZXIY ZX(6)}, {ZY XZIXY (7), ZIZY XY X(5), Y ZXIY ZX(6)}

{IY Y XXZZ,
XXIZY Y Z,
XZY Y ZXI,
Y XZXZIY,
Y ZXIY ZX,
ZIZY XY X,
ZY XZIXY,
IIIIIII}

{XY ZXIZY (2), XXIZY Y Z(1), ZXY IZXY (3)}, {XY ZXIZY (2), XXIZY Y Z(1),
Y IY ZXZX(5)}, {XY ZXIZY (2), XXIZY Y Z(1), Y ZXXZY I(6)}, {XY ZXIZY (2),
XXIZY Y Z(1), ZY XY XIZ(7)}, {IZZY Y XX(4), XXIZY Y Z(1), ZXY IZXY (3)},
{XXIZY Y Z(1), Y ZXXZY I(6), ZXY IZXY (3)}, {XXIZY Y Z(1), ZXY IZXY (3),
ZY XY XIZ(7)}, {IZZY Y XX(4), XXIZY Y Z(1), Y IY ZXZX(5)}, {IZZY Y XX(4),
XXIZY Y Z(1), Y ZXXZY I(6)}, {IZZY Y XX(4), XXIZY Y Z(1), ZY XY XIZ(7)},
{XXIZY Y Z(1), Y ZXXZY I(6), Y IY ZXZX(5)}, {XXIZY Y Z(1), ZY XY XIZ(7),
Y IY ZXZX(5)}, {IZZY Y XX(4), XY ZXIZY (2), ZXY IZXY (3)}, {XY ZXIZY (2),
ZXY IZXY (3), Y IY ZXZX(5)}, {XY ZXIZY (2), ZXY IZXY (3), ZY XY XIZ(7)},
{IZZY Y XX(4), XY ZXIZY (2), Y IY ZXZX(5)}, {IZZY Y XX(4), XY ZXIZY (2),
Y ZXXZY I(6)}, {IZZY Y XX(4), XY ZXIZY (2), ZY XY XIZ(7)}, {XY ZXIZY (2),
Y ZXXZY I(6), Y IY ZXZX(5)}, {XY ZXIZY (2), Y ZXXZY I(6), ZY XY XIZ(7)},
{IZZY Y XX(4), ZXY IZXY (3), Y IY ZXZX(5)}, {IZZY Y XX(4), Y ZXXZY I(6),
ZXY IZXY (3)}, {Y ZXXZY I(6), ZXY IZXY (3), Y IY ZXZX(5)}, {ZXY IZXY (3),
ZY XY XIZ(7), Y IY ZXZX(5)}, {Y ZXXZY I(6), ZXY IZXY (3), ZY XY XIZ(7)},
{IZZY Y XX(4), ZY XY XIZ(7), Y IY ZXZX(5)}, {IZZY Y XX(4), Y ZXXZY I(6),

ZY XY XIZ(7)}, {Y ZXXZY I(6), ZY XY XIZ(7), Y IY ZXZX(5)}

{IZZY Y XX,
XXIZY Y Z,
XY ZXIZY,
Y IY ZXZX,
Y ZXXZY I,
ZXY IZXY,
ZY XY XIZ,
IIIIIII}

Table G.13: Continued from Tables G.1-G.12 and in Tables G.14-G.16.
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subgroups

