
Comparative Analysis of LSTM, ARIMA, and Facebook’s Prophet for Traffic
Forecasting: Advancements, Challenges, and Limitations

Ziyar Uzel

Supervisor(s): Elena Congeduti

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Ziyar Uzel
Final project course: CSE3000 Research Project 
Thesis committee: Elena Congeduti, Georgios 
Iosifidis

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
Accurate short-term traffic forecasting plays a cru-
cial role in Intelligent Transportation Systems for
effective traffic management and planning. In
this study, the performances of three popular fore-
casting models are explored: Long Short-Term
Memory (LSTM), Autoregressive Integrated Mov-
ing Average (ARIMA), and Facebook’s Prophet,
for short-term traffic prediction. The models were
trained and evaluated using a dataset of traffic flow
data collected from 161 detectors over a specific
time period. The experimental results reveal that
ARIMA outperformed LSTM and Prophet in terms
of Root Mean Squared Error (RMSE) and Mean
Absolute Percentage Error (MAPE). This suggests
that while deep learning methods, such as LSTM,
are generally acknowledged to outperform ARIMA
in short-term traffic forecasting, this study reveals
that there are specific scenarios where such well-
accepted fact needs to be tested.

1 Introduction
In the current state of the modern world, the number of ve-
hicles on the roads in large cities has reached a great extent
that the roads and their infrastructure are unable to hold. To
reduce the burden on the existing transportation infrastruc-
ture, two different approaches can be considered: extending
the current infrastructure and utilizing traffic control strate-
gies. The former is not only extremely expensive but also
not viable in some cities [4]. Whereas the latter approach
requires minimal expenditure and can help to exploit the ex-
isting infrastructure in a more efficient way by offering better
travel decisions to drivers and reducing traffic congestion [9].
These traffic control strategies together with increasing data-
collecting infrastructure in the cities compose what is known
as Intelligent Transportation System (ITS) [8]. To leverage
the advantages of ITS, accurate and reliable traffic informa-
tion and data must be available. This emphasizes the critical
role of accurate short-term traffic predictions in supporting
ITS operations. [10].

2 Background and Related Work
Short-term traffic prediction differs from conventional traffic
forecasting methods due to its focus on a shorter time hori-
zon, typically ranging from a few minutes up to around 45
minutes [4, 11]. By way of formal definition, let xt repre-
sent the vehicle count at a specific detector at discrete time
t. short-term traffic forecasting that is referred to throughout
this paper can be formulated as follows:

xt = f(xt−1, xt−2, . . . , xt−k),

k = 1, 2, 3, . . .

In the formulation provided, the variable k represents the
number of previous time steps taken into account for predict-
ing the current traffic count xt. It determines the length of the
historical data window used by the forecasting model. This

formulation captures the dependence of the current vehicle
count on the previous counts, allowing for a one-step fore-
cast.

With the rapid increase in the availability of real-time traf-
fic data, many models are put to use to solve the problem of
accurate short-term traffic forecasting [4, 8]. These prediction
models can be divided into three categories: naive methods,
parametric models, and non-parametric models [10].

Naive methods are methods that do not rely on any model
assumption. and they are fast and easy to implement due to
low computational effort. These methods include using his-
torical averages and Instantaneous Travel Times (ITTs). The
accuracy of these methods is low [10].

Parametric models are the approaches where “the struc-
ture of the model is predetermined” [10]. In other words,
the model’s structure, such as the functional form and pa-
rameters, is specified in advance based on assumptions or
prior knowledge. Autoregressive integrated moving average
(ARIMA), also called a Box-Jenkins model, is one of the
most popular statistical and parametric techniques that is uti-
lized for traffic forecasting. ARIMA combines autoregres-
sive (AR), integrated (I), and moving average (MA) com-
ponents. The AR component considers the dependency on
previous observations, the I component deals with differenc-
ing to achieve stationarity, and the MA component captures
residual errors from past observations. ARIMA is effective
in capturing temporal dependencies, trends, and noise in the
data, making it suitable for traffic forecasting. Ahmed and
Cook conducted one of the earliest research (in 1979) on the
performance of ARIMA, where they compared ARIMA with
other ad hoc smoothing methods, and concluded ARIMA’s
superiority in accuracy [16]. During the same era, Levin and
Tsao had put a research comparing different configurations of
ARIMA to find out the most statistically significant model in
traffic forecasting [15]. Kalman filtering is another paramet-
ric approach used in traffic forecasting that models the system
as a set of linear equations with Gaussian noise, and it esti-
mates the system state by recursively updating its estimate
based on measurements from the system [17].

