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Robust Fault Estimation With Structured
Uncertainty: Scalable Algorithms and

Experimental Validation in
Automated Vehicles

Chris van der Ploeg , Pedro Vieira Oliveira, Emilia Silvas , Peyman Mohajerin Esfahani ,
and Nathan van de Wouw , Fellow, IEEE

Abstract—To increase system robustness and autonomy, in this
article, we propose a nonlinear fault estimation filter for a class
of linear dynamical systems, subject to structured uncertainty,
measurement noise, and system delays, in the presence of
additive and multiplicative faults. The proposed filter archi-
tecture combines tools from model-based control approaches,
regression techniques, and convex optimization. The proposed
method estimates the additive and multiplicative faults using a
linear residual generator combined with nonlinear regression.
An offline simulator allows us to numerically characterize the
mismatch between an assumed linear model and a range of
alternative linear models that exhibit different levels of structured
uncertainty. Moreover, we show how the performance bounds
of the estimator, valid in the absence of uncertainty, can be
used to determine appropriate countermeasures for measurement
noise. In the scope of this work, we focus particularly on a
fault estimation problem for Society of Automotive Engineers
(SAEs) level 4 automated vehicles, which must remain operational
in various cases and cannot rely on the driver. The proposed
approach is demonstrated in simulations and in an experimental
setting, where it is shown that additive and multiplicative faults
can be estimated in a real vehicle under the influence of model
uncertainty, measurement noise, and delay.

Index Terms—Automated vehicles, convex optimization, fault
estimation, model uncertainty.

I. INTRODUCTION

AUTOMATED vehicles are currently the subject of
ongoing research aimed at achieving higher levels of
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automation and eventual autonomy. As we continue to strive
for these higher levels of automation, it has become clear
that this technology has the potential to have a positive
impact on our society by increasing road capacity, reducing
traffic congestion, improving safety, and reducing emissions
[1]. Although these vehicles can positively impact society,
proving their safety in operation remains tedious [2]. As
vehicles reach these higher levels of automation, they should
become self-aware of their state of health and limitations, tasks
typically fulfilled by human drivers in nonautomated vehicles.
Specifically, for certain subsystems and functionalities, for
example, the power steering system of an automated vehicle,
this self-awareness is crucial since it is considered to be
safety-critical [3], i.e., a system whose malfunction may result
in death or serious injury to people. Different types and
magnitudes of faults may require different actions to mitigate
them. This could involve using robust controllers for closed-
loop mitigation or bringing the vehicle to a safe state if
the combination of faults exceeds a certain threshold [4].
Therefore, it is crucial to have knowledge of current faults
and their severity.

Fault diagnosis consists of three interrelated levels. The
first task is fault detection whose objective is to identify
anomalies or deviations from normal operation, typically by
generating a residual signal indicating fault presence. This can
be achieved through methods such as parity-space approaches,
state observer banks, and parameter estimation [5], [6]. The
second task is fault isolation that opts to distinguish between
multiple fault sources, ensuring correct classification while
remaining robust to external disturbances [7], system uncer-
tainties [8], and real-world effects such as measurement delays
[9] and noise [10]. The third level is fault estimation, which
quantifies fault characteristics (e.g., severity and time evolu-
tion) for mitigation strategies (e.g., closed-loop compensation).
In some approaches, estimation is treated as a separate step
following detection and isolation. In others, it is intertwined
with these processes, as residual signals may implicitly esti-
mate faults and are then refined through isolation. Methods for
fault estimation include proportional–integral observers [11],
adaptive observers [12], and unknown input observers [13].

In the context of automated vehicle steering systems,
the state-of-the-art specifically addresses the detection and
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estimation of additive and multiplicative faults [14]. The
detection of additive faults in a steering system is covered in
[15], followed by [16] and [17] for its estimation. Single mul-
tiplicative faults and sensor faults are detected and estimated in
[18] and [19], respectively. Simultaneous detection, isolation,
and estimation of additive and multiplicative faults are covered
in [4], although the approach does not cover its robustness in
the presence of unmodeled perturbations (e.g., model uncer-
tainty). Uncertainty in the automated driving application under
study can be induced by model uncertainty, input/measurement
delays, and measurement noise. In a general sense, uncertainty
in linear systems is divided into two categories: structured
uncertainty and uncertainty arising from nonlinearities that
cannot be accounted for in the system model. Structured
uncertainty is a term frequently discussed in the field of robust
control [20], which involves assuming a bounded uncertainty
in certain parts of the linear model. A popular solution for fault
estimation, in the presence of structured uncertainty, is to use
sliding mode observers (SMOs) [21], [22]. However, SMOs
are potentially sensitive to measurement noise and chattering.
Observer-based methods, e.g., Kalman filters, have the notion
of modeling uncertainty and sensor noise embedded as process
and measurement noise [23], which is, however, assumed to
be Gaussian. Therefore, in the case of structured uncertainty,
a Kalman-type filter may fail [24].

An alternative option is to use a data-driven approach to
learn model uncertainty when nonlinearities appear in the
system difficult to capture via linear models, e.g., through
neural networks [25], or a variety of other full-learning-based
approaches [26]. Combining model knowledge and data could
lead to a stronger combination than using either of the two
in isolation. In [27], a linear detection and estimation filter
is presented, which is trained (based on data) to reject the
output mismatch between a nonlinear high-fidelity simulator
and an abstract linear model. Other mismatches in signals and
dynamics in the high-fidelity nonlinear simulator (e.g., states
or disturbances) are difficult to interpret in a linear sense.
This limits the performance of the algorithm when applied to
systems where these mismatch signals could be characterized.
Mohajerin Esfahani and Lygeros [28] and Reppa et al. [29]
examine nonlinear systems by adding an additive nonlinear
term to an assumed linear system. Esfahani and Lygeros
[28] use convex optimization to learn the uncertain behavior,
originating from nonlinearities and noise, using mismatch
signatures of such effects. Reppa et al. [29] employ an adaptive
method to identify the dynamics of noise and uncertainties
online. However, this method requires a certain degree of
excitation of the signals inside the regressor term to identify
the uncertainties.

Current fault detection, isolation, and estimation method-
ologies are evolving to address the challenges of structured
uncertainties, measurement noise, and delays in various sys-
tems [5]. However, a significant gap persists in the literature
concerning the robust simultaneous estimation of additive and
multiplicative faults, where the faults act through the same
input or output channel. Specifically in an experimental setting
where uncertainty, delays, and noise may affect the estimation
process. Although robust methods have been developed to

estimate simultaneous faults under uncertain conditions [30],
[31], [32], these works do not consider the simultaneous
appearance of faults on the same channel. The challenge
of estimating faults acting on the same channel has been
covered in, e.g., [4], although their robustness against real-
world phenomena remains untested in experimental settings.
Consequently, this gap presents a critical area for research, as
establishing the reliability of these methods in practical sce-
narios is essential to advance automated driving technologies.

Main Contributions: In view of the literature mentioned
above, this study’s contributions are summarized as follows.

1) Scalable design for robust simultaneous additive and
multiplicative faults estimation. We propose a scal-
able algorithm to design robust fault estimation filters
capable of simultaneously estimating both additive and
multiplicative faults with similar dynamic effects. The
particular features studied in this work are the pres-
ence of model uncertainties, input/output delays, and
measurement noise. The scalability of the proposed
approach is with respect to the states and input size of
the dynamical systems. This study is the robust version
of the nominal designs in [4] and [16], considering the
following additional key challenges.

a) Structured Model Uncertainty: To address struc-
tured model uncertainty, our proposed method
exploits both data and a model-based approach.
We leverage prior knowledge about the source
of the uncertainty and its effects. We propose a
robust counterpart of existing convex optimization
tools for estimation filters where the uncertain
parameters belong to a known set.

b) Measurement Noise and Input Delay: To reduce
the impact of noise on fault estimates, we borrow
the performance bounds of the estimation error
introduced in our previous study [4] to serve
as an objective reference for training the filter
parameters. Additionally, we address the potential
input/output delay by augmenting the filter states
with the average identified delays.

2) Experimental validation in automated driving. Another
main contribution of this study is the validation of our
theoretical results on a real vehicle. We demonstrate
that the proposed robustified approach outperforms the
state-of-the-practice in estimating faults in real-time
operation.

