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It is not knowledge, but the act of learning,
not possession but the act of getting there,

which grants the greatest enjoyment.

Carl Friedrich Gauss

Sometimes, immersed in his books,
there would come to him the awareness of all that he did not know,

of all that he had not read;
and the serenity for which he labored was shattered

as he realized the little time he had in life to read so much,
to learn what he had to know.

John Williams, Stoner
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SUMMARY

If secondary hydrocarbon recovery methods, like water flooding, fail because of the oc-
currence of viscous fingering one can turn to an enhanced oil recovery method (EOR)
like the injection of foam. The generation of foam in a porous medium can be described
by a set of partial differential equations with strongly non-linear functions, which im-
pose challenges for the numerical modeling. Former studies [1–3] show the occurrence
of strongly temporally oscillating solutions when using forward simulation models, that
are entirely due to discretization artifacts. We describe the foam process by an immisci-
ble two-phase flow model where gas is injected in a porous medium filled with a mixture
of water and surfactants. The change from pure gas into foam is incorporated in the
model through a reduction in the gas mobility. Hence, the two-phase description of the
flow stays intact. Since the total pressure drop in the reservoir is small, both fluids can
be considered incompressible [3]. However, whereas the fractional flow function for a
gas-flooding process is a smooth function of water saturation, the generation of foam
will cause a rapid increase of the flux function over a very small saturation scale. Con-
sequently, the derivatives of the flux function can become extremely large and impose a
severe constraint on the time step. We address the stability issues of the foam model, by
numerous numerical approaches that improve the accuracy of the solutions. First, we
study several averaging schemes and introduce a novel way of approximating the foam
mobility functions on the grid interfaces in a finite volume framework. This will lead to
solutions that are significantly smoother than can be achieved with standard averaging
schemes. Next, we discuss several novel discretization schemes where the discontinuity
is incorporated in the numerical fluxes for a simplified compressible flow model. These
include the indirect addition of an extra grid interface at the location of the disconti-
nuity, to preserve monotonicity of the solutions in time. Variations on this method, are
the addition of an extra grid cell around the highly non-linear phase transition and the
adaption of the flux terms based on the location of the discontinuity or non-linearity in
the grid. As a practical example to demonstrate these techniques we study a simplified
model for foam flow in porous media. The model is then extended to a two-dimensional
reservoir, where the accuracy of the solutions is a main concern. The two-dimensional
simulator that is used for this, was build and tested for the foam model. It includes
higher-order hyperbolic Riemann solvers, and flux correction schemes to compute the
saturation of the different fluid phases in the model. The elliptic solver for the pressure
equation is also adapted to the stiffness of the problem. With this simulator we per-
form a quantitative study of the stability characteristics of the flow, to gain more insight
in the important wave-lengths and scales of the foam model. This insight forms an es-
sential step towards the design of a suitable computational solver that captures all the
appropriate scales, while retaining computational efficiency. In addition, we present a
qualitative analysis of the effect of different reservoir and fluid properties on the foam
fingering behavior. In particular, we consider the effect of heterogeneity of the reservoir,

xi
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injection rates, and foam quality. This leads to interesting observations about the influ-
ence of the different foam parameters on the stability of the solutions, and we are able
to predict the flow stability for different foam qualities. Finally, we discuss several other
approaches that were addressed during this PhD-project to increase the understanding
of solving highly non-linear flow problems in a porous medium.
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Als secundaire oliewinningsmethoden, zoals waterinjectie in een oliereservoir, falen als
gevolg van het optreden van visceuse instabiliteiten tussen vloeistoffen, kan men kij-
ken naar een verbeterde oliewinningsmethode (EOR) zoals schuiminjectie. De forma-
tie van schuim kan worden beschreven door een reeks partiële differentiaalvergelijkin-
gen met sterk niet-lineaire variabelen. Deze niet-lineariteiten kunnnen leiden tot nu-
merieke problemen. Eerdere studies [1–3] tonen dat de numerieke oplossingen van
voorwaartse simulatiemodellen sterk oscilleren in de tijd. Deze oscillaties worden ge-
heel veroorzaakt door de discretisatie van het model en zijn dus niet fysische verschijn-
selen. We beschrijven het schuimproces door een een stromingsmodel van twee niet
mengbare fases, namelijk gas en water. Het gas wordt geïnjecteerd in een poreus me-
dium gevuld met een mengsel van water en oppervlakte-actieve stoffen. De verande-
ring van zuiver gas in schuim is in het model opgenomen door de gasmobiliteit dras-
tisch te verminderen. Vandaar dat de twee-fase beschrijving intact blijft. Aangezien de
totale drukval in het reservoir klein is, kunnen beide vloeistoffen worden beschouwd
als onsamendrukbaar [3]. Hoewel de fractionele fluxfunctie voor een gasinjectieproces
een gladde functie van de waterverzadiging is, zal het ontstaan van schuim een snelle
toename van de fluxfunctie op een zeer kleine verzadigingsschaal veroorzaken. Der-
halve kunnen de afgeleiden van de fluxfunctie extreem groot worden, zodat heel kleine
tijdstappen gebruikt moeten worden. Wij behandelen de stabiliteitsproblemen van het
schuimmodel door talrijke numerieke benaderingen die de nauwkeurigheid van de op-
lossingen verbeteren. Ten eerste onderzoeken we een aantal middelingsmethodieken
en introduceren een nieuwe manier om de schuimmobiliteitsfuncties op de randen van
het numerieke raster te benaderen doormiddel van eindige-volume methoden. Vervol-
gens bespreken we een aantal nieuwe discretisatieschemas waarbij de discontinuïteit in
de numerieke fluxfunctie is opgenomen voor een vereenvoudigd samendrukbaar stro-
mingsmodel. Het gaat hierbij om de indirecte toevoeging van een extra rasterlijn op de
locatie van de discontinuïteit, voor het behoud van de monotoniciteit van de oplossin-
gen in de tijd. Variaties op deze methode zijn de toevoeging van twee extra rasterlijnen
rond de sterk niet-lineaire faseovergang en de aanpassing van de fluxtermen op basis
van de locatie van de discontinuïteit of de niet-lineariteit in het raster. Als een praktisch
voorbeeld om deze technieken te demonstreren bestuderen we een vereenvoudigd stro-
mingsmodel van schuim in een één-dimensionaal poreus medium. Het model wordt
vervolgens uitgebreid naar een schuimmodel toegepast op een twee-dimensionaal re-
servoir, waar de nauwkeurigheid van de verschillende oplossingen onder de loep wordt
genomen. De twee-dimensionale simulator die hiervoor wordt gebruikt, werd speciaal
ontworpen en getest voor dit schuimmodel. De simulator bevat hogere-orde hyperbo-
lische Riemann oplossingsmethoden en flux-correctie schemas voor het berekenen van
de verzadiging van de verschillende fases in het model. De elliptische oplossingsme-
thode voor de drukvergelijking is ook aangepast aan de stijfheid van het probleem. Met
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deze simulator voeren we een kwantitatieve studie uit naar de stabiliteitskarakteristie-
ken van de stroming, om meer inzicht te krijgen in de belangrijke golflengtes en schalen
van het schuimmodel. Dit inzicht vormt een essentiële stap naar het ontwerp van een
geschikte numerieke oplossingsmethode die alle juiste schalen meeneemt met behoud
van rekenkundige efficiëntie. Daarnaast presenteren wij een kwalitatieve analyse van
het effect van de verschillende reservoir- en vloeistof-eigenschappen op de stabiliteit en
het gedrag van het schuim. In het bijzonder kijken we naar het effect van de reservoir-
heterogeniteit, injectiesnelheden en kwaliteit van het schuim. Dit leidt tot interessante
observaties over de invloed van verschillende schuimparameters op de stabiliteit van
de oplossingen, waarmee een voorspelling kan worden gemaakt over de stabiliteit van
de stromingen voor verschillende schuimkwaliteiten. Tenslotte bespreken we verschil-
lende andere benaderingen die tijdens dit PhD-project werden aangepakt om het begrip
van zeer niet-lineaire stromingsproblemen in een poreus medium te vergroten.
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1
INTRODUCTION

1.1. FOAM ENHANCED OIL RECOVERY
Foam was first applied in the oil industry in the late 1950s to decrease gas mobility and
hence reduce the undesirable effect of viscous fingering and gravity override in subsur-
face porous media flow [1]. To generate foam in a subsurface oil reservoir, usually a mix-
ture of chemicals (surfactants) and water is injected into the reservoir, which together
with the injected gas forms a foam. These chemicals make a large contribution to the
production costs, and therefore, the goal is to minimize their amount. To determine the
required amount of chemicals for an economically profitable production level and to
decide on the optimal chemical composition of the surfactants for the site-specific rock
and fluid properties, reliable simulations are needed [2].

There are several models describing foam flow in porous media to answer this need.
However, they are not always based on the same principles or parameters. For example,
the exact time that it takes to form the foam is under discussion because it is difficult
to determine experimentally. Also the influence of oil on the strength of the foam is not
sufficiently understood. Here we offer a short overview of the different models that are
used to simulate foam enhanced oil recovery (EOR) processes.

We can roughly distinguish between two classes of foam models: dynamic popula-
tion balance models that take into account the strength (bubble size) of the foam and
local equilibrium methods that incorporate the effect of the foam through a limit func-
tion 1.

The first class of models tries to capture the real dynamics of the process, while the
second class assumes that there is only one equilibrium in foam strength. Because of the
complex nature of the foam the first class is more complex and has a higher number of
degrees of freedom than the second class. From a computational point of view the sec-
ond class of models is therefore more suitable to perform large simulations of a reservoir
in less time, and hence, very useful for test purposes.

1There is also an additional class of (semi-)empirical models, but we do not take them into account here.

1
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2 1. INTRODUCTION

Figure 1.1: Sensitivity of foam to (a) water, (b) oil, (c) surfactant concentration (from Namdar Zanganeh and
Rossen [4])

1.1.1. POPULATION BALANCE MODELS
We will first consider the class of population balance models. In these models foam is
considered as a collection of bubbles or lamellae, which are conserved during the simu-
lation. The rate of growth of the lamellae depends on several mechanisms such as influx
rate, efflux, creation, destruction and trapping of lamellae [3]. So besides the conserva-
tion of fluids (gas, water and oil) there is an additional equation describing the conser-
vation of (the dimensionless) lamellae or bubble density nD , given by

∂nD

∂t
=−∇· ( f (nD ))+q(nD ), (1.1)

where f is the flux function and the creation and destruction of the bubbles is described
by incorporating the source term q in the conservation equation. The mobility of the gas
in a foam is controlled by the bubble density as follows

k f
r g =

k0
r g

µ
f
g

, µ
f
g = h(µ0

g ,nD ), (1.2)

where k f
r g and k0

r g are the relative permeability of the gas in a foam and in its original

form respectively, µ f
g is the foam viscosity and h is a function of the original gas viscosity

and the bubble density.
Simulations with these kind of models show that there exist several equilibrium so-

lutions for a certain parameter range corresponding to different strengths of the foam.
The intermediate state was shown to be unstable both by experimental work [5] and
numerical results [6]. There are different approaches to the definition of a foam in equi-
librium. According to Kovscek et al. [7] lamellae are still constructed and destructed but
the corresponding construction rates cancel out. This is based on the ’Roof’ snap-off
principle, where lamellae are continuously constructed and destructed [3]. By this prin-
ciple, gas mobility, which is closely related to foam density [8], can undergo a sudden
change. Others [5, 9–11] state that foam in a steady-state can only influence the mobility
of gas by mobilization and division of the lamellae.
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The gas mobility in a foam is strongly influenced by the bubble density. Stable foam
has a larger bubble density (i.e. finer bubble texture) than foam in an unstable equi-
librium. Since the gas mobility depends on the area over which the gas can flow and
the pressure gradient in this area, smaller bubbles reduce the mobility more than larger
bubbles. Hence, a stable foam has a larger reduction factor on the gas mobility [8].

The disadvantage of the population balance models is their complexity, because they
lead to a large number of degrees of freedom and parameters. Finite volume methods
have been applied to these models but are difficult to implement [3] and require a lot
of computational power. Below we list some important population balance models that
have been successfully used to simulate foam flow in porous media.

KAM AND ROSSEN (2003)
Kam and Rossen [12] assumed that the sudden jump in the gas mobility during foam for-
mation is due to the mobilization and division of lamellae [5]. The process of division of
lamellae is only possible if the pressure gradient is large enough [8]. Hence the model as-
sumes that bubble creation is controlled by the pressure gradient, which should exceed
a minimum value. Since the model allows for bubble sizes smaller than the average pore
size of the rock, a lower bound is imposed for the bubble size via an additional condition
[3]. This model performs good for average pressure gradients, but exhibits numerical
instabilities for large pressure gradients [3].

KAM et al. (2007)
In Kam et al. [6], the model introduced by Kam and Rossen [12] was improved by putting
a constraint on the bubble creation rate for high pressure gradients,

µ
f
g =µ0

g +
C f nmaxnD

(µg /ϕSg )1/3
, (1.3)

where C f is a constant parameter that is adapted to the problem, Sg the gas volume
fraction, ϕ the porosity of the medium, and nmax is the minimum bubble size, which is
related to the minimum pore size [3].

1.1.2. LOCAL EQUILIBRIUM MODELS
The second class of models is based on the assumption that the foam is always in a local
equilibrium: either there is foam or there is no foam present at a certain point in space
and time. When foam is present the gas mobility is reduced by a large factor, because
the foam captures the gas in lamellae bubbles. The water mobility, on the contrary, is not
influenced by the foam in these models. Hence, the mobility ratio between gas and water
is reduced, leading to a smoother gas (or foam) front. The question then remains when
we can expect the formation or destruction of foam, and which parameters govern this
process. The models in this class are based on a conservation law, conserving the phases
present (usually gas, water and oil) and it is assumed that the surfactant is solved in one
of the former two phases. For the formation of foam we need at least gas, water and
surfactant in sufficient amounts. Moreover, we assume that if the amount of oil present
is high, foam will break down.
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CONSERVATION LAW

Starting with a conservation law, we can define a basic model (without capillarity or
gravitational forces) for the phase saturation (volume fraction) Sα for the phases α =
w(ater), g (as),o(il) in a porous medium:

φ
∂Sα
∂t

=−∇· ( fα~u)+qα (1.4)

where fα is the fractional flow function, qα the mass flow rate of the α-phase and the
total Darcy velocity ~u =∑Nα

α ~uα follows from Darcy’s law for the fluid phase velocity

~u =−K (λ∇pw ), (1.5)

where p is the fluid pressure and λ is the total mobility given by λ=∑Nα
α λα. The phase

mobilities are given by

λα = krα(Sα)

µα
, (1.6)

where ρα, µα and krα are the density, viscosity and the relative permeability of phase α,
respectively. The fractional flow function of the wetting phase is defined by the fraction
of the phase mobility and the total mobility

fα(Sα) = λα

λ
. (1.7)

MOBILITY REDUCTION FACTOR FOAM

If gas comes in contact with a sufficient amount of water and surfactants, a foam will
form. This will cause a rapid decrease in the gas mobility, which can be modeled by
decreasing the relative gas permeability function with a mobility reduction factor fmr ,
so that

kr g :=
ko

r g

fmr
, (1.8)

where ko
r g is the relative gas permeability of the gas in its original state and

fmr = 1+R ·Fw ·Fo ·Fs , (1.9)

where R is a constant that accounts for the maximum resistance of the flow to foam,
and Fw ,Fo ,Fs are functions that describe the sensitivity of the foam to water, oil and
surfactant concentration, respectively, as shown in Figure 1.1. The value of fmr depends
on the strength of the foam, being very large for strong foams and small for weak foams
[3, 4, 13].

CRITICAL WATER SATURATION

First, we will neglect the influence of the oil by considering a two-phase model with only
gas and water mixed with surfactants. Experimental results show that foam will form
above a certain limiting water saturation S∗

w [14], so that

kr g :=


kg

r g , if Sw < S∗
w ,

k f
r g < k∗

r g < kg
r g , if Sw = S∗

w ,

k f
r g , if Sw > S∗

w ,

(1.10)
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(a) κ=∞ (b) κ= 40

Figure 1.2: Relative permeability function for a model with foam (red line) and without foam (black line). In
the right figure the sudden transition due to foam is approximated by a continuous function with a mollifying
parameter κ= 40 and mobility reduction factor fmr = 10.

where kg
r g is the relative gas permeability of the gas, and k f

r g is the relative foam per-
meability, which is much lower than that of gas. In Figure 1.2a the relative permeability
function described here is plotted. The sudden jump in the mobility of the gas at S∗

w
cannot be accurately incorporated in standard finite volume schemes. For this and other
reasons, the jump in mobility is approximated by a continuous function. This function
differs per model and we will list a few of them below.

CHENG et al. (2000)
The local-equilibrium foam model by [13], which is sometimes referred to as the STARS
model [15], approximates the jump in the mobility by a continuous function, given by
Eq. 1.8, 1.9 and

Fw = 0.5+ arctan
(
κ(Sw −S∗

w )
)

π
, (1.11)

where S∗
w represents the limiting water saturation and κ is a positive parameter that con-

trols the width of the gas-foam transition.

VAN DER MEER et al. (2014)
If we assume that fmr is a constant factor equation 1.10 can be rewritten as follows

kr g := ko
r g H(S∗

w −Sw )+ 1

fmr
ko

r g H(Sw −S∗
w ), (1.12)

where H denotes the Heaviside step function given by

H(x) =
{

0, if x < 0,

1, if x ≥ 0.
(1.13)
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The Heaviside function H :R→ {0,1} can be approximated by the Cinf continuous hyper-
bolic function

Hκ(x) = 1

2
+ 1

2
tanhκx (1.14)

The parameter κÀ 1 describes the behavior of the function around S∗
w , and can be used

as a mollifying parameter to make model less stiff as shown in Figure 1.2b

ASHOORI (2012)
To approximate the discontinuous jump given by equation (1.12), Ashoori [3] uses a
function that is based on the population balance model. This function approximates
the discontinuity in S∗

w by a C0 continuous function given by Eq. 1.8 and

fmr (Sw ) = RnLE
D (Sw )+1, (1.15)

where R is a constant and nLE
D is the dimensionless bubble density function in local equi-

librium, which is defined as

nLE
D (Sw ) =


nLE

f

nmax
= tanhκ(Sw −S∗

w ), if Sw > S∗
w ,

0, if Sw ≤ S∗
w ,

(1.16)

where nLE
f is the local equilibrium foam density, nmax the maximum foam density, and

κ is a mollifying parameter controlling the steepness of the gas-foam transition.

NAMDAR ZANGANEH AND ROSSEN (2013)

A similar function as the former, which is also Cinf continuous, is used in Namdar Zan-
ganeh and Rossen [4]. Here, the mobility reduction factor is given by Eq. 1.8, 1.9 and

Fw = 1

π

[
arctan(κ(Sw −S∗

w ))−arctan(κ(Swr −S∗
w ))

]
, Swr ≤ Sw ≤ (1−Sor ), (1.17)

where Swr is the residual water saturation and Sor the residual oil saturation. This ap-
proach ensures that there is no foam left once the saturation is below the residual satura-
tion. The difference between the hyperbolic tangent (tanh(x)) and arctangent (arctan(x))
is negligible for small x, since they are similar up to the fourth order (O(x4)).

CRITICAL SURFACTANT CONCENTRATION

Earlier in this chapter we assumed that there is always enough surfactant solution in
the water to form a foam. This is not necessarily true, so instead we can also model
surfactant concentration Cs separately. This implies that in certain parts of the reservoir,
surfactant concentration will be lower than in other parts. For the generation of foam, at
least a certain amount is required, called the critical surfactant concentration, which we
denote by C∗

s . Consequently (assuming that Sw > S∗
w ),

kr g =


k0

r g , if Cs <C∗
s

k f
r g < k∗

r g < k0
r g , if Cs =C∗

s

k f
r g , if Cs >C∗

s .

(1.18)
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NAMDAR ZANGANEH AND ROSSEN (2013)
In [4], the effect of the surfactant concentration is defined by the following term,

Fs =
{(

Cs
C∗

s

)ns
, if Cs ≤C∗

s ,

1, if Cs >C∗
s ,

(1.19)

where ns controls the steepness of the transition between gas and foam, similar to the
parameter κ.

CRITICAL OIL SATURATION

The model becomes more complicated if oil is added. Apart from having an extra con-
servation equation, we also have to take into account the devastating effect of oil on the
foam. There has been little research on this issue, but it is assumed that too much oil can
kill the foam, i.e. if the oil saturation is above some limit S∗

o , there will be no foam.

NAMDAR ZANGANEH AND ROSSEN (2013)
In [4], the factor describing the effect of the oil on foam is modeled by

Fo =


1, if So < S∗

o ,(
S∗

o−So

S∗
o−S**

o

)no

, if S**
o ≤ So < S∗

o ,

0, if S∗
w ≤ So ≤ (1−Swr ),

(1.20)

where no controls the steepness of the function and S**
o is a lower oil saturation that

accounts for the effect of oil on foam [4].

1.1.3. COMBINING THE TWO CLASSES
In her thesis, Ashoori [3] found that local equilibrium methods often perform just as
good as population balance models, except at the entrance regions close to the injection
well and at the shock front. To employ the advantages of both models at the same time,
she applied a local equilibrium model in the smooth regions, while switching to a pop-
ulation balance model in the critical regions (shock, entrance region), where non-local
equilibrium effects dominate. This strategy costs more implementation time but can
result in a better accuracy and less computation time [3].

