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CONSTRAINED RECURSIVE PARAMETER ESTIMATION FOR INSAR ARCS

Yuqing Wang, Wietske S. Brouwer, Freek J. van Leijen, and Ramon F. Hanssen

Delft University of Technology, Department of Geoscience and Remote Sensing
Delft, 2628 CN, The Netherlands

ABSTRACT

The growing availability of SAR data offers a real-time
deformation monitoring opportunity, but data utilization can
be inefficient. Our study introduces a mathematical frame-
work using recursive least-squares and the wrapped phase, al-
lowing efficient updates when new data arrives. This method
also incorporates prior knowledge about signal smoothness
for non-linear displacement estimation. Compared to the
batch solution, our recursive approach achieves parameter es-
timation without storing past measurements while respecting
signal smoothness constraints.

Index Terms— InSAR point scatterers, parameter esti-
mation, recursive least-squares, smoothness constraints

1. INTRODUCTION

InSAR is a highly accurate method for monitoring surface
and infrastructure deformation. Typically, parameters are es-
timated through batch processing of stacked interferograms.
However, with frequent SAR acquisitions, achieving near
real-time monitoring is challenging due to inefficient data
utilization. The growing SAR data volume poses both nu-
merical and methodological challenges. To address this, an
efficient parameter estimation update strategy is essential for
timely deformation monitoring without the need to reprocess
the entire dataset when new SAR data becomes available.
[1, 2]. Moreover, due to the non-uniqueness property of
an InSAR solution, an implicit unwrapping solution is rec-
ommended instead of an explicit solution [3]. Fortunately,
some assumptions can be made based on the data itself or
a priori knowledge, which should be utilized to constrain
the smoothness of the signal [4]. In this study, a method
for the time series analysis of InSAR arcs between point
scatterers (PS) is introduced, which enables the recursive
estimation of parameters of interest. The method is based
on the recursive least-squares concept and makes use of the
variance-covariance matrix (VCM) of the estimation param-
eters, especially for non-linear displacements. The presented
methodology adds a new acquisition with wrapped phase to
the existing stack and updates the previous estimation while
incorporating a smoothness constraint based on the accelera-
tion of the displacement signal.

2. RECURSIVE LEAST-SQUARES FOR INSAR ARCS

In this section, we present the functional and stochastic model
for InSAR parameter estimation using recursive least-squares
and discuss the initialization and update strategy, outlining
how we incorporate the wrapped phase with assumptions on
ambiguity resolution for the absolute phase of new observa-
tions. We introduce a smoothness constraint in the recursive
estimation based on expected acceleration.

2.1. Functional and stochastic model

When a steady-state model is assumed to be estimated for
a temporal time series of an InSAR arc, the functional and
stochastic model can be written as [5]

E{


ϕ
0

ϕ
1

...
ϕ
T

} =


A0

A1

...
AT

 x;D{


ϕ
0

ϕ
1

...
ϕ
T

} =


Qϕ0

Qϕ1

. . .
QϕT

 ,

(1)

where E{.} is the expectation of the absolute double differ-
ence (DD) phase ϕ

t
, shorthand for ϕ0,t

i,j
(t = 0, ..., T ), be-

tween epoch t0 and t for the arc between PS i and j. xt is
the vector of unknown parameters, At is the 1×n matrix that
transfers the parameters x into the expectation E{ϕ

t
}, and n

is the number of parameters per epoch. D{.} is the disper-
sion of the model described by the VCM Qϕ

t
. However, the

parameters can be time varying, in this case, we introduce a
transition matrix, Φm,t, which is an n× n matrix that relates
the unknowns per epoch, xm (m = 0, ..., T ), to the limited
set of unknowns xt for (arbitrary) epoch t, i.e.,

xm = Φm,txt, (2)

it implies that xm can be parameterized in terms of one single
vector xt for all epochs m. As it is a rather stringent assump-
tion, which will not be realistic for most practical applica-
tions, we add a difference vector dt to model the dynamics of
xt, updating the state transition Eq. (2) to [5]

xm = Φm,txt + dm,t. (3)

The difference vector dm,t incorporates the changes (e.g., due
to an acceleration) to the steady-state parameters and is of the
same size and unit as xt. It is not known deterministically
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and is therefore treated as pseudo-observation. Eqs. (1) and
(3) can now be written as [5]

E{



ϕ
0

d1
ϕ
1

...
dk
ϕ
k


} =



A0

−Φ1,0 I
A1

. . .
−Φk,k−1 I

Ak




x0

x1

...
xk−1

xk

 ;

D{



ϕ
0

d1
ϕ
1

...
dk
ϕ
k


} =



Qϕ0
Qd1

Qϕ1

. . .
Qdk

Qϕk


,

(4)

where Qdm is the VCM for the difference vector dm,t.