The remainder of this article is organized as follows. Sec-
tion II introduces the problem setting, the state of the art
on fault estimation of additive and multiplicative faults, its
limitations given the real-life phenomena mentioned above,
and an outline of the proposed approach. Section III introduces
the robust approach toward fault estimation. Section IV then
provides the results, both in a synthetic example and using
real-life experimental data. Finally, Section V concludes the
work.

Notation 1: The symbol R represents the set of real num-
bers. The ones column vector with length n is denoted by
1n := [1, 1, . . . , 1]ᵀ. The p-norm of a vector v is denoted by
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‖v‖p, where p ∈ [1,∞]. The L2-norm of a discrete-time signal
x(k) is defined as ‖x(k)‖L2 =

�P∞

n=−∞ ‖x(n)‖22
�(1/2). Given a

matrix A ∈ Rn×m, its transpose is denoted by Aᵀ ∈ Rm×n, and
A† := (AᵀA)−1Aᵀ is the pseudoinverse. The operators µn[x]
and Vn[x] map R-valued discrete-time signals to R-valued
discrete-time signals and are defined as the first moment
µn[x] (k) := (1/n)

Pn−1
i=0 x(k − i) and the centered second

moment V2
n [x] (k) := (1/n)

Pn−1
i=0 x2(k − i) − µ2

n[x] (k) of the
signal x over the last n time instants. Throughout this study,
we reserve the bold subscripted by n, xn, as the concatenated
version of the signal x over the last n time instants: xn(k) :=�
x(k), x(k − 1), . . . , x(k − n + 1)

�ᵀ. The symbol q represents the
shift operator, i.e., q[x(k)] = x(k + 1).

II. PROBLEM DESCRIPTION AND OUTLINE OF THE
PROPOSED APPROACH

In this section, we present the class of systems considered
throughout this work. Subsequently, we will formulate the
high-level problem. We further elaborate on the challenges and
shortcomings of the methods available in the current literature.
Finally, an outline of the proposed solution that addresses the
challenges is provided.

A. Model Description and Problem Statement

Throughout this study, we examine nonlinear dynamical
systems characterized by linear time-invariant (LTI) dynamics
within a discrete-time framework. These systems are described
using discrete-time differential algebraic equations (DAEs),
similar to the model formulations presented in [4], [27], and
[28]. In contrast to the system description in previous work,
we also incorporate the possible presence of model uncertainty
in this description. Therefore, we employ the DAE description
provided in [4, eq. (1)] and reformulate the model as follows:

H(q; w) [x] + L(q; w) [z] + F(q; w)
�

fa + Eᵀz fm
�

= 0 (1)

where variables x, z, and fa and fm represent discrete-time
signals with values in Rnx ,Rnz , and Rn f , respectively, and are
indexed by the discrete-time counter k. More specifically, the
variable z is composed of all measurable signals, including
control inputs u and measurements y. The variable x contains
all unknown signals in the system, in this work defined
as the true internal state X, unmeasurable disturbances d,
and measurement noise η representing a set of uncorrelated
Gaussian white noise sequences. The vector E ∈ Rnz selects
which signals in z will be affected by fm. The matrices H(q; w),
L(q; w), and F(q; w) are polynomial functions in the shift oper-
ator q, with nr rows and nx, nz, and n f columns, respectively.
These matrices depend on a set of parameters w ∈ W ⊆ Rnw ,
where nw represents the number of uncertain parameters. The
symbol W represents a set that contains all the parametric
uncertainties of the model. The exact value of the uncertainty
is unknown a priori, but it is assumed that the parameters have
a nominal value w0 ∈ R

nw . To efficiently handle structured
uncertainty without the need to account for every potential
value in W , we propose the notion of a representative. These
representatives, denoted as w j ∈ W , j ∈ {0, . . . , v}, where v

Fig. 1. Block diagram of the proposed robust diagnosis filter. The fault
detection block is a linear residual generator, while the fault isolation block
is a nonlinear regressor.

represents the total number of representatives, are particular
points selected from the set of uncertainties to adequately
capture the spectrum of uncertainties. They serve as practical
stand-ins for the broader set of uncertainties W , allowing for
a more manageable analysis and optimization of the system
under study. Finally, it is assumed that the uncertainty w comes
from a probability distribution P.

The last real-life phenomena that will appear in this work
but are not concretely reflected in (1) are the input and
measurement delay, which are embedded in the true system
matrices H(q; w), L(q; w), and F(q; w), and the measurement
noise. Each input delay is characterized as τ(u)

i ∈ R time steps,
where i ∈ {1, . . . , nu} and nu represents the number of inputs.
Similarly, the output delay is characterized as τ(y)

j ∈ R time
steps, where j ∈ {1, . . . , ny} and ny represents the number of
inputs. The measurement noise, characterized by the variable
η ∈ Rny , consists of independent Gaussian white noise signals
that affect the output measurements y embedded in the variable
z. Let us now elaborate on how the mentioned real-life
phenomena play a role within the DAE through the system
dynamics depicted (and enclosed by system boundaries) in
Fig. 1. One can define a set of causal LTI difference equations8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:

GX (k + 1) = A (w) X (k) + Bu (w) u (k − τu) + Bd (w) d (k)

+B f (w)

26664
fa (k) + Eᵀz

�
k − τ(u)

1

�
fm (k)

...

fa (k) + Eᵀz
�

k − τ(u)
nu

�
fm (k)

3777526664
y1

�
k + τ

(y)
1

�
...

yny

�
k + τ

(y)
ny

�
37775 = C (w) X (k) + Dηη (k) + Dd (w) d (k)

(2)

where the matrices G, A(w), Bu(w), Bd(w), B f (w), C(w), and
Dd(w) are constant matrices with appropriate dimensions as a
function of the (time-invariant) uncertainty w. The matrix Dη

(in this work assumed to be diagonal) selects the noise signals
η to be added to the output y. By defining z := [y; u], x :=
[X; d; η], and Eᵀ = [0 I], we can rewrite (2) as (1) with

H(q; w) =

�
I 0
0 Y (q)

� �
−qG + A (w) Bd (w) 0

C (w) Dd (w) Dη

�
(3a)
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L(q; w) =

�
U (q) 0

0 I

� �
0 Bu (w)
−I 0

�
, F(q; w) =

�
B f (w)

0

�
.

(3b)

Moreover, the polynomial matrices Y(q) and U(q) are diago-
nal polynomial matrices of size ny×ny and nu×nu, respectively,
containing the delays of measurements and control inputs, i.e.,

Y (q) =

2664q
−τ

(y)
1

. . .

q−τ
(y)
ny.

3775 , U (q) =

264q−τ
(u)
1

. . .

q−τ
(u)
nu.

375 .
In the setting described above, the main objective of this study
is to solve the following problem.

Problem 1: Consider the DAE system (1) and (3) with
the available measurement signal z under the influence of
measurement noise η, the characterizations of the delay of
the input and output U(q)andY(q), the uncertain parameters in
w ∈ W , and the multivariate signal f = [ f ᵀa , f ᵀm ]ᵀ comprising
both additive and multiplicative faults. We aim to design a
diagnosis filter that turns the signal z to bf (i.e., a causal
dynamic mapping z 7→ bf ), which is an accurate estimate of
the fault signal f.

In this work, we require the aggregated fault signal, now
defined as fagg := fa +Eᵀz fm, where fagg ∈ R, to be detectable
within the system, that is, we can detect and estimate the
signal’s presence or absence, irrespective of any other faults
or disturbances acting on the system. This is formalized in the
following assumption.

Assumption 1 (Detectability): Given the system in (1) and
(3), in the absence of noise (i.e., η = 0) and delay (i.e., Y(q)
and U(q) = I), and with uncertainty w ∈ W , the polynomial
matrices H(q; w) and F(q; w) in (1) and (3) satisfy the neces-
sary and sufficient rank condition Rank {[H(q; w), F(q; w)]} >
Rank {H(q; w)}, ∀w ∈ W . For simplicity of exposition, we
further assume that F(q; w) is a polynomial column vector,
i.e., n fa = n fm = 1.

Assumption 1 enables us to design a filter that detects the
aggregated fault signal fagg. However, this process requires
taking measurements of the uncertain parameters w while
assuming that there is no delay or noise.