1.2. STABILITY PROBLEMS
The generation of foam will cause a rapid increase of the flux function over a very small
saturation scale. Consequently, the derivatives of the flux function can become extremely
large and impose a severe stability constraint on the numerical scheme [16]. Except for
numerical constraints, foam also imposes a stability issue from a physical perspective,
due to the very sensitive nature of foam relative to changes in physical variables, like wa-
ter and oil saturation and surfactant concentrations. A small offset in the approximated
saturation values can have a huge effect on the physical outcome of the simulations. We
have to take this into account, when talking about the accuracy, convergence and pre-
dictive value of the foam simulations.
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1.3. NUMERICAL APPROACH

The accuracy and stability of the solutions are strongly linked to the numerical solver.
We have to look at both the suitability of the numerical solver to the given problem and
the suitability of the model, like well-posedness and its physical meaning. The stability
problems we are facing for the studied foam model are not restricted to this model, but
include a wider class of hyperbolic-elliptic or parabolic problems that contain a discon-
tinuity or highly non-linear transition in the diffusion term. We therefore start by explor-
ing a parabolic problem that has a single discontinuity in the diffusion coefficient, and
hence is not well defined at this point. To address this, we need to redefine the problem
as two differential equations, each representing the phase left and right of the disconti-
nuity, and enforce stability conditions at the interface between those two problems. This
is also called a moving-interface or Stefan problem in literature [17–19]. It occurs when
a phase change happens, for example a liquid turning into a solid. For such a problem,
an additional Stefan-condition is needed at the phase interface to make the numerical
model well-posed.
The transition from gas to foam could be viewed as such, when considering foam as a gas
that turns into another phase by the addition of some water and surfactant, whose total
volume is negligible (see f.e. Rossen et al. [14]). Physically, this makes sense, since the
mobility and thermal properties of foam are more like that of a liquid moving through
a porous medium than a gas. When we take into account that foam breakage occurs
locally, whenever the local capillary pressure exceeds a critical value, we can see some
similarities with ordinary liquid-gas phase change problems (for example, the conden-
sation of water). The critical capillary pressure, which is strongly linked with the critical
water saturation and critical surfactant concentration [20, 21], defines the location of
the moving interface between gas and foam. Hence, when we reformulate the gas-foam
transition as a moving-interface or Stefan problem, we can choose an appropriate nu-
merical solver, to simulate the foam process.
There are roughly two classes of numerical solvers that can handle Stefan-like problems.
The first class are the fixed-grid methods [19] that use an enthalpy formulation to find
a solution. The advantage of those schemes is that the interface does not need to be
tracked, since the Stefan condition is indirectly included in the enthalpy formulation.
This means that a fixed grid can be used. The second class, called the deforming grid
methods, includes the adaptive grid methods, that track or approximate the interface
location, and do so by either adding additional grid points around the moving interface,
or use level-set techniques. We propose an alternative to those methods that approxi-
mate the interface location, and indirectly include an extra grid interface or grid cell at
the phase interface. This grid cell or interface is then used to update the fluxes through
the grid interfaces surrounding the phase interface. Hence, oscillatory behavior of the
solution is decreased, without changing the grid. Therefore, this does not require any
major additional computational effort, as in the adaptive grid methods. We also study
the effect of smart averaging schemes on the solutions, which does not involve approx-
imation or tracking of the phase interface. The disadvantage of the proposed scheme is
that it is very grid-dependent, whereas the addition of a grid interface or grid cell is less
grid-dependent.
To test these numerical schemes we developed a one-dimensional solver in MATLAB
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to solve a parabolic problem involving a phase change, and a one-dimensional solver in
C++ to solve the local-equilibrium foam model. Those solvers are based on finite volume
methods in space, and make use of both first-order and second-order time integration
methods. We also developed a two-dimensional foam simulator in C++ that can handle
highly non-linear flux functions, without adding additional numerical diffusion [2]. A
first-order upwind scheme might be stable but introduces a lot of numerical diffusion
around the shock front. In order to improve the accuracy near the foam front we make
use of a higher-order total variation diminishing (TVD) scheme that preserves the nu-
merical stability of the solution. Two-dimensional simulations are then performed to
examine the conditions under which foam exhibits viscous fingering behavior and grav-
ity override. As an example, we use a two-dimensional quarter five-spot setup, where
gas is injected at a constant injection rate via a well at the bottom-left corner and water
and gas are produced at the same injection rate via the production well at the right-top
corner (Chapter 4) and a horizontal injection and production well (Chapter 5).

1.4. RESEARCH OBJECTIVE AND QUESTIONS
The main objective of this thesis is to quantify and resolve the stability issues that arise
due to highly non-linear flux functions in existing reservoir simulators that are based on
mass-conservative finite volume schemes. So the main question is:

How to improve the accuracy and stability of the numerical solutions of the local-
equilibrium foam model?

To answer this question, we study the local equilibrium foam model that was in-
troduced in Section 1.1.2, with a mobility reduction factor given by Eq. 1.9 and 1.11, a
constant amount of surfactants dissolved in the water and no oil present (Fo = Fs = 1) 2.
To be able to understand the mathematics underlying the unstable numerical solutions
of the foam model, we also study a simpler model, that is the non-linear heat equation
with a piecewise continuous diffusivity. The conclusions we can draw from this study
can be used to improve the numerical techniques applied to the local-equilibrium foam
model. For each model studied, we derived a set of sub-questions "a posteriori", that will
be addressed in the next chapters. These sub-questions can be categorized as follows:

Non-linear heat equation with a piecewise continuous coefficient

1. Is the equation well-posed? (Chapter 3)

2. How does a piecewise continuous diffusivity coefficient affect the numerical solu-
tions of the equation? (Chapter 2, 3)

3. How can we improve the finite volume method to handle discontinuous coeffi-
cients in the equation? (Chapter 2, 3)

2This model was derived from the model in Cheng et al. [13]. In the rest of this thesis, we will refer to this model
when talking about the local-equilibrium foam model.
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Local-equilibrium foam model

4. How does a highly non-linear diffusion coefficient affect the numerical solutions
of the model? (Chapter 2)

5. What is the cause of the temporal oscillations observed in the numerical solutions
of the model? (Chapter 2, 3)

6. What is the connection between the non-linear heat-equation with a piecewise
continuous coefficient and the local-equilibrium foam model, and what can we
learn from that? (Chapter 3)

7. How can we improve the numerical solutions of the model? (Chapter 2, 3, 4, 5, 6)

8. What is the effect of foam on the two-dimensional solutions of the model? (Chap-
ter 4, 5)

9. How stable and accurate are the solutions of the model in two dimensions? (Chap-
ter 4, 5)

10. How suitable is the model? Are there any suitable alternatives? (Chapter 6)

1.5. THESIS OUTLINE
In Chapter 2, we address the temporal stability of one-dimensional foam simulations,
where we compare the stability of different averaging methods to approximate the pa-
rameters on a finite volume grid. We introduce a novel averaging approach for the con-
sidered model that smoothes out the oscillatory behavior observed for standard averag-
ing procedures. This method is illustrated by applying it to a diffusion equation with a
discontinuous diffusion coefficient and shows a significant improvement of the tempo-
ral stability of the solutions. In Chapter 3, we build further on this approach by examin-
ing different discretization and interpolation procedures that can be applied to parabolic
equations with strongly non-linear or discontinuous coefficients. To make the link with
the preceding chapter a parabolic diffusion equation describing the pressure decay of a
foam in a porous medium is studied. This equation can be used to describe foam flow
when coupled with an hyperbolic equation for the fluid saturations, and is extended to
a two-dimensional reservoir model in Chapter 4. Here, we perform a qualitative study
of the numerical stability of the foam simulations under the influence of different nu-
merical and physical parameters. In Chapter 5, this is supported by a linear stability
analysis of foam flow, to validate the numerical simulations and identify the important
scales and wave lengths of the model. This lays the foundation for a tailor-made solver
that can handle both the fast waves induces by the foam and the slow waves behind the
foam front. In the conclusions in Chapter 6 we will come back to the research questions
above, and summarize the results from this thesis.
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2
DISCRETIZATION SCHEMES FOR

THE SIMULATION OF FOAM

ENHANCED OIL RECOVERY

Many enhanced oil recovery (EOR) processes can be described using partial differential
equations with parameters that are strongly non-linear functions of one or more of the
state variables. Typically, these non-linearities result in solution components changing
several orders of magnitude over small spatial or temporal distances. The numerical sim-
ulation of such processes with the aid of finite volume or finite element techniques poses
challenges. In particular, temporally oscillating state variable values are observed for re-
alistic grid sizes when conventional discretization schemes are used. These oscillations,
which do not represent a physical process but are discretization artifacts, hamper the use
of the forward simulation model for optimization purposes. To analyze these problems,
we study the dynamics of a simple foam model describing the interaction of water, gas
and surfactants in a porous medium. It contains sharp gradients due to the formation of
foam. The simplicity of the model allows us to gain a better understanding of the under-
lying processes and difficulties of the problem. The foam equations are discretized by a
first-order finite volume method. Instead of using a finite volume method with a standard
interpolation procedure, we opt for an integral average, which smoothes out the discon-
tinuity caused by foam generation. We introduce this method by applying it to the heat
equation with discontinuous thermal conductivity. A similar technique is then applied to
the foam model, reducing the oscillations drastically, but not removing them.

Parts of this chapter were prepared for presentation at the 15th European Conference on the Mathematics of
Oil Recovery held in Amsterdam, The Netherlands, 29 August - 1 September 2016 [1].
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2.1. INTRODUCTION
The generation of foam can be described by a system of partial differential equations
with strongly non-linear functions, which impose challenges for the numerical model-
ing. Former studies [2], [3] and [4] show the occurrence of temporally strongly oscillating
solutions when using forward simulation models that are entirely due to discretization
artifacts (Fig. 2.1).

To analyze these problems, we study the dynamics of a one-dimensional, two-phase
incompressible foam model based on the Buckley-Leverett equation [5]. In this simpli-
fied model, we consider a one-dimensional horizontal reservoir with one injection and
one production well. Gas is injected in the reservoir, which consists of a porous medium
filled with a mixture of water and surfactants (to simplify the model, oil is assumed to
be absent). As soon as the injected gas comes into contact with a sufficient amount of
water and surfactant, a foam is generated. The foam will cause a rapid decrease of the
gas mobility, because it captures the gas in bubbles that are separated by liquid films
(lamellae) between the pore walls [6]. The water mobility is not influenced by foam in
these models, and hence, the mobility ratio between gas and water is reduced. This will
increase the time that the injected gas needs to reach the production well (breakthrough
time).

The governing equations of the foam model are solved sequentially in time by the im-
plicit pressure explicit saturation (IMPES) method [7]. In space, the saturation equation
is solved by a second-order MUSCL scheme [8], and in time by the second-order semi-
implicit trapezoidal method. The pressure equation is discretized in space by a first-
order finite volume method, and the resulting linear system is solved by the Cholesky
method [9]. Instead of using a standard interpolation procedure for the phase mobilities
when discretizing the pressure equation, we opt for an integral average. The highly non-
linear transition caused by the generation of foam is hence integrated over a range of
saturation values between two neighboring grid blocks, reducing jumps in the solution.

We first introduce this method by applying it to the heat equation with discontinuous
thermal conductivity. The initially strongly oscillating solution becomes monotonic by
introducing this small change in the discretization scheme. A similar technique is then
applied to the foam model, reducing the oscillations drastically, but not removing them
entirely. We analyze this difference in behavior by performing a continuity analysis of
the numerical scheme for each model. Furthermore, we illustrate the effectiveness of
our numerical scheme by comparing it with other finite volume schemes, which vary in
order, interpolation procedure and the amount of artificial diffusion.

2.2. MATHEMATICAL MODEL

2.2.1. CONSERVATION LAW
We study the one-dimensional foam model defined in Van der Meer et al. [9]. In case of
an incompressible fluid in a porous medium, mass conservation of the phase saturation
Sα ∈ [0,1] is given by

φ∂t Sα =−∂x ( fαu), ∀x ∈ [0,1], t ≥ 0, (2.1)

where the subscript α ∈ {w, g } denotes the water or gas phase, φ is the reservoir porosity,
fα = λα/λ is the phase fractional flow function, and u is the total Darcy velocity, which
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Figure 2.1: Temporal oscillations in the injection rate due to generation of foam, that are highly dependent on
the grid resolution (from [2]).

follows from Darcy’s law
u =−λ∂x p. (2.2)

Here, p is the reservoir pressure, and λ is the total mobility, which is given by the sum of
the phase mobilities as

λα = k
krα(Sα)

µα
, (2.3)

where k is the absolute permeability, µα the phase viscosity and krα the phase relative
permeability, defined by the Brooks-Corey model [10]. The Brooks-Corey relative per-
meability functions for gas and water are given by

kr w = kr we

(
Sw −Swc

1−Swc −Sg r

)nw

, kr g = kr g e

(
Sg −Sg r

1−Swc −Sg r

)ng

, (2.4)

where kr we and kr g e are the endpoint relative permeabilities, Swc is the residual (con-
note) water saturation, Sg r is the residual gas saturation and nw and ng are power coef-
ficients, which all depend on the specific interface properties of the rock and the fluids.
From the definition of saturation it follows that the sum of the phase saturations is one
everywhere, i.e. ∑

α
Sα = 1, with α ∈ {w, g }, (2.5)

so that we only have to solve for one phase. Hence, Eq. 2.1, 2.2 and 2.5 imply that

∂x u = ∂x (−λ∂x p) = 0, ⇒ u(x, t ) = u(t ), (2.6)

which describes the pressure decay in the porous medium.

2.2.2. FOAM MODEL
If gas comes into contact with a sufficient amount of water and surfactants a foam will
form. This will cause a rapid decrease in the gas mobility λg , which can be modeled by
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decreasing the relative gas permeability function by a mobility reduction factor fmr

kr g :=
ko

r g

fmr
, fmr = 1+R ·Fw ·Fs , (2.7)

where ko
r g is the relative permeability of the gas in its original state using the Brooks-

Corey model, R is a constant that accounts for the maximum flow resistance of the foam,
and Fw and Fs are functions that describe the sensitivity of the foam to water saturation
and surfactant concentration, respectively [11]. We assume that the surfactant concen-
tration is the same everywhere, so that Fs = 1. Because foam forms almost instantly, Fw

is modeled by the Heaviside step function

Fw = H(Sw −S∗
w ), (2.8)

where S∗
w is the least amount of water that is needed to form a foam. Since a sudden

jump in the mobility of the gas at S∗
w will lead to discontinuous derivatives in the simula-

tor, this jump is approximated by a continuous arctangent function, so that it is smeared
over a width that scales with 1/κ

Fw = 0.5+ arctan
(
κ(Sw −S∗

w )
)

π
, (2.9)

whereκ is a positive parameter that controls the width of the gas-foam transition. (Eq. 2.7
and Eq. 2.9, with different symbols, are taken from the foam model in the STARS simula-
tor [12].) In Fig. 2.2 the relative permeability function described here is shown. The flux
function and its derivative for the scaled parameters are shown in Fig. 2.3.

(a) κ=∞ (b) κ= 40

Figure 2.2: Relative permeability function for the model with and without foam. The sudden transition due to
foam in the left figure given by Eq. 2.7 and 2.8 is approximated in the right figure by a continuous line given by
Eq. 2.7 and 2.9, where S∗

w = 0.3, κ= 40, R = 10 and M = 1.
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Figure 2.3: Flux function and derivative for the STARS model with and without foam, where S∗
w = 0.15,κ= 1000,

R = 1000 and M = 10.

2.2.3. NON-DIMENSIONAL FORMULATION

To reduce the number of parameters we scale the model given by Eq. 2.1, 2.2 and 2.6, in a
similar way as done by Riaz and Tchelepi [13]. If we let L be a characteristic length scale
of the model, and U a characteristic velocity scale we can scale the variables as follows

x = Lx∗, (2.10)

∂x = ∂x∗

L
, (2.11)

u = U u∗, (2.12)

t = φL(1−Swc −Sg r )

U
t∗, (2.13)

p = µU L

k
p∗, (2.14)

where the asterisk denotes a non-dimensional variable. The relative permeability func-
tions are scaled by their endpoint relative permeabilities, i.e. the relative permeability of
the residual water and gas saturation, kr we = kr w (Sg r ) and kr g e = kr g (1−Swc ), respec-

tively. The gas saturation is normalized by S∗
g = (Sg −Sg r )

(1−Swc−Sg r ) . Substituting these variables

into the dimensional model leads to a non-dimensional system of the form

∂t∗S∗
g = −∂x∗

(
k∗

r g M

λ∗ u∗
)

, (2.15)

u∗ = −λ∗∂x∗p∗, (2.16)

∂x∗u∗ = 0, (2.17)
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where λ∗ = Mk∗
r g + k∗

r w is the dimensionless mobility function. Here, the variable M
denotes the dimensionless mobility ratio, given by

M = µw

µg

kr g e

kr we
. (2.18)

The mobility ratio together with the dimensionless foam parameters R, κ and S∗
w , di-

mensionless injection rate I∗ and porosity φ, determine the entire behavior of the fluids
for a certain initial boundary value problem. In the rest of the article we will drop the

asterisk for readability and define S ≡ Sg and f ≡ kr g M
λ .

Together with initial and boundary conditions, we then have the following initial boundary-
value problem

∂t S = −∂x
(

f u
)

, ∀x ∈ [0,1], t ≥ 0, (2.19)

∂x u = 0, ∀x ∈ [0,1], (2.20)

u = −λ∂x p, ∀x ∈ [0,1], (2.21)

S(x,0) = 0, ∀x ∈ [0,1], (2.22)

S(0, t ) = 1, ∀t ≥ 0, (2.23)

u(0, t ) = uL , ∀t ≥ 0, (2.24)

p(1, t ) = pR , ∀t ≥ 0, (2.25)

where we fix the velocity on the left boundary and the pressure on the right boundary.
Due to the incompressibility condition, the velocity will now be constant in time and
space. Hence, the solution of Eq. 2.19 is independent of Eq. 2.20 and the system is only
weakly coupled through the total mobility. Later in this chapter, we will also investigate
the strongly coupled system, where the pressure is fixed on both sides of the domain (i.e.
Eq. 2.24 is replaced by p(0, t ) = pL).

2.3. NUMERICAL OSCILLATIONS
We solve the foam model numerically for multiple sets of foam parameters, where we use
the IMPES method with a second-order MUSCL solver for the explicit part. A necessary
condition for stability of the saturation update, is given by the Courant-Friedrichs-Lewy
(CFL) condition. Due to the high wave speeds around the critical water saturation, as
shown in Fig. 2.3b, the time step can become extremely restricted if κ is increased. In
Fig. 2.4, the saturation profile of the foam model for one parameter set is shown, which
is stable in both space and time. However, if we take a look at the pressure solutions
in Fig. 2.4, we see that the pressure solution is oscillating in time. In Fig. 2.5, we show
that the amplitude of the oscillations is highly dependent on the value of the foam pa-
rameters R and κ. Both increasing the foam resistance R and the steepness of the foam
transition κ will cause stronger oscillatory behavior. Both the amplitude and frequency
of the oscillations seem directly related to the grid size. Decreasing the grid size will de-
crease the amplitude of the oscillations and increase its frequency, as depicted in Fig. 2.1.
Moreover, we can connect each oscillation to a grid block the shock has passed, as shown
in Fig. 2.6, which was also observed in Zanganeh et al. [2]. So, unless the step size is dras-
tically reduced, the oscillations will not disappear by using a higher resolution in space
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Figure 2.4: Numerical and analytical saturation and pressure profiles of the foam model with resolution N =
100 and M = 1, S∗

w = 0.15, κ= 1000 and R = 10000, uL = 1,pR = 1.

(Fig. 2.7). Considering the already small time step size due to the CFL condition, it is not
feasible to further reduce the step size significantly.

2.4. HEAT EQUATION WITH A DISCONTINUOUS CONDUCTIVITY

Similar oscillations in time were observed for the one-dimensional heat equation with a
discontinuous coefficient, defined by

∂t T = −∂x q, ∀x ∈ [0,1] , t ≥ 0, (2.26)

q = −a(T )∂x T, (2.27)

T (x,0) = 0, ∀x ∈ [0,1], (2.28)

T (0, t ) = 1, ∀t ≥ 0, (2.29)

T (1, t ) = 0, ∀t ≥ 0, (2.30)
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Figure 2.5: (Left) pressure versus spatial coordinate at t = 0.1, (Right) pressure versus time at x = 0.5, of the
foam model with resolution N = 100 and M = 1, S∗

w = 0.2, pL = 11, pR = 1.

where T is the temperature and a the thermal conductivity given by a step function

a(T ) :=
{
ε if T ≤ T ∗,

1 if T > T ∗,
(2.31)

as depicted in Fig. 2.8. We semi-discretize this equation with the finite volume method
over a finite interval [0,1] that is divided into N grid cells with size ∆x = 1/N as shown
in Fig. 2.9, where xi = i∆x denotes the midpoint of the i -th grid cell and Ti = T (xi ) the
average temperature in the i -th grid cell. The cell centers are indexed by i ∈ {0, . . . , N }
and the cell interfaces by i ∈ {− 1

2 , 1
2 , . . . , N + 1

2 }. Hence, we obtain a system of ordinary
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differential equations for the unknowns

Ṫi =
qi− 1

2
−qi+ 1

2

∆x
, ∀i ∈ {0, . . . , N }, (2.32)

qi+ 1
2

= −ai+ 1
2

Ti+1 −Ti

∆x
, ∀i ∈ {0, . . . , N −1}, (2.33)

q− 1
2

= −a(T0)
T0 −TL

∆x/2
, (2.34)

qN+ 1
2

= −a(TN )
TR −TN

∆x/2
, (2.35)

where Ṫi is the time derivative of Ti , and ai+ 1
2

is the approximation of the thermal con-

ductivity on the cell interface, which can be computed by one of the following approaches

• upwind: ai+ 1
2
=

{
a(Ti ), if Ti ≥ Ti+1,

a(Ti+1), if Ti < Ti+1,

• harmonic average: ai+ 1
2
= 2a(Ti )a(Ti+1)

a(Ti )+a(Ti+1) ,

• arithmetic average: ai+ 1
2
= 1

2 (a(Ti )+a(Ti+1)),
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Figure 2.7: Non-oscillatory solutions in space (left) and oscillatory solutions in time (right) for different grid
resolutions and M = 1, S∗
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Figure 2.8: Discontinuous thermal conductivity a(T ) for T∗ = 0.5 and ε= 0.01.