There are also recent parametric approaches that are de-
veloped for time-series forecasting. Facebook’s Prophet is
one of those approaches. In 2017, Facebook’s data science
team published a paper titled “Forecasting at Scale”, in which
they introduced a new model called Prophet. It combines
trend modeling, seasonality decomposition, and holiday ef-
fects to capture underlying patterns in the data. Prophet uti-
lizes a Bayesian framework, providing uncertainty estimates
for accurate and interpretable forecasts [27]. In a 2022 study
by ChikkaKrishna et al., the performance of Prophet, along
with another Facebook forecasting model, was evaluated in
the domain of short-term traffic forecasting in India. The
authors suggested comparing these models with other fore-
casting methods like ARIMA and LSTM to gain a better un-
derstanding of the Prophet’s effectiveness in the mentioned
domain [28].

Non-parametric models consist of methods that are flexible
in the quantity of their parameters. Such models’ structure
and parameters are decided after the observation of the data.
Some of the non-parametric approaches use neural-networks



[4, 19], k-nn [20], support vector machine (SVM) [18], and
support vector regression (SVR) [21].

Being the central model of the paper and a non-parametric
method, Long Short-Term Memory (LSTM) is a special type
of recurrent neural network (RNN) that is extensively utilized
for analyzing and predicting sequential data [7]. Unlike con-
ventional feedforward neural networks, LSTM networks use
memory cells that have the ability to retain and recall infor-
mation over extended temporal contexts [8]. This unique at-
tribute empowers LSTM networks to effectively capture long-
term dependencies and discern patterns within time-series
data [8]. It consists of multiple layers of memory cells, and
each cell contains input, output, and forget gates, which con-
trols the flow of information. Through these gates, the net-
work can selectively retain or discard information based on
its relevance to the current task. LSTM has gained significant
importance across diverse domains, including natural lan-
guage processing, speech recognition, and time-series fore-
casting[7,8]. There are a vast amount of papers available that
evaluate the performance of LSTM in short-term traffic fore-
casting, some of them include [4,7,8].

3 Knowledge Gaps and Research Question
Short-term traffic forecasting is a widely studied domain that
has seen the proposal of numerous models [2, 4, 5, 6, 7, 10,
12, 13, 20, 28]. However, despite the advances, there exist
significant knowledge gaps that hinder the effectiveness of
these models.

One such gap is the inadequate consideration of external
factors, like weather and events, in most existing models, as
emphasized by Wang and Zhang [23]. These factors play a
crucial role in influencing traffic flow, yet their impact is not
fully incorporated into the forecasting process. Another ne-
glected aspect is the potential improvement in prediction ac-
curacy through the inclusion of spatial correlation between
different locations [24]. While the significance of this corre-
lation has been demonstrated, it is not consistently accounted
for in the modeling process.

Additionally, the challenge of handling missing data in
traffic datasets remains unresolved [22]. Missing data poses
a significant obstacle in accurately predicting traffic patterns,
and developing effective techniques to address this challenge
is imperative for reliable forecasting. Moreover, the robust-
ness of traffic forecasting models has not been thoroughly ex-
amined across various situations. To ensure the effectiveness
of these models, it is crucial to evaluate their performance in
different scenarios and develop adaptive methods accordingly
[36].

Furthermore, the field of traffic forecasting offers a diverse
set of techniques that can be utilized to tackle this complex
problem, and moreover, the continuous advancements in re-
search and innovation contribute to the emergence of new
models. Even though deep learning based methods, such
as LSTM, have been shown to outperform traditional sta-
tistical models, it is still not clear if this is the case for ev-
ery situation and context given the high variability in traf-
fic patterns across different scenarios. In addition, a consis-
tent comparison of more novel models as Facebook’s Prophet

with state-of-art methods for traffic forecasting is essential to
evaluate their effectiveness and identify potential limitations
[1,3,4,6,25,26,34,37].