B. State of the Art on Additive/Multiplicative Faults
Estimation

In the scope of the above problem description, some pre-
vious work has been carried out to estimate the two faults,
fa and fm (in the absence of uncertainty, delays, and noise,
i.e., w = w0, Y(q) = U(q) = I, and η = 0). Initially, we
consider the LTI scenario, as described in [4]. Also, we assume
that the system is free from noise and delay. The proposed
approach has two steps. First, an estimation of the aggregated
fault signal fagg is performed. This is achieved by applying
a suitable LTI estimation filter N(q; w0) to L(q; w0)[z] (which
only requires the measurable input signals) as follows:

r := a−1 (q) N(q; w0)L(q; w0) [z] (4)

where the filter is generated using the linear program (8) [4]
and r represents the so-called residual. The denominator a(q)

is intended to make the estimation filter proper. Using this
residual generator, in view of the dynamical system (1) and
(3) and given Assumption 1, we can design a filter such that
the following conditions hold:

N(q; w0)H(q; w0) = 0 (5a)

a−1 (1) N(q; w0)F(q; w0) = 1. (5b)

Here, (5a) ensures the rejection of unknown signals in the
residual, and (5b) ensures that the residual generator (4) can
estimate the aggregated fault fagg in steady state. By combining
the conditions (5) and applying them to (1), the residual (4)
can equivalently be written as follows:

r = −a−1 (q) N(q; w0)F(q; w0)
�

fagg
�
. (6)

This shows that such a residual generator results in a direct
mapping between z and fagg, and due to (5b), the residual
estimates the fault in steady state. The filter dynamics between
the fault and the residual described in (6) can be utilized to
prefilter the measurable signal Eᵀz (see Fig. 1), as proposed
in [4, Th. 3.7], i.e.,

e = −a−1 (q) N (q) F(q; w0) [Eᵀz] . (7)

The second step in the approach, toward estimating the faults
in f (i.e., fa and fm), is to use the regression operator [4,
Definition 3.2], which estimates the separate faults as follows:

Φn [e, r] (k) := φ†n [e] (k) rn (k) , (8)

where φn[e](k) := [en(k), 1n] ∈ Rn×2

where the output Φn[e, r](k) represents the estimated faults
[bfa, bfm]ᵀ at time k. In (8), the regression horizon n determines
how much past information from the residual (in rn) and the
prefiltered measurable input (in en) is considered to estimate
the fault signals. The fault estimates obtained are paired
with a performance bound that is demonstrated to be tight
in [4], enabling users to gain an understanding of potential
sources of error and ways to enhance filter performance. In
addition, these performance bounds show that it is possible
to estimate the individual fault components as long as the
variance of the input signal e is nonzero (i.e., the matrix
φn[e](k) is full rank) and the signal is bounded, and the filter
in (6) is stable [4, Proposition 3.3]. Effectively, this makes
the approach bounded-input–bounded-output (BIBO) stable.
Given bounded signals Eᵀz, fa, and fm, the estimation error
will remain bounded. This fundamental condition will remain
valid throughout this study. In an ideal LTI setting, without
uncertainty, delay, and noise, the approach is effective (see
[4]). Each of the real-life phenomena, i.e., uncertainty w,
measurement noise η, and the delayed versions of the variables
x, z, fagg, will impact the residual r. In a healthy system, i.e.,
fagg = 0, the residual (4) in the absence of real-life phenomena
will also be zero, i.e., r(w0) = 0, as can be derived from
(6). Striving for such a property for a healthy system in the
presence of real-life phenomena, combined with (5b), will
allow the estimation of faults in a steady state. In Section
II-C, we make explicit how these real-life phenomena arise
in the context of automated vehicles. This motivates, first, the
formulation of a generic problem setting in Section II-D and,
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Fig. 2. Visual representation of the bicycle model for a vehicle.

second, supports the application of the general methodology
in Section III to fault estimation in the automated driving
context in Section IV. Note that driven by the experimental
application, we consider the estimation of faults acting on the
input of the system in this work. However, the methodology
can be applied to any system that allows its fault and dynamics
to be described as in (1), as a result allowing the estimation
of, e.g., input/output faults as well as faults that appear further
down in the system dynamics.

C. Real-World Challenges in Automated Vehicles

Automated vehicles are susceptible to faults in the lateral
steering actuation, such as a bias of the actuator with respect
to the desired setpoint (i.e., the occurrence of fa) or a loss
of effectiveness of the actuator that executes the setpoint of
the steering (i.e., the occurrence of fm). If these faults are
not compensated for, they can lead to potentially danger-
ous vehicle behavior, especially in the lane-keeping driver
assistance system. Using the model description in (2), which
can be rewritten as (1), we can analyze the lateral dynamics
of the automated vehicle in the presence of uncertainties,
measurement noise, and delay. This model is illustrated by
the mechanical model in Fig. 2. The state of the vehicle is
represented by a vector X = [vy, ψ̇, ye, ψe]ᵀ, which includes
the lateral velocity (vy), the yaw rate (ψ̇), lateral error from the
lane center (ye), and heading error from the center of the lane
(ψe). The disturbance, d, is represented by a scalar variable,
κ, which indicates the curvature of the road. The input, u,
indicates the input to the vehicle, i.e., the steering angle of the
front wheels. The remainder of the model can be described
by (2) by using the following continuous-time state-space
matrices:8̂̂̂̂

ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

Ā =

266664
w(1) C f +Cr

vxm w(1) l f C f−lrCr

vxm − vx 0 0

w(2) l f C f−lrCr

vxI w(2) l2f C f +l2r Cr

vxI 0 0
−1 0 0 vx

0 − 1 0 0

377775
B̄u =

h
−w(1) C f

m − w(2) l f C f

I 0 0
iᵀ
, B̄ f = B̄u

B̄d =
h
0 0 0 vx

iᵀ
, G = C = Dη = I

Dd = 0, E =
h
0 0 0 1

iᵀ
(9)

and their discrete-time equivalents8<:A = eĀh, Bu =
R h

0 eĀsB̄uds

Bd =

Z h

0
eĀsB̄dds, B f =

R h
0 eĀsB̄ f ds.

The uncertainty in this model is characterized by w =

[w(1),w(2)]ᵀ, where w(1) expresses the uncertainty that appears
in the vehicle mass m and the stiffness of the front and rear
corners C f and Cr, respectively. The uncertainty value w(2)

expresses the uncertainty that appears in the yaw moment of
inertia I and the corner stiffness C f and Cr, respectively. The
mass and yaw moment of inertia may change according to
the loading conditions of the vehicle. These uncertainties may
lead to false positives in the detection of faults in the steering
actuator. This can occur if incorrect parameters are used in
the approach of Section II-B, such as when carrying multiple
passengers or additional luggage. The cornering stiffness C f

and Cr may vary based on tire conditions, their pressure, and
the load on the axles or weather conditions.

D. Generic Problem Description

We will now take a closer look at how the real-life phenom-
ena we propose affect the residual r, leading to an inaccurate
estimate of the faults f. Each subsection will begin with a brief
description of the objective to solve the problem description,
which will be addressed in Section III.

1) Model Uncertainty: The residual generator (4) estimates
the aggregated fault under the assumption that w0 = w, that
is, the parameters in the dynamical system are known. Now,
let us assume that the system parameters in (1) are defined by
w , w0. In that case, we can rewrite (4) as follows:

r
�
w0,w, fagg

�
= a−1 (q) N(q; w0)L(q; w0) [z (w)] . (10)

Here, we explicitly denote that the variable z(w) [as well
as the unknown variable x(w)] is driven by system (1) with
parameters w , w0.

Remark 1: For the remainder of this work, it is important to
note that the variables x(w) and z(w), along with the signals
within them, are driven by system (1), which is subject to
uncertainty from the variable w. However, to simplify the
notation, we will not explicitly include the dependence of these
variables on w.

Now, let us characterize the mapping from the residual
r(w0,w, fagg) (10) to the true aggregated fault fagg. First, we
rewrite model (1) with model mismatch, given a nominal
model with assumed parameter values w0 and actual parameter
values w, as follows:

(H(q; w) − H(q; w0)) [x] + H(q; w0) [x] +F(q; w)
�

fagg
�

+ (L(q; w)−L(q; w0)) [z]+L(q; w0) [z]=0 (11)

which characterizes the model mismatch between the actual
system and the nominal dynamics. Substituting (11) into (10),
this results in the following residual:

r
�
w0,w, fagg

�
= −a−1 (q) N(q; w0) (H(q; w) − H(q; w0))„ ƒ‚ …

∆H(q;w,w0)

[x]

„ ƒ‚ …
(I)
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+ a−1 (q) N(q; w0) (L(q; w) − L(q; w0))„ ƒ‚ …
∆L(q;w,w0)

[z]

„ ƒ‚ …
(II)

+ a−1 (q) N(q; w0)F(q; w)
�

fagg
�

(12)

which shows that the residual is a function of the aggregated
fault fagg, the unknown signals x, and the measured signals z.
This may not be a good fault indicator when terms (I) and (II)
in (12) are nonzero (i.e., in the presence of model uncertainty).
Moreover, this effect of model mismatch propagates through
the isolation filter, which assumes that the residual depends
only on the faults fa, fm, and Eᵀz. This allows us to define
the first objective toward solving the problem statement.