• maximum average: ai+ 1
2
= max{a(Ti ), a(Ti+1)}.

Because the temperature decreases from left to right, the maximum average is identical
to the upwind average for this problem, and the harmonic average is unsuitable since it
converges very slowly if ε is small. Eq. 2.32 is then solved by the forward Euler method
for the other two averaging procedures and a constant time step ∆t = 1.8 ·10−4, which
satisfies the CFL condition.

2.4.1. TEMPORAL OSCILLATIONS

Independent of the choice of the flux discretization, this will lead to an oscillatory be-
havior in time, as shown in Fig. 2.10b and 2.10d. As a remedy, we take the integral over
the discontinuous parameter a defined by

A(T ) ≡
∫ T

0
a(v)d v, (2.36)
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so that the solution of the heat equation satisfies

q =−a(T )∂x T =−∂A

∂x
. (2.37)

This suggests the following choice for the numerical flux

qi+ 1
2
= A(Ti )− A(Ti+1)

∆x
=− 1

∆x

∫ Ti+1

Ti

a(v)d v, (2.38)

which corresponds to the choice

ai+ 1
2
= A(Ti+1)− A(Ti )

Ti+1 −Ti
= 1

Ti+1 −Ti

∫ Ti+1

Ti

a(v)d v. (2.39)

If this integral is approximated using the Trapezoidal rule, it will reduce to the arithmetic
average discretization, leading to non-physical oscillations. However, if we evaluate the
integral exactly, A(T ) becomes a C 0-continuous function of the temperature. Hence the
flux q will be a continuous function of the temperature. From Eq. (2.32) it then follows
that Ṫ is a C 0-continuous function and so the solution for T is C 1-continuous [14]. In
Fig. 2.10f the solution in time using the integral average (2.39) is depicted. The resulting
temperature is monotone in time, but exhibits a stepwise increase that will damp out
after some time. Also note that the integral average approaches the exact solution most
closely among the three methods. Of all cases the upwind average performs worst.

To determine the nature of the oscillations we analyze the (almost) semi-discrete be-
havior of the equation by taking a very small time step. The results are shown in Fig. 2.11
and 2.12. The integral average method does not show any improvement by decreasing
the time step, since the stepwise behavior is still visible. The smoothness of the solution
using the other two averaging methods improves significantly by taking a smaller time
step, since the amplitude of the oscillations is smaller and the oscillations are mainly
restricted to a small time interval occurring after the shock wave has passed. Behind
the shock front, the solutions show some low-frequency oscillations, with a decreas-
ing amplitude that resemble the stepwise pattern we observed for the integral average
method. The integral average is thus able to remove the high-frequency oscillations, but
not enough to get rid of the low-frequency oscillations.
Let us examine the time interval where the high frequency oscillations occur for the first

two averaging methods. The length of this interval seems to be dependent on the grid
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resolution and it reduces if the grid is refined. As the time step is reduced, the oscilla-
tions decrease in amplitude, and finally a constant state is reached, which approaches
the temperature at which the heat conductivity is discontinuous. The length of this time
interval corresponds to the time that the numerical shock precedes the analytical shock.
If the integral average is applied, no such constant state is obtained and the numerical
shock fits the analytical shock quite well.

2.5. FOAM MODEL WITH A DISCONTINUOUS MOBILITY
If we consider the foam model given by Eq. 2.19 to 2.24, we observe many similarities
with the heat equation with discontinuous conductivity. The system contains a discon-
tinuous parameter λ, shown in Fig. 2.13. Like the thermal conductivity a, this parameter
λ is responsible for the time oscillations that were observed in the pressure solution.

2.5.1. FINITE VOLUME SCHEME USING AN INTEGRAL AVERAGE

If we discretize the system of equations with the finite volume method we obtain the
following semi-discrete system in xi

Ṡi = −u
fi+ 1

2
− fi− 1

2

∆x
, for i ∈ {0, . . . , N }, (2.40)

∂x ui =
ui+ 1

2
−ui− 1

2

∆x
= 0, for i ∈ {0, . . . , N }, (2.41)

ui+ 1
2

= −λi+ 1
2

pi+1 −pi

∆x
, for i ∈ {0, . . . , N −1}, (2.42)

u− 1
2

= −λ(S0)
p0 −pL

∆x/2
, (2.43)

uN+ 1
2

= −λ(SN )
pR −pN

∆x/2
, (2.44)

where λi+ 1
2

is approximated on the cell interface by one of the following interpolation

methods

• upwind: λi+ 1
2
=

{
λ(Si ), if ui > 0,

λ(Si+1), if ui < 0,

• harmonic average: λi+ 1
2
= 2λ(Si )λ(Si+1)

λ(Si )+λ(Si+1) ,

• arithmetic average: λi+ 1
2
= 1

2 (λ(Si )+λ(Si+1)),

• maximum: λi+ 1
2
= max(λ(Si ),λ(Si+1)).
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It was shown earlier that this approach leads to non-physical oscillations in time. The
amplitude of these oscillations depends, besides the foam parameters and the grid size,
on the adopted interpolation method. The upwind average will cause similar oscillations
as the harmonic average applied to the finite volume discretization of the foam model.
The mean average method suffers much less from oscillations than the harmonic aver-
age method. It is reasonable to assume that if we choose this average in a smarter way, it
will be possible to reduce the oscillations even further.

Starting from Eq. 2.2 and 2.6 with u(t ) = 1, it follows that

p(x, t ) =
∫ 1

x

d x

λ(S(x, t ))
+pR , (2.45)

A central two-point discretization for the spatial derivative leads to the semi-discrete
equation for the pressure as a function of time only

pi (t ) =∆x
N∑

j=i

1

λ(S j (t ),S j+1(t ))
+pR . (2.46)

Hence, p is a smooth function of time if 1
λ(Si ,Si+1) and u(t ) are smooth. If we fix the veloc-

ity at the left boundary, it will be constant in time and space, due to the incompressibility
condition. This means we only have to obtain a smooth formulation for the sum over the
mobilities in time. In order to achieve this we take the cell-integral average of 1

λ over the
interval [Si ,Si+1], given by

1

λ(S j ,S j+1)
= 1

Si+1 −Si

∫ Si+1

Si

1

λ(S)
dS, (2.47)

so that

λi+ 1
2
= Si+1 −Si∫ Si+1

Si

1
λ(S) dS

. (2.48)

Alternatively, we can take the integral over λ directly, so that

λi+ 1
2
= 1

Si+1 −Si

∫ Si+1

Si

λ(S)dS. (2.49)

If λ is a smooth function of S and ∆Si = |Si+1 − Si | is small, the integral averages are
similar to standard averages like the arithmetic average. It can be shown that in this case

1

Si+1 −Si

∫ Si+1

Si

λ(S)dS = λ(Si )+λ(Si+1)

2
+O ((∆Si )2). (2.50)

Finally, to avoid very large contributions to the sum of inverse mobilities 1
λ(Si ,Si+1) , we

could opt for another ’averaging method’, given by

λi+ 1
2
= max{λ(Si ),λ(Si+1)}. (2.51)
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We solve the system given by Eq. 2.19 to 2.20 with the IMPES method, where we make use
of different averaging methods for the total mobility. The resulting pressure solutions in
time are shown in Fig. 2.14 for a grid resolution N = 100.
From these results it is clear that the integral average is not sufficient to remove the os-

cillations, although the amplitude is halved compared to the upwind and harmonic av-
erage. However, if we use a coarser grid with resolution N = 10, the oscillations are more
pronounced, and it becomes apparent that the integral average has a smoothing effect
on the oscillations (Fig. 2.15). There are several things worth noting in Fig. 2.15. First, the
number of oscillations is the same for all averaging methods and matches the number
of grid blocks behind the saturation front. Furthermore, note that the amplitude of the
oscillations differs drastically, with approximately a factor five between the upwind av-
erage and the maximum average (Fig. 2.16). Besides that, the nature of the discontinuity
varies for the different averaging methods. It can be seen that for the maximum mobility
the oscillations are saw tooths, also called removable discontinuities, since the limit on
both sides is equal. These discontinuities are not continuously differentiable and hence
are C 0-continuous functions. The integral average, on the contrary, is continuously dif-
ferentiable.

2.6. DISCUSSION AND CONCLUSION

We studied two types of temporal oscillations, that are entirely due to the grid discretiza-
tion. The first type of oscillations appear in the parabolic heat equation with discontin-
uous conductivity, when discretized with the finite volume method. The second type of
oscillations are found in the elliptic part of a two-phase, incompressible foam model,
with (almost) discontinuous mobility.

To get rid of these non-physical oscillations we changed the averaging method on
the grid interfaces of the finite volume scheme. Instead of taking an average of the con-
ductivity/mobility on each side of the grid interface, all (unknown) values in-between
are taken into account, by integrating the conductivity/mobility over the given tempera-
ture/saturation range. This can be seen as a sort of flux correction method, where linear
interpolation is used to approximate the in-between values.

Applying the integral average to the non-linear heat equation with discontinuous
heat conductivity removes the oscillations for our test cases. Applying the same scheme
to the foam model, does not solve the numerical problems. However, integration over
the mobility does change the nature of the discontinuities. The pressure solution be-
comes continuously differentiable in time, and the amplitude of the oscillations is re-
duced by a significant amount. Still, the maximum average performs best, when we
compare the different averaging schemes for all test cases.
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Figure 2.10: Numerical and analytical temperature profiles of the heat equation with discontinuous conduc-
tivity, where ∆x = 0.02, ∆t = 1.8 ·10−4, T∗ = 0.5 and ε= 0.01.
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Figure 2.11: Numerical and analytical temperature profiles of the heat equation with discontinuous conduc-
tivity, where ∆x = 0.02, ∆t = 1.8 ·10−6, T∗ = 0.5 and ε= 0.01.
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Figure 2.12: Numerical and analytical temperature profiles of the heat equation with discontinuous conduc-
tivity, where ∆x = 0.02, ∆t = 1.8 ·10−7, T∗ = 0.5 and ε= 0.01.
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Figure 2.13: Relative permeability functions of water, gas and foam and the total mobility λ at a fixed time for
M = 1, S∗

w = 0.15.
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Figure 2.14: Pressure vs time x = 0.15 for N = 100, M = 1, S∗
w = 0.2, with uL = 1 described on the left boundary

and pR = 1 prescribed on the right boundary.
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Figure 2.15: Pressure vs time at x = 0.15 for N = 10, M = 1, S∗
w = 0.2, with uL = 10 described on the left bound-
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3
MIMETIC DISCRETISATION

SCHEMES FOR GENERIC PHASE

CHANGE PROBLEMS

The essential numerical difficulty in dealing with phase change problems rests in the
requirement to account for non-linear phenomena that change in time and space.

V.R. Voller, 1996

When dealing with parabolic equations with a continuous initial function and a continu-
ous diffusion coefficient, existence and uniqueness of the solutions is ensured and stability
of the numerical method is generally not considered an issue since diffusion will smooth
out any perturbations. However, if we are considering the class of parabolic equations with
discontinuous and/or strongly degenerate parameters this may not be true. Indeed, it was
shown in [1] that for a convection-diffusion problem with a strongly degenerate diffusion
function, the solutions admit discontinuities in the form of shock waves. Hence, an ad-
ditional entropy condition is needed to ensure uniqueness of the solution. When solving
these problems numerically, standard discretization schemes give rise to stability issues in
time [2]. Therefore, we have to take into account the non-linearity in the coefficients of
the system. It is possible to write the parabolic equation as a hyperbolic equation plus an
ordinary differential equation. The stability of numerical schemes for hyperbolic equa-
tions has been widely addressed. Total variation diminishing and oscillation diminishing
methods are two important classes of solvers that control the stability of the solutions of
conservation laws. Since we are not dealing with strictly hyperbolic conservation laws,
developing a similar method for parabolic equations, is not straightforward. For this we
have to consider both stability in space and in time in a finite volume framework. In this

35
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chapter we provide a short overview of numerical schemes suitable for parabolic equations
with discontinuous variables. We propose some ideas to improve existing schemes, like the
addition of an extra node at the discontinuous interface. There are, however, several ways
to incorporate this node in the scheme, which can involve interpolation of the solution
between adjacent grid points or redefining the problem in terms of internal energy (en-
thalpy). In this chapter, we compare some of these methods, and discuss the advantages
and limitations.
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3.1. INTRODUCTION
Many numerical methods have been proposed to treat hyperbolic and parabolic equa-
tions with discontinuous parameters that vary only in space, but are time-independent
(among many others [3–11]). When discontinuities are space- and time-dependent [2,
12, 13], other difficulties arise. We illustrate this by looking at the heat equation with
a piecewise continuous thermal diffusivity, which contains a discontinuity at a critical
temperature. This situation occurs for example when a block of ice is heated from one
side, and melts into water when the temperature passes zero degree Celsius. The discon-
tinuity in the diffusivity represents the phase interface. In case of a piecewise constant
thermal diffusivity we can derive an analytical solution, that consist of two separate so-
lutions that are connected through a moving interface by means of three interface con-
ditions. This is also called a Stefan problem in literature [14–16] and the main interface
condition a Stefan condition.

When solved on a numerical grid with standard finite volume methods, the numer-
ical solution of these problems on a coarser grid has stability issues due to the discon-
tinuous derivatives at the phase interface. The solutions remain smooth in space, when
the Courant-Friedrichs-Levy (CFL) stability criterion on the time step is met. However,
strong oscillations in time appear, whenever the discrete temperature in a grid block
drops below the critical value, and hence, it undergoes a jump in the thermal diffusivity.

To enhance the stability of the numerical finite volume scheme applied to phase-
change problems, there are several routes we can take. First, the averaging of the diffu-
sivity at the grid interface has a big influence on the amount of oscillation in the solu-
tion. Instead of a standard arithmetic or harmonic average, we can opt for an integral
average to smooth out the jump in the diffusivity [2]. This can also be viewed as ap-
plying a flux-corrector method that interpolates between neighboring diffusivity values,
similar to hyperbolic solvers with a flux-correction scheme. While the integral average
removes most of the temporal oscillations and increases stability and convergence of the
method, it is very grid-dependent and assumes a linear temperature transition around
the discontinuous interface, which is highly non-linear in reality.

To have a more robust, stabilizing scheme that works for a general set of discon-
tinuous or strongly non-linear parabolic problems, we look at alternatives that are less
grid-dependent and mimic the intrinsic properties of the original equations. The class of
mimetic schemes is based on the underlying properties of the partial differential equa-
tions, and uses theorems from vector calculus to derive the discrete equations (See for
example, in [17–19]). This approach can also be used to handle discontinuities in the
variables. In [19], a mimetic discretization is derived on a staggered grid for discontinu-
ities that are located at grid interfaces.

In this Chapter, we provide some ideas to extend the mimetic discretization schemes
to problems with discontinuities that do not lie on grid interfaces (if one uses an equidis-
tant, static grid this is usually the case for phase change problems). For example, when
dealing with one or more discontinuities, an extra node can be added at the approxi-
mated place of each discontinuity. This node can be indirectly solved for, so no extra
degrees of freedom are added, to retain the computational efficiency of the scheme. This
means that in the grid block containing a discontinuity, the fluxes through the interface
are adapted, allowing for a more accurate solution when using a coarser grid. There are
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several ways to incorporate this extra node in the numerical scheme. We address some of
them and discuss their respective (dis)advantages. This method can also be extended to
highly non-linear functions, where the coefficient changes several orders of magnitude
over a small distance, by introducing an artificial grid block around the non-linearity. If
the transition width goes to zero, this approach equals the one where we introduce an
extra node. We compare the outcome of these methods with each other, and show that
solving the discontinuity over an extra grid block increases the accuracy of the problem if
we manage to approximate the phase interface position correctly. This provides us with
a better control over the stability of the scheme.

Before we introduce the mimetic schemes, we give a short overview of other dis-
cretization methods that are used to solve phase change problems. These can be roughly
divided into two classes, the deforming grid methods and the fixed grid methods. In
the first class, the spatial or temporal grid is adapted so that discontinuities are always
located at the grid interfaces, and hence, an appropriate interface condition can be en-
forced. For this one needs to track the interface, by using a level-set method, for example.
In the second class of methods, the problem is rewritten in terms of enthalpy to approxi-
mate the interface position correctly without tracking it [16, 20]. From the enthalpy in the
grid-cell containing the phase interface, the phase-fraction can be determined, which is
then used to locate the approximate interface position. A disadvantage of these methods
is that it is not always possible to rewrite the equations in terms of enthalpy. However, if
there is an enthalpy formulation, we show in a comparative study that this method is a
good alternative to the methods described above.

This chapter is organized as follows, in Section 3.2 we describe the general model
for phase change problems. After that, we present a short survey of existing classes of
numerical schemes for phase change problems in Section 3.3. This includes the fixed
grid-methods, which make use of an enthalpy formulation, and an introduction to de-
forming grid schemes. Also we discuss the class of mimetic finite volume methods in
Section 3.3.3, where special attention is paid to the computation of the diffusion coeffi-
cient at the grid interfaces. This last class of methods is then extended to semi-adaptive
methods in Section 3.4, in which an extra grid node or grid cell is added implicitly to
the scheme. This results in two new discretization schemes for phase change problems.
These new schemes are compared with existing approaches for some practical examples
in Section 3.5.

The first example is about a liquid that is cooled at the outer edge, so that it will
freeze. By using the enthalpy method and an adaptive grid method, we can observe
an improvement in the solutions compared to the standard finite volume method. The
semi-adaptive grid methods, however, suffer from instabilities. The second example,
considers the strongly degenerate function that was studied in Chapter 2, and we show
that the observed numerical error increases when the functions become more degener-
ate. In the third example, we solve a discontinuous diffusivity function that resembles
the total mobility function of the local equilibrium foam model studied in [2]. This leads
to extra complications, due to an additional third immiscible phase. In the conclusions
we summarize the used methods, and give suggestions for how to extend them to more
dimensions and more complicated models, like the two-phase local-equilibrium foam
model introduced in Chapter 1.
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3.2. GENERIC MODEL FOR PHASE CHANGE PROBLEMS
We consider a one-dimensional parabolic equation with a discontinuous coefficient. As
a general example of this we use the one-dimensional heat equation, defined by

∂t T = ∂x (a(T )∂x T ), 0 < x < l , t > 0, (3.1)

where T is the temperature, a(T ) = k/(cρ) is the thermal diffusivity coefficient, k is the
thermal conductivity, c the specific heat and ρ the density of the material. The thermal
diffusivity is given by a piecewise continuous function, defined as

a(T ) :=
{
α1, T < T ∗,

α2, T > T ∗,
(3.2)

with a fixed threshold value T ∗ ∈ R and α1,2 can be constants or continuous functions
of the temperature. This model describes the temperature change of a medium that un-
dergoes a phase change, for example a liquid that turns into a solid as described in an
example in Section 3.5. A model that describes this problem is referred to in literature
as a Stefan problem [14–16]. At the phase interface x(t ) = ξ(t ) where T (ξ(t ), t ) = T ∗ the
partial differential equation (PDE) is not valid, because of the discontinuous derivatives.
Therefore an additional (physical) constraint, called the Stefan condition, is required
here. For example, for constant α1,2 we can require that the derivatives of the tempera-
ture on both sides of the boundary are continuous in ξ, and hence

α1∂x T (ξ(t )−, t ) =α2∂x T (ξ(t )+, t ), t > 0, (3.3)

or alternatively we can require conservation of the heat flux at the interface, given by

ξ′(t ) =α1∂x T (ξ−, t )−α2∂x T (ξ+, t ), t > 0. (3.4)

Using a standard finite volume scheme to solve Eq. 3.1 will not incorporate this inter-
face condition, instead it will ignore the fact that we are dealing with a discontinuous
variable, and solve it as if it was a continuous phase. This is when potential stability
problems occur around the interface, because every time the interface passes through
a grid block, the scheme will over- or underestimate the actual temperature in a grid
block. After the interface has passed, this will be corrected, because it is again in a con-
tinuous region. Hence the solutions will display an oscillatory behavior in time, as was
shown in Van der Meer et al. [2]. In this chapter it was observed that these stability issues
not only occur because of discontinuous variables, but that highly non-linear variables
can have the same effect. Moreover, by ignoring the fact that we are dealing with two
different phases instead of one, the scheme will converge much slower and give less ac-
curate or even diverging solutions. Hence, it is important to incorporate the interface
condition in the numerical scheme. According to Voller [16], there are two classes of
numerical solvers to treat this problem. First, there is the class of fixed-grid methods,
which reformulate the problem in terms of enthalpy and solve for the enthalpy. The Ste-
fan condition is indirectly incorporated in these kind of schemes through the enthalpy
formulation. These methods are introduced in Section 3.3. Then there is a second class
of front-tracking and deforming grid methods that track the front and add additional
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nodes around or at the interface. The Stefan condition can be enforced directly through
the flux at the interface location. We will discuss these methods in the second part of
Section 3.3. In Section 3.4, we propose some alternative methods that are a combina-
tion of those two classes. Instead of deforming the grid, we approximate the interface
location by using polynomial interpolation, and then we adapt the flux through the grid
interface surrounding the phase interface by indirectly adding an extra node at the inter-
face location. We will show that this is computationally less expensive than the adaptive
grid method, but the results can be less accurate because of the assumptions we have to
make on the solution. We start, however, by introducing an alternative way to look at the
spatial discretization of parabolic equations by Lipnikov et al. [19], which will serve as a
framework for the other methods.