Addressing these knowledge gaps in short-term traffic fore-
casting can significantly contribute to the development of
more accurate models. This paper specifically focuses on the
last gap by comparing various forecasting models, namely
LSTM, ARIMA, and Facebook’s Prophet, in Den Haag,
Netherlands, aiming to provide valuable insights to short-
term traffic forecasting. This will be achieved through an-
swering the research question: “Does LSTM outperform
ARIMA and Prophet in the domain of short-term traffic fore-
casting?”

4 Methodology
To conduct the comparison analysis, all three models, namely
LSTM, ARIMA, and Prophet, were implemented. This sec-
tion outlines the methodology adopted for each model, in-
cluding the data pre-processing, model configuration, and
evaluation metrics used. For a better understanding of the
methodology followed in the implementation of the models, a
brief explanation of the data and evaluation metrics are neces-
sary. So in section 3.1 a description of the data is provided, in
section 3.2 an explanation for the selected evaluation metrics
is present and in the following sections, 3.3-3.4, the models’
methodology is explained.

4.1 Data
The data that is used throughout the models is collected from
Den Haag Municipality Dataset. The data corresponds to 15-
minute vehicle counts from inductive-loop traffic detectors
collected during the month of November 2019. These de-
tectors are located in the lines of President Kennedylaan and
Johan de Wittlaan. They span 11 intersections and add up to
162 detectors in total. In essence, each detector is an array of
size 2880 (# of 15 minutes in a month) and each entry of the
dataset corresponds to a 15-minute vehicle count.

As for the handling of the missing data, due to the impor-
tance of ensuring the integrality of the dataset, the missing or
invalid data entries are replaced by the previous data entries
in temporal order instead of getting dropped [4].

4.2 Evaluation Metrics
The evaluation metrics play a crucial role in the compari-
son analysis of LSTM, ARIMA, and Prophet models. In this
study, the root mean squared error (RMSE) is chosen as the
primary metric for both training and evaluation. Additionally,
the mean absolute percentage error (MAPE) is used as a com-
plementary metric to measure and evaluate the performance
of the models.

RMSE is a widely used evaluation metric in the domain of
time series forecasting [4, 6, 7, 8, 11]. It provides a measure
of the average prediction error, taking into account the differ-
ences between the predicted and actual values see the formula
below:

RMSE =

√√√√ 1

n

n∑
i=1

(xi − x̂i)2.



where xi is the actual value, x̂i is the predicted value, and n
is the number of observations. The use of RMSE allows for
direct comparison with previous researches in the field.

To complement the evaluation with a relative error metric,
MAPE is chosen. MAPE provides insights into the accuracy
of the models by expressing the prediction error as a percent-
age of the actual value, see the following formula:

MAPE =
1

n

n∑
i=1

∣∣∣∣xi − x̂i

xi

∣∣∣∣× 100%

However, one limitation of MAPE and other relative er-
ror metrics is the potential for division by zero. In scenarios
where the actual value is zero, dividing by zero can lead to
numerical instability and large values.

To address this issue, after making the predictions, all the
zero values with their corresponding predictions are dropped
and neglected in the computation of the performance errors.
By removing these zero values, the problem of division by
zero is mitigated, ensuring more stable and meaningful eval-
uation results.

By utilizing both RMSE and MAPE, a comprehensive
evaluation of the models’ performance can be obtained, cap-
turing both the absolute and relative errors in the predictions.

4.3 LSTM
The LSTM model is essentially a type of RNN. It is a chain of
memory cells and consecutive data points are fed into these
cells sequentially to predict the very next data point. Figure 1
demonstrates such a structure.

Figure 1: A represents a memory cell, xt represents the input values,
and ht represents the output value

The computation of LSTM takes place within each of these
memory cells, as depicted in Figure 2.

Figure 2: Ct represents cell memory at time step t, σ is the sigmoid
activation function, pentagon represents tanh activation function,
red circles numbered from 0-3 represent biases.