Objective 1: Consider a system (1) and (3) in the presence
of structured uncertainty w ∈W with representatives w j ∈W
and absence of delay and noise. Due to the structure of
the uncertainty, employ the representatives {w1, . . . ,wv} to
minimize the model mismatch terms (I) and (II) in (12) of
a healthy system (i.e., fagg = 0), through a filter N(q; w0). In
the scope of this objective, we aim to find such a filter by
minimizing the mismatch from an average point of view, i.e.,

min
N(q;w0)

1
v

vX
j=1

‖r
�
w0,w j, 0

�
‖2L2

s.t. (5a), (5b), at nominalw0. (13)

Furthermore, a second aim in the scope of this objective is to
perform such a minimization in a robust sense, i.e., minimizing
the worst case, as follows:

min
N(q;w0)

max
j≤v
‖r
�
w0,w j, 0

�
‖2L2

s.t. (5a), (5b) at nominalw0. (14)

2) Input and Measurement Delay: The residual generator
(4) originally assumes the absence of delay, uncertainty, and
measurement noise in the system. We can evaluate how it
would perform on the system with input and output delay, by
inserting the system matrices, containing the effects of delay
(3) (without the effects of noise, i.e., Dη = 0 and uncertainty,
i.e., w = w0), into the filter (4) as follows:

rτ
�
w0,w0, fagg

�
= a−1 (q) N(q; w0)L(q; w0) [z] ,

= −a−1 (q) N(q; w0)U (q) F(q; w0)
�

fagg
�

+ a−1 (q) N(q; w0)
�

0 (I − U (q)) Bu

0 0

�
[z]

+ a−1 (q) N(q; w0)
�

0 0
(I − Y (q)) C (I − Y (q)) Dd

�
[x]

which shows that rτ, representing the residual of the delayed
system with filter (4), is a function of the fault fagg and delayed
instances of the known signals in z and unknown signals in
x, which could result in false positives for the fault detection.
This allows us to define our second objective toward solving
the problem statement.

Objective 2: Consider a system (1) and (3) in the presence of
input and measurement delay, and the absence of uncertainty
w (i.e., w = w0) and noise. Minimize the effect of the delay in

the inputs and measurements in (12), through a filter N(q; w0),
satisfying (5). This is equivalent to designing N(q; w0) for
a healthy system, i.e., fagg = 0, by solving the following
optimization problem:

min
N(q;w0)

‖rτ (w0,w0, 0)‖L2

s.t. (5a), (5b) at nominalw0. (15)

3) Measurement Noise: In this section, we evaluate the
residual generator (4) in the absence of uncertainty (i.e., w =

w0) and delay (i.e., U(q) = Y(q) = 1). Using the detectability
condition from Assumption 1, the first intuition could be to
handle measurement noise as an unwanted disturbance, as in
(3a), by modeling the state/disturbance matrix as follows:

H(q; w0) =

�
−qG + A Bd 0

C Dd Dη

�
. (16)

The goal is then to find a filter that cancels out the effects
of the noise η by finding a filter polynomial N(q; w0), which
belongs to the nullspace of (16). This approach might work for
systems where not all measurements are affected by noise (i.e.,
having measurement redundancy) or through possible linear
independence between C and Dη. However, in practice, this
is often not the case. For example, for the automated vehicle
application [i.e., system (1) and (3) with matrices as in (9)],
we consider C = Dη = I. This relates to the case where
all states are measured and all are affected by measurement
noise. Numerical analysis shows us that the rank condition in
Assumption 1 does not hold. This can be explained by the
intuition of finding a filter that cancels the third block column
in (16), which, given Dη = I, has an empty basis (i.e., the
filter coefficients of N(q) that multiply with Dη are equal to
0). This implies that a residual generator, designed such that
(5) hold, i.e.,

r
�
w0,w0, fagg

�
= a−1 (q) N(q; w0)

�
0 Bu

−I 0

�
[z] (17)

would cancel the effect of the first block column of L(q; w0),
i.e., the contribution of all available measurements. This
restricts the residual generator to only use the input signal
u to estimate the presence of fagg in the system. In that
case, it is not possible to estimate fagg in the vehicle context,
as Eᵀz = u is affected by the fault and this affected input
cannot be measured (only the unaffected signal u is measured).
Leaving out the measurement noise term in the matrix (16),
i.e., considering a nominal design, one would be able to
generate a residual generator. However, when finding a filter
according to conditions (5) for (1) and (3a), the residual would
be described as follows:

r
�
w0,w0, fagg

�
= a−1 (q) (N(q; w0)L(q; w0) [z]

+ N(q; w0)
�
0 Dη

�ᵀ �
η
��

(18)

which results in a residual depending on the filtered aggregated
fault and a filtered version of the measurement noise, which
propagates further through the isolation filter and affects the
quality of the fault estimates. Since our setting does not allow
full decoupling of η, the treatment of noise in the residual
(18) and, therefore, in the fault estimates bfa and bfm requires a
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classical tradeoff between estimation speed and accuracy. This
brings us to the third and final objective.

Objective 3: Consider system (1), (3) in the presence of
measurement noise η and the absence of uncertainty w (i.e.,
w = w0) and input/measurement delay (i.e., U(q) = Y(q) = 1).
Characterize the tradeoff in attenuating the effect of measure-
ment noise η at the cost of the estimation speed and estimation
accuracy of the faults bfagg, bfa, and bfm.

E. Outline of the Proposed Approach

As explained in Section II-A, detecting and estimating the
aggregated fault fagg and separating the additive fault fa and
the multiplicative fault fm from it is the main challenge in
fault isolation. It becomes even more challenging when their
impacts on the dynamics are linearly dependent. Our study
differs from the one conducted in [4] in that we take into
account several real-life phenomena (which, e.g., arise in an
experimental setting for automated driving) characterized by
Objectives 1–3. The proposed approach involves incorporating
prior knowledge of real-life phenomena such as the uncertainty
representatives w j, measurable delays Y(q) and U(q), and
characterization of measurement noise η. In the fault diag-
nosis part, we robustify the detection and isolation approach
presented in [4, Th. 3.7] while making use of the insights
gained by the performance bounds developed in that work. The
system, affected by uncertainty, delay, and noise, is depicted on
the left-hand side in Fig. 1. The proposed approach first detects
and estimates the aggregated fault fagg through a robustified
filter, which is of the form in (4) and will be robustified in
Section III for model uncertainty and delay. The individual
contributions fa and fm are then estimated through a prefilter
and isolation filter of the form in (8) and (7), respectively,
and further elaborated on in Section II-D3 in the scope of
noise attenuation. These blocks comprise the fault diagnosis
algorithm, which is shown on the right-hand side in Fig. 1.
We aim to achieve improved fault estimates compared to the
baseline approach through robustification and prove its benefits
by conducting real experimental field tests in the scope of
automated driving.

III. ROBUSTIFICATION PROCEDURE

A. Model Uncertainty

In Section II-D1, we designed a nominal filter for an
uncertain description of the system to detect the aggregated
fault of interest. However, it is important to note that the
residual r that we use to differentiate between faults fa and fm
in that specific case depends on various factors, such as the
mismatch between the assumed dynamics in the filter design
versus the true dynamics of the system (12). Therefore, it is
necessary to adjust the filter requirements in (5) to reflect the
sensitivity to faults and the insensitivity to disturbances and
minimize the effect of the model mismatch on the residual.
Given (13) and (14) from Objective 1, the goal is to minimize
the residual of a healthy system, thus minimizing the effect of

Fig. 3. Depiction of the uncertainty training procedure.

model mismatch. Using (12) and setting f = 0 (i.e., a healthy
system), this is equivalent to minimizing

‖a−1 (q) N(q; w0) (∆H (q; w,w0) [x] + ∆L (q; w,w0) [z])‖L2 .
(19)

The approach for mitigating the effect of model uncertainty
is an adaptation of the results presented in [27], where a similar
detection filter [with the same objectives as in (5)] was trained
to detect discrepancies between a high-fidelity simulator and
an abstract linear model. The linear model represents a simpli-
fied representation of the high-fidelity simulator. In [27], the
main source of the mismatch originates from nonlinearities.
However, in that approach, the high-fidelity simulator does
not have a representative internal state X, and as such, [27, eq.
(6) (I)] can only be minimized by assuming linear state and
disturbance dynamics. In our approach, depicted in Fig. 3, the
main objective is to minimize the contribution of both (I) and
(II) from (11) by using prior knowledge about the uncertain
system and its behavior in an experimental setting. This will
be described in more detail next.