3.3. SURVEY OF EXISTING NUMERICAL SCHEMES

Below we give a short overview of two classes of methods that are used for phase change
problems, namely the fixed grid methods that make use of an alternative formulation of
the problem, if available, and the class of deforming grid methods, that somehow track
the interface and adapt the grid accordingly. The third class of methods we discuss are
the mimetic finite volume discretization methods. Those methods are a generalization
of standard finite volume methods, and aim to mimic the properties of the continuous
solution of the analytic equations by making use of the underlying theorems and iden-
tities of vector Calculus [17–19]. Because of this approach, these method are able to
handle discontinuities in the variables when they appear at a grid interface [19]. We
will introduce this class of methods in Section 3.3.3, and provide our own extension in
Section 3.4 to handle discontinuities that do not appear at a grid interface, but lie in-
between two interfaces.

3.3.1. FIXED GRID METHODS: ENTHALPY FORMULATION

Instead of discretizing and solving the heat equation in terms of the temperature, it can
be rewritten in terms of enthalpy [16], which can be defined as a function of temperature
and pressure. The advantage of this formulation is that no additional interface condi-
tion is needed, since this information is indirectly included in the formulation through
the liquid fraction. The liquid fraction at each point is described as a function of the en-
thalpy, and can have a continuous value between zero and one. Hence, we do not need
to keep track of the interface location in our numerical scheme. This means also that it
is possible to solve for both phases at once, as if it was one phase. According to Voller
[16] this scheme can be applied to more general cases, involving a phase change that
is not necessarily described by a single discontinuity, if one can come up with a proper
enthalpy formulation.

The discretized version of the enthalpy formulation of Eq. 3.1 can be derived by con-
servation of energy in a control volume, which leads to

∂t E∆+divk q∆ = 0, (3.5)
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where k is the thermal conductivity and(
divk q∆

)
i
=

(
ki+1/2qi+1/2 −ki−1/2qi−1/2

)
∆x

, (3.6)

is the divergence operator applied to the heat flux. The heat flux can be computed by
using any suitable finite volume method. For example we can approximate ki+1/2 by a
the harmonic average k H

i+1/2, so that

ki+1/2qi+1/2 =−k H
i+1/2 (Ti+1 −Ti ) , k H

i+1/2 =
2k̃ i−1k̃ i+1

k̃ i−1 + k̃ i+1
, (3.7)

where k̃ are the averaged values of k in a grid cell.

LIQUID FRACTION APPROXIMATION

Since the liquid fraction in each node, λi , can take on a continuous value between zero
and one, it is a measure for the interface position within that cell. To approximate the
location of the interface using the enthalpy of the solution, one needs to know the grid
cell in which the interface is located. This is done by linear interpolation between the
enthalpy values in the grid cells, and locating the root of the interpolated function. The
approximate location is then determined by [20]

ξn = xm−1/2 + (1−λn
m)∆x, (3.8)

where λn
m ∈ [0,1] is the liquid fraction in the control volume Vm = [xm−1/2, xm+1/2], given

by

λn
i =


0, E n

i ≤ 0, (solid)

E n
i /ρL, 0 ≥ E n

i ≤ ρL, (interface)

1, E n
i ≥ ρL, (liquid)

(3.9)

where L is the latent heat and ρ the material density.
For a standard finite volume scheme the liquid fraction is assumed to be either zero

or one in a grid node, based on the temperature in that node. Hence, for these kind
of schemes the interface position is always assumed to be on the grid interface for an
equidistant grid, leading to significant numerical errors.

3.3.2. DEFORMING GRID METHODS: FRONT TRACKING
The second class of adaptive or deforming grid methods track the phase interface to en-
sure the interface conditions are met. Hence, these methods are based on the complete
Stefan formulation, in which the problem is defined as two separate problems that are
connected through the phase interface [16]. The advantage of these methods over the
fixed grid methods is that they are more accurate, the disadvantage is the larger compu-
tational effort due to grid deformation. Initially, the phase interface is assumed to be at
one of the domain boundaries. As the solution evolves in time, the interface will move
through the domain with a velocity ξ′(t ), which is given by the Stefan condition 3.4. If
this equation is discretized in space it follows that

ξ′(t ) =α1
T ∗−T (ξ(t )−∆x, t )

∆x
−α2

T (ξ(t )+∆x, t )−T ∗

∆x
, (3.10)
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where ∆x =∆x(t ) depends on the chosen grid method, which will change for every time
step as the phase interface evolves. Hence, by using the forward Euler method in time,
one obtains

ξ(t n+1) = ξ(t n)+ ∆t

∆x

(
α1(T ∗−T (ξ(t n)−∆x, t n))−α2(T (ξ(t n)+∆x, t n)−T ∗)

)
. (3.11)

By using interpolation between the grid nodes, the new solution is mapped from the old
one onto the new grid [21]. Together with the semi-discrete heat equation for the left
and right phase (T1 and T2, respectively)

∂t T1 =α1∂xx T1, 0 < x < ξ(t ), t > 0, (3.12)

∂t T2 =α2∂xx T2, ξ(t ) < x < l , t > 0. (3.13)

This gives a system of three equations and three unknowns, T1(x, t ), T2(x, t ) and ξ(t ).
Alternatively, the Stefan condition can be added as a Lagrangian constraint to the dis-
cretized equations, as is done for the third mimetic scheme in Section 3.3.3. The system
can be solved on the deformed grid with an appropriate time integration method. If
chosen with care this will lead to a very accurate solution. A poorly chosen grid however,
can lead to erroneous solutions. For more details we refer to Voller [16], which provides
a good insight into the particularities of deforming grid methods.

Another way to make sure that the phase interface will be located at a grid interface
for each time step [16], is to tune the time step accordingly. Then the third mimetic
method in Section 3.3.3 can be applied at the discontinuous interface. Alternatively the
time step can be chosen such that the interface is always located in a grid node as de-
scribed in Javierre et al. [21]. The advantage of this method is that we can be sure no
temporal oscillations will occur in the solutions. The disadvantage is that in order to
compute the solution at a certain in-between time, interpolation is required. Moreover,
if the time step is too large compared to the grid step (i.e. the interface moves very slowly)
the solutions can become unstable in space. Hence it is recommended to use an implicit
time discretization, like the backward Euler scheme, in this case. A major disadvantage
of this method is that it is not possible to apply it in higher spatial dimensions, which is
why we do not consider it suitable for our purposes.

3.3.3. MIMETIC SCHEMES
We can rewrite the parabolic heat equation 3.1 as a hyperbolic conservation law, as fol-
lows

∂t T +∂x (a(T )q) = 0, q =−∂x T, (3.14)

where q is the heat flux. This equation is discretized on an equidistant grid with grid size
∆x using the mimetic scheme described in Lipnikov et al. [19], such that

Ṫ∆+diva q∆ = 0, q∆ =−gradT∆. (3.15)

where T∆ and q∆ are the semi-discrete unknowns, and the primary mimetic operator div
in the i-th grid cell is given by

(diva q∆)i = (ai+1/2qi+1/2 −ai−1/2qi−1/2)

∆x
. (3.16)
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The secondary mimetic operator grad is derived by discretizing the integration by parts
formula ∫ 1

0
a(∂x T )qd x =−

∫ 1

0
∂x (aq)T d x. (3.17)

The left side of this formula can be discretized in several ways, leading to three different
types of discretization schemes (see Lipnikov et al. [19]). The main difference with stan-
dard finite volume schemes is that these schemes discretize the diva operator, instead of
the div operator. This leads to a more versatile set of schemes that can handle a larger
range of functions a.

FIRST MIMETIC SCHEME

In the first mimetic scheme, a is assumed to be constant in every grid block, so that

ai+1/2qi+1/2 =−ai+1/2(gradT )i+1/2 =
a2

i+1/2

a A
i+1/2

Ti −Ti+1

∆x
, (3.18)

where ai−1/2 is the approximated value of a at the i -th interface, and

a A
i+1/2 =

ãi + ãi+1

2∆x
(3.19)

is the arithmetic average at the i -th interface, and ã denotes the constant approximation
of a in a grid block. For example, ãi = k(Ti ) and ai+1/2 can be the harmonic or arithmetic
average of ãi and ãi+1, or a different approximation.

SECOND MIMETIC SCHEME

The second mimetic scheme assumes that a is a linear function of x in each grid block,
connecting the values of ai+1/2 at the interfaces. This leads to a simple approximation of
the flux, given by

ai+1/2qi+1/2 =−ai+1/2(gradT )i+1/2 = ai+1/2
Ti −Ti+1

∆x
, (3.20)

This scheme is commonly used as the standard finite volume method, in which div is
discretized directly.

THIRD MIMETIC SCHEME

The last mimetic scheme considers a parameter a, which can become discontinuous at
the grid interfaces, thus leading to an undefined quantity at the interface. As a solution
the authors of [19] allow a to make a jump at the interface and replace ai+1/2 and qi+1/2

by two limiting values on both sides of the interface, ai
i+1/2 and ai+1

i+1/2, that are coupled
through the following interface condition

ai
i+1/2q i

i+1/2 = ai+1
i+1/2q i+1

i+1/2, (3.21)

which is enforced in the numerical scheme through a Lagrangian constraint. Deriving
the gradients on both sides of the interface and coupling them through the above condi-
tion leads to a scheme that is able to solve for the PDE with a discontinuous coefficient:

(gradT )i
i+1/2 =

λi+1/2 −Ti

∆x
, (gradT )i+1

i+1/2 =
Ti+1 −λi+1/2

∆x
. (3.22)
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Here, λi+1/2 is a Lagrange multiplier to ensure that Eq. 3.21 is satisfied on each interface.
If these equations are substituted into Eq. 3.21, this gives the value of λi+1/2

λi+1/2 =
ai

i+1/2Ti −ai+1
i+1/2Ti+1

ai
i+1/2 +ai+1

i+1/2

. (3.23)

Substituting this back into the flux equations 3.22 leads to a numerical flux given by

ai+1/2qi+1/2 =
2ai

i+1/2ai+1
i+1/2

ai
i+1/2 +ai+1

i+1/2

Ti −Ti+1

∆x
. (3.24)

Hence, if the limiting values are equal when there is no discontinuity at the interface,
such that ai+1/2 = ai

i+1/2 = ai+1
i+1/2, and the scheme resembles the second mimetic scheme.

For staggered grids, the scheme becomes:

ai+1/2qi+1/2 =
ai

i+1/2ai+1
i+1/2(∆xi +∆xi+1)

ai
i+1/2∆xi+1 +ai+1

i+1/2∆xi

Ti −Ti+1

(∆xi +∆xi+1)/2
. (3.25)

A limitation of this scheme is that the discontinuity is assumed to be located at a grid
interface. In our problem the discontinuity can be anywhere in the grid, and moves in
both space and time. Therefore, in the coming sections we review the problems that
arise when dealing with these kind of functions, and come up with alternatives to this
scheme. In Section 3.4.1 we look at ways to generalize the third mimetic scheme to cases
where the discontinuity moves through the grid in time, while maintaining an equidis-
tant scheme, which we call the fourth mimetic schemes.

3.4. DEVELOPMENT & ANALYSIS OF NEW MIMETIC SCHEMES
As we can see from the numerical results in Section 2.4 in Chapter 3, the first temporal
oscillation is always upward, which means that in the grid block under consideration
fin > fout. To compensate for this non-physical rise in temperature, the scheme will
overcompensate in the next time step and hence fout > fin, causing an oscillatory pat-
tern, that moves through the domain. Hence, from an engineering perspective, we need
to decrease fin initially, and increase fout a little bit for the grid block where the discon-
tinuity is located. This can be obtained, by making sure that the interface conditions
established in Section 3.2 and applied in the third mimetic method of Section 3.3.3, are
obeyed.

To enforce the interface conditions we need to know the interface location. Instead of
tracking the interface and/or adapting the grid, we choose to keep the same discretiza-
tion and grid, but in each time step the location of the interface is approximated by a
polynomial function. Then the fluxes through the grid cell interfaces surrounding the
discontinuous phase interface, are adapted to ensure monotonicity of the solution in
time. This can be done by introducing a grid interface at the phase interface, so that we
split the grid cell in two cells. The flux through the interface is then computed by the
third mimetic method from Section 3.3.3 and used to compute the new temperature val-
ues at the next time step. Then the solution is interpolated back to the old grid, using
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a linear or higher-order polynomial through the grid centers making sure that we have
energy conservation. If the model contains a highly non-linear coefficient instead of a
discontinuity, instead of an additional grid interface an additional grid cell can be intro-
duced around the non-linearity. The width of this grid cell can be much smaller than the
other grid cells, depending on the steepness of the non-linearity. Now the flux through
the new grid interfaces can be computed, by using either the first or second mimetic
scheme, and the temperature values at the next time step can be interpolated back to
the original grid. In the next Section 3.4.1 these methods are explained further, and are
referred to as the fourth mimetic schemes.

Alternatively, the temperature variables in the new grid cells left and right of the dis-
continuous interface, can be solely used to compute the diffusivity coefficients in those
cells. Those coefficients are then used to approximate the fluxes through the surround-
ing grid interfaces, based on the distance between the grid interfaces and the phase in-
terface. Hence, the flux through the approximated phase interface is not used, and the
additional interface just serves as a separation, to allow multiple diffusivity values in one
grid cell. In case of a non-linearity instead of a discontinuity, the scheme is split in three
cells, and three diffusivity values are allowed for. Only the two outer values are used to
update the fluxes at the surrounding grid interfaces. Energy conservation is not an issue
here, since only the fluxes are adapted. We call these schemes the fifth mimetic schemes.
In the following sections we will explain these approaches and present a comparative
numerical study in Section 3.5.

3.4.1. FOURTH MIMETIC SCHEMES

The fourth mimetic schemes incorporate the discontinuity in the coefficients by adapt-
ing the unknowns in the grid cell where the discontinuous interface is located. This is
done by splitting the cell in two or three sub-cells and calculating the new value of the
unknowns in those cells. The fluxes through the interface are then calculated based on
these new unknowns. Below we give three alternative ways we looked at to implement
these ideas, of which the first one has the highest potential and the last method leads to
more numerical problems.

INTRODUCING AN EXTRA GRID INTERFACE

To get around the problem of having to track the interface, we first propose to add an
extra grid interface at the approximate location of the phase interface and solve for this
node implicitly so that the grid remains the same. We consider the numerical solution of
the heat equation with discontinuous conductivity given by Eq. 3.2, with a discontinuity
located at the right of grid center xi−1/2 at a certain time t n , as depicted in Fig. 3.1. Since
we know the temperature values in the grid centers, we can approximate the location of
the discontinuity by interpolating a linear or quadratic curve through these points left
and right from the discontinuity. We then introduce an extra interface at the approxi-
mated location of discontinuity, so that the grid cell of the discontinuity is split into two
parts. The new temperature values, called T1 and T2 for now, can be approximated at
the discrete time interval by integration of the linear polynomial approximating T in this
grid cell. Since we want our method to be mass conservative, the following condition
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Figure 3.1: Schematic representation of the fourth mimetic method on a one-dimensional grid, for a problem
with a discontinuous or highly non-linear diffusion coefficient in T∗. The point ξ is the approximate location
of the discontinuity at a certain discrete time t n , which is approximated by a linear (upper figures) or higher-
order polynomial (lower figures). The flux f ∗ through ξ is the approximated numerical flux through that point,
and f1 and f2 are the approximated fluxes through the grid boundaries of the added grid cell (right figures).

has to be satisfied
∆xTi =∆x1T1 +∆x2T2, (3.26)

where ∆x1 and ∆x2 are the sizes of the respective grid blocks, such that ∆x =∆x1 +∆x2.
Concisely, the scheme is as follows:

1. Find the interface location xi−1/2 for which T n
i−1 > T ∗ > T n

i .

2. Approximate ξ at time t n such that p(ξ) = T ∗, where the coefficients of the poly-
nomial p are found by linear or quadratic interpolation through T n

i−1 and T n
i .

3. Find the index j for which x j−3/2 < ξ< x j−1/2.

4. Split the j -th cell in two parts, separated by the approximated phase interface.
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5. Approximate T in the center of both new cells, T1 and T2, by the polynomial p and
make sure the total temperature in the cell is "conserved".

6. Calculate the temperature values in the next time step, by using the third mimetic
scheme of Section 3.3.3 on the new grid interface. Apply a standard averaging
scheme (mimetic 2) or the first mimetic method, to approximate the diffusivity
on the other grid interfaces.

7. Interpolate the new temperature values back to the original grid by linear or quadratic
interpolation, and take into account the conservation of energy.

Below, we develop these ideas further for a linear and quadratic polynomial. Of course,
higher order polynomials can be used too, but this involves more grid points and thus
leads to complications at the boundary and a more extensive implementation and higher
computational costs. On the other hand, it is possible to approximate the real solution
better with a higher order polynomial, which will lead to a better approximation of the
interface location. We leave it to the interested reader to develop this further.

Linear interpolation A linear approximation of the temperature is depicted in Fig. 3.1a.
It then follows that

∆x∂t Ti =∆x1∂t T1 +∆x2∂t T2, (3.27)

with

Ṫ1 =− 1

∆x1
[ f ∗(T2 −T1)− fi−1/2(T1 −Ti−1)], (3.28)

Ṫ2 =− 1

∆x2
[ fi+1/2(Ti+1 −T2)− f ∗(T2 −T1)], (3.29)

where f ∗ is the flux through the interface ξ, where the diffusivity a is discontinuous. The
numerical fluxes fi−1/2 and fi+1/2 denote the fluxes through the cell interfaces located at
xi−1/2 and xi+1/2, respectively, and are given by

fi−1/2 =
a2

i−1/2

∆xãi−3/2 +∆x1ã1
, (3.30)

fi+1/2 =
a2

i+1/2

∆x2ã2 +∆xãi+1/2
. (3.31)

Substituting Eq. 3.29 into 3.26 yields an expression for the time derivative of Ti :

Ṫi = 1

∆x
[ fi+1/2(Ti+1 −T2)− fi−1/2(T1 −Ti−1)]. (3.32)

Hence, in this expression the flux f ∗ cancels out. Furthermore, if either T1 or T2 is ex-
pressed as a function of Ti , we can derive the other one from Eq. 3.26. For example,
if we approximate the temperature by a continuous linear polynomial u(x), T2 follows
immediately from evaluating this function in x2 = x∗+∆x2/2. In this case, we obtain

Ṫi = 1

∆x
[ f̃i+1/2(Ti+1 −T2)− fi−1/2(T1 −Ti−1)], (3.33)

f̃i+1/2 = (1−α) fi+1/2 − ∆x2

∆x1
α fi−1/2. (3.34)
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where α= (x2−xi−1/2)
∆x is the distance of the new (virtual) grid point to the old one. Hence,

the right flux fi+1/2 is replaced by f̃i+1/2, which contains an additional term to account
for the discontinuity. When the discontinuity is exactly at the center of the i-th grid block,

it follows that f̃i+1/2 = fi−1/2+ fi+1/2
2 , and hence, the change of Ti is mainly dictated by the

diffusion coefficients left of the discontinuity. On the other hand, if the discontinuity is
located at the right interface, i.e. ∆x1 = 1 and ∆x2 = 0, the original scheme is recovered.

Quadratic interpolation For a more accurate approximation of the interface position
we can take into account three nodes around and including the grid cell containing the
discontinuity and draw a quadratic polynomial T̃ through them. Starting from

Ṫi = 1

∆x
[ fi+1/2(Ti+1 −T2)− fi−1/2(T1 −Ti−1)]. (3.35)

The value of the temperature in x2, T2, can now be expressed by integrating over the
quadratic polynomial through Ti , Ti+1 and Ti+2, such that

T2 = 1

∆x2

∫
∆x2

T̃ (x)d x|x=x2 =
1

∆x2

∫
∆x2

1

3
ax3

2 +
1

2
bx2

2 + cx2 (3.36)

where a,b,c are the coefficients of the quadratic polynomial, and T1 follows from Eq. 3.26.
Alternatively, we can evaluate the polynomial in x2, such that T2 = T̃ (x2). We can rewrite
T̃ in terms of Ti , Ti+1 and Ti+2, such that

T̃ =αTi−1 +βTi +γTi+1. (3.37)

If we rewrite Eq. 3.32, deriving T2 from Eq. 3.37, it follows that

Ṫi = 1

∆x
[ f̃i+1/2Ti+1 −T2)− f̃i−1/2(T1 −Ti )], (3.38)

with

f̃i−1 = (1−γ) fi+1/2 − ∆x2

∆x1
γ fi−1/2, (3.39)

f̃i+1/2 = (1+ ∆x2

∆x1
α) fi−1/2 −α fi+1/2, (3.40)

and hence

f̃i−1 + f̃i+1/2 = (1+ ∆x2

∆x1
(1−β)) fi−1/2 +β fi+1/2. (3.41)

INTRODUCING AN EXTRA GRID CELL

In case of a highly non-linear conductivity function, instead of a truly discontinuous
one, we could consider to introduce an extra grid cell that contains this transition (see
Fig. 3.1b) if we know the approximate transition width. This way, we split the cell under
consideration into three parts. Each part that is connected to the left and the right cell,
is used to compute the average flux on the grid interfaces. The flux through the two
additional interfaces surrounding the non-linearity is computed through a variation of
the third mimetic method. When the size of the transition width goes to zero (i.e. a
discontinuous conductivity) this will lead to the scheme discussed in Section 3.4.1 with
an additional node.
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3.4.2. FIFTH MIMETIC SCHEMES
In the previous schemes in Section 3.4.1, we altered the temperature based on a poly-
nomial through the grid center values and energy conservation, and then implemented
this directly into the numerical scheme. Here we also split the grid block in two at the
discontinuity, and approximate the temperature in the middle of each new grid block,
but we only use this information to calculate the value of a in the new grid block and
use this to adapt the numerical flux at the interface. The temperature that is used in the
scheme stays unaltered.