2.2. Initialization

We need an initial value for the estimated parameters to start
the recursive update. In order to successfully perform the
initialization, especially regarding unwrapping, a sufficient
number of acquisitions is required. Here we use the first 50
epochs to execute the initialization. When t = T , the batch
solution using least-squares method for Eq. (1) is given by [5]

x̂t =

(
T∑

t=0

A
⊺
t Q

−1
ϕt

At

)−1( T∑
t=0

A
⊺
t Q

−1
ϕt

ϕ
t

)
;

Qx̂t =

(
T∑

t=0

A
⊺
t Q

−1
ϕt

At

)−1

.

(5)

As the absolute DD phase ϕ is unknown, we apply the
integer least-squares (ILS) [6] to resolve the ambiguity reso-
lution, and the mathematical model can be written as

E{
[

φ
b0

]
} =

[
F1 B1

F2 B2

] [
f
b

]
;

D{
[

φ
b0

]
} =

[
Qφ 0
0 Qb0

]
,

(6)

where φ and b0 are the DD phase and pseudo-observation
with the corresponding VCM Qφ and Qb0 , f is the vector
of the unknown integer ambiguities (f ∈ Z), and b is the vec-
tor of unknown parameters of interest. F1 is a t × t diagonal
matrix with −2π on the diagonal, B1 is a t × n matrix that
transforms b into the expectation of ϕ, F2 is an n × t zero
matrix, and B2 is an n× n identity matrix.

We consider the DD phase φ
dd

(i.e., φ0,t
i,j

) as

φdd = ϕdis + ϕ
∆H

+ ϕ
µ
+ ϕnoise + 2fπ(f ∈ Z), (7)

where ϕ
dis

, ϕ
∆H

, ϕ
µ

and ϕ
noise

represent the phase caused
by non-thermal displacement, height difference, thermal ex-
pansion and noise, respectively. Thus the vector of unknown
parameters b is

b =
[

S v ∆H µ
]⊺

, (8)

where S is the atmosphere and noise of the mother image, v
is the linear deformation rate, ∆H is the height difference be-
tween PS i and j, and µ is the thermal coefficient [7]. For each
parameter of interest in b, a pseudo-observation is added in
b0, and set to zero without a prior knowledge. The VCM Qb0

contains a-priori chosen variances which provide soft bounds
to the range of possible values for b. B1 can be expressed as

B1 =
[

− 4π
λ − 4π

λ t − 4π
λ

B⊥
t

R sin θinc
− 4π

λ ∆Kt

]
, (9)

where λ is the wavelength of the satellite sensor. B⊥
t is the

perpendicular baseline between the mother and daughter im-
age at epoch t, R is the slant range between the orbit of the
mother image and the scatterer, θinc is the iteratively updated
incidence angle of the radar pulse, and ∆Kt is the relative
temperature change between the epoch t0 and t.

Qφ is the VCM of φ, and it is considered the same as Qϕ,
which at epoch t can be simplified to

Qϕt = σ
2

ϕ
0,t
i,j

, (10)

where σϕ0,t
i,j

is the a-priori standard deviation of the phase of
arc i, j between epoch t0 and t. We approximate it by the
normalized median amplitude dispersion (NMAD) which is
less vulnerable to outliers and calculated with

NMAD =
median(|at − ã|)

ã
, (11)

where ã is the median of the amplitude time series and at
is the amplitude of epoch t. The derived empirical relation
between the NMAD and σϕ is defined as

σϕ = 2.0 NMAD − 5.233 NMAD2
+ 21.11 NMAD3

. (12)

When the full time series is available, we detect the epochs
where the behavior changes using amplitude data [8, 9], then,
we calculate the NMAD for each partition between the de-
tected epochs, and the partitioned σϕ is used for the batch
solution.

2.3. Recursive update

For the purpose of computing the present least-squares esti-
mator x̂t|t (we denote the estimator x̂t as x̂t|t, the estimator at
epoch t, given the time series t0: t), there is no need to store
the previous observables ϕ

t
. That is, the estimator x̂t|t can

be computed directly from the previous estimator x̂t−1|t−1,
its corresponding VCM Qx̂t−1|t−1

, and the present observ-
able ϕ

t
. In this case, a solution is denoted as x̂t|t and is com-

puted with Eq. (5). Once the initial x̂t is known, the updated
x̂t|t can be recursively computed from the previous x̂t|t (i.e.,
x̂t−1|t−1) and ϕ

t
using the recursive format of Eq. (4) [5], i.e.,

the time-update equations, which can be used for prediction,

x̂t|t−1 = Φt,t−1x̂t−1|t−1 + dt;