As mentioned before in Section 2, memory cells consist
of three gates: forget (Ft in the illustration), input (It), and
output (Ot) gates, see Figure 2. Output of these gates then
can be used to obtain the memory cell value Ct and output
value ht. Formulation for all of these operation is as follows:

Ft = σ(Wxfxt +Whfht−1 + b0)

It = σ(Wxixt +Whiht−1 + b1)

Ot = σ(Wxoxt +Whoht−1 + b3)

Ct = Ft · Ct−1 + it · tanh(Wxcxt +Whcht−1 + b2)

ht = Ot · tanh(Ct)

In these equations, the forget gate Ft determines the
amount of previous cell state to forget. The input gate It
decides how much of the new information should be stored
in the cell state. The output gate Ot controls the amount of
cell state to reveal as the output. The cell state Ct represents
the memory at time step t, and the output ht represents the
prediction at time step t. The sigmoid function σ and the hy-
perbolic tangent function tanh are activation functions used
to transform the inputs. The weights Wxi, Whi, Wxf , Whf ,
Wxo, Who, Wxc, Whc, and biases b0, b1, b2, b3 are adjustable
parameters of the LSTM model that are learned during the
training process.

1. Data Pre-processing: Data pre-processing for LSTM
model mainly involved normalization, sliding window
technique, and splitting data into training and test set.
Due to their common usage in the domain, Z-score and
min-max normalization are considered for the normal-
ization function [11, 30]. Both of their performance are
evaluated by running the LSTM model on the training
set and comparing the RMSE. Min-max normalization
performed better out of the two, see Figure 3 and 4,
hence selected to be the normalization function.

Figure 3: Min-max normalization performance.

Moreover, to feed into the LSTM model, each detector
column, representing a univariate sequence, was trans-
formed into multiple samples. Each sample consists of
a specified number of time steps [29]. This data trans-
formation technique is referred to as the ”sliding win-
dow” approach throughout the paper. To help illustrate
the concept of the sliding window, consider the follow-
ing univariate sequence:

xt−4 xt−3 xt−2 xt−1 xt



Figure 4: Z-score normalization performance

By applying the sliding window technique with a win-
dow size of 3, the sequence is transformed into a matrix
as shown below:

xt−4 xt−3 xt−2

xt−3 xt−2 xt−1

xt−2 xt−1 xt

Now, instead of feeding a single data entry from the ini-
tial sequence, each row of this matrix can be fed as a
single unit into the LSTM model. The LSTM model will
then make predictions for the next time interval. For ex-
ample, after the first row is fed, the LSTM model will
predict xt−1. This allows for capturing the temporal de-
pendencies in the data and making accurate predictions.
Moreover, the data is divided into a training set contain-
ing 80% of the data and a test set comprising the re-
maining 20%. This same split is applied to the other two
models, namely ARIMA and Prophet.

2. Model Configuration: The LSTM model requires the
specification of various parameters, including the size of
the sliding window, the number of layers, the choice of
loss function, and the activation functions.
After conducting thorough experimentation and analyz-
ing the results, it was observed that a sliding window
size of 80 yielded the best performance in terms of lower
RMSE. Hence, a sliding window size of 80 was adopted
for the LSTM model.
Additionally, the performance comparison between
layer 2 and layer 3 revealed insignificant differences, see
Figure 3. To maintain model simplicity and avoid unnec-
essary complexity, layer 2 was selected as the preferred
option.
Regarding the choice of loss and activation functions,
default/common functions were utilized. The mean
squared error was employed as the loss function to quan-
tify the model’s prediction accuracy. For the activation
functions, the sigmoid function was applied to the in-
put, forget, and output gates, while the hyperbolic tan-
gent tanh function was utilized to update the memory
cell and generate the output value. These widely-used
functions were selected to ensure reliable and consistent
performance within the LSTM model.

3. Training: The LSTM model was trained on the training
set using the backpropagation through time algorithm.
The model parameters were optimized iteratively using
the Adam optimizer [38] with a learning rate of 0.001
to minimize the mean squared error loss function and
enhance the prediction accuracy.

4. Prediction and Evaluation: The trained LSTM model
was then used to make short-term traffic predictions on
the testing set. The predictions were evaluated using
RMSE, and MAPE.