Since the value of the diffusivity coefficient a is averaged over each grid block, a jump
in a is not recognized and instead averaged out over the entire grid length. Hence, left
of the discontinuity the value of a is lower than in reality and right of the discontinuity it
is higher. This causes the fluxes through the grid interfaces to be distorted. We allow the
discrete diffusivity coefficient to undergo a jump at the approximated phase interface,
and use the value left and right of this jump for each respective interface approximation.

Hence, we allow for a discontinuity in the parameters, while always keeping an en-
ergy conservative scheme. The averaging method on the grid interfaces can be adapted
to the phase interface, by using weighted averaging that takes into account the distance
of the grid interface to the phase interface. In the next paragraphs we introduce this
scheme for cases with a single discontinuity in the parameters (See also Section 3.5.1),
and we explain how to extend it for highly non-linear coefficients (See also Section 3.5.3).
The extension to several discontinuities or non-linearities is trivial if the distance be-
tween the discontinuities is larger than the grid size.

ADAPTING THE NUMERICAL FLUX FOR DISCONTINUOUS COEFFICIENTS

Instead of substituting the interpolated variables into the numerical scheme, we can also
just adapt the coefficients on each side of the interface by allowing for a jump inside a
grid block. This means that we split the grid cell containing the discontinuity at the ap-
proximated location of the discontinuity and then determine the diffusivity value of the
coefficient in the center of each new grid block. These values are then used to compute
the (weighted) average on the interfaces. Hence, the scheme is as follows:

1. Find the interface location xi−1/2 for which T n
i−1 > T ∗ > T n

i .

2. Approximate ξ at time t n such that p(ξ) = T ∗, where the coefficients of the poly-
nomial p are found by linear or quadratic interpolation through T n

i−1 and T n
i .

3. Find the index j for which x j−3/2 < ξ< x j−1/2.

4. Split the j -th cell in two parts, separated by the approximated discontinuous in-
terface.

5. Approximate T in the center of both new cells, T1 and T2, by the polynomial p.

6. Calculate the diffusivity in the new grid cells, by using the new temperature values
T1 and T2. Then apply a standard averaging scheme to approximate the diffusivity
on the grid boundaries.

7. Adapt f n
j−1/2 and f n

j+1/2, by the approximated diffusivity values at the grid inter-

faces.
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ADAPTING THE NUMERICAL FLUX FOR HIGHLY NON-LINEAR COEFFICIENTS

If one deals with highly non-linear coefficients, the previous scheme can be adapted
for this. Again a linear or higher-order polynomial is drawn through the discreet tem-
perature values. Instead of calculating the weights based on the approximate distance
to the discontinuity, the approximate distance to the point with the steepest gradient
is utilized. This is the point where the diffusivity coefficient is steepest with respect to
the temperature, which is a fixed temperature value that can be calculated beforehand.
This value is then applied in the previous scheme, as if it contained a discontinuity.
This method can only be applied if the discontinuity is indeed highly non-linear. For
smoother transitions, a standard finite volume scheme can be used.

3.4.3. SHIFTING THE GRID INTERFACE

Alternatively, we could shift the interface to the place of the discontinuity, hereby apply-
ing an adapted flux f ∗ on the discontinuous interface that is given by the third mimetic
scheme described in Section 3.3.3. The difference with the scheme proposed in Sec-
tion 3.4.1 is that we keep the same amount of grid cells, by shifting the grid interface
closest to the the phase interface to coincide with the phase interface. To do so, we ap-
proximate the location of the discontinuity by linear or quadratic interpolation. In the
next time step the solution is interpolated back to the original grid, because otherwise
we will have a highly unstructured grid with grid sizes that approach zero. However, it
turns out that this approach triggers and worsens the oscillations, probably because of
the interpolation errors and the large difference in grid sizes between neighboring grid
cells. Therefore we do not proceed with this idea further, but with some improvements
it could have more potential.

3.5. NUMERICAL EXAMPLES

3.5.1. EXAMPLE 1: FREEZING OF WATER

As an example of the techniques described above, we use a physical model from Tarwidi
and Pudjaprasetya [20] describing a block of ice that is heated from one side, and melts
into water when the temperature rises above zero degree Celsius (or 273 Kelvin (K)).The
thermal conductivity of ice is higher than that of water due to its molecular structure,
which will cause a jump in conductivity at the water-ice interface. The diffusivity D(u) is
therefore defined by

a(T ) :=
{
αs = ks /(cs ·ρ), T < T ∗, (solid)

αl = kl /(cl ·ρ), T > T ∗, (liquid)
(3.42)

where T is the temperature and T ∗ = 273K is the freezing point. The other parameters
are given in Table 3.1. Hence we can describe the process by the following set of linear
heat equations,

ρcl∂t u = kl∂xx T, 0 < x < ξ(t ), t > 0, (liquid) (3.43)

ρcs∂t u = ks∂xx T, ξ(t ) < x < l , t > 0, (solid) (3.44)
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parameter unit value explanation
cl kJ (kg K)−1 4.187 specific heat water
cs kJ (kg K)−1 1.7 specific heat ice
kl W (m K)−1 0.6 thermal conductivity water
ks W (m K)−1 2.66 thermal conductivity ice
l m 0.1 length of the domain
L kJ kg−1 333 latent heat melting
ρ kg m−3 1000 density
T ∗ K 273 freezing point water
Tl K 310 initial liquid temperature
Ts K 73 temperature left boundary

Table 3.1: Model parameters for the first example in Section 3.5, partly taken from [20]

with two interface conditions

ρLξ′(t ) = ks∂x T (ξ−, t )−kl∂x T (ξ+, t ), t > 0, (3.45)

T (ξ, t ) = T ∗, t > 0, (3.46)

to ensure conservation of the heat flux and continuity at the interface. Boundary and
initial conditions are given by

T (0, t ) = Ts , t > 0, (3.47)

T (l , t ) = Tl , t > 0, (3.48)

T (x,0) = Tl , 0 < x < l , (3.49)

ξ(0) = 0, x ≥ 0. (3.50)

ANALYTICAL SOLUTION

For this simple piecewise-linear model we can only derive an analytical solution on the
semi-infinite domain 0 < x < ∞. For the derivation we use the same approach as in
Kraaijevanger [22] applied to the heat model in Van der Meer et al. [2]. First, we redefine
the problem as two differential equations that describe the phase left and right of the
phase interface, T1 and T2, and obey the interface conditions Eq. 3.45 and Eq. 3.46. These
conditions are enforced at the moving interface ξ(t ), which splits the domainΩ= (0,∞)
in two partsΩ1 = (0,ξ(t )) andΩ2 = (ξ(t ),∞). The solutions T1 and T2 satisfy

T1 > T ∗, x ∈Ω1, t > 0, (3.51)

T2 < T ∗, x ∈Ω2, t > 0, (3.52)

T1 = T2 = T ∗, x = ξ(t ), t > 0. (3.53)
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Hence, we are solving the following initial boundary value problem for the left part of the
solution

∂t T1 =αs∂xx T1, 0 < x < ξ(t ), t > 0, (3.54)

T1(0, t ) = Ts , t > 0, (3.55)

T1(ξ, t ) = T ∗, t > 0, (3.56)

ξ(0) = 0, x ≥ 0, (3.57)

and the right part of the solution

∂t T2 =αl∂xx T2, ξ(t ) < x <∞, t > 0, (3.58)

T2(∞, t ) = Tl , t > 0, (3.59)

T2(ξ, t ) = T ∗, t > 0, (3.60)

T2(x,0) = 0, x ≥ 0, (3.61)

ξ(0) = 0, x ≥ 0, (3.62)

which are combined through the Stefan condition Eq. 3.45 at x = ξ(t ). To construct the
solution we make use of the error function and its complement

erf(z) = 2p
π

∫ z

0
exp(−y2)d y, (3.63)

erfc(z) = 1−erf(z), (3.64)

which satisfies erf(0) = 0 and erf(∞) = 1. It can be deduced that the functions

T1 = Ts + A erf

(
x

2
p
αs t

)
, 0 < x < ξ(t ), t > 0, (3.65)

T2 = Tl +B erfc

(
x

2
p
αl t

)
, ξ(t ) < x <∞, t > 0. (3.66)

satisfy Eq. 3.54 and Eq. 3.58 with Dirichlet boundary conditions 3.55 and 3.56 and initial
condition 3.61 for any constants A and B . Condition 3.53 requires that these constants
have to satisfy

Ts + A erf

(
ξ(t )

2
p
αs t

)
= Tl +B erfc

(
ξ(t )

2
p
αl t

)
. (3.67)

Hence, it follows that ξ(t ) has to be of the form

ξ(t ) = 2β
√
αs t , (3.68)

for some positive constant β, and A and B are given by

A = T ∗−Ts

erf(β)
, (3.69)

B = T ∗−Tl

erfc(βν)
, (3.70)
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where ν = √
αs /αl . The phase location ξ(t ) can be determined from the Stefan condi-

tion 3.45. If we substitute Eq. 3.68, Eq. 3.65 and Eq. 3.66 in Eq. 3.45, we obtain

p
πβ= γs

erf(β)exp(β2)
− γl

erfc(βν)exp((βν)2)
, (3.71)

where γs ,γl are constants given by

γs = cs (T ∗−Ts )

L
, (3.72)

γl =
cl (Tl −T ∗)

Lν
. (3.73)

The first constant γs is sometimes called the Stefan number [16] and is defined as the
sensible heat divided by the latent heat. The positive solution of Eq. 3.71 gives us the
value of β, which is unique. Putting everything together, the analytical solution to the
semi-infinite problem (l →∞) with a moving interface is

uexact(x, t ) =
Ts + (T ∗−Ts )erf

(
x

2
p
αs t

)
erf

(
β
)

, 0 < x < ξ(t ), t > 0, (solid)

Tl − (Tl −T ∗)erfc
(

x
2
p
αl t

)
erfc

(
βν

)
, ξ(t ) < x <∞, t > 0. (liquid)

(3.74)

ENTHALPY FORMULATION

To find the location of the phase interface, we can rewrite the problem in terms of en-
thalpy (E) as in Tarwidi and Pudjaprasetya [20]. Enthalpy is defined as the sum of internal
energy and volume times the pressure. If the system is homogeneous (constant density
ρ) and closed, it follows from the first and the second law of thermodynamics that

dE = cp dT +V (1−α ·T )d p, (3.75)

where cp is the heat capacity at constant pressure, V is the volume of the closed system
p is the pressure and α the coefficient of thermal expansion. For an ideal gas α ·u = 1
and hence

dE = cp dT. (3.76)

We assume that the specific heat, cp , is independent of the temperature, and hence,

E = cp T. (3.77)

Because we cool the system from one side, energy is taken from the system. This energy
is approximated by ρL, where L is the latent heat that is needed for the ice to turn into
water. Hence, the enthalpy of the system is given by

E(x, t ) =
{
ρcs (T (x, t )−T ∗), T < T ∗, (solid)

ρcl (T (x, t )−T ∗)+ρL, T > T ∗, (liquid)
(3.78)

as shown in Fig. 3.2.
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Figure 3.2: Enthalpy E (kJ) versus the temperature T (K) in Example 1.

The discretized version of these equations was given in Section 3.3 by Eq. 3.5-3.7.
Using the second mimetic method, with a harmonic average for the flux approximation
and a forward Euler scheme in time, this leads to

E n+1
i = E n

i + ∆t

∆x

(
qn

i−1/2 −qn
i+1/2

)
, i = 1, . . . , M ,n = 1, . . . N . (3.79)

The energy flux is given by

qi−1/2 =−k H
i (Ti −Ti−1) , (3.80)

where k H
i is the harmonic average of the thermal conductivities in the grid cells. This

reduces to

k H
i =

{
ks /h, (solid)

kl /h, (liquid)
(3.81)

in a grid cell filled with only one phase. We can solve for this equation, and then compute
the temperature by

T (x, t ) =


Tm + E(x,t )

ρcs
, E ≤ 0, (solid)

Tm , 0 ≥ E ≤ ρL, (interface)

Tm + E(x,t )−ρL
ρcl

, E ≥ ρL. (liquid)

(3.82)

The time step is chosen such that the stability condition, given by

max

(
∆tks

(∆x)2 ,
∆tkl

(∆x)2

)
≤ 1

2
, (3.83)

is satisfied. Because k is of order 10−3, while the coefficient of the original equations
α = k/(cρ) is of an order 10−6, the time step for the enthalpy formulation is much less
restrictive than that for the original equations.
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NUMERICAL RESULTS

In Fig. 3.3, the enthalpy method is compared with the mimetic schemes and the analyt-
ical solution, by using a harmonic average in space and a forward Euler scheme in time.
The third mimetic scheme is applied to an adapted grid, where an additional node is
added each time step at the approximated interface. The fourth and fifth mimetic meth-
ods are implemented using linear interpolation to approximate the phase interface, as
described in Section 3.4.

The mimetic methods do not converge for any of the standard averaging methods.
The third mimetic method is the only one that captures the right phase interface loca-
tion, but has the highest numerical error for temperatures below the freezing tempera-
ture. The solutions of the first and second mimetic method, which do not make use of
any interpolation techniques, move too fast. Hence the block of ice melts much faster ac-
cording to these techniques, than in reality. The second mimetic method, which equals
the standard finite volume method on a regular grid, performs slightly better than the
first mimetic method. The last seems to converge to the same solution as for the sec-
ond mimetic method, but oscillates strongly. For low grid resolution the first mimetic
method approaches the true phase interface location, but then diverges away from it for
higher resolutions.

The new mimetic methods implemented here, do approximate the interface by linear
interpolation, but perform similarly to the second mimetic method, because they fail to
approximate the correct interface location. This could be due to the low interpolation
order, but also to an effect called harmonic locking: the approximated average is lower
than in reality, which is why the numerical solutions are moving too fast. This effect is
especially severe for problems with highly non-linear or discontinuous derivatives.

The enthalpy method performs much better for this problem and requires a less strict
time step than the mimetic schemes. It is less accurate around the phase interface, as
can be seen in Fig. 3.5, where the relative numerical error of the methods is depicted.
The error is highest around the phase interface location and at the tail of the solution,
and a convergence that is lower than first-order is observed when the grid resolution is
increased. The error at the phase interface is due to a mismatch between the exact and
numerical location as seen in Fig. 3.4 and the error at the tail of the solution is due to
the fact that the analytic solution was derived on the semi-infinite domain, whereas the
numerical solution is computed on a finite domain.

If we take a look at the approximated interface location in Fig. 3.4, we see that the
numerical melting front is a little bit behind the analytical front. Of course this is also
due to the fact that the analytical solution was derived on the semi-infinite domain. The
interface location is indirectly incorporated into the enthalpy scheme, through the liquid
fraction (Eq. 3.9), so it is not necessary to compute it separately.

The results also show that the enthalpy method, and the first three mimetic methods,
lead to temporal oscillations in the solutions, which were also observed in Van der Meer
et al. [2] for a similar model. Especially at lower resolutions (N = 16,32), the oscillations
are significant, but they damp out in time. Higher resolutions (N = 64,128) do suffer
much less from oscillatory behavior at the phase interface. The fourth and fifth mimetic
scheme do not suffer from oscillatory behavior.
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3.5.2. EXAMPLE 2: STRONGLY DEGENERATE PROBLEM
In this example, we look at the heat equation with a piecewise constant coefficient that
was introduced in Chapter 2, where the diffusivity is given by

a(T ) :=
{
ε, T < T ∗, (solid)

1, T > T ∗, (liquid)
(3.84)

where ε→ 0. The parameters are defined in Table 3.2 and the boundary and initial con-
ditions are given by

T (0, t ) = 1, t > 0, (3.85)

T (l , t ) = 0, t > 0, (3.86)

T (x,0) = 0, 0 < x < l , (3.87)

ξ(0) = 0, x ≥ 0. (3.88)

This problem can be seen as a liquid-solid transformation, where the diffusivity of the
liquid is much higher than for the solid. The solidification temperature is again denoted
by T ∗ > 0. In the limit that ε goes to zero, the solution of this problem approaches a
shock-like solution as shown in [22]. In [2], it was shown that the numerical solution of
the finite volume method exhibits oscillatory behavior in time for any of the standard
averaging schemes. An integral average over the piecewise constant parameter k was
proposed as a remedy for oscillatory behavior. This corresponds to the choice

ai−1/2 = 1

Ti −Ti−1

∫ Ti

Ti−1

a(v)d v. (3.89)

Below we test the other mimetic methods proposed in Section 3.3.3 and Section 3.4.

parameter value explanation
ε 0.01 degenerate value
∆t 0.01 time step
∆x 0.1 grid size
l 0.1 length of the domain
T ∗ 0.7 point of discontinuity

Table 3.2: Model parameters for Example 2 in Section 3.5.2.

NUMERICAL RESULTS

The results of the enthalpy and mimetic schemes described in Section 3.3 (enthalpy
method and mimetic schemes 1 to 3) and the new mimetic schemes described in Sec-
tion 3.4.1 (mimetic 4) and Section 3.4.2 (mimetic 5), are depicted in Fig. 3.6. The first two
mimetic schemes perform quite well but show oscillatory behavior in time. The third
mimetic scheme is applied to an adaptive grid, where an extra node at the approximated
phase interface location is added in each time step. The solution is also interpolated
back, with a linear polynomial to the old grid. This method performs worse, presumably
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parameter unit value explanation
c · 0.55 total compressibility
k m2 10−8 rock permeability
l m 0.1 length of the domain
L kJ kg−1 15 latent heat gas-foam transition
µg kg m−1 s−1 1.4 ·10−5 viscosity gas
µ f kg m−1 s−1 3 ·10−2 viscosity foam
φ · 0.3 porosity
p∗ kg m−1s−2 0.5 critical pressure foam collapse
ρ kg m−3 1 density

Table 3.3: Model parameters for Example 3 in Section 3.5.3.

due to the significant interpolation error. The fourth mimetic method performs better,
as a quadratic interpolation polynomial is applied, as described in Section 3.4.2. The
solution is still oscillatory in time, and although the result is slightly better than the first
mimetic method, it performs worse than the second mimetic method. This is probably
due to the in-exact prediction of the phase interface. The enthalpy method and the fifth
mimetic scheme show the best results, although oscillatory behavior is still present for
both methods.

NUMERICAL CONVERGENCE

As can be seen from the numerical error plots in Fig. 3.7 the error is smallest for the fifth
mimetic method. For these kind of problems, where the initial temperature profile of the
model is reversed relative to that of the previous example, the fifth mimetic method per-
forms similarly or better than the enthalpy method. Both methods perform much better
than the standard finite volume scheme (mimetic 2) and the other mimetic schemes.

3.5.3. EXAMPLE 3: FOAM MODEL
In the third example, we look at slightly compressible foam flow in a porous medium (the
rock) of length l , inspired by the local-equilibrium foam model introduced in Chapter 1.
The pressure decay in the porous medium is modeled by a parabolic equation with a
discontinuous diffusion coefficient given by

cφ∂t p +∂x q = 0. (3.90)

Here, the c denotes the total compressibility of the material (rock and foam), which is
assumed constant, and φ is the porosity of the rock. To describe the flux q as a function
of the pressure gradient we use Darcy’s law

q =−k

µ
∇p, (3.91)

where k is the permeability of the rock,µ the fluid viscosity and∇p the pressure gradient.
The parameter values are given in Table 3.3.

We assume that the fluid in the porous medium can be either in gas state (low vis-
cosity) or foam state (high viscosity) depending on the value of the pressure. When the
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pressure exceeds a critical value, denoted by p∗, foam lamellae will break and the vis-
cosity will drop instantaneously. Hence, the viscosity of the gas contains a discontinuity
at a critical pressure. We model this by setting

µ :=
{
µg , p > p∗, (gas)

µ f , p < p∗. (foam)
(3.92)

The interface conditions at the gas-foam interface ξ(t ) are defined by

φξ′(t ) = k∂x p(ξ−, t )/µg −k∂x p(ξ+, t )/µ f , t > 0, (3.93)

p(ξ, t ) = p∗, t > 0. (3.94)

Initially, the pressure in the porous medium is low, so only foam exists. Then the pressure
on the left side of the domain is increased, so that the foam collapses and turns into gas
again. Hence the interface between gas and foam, given by ξ(t ), will move to the right.
Boundary and initial conditions are given by

p(0, t ) = 1, t > 0, (3.95)

p(l , t ) = 0, t > 0, (3.96)

p(x,0) = 0, 0 < x < l , (3.97)

ξ(0) = 0, x ≥ 0. (3.98)

ENTHALPY FORMULATION

It is possible to define the enthalpy of gas, foam and water under reservoir conditions
when assuming a constant density and temperature, and derive the necessary interface
conditions at the gas-foam and foam-water interface. Since enthalpy is a function of
temperature and pressure, and the reservoir temperature is assumed to be constant, we
can deduce that the enthalpy of gas is higher than that of foam, and additional enthalpy
needs to be added to break the lamellae films.

The additional enthalpy or latent heat, denoted by L, is not well defined for this prob-
lem. We therefore tuned the latent heat L so that the solutions of the enthalpy method
best matched the analytical solutions of the foam model. This turned out to be a really
low number compared to the previous experiments, and is listed in Table 3.3. Hence, the
enthalpy for the simplified foam model from this example is defined as

E(x, t ) =
{
ρφc(p(x, t )−p∗), p < p∗, (foam)

ρφc(p(x, t )−p∗)+ρφL, p > p∗, (gas)
(3.99)

where the density ρ is assumed constant for now, and the total compressibility is multi-
plied with the porosity of the rock.