Our approach utilizes inputs, gathered in experiments to,
first, represent relevant healthy scenarios and, second, enable
the characterization of relevant system behavior in these
healthy scenarios. In the automated vehicle application, these
inputs are the steering angle and curvature (9). These inputs,
gathered from experimental data and used for simulation
toward mismatch generation, are characterized as follows:

u := [u [1] , u [2] , . . . , u [T ]] , d := [d [1] , d [2] , . . . , d [T ]]
(20)

where u ∈ Rnu×T , d ∈ Rnd×T , in which T is the total number
of collected data samples. Note that it may not be possible
to collect data on all disturbances d. In that case, it will be
assumed that the specific disturbance signal is zero over the
time horizon [1,T ]. We then use these input matrices u and
d to simulate the system output y and its internal state X, in
scenarios represented by the inputs and disturbances in these
matrices, on all representatives w j of the uncertainty set. The
resulting state and output evolutions are then characterized as
follows:

y j :=
�
y j [1] , y j [2] , . . . , y j [T ]

�
, ∀ j ∈ [1 . . . v] (21)

X j :=
�
X j [1] , X j [2] , . . . , X j [T ]

�
, ∀ j ∈ [1 . . . v] . (22)

Having access to the synthetic training sets of time-series data
of the output y, the state X, the input u, and disturbance
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d allows us to collect time-series data of the mismatch
signatures (I) and (II) in (12). To write a finite-time version
of (I) and (II) using (21) and (22), which can be used to
formulate a (optimization) program for finding an admissible
filter N(q; w0) that meets Objective 1, we use the results of
[4, Lemma 3. 1]. As an illustrative example, we decompose
the matrix H(q; w0) =

PdH
i=0 Hi(w0)qi, where dH denotes the

degree of H(q; w0) and Hi(w0) ∈ Rnr×nx . Then, we can define
N̄(w0) :=

�
N0, N1, . . . , NdN

�
∈ R1×dN ·nr , where dN denotes the

degree of N(q; w0), Ni ∈ R
1×nr , and

H̄ (w0) :=

266664
H0 H1 . . . HdH 0 . . . 0

0 H0 H1 . . . HdH 0
...

...
. . .

. . .
. . . 0

0 . . . 0 H0 H1 . . . HdH

377775 (23)

where we drop w0 from the entries of H̄(w0), N̄(w0) for
compact notation and H̄(w0) ∈ R(dN ·nr)×((dN+dH )·nx). This allows
us to rewrite (5a) as follows:

N(q; w0)H(q; w0) = N̄ (w0) H̄ (w0)
�
I, qI, . . . , qdN+dH

�ᵀ
such that the linear formulation N̄H̄ = 0 is equivalent to
(5a). Similarly, we can decompose F(q; w0), L(q; w0) (which
are of degree dF and dL), by substituting (23) with F and
L, respectively, thus retrieving F̄(w0), L̄(w0). Finally, we can
decompose a(q) = ā[1, q, . . . , qda ]ᵀ, where ā = [a0, a1, . . . , ada ],
in which da denotes the degree of a(q). This allows us to
rewrite (5b) as N̄F̄(w0)1dN×dF = −ā1da , as is also shown in
[4, Lemma 3.1]

Now, by taking (I) and (II) from (12) for each representative
w j ∈ {w1, . . . ,wv}, replacing the variable x with a finite-time
version [Xᵀj , dᵀ]ᵀ, and replacing z with a finite-time version
[yᵀj , uᵀ]ᵀ, we find

N(q; w0)∆H(q; w j,w0)
�

X j

d.

�
= N̄ (w0)

�
H̄
�
w j
�
−H̄ (w0)

� �
I, qI, . . . , qdN+dH

� �TX j

d.

�
„ ƒ‚ …

EH, j

N(q; w0)∆L(q; w j,w0)
�

y j

u.

�
= N̄ (w0)

�
L̄
�
w j
�
−L̄ (w0)

� �
I, qI, . . . , qdN+dL I

� �Ty j,
u.

�
„ ƒ‚ …

EL, j

.

The resulting model mismatch terms EH, j, EL, j ∈ R
nr ·dN×T

allow us to formulate (19) for a finite-time residual of length
T, i.e., rT , j where j ∈ {1, . . . , v}, as follows:

‖rT , j‖
2
2 = N̄

�
EH, jE

ᵀ
H, j + EL, jE

ᵀ
L, j

�
N̄ᵀ. (24)

As noted in [27, Remark 2], training a model for multiple
model mismatch signatures resulting from a variety of uncer-
tain systems can be approached in different ways. First, an
average-cost approach can be taken, which weighs the effect
of all residuals (24) equally, which is equivalent to minimizing

1
v

vX
j=1

‖rT , j‖
2
2 = N̄

0@1
v

vX
j=1

�
EH, jE

ᵀ
H, j+EL, jE

ᵀ
L, j

�1A N̄ᵀ. (25)

The formulation in (25) allows us to formulate a first filter
design according to (13). One of the representatives w j may
result in a much larger mismatch compared to the other
representatives. In such a case, the focus should be on the
representative that results in the most severe mismatch, which
can be achieved by minimizing the worst case mismatch. This
is also known as a worst case approach, which involves min-
imizing the worst case mismatch from (24), i.e., minimizing

max
j≤v
‖rT , j‖

2
2 =max

j≤v
N̄
�

EH, jE
ᵀ
H, j+EL, jE

ᵀ
L, j

�
N̄ᵀ. (26)

The formulation in (26) allows us to formulate a first filter
design according to (14). Using (25) and (26), two designs are
introduced that allow us to satisfy the two optimality criteria
(13) and (14), as such that we meet Objective 1.

Design 1 (Average-Cost Robust Fault Estimator for Struc-
tured Uncertainty): Consider the uncertain system in (11),
where the parametric uncertainties are characterized by W
with representatives w j, j ∈ {1, . . . , v}, with a nominal known
value w0. An average-cost filter, according to (13) in Objec-
tive 1, can be found by minimizing (25) for all uncertainty
representatives while satisfying (5) for nominal w0. This is
equivalent to solving the following quadratic program:

min
N̄

N̄

0@1
v

vX
j=1

EH, jE
ᵀ
H, j +

1
v

vX
j=1

EL, jE
ᵀ
L, j

1A N̄ᵀ

s.t.N̄H̄ (w0) = 0
N̄F̄ (w0)1dN×dF = −ā1da . (27)

Similarly, thanks to (26), a second filter can be formulated
according to (14) in Objective 1.

Design 2 (Worst Case Robust Fault Estimator for Structured
Uncertainty): Consider the uncertain system in (11), where
parametric uncertainties are characterized by W with repre-
sentatives w j, j ∈ {1, . . . , v}, with a nominal known value w0.
A worst case filter, according to (14) in Objective 1, can be
found by minimizing (26) for the worst-impact uncertainty
representatives while satisfying (5) for nominal w0. This is
equivalent to solving the following quadratic program:

min
N̄

max
i≤v

N̄
�
EH,iE

ᵀ
H,i + EL,iE

ᵀ
L,i

�
N̄ᵀ

s.t. N̄H̄ (w0) = 0
N̄F̄ (w0)1dN×dF = −ā1da . (28)

Designs 1 and 2 allow us to find an improved solution for
an uncertain system compared to a nominal filter, as will also
be shown in Section IV.