4.4 ARIMA
The ARIMA model is, as mentioned before in Section 2,
combination of AR, I, and, MA part. Each of these com-
ponents is represented by a parameter in the ARIMA model,
namely p, d, and q. The ARIMA’s formula is as follows:

ARIMA(p, d, q) :

xt = c+ ϕ1xt−1 + ϕ2xt−2 + . . .+ ϕpxt−p

+ θ1εt−1 + θ2εt−2 + . . .+ θqεt−q + εt (1)

Here, the parameter p represents the order of the AR com-
ponent, which captures the relationship between the current
observation and a certain number of lagged observations. The
coefficients ϕ1, ϕ2, ..., ϕp represent the weights assigned to
each lagged observation. The parameter q represents the or-
der of the MA component, which considers the dependency
between the current observation and a linear combination of
the residual errors from a moving average model applied to
lagged observations. The coefficients θ1, θ2, ..., θq represent
the weights assigned to the past residual errors. The constant
term c captures the mean level of the time series. The term εt
represents the error term, which represents the random com-
ponent or noise in the model.

The parameter d in the model represents the degree of dif-
ferencing applied to the time series, which transforms the data
into a stationary series. Stationarity refers to the statistical
properties of a time series remaining consistent over time,
such as its mean and variance. By applying differencing,
a non-stationary series can be transformed into a stationary
series, making it easier to analyze and model. Differencing
involves taking the difference between consecutive observa-
tions, demonstrated by the following formula:

∆xt = xt − xt−1

where ∆xt represent differenced value at time t, and xt and
xt−1 represents the original observations at time t and t− 1.

1. Data Pre-processing: Since tuning of parameter d in-
volves the alteration of the original time series, this tun-
ing process is considered data pre-processing. The orig-
inal series, in Figure 5, does not seem to have a con-
stant mean over time and variance does indeed seem to
change significantly(e.g., the 3rd and 7th peaks show a
difference of more than 40 vehicle reads). After taking
the first order differencing, the series started to display a
constant mean, with oscillations around 0, and to make
sure the series is stationary, Augmented Dick−Fuller
(ADF) test is performed. The ADF test is a statistical test



used to determine whether a time series is stationary or
not. The test results suggested that the differenced series
is stationary, indicating that the first-order differencing
was successful in removing the underlying trends and
making the series suitable for modeling and forecasting
purposes. Therefore, the time series required first-order
differencing (d = 1) to achieve stationary data.

Figure 5: First Order Differencing of a Detector

2. Model Configuration: Determining the values of p, d,
and q can be done using various methods. The approach
selected in this research is to analyze the partial auto-
correlation function (PACF) and autocorrelation func-
tion (ACF) plots. These plots provide insights into the
correlation between a time series and its lagged values.
To determine the appropriate value for the AR parame-
ter (p), the PACF plot is examined. The PACF shows the
correlation between the current observation and its spe-
cific lagged values while controlling for the correlation
at shorter lags. Significant spikes in the PACF plot indi-
cate the potential order of the AR component. As seen
in Figure 6, there is only a significant spike in the first
lagged value, hence 1 is an appropriate value for p.

Figure 6: Partial Autocorrelation Function of a Detector

Similarly, the ACF plot is used to identify the order of
the MA parameter (q). The ACF plot displays the cor-
relation between the current observation and its lagged
values without considering the correlation at shorter
lags. Significant spikes in the ACF plot suggest the po-
tential order of the MA component. As seen in Figure 7,
there is only a spike in the first lagged value, hence 1 is
an appropriate value for q.

Figure 7: Autocorrelation Function of a Detector

By analyzing the plots of all the detectors, it is deter-
mined that the optimal values for p and q are 1 and 1,
respectively.

3. Training: The ARIMA model was fitted to the training
data, and the model coefficients were estimated using
maximum likelihood estimation (MLE). The model was
optimized to minimize the residual errors.

4. Prediction and Evaluation: The trained ARIMA model
was used to make short-term traffic predictions on the
testing set. The predictions were evaluated using the
same evaluation metrics as in the LSTM model.