{XY ZXIZY (2), XXIZY Y Z(1), Y IY XZXZ(3)}, {XY ZXIZY (2), XXIZY Y Z(1),
ZXY Y XZI(5)}, {XY ZXIZY (2), XXIZY Y Z(1), ZY XIZY X(6)}, {XY ZXIZY (2),
XXIZY Y Z(1), Y ZXZXIY (7)}, {IZZY Y XX(4), XXIZY Y Z(1), Y IY XZXZ(3)},
{XXIZY Y Z(1), ZY XIZY X(6), Y IY XZXZ(3)}, {XXIZY Y Z(1), Y ZXZXIY (7),
Y IY XZXZ(3)}, {IZZY Y XX(4), XXIZY Y Z(1), ZXY Y XZI(5)}, {IZZY Y XX(4),
XXIZY Y Z(1), ZY XIZY X(6)}, {IZZY Y XX(4), XXIZY Y Z(1), Y ZXZXIY (7)},
{XXIZY Y Z(1), ZY XIZY X(6), ZXY Y XZI(5)}, {XXIZY Y Z(1), Y ZXZXIY (7),
ZXY Y XZI(5)}, {IZZY Y XX(4), XY ZXIZY (2), Y IY XZXZ(3)}, {XY ZXIZY (2),
ZXY Y XZI(5), Y IY XZXZ(3)}, {XY ZXIZY (2), Y ZXZXIY (7), Y IY XZXZ(3)},
{IZZY Y XX(4), XY ZXIZY (2), ZXY Y XZI(5)}, {IZZY Y XX(4), XY ZXIZY (2),
ZY XIZY X(6)}, {IZZY Y XX(4), XY ZXIZY (2), Y ZXZXIY (7)}, {XY ZXIZY (2),
ZY XIZY X(6), ZXY Y XZI(5)}, {XY ZXIZY (2), ZY XIZY X(6), Y ZXZXIY (7)},
{IZZY Y XX(4), ZXY Y XZI(5), Y IY XZXZ(3)}, {IZZY Y XX(4), ZY XIZY X(6),
Y IY XZXZ(3)}, {ZY XIZY X(6), ZXY Y XZI(5), Y IY XZXZ(3)}, {Y ZXZXIY (7),
ZXY Y XZI(5), Y IY XZXZ(3)}, {ZY XIZY X(6), Y ZXZXIY (7), Y IY XZXZ(3)},
{IZZY Y XX(4), Y ZXZXIY (7), ZXY Y XZI(5)}, {IZZY Y XX(4), ZY XIZY X(6),

Y ZXZXIY (7)}, {ZY XIZY X(6), ZXY Y XZI(5), Y ZXZXIY (7)}

{IZZY Y XX,
XXIZY Y Z,
XY ZXIZY,
Y IY XZXZ,
Y ZXZXIY,
ZXY Y XZI,
ZY XIZY X,
IIIIIII}

{XXIY ZZY (1), ZXY XY IZ(3), IZZXXY Y (2)}, {XXIY ZZY (1), IZZXXY Y (2),
Y IY ZXZX(5)}, {XXIY ZZY (1), ZY XIZY X(6), IZZXXY Y (2)}, {XXIY ZZY (1),
Y ZXY IXZ(7), IZZXXY Y (2)}, {XXIY ZZY (1), ZXY XY IZ(3), XY ZZY XI(4)},
{XXIY ZZY (1), ZXY XY IZ(3), ZY XIZY X(6)}, {XXIY ZZY (1), ZXY XY IZ(3),
Y ZXY IXZ(7)}, {XXIY ZZY (1), XY ZZY XI(4), Y IY ZXZX(5)}, {XXIY ZZY (1),
XY ZZY XI(4), ZY XIZY X(6)}, {XXIY ZZY (1), XY ZZY XI(4), Y ZXY IXZ(7)},
{XXIY ZZY (1), ZY XIZY X(6), Y IY ZXZX(5)}, {XXIY ZZY (1), Y ZXY IXZ(7),
Y IY ZXZX(5)}, {ZXYXY IZ(3), XY ZZY XI(4), IZZXXY Y (2)}, {ZXYXY IZ(3),
IZZXXY Y (2), Y IY ZXZX(5)}, {ZXYXY IZ(3), Y ZXY IXZ(7), IZZXXY Y (2)},
{XY ZZY XI(4), IZZXXY Y (2), Y IY ZXZX(5)}, {XY ZZY XI(4), ZY XIZY X(6),
IZZXXY Y (2)}, {XY ZZY XI(4), Y ZXY IXZ(7), IZZXXY Y (2)}, {ZY XIZY X(6),
IZZXXY Y (2), Y IY ZXZX(5)}, {Y ZXY IXZ(7), ZY XIZY X(6), IZZXXY Y (2)},
{ZXYXY IZ(3), XY ZZY XI(4), Y IY ZXZX(5)}, {ZXYXY IZ(3), ZY XIZY X(6),
XY ZZY XI(4)}, {ZXYXY IZ(3), ZY XIZY X(6), Y IY ZXZX(5)}, {ZXYXY IZ(3),
Y ZXY IXZ(7), Y IY ZXZX(5)}, {Y ZXY IXZ(7), ZXY XY IZ(3), ZY XIZY X(6)},
{XY ZZY XI(4), Y ZXY IXZ(7), Y IY ZXZX(5)}, {Y ZXY IXZ(7), XY ZZY XI(4),