1) Generalization to Unseen Scenarios: The design per-
spectives in Designs 1 and 2 rely on specific scenarios w j

that are available to us often through experimental data (see
Fig. 3 for a pictorial illustration of such a process). However,
it is important to ensure that these designs are also reliable
when facing unseen scenarios (i.e., plausible scenarios that
are not considered in Designs 1 and 2) in real-time operation.
This subject is at the heart of learning problems and is
often referred to as “generalization error.” In general, it is
not possible to draw conclusions (i.e., generalization bound)
from seen (training) scenarios to unseen (test) ones. However,
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under certain regularity conditions and for a specific choice of
probabilistic guarantee, one can provide a formal performance
certificate. An example is when the training phase optimizes
the worst case cost evaluated in the seen (training) scenarios
(i.e., Design 2) and the resulting program is (effectively)
convex optimization in the decision variables [28], [33]. Let
us elaborate more on this. We define the constraint function

g
�
N̄, γ,w j

�
:= N̄

�
EH, jE

ᵀ
H, j + EL, jE

ᵀ
L, j

�
N̄ᵀ − γ . (29)

Using the definition of function g in (29), program (28) of
Design 2 can be rewritten in an epigraph reformulation as
follows:

min
N̄,γ

γ

s.t. g
�
N̄, γ,w j

�
≤ 0, ∀ j ∈ {1, . . . , v}

N̄H̄ (w0) = 0
N̄F̄ (w0)1dN×dF = −ā1da .

The above reformulation of the worst case (28) falls into
the category of the so-called scenario convex problem (SCP).
As shown in [34, Th. 1], the solution of the SCP, denoted
by (N̄∗, γ∗), enjoys the probabilistic guarantee as a feasible
solution to the so-called chance-constrained program (CCP)

P
�
w ∈W : g

�
N̄∗, γ∗,w

�
≤ 0

�
≥ 1 − ε (30)

where P is the distribution supported on the uncertainty setW ,
governing the behavior of the possible uncertain parameter w,
and ε ∈ [0, 1] is a prespecified level of constraints violation.
Note that the CCP constraint takes into consideration the
unseen scenario w ∈ W and allows for constraint violation
up to a probability of ε. In the context of fault detection, this
probability of violation is often referred to as the “false-alarm
rate.” The CCP guarantees can also be extended to a class of
nonconvex problems, which has a direct application for fault
detection problems [28]. It is also interesting to note that the
average cost (27) in Design 1 can also benefit from some
probabilistic guarantees. However, this is beyond the scope of
this study and we refer the interested readers to [28, Th. 4.11]
for further information.

2) False Negative/Missed Detection Rate: We have two
types of errors in fault detection problems: 1) false positive
(also known as false-alarm rate) and 2) false negative (also
known as missed detection rate). Looking at the design opti-
mization programs (28), the constraint N̄H̄(w0) = 0 and the
first term of the objective N̄(EH, jE

ᵀ
H, j)N̄

ᵀ are concerned with
the false positive error, while the constraint N̄F̄(w0)1dN×dF =

−ā1da and the second term of the objective N̄(EL, jE
ᵀ
L, j)N̄

ᵀ

relate to the false negative error. Providing a performance
certificate for the false negative is typically more challenging
as it requires additional conditions on the fault signal as
well. Namely, in a practical setting where we have to tolerate
nonzero threshold [i.e., variable γ in constraint function g
in (29)], there are always sufficiently small faults whose
contributions to the residual are suppressed under this thresh-
old and hence remain undetected. To determine a minimum
value (in the L sense) for a detectable fault signal, we need
to ensure that the fault aggregated contribution exceeds the

term N̄(EH, jE
ᵀ
H, j + EL, jEL, j)N̄ᵀ. In other words, solving the

worst case program (28) using the training data provides us
with a worst case value γ∗ = N̄(EH, j∗E

ᵀ
H, j∗ + EL, j∗EL, j∗ )N̄ᵀ

evaluated in a particular scenario w j∗ [or equivalently the
optimal objective of (28)], which offers a similar probabilistic
chance constraint guarantee for the false negative rate in
unseen scenarios. Having said that, we wish to emphasize
that this would represent a false negative rate for aggregated
faults, not a guarantee for each additive and multiplicative fault
separately. Breaking down the false negative rate requires a
more comprehensive analysis, which is beyond the scope of
this study and could serve as a potential direction for future
research. In Section IV, we demonstrate the effectiveness of
this approach using both synthetic and real experimental data.

B. Input and Measurement Delay

When there are delays in the input (actuation) and out-
put (measurements) of a system, the current state-of-the-art
approach does not meet the conditions stated in (5), as
explained in Section II-D2, that is, the residuals are affected
not only by the fault but also by previous instances of unknown
states and disturbances. The reason for this problem is that
the presence and length of delays are not considered model
knowledge during filter synthesis. Fortunately, there are several
methods in the literature to estimate delays within a system,
as reported in [35]. In the context of our application, i.e., a
compact actuator and sensor network with wired connections,
it is safe to assume that all delay lengths are known and of
constant length. Given these assumptions, we can assume that
the polynomial matrices Y(q) and U(q) in (3) are known and
can be incorporated into the synthesis of a residual generator
by rewriting (3) and setting

H(q; w) :=
�
−qG + A (w) Bd (w) 0
Y (q) C (w) Y (q) Dd (w) Y (q) Dη

�
L(q; w) :=

�
0 U (q) Bu (w)
−I 0

�
, F(q; w) :=

�
U (q) B f (w)

0

�
.

This allows us to incorporate delays as model knowledge and
compensate for them in the filter synthesis problem in Designs
1 and 2, enabling a filter robust against model uncertainty and
input/measurement delays and satisfying Objective 2.

C. Measurement Noise

As noted in Section II-D3, generally the measurement noise
cannot be decoupled by modeling it as a disturbance, as
it would imply the rejection of all available measurements,
which will violate Assumption 1 for our system. Therefore,
a different method must be found to attenuate the effect of
noise on the residual, to reduce its effect on fault estimates bfa
and bfm. In contrast to Section III-B, we will not be discussing
any methodology to completely decouple the impact of noise.
Instead, we will be explaining various approaches to reduce
noise by adjusting parameters in different filter components. In
addition, we will discuss how these strategies can impact the
accuracy of the estimated faults. Measurement noise affects
the aggregated fault fagg through the second term in (18). The
first way to minimize the effect of noise is through the residual
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generator: by minimizing the energy of the noise contribution.
Based on (18), this implies

min
N(q;w0),a(q)

‖a−1 (q) N(q; w0)
�
0 Dη

�ᵀ �
η
�
‖2.

The numerator N(q; w0) is mainly useful for rejecting the noise
present at specific frequencies. This is effective for rejecting
disturbances within a particular frequency band (by using, for
example, a band-stop filter). However, it is not very effective
for Gaussian white noise, which has a flat frequency spectrum
for all frequencies. Furthermore, the design of N(q; w0) is
already determined through Designs 1 and 2. As such, using
the design of the denominator a(q) to attenuate the effect of
noise is a better option. This can be done through a variety
of different filter types, e.g., low-pass filters. This helps to
attenuate the contribution of noise above certain frequency
levels. It is important to note, however, that filtering the
residual to reduce noise can have a downside. As explained
in the state of the art (Section II-B), a prefilter is applied
to the input signal before it enters the regression operator.
This prefilter, as shown in (7), is designed to compensate
for the dynamic mismatch between the residual and the true
aggregated fault. The prefilter design uses the same filter
denominator a(q). When observing the proposed performance
bounds in [4, Th. 3.7] and its application to constant faults
in [4, Corollary 3.8], there is a linear relationship between
the variance of the filtered signal e and the magnitude of
the performance bound. If a denominator a(q) is therefore
designed to attenuate noise, even within the frequency range
of the input signal e, the “excitation” of the signal e is actively
reduced, and therefore, the bound on the fault estimation error
increases, which could lead to performance loss regardless of
the benefits of noise attenuation.

The second component in which we can attempt to attenuate
the effect of measurement noise is in the isolation filter (8), as
depicted in Fig. 1. Using [4, eq. (17)], one can observe that
the mismatch between the aggregated fault and the residual
can be bounded by the following equation:

‖Φn [e, r − δ] (k)‖≤
Cn (en)
√

nVn[e]
‖rn − δn‖2,with δ= fa + e fm (31)

where the constant Cn(en) is defined in [4, eq. (10b)]. Given the
fact that the residual r is now affected by additive noise, the
mismatch between the residual and the true aggregated fault δ
can be reduced by increasing the filter horizon n, providing a
second direction for noise attenuation. Intuitively, one would
opt to increase n to large values. However, much like a
moving average filter with a longer horizon, the convergence
rate of a fault estimate will decrease proportionally with the
horizon n. To achieve a good fault estimation performance, it
is crucial to carefully balance two factors: the selection of an
appropriate filter a(q) and the selection of a regression horizon
n. Lowering the cutoff frequency of a(q) reduces the excitation
of e to the regression problem. On the other hand, increasing
the cutoff frequency allows more noise artifacts to enter the
residual, which affects the estimation error. Similarly, reducing
the horizon n minimizes the amount of information needed
for the regression problem, resulting in less time required to
reach the desired fault estimate. However, in a noisy setting, a

Fig. 4. TNO Renault Grand Scenic (2018) testing platform.

reduction of n would compromise the quality of the estimation.
This gives us a qualitative tradeoff for designing a fault
estimator in the presence of noise, according to Objective 3.