Qx̂t|t−1
= Φt,t−1Qx̂t−1|t−1

Φ
⊺
t,t−1 + Qdt ,

(13)
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and the measurement-update equations, which show how to
update the prediction x̂t|t−1 in order to include the new ob-
servable ϕ

t
and the corresponding VCM,

x̂t|t = x̂t|t−1 +

(
Q

−1
x̂t|t−1

+ A
⊺
t Q

−1
ϕt

At

)−1

A
⊺
t Q

−1
ϕt

(
ϕ
t
− Atx̂t|t−1

)
;

Qx̂t|t =

(
Q

−1
x̂t|t−1

+ A
⊺
t Q

−1
ϕt

At

)−1

.

(14)

Estimations in batch can provide results after enough images
are acquired and processed, while the recursive estimation can
be executed parallel to data collection.

2.4. An assumption on the ambiguity resolution

The recursive equations are straightforward when the absolute
DD phases, ϕ

t
, are known, see Eq. (14), but unfortunately,

they are unknown. Therefore, a temporal smoothness con-
straint is needed to aid the ambiguity resolution. To accom-
plish this, the assumption is made that the estimator of the
absolute DD phase observation of the next epoch,

ϕ̂
t|t−1

= Atx̂t|t−1, (15)

is within half a wave cycle of the actual observation, i.e.,

|ϕ
t
− ϕ̂

t|t−1
| < π. (16)

The wrapping operator W {.} is introduced as [10]

W
{
ϕ
}

= mod2π(ϕ + π) − π, (17)

where mod2π is the modulo 2π operator. When Eq. (16) holds
true, the wrapped observations can be used,

W
{
φ

t
− Atx̂t|t−1

}
= ϕ

t
− Atx̂t|t−1. (18)

2.5. A smoothness constraint on correlated acceleration

Due to the non-uniqueness property of InSAR ambiguity
resolution, smoothness constraints are required to find opti-
mal solutions. A Gaussian-distributed zero-mean exponen-
tially correlated acceleration is considered as a smoothness
constraint in this study, and it can be given with the auto-
covariance function,

Vaa(∆t) = σ
2
acce

−∆t
L , (19)

where ∆t is the time interval between two epochs. The func-
tion is defined by correlation length L, and σacc, the standard
deviation of the acceleration. L and σacc need to be approxi-
mated by a priori knowledge.

In the recursive update, considering the acceleration, the
vector of unknown parameters xt (adapted from b (Eq. (8)))
is

xt =
[

Dt vt at ∆Ht µt

]⊺
, (20)

where Dt is the displacement compared to the reference
epoch, vt and at are the velocity and acceleration at epoch t.

While including vt and at in this vector might seem redun-
dant since Dt already describes the displacement signal, it is
of importance in the time-update step (Eq. (13)) to provide an
a priori estimate for the next epoch. Thus At (adapted from
B1 (Eq. (9))) is

At =
[

− 4π
λ 0 0 − 4π

λ

B⊥
t

R sin θinc
− 4π

λ ∆Kt

]
. (21)

The transition matrix Φt,t−1 for exponentially correlated
acceleration can be expressed as [5]

Φt,t−1 =



1 ∆t L2

(
−1 + ∆t

L + e−
∆t
L

)
0 0

0 1 L

(
1 − e−

∆t
L

)
0 0

0 0 e−
∆t
L 0 0

0 0 0 1 0
0 0 0 0 1


. (22)

The difference vector dt is deterministic with value 0 because
of the zero-mean assumption. With auto-covariance function
Eq. (19), the stochasticity of dt, Qdt

, is given by [5]

Qdt = σ
2
acc


q11 symm.
q21 q22
q31 q32 q33
0 0 0 0
0 0 0 0 0

 (23)

with

q11 = 2L3

[
∆t − ∆t2

L + ∆t3

3L2 − 2e−
∆t
L ∆t + L

2

(
1 − e−2∆t

L

)]
,

q21 = 2L2

[
−∆t + 1

2L∆t2 + e−
∆t
L ∆t − Le−

∆t
L + L

2

(
1 + e−2∆t

L

)]
,

q31 = 2L

[
−e−

∆t
L ∆t + L

2

(
1 − e−2∆t

L

)]
,

q22 = 2L

[
∆t − 3L

2 + 2Le−
∆t
L − L

2 e−2∆t
L

]
,

q32 = 2L

[
−e−

∆t
L + 1

2

(
1 + e−2∆t

L

)]
,

q33 =

[
1 − e−2∆t

L

]
,

and it implicitly contains the expected smoothness of the dis-
placement signal.