4.5 Prophet
The Prophet is sum of three functions of time plus an error
term: growth function, seasonality function, holidays func-
tion , and error term [32]:

xt = g(t) + s(t) + h(t) + e(t)

where:
• g(t) represents the trend component (growth function),

which captures non-periodic changes over time.
• s(t) represents the seasonality component, which cap-

tures periodic changes that occur at regular intervals.
These patterns can be daily, weekly, monthly, or yearly,
and they often repeat in a predictable manner.

• h(t) represents the effects of holidays or special events
that may have an impact on the data but occur on irreg-
ular schedules. This component helps account for the
influence of such events on the time series.

• e(t) represents the residual or error component, which
captures the unexplained and random fluctuations in
the data. It includes any unexpected or unpredictable
changes that are not accounted for by the other compo-
nents of the model.

1. Model Configuration: For each of these components
(except the error term), an appropriate functions need to
be chosen.
For the growth function, the logistic function was cho-
sen due to its ability to model non-linear growth patterns
commonly observed in time series data. It can be de-
picted by the following formula:

f(t) =
L

1 + e−k(t−t0)

where:



• f(t) represents the predicted or forecasted value of
the traffic volume at time t.

• L represents the upper bound or carrying capacity
of the growth, which is the maximum value that the
traffic volume can reach.

• k is the growth rate parameter that determines the
steepness of the growth curve. A higher value of k
implies a faster initial growth and a steeper curve.

• t0 represents the inflection point or the time at
which the growth curve transitions from increasing
to decreasing. It indicates the time at which the
peak traffic volume occurs.

The logistic growth function is fit for capturing the char-
acteristic n-shaped curve seen in this study’s data. This
curve represents a gradual increase in traffic volume,
followed by a peak, and then a gradual decrease [33].
Moreover, the logistic growth function has the advan-
tage of boundedness, meaning it ensures that the fore-
casted values do not exceed certain limits. In the case of
traffic data, it is logical to set a lower bound of zero and
an upper bound based on the maximum observed value
in the training data. This ensures that the forecasted traf-
fic volumes remain within realistic and feasible ranges.
The parameter L is set to the maximum value seen by
the detector in the training data, allowing the model to
capture the upper bound of the growth. The remaining
variables in the logistic growth function, including the
growth rate k and the inflection point t0, are automati-
cally adjusted by the Prophet model based on the data
patterns and trends.
The seasonality component in Prophet is modeled using
Fourier series, which is a mathematical series that can
approximate periodic functions by summing sine and co-
sine waves of different frequencies. The function for the
seasonality component in Prophet can be expressed as
follows:

f(t) = a0 +

N∑
n=1

(
an cos

(
2πnt

P

)
+ bn sin

(
2πnt

P

))
where:

• t represents the time variable.
• P is the period of the seasonality component.
• N is the number of Fourier terms used to model the

seasonality.
• an and bn are the coefficients associated with each

Fourier term.
In this case, P is set to 1/96 to capture the daily season-
ality. Since there are 96 15-minute intervals in a day, set-
ting P to 1/96 scales the time to represent one day. This
allows the model to capture the recurring patterns and
variations that occur within a daily cycle. Moreover, the
value of N is set to 3, which has been found to be effec-
tive in capturing both the daily and weekly data patterns
[33]. By including three Fourier terms in the seasonal-
ity component, the model can capture the variation of

the seasonal effects at different frequencies. an and bn
coefficients are automatically estimated by the Prophet
model during the fitting process and are not explicitly
set in the code snippet.
Furthermore, since there were no significant holidays
observed in the Dutch calendar during the specific pe-
riod of November 2019, no holiday components were
included in the Prophet model for this research.
By configuring Prophet with the appropriate growth
function, seasonality, and accounting for the absence of
holidays, the model is equipped to effectively capture
and forecast the complex patterns in the traffic data.

2. Training: The Prophet model was trained on the train-
ing set using an iterative optimization process. The
model parameters were adjusted to minimize the defined
loss function, thereby improving the accuracy of predic-
tions [27].

3. Prediction and Evaluation: The trained Prophet model
was utilized to make short-term traffic predictions on the
testing set. The predictions were evaluated using the
same evaluation metrics employed for the LSTM and
ARIMA models.