NUMERICAL RESULTS

The results of this simplified foam model are depicted in Fig. 3.8. The third mimetic
method does not converge and is therefore not included in the results. Moreover, the
enthalpy formulation we used does not converge to the analytical solution, because the
definition of the enthalpy for this model is not straightforward. The mimetic methods
on the contrary all converge and do not differ much from each other.
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SUGGESTIONS FOR THE LOCAL-EQUILIBRIUM FOAM MODEL

Of course, this is a highly simplified projection of the local-equilibrium foam model in-
troduced in Chapter 1. In this model, the porous rock is initially filled with water mixed
with surfactants, and pure gas is injected from the left side through an injection well.
When the gas comes into contact with the water mixture, the water and surfactant will
form lamellae that capture the gas in bubbles. This happens only when the water satu-
ration exceeds a critical value. The critical water saturation can be linked directly to the
critical capillary pressure, the pressure difference between water and gas.

Since the water saturation present in foam is negligible, foam is usually modeled as
a gas with an increased viscosity (equivalent to a decreased mobility). Thus, the local
equilibrium foam model is usually viewed as a two-phase model, where gas and water
are two immiscible phases, and the mobility of the gas is a highly non-linear function
that accounts for the effect of foam.

Unfortunately, this simplistic view of what is really happening leads to numerical
problems [2, 23, 24]. It would be a better idea to treat this model as an extension to
the model above, where foam is considered as another phase and the interface between
gas and foam needs an additional interface condition. The second interface between
foam and water is considered immiscible, and moves because of the displacement of the
foam front, which is pushing the water forward. This is a difficult situation since both
interfaces move through convective forces, but the gas-foam interface is also a transition
front.

In order to solve this problem appropriately, we have to split the convection-diffusion
problem from the Stefan problem. This last problem is described by an additional Ste-
fan condition that accounts for the gas-foam transition. Alternatively, an enthalpy-like
formulation could possibly be defined, in which the interface condition is indirectly
treated. This requires more empirical information about the thermal properties of foam
in porous media. To our knowledge, this topic has not received much attention yet, and
thus, the adaptive grid or hybrid methods described in Section 3.3.2 and Section 3.4, are
more suitable to treat this problem at the moment.

The Stefan problem that accounts for an additional water phase can be described by
Eq. 3.90, with or without time derivative, and Eq. 3.91, where k/µ is replaced by the total
mobility given by the sum of the phase mobilities

λ=λw +λg +λ f . (3.100)

The phase mobilities are given by

λg = k(1−Sw )ng

µg
, (3.101)

λg = k(1−Sw )n f

µ f
, (3.102)

λw = k(Sw )nw

µw
, (3.103)

where Sw is the water saturation, and nα defines the shape of the mobility functions.
Since the gas-foam front ξ(t ) moves separately from the foam-water front ψ(t ), and its
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movement depends only on the water saturation, we are not interested in the gas/foam
saturations. The equation for water saturation is derived from mass conservation and
described by the hyperbolic conservation law

φ∂t Sw = ∂x (q fw ), (3.104)

where fw is the fractional flow function of water. We will not focus on the solution of this
equation here, which is described in detail in Van der Meer et al. [25].

To compute the location of the Stefan interface ξwe have to proceed in a similar way
as for the simplified model above, except that the diffusion values are now piecewise
(non-)linear instead of piecewise constant. The interface condition remains the same.
Since the equations for convection and diffusion are split the total velocity of the gas-
foam interface can be computed by adding equations for ξ′(t ) and the Darcy velocity
q(ξ(t ), t ). More information on so called mushy Stefan problems and problems includ-
ing fluid flow can be found in [16, 26, 27] among others.

3.6. CONCLUSIONS
In this chapter, we reviewed the application of finite volume methods applied to parabolic
equations with one or more discontinuities or strong non-linearities in the diffusion co-
efficient. This discontinuity often represents a phase interface, where one phase transi-
tions in the other phase. This is a common physical problem, which proves to be com-
plicated to solve numerically. We therefore compared and extended two classes of nu-
merical methods tailored to this problem.

All of these methods have in common that they implicitly or explicitly incorporate
interface conditions in the numerical scheme. After reviewing some of the common ap-
proaches (enthalpy method and adaptive grid methods) we proposed a combination of
these classes that approximates the interface location by interpolation or computing the
liquid fraction based on the enthalpy, and adapting the flux terms based on the interface
location.

The flux can be adapted by viewing the diffusion coefficient as an impermeable bound-
ary, and using the value left and right of the discontinuity to compute the flux at the grid
interfaces around it, instead of averaging over the diffusion coefficient as is usually done.
The other approach, indirectly adds an extra grid interface at the approximated interface
location and then uses this to update the flux terms surrounding the discontinuity by us-
ing weighted averages, where the weights are chosen to be the grid sizes of the new grid
cells. The grid cell is only added indirectly, since the flux through the phase interface
cancels out in the finite volume scheme.

The downside of these new approaches is that we assume the solution to be almost
linear or at least quadratic between two adjacent grid points. However, the jump in the
diffusion coefficient causes the solutions of the parabolic model to behave like those of a
hyperbolic conservation law, allowing for a shock-like solution if the diffusion coefficient
is also degenerate as in [2]. Hence, a linear or quadratic interpolation of the temperature
might be far from reality, and cause the approximation to be erroneous. This means
that we are possibly reducing the accuracy of the final solutions by making assumptions
about the place of the discontinuity. A possible solution would be to include the exact
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solution of the local Riemann problem in the numerical scheme [10] and let that deter-
mine the place of discontinuity. However, the numerical solution can be shifted, and
this might cause the exact discontinuity to be in a different grid block than the numer-
ical one. Presumably, this causes further instabilities. Moreover, the exact solution is
only available for a limited number of diffusion coefficients and not at all available in
two-dimensional domains. Hence, a better solution would be to use either a higher-
order interpolation or to use an approach for which the exact location of discontinuity is
of less importance.

In the first numerical example, we solved a standard Stefan problem, with the en-
thalpy method and a standard finite volume scheme. From this we could conclude that
the enthalpy method applied to this problem is suitable for these kinds of problems,
since the interface conditions are indirectly included in the enthalpy method, and the
method converges to the analytical solution. For lower resolutions the method is quite
accurate throughout the domain, but gives a relatively high error around the phase in-
terface and leads to oscillations in time. Increasing the resolution, shows less than linear
convergence, but decreases the temporal oscillations occurring around the interface for
lower resolutions significantly. The mimetic finite volume methods, on the contrary, did
not converge for any of the averaging schemes, because these methods failed to locate
the correct phase interface.

In the second example, we looked at the strongly degenerate non-linear heat equa-
tion with a discontinuous conductivity. This model was also studied in Chapter 2. The
fifth mimetic method we proposed in this chapter performs better than the enthalpy
method and also the original mimetic schemes that were introduced in Lipnikov et al.
[19]. In the third example, we looked at a Darcy-flow model with a phase transition,
which resembles the local-equilibrium foam model from Van der Meer et al. [2]. Going
from this toy model to the original foam model involves coupling the static Darcy-flow
model to a hyperbolic saturation equation and letting the relative permeability of the
fluids depend on the saturation instead. Since the problem of temporal oscillations only
occurs in the parabolic/elliptic equations, the same methods we used here can be ap-
plied to this equation when using a sequentially implicit or implicit pressure, explicit
saturation solver (IMPES).

Finally, we would like to mention that in view of time constraints, we did not men-
tion the latest developments in numerical methods treating Stefan problems. A popular
and suitable method for these kind of problems is the level-set method, which implicitly
captures the interface through an artificial equation. For an overview of these methods
and another class of phase-field methods, we refer to Javierre et al. [21] and Ouazzi et al.
[28].
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(a) N = 16 (b) N = 16

(c) N = 32 (d) N = 32

(e) N = 64 (f) N = 64

Figure 3.3: Numerical and analytical temperature profiles versus the distance in meters (left) and versus the
time in minutes (right) of the heat equation with piecewise constant diffusivity coefficient given by Eq. 3.42,
solved by the enthalpy method and the mimetic discretization schemes with a harmonic average in space, and
a forward Euler scheme in time.
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(a) N = 16 (b) N = 32

(c) N = 64 (d) N = 128

Figure 3.4: Numerical and analytical location of the phase interface versus the time in minutes for the heat
equation with piecewise constant diffusivity coefficient given by Eq. 3.42, solved by the enthalpy method with
harmonic average and a forward Euler scheme in time.
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(a) N16 (b) N32

(c) N64 (d) N128

Figure 3.5: Numerical error of the enthalpy method versus the distance in meters for the heat equation with
piecewise constant diffusivity coefficient given by Eq. 3.42, solved by the enthalpy method with harmonic av-
erage and a forward Euler scheme in time.
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(a) N = 32 (b) N = 32

(c) N = 64 (d) N = 64

(e) N = 128 (f) N = 128

Figure 3.6: Numerical and analytical temperature profiles versus the distance in meters (left) and versus the
time in minutes (right) of the heat equation with a strongly degenerate diffusivity coefficient given by Eq. 3.84,
solved by the enthalpy method and the mimetic discretization schemes with harmonic average in space, and
a forward Euler scheme in time.
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(a) N = 16 (b) N = 32

(c) N = 64 (d) N = 128

Figure 3.7: Numerical error of the enthalpy method versus the distance in meters for the heat equation with
a strongly degenerate diffusivity coefficient given by Eq. 3.84, solved by the enthalpy method with harmonic
average and a forward Euler scheme in time.



REFERENCES

3

69

(a) N = 32 (b) N = 32

(c) N = 64 (d) N = 64

(e) N = 128 (f) N = 128

Figure 3.8: Numerical and analytical temperature profiles versus the distance in meters (left) and versus the
time in minutes (right) of the pressure equation with a piecewise constant viscosity given by Eq. 3.92, solved by
the enthalpy method and the mimetic discretization schemes with a harmonic average in space, and a forward
Euler scheme in time.
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HIGH-ORDER SIMULATION OF

FOAM ENHANCED OIL RECOVERY

The generation of foam will cause a rapid increase of the flux function over a very small
saturation scale. Consequently the derivatives of the flux function can become extremely
large and impose a severe stability constraint on the numerical scheme [2]. A first-order
upwind scheme might be stable but introduces a lot of numerical diffusion around the
shock front. In order to improve the accuracy near the foam front we make use of a higher-
order total variation diminishing (TVD) scheme that preserves the numerical stability of
the solution. Two-dimensional simulations are then performed to examine the conditions
under which foam exhibits viscous fingering behavior and gravity override. We use a two-
dimensional quarter five-spot setup, where gas is injected at a constant injection rate via
a well at the bottom-left corner and water and gas are produced at the same injection rate
via the production well at the right-top corner.

Parts of this chapter were prepared for presentation at the 14th European Conference on the Mathematics of
Oil Recovery held in Catania, Sicily, Italy, 8 - 11 September 2014 [1].
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4.1. INTRODUCTION

Foam was first applied in the oil industry in the late 1950s to decrease gas mobility and
hence reduce the undesirable effect of viscous fingering and gravity override [3]. To gen-
erate foam in an oil reservoir, usually a mixture of chemicals and water is injected into
the reservoir, which together with the injected gas forms a foam. These chemicals make
a large contribution to the production costs and therefore the goal is to minimize their
amount. To determine the required amount of chemicals for an economically profitable
production level, reliable simulations are needed.

There are several models describing foam flow in porous media in use to answer this
need. We can roughly distinguish between two classes of foam models: dynamic popula-
tion balance models, which take into account the strength (bubble density) of the foam,
and local equilibrium methods, which incorporate the effect of the foam through a limit
function [4]. The first class of models tries to capture the real dynamics of the process,
while the second class assumes that there is only one equilibrium in foam strength. Be-
cause of the complex nature of the foam the first class has a higher number of degrees
of freedom than the second. So from a computational point of view the second class of
models is more suitable for performing large-scale reservoir simulations and therefore
most useful for our purpose.

Local equilibrium methods are based on conservation laws, conserving the phases
present (usually gas, water and oil), while it is assumed that the surfactant is dissolved
in either the gas or the water phase. As soon as the gas comes in contact with a suffi-
cient amount of water and surfactant a foam is generated. The foam will cause a rapid
decrease of the gas mobility, because it captures the gas in bubbles that are separated by
liquid films (lamellae) between the pore walls [2]. The water mobility is not influenced
by foam in these models. Hence the mobility ratio between gas and water is reduced,
which will increase the time that the injected gas needs to reach the production well
(breakthrough time).

We describe the foam process by an immiscible two-phase flow model where gas is
injected in a porous medium filled with a mixture of water and surfactants. The change
from pure gas into foam is incorporated in the model through a reduction in the gas
mobility. Hence the two-phase flow description of the flow stays intact. Since the total
pressure drop in the reservoir is small both fluids can be considered incompressible [5].
As an example we use a two-dimensional quarter five-spot setup, where gas is injected
at a constant injection rate via a well at the bottom-left corner and water and gas are
produced at the same injection rate via the production well at the right-top corner.

The generation of foam will cause a rapid increase of the flux function over a very
small saturation scale. Consequently the derivatives of the flux function can become ex-
tremely large and impose a severe stability constraint on the numerical scheme [2]. A
first-order upwind scheme might be stable but introduces a lot of numerical diffusion
around the shock front. In order to improve the accuracy near the foam front we make
use of a higher-order total variation diminishing (TVD) scheme that preserves the nu-
merical stability of the solution. Two-dimensional simulations are then performed to
examine the conditions under which foam exhibits viscous fingering behavior and grav-
ity override.
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4.2. MATHEMATICAL MODEL

4.2.1. STATE VARIABLES AND PARAMETERS
The variables involved are the Darcy velocity u, the pressure p, the density ρ and the
viscosity µ of the fluids present. Because we deal with a porous medium we express the
amount of fluid in terms of the porosity φ of the medium, defined by the ratio of the
pore volume to the total volume, which is assumed constant. The phase saturation S, is
defined as the volume fraction of the pore space occupied by a fluid phase, so that both
phases make up for the total volume. The relative permeability kr depends on specific
properties of the fluid and the rock and is defined as a function of saturation. The abso-
lute permeability k depends solely on the properties of the rock and is a function of the
spatial variables only. Furthermore z is the depth, γ the gravitational acceleration and ∇
denotes the gradient operator. To denote the partial derivative of a variable q in time we

write ∂q
∂t . The divergence of a vector v is denoted by ∇·v = (∂x ,∂y ) ·v.

4.2.2. CONSERVATION LAW
Starting from mass conservation, we can define a basic model for the gas saturation Sg ,

φ
∂Sg

∂t
=−∇· ( fg u+λw fg∆ργ∇z)+qg , (4.1)

where fg is the gas fractional flow function, qg the gas flow rate,∆ρ the density difference
between water and gas, and u = uw +ug is the total Darcy velocity that follows from
Darcy’s law for the fluid phase velocity,

uα =−λ(∇pα+ραγ∇z
)

, (4.2)

with the total mobility λ=λ(S) given by the sum of the phase mobilities

λα = k
krα(Sα)

µα
. (4.3)

The fractional flow function is defined as the fraction of the phase mobility and the total
mobility. Since the fluids are considered incompressible it follows that

∇·u = q, (4.4)

where q is the total flow rate of water and gas.

4.2.3. FOAM MODEL
If gas comes into contact with a sufficient amount of water and surfactants, foam will
form. This will cause a rapid decrease in the gas mobility, which can be modeled by
decreasing the relative gas permeability function by a mobility reduction factor fmr ,

k f
r g :=

k0
r g

fmr
, fmr = 1+R ·Fw ·Fs , (4.5)

where k0
r g is the relative gas permeability of the gas in its original state, R is a constant

that accounts for the maximum flow resistance of the foam, and Fw and Fs are functions
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(a) κ=∞ (b) κ= 40

Figure 4.1: Relative permeability function for a model with and without foam for S∗
w = 0.3. The sudden transi-

tion due to foam for R = 10 is approximated by a continuous line at the right with κ= 40.

that describe the sensitivity of the foam to water saturation and surfactant concentra-
tion, respectively [6]. We assume that the surfactant concentration is the same every-
where so that Fs = 1. For Fw we use the STARS foam model used in Leeftink et al. [5],

Fw = 0.5+ arctan
(
κ(Sw −S∗

w )
)

π
, (4.6)

where S∗
w is the least amount of water that is needed to form a foam. Since a sudden

jump in the mobility of the gas at S∗
w will cause numerical problems [2], this jump in

mobility is approximated by a continuous arctangent function, so that it is smeared over
a width that scales with 1/κ. In Figure 4.1 the relative permeability function described
here is shown. The flux function and its derivative for the scaled parameters are shown
in Figure 4.2.

4.2.4. SCALING THE MODEL

To reduce the number of parameters we scale the model given by equations 4.1 and 4.2
in a similar way as done by Riaz and Tchelepi [7]. If we let W be a characteristic length
scale of the model, and U a characteristic velocity scale we can scale the variables as
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follows

z = W z∗, (4.7)

∇ = ∇∗

W
, (4.8)

u = U u∗, (4.9)

t = φW (1−Swc −Sg r )

U
t∗, (4.10)

p = µUW

k
p∗, (4.11)

q = U

W
q∗, (4.12)

where the superscript ∗ denotes a non-dimensional variable. The relative permeability
functions are scaled by their endpoint relative permeabilities, i.e. the relative perme-
ability of the residual water and gas saturation, kr we = kr w (Sg r ) and kr g e = kr g (1−Swc ),

respectively. The gas saturation is normalized by S∗
g = (Sg −Sg r )

(1−Swc−Sg r ) . Substituting all of

these variables into the dimensional model leads to a non-dimensionalised system of
the form,

∂S∗
g

∂t∗
= −∇∗ ·

(
k∗

r g M

λ∗ u∗+
k∗

r w k∗
r g

λ∗ G∇∗z∗
)
+q∗

g , (4.13)

u∗ = −λ∗∇∗p̄ +Gk∗
r g∇∗z∗, (4.14)

∇∗ ·u∗ = q∗, (4.15)

where

∇∗p̄ =∇∗p∗
w + ρw g k

µwU
∇∗z∗, (4.16)

and λ∗ = Mk∗
r g +k∗

r w is the dimensionless mobility function. The variables M and G de-
note the dimensionless mobility ratio and gravity number respectively, which are given
by

M = µw

µg

kr g e

kr we )
, (4.17)

G = k∆ρg

µgU
. (4.18)

(4.19)

These two variables together with the dimensionless foam parameters R, κ and S∗
w , di-

mensionless injection rate I∗ and porosity φ, now determine the entire behavior of the
fluids for a certain initial boundary value problem. In the rest of the article we will drop
the star superscript for readability and define S to be Sg .

4.3. NUMERICAL METHODS
The two-phase foam model described in the last section consists of a hyperbolic equa-
tion for the saturation 4.13 and an elliptic equation for the pressure 4.15. We solve this
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Figure 4.2: Flux function and derivative for the foam model compared with the Buckley-Leverett flux for S∗
w =

0.13, κ= 100, R = 1000, M = 10 and G = 2.

system by the implicit pressure explicit saturation (IMPES) method, which is designed
for this kind of hyperbolic-elliptic problems because it takes into account the different
nature of the equations.

We use a structured staggered grid representation of the problem with no-flow bound-
ary conditions everywhere, as shown in Figure 4.3. The pressure is defined up to an
additive constant, so to make sure the system is well-posed the pressure is prescribed
in one of the grid cells. The no-flow boundaries are implemented by introducing addi-
tional layers of ghost cells around the boundaries. These ghost cells take the same value
as the cells inside the boundary so that the net flux across the boundary is zero, i.e. the
state variables saturation and pressure defined in the center of a grid cell are equal to the
state variables in their corresponding ghost cells. Since we use a staggered grid for the
state variables, the Cartesian components of the velocity, u and v , are not defined in the
cell centers, but at the vertical and horizontal interfaces respectively. To ensure no flow
through the boundaries these values are reflected through the boundary. The wells are
modeled in the center of each grid cell so that the velocities at the well do not affect the
boundary conditions. We represent the wells either as point-sources or as circular wells
that are extended over more grid cells.

By using operator splitting, as described in Hvistendahl Karlsen et al. [8], we can split
the saturation equation into a hyperbolic conservation law and an ordinary differential
equation (ODE) for the mass flow rate. They are solved sequentially using a second-order
Strang-splitting scheme, which preserves the symmetry of the operator.

4.3.1. HYPERBOLIC EQUATION

The hyperbolic equation

φ
∂S

∂t
=−∇·

(
kr g M

λ
u+ kr w kr g

λ
G∇z

)
(4.20)
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(a) N xN staggered grid (b) detailed view

Figure 4.3: Staggered grid with two layers of ghost cells. The red dotted layers represent no-flow boundaries
and the black squares and arrows the velocities in the x and y direction, respectively (from Wirnsberger [9]).

is solved with a second order MUSCL scheme, which is a total variation diminishing fi-
nite volume method reconstructed from the first order Godunov’s method [10]. The TVD
property prevents instabilities to occur that are due to the numerical method. In other
words a TVD scheme is monotonicity preserving if the Courant-Friedrichs-Levy (CFL)
condition on the time step is satisfied [10]. Because of the sharp transition in the flux
function when foam is generated this condition is very restrictive for the foam model,
especially for large values of κ.