3. RESULTS

We apply the recursive least-squares method to analyze
Sentinel-1 data over nine years in the Netherlands, com-
paring it to the batch solution and examining the impact of
parameter variations on signal smoothness using exponen-
tially correlated acceleration.

3.1. The batch solution and the recursive solution

Fig. 1 demonstrates the batch and recursive solutions for a
specific arc. Fig. 1a shows the amplitude and the NMAD for
PS i and j, respectively. The amplitude of PS j indicates
anomalous behavior between 2017 and 2018, during which
the batch solution detects a partition with a larger NMAD,
while the recursive solution shows a peak in NMAD at the
end of this period, gradually converging back to the origi-
nal value. Fig. 1b presents the DD phase and the adjusted
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phase for both solutions. Clearly, the recursive solution fits
the observations much better than the batch solution. Intrigu-
ingly, the DD observations with the proposed ambiguity res-
olution assumption in section 2.4 match the unwrapped solu-
tion from ILS, demonstrating the potential of updating using
the wrapped phase. Fig. 1c shows the residuals, with most of
them falling within the 95% confidence interval for the recur-
sive solution. Fig. 1d illustrates the non-thermal displacement
phase, revealing that a linear model in the batch solution fails
to capture the anomalous signal, whereas the recursive solu-
tion effectively captures non-linear displacements. Figs. 1e
and 1f present the instantaneous velocity and acceleration for
both the batch and recursive solutions, using predefined pa-
rameters σacc = 10 mm/yr2 and L = 90 days. Figs. 1g and 1i
display the estimated height difference and thermal coeffi-
cient for both solutions. The recursive solution provides esti-
mates comparable to the batch solution and converges toward
the batch solution by the final epoch. Figs. 1h and 1j show the
derived height and thermal components, which are consistent
across both solutions.

Fig. 1. The batch solution and recursive solution of an arc between two
PS from Sentinel-1 data. (a) The amplitude and NMAD. (b) The DD phase
and adjusted DD phase; (c) The residuals in (b); (d) The non-thermal dis-
placement phase; (e)-(f) The instantaneous velocity and instantaneous accel-
eration; (g)-(h) The height difference and the derived component; (i)-(j) The
thermal coefficient and the derived component. The black dash lines in (a)-(j)
show the last (50th) epoch of the initialization.

3.2. Demonstration of the smoothness constraint

Here we investigate the influence of the constraint on the
smoothness of the signal (Fig. 2). Figs. 2a-d show the
DD phase and adjusted DD phase of an arc without con-

straints and with different constraints, and Figs. 2e-f show
the corresponding instantaneous velocity and instantaneous
acceleration. Note that the standard deviation of the derived
acceleration may not be identical with the predefined σacc due
to the restriction of certain ambiguity level of the DD phase.
From Figs. 2a and 2b, it is shown that with a constraint, a
more reasonable ambiguity resolution is derived. And from
Figs. 2b and 2c, it is shown that a bigger σacc leads to a bigger
displacement as it allows a bigger variation of the accelera-
tion. In addition, from Figs. 2c and 2d, a longer L is more
likely to result in a bigger fluctuation of displacement (accel-
eration). Moreover, Figs. 2b and 2d show similar estimates,
even though σacc and L are both different, indicating that
these two parameters can play an equivalent role to some ex-
tent. Furthermore, the unwrapping solutions in Figs. 2b-d all
seem reasonable, and the solutions depend on the constraint
we impose. Therefore, our method highlights the importance
of smoothness constraints, and implicit unwrapping is highly
recommended.

Fig. 2. The influence of the constraint on the smoothness of the signal for
an arc. (a) The DD phase and adjusted DD phase without constraints; (b)-(d)
show constraints with [σacc, L] = [10, 90] (b), [30, 90] (c), and [30, 10] (d)
in [mm/yr2] and [days], and the gray dots in (a)-(d) indicate the ambiguity
levels; (e)-(f) The corresponding instantaneous velocity and instantaneous
acceleration of the signals shown in (a)-(d).

4. CONCLUSION

Recursive least-squares combined with smoothness con-
straints shows great potential for parameter estimation of
InSAR arcs between PS, which contributes to near real-time
deformation monitoring. The proposed approach updates the
existing dataset when a new observation is available with-
out the need to store the previous observations using the
wrapped phase. It demonstrates consistent results compared
to the batch solution and manifests an advantage in modeling
non-linear displacements. Furthermore, a constraint based
on exponentially correlated acceleration is incorporated into
the recursive estimation to constrain the smoothness of the
displacement signal.
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