ZY XIZY X(6)}, {Y ZXY IXZ(7), ZY XIZY X(6), Y IY ZXZX(5)}

{IZZXXY Y,
XXIY ZZY,
XY ZZY XI,
Y IY ZXZX,
Y ZXY IXZ,
ZXY XY IZ,
ZY XIZY X,
IIIIIII}

{XXIY ZZY (1), IZZXXY Y (2), Y IY XZXZ(3)}, {XXIY ZZY (1), ZXY ZIY X(5),
IZZXXY Y (2)}, {XXIY ZZY (1), IZZXXY Y (2), Y ZXIY ZX(6)}, {XXIY ZZY (1),
IZZXXY Y (2), ZY XY XIZ(7)}, {XXIY ZZY (1), XY ZZY XI(4), Y IY XZXZ(3)},
{XXIY ZZY (1), Y IY XZXZ(3), Y ZXIY ZX(6)}, {XXIY ZZY (1), ZY XY XIZ(7),
Y IY XZXZ(3)}, {XXIY ZZY (1), XY ZZY XI(4), ZXY ZIY X(5)}, {XXIY ZZY (1),
XY ZZY XI(4), Y ZXIY ZX(6)}, {XXIY ZZY (1), XY ZZY XI(4), ZY XY XIZ(7)},
{XXIY ZZY (1), ZXY ZIY X(5), Y ZXIY ZX(6)}, {XXIY ZZY (1), ZXY ZIY X(5),
ZY XY XIZ(7)}, {XY ZZY XI(4), IZZXXY Y (2), Y IY XZXZ(3)}, {ZXY ZIY X(5),
IZZXXY Y (2), Y IY XZXZ(3)}, {ZY XYXIZ(7), IZZXXY Y (2), Y IY XZXZ(3)},
{XY ZZY XI(4), ZXY ZIY X(5), IZZXXY Y (2)}, {XY ZZY XI(4), IZZXXY Y (2),
Y ZXIY ZX(6)}, {XY ZZY XI(4), IZZXXY Y (2), ZY XY XIZ(7)}, {ZXY ZIY X(5),
IZZXXY Y (2), Y ZXIY ZX(6)}, {IZZXXY Y (2), ZY XY XIZ(7), Y ZXIY ZX(6)},
{XY ZZY XI(4), ZXY ZIY X(5), Y IY XZXZ(3)}, {XY ZZY XI(4), Y IY XZXZ(3),
Y ZXIY ZX(6)}, {ZXY ZIY X(5), Y IY XZXZ(3), Y ZXIY ZX(6)}, {ZXY ZIY X(5),
ZY XY XIZ(7), Y IY XZXZ(3)}, {ZY XYXIZ(7), Y IY XZXZ(3), Y ZXIY ZX(6)},
{XY ZZY XI(4), ZXY ZIY X(5), ZY XY XIZ(7)}, {XY ZZY XI(4), ZY XY XIZ(7),

Y ZXIY ZX(6)}, {ZXY ZIY X(5), ZY XY XIZ(7), Y ZXIY ZX(6)}

{IZZXXY Y,
XXIY ZZY,
XY ZZY XI,
Y IY XZXZ,
Y ZXIY ZX,
ZXY ZIY X,
ZY XY XIZ,
IIIIIII}

Table G.14: Continued from Tables G.1-G.13 and in Tables G.15-G.16.
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subgroups