By implementing and evaluating these three models us-
ing the described methodology, a comprehensive comparison
analysis of LSTM, ARIMA, and Prophet for short-term traf-
fic forecasting in Den Haag, Netherlands, can be performed.
The following section presents the experiment and its results.

5 Experiment and Results
After training and configuring the LSTM, ARIMA, and
Prophet models, they were evaluated on all the detectors in
the test data. The average results across all detectors are pre-
sented below:

Model RMSE MAPE (%)
LSTM 7.13 33.19

ARIMA 5.5 25.77
Prophet 8.02 37.9

The table displays the average performance of each model
in terms of RMSE and MAPE. The LSTM model achieved
an average RMSE of 7.13 and an average MAPE of 33.19%.
The ARIMA model yielded an average RMSE of 5.5 and an
average MAPE of 25.77%. Finally, the Prophet model re-
sulted in an average RMSE of 8.02 and an average MAPE of
37.9%.

To gain a better understanding of these results within the
context of this study, the RMSE value of 7.13 indicates that,
on average, the model’s predictions deviated by 7.13 vehicles
compared to the actual values.

These results provide an overview of the comparative per-
formance of the three models in predicting short-term traffic.
It is important to note that these values represent the average
performance across all detectors in the test data. For a more
detailed comparison of the models’ performance over a spe-
cific detector, please refer to Figure 8.



Figure 8: Performance comparison of LSTM, ARIMA, and Prophet models in forecasting a specific detector.

6 Comparison and Limitations
Based on the experimental results, ARIMA achieves the high-
est accuracy among the three models, while LSTM only out-
performed Prophet.

To begin with Prophet, it has the poorest performance out
of the three. As seen in Figure 8, it is not able to capture
complexities and nuances as much as the other two models
do. The main reason behind such a performance could be that
the Prophet does not look for a causal relationship between
the previous and current time steps, and instead, it tries to
find the best curve to fit the data [39]. However, it must be
noted that the Prophet is the only model, out of the three, that
did not require data pre-processing. Given the motto of the
Prophet being ease of use and of tuning [39], this performance
is understandable

In Figure 8, it is observable that even though LSTM and
ARIMA demonstrated decent performance in capturing cer-
tain patterns and fluctuations in the time series, there are some
peaks (e.g. check the two of the highest peaks in Figure 8)
that are predicted more accurately by ARIMA compared to
LSTM. Such a result, demonstrating ARIMA outperforming
LSTM, might very well contradict other research in this do-
main, such as [4] and [11], which clearly establish LSTM’s
dominance over ARIMA. This can be explained by two fac-
tors: data availability and the absence of spatial information
in LSTM’s architecture.

LSTM heavily relies on a large amount of data for effec-
tive training and capturing complex temporal relationships.
On the other hand, while ARIMA benefits from more data to
enhance its accuracy, it does not depend on data quantity as
significantly as LSTM does, especially in the context of this
particular study [34]. Other studies that resulted in LSTM’s
dominance used significantly larger datasets than this study.
For example, this study includes 2880 data points for each de-
tector, whereas [4] uses 25.11 million data points. The lesser

availability of data might affect the accuracy of LSTM.
The second reason for LSTM’s poorer performance when

compared to ARIMA could be that there was no mechanism
in LSTM’s architecture that can utilize spatial information.
Traffic flow is greatly influenced by location-specific factors
such as road networks and congestion patterns. This rela-
tionship between the traffic flow and spatial information can
be exploited by incorporating additional neural network lay-
ers such as convolutional neural network (CNN), as shown in
[11], or correlation matrices such as origin destination cor-
relation matrix (ODC), as shown in [4], which can help to
capture spatial-temporal relationships in the data. However,
LSTM which is used in this study primarily focuses on cap-
turing temporal dependencies within the time series data. The
lack of spatial information in LSTM’s modeling approach
may limit its ability to effectively capture and utilize location-
based patterns, leading to comparatively lower accuracy in
certain predictions.

It is also important to acknowledge that the performance of
these models when compared with the MAPE values reported
in other research studies [4, 6, 11, 28], has fallen below ex-
pectations.