In summary, the steps involved in the robustification process
are as follows. First, in Section II-D1, we apply Designs 1
and 2 to achieve a robust design in the presence of model
uncertainty (Objective 1). Second, in Section II-D2, we use a
methodology to augment the input and measurement delay to
the system matrices to compensate for its effect (Objective 2).
Finally, in Section II-D3, we employ the denominator a(q)
and the isolation filter horizon n to reduce the effect of
measurement noise while balancing accuracy and time-based
performance (Objective 3).

IV. EXPERIMENTAL RESULTS ON AN
AUTOMATED VEHICLE

In this section, we will be verifying the contributions made
in Section III. To begin with, we will train Designs 1 and
2 by using experimental data. We will combine these data
with the contributions from Sections II-D2 and II-D3. After
this, we will be using the same filter setup to detect and
estimate faults in a real vehicle. The experimental data were
collected using a real testing vehicle, which is shown in
Fig. 4. The vehicle is a 2018 Renault Grand Scenic that
was equipped with a variety of sensors and actuators to
control inputs and measure outputs shown in Fig. 2 and (9).
To measure lateral velocity vy, a global navigation satellite
system (GNSS) sensor was used, which communicated its data
to the Axiomtek central computer through a controller area
network (CAN) interface. The yaw rate ψ̇ was measured by
an inertial measurement unit (IMU), which communicated its
data through the vehicle gateway to the data logging facility.
The lateral error ye and the heading error ψe were derived from
the road markings observed by the road marking camera. The
longitudinal velocity vx is measured through the wheel speed
sensors and communicated to the central computing unit. The
built-in steering actuator, which can be accessed through a
CAN interface, was used to actuate the steering angle u of the
wheels. Longitudinal acceleration and braking were achieved
through a retrofitted system that directly actuated the throttle
valve and the position of the brake pedal. The logged data were
then communicated to the logging platform. The Axiomtek
central computer runs a variety of algorithms using the robot
operating system (ROS). The platform has several controllers,
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TABLE I
TESTING MATRIX FOR EXPERIMENTAL DATA GATHERING

including a lane-keeping controller based on [36] and an
adaptive cruise controller based on [37]. These controllers
help the vehicle maintain constant speed and stay in the lane.
Additionally, custom software has been developed to inject
the desired faults fa and fm into the system by manipulating
the steering wheel setpoint u. Although in practice, faults are
mainly caused by mechanical defects, it is considered unsafe
to inject these mechanical failures while driving the vehicle.
Therefore, software manipulation of the desired steering angle
is considered the preferred option for testing purposes.

Experimental data have been collected at the RDW proving
ground in Lelystad, The Netherlands, which features an oval
track that has an approximate straight section of 850 m
and a corner radius of around 160 m. To represent typical
urban or national road driving, all tests were carried out at a
velocity of 50 km · h−1, which is equivalent to 13.88 m · s−1.
According to [38], the validity of the linear bicycle model is
guaranteed by constraining the lateral acceleration with 0.5g,
where g represents the gravitational constant. Calculating the
lateral acceleration at the velocity of 13.88 m · s−1 through
the corner shows that on the track, we have a maximum
lateral acceleration of ay = (v2

x/R) ≈ 1.2m s−2, which is
well within the linear operating regime of the model in
(9). The test variations carried out, including different fault
scenarios, are shown in Table I. The tests labeled training
are intended to design the two residual generator designs
as proposed in Section III, as well as to gather knowledge
to tune the filter parameters of the estimation filter. Using
the trained filter and the set of parameters, the experimental
results are evaluated. The vehicle parameters are as follows:
m = 1845 kg, I = 2372 kg · m2, l f = 1.219 m, lr =

1.585 m, C f = 138 100 N · rad−1, and Cr = 215 300 N · rad−1.
The actuation and measurement delays have been identified
as τu = 0.15 s, τvy = 0.06 s, τψ̇ = 0.05 s, τye = 0.14 s, and
τψe = 0.14 s. The uncertainty values, as introduced in (9), are
chosen to be in the intervals w(1) ∈ [0.8, 1.2], w(2) ∈ [0.8, 1.2],
therefore, assuming that the real system can have a 20% devia-
tion in relation to the nominal parameters of the system. These
limits are selected as representatives w j, used in Designs 1 and
2.

To strengthen this choice of uncertainty representatives, we
performed the analysis of Section III-A concerning general-
ization to unseen scenarios. For each design, three variants of
SCP are designed using 4, 40, and 100 representatives sampled
from a uniform distribution P ∼ U(0.8, 1.2). Furthermore, one
variant is designed using the uncertainty limits as represen-

Fig. 5. Comparison of the performance of Designs 1 and 2 with corner point
representatives and randomly samples representatives.

tatives. Then, the constraint (30) of the resulting designs is
tested on 4000 uncertainties sampled from P. The results are
shown in Fig. 5. For the average-cost filter, it is shown that
choosing the corner points of the uncertainty set W results
in the lowest violation of the constraint, that is, the lowest
false-alarm rate of a healthy system. In fact, a larger number
of samples incorporated in the design results in an increase
in false alarms (i.e., g(N̄,w), and therefore a deterioration of
performance, as can be observed in the average-cost results in
Fig. 5. This shows that a tactical selection of representatives
is required. For the worst case design, it is shown that the
selection of corner points greatly outperforms the option with
four randomly chosen uncertainty representatives. However,
the larger the number of samples, the less constraint violations
occur. This shows that although the corner point representa-
tives outperform a random selection of the same number of
representatives, the corner point representatives do not contain
the absolute worst case.

A. Preliminary Simulation Study

Section III-A outlines our proposed approach to robustifying
against model uncertainty. We perform numerical verification
to assess the effectiveness of our approach under uncertain
conditions while in the absence of delay and noise that
occur in the real vehicle. This enables us to demonstrate the
performance of our approach in various uncertain scenarios
that may differ from the condition of the real vehicle.

In this section, we aim to compare two residual
generators—the “worst case” (28) and “average-cost” (27)
viewpoint—with the baseline nominal filter. We only rely
on the input data u sent to the vehicle, since the outputs
used in the residual generator are generated by a simulation
model based on (9). This allows us to test the efficacy of our
approach at different levels of uncertainty in vehicle model
parameters. The synthetic model is free of measurement noise
and delay. Two parameters are still to be designed, which are
the filter polynomial a(q) and the regression horizon n. These
parameters are primarily used to reduce noise. Since there is no
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Fig. 6. Aggregated fault estimation error for simulating the synthetic system
with residual generator over an equidistant 60× 60 grid (sampled within the
uncertainty set W) of uncertainties.

noise present in this example, the selection will be explained
in Section IV-B. In this example, we fix the values of a(q) and
n in a(q) = (q − 0.75)3 and n = 500 to ensure comparability
for the synthetic and experimental results.

Fig. 6 shows the performance of the three proposed residual
generators. We tested the average-cost and worst case residual
generator on the training data of Table I and evaluated their
performance in the data of experiments 1 and 5, where there
was no fault present. We varied the simulation model affected
by the uncertainty using a 60 × 60 grid of uncertainties,
bounded by w(1) ∈ [0.8, 1.2], w(2) ∈ [0.8, 1.2]. The results
indicate that both the average-cost and worst case approaches
outperform the nominal filter by several orders of magnitude.
However, the average-cost filter performs slightly better than
the worst case filter. This is evident from the average L2-norm
of the residual, which was 4.5 × 10−7 rad for the average-
cost filter, compared to 4.81 × 10−7 rad for the worst case
filter. Furthermore, the maximum L2-norm for all experiments
was 1.95 × 10−6 rad for the average-cost filter, while it was
2.37 × 10−6 rad for the worst case filter. It is important to
note that the worst case filter is designed by finding a filter
that minimizes the worst case impact at one of the uncertainty
representatives. It is unknown whether the representatives of
the chosen model have the greatest impact on the performance
of the residual generator. This question remains open to
research.