{IY Y XXZZ(2), XXIY ZZY (1), ZIZXY XY (3)}, {IY Y XXZZ(2), XXIY ZZY (1),
Y XZZXY I(5)}, {IY Y XXZZ(2), XXIY ZZY (1), ZY XIZY X(6)}, {IY Y XXZZ(2),
XXIY ZZY (1), Y ZXY IXZ(7)}, {XXIY ZZY (1), ZIZXY XY (3), XZY ZY IX(4)},
{XXIY ZZY (1), ZY XIZY X(6), ZIZXY XY (3)}, {XXIY ZZY (1), Y ZXY IXZ(7),
ZIZXY XY (3)}, {XXIY ZZY (1), XZY ZY IX(4), Y XZZXY I(5)}, {XXIY ZZY (1),
ZY XIZY X(6), XZY ZY IX(4)}, {XXIY ZZY (1), Y ZXY IXZ(7), XZY ZY IX(4)},
{XXIY ZZY (1), ZY XIZY X(6), Y XZZXY I(5)}, {XXIY ZZY (1), Y ZXY IXZ(7),
Y XZZXY I(5)}, {IY Y XXZZ(2), ZIZXY XY (3), XZY ZY IX(4)}, {IY Y XXZZ(2),
ZIZXY XY (3), Y XZZXY I(5)}, {IY Y XXZZ(2), Y ZXY IXZ(7), ZIZXY XY (3)},
{IY Y XXZZ(2), XZY ZY IX(4), Y XZZXY I(5)}, {IY Y XXZZ(2), ZY XIZY X(6),
XZY ZY IX(4)}, {IY Y XXZZ(2), Y ZXY IXZ(7), XZY ZY IX(4)}, {IY Y XXZZ(2),
ZY XIZY X(6), Y XZZXY I(5)}, {IY Y XXZZ(2), Y ZXY IXZ(7), ZY XIZY X(6)},
{ZIZXYXY (3), XZY ZY IX(4), Y XZZXY I(5)}, {ZY XIZY X(6), ZIZXY XY (3),
XZY ZY IX(4)}, {ZY XIZY X(6), ZIZXY XY (3), Y XZZXY I(5)}, {Y ZXY IXZ(7),
ZIZXY XY (3), Y XZZXY I(5)}, {Y ZXY IXZ(7), ZY XIZY X(6), ZIZXY XY (3)},
{Y ZXY IXZ(7), XZY ZY IX(4), Y XZZXY I(5)}, {Y ZXY IXZ(7), ZY XIZY X(6),

XZY ZY IX(4)}, {Y ZXY IXZ(7), ZY XIZY X(6), Y XZZXY I(5)}

{IY Y XXZZ,
XXIY ZZY,
XZY ZY IX,
Y XZZXY I,
Y ZXY IXZ,
ZIZXY XY,
ZY XIZY X,
IIIIIII}

{IY Y XXZZ(2), XXIY ZZY (1), Y XZIY XZ(3)}, {IY Y XXZZ(2), XXIY ZZY (1),
ZIZY XY X(5)}, {IY Y XXZZ(2), XXIY ZZY (1), Y ZXXZY I(6)}, {IY Y XXZZ(2),
XXIY ZZY (1), ZY XZIXY (7)}, {XXIY ZZY (1), XZY ZY IX(4), Y XZIY XZ(3)},
{XXIY ZZY (1), Y ZXXZY I(6), Y XZIY XZ(3)}, {XXIY ZZY (1), ZY XZIXY (7),
Y XZIY XZ(3)}, {XXIY ZZY (1), ZIZY XY X(5), XZY ZY IX(4)}, {XXIY ZZY (1),
Y ZXXZY I(6), XZY ZY IX(4)}, {XXIY ZZY (1), ZY XZIXY (7), XZY ZY IX(4)},
{XXIY ZZY (1), Y ZXXZY I(6), ZIZY XY X(5)}, {XXIY ZZY (1), ZIZY XY X(5),
ZY XZIXY (7)}, {IY Y XXZZ(2), XZY ZY IX(4), Y XZIY XZ(3)}, {IY Y XXZZ(2),
ZIZY XY X(5), Y XZIY XZ(3)}, {IY Y XXZZ(2), ZY XZIXY (7), Y XZIY XZ(3)},
{IY Y XXZZ(2), ZIZY XY X(5), XZY ZY IX(4)}, {IY Y XXZZ(2), Y ZXXZY I(6),
XZY ZY IX(4)}, {IY Y XXZZ(2), ZY XZIXY (7), XZY ZY IX(4)}, {IY Y XXZZ(2),
Y ZXXZY I(6), ZIZY XY X(5)}, {IY Y XXZZ(2), ZY XZIXY (7), Y ZXXZY I(6)},
{ZIZY XY X(5), XZY ZY IX(4), Y XZIY XZ(3)}, {Y ZXXZY I(6), XZY ZY IX(4),
Y XZIY XZ(3)}, {Y ZXXZY I(6), ZIZY XY X(5), Y XZIY XZ(3)}, {ZY XZIXY (7),
ZIZY XY X(5), Y XZIY XZ(3)}, {ZY XZIXY (7), Y ZXXZY I(6), Y XZIY XZ(3)},
{ZY XZIXY (7), ZIZY XY X(5), XZY ZY IX(4)}, {ZY XZIXY (7), Y ZXXZY I(6),