4.3.2. SOURCE TERM
The ODE is given by

φ
∂S

∂t
=

{
qSinj, if q > 0,

qSg , if q < 0.
(4.21)

In both wells we prescribe the volume flow rate, so that q = I /Vwel l , where I is a constant
injection rate and Vwel l is the volume of the well. The injected fluid saturation Sinj is
constant and the produced fluid saturation depends on the saturation present at the
production well. The ODE is solved by the second order trapezoidal rule, which is A-
stable and therefore suitable for stiff ordinary differential equations [11]. The size of
the time step of an A-stable method does not suffer from stringent restrictions and the
choice only depends on the desired accuracy , but is limited because we cannot exceed
the saturation range 0 ≤ S ≤ 1. Consequently an additional restriction on the time step
has to be made on top op the CFL condition. We incorporate this by restricting the total
variation of the saturation in time for equation 4.13, so that

∆t ≤ ∆Smaxh(
∂Sn+1

∂t

)
max

≈ ∆Smaxh

λmax∆Smax +|q |maxh/φ
, (4.22)
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where ∆Smax is the maximum variation allowed in the saturation per time step, λmax is
the maximum wave speed and h is the grid size. Consequently, if the source term is zero
everywhere, the maximum time step boils down to the CFL condition with a CFL number
CC F L = 1. To prevent unstable solutions the maximum variation in the saturation ∆Smax

should be of the order 10−3 according to Chen et al. [12]. The restriction caused by the
source term can therefore cause the time step to decrease by an significant amount in a
foam free setup with |q |maxh > λmax∆Smax. However, if foam is added, this will cause a
strong restriction on the time step for large κ due to the CFL condition, and hence the
restriction caused by the source term will be of minor importance.

4.3.3. ELLIPTIC EQUATION

For the elliptic equation 4.15 we use a multi-grid linear solver that combines a five-point
stencil with a nine-point stencil that is rotated by 45 degrees in order to reduce the grid
orientation effect [9]. The five-point stencil accounts for the unrotated coefficients and
is combined with a nine-point stencil that accounts for the rotated coefficients and is
projected back onto the original grid. The domain is parallelized by a Multi Processor In-
terface (MPI) using the Parallel High Performance Preconditioners (HYPRE) library [13]
in order to speed up the computations, since roughly 73% of the simulation time is spent
on the pressure solver for this model [14].

4.4. RESULTS
We will study the constant injection of pure gas in a water-surfactant filled reservoir for
two test cases. In the first case the reservoir is vertical, which causes the gas to flow up-
wards due to a gravity force and in the second case the reservoir is horizontal and gravity
does not play a role. We will take a close look at the behavior of the numerical solutions
around the foam front, and compare them to simulation results for the same model with-
out foam (gas-flooding). We use the Brooks-Corey relative permeability functions for gas
and water, given by

k0
wr = kr we

(
Sw −Swc

1−Swc −Sg r

)nw

,k0
r g = kr g e

(
Sg −Sg r

1−Swc −Sg r

)ng

, (4.23)

where kr we and kr g e are the endpoint relative permeabilities, Swc and Sg r the residual
water and gas saturation and nw and ng power coefficients that depend on the rock type.
The foam parameters we use are similar to those in the paper of Leeftink et al. [5] and
are listed in Table 4.1. The dimensionless mobility ratio and gravity number are varied
for the different simulations, as well as the grid resolution, error tolerance, end time and
the absolute permeability. The other parameters are taken constant (see Table 4.1).

4.4.1. CASE 1: GRAVITY OVERRIDE

Gravity override occurs when the lighter fluid (in this case gas) separates from the heav-
ier fluid due to gravitational forces. This undesirable event diminishes the sweep area of
the reservoir and should therefore be avoided. As shown in Figure 4.4, the model with
foam is less inclined to gravity override than the gas-flooding model. This is caused by
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parameter value unit explanation
α π/2 radians tilting angle
ε - - error tolerance for the linear solver
G - - gravity number
k 10−9 m2 absolute permeability (mean value)
κ 3.4 ·104 - steepness parameter foam transition
I 1.840 ·10−4 m3 s−1 injection volume flow rate gas
kr g e 0.8649 - endpoint relative permeability gas
kr we 0.6822 - endpoint relative permeability water
L 103 m length of reservoir
M - - dimensionless mobility ratio
µg 2 ·10−5 Pa s gas viscosity
µw 10−3 Pa s water viscosity
N - - resolution of reservoir
ng 2 - power coefficient of gas
nw 3.5 - power coefficient of water
φ 0.3 - porosity
R 105 - maximum resistance foam to flow
ρg 1 kg m−3 gas density
ρw 103 kg m−3 water density
Sg ,r 0.0 - residual gas saturation
Sg ,inj 1.0 - injected gas saturation
Sw,c 0.0 - critical water saturation
S∗

w 0.13 - critical water saturation
U 1 m s−1 characteristic velocity

Table 4.1: Simulation parameters, a value of − means that the parameter is not constant.



4

80 4. HIGH-ORDER SIMULATION OF FOAM ENHANCED OIL RECOVERY

(a) gas-flooding (b) foam EOR

Figure 4.4: Gas saturation contour plots for a vertical reservoir with t = 100, N = 200, M = 100, G = 2, k = 10−9

and ε= 10−6.

the sharp decrease in mobility, so that gravity has a smaller effect on the flux, which fol-
lows from the convex-hull construction of the flux as shown in Figure 4.2a.

4.4.2. CASE 2: VISCOUS FINGERING

In order to see viscous fingering a high spatial resolution is needed. We opt for a reso-
lution of 800 grid cells in both directions. Because of the severe CFL constraint on the
time step for the foam model this means we need a time step that is several orders of
magnitude smaller than the time step for the same simulation without foam. Upon that
it takes much longer for the foam front to reach the production well as for the gas front
because the front is moving much slower through the reservoir due to the decreased gas
mobility. Furthermore we introduce a random heterogeneity in the reservoir to trigger
the instabilities so that they show up at an earlier stage of the simulation, to save simula-
tion time. The absolute permeability is generated from a normal distribution with mean
10−9 and a standard deviation of ten percent. In Figure 4.5 and Figure 4.6 the results for
these simulations are shown. There is no viscous fingering visible for the foam model,
while small fingers appear for the gas-flooding simulation. The hypothesis is that these
fingers are suppressed by the sharp transition between foam and water.

In Figure 4.7 the effect of the foam on the production of water is shown. Since the
breakthrough time of the gas front is increased due to foam, the cumulative water pro-
duction grows over a longer time range and so the total production is much larger for
the foam model. The gas-flooding model is mainly producing gas after the breakthrough
time is reached. We note that our model does not contain oil, and that the increased wa-
ter production is therefore merely an illustration of the positive effect of foam on the gas
breakthrough time.
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(a) gas-flooding (b) foam EOR

Figure 4.5: Gas saturation contour plots for a horizontal reservoir with t = 150, N = 800, M = 50, G = 0, k = 10−9

and ε= 10−10.

(a) gas-flooding (b) foam EOR

Figure 4.6: Gas saturation contour plots for a horizontal reservoir with t = 280, N = 400, M = 50, G = 0, k = 10−9

and ε= 10−10.
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Figure 4.7: Water production for a horizontal reservoir with N = 30, M = 50, G = 0, k = 10−9 and ε= 10−6.

4.5. CONCLUSIONS
The results show that foam has an effect on the shock saturation. In comparison with
gas-flooding the foam solution has a much lower shock saturation for the water phase
and therefore a sharper shock front. By closer examination the shock saturation is almost
equal to the critical saturation. This also follows from the convex-hull construction of the
flux function with foam.

It turns out that foam has a significant effect on the behavior of the gas front. As
expected the simulations with foam suffer less from gravity override and viscous fin-
gering than the simulations without foam. This leads to a better sweep of the reservoir
and a much lower breakthrough time. Although these advantages of foam are already
well-known in the reservoir engineering community, to our knowledge these phenom-
ena have not yet been studied using higher-order schemes.

Ongoing work includes a quantitative analysis of the instabilities at the gas front with
and without foam. In order to do this we need to increase the grid resolution, as well as
the order of the numerical methods. To verify our results we plan to compare them with
real-world reservoir data.
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5
THE STABILITY CHARACTERISTICS

OF FOAM FLOW IN POROUS MEDIA

Accurate field-scale simulations of foam enhanced oil recovery are challenging, due to the
sharp transition between gas and foam. Hence, unpredictable numerical and physical be-
havior is often observed, casting doubt on the validity of the simulation results. In this
paper a thorough stability analysis of the foam model is presented, to validate the simu-
lation results and lay a foundation for a tailor-made solver, which can both handle large-
scale reservoir simulations and accurately resolve front instabilities. We study the effect
of a strongly non-monotonous total mobility function arising from foam models on the
stability characteristics of the flow. To this end, we generalize the linear stability analysis
of Riaz and Tchelepi (2004-2007) to nearly discontinuous relative permeability functions,
and compare the results with those of highly accurate numerical simulations. In addi-
tion, we present a qualitative analysis of the effect of different reservoir and fluid proper-
ties on the foam fingering behavior. In particular, we consider the effect of heterogeneity
of the reservoir, injection rates, and foam quality. Relative permeability functions play
an important role in the onset of fingering behavior of the injected fluid [2]. Hence, we
can deduce that stability properties are highly dependent on the non-linearity of the foam
transition. The foam-water interface is governed by a very small total mobility ratio, im-
plying a stable front. The transition between gas and foam, however, exhibits a huge total
mobility ratio, leading to instabilities in the form of viscous fingering. This implies that
there is an unstable pattern behind the front. An indication of this behavior was shown in
Farajzadeh et al. [3] for a similar foam model, but the authors did not provide a satisfying
explanation for the cause of these instabilities. Here we closely study the influence of the
foam on instabilities at and behind the front, and are able to predict the flow stability for
different foam qualities. We deduce that instabilities are indeed able to grow behind the
front, but are later absorbed by the expanding wave. The stability analysis, validated by

Parts of this chapter were prepared for presentation at the SPE Reservoir Simulation Conference held in Mont-
gomery, Texas, USA, 20-22 Feb 2017 [1].
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numerical simulations, provides valuable insights about the important scales and wave-
lengths of the foam model. In this way we remove the ambiguity regarding the effect of
grid resolution on the convergence of the solutions. This insight forms an essential step
towards the design of a suitable computational solver that captures all the appropriate
scales, while retaining computational efficiency.
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5.1. INTRODUCTION
Foam enhanced oil recovery (EOR) is applied to increase oil production by reducing dis-
advantageous effects like channeling, viscous fingering, and gravity override. When gas
is injected in a porous medium containing a surfactant solution, a foam front forms.
The foam captures the gas in bubbles and reduces its mobility. The effectiveness of
the process depends on the stability of the created foam controlled by the magnitude of
the capillary pressure. It has been observed that foam experiences a significant coales-
cence when the capillary pressure approaches the so-called limiting capillary pressure,
P∗

c [4, 5]. In other words, when the water saturation drops below a critical value, called
the limiting water saturation S∗

w , foam becomes too dry and collapses. The mobility of
the gas, which is the ratio of the relative gas permeability and the gas viscosity, therefore
contains a sharp transition around the limiting water saturation.

To reduce the operational risks associated with injectivity decline because of genera-
tion of very strong foams, material compatibility and well integrity, it has been suggested
to inject gas and surfactant solution in an alternating mode, i.e., a slug (fraction of the
pore volume) of surfactant followed by a slug of gas. Upon mixing of the gas and the
surfactant solution in the pores, foam lamellae will form in-situ. Behind the foam front,
gas reduces the water saturation to saturations close to the limiting water saturation and
therefore with gradual or abrupt collapse of foam, the gas mobility increases from the
foam front towards the injection well. The instabilities that might occur within this bank
(between the front and the injection point) have been the subject of a recent study [3],
which suggested that the fingering has physical origin and is not due to numerical arti-
facts discussed in the paper. This phenomenon, the extent of which depends mainly on
the properties of the foam behind the front, may not be visible in simulations with poor
grid resolutions.

Because of this aspect of foam, accurate field-scale simulations are challenging. Hence,
unpredictable numerical and physical behavior is often observed, casting doubt on the
validity of the simulation results [3, 6–9]. In this chapter a thorough stability analysis of
an implicit texture (local equilibrium) foam model is presented, to validate the simula-
tion results and lay a foundation for a tailor-made solver, which can both handle large-
scale reservoir simulations and accurately resolve front instabilities. We study the effect
of a strongly non-monotonous total mobility function, arising from foam models, on the
stability characteristics of the flow. To this end, we generalize the linear stability analysis
of Yortsos and Hickernell [10], Riaz et al. [11], Riaz and Tchelepi [2, 12, 13] and Meulen-
broek et al. [14] to nearly discontinuous relative permeability functions, and compare
the results with those of highly accurate numerical simulations.

In this earlier work on the stability of immiscible two-phase flow in porous media, a
linear stability analysis was performed for the quasi-linearized model. This was done in
a transformed coordinate frame that moves along with the front. By using a perturbation
theory that exploits a normal mode decomposition strategy, it was shown that the onset
of the instabilities of the displacing fluid is governed by the total mobility ratio across the
shock (as opposed to the mobility ratio over the entire transition region). The shape of
the relative permeability curves plays an important role at this stage [2].

We therefore propose to apply the perturbation theory to the foam model, in order to
investigate the effect of the abrupt changes in the gas relative permeability on the stabil-
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ity of the foam front. We are especially interested in the effect of this particular relative
permeability function on the stability characteristics of the model. The function form
differs from the ones described by Riaz and Tchelepi [2], because it allows for disconti-
nuities and the corresponding total mobility function is non-monotonic, and can have
an unfavorable shock-mobility ratio.

The foam-water interface has usually a very small total mobility ratio, leading to a
stable front. The subsequent transition front, where foam turns into gas, exhibits a large
total mobility ratio. This implies that there is an unstable pattern behind the front, which
can be detected by highly-accurate numerical simulations. An indication of this behav-
ior was shown in Farajzadeh et al. [3] for a two-phase incompressible immiscible foam
model.

The question is to which extent the strong non-linearities in the foam model can be
described by a linear stability analysis. To answer this, we compare the linear stabil-
ity results with accurate numerical simulations, where we approximate several prop-
erties, like interfacial length, wave number and maximum growth number. To solve
the system of saturation and pressure equations we apply a semi-implicit finite vol-
ume method. To minimize numerical diffusion around the front we use a second-order
monotonic upstream-centered scheme for conservation laws (MUSCL) for the hyper-
bolic flux functions and a central scheme to compute the pressure values. Both equa-
tions contain a strongly non-linear mobility function, and therefore the system is con-
sidered stiff. Hence, the time step of the numerical scheme is very restricted, and the
numerical scheme exhibits stability issues. To improve the stability of the numerical
scheme a Taylor-Galerkin method is applied to the entire system. The non-linearity is
accounted for by introducing auxiliary variables [15]. Using this scheme we are able to
resolve the very fast wave speeds that emerge from the non-linearity of the model.

The structure of the chapter is as follows: first we introduce the two-phase foam
model, and discuss its characteristics in Section 5.2. For this model, a linear stability
analysis is performed in Section 5.3. The results from this analysis, listed in Section 5.4,
are then compared to numerical simulations discussed in Section 5.5-5.8. Finally, we
discuss the outcomes of both analyses in Section 5.9.

5.2. FOAM MODEL
We use the non-dimensional model described by Riaz and Tchelepi [13] for the injection
of an incompressible gas into a porous rock initially filled with water, which is given by

∂t S = −∇
(

Mkr g

λ
u+G

kr g kr w

λ
∇z + kr g kr w

Ncaλ

dPc

dSw
∇S

)
=−∇· (kr w∇P̄ ), (5.1)

∇u = 0, (5.2)

u = −λ∇P̄ +Gkr g∇z + 1

Nca
kr g

dPc

dSw
∇S, (5.3)

where S = (Sg −Sg r )/(1−Swc −Sg r ) is the normalized gas saturation,

∇P̄ =∇Pw + (ρw g k/µwU )∇z (5.4)

is the derivative of the scaled pressure P̄ , Pc = Pw −Pg the capillary pressure, u the to-
tal Darcy velocity, and λ = Mkr g +kr w the dimensionless mobility function. Here, krα
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denote the relative permeability functions of phase α ∈ w, g , which are defined later on.
The variables M , G and Nca denote the dimensionless end-point mobility ratio, gravity
number and capillary number respectively, which are given by

M = µw

µg

kr g e

kr we
, (5.5)

G = k∆ρg

µgU
, (5.6)

Nca = = µgUW

γg w
√
φk

, (5.7)

where W is a characteristic length scale of the model where viscous and capillary terms
are of comparable magnitude [10], and U is a characteristic velocity, which is set equal to
the gas injection rate divided by a unit surface area. The other parameters are explained
in Appendix A. We consider the one-dimensional version of this equations with u = 1,
given by

∂t S +∂x

(
f (S)+ kr g kr w

Ncaλ

dPc

dSw

dS

d x

)
= 0. (5.8)

If capillary pressure is neglected (Ca→∞) this equation is the Buckley-Leverett equation
with a non-convex flux

f = Mkr g

λ

(
1+G

kr w

M

)
, (5.9)

for which we can derive the characteristic solution. The characteristics of this solu-
tion depend on the form of the normalized relative permeability functions kr w and kr g ,
which are given by

kr g = Sng

fmr
, fmr = 1+R ·Fw , (5.10)

kr w = (1−S)nw , (5.11)

where fmr is the mobility reduction factor due to foam generation, R is a constant that
accounts for the maximum flow resistance of the foam. The function Fw describes the
dependency of the foam strength to water saturation, and is given by [16]

Fw = 0.5+ arctan
(
κ(Sw −S∗

w )
)

π
, (5.12)

where S∗
w represents the limiting water saturation and κ is a positive parameter that con-

trols the width of the gas-foam transition. For κ =∞ the gas-foam transition is instant
(Fig. 5.1a), and no foam exists below S∗

w . For smaller values of κ, the mobility reduc-
tion of foam (i.e. of the foam strength) increases as the water saturation increases in
the transition zone (Fig. 5.1b). In other words, foam collapse occurs over a range of wa-
ter saturations whose width is determined by κ. The corresponding flux functions and
derivatives are shown in Fig. 5.2.

The characteristic solution of the Buckley-Leverett equation for gas injection into
a water saturated medium with the given relative permeability functions, consists of a
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rarefaction and a right-moving shock wave [17] as shown in Fig. 5.3.The shock-speed vs

can be determined from

vs = d f (S)

dS

∣∣∣∣
Ss

= f (Ss )− f (Si )

Ss −Si
, (5.13)

where Ss is the shock saturation, and Si = 0 is the initial gas saturation in the porous
medium. For saturation values larger than Ss the solution consists of a rarefaction wave,
for which x/t = f ′(S(x, t )) [18].

(a) κ=∞ (b) κ= 40

Figure 5.1: Relative permeability function of the local-equilibrium foam model with foam present ( fmr > 1)
and without foam present ( fmr = 1). The sudden drop in the relative permeability of gas, due to foam, is
shown for different transition rates κ, for S∗

w = 0.3, R = 10, M = 1 and G = 0 [19].
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Figure 5.2: Flux function and flux derivative of the local-equilibrium foam model with and without foam
present, for S∗

w = 0.15, κ= 1000, R = 1000, M = 1 and G = 0 [19].
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Figure 5.3: Saturation and pressure solution of the Buckley-Leverett equation at t = 0.05, for S∗
w = 0.1, κ= 1000,

R = 10000, M = 1 and G = 0.

5.3. LINEAR STABILITY ANALYSIS
To analyze the influence of foam on the stability characteristics of the fluid displace-
ment, we perform a linear stability analysis on Eq. 5.1 and 5.2, where we start off with
the full system including capillarity. To do so, we linearize the equations around a base
state that is given by the characteristic solution of the one-dimensional version of the
saturation equation, Eq. 5.8. For this equation a self-similar solution exists as a function
of ξ = x − vs t , in the neighborhood of the Buckley-Leverett shock where ξ = 0, which
does not change in time [10]. This solution can be used as the base state (S0,P0) for the
stability analysis [13], which is given by

dS0

dξ
= λCa

kr w kr g P ′
c

(
vs S0 − f (S0))

)
, (5.14)

dP0

dξ
= 1

λ

(
Gkr g +

kr g

C a
P ′

c S′
0 −1

)
. (5.15)

In the absence of capillarity (Ca →∞) the base state satisfies

S0

dξ
= δ(ξ), (5.16)

dP0

dξ
= Gkr g −1

λ
. (5.17)

We can expand the full solution in terms of the base state and a perturbation function
[13]. The last is written as a set of stream-wise eigenfunctions ŝ and p̂ times a normal
mode series, such that

(S,P )(ξ, y, t ) = (S0,P0)(ξ)+ (ŝ, p̂)(ξ)ei ny+σt , (5.18)

where n denotes the wavenumber of the perturbation and σ the wave growth rate. Sub-
stituting this eigenmode expansion into Eq. 5.1 and 5.2, and solving the resulting eigen-
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value problem [12, 13], leads to an expression for the disturbance velocity:

σ

n
= fg1 − fg0

S1 −S0

λ1(1−Gkr g0 )−λ0(1−Gkr g1 )

λ1 −λ0
, (5.19)

where the subscripts 0 and 1 denote the front and back edge of the shock respectively.
The derivation of these equations can be found in Appendix B. If there is no gravity in-
fluence (G = 0), i.e. if we consider a horizontally located reservoir, this becomes

σ

n
= fg1 − fg0

S1 −S0
= vsΛ, (5.20)

Λ = Ms −1

Ms +1
, (5.21)

where Ms =λ1/λ0, the mobility ratio across the shock, andΛ is the disturbance number.
Hence we see that this number is positive if Ms > 1, which means that the flow is unstable
at the shock. Vice versa, a mobility ratio smaller than one leads to a stable displacement.
If gravity is included it has been shown by Riaz and Tchelepi [13] that

G(kr g1 −Ms kr g0 ) < 1−Ms (5.22)

to obtain stable displacement. If capillarity is included, apart from the shock mobility
ratio, the fractional flow profiles have an influence on the stability of the flow. In the limit
of small wave numbers the disturbance velocity can therefore be extended to a higher-
order formulation [10], given by

σ= Γ1n +Γ2n2 +Γ3 ln(n(s1 − s0))n2, (5.23)

where Γ1 is given by Eq. 5.19 and Γ2 and Γ3 are determined by the derivative of the total
mobility and the fractional flow profiles.