Fig. 7 provides a closer look at the filter performance in the
presence of faults and incorporates the estimation of faults bfa
and bfm from the residual r. In this example, we use the data
from experiment 8 as input for the synthetic model. Using this
input, the synthetic model is again simulated over the same
grid in the uncertainty set as used for Fig. 6. The shaded
areas in Fig. 7 depict the estimation performance for all filters
considered. It has been observed that even in a noise-free and
delay-free environment, there are inaccuracies in the nominal
design, with errors in bfa of up to 8.9× 10−4 rad and in fm of
up to 0.18 in steady state. The worst case filter has maximum
errors of 1.9×10−3 rad in bfa and 0.02 in bfm in steady state. On
the other hand, the estimation performed using the average-
cost residual generator has maximum errors of 8.1× 10−4 rad
in bfa and 0.015 in bfm in steady state. While the faults fa and fm
are transient, the error increases and the difference between the
different filter designs decreases. The primary cause of error
in this scenario is that we assume that all the information
in the regressor (8) is related to a constant fault fa and fm.

Fig. 7. Fault estimation results for the synthetic system, using the data from
experiment 8 as system input, with our proposed estimation filter over a
60 × 60 grid of uncertainties.

Fig. 8. FFT of input data u from the training experiments.

However, in the case of a transient fault, this assumption is
not accurate. After the fault stabilizes and remains constant
for n = 500 time steps (i.e., the regressor horizon), the fault
estimates gradually approach their true values. According to
the findings in [4, Th. 3.7], there is a source of error that could
be reduced by any of the following methods: 1) increasing
the horizon n to minimize the impact of the transient fault
in the regressor, but this would lead to a slower estimation;
2) placing the poles of a−1(q) toward the origin to reduce the
dynamical mismatch between the residual and the regressor,
but this would also increase the sensitivity to measurement
noise; and 3) increasing the excitation on the steering input
u. However, the last method is not within the scope of fault
diagnosis in this work.

A note should be made on the time-based performance of
the fault estimation. First, it should be noted that the residual
converges to the true aggregated fault within approximately
0.15 s (as can be observed in the third column of Fig. 7);
therefore, to detect and estimate the presence of a fault in
fagg, the residual generator outperforms a human response time
of around 0.4 s to a hazardous situation [39]. Estimating the
faults bfa and bfm individually is a more time-consuming process
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Fig. 9. Experimental results of experiments 1–4, depicting the fault estimation performance for single faults and simultaneous faults on a straight road. (a)
Experiment 1. (b) Experiment 2. (c) Experiment 3. (d) Experiment 4.

Fig. 10. Experimental results of (a) experiment 5, (b) experiment 6, (c) experiment 7, and (d) experiment 8, depicting the fault estimation performance for
single faults and simultaneous faults on a curved road.

compared to estimating the combined fault fagg because it
necessitates a historical record of the residual and input
to distinguish between the faults. As previously discussed
in Section III-C, selecting a larger horizon n reduces its
susceptibility to the influences of measurement noise. In the

scope of our experiments, due to the chosen values of n and
a(q), the estimation time of fa and fm is around 5 s. Note,
however, that the speed of the estimation of bfa and bfm is
considered less urgent than the estimation speed of fagg since
high-severity faults in fagg would likely prompt the vehicle
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to move to a safe state. Consequently, less critical faults or
incipient faults could be given some time before determining
their precise nature.

B. Experimental Results

In this section, we present the results of the experiments
from Table I. First, we will discuss the selection of filter
parameters a(q) and n. We aim to find an appropriate filter
a(q) that not only reduces noise but also allows us to use the
input signal u effectively. To analyze the frequency content of
the input signal u, we perform a fast Fourier transform (FFT)
of all the augmented training data, as illustrated in Fig. 8.
Upon observation, it is clear that around 30 Hz, the roll-off

of the magnitude stagnates, indicating that the actual steering
dynamics diminishes at this frequency. This is the frequency
range that contains the flat spectrum of noise in the signal. As
such, to create a denominator that filters noise while preserving
the frequency content of u, a low-pass filter with a cutoff

frequency of 30 Hz is selected. Combining this with the signal
sampling time of 0.01 s results in a(q) = (q−e−0.01·30)da , where
the degree da = 3 is chosen so that the residual generators
resulting are causal. Due to the large effect of excitation on
the performance bound (31), it must be preserved and not
sacrificed by attenuating more noise through a(q). Hence, the
horizon n can be used to attenuate noise from the relatively
soft low-pass filter a(q), as well as to attenuate the coupling
effect between the estimation of bfa, bfm, as was also observed
in Section IV-A. The filter horizon is increased to n = 500
to attenuate the noise and coupling effects to a satisfactory
level. As mentioned in Section IV-A, allowing around 5 s
for the faults bfa, bfm is acceptable as long as the residual has
a satisfactory convergence time, which in all experiments is
maximally around 0.4 s. Figs. 9 and 10 show the experimental
results from Table I.

First, Fig. 9 shows the results of the experiments on the
straight road. In these results, an additional graph has been
added to show the moving-horizon variance of the signal u,
i.e., Vn[u], with n = 500, which indicates excitation in these
experiments. Note that this quantity is an unfiltered version
of Vn[e] from (31), which means that its value over time
will allow us to reason about the expected quality of the
estimation. The main source of excitation is the injection of
an additive fault in Fig. 9(c) and (e). For all three variants of
filters, as also explained in the preliminary simulation study,
there is a coupling effect between bfa and bfm. This effect is
inevitable given the static relationship from which these faults
are extracted. However, despite the lack of excitation and
this coupling, the fault estimates do converge to their true
constant values when employing either the average cost or the
worst case filter. However, the nominal filter fails mainly to
accurately estimate bfm, which can be caused by the dynamic
mismatch of the true behavior of the vehicle compared to the
identified vehicle model. In general, the average cost and worst
case design are comparable and mostly identical in terms of
performance, as had already been shown through simulation in
Section IV-A. The results of the experiments while cornering
(Fig. 10) show higher levels of excitation in the steering input
u. Namely, in these scenarios, the vehicle must constantly

regulate itself while taking the corner, which causes relatively
higher excitation. As a result, the convergence of the fault
estimates is more precise. The proposed average-cost and
worst case filter designs outperform the nominal design in
terms of steady-state error in the faults and residual. How-
ever, during transient fault periods, all filter designs perform
similarly in estimating bfa, bfm. The nominal design performs
worse in estimating the additive fault bfa with respect to the
results of the straight road. A mismatch in bfm implies that the
residual r contains traces that are not part of the aggregated
fault but are still correlated with the input signal u. Therefore,
a mismatch in fa could be better explained by an uncorrelated
or less correlated trace in r that still affects the residual. An
example of such an uncorrelated, or less correlated, signal
could be the curvature disturbance, which propagates through
the residual generator through mismatch term I (12), in the
nominal case, and less so in the average cost and worst case
design.

When using results for diagnostic purposes, it is crucial to
consider their accuracy and reliability. The estimated faults can
help detect a specific severity of faults using a set threshold
or mitigate them through closed-loop control. However, fault
estimates observed using the nominal filter on a straight road
with a constant multiplicative fault, or in the corner with an
additive and/or multiplicative fault, may not be accurate. This
could lead to false positive detections or overcompensation in
closed-loop mitigation. Therefore, it is important to be mindful
when interpreting the results. Moreover, the interdependence
between the estimation of the two faults bfa and bfm can
be problematic for all proposed filters, and depending on
the application, different tuning parameters may be used to
attenuate this phenomenon.

V. CONCLUSION

In this work, we focus on the estimation of additive and
multiplicative faults that can cause errors in the steering system
in the context of automated driving. In this experimental
setting, several factors can introduce errors in fault estimation,
such as model uncertainty, measurement noise, and system
delays. We have proposed methodologies to mitigate these
factors and improve the precision and accuracy of the fault
estimation. Our approach has been tested using simulations
and experiments in the field of automated driving, and we
have discussed its effectiveness and limitations. The results
show that incorporating the average cost or worst case fault
estimation filter, compared to the baseline filter, improves the
accuracy and precision of individual fault estimates. Future
work includes the implementation of this methodology in
closed-loop applications and exploring the possibility of active
fault isolation within the automotive domain by introducing
excitation to obtain more precise estimates of faults.
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