XZY ZY IX(4)}, {ZY XZIXY (7), Y ZXXZY I(6), ZIZY XY X(5)}

{IY Y XXZZ,
XXIY ZZY,
XZY ZY IX,
Y XZIY XZ,
Y ZXXZY I,
ZIZY XY X,
ZY XZIXY,
IIIIIII}

{XXIY ZZY (1), XZY XIY Z(2), ZIZXY XY (3)}, {XXIY ZZY (1), XZY XIY Z(2),
Y XZZXY I(5)}, {XXIY ZZY (1), XZY XIY Z(2), Y ZXIY ZX(6)}, {XXIY ZZY (1),
XZY XIY Z(2), ZY XY XIZ(7)}, {XXIY ZZY (1), IY Y ZZXX(4), ZIZXY XY (3)},
{XXIY ZZY (1), ZIZXY XY (3), Y ZXIY ZX(6)}, {XXIY ZZY (1), ZIZXY XY (3),
ZY XY XIZ(7)}, {XXIY ZZY (1), IY Y ZZXX(4), Y XZZXY I(5)}, {XXIY ZZY (1),
IY Y ZZXX(4), Y ZXIY ZX(6)}, {XXIY ZZY (1), IY Y ZZXX(4), ZY XY XIZ(7)},
{XXIY ZZY (1), Y ZXIY ZX(6), Y XZZXY I(5)}, {XXIY ZZY (1), ZY XY XIZ(7),
Y XZZXY I(5)}, {IY Y ZZXX(4), XZY XIY Z(2), ZIZXY XY (3)}, {XZYXIY Z(2),
ZIZXY XY (3), Y XZZXY I(5)}, {XZYXIY Z(2), ZIZXY XY (3), ZY XY XIZ(7)},
{IY Y ZZXX(4), XZY XIY Z(2), Y XZZXY I(5)}, {IY Y ZZXX(4), XZY XIY Z(2),
Y ZXIY ZX(6)}, {IY Y ZZXX(4), XZY XIY Z(2), ZY XY XIZ(7)}, {Y ZXIY ZX(6),
XZY XIY Z(2), Y XZZXY I(5)}, {XZYXIY Z(2), ZY XY XIZ(7), Y ZXIY ZX(6)},
{IY Y ZZXX(4), ZIZXY XY (3), Y XZZXY I(5)}, {IY Y ZZXX(4), ZIZXY XY (3),
Y ZXIY ZX(6)}, {Y ZXIY ZX(6), ZIZXY XY (3), Y XZZXY I(5)}, {ZIZXYXY (3),
ZY XY XIZ(7), Y XZZXY I(5)}, {ZIZXYXY (3), ZY XY XIZ(7), Y ZXIY ZX(6)},
{IY Y ZZXX(4), ZY XY XIZ(7), Y XZZXY I(5)}, {IY Y ZZXX(4), ZY XY XIZ(7),