5.4. STABILITY CHARACTERISTICS
The above analysis for the model without capillarity and gravity allows us to investigate
the influence of foam on the viscous instability at the front. Based on the results of Fara-
jzadeh et al. [3], different scenarios are addressed: a weak foam (low mobility reduction
factor, case 1), three cases of a strong foam (high mobility reduction factor, case 2 to 4)
with different transition lengths from foam to gas (see Fig. 5.4), and a fifth case with the
effect of gravity included.

Since we only looked at the linearized model without capillarity, there is no damping
at large wave numbers [13], and hence the wave growth is a linear increasing function
of the wave number. Moreover, the base state of the model without capillarity contains

a shock wave at S0 = Ss = maxS
fg (S)− fg (SR )

S−SR
, which marks the interface between gas and

water. The shock wave is followed by a rarefaction wave, where water and gas co-exist.
As shown in Fig. 5.5a the shock saturation of water (gas) is almost everywhere smaller
(larger) than the limiting water (gas) saturation, i.e. the saturation that marks the transi-
tion from gas to foam. Therefore, only due to a numerically and/or physically dispersed
shock (denoted by red dashed lines), or a very wide transition range of foam (denoted by
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(a) (b)

Figure 5.4: (a) Flux functions and (b) flux derivative/wave speed of the five test cases of Farajzadeh et al. [3]
and two reference cases without foam.

blue dashed lines), foam can exist in this model. The second plot (Fig. 5.5b) shows that
the shock speed increases with the limiting water saturation, because strong foam slows
down the front significantly. It follows from Eq. 5.20 that the viscous instability increases
linearly with the shock speed. Thus a strong foam has less instabilities than a weak foam,
according to this analysis. This corresponds to the results obtained by Farajzadeh et al.
[3].
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Figure 5.5: (a) Shock saturation, Ss , versus the limiting water saturation, S∗
w , for κ= 1000, R = 1000, and G = 0.

(b) Shock speed, vs versus the limiting water saturation, for κ= 1000, R = 1000, and G = 0. The red dashed lines
indicate the diffusion around the shock, because of capillarity and/or numerical diffusion. The blue dashed
lines indicate the transition width of the foam, which is governed by the inverse of κ.

We can also examine the influence of the mobility ratio on the growth rate of the
various test cases described in Farajzadeh et al. [3], as depicted in Fig. 5.6a. As the mo-
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bility ratio increases the growth rate also increases. For a small mobility ratio the growth
rate increases very fast for the fifth test case f5, after which it scales with approximately
M 1/2, which is similar to what Riaz and Tchelepi [12] observed for their test cases with-
out foam. The first three cases including foam (denoted by f1, f2, f3), show an overall
increase of M 1/2 and the fourth test case f4 has a more or less constant growth number
which is always smaller than zero. This implies that the fourth test case is always stable,
whereas the first test case is always unstable (σ/n > 0). The other three test cases are un-
stable at the shock front for larger mobility ratios only, according to this analysis. Also,
if we have a look at the mobility ratio across the shock depicted in Fig. 5.6b, we see the
same pattern. For the fourth test case the shock ratio Ms < 1 for all M , which is according
to our expectations and implies a stable displacement for all values of M . For the first
test case Ms > 1 for all M , implying an unfavorable displacement, with instabilities. The
other three test cases have an unfavorable mobility ratios for values of M > 10. Moreover,
for large viscosity ratios we observe a oscillatory pattern due to the total mobility values,
which are very sensitive to small changes in the parameters (see Fig. 5.11a).

M

10
0

10
1

10
2

σ
/n

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

f1

f2

f3

f4

f5

(a)

M

10
0

10
1

10
2

M
s

10
-2

10
-1

10
0

10
1

f1

f2

f3

f4

f5

(b)

Figure 5.6: (a) Growth rate versus the mobility ratio M (b) Total mobility ratio across the shock versus M , for
the five test cases of Farajzadeh et al. [3]

Since the foam models are characterized by the parameters R, κ and S∗
w , we studied

the influence of these parameters on the dimensionless growth number Λ. Figure 5.7
shows the contour lines of the growth number in the κ−R plane, for the remaining pa-
rameter sets of test case one and two of Farajzadeh et al. [3]. The stable region for the
parameter set of the first parameter set defined in Table C.1 is much larger than for the
parameter set of test case 2 to 4. This is probably an effect of the mobility ratio, which is
larger for the second parameter set (M2 = 235 vs M1 = 61). We also observe that the sta-
bility contour lines, which are set by the dimensionless growth number, are all straight
with a positive angle. This means that an increasing mobility reduction factor (R) has a
stabilizing effect, while an increasing non-linearity (κ) has a destabilizing effect. Hence,
a strong foam (higher R with a small transition width κ is usually stable, while a weak
foam (lower R) can become unstable quickly for relatively low values of κ. Test case 1
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and 2, are examples of a weak and a strong foam that are unstable, while test case 3, 4
and 5 are stable according to this analysis. Finally we see, that between the region of in-
stability and stability there is a zone, which can be both stable and unstable. This is due
to a strong sensitivity of the shock mobility, to the foam parameters κ and R, which be-
comes larger if R increases. Overall, we can deduce that the isolines of the dimensionless
growth number are linear and hence we can write

∂Λ

∂R
+a

∂Λ

∂κ
= 0, (5.24)

where a = ∆κ
∆R is a constant wave propagation speed, which can be linked to the growth

of disturbances in the κ−R space. This speed is highest for low R and high κ values.

(a) (b)

Figure 5.7: Stability regions in the κ−R plane for the rest of the parameter set of (a) test case one, and (b) test
case two of Farajzadeh et al. [3]. The stable and unstable regions are separated by the thick black lines and the
different test cases are denoted by thick black dots.

The influence of the limiting water saturation S∗
w is more complicated, as can be

seen in Fig. 5.8 and 5.9. These figures depict the disturbance velocity, and show that the
solutions are stable only for low values of the limiting water saturation. This can be partly
explained by Fig. 5.5a, which shows that the region where foam can exist for this model is
limited to values of S∗

w < 0.4. Hence, a limiting water saturation that is larger implies that
there is no foam present such that instabilities at the front are not subdued. Moreover,
we observe that the region of the highest disturbance velocities is located around S∗

w =
0.6 for the first parameter set, and around S∗

w = 0.9 for the second parameter set. As can
be deduced from Fig. 5.7, the growth number is highest for low R and high κ. So, even if
there is no foam present, the choice of S∗

w influences the stability of the solutions, since
both the shock saturation and the shock velocity increase with an increasing limiting
water saturation (see Fig. 5.5). The disturbance velocity scales linearly with the shock
velocity and hence will increase too, and the dimensionless growth number depends on
the mobility ratio around the shock, which will be larger if the shock saturation increases.
Hence, we see that large values of S∗

w introduce a non-physical effect in the model by
changing the shock saturation, although foam is absent. However, foams effective in
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surfactant-alternating-gas (SAG) applications are expected to have a small limiting water
saturation in combination with a non-zero transition width [20].

(a) (b)

Figure 5.8: Stability regions in the S∗
w −κ plane for the rest of the parameter set of (a) test case one, and (b) test

case two of Farajzadeh et al. [3]. The stable and unstable regions are separated by the thick black lines and the
different test cases are denoted by thick black dots.

(a) (b)

Figure 5.9: Stability regions in the S∗
w −R plane for the rest of the parameter set of (a) test case one, and (b) test

case two of Farajzadeh et al. [3]. The stable and unstable regions are separated by the thick black lines and the
different test cases are denoted by thick black dots.

In Section 5.8 of this chapter we introduce six additional test cases that are located
in highly unstable or stable parts of the parameter space, or around the boundaries of
the stable parameter range. Those are also depicted in Figs. 5.7 to 5.9 and support the
conclusions that can be drawn from this linear stability analysis.
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5.5. NUMERICAL METHODS
The results from the linear stability analysis can be compared with the results obtained
by high resolution two-dimensional numerical simulations of foam on a rectilinear grid
with a horizontal injection well. The two-dimensional reservoir simulator was further
developed by the first author for this purpose, and based on the numerical simulator de-
scribed in Van der Meer et al. [19]. We address the same test cases as in Farajzadeh et al.
[3]. For the second case, an interesting artifact was observed in the apparent viscosity
of the foam, in the form of a fingering pattern behind the foam front (Fig. 5.10). These
fingers did not significantly influence the saturation behind the front. Therefore it was
not clear from these results whether this is a physical effect or a numerical artifact. To
analyze this effect, and validate the numerical simulations of the foam model, we repeat
the first four test cases of Farajzadeh et al. [3]. Instead of solving the equations in a fully

Figure 5.10: Instabilities in the apparent foam viscosity (from Farajzadeh et al. [3]).

implicit way, we opt for the implicit pressure explicit saturation (IMPES) method, which
is designed for this kind of hyperbolic-elliptic problems because it takes into account
the different nature of the equations. Because of the non-linearity in the foam parame-
ters, the numerical stability of the foam simulations is a major concern [21]. To improve
the stability of the numerical scheme a Taylor-Galerkin method is applied to the entire
system.The non-linearity is accounted for by introducing auxiliary variables [15]. Us-
ing this scheme we are able to resolve the very fast wave speeds that emerge from the
non-linearity of the model. Additionally, solving the saturation equation explicitly with
a higher-order scheme introduces less artificial diffusion. This is important in this case,
because we are interested in the detailed fingering behavior at the front and behind the
front. By using operator splitting, as described in Hvistendahl Karlsen et al. [22] and Van
der Meer et al. [19], we can split the saturation equation into a hyperbolic conservation
law and an ordinary differential equation (ODE) for the mass flow rate. They are solved
sequentially using a second-order Strang splitting scheme, which preserves the sym-
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metry of the operator. The hyperbolic equation is solved with a second-order MUSCL
scheme, which is a total variation diminishing finite volume method reconstructed from
the first-order Godunov’s method [23]. The TVD property prevents instabilities to occur
that are due to the numerical method. In other words, a TVD scheme is monotonicity
preserving if the Courant-Friedrichs-Levy (CFL) condition on the time step is satisfied
[23]. The ODE is solved by the second-order trapezoidal rule, which is A-stable and
therefore suitable for stiff ODEs [24]. The size of the time step of an A-stable method
does not suffer from stringent restrictions and the choice only depends on the desired
accuracy. For the elliptic equation 5.2 we use a multi-grid linear solver that combines
a five-point stencil with a nine-point stencil that is rotated by 45 degrees to reduce the
grid-orientation effect [25]. The five-point stencil accounts for the unrotated coefficients
and is combined with a nine-point stencil that accounts for the rotated coefficients and
is projected back onto the original grid. The domain is parallelized by MPI using the
HYPRE library [26] to speed up the computations, since roughly 73% of the simulation
time is spent on the pressure solver for this model [27].

5.6. NUMERICAL RESULTS

The foam displacement is modeled in a reservoir of size 1x1x1 m, discretized using 300
grid blocks in the first two directions and one grid block in the z-direction (hence we
have a 2D model). The porous medium used in the model has porosity ψ = 0.2, and a
log-random permeability field with an average permeability K = 5 ·10−13 m2, a Dykstra-
Parsons coefficient of 0.1 and correlation lengths Lx = 0.01 and Ly = 0.01. Initially the
reservoir is filled with water mixed with surfactants, and pure gas is injected at a fixed
injection rate I , via a horizontal injector along the entire left side of the reservoir. Water
and gas are then produced via a horizontal producer along the right side of the reservoir,
keeping the pressure constant at 50 bar. In Table C.1 the parameter values for each of the
cases are specified. The resulting saturation and apparent viscosity profiles for the first
four test cases and two reference cases are discussed below.

The apparent gas viscosity is given by the product of the gas viscosity and the mobil-
ity reduction factor,

µ f =µg · fmr (S), (5.25)

and is therefore a function of the saturation. This quantity will be greatest at the foam
front and decrease quickly up to the injection point as shown in Fig. 5.11b.

5.6.1. TEST CASE 1
Test case 1 describes a foam displacement process with a relatively low resistance of
foam to flow (R), and a low limiting water saturation (S∗

w ), which means that the ef-
fective foam viscosity µ f is still much higher than the water viscosity µw . Hence the
flow is characterized by instabilities like viscous fingering, as shown in Fig. 5.12. This is
reflected in the interfacial length, growth rate and vorticity norm of the simulation (see
Fig. 5.18). These consist of three stadia: first there is a quick increase visible in the growth
rate, whereafter it is more or less linear, and then becomes constant.
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(a) (b)

Figure 5.11: (a) Total mobility and (b) apparent viscosity of the five test cases of Farajzadeh et al. [3].

5.6.2. TEST CASE 2
The second test case describes a strong foam, with a high resistance of foam to flow and
high limiting water saturation, and a very sharp transition from gas to foam (κ). This
sharp transition from gas to foam could potentially lead to numerical instability, if not
treated with appropriate care [21, 28]. It was for this test case that Farajzadeh et al. [3]
observed the viscous fingering pattern behind the front in the apparent viscosity of the
foam (see Fig. 5.13).

5.6.3. TEST CASE 3
The third test case resembles test cases 2 and 4, apart from the transition speed from gas
to foam, which is a factor 10 lower here than for test case 2 and a factor 10 higher than
test case 4. The simulation results are shown in Fig. 5.14.

5.6.4. TEST CASE 4
Test case 4 simulates a strong foam, with a relatively wide transition zone between gas
and foam. This means that the numerical method will have no major stability issues,
and the restriction on the time step is less than for the three preceding cases. As shown
in Fig. 5.15 the foam front is stable, since the foam is strong and no fingering behind the
front is observed, which is in agreement with the results of Farajzadeh et al. [3].

5.6.5. REFERENCE CASES WITHOUT FOAM

As a reference, we repeat the above simulations without foam for test case 1 and 2 (case 3
and 4 only differ in foam transition width from case 2). The simulation results are shown
in Fig. 5.16 and 5.17. Since there is no foam present, the apparent foam viscosity is equal
to the gas viscosity, which is constant everywhere. Therefore we show the total viscosity
in the figures on the right. The difference in the solutions with foam is striking, since
the fingers for these two cases are less pronounced, because the shock is much more
diffused. Also, gas breakthrough is almost immediate for these cases and the difference
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(a) (b)

Figure 5.12: (a) Saturation profile and (b) logarithm of the apparent foam viscosity, for the first test case of
Farajzadeh et al. [3] after 0.4 PV of injected gas.

between case 1 and 2 without foam is much less, than in the presence of foam.

5.7. NUMERICAL STABILITY ANALYSIS
We can approximate the growth rate σ numerically [12], by the vorticity norm

ω̄=
√∫ 1

0

∫ 1

0
ω2d xd y , (5.26)

where

ω= 1

λT

dλT

dS
∇S ×u, (5.27)

is a measure of the rotation at the finger tips. The maximum growth rate can then be
approximated by:

σmax ≈ ln

(
ω̄(t )

ω̄(t −∆t )

)
/∆t . (5.28)

The dominant mode can be measured numerically as a function of time, using the en-
ergy spectrum of the solutions, so that

nmax ≈
∫ K

0 kE(k, t )dk∫ K
0 E(k, t )dk

, (5.29)

where E is the energy spectrum [29], which is computed by

E(k, t ) =
(∫ 1

0

[∫ 1

0
ω(x, y, t )d x

]
e−i kt d y

)2

. (5.30)
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(a) (b)

Figure 5.13: (a) Saturation profile and (b) logarithm of the apparent foam viscosity, for the second test case of
Farajzadeh et al. [3] after 0.35 PV of injected gas.

The disturbance numberΛnum, which is a measure of perturbation growth with respect
to the front speed, can then be approximated by

Λnum = σmax
nmax

. (5.31)

Likewise the interfacial length Γ, which is a measure of the amount of fingering or insta-
bility going on, can be approximated numerically [12] by

Γ≈
∫ 1

0

∫ 1

0

√(
∂S

∂x

)2

+
(
∂S

∂y

)2

d xd y (5.32)

In the figures below, those quantities were approximated for the same test cases as
above (see Fig. 5.18, 5.19, 5.20, 5.21) and compared to each other in Fig. 5.22. In Fig. 5.18
we see that the interfacial length shows three stages, starting off very fast for small times,
and then very slowly descending, while finally becoming almost constant. Compared to
the case without foam, the initial growth is larger, but while the no-foam case slows down
eventually due to merging of small fingers into big ones [10, 12], the interfacial length
for this weak foam case keeps increasing over the observed period of time. It could be
the case that a larger reservoir is needed for the interfacial length to decrease. Also we
have to mention that the approximated interfacial length sums over the squared partial
derivatives in each grid block. Since the foam model contains a peak in the derivative
around the limiting water saturation, this approximation overestimates the total inter-
facial length at the front. This measure is therefore more suited to compare the quanti-
tative behavior of the fingers with each other, than to give a qualitative measure for the
front interfacial length. The same is true for the growth rate, which takes into account
the derivative of the mobility, which is highest behind the front, and thus does not di-
rectly reflect the instabilities at the front. However, it was the unstable behavior behind



5

102 5. THE STABILITY CHARACTERISTICS OF FOAM FLOW IN POROUS MEDIA

(a) (b)

Figure 5.14: (a) Saturation profile and (b) logarithm of the apparent foam viscosity, for the third test case of
Farajzadeh et al. [3] after 0.42 PV of injected gas.

the front that is of interest in this chapter. The consequence of this is that the growth
rate of instability measure shows a much higher variation than for the foam case. The
average growth rate is more or less constant after an initial increase. The growth rate for
the case without foam is decreasing first and later showing a small increase, that could
be due to numerical issues since it was not observed by Riaz and Tchelepi [12]. The vor-
ticity norm gives a more consistent pattern, which resembles the interfacial length, and
after a fast initial growth, shows a slight decrease, after which it increases very slowly.

For the second test case we see the same initial increase of the interfacial length as
for the first test case in Fig. 5.19, after which it remains constant. The same case without
foam shows a gradual increase which becomes constant after some time. The growth
rate decreases for the model without foam after which it becomes negative (due to the
gas reaching the right boundary). For the strong-foam model we see again a huge vari-
ation in the growth rate, and the vorticity norm shows a steep increase after which it
becomes constant. Again, the vorticity norm is higher than for the case without foam,
due to the large derivatives of the mobility behind the front.

Test case 3, depicted in Fig. 5.20, gives results almost identical to the second test case,
but an order 10 smaller for the growth rate and the interfacial length. The same holds for
the fourth test case in Fig. 5.21, in which the growth rate is reduced by an order 1000 with
respect to test case 2. Hence, we can assume that the vorticity norm of the simulations
depends linearly on the parameter κ, for a strong foam (test case 2, 3 and 4), i.e.

ω̄∼ κ. (5.33)

This means that reducing κ by approximately a factor 10 leads to a reduction in the vor-
ticity norm by a factor 10. This can also be seen in Fig. 5.22, where the test cases are
compared to each other. However, it shows that the vorticity of test case 1 is an order
10 lower than of test case 2, although they have the same transition width. This can be
due to a lower mobility reduction factor for test case 1 (see Table C.1), which causes a
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(a) (b)

Figure 5.15: (a) Saturation profile and (b) logarithm of the apparent foam viscosity, for the fourth test case of
Farajzadeh et al. [3] after 0.42 PV of injected gas.

smaller mobility derivative around the limiting water saturation. Hence a lower vorticity
is expected behind the front, whereas an increase in fingering at the front should partly
compensate for this. The interfacial length is largest for the cases without foam (until
the front in the second case reaches the right side of domain, and the interfacial length
drops below that of the first foam case). After that, weak foam shows the highest interfa-
cial length, as we could also observe from the saturation plots. The strong-foam cases are
all really stable at the front and therefore more or less constant around the same value.
On the other hand the average growth rate for test case 2 is almost as large as for test case
1, which implies that instabilities behind the front must contribute to this result. The av-
erage growth rate of the other two test cases are smaller and almost zero. The growth rate
of the case without foam is not comparable here, because of the chosen measure, as was
explained before. If we compare the results with the linear stability analysis, we see that
indeed a higher non-linearity (i.e. a smaller transition width from gas to foam) leads to
more instability.

5.8. ADDITIONAL TEST CASES

The first four test cases that were studied before by Farajzadeh et al. [3] confirmed the
linear stability results of this chapter numerically, but span only a very small range of the
total parameter set. Therefore we introduce six additional test cases that are located in
highly unstable or stable parts of the parameter space, or around the boundaries of the
stable parameter range. Hence, we can see whether the patterns described in Section 5.3
can be observed also for their numerical counterparts. The parameters of the additional
test cases are listed in Table C.2, and their values are depicted in the stability regions of
Section 5.3 in Figs. 5.7-5.9 of Section 5.4.
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(a) (b)

Figure 5.16: (a) Saturation profile and (b) total viscosity, for simulation case 1 without foam after 0.12 PV of
injected gas.

5.8.1. TEST CASE 5 AND 6
Test cases 5 and 6 are given by the same parameter set as test case 1 of Farajzadeh et al.
[3], but with a wider transition zone (κ = 10000 and κ = 100 respectively). According to
Fig. 5.7a and 5.8a, test case 5 is on the boundary between the stable and unstable region
and test case 6 is in the stable region, whereas test case 1 is unstable. The simulation
results of these two cases are given in Fig. 5.23.

5.8.2. TEST CASE 7
Test case 7 is an extension to test case 2 to 4, but the transition width κ is chosen such
that it is located at the boundary between the stable and unstable region of Fig. 5.7b
and 5.8b. This means it can exhibit both stable and unstable behavior, depending on
the heterogeneity of the reservoir. In Fig. 5.24 the simulation results for this