The possible reason for lower performances in terms of
MAPE values shown by these models can be mainly at-
tributed to data availability. Researches that resulted in lower
MAPE in their LSTM and ARIMA model utilized signifi-
cantly higher amounts of data compared with this very study
[4, 6, 11, 28]. This lesser availability of data affects the accu-
racy of LSTM, ARIMA, and Prophet.

As mentioned before, LSTM heavily relies on capturing
long-term dependencies and patterns in data, the lower avail-
ability of data can significantly limit its ability to learn com-
plex temporal relationships effectively [1,7]. LSTM models
require a sufficient amount of training data to generalize well
and make accurate predictions. With a smaller dataset, the



LSTM model may struggle to capture the underlying patterns
and variations in the traffic flow data, leading to reduced per-
formance. Overall it is a chronic situation of deep learning
approaches where data abundance is needed for better train-
ing of the parameters [35].

With ARIMA, even though the impact of lesser data avail-
ability may not be as evident as with LSTM, it is important to
note that a larger amount of data can still be beneficial for bet-
ter training of the model’s coefficients [16,34]. With a smaller
dataset, the estimation of these coefficients may be less accu-
rate, leading to less accurate predictions.

Prophet’s ability to generate reliable forecasts relies on its
ability to learn from historical patterns and make informed
projections for the future [28]. A larger dataset provides more
instances of these patterns, allowing the model to learn and
generalize better [32]. In contrast, a smaller dataset may not
provide enough representative examples, which can hinder
Prophet’s ability to capture the nuances of the underlying time
series and make accurate predictions.

Furthermore, it is important to approach inflated MAPE
values with caution. For instance, if the predicted value is 2
while the actual value is 1, it yields a 100% MAPE. How-
ever, in the context of traffic forecasting, such a small error of
one vehicle may not have a substantial impact on the overall
accuracy of ITS. Therefore, the relevance and significance of
these higher MAPE values in the context of traffic forecasting
need to be carefully considered.

7 Conclusion
In conclusion, this research paper aimed to address the chal-
lenges and knowledge gaps in short-term traffic forecasting
by comparing three models: LSTM, ARIMA, and Prophet.
The study focused on the context of Den Haag, Netherlands,
and tried to answer the research question: “Does LSTM out-
perform ARIMA and Prophet in the domain of short-term traf-
fic forecasting?”

Through experimental analysis, it was found that ARIMA
achieved the highest accuracy among the three models, while
LSTM outperformed Prophet. However, the performance of
all models was lower than other researches’ results in the do-
main when compared with MAPE values potentially due to
limited data availability. Moreover, LSTM’s sensitivity to
data quantity and the absence of spatial information in its ar-
chitecture, as well as Prophet’s limitation in capturing com-
plexities and establishing causal relationships, contributed to
their inferior performance compared to ARIMA.

It is also important to note that the significance of higher
MAPE values in the context of traffic forecasting should be
approached with caution. Small errors in traffic prediction
may not have a substantial impact on the overall accuracy of
ITS.

The study highlights the need for further research to ad-
dress the identified limitations and challenges. Future studies
should explore approaches that leverage larger datasets and
incorporate spatial information to enhance the accuracy and
performance of traffic forecasting models. Additionally, the
evaluation of more novel models against established methods
should continue to ensure effectiveness and identify potential

limitations in the domain of short-term traffic forecasting.
By advancing the understanding of different models’ per-

formance, this research contributes to the development of
more accurate and reliable short-term traffic forecasting mod-
els, potentially supporting the improvement of Intelligent
Transportation Systems.

8 Responsible research
The process of data collection and processing follows the re-
sponsible research principle of transparency. The data was
collected from Den Haag Municipality, and as it is publicly
available, it is accessible to everyone. Additionally, because
the data consists only vehicle reads from the detectors, it is
anonymous and therefore does not pose any ethical risks.

Moreover, the random initialization of weights in the
LSTM model impedes this study to be exactly reproducible.
To mitigate this potential impact of random fluctuations on
the results, multiple iterations of the experiment are con-
ducted and the mean result is taken. By employing this ap-
proach, it is hoped to improve the reliability of the findings
and tried to ensure the reproducibility of the research. This
adherence to responsible research practices strengthens the
validity of this study.
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