Y ZXIY ZX(6)}, {Y ZXIY ZX(6), ZY XY XIZ(7), Y XZZXY I(5)}

{IY Y ZZXX,
XXIY ZZY,
XZY XIY Z,
Y XZZXY I,
Y ZXIY ZX,
ZIZXY XY,
ZY XY XIZ,
IIIIIII}

Table G.15: Continued from Tables G.1-G.14 and in Table G.16.
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{XXIY ZZY (1), XZY XIY Z(2), Y XZIY XZ(3)}, {XXIY ZZY (1), XZY XIY Z(2),
ZIZY XY X(5)}, {XXIY ZZY (1), XZY XIY Z(2), ZY XXY ZI(6)}, {XXIY ZZY (1),
XZY XIY Z(2), Y ZXZXIY (7)}, {XXIY ZZY (1), IY Y ZZXX(4), Y XZIY XZ(3)},
{XXIY ZZY (1), ZY XXY ZI(6), Y XZIY XZ(3)}, {XXIY ZZY (1), Y ZXZXIY (7),
Y XZIY XZ(3)}, {XXIY ZZY (1), IY Y ZZXX(4), ZIZY XY X(5)}, {XXIY ZZY (1),
IY Y ZZXX(4), ZY XXY ZI(6)}, {XXIY ZZY (1), IY Y ZZXX(4), Y ZXZXIY (7)},
{XXIY ZZY (1), ZIZY XY X(5), ZY XXY ZI(6)}, {XXIY ZZY (1), Y ZXZXIY (7),
ZIZY XY X(5)}, {IY Y ZZXX(4), XZY XIY Z(2), Y XZIY XZ(3)}, {XZYXIY Z(2),
ZIZY XY X(5), Y XZIY XZ(3)}, {XZYXIY Z(2), Y ZXZXIY (7), Y XZIY XZ(3)},
{IY Y ZZXX(4), XZY XIY Z(2), ZIZY XY X(5)}, {IY Y ZZXX(4), XZY XIY Z(2),
ZY XXY ZI(6)}, {IY Y ZZXX(4), XZY XIY Z(2), Y ZXZXIY (7)}, {XZYXIY Z(2),
ZIZY XY X(5), ZY XXY ZI(6)}, {XZYXIY Z(2), ZY XXY ZI(6), Y ZXZXIY (7)},
{IY Y ZZXX(4), ZIZY XY X(5), Y XZIY XZ(3)}, {IY Y ZZXX(4), ZY XXY ZI(6),
Y XZIY XZ(3)}, {ZIZY XY X(5), ZY XXY ZI(6), Y XZIY XZ(3)}, {Y ZXZXIY (7),
ZIZY XY X(5), Y XZIY XZ(3)}, {Y ZXZXIY (7), ZY XXY ZI(6), Y XZIY XZ(3)},
{IY Y ZZXX(4), Y ZXZXIY (7), ZIZY XY X(5)}, {IY Y ZZXX(4), Y ZXZXIY (7),

ZY XXY ZI(6)}, {Y ZXZXIY (7), ZIZY XY X(5), ZY XXY ZI(6)}

{IY Y ZZXX,
XXIY ZZY,
XZY XIY Z,
Y XZIY XZ,
Y ZXZXIY,
ZIZY XY X,
ZY XXY ZI,
IIIIIII}

{XXIY ZZY (1), ZXY XY IZ(3), XY ZIXY Z(2)}, {XXIY ZZY (1), XY ZIXY Z(2),
Y IY ZXZX(5)}, {XXIY ZZY (1), Y ZXXZY I(6), XY ZIXY Z(2)}, {XXIY ZZY (1),
XY ZIXY Z(2), ZY XZIXY (7)}, {IZZY Y XX(4), XXIY ZZY (1), ZXY XY IZ(3)},
{XXIY ZZY (1), ZXY XY IZ(3), Y ZXXZY I(6)}, {XXIY ZZY (1), ZXY XY IZ(3),
ZY XZIXY (7)}, {IZZY Y XX(4), XXIY ZZY (1), Y IY ZXZX(5)}, {IZZY Y XX(4),
XXIY ZZY (1), Y ZXXZY I(6)}, {IZZY Y XX(4), XXIY ZZY (1), ZY XZIXY (7)},
{XXIY ZZY (1), Y ZXXZY I(6), Y IY ZXZX(5)}, {XXIY ZZY (1), ZY XZIXY (7),
Y IY ZXZX(5)}, {IZZY Y XX(4), ZXY XY IZ(3), XY ZIXY Z(2)}, {ZXYXY IZ(3),
XY ZIXY Z(2), Y IY ZXZX(5)}, {ZY XZIXY (7), ZXY XY IZ(3), XY ZIXY Z(2)},
{IZZY Y XX(4), XY ZIXY Z(2), Y IY ZXZX(5)}, {IZZY Y XX(4), Y ZXXZY I(6),
XY ZIXY Z(2)}, {IZZY Y XX(4), ZY XZIXY (7), XY ZIXY Z(2)}, {Y ZXXZY I(6),
XY ZIXY Z(2), Y IY ZXZX(5)}, {ZY XZIXY (7), Y ZXXZY I(6), XY ZIXY Z(2)},
{IZZY Y XX(4), ZXY XY IZ(3), Y IY ZXZX(5)}, {IZZY Y XX(4), ZXY XY IZ(3),
Y ZXXZY I(6)}, {ZXYXY IZ(3), Y ZXXZY I(6), Y IY ZXZX(5)}, {ZY XZIXY (7),
ZXY XY IZ(3), Y IY ZXZX(5)}, {ZY XZIXY (7), ZXY XY IZ(3), Y ZXXZY I(6)},
{IZZY Y XX(4), ZY XZIXY (7), Y IY ZXZX(5)}, {IZZY Y XX(4), ZY XZIXY (7),

Y ZXXZY I(6)}, {ZY XZIXY (7), Y ZXXZY I(6), Y IY ZXZX(5)}

{IZZY Y XX,
XXIY ZZY,
XY ZIXY Z,
Y IY ZXZX,
Y ZXXZY I,
ZXY XY IZ,
ZY XZIXY,
IIIIIII}

{XXIY ZZY (1), XY ZIXY Z(2), Y IY XZXZ(3)}, {XXIY ZZY (1), ZXY ZIY X(5),
XY ZIXY Z(2)}, {XXIY ZZY (1), XY ZIXY Z(2), ZY XXY ZI(6)}, {XXIY ZZY (1),
Y ZXZXIY (7), XY ZIXY Z(2)}, {IZZY Y XX(4), XXIY ZZY (1), Y IY XZXZ(3)},
{XXIY ZZY (1), ZY XXY ZI(6), Y IY XZXZ(3)}, {XXIY ZZY (1), Y ZXZXIY (7),
Y IY XZXZ(3)}, {IZZY Y XX(4), XXIY ZZY (1), ZXY ZIY X(5)}, {IZZY Y XX(4),
XXIY ZZY (1), ZY XXY ZI(6)}, {IZZY Y XX(4), XXIY ZZY (1), Y ZXZXIY (7)},
{XXIY ZZY (1), ZXY ZIY X(5), ZY XXY ZI(6)}, {XXIY ZZY (1), ZXY ZIY X(5),
Y ZXZXIY (7)}, {IZZY Y XX(4), XY ZIXY Z(2), Y IY XZXZ(3)}, {ZXY ZIY X(5),
XY ZIXY Z(2), Y IY XZXZ(3)}, {Y ZXZXIY (7), XY ZIXY Z(2), Y IY XZXZ(3)},
{IZZY Y XX(4), ZXY ZIY X(5), XY ZIXY Z(2)}, {IZZY Y XX(4), XY ZIXY Z(2),
ZY XXY ZI(6)}, {IZZY Y XX(4), Y ZXZXIY (7), XY ZIXY Z(2)}, {ZXY ZIY X(5),
XY ZIXY Z(2), ZY XXY ZI(6)}, {Y ZXZXIY (7), XY ZIXY Z(2), ZY XXY ZI(6)},
{IZZY Y XX(4), ZXY ZIY X(5), Y IY XZXZ(3)}, {IZZY Y XX(4), ZY XXY ZI(6),
Y IY XZXZ(3)}, {ZXY ZIY X(5), ZY XXY ZI(6), Y IY XZXZ(3)}, {ZXY ZIY X(5),
Y ZXZXIY (7), Y IY XZXZ(3)}, {Y ZXZXIY (7), ZY XXY ZI(6), Y IY XZXZ(3)},
{IZZY Y XX(4), ZXY ZIY X(5), Y ZXZXIY (7)}, {IZZY Y XX(4), Y ZXZXIY (7),

ZY XXY ZI(6)}, {ZXY ZIY X(5), ZY XXY ZI(6), Y ZXZXIY (7)}

{IZZY Y XX,
XXIY ZZY,
XY ZIXY Z,
Y IY XZXZ,
Y ZXZXIY,
ZXY ZIY X,
ZY XXY ZI,
IIIIIII}

Table G.16: Continued from Tables G.1-G.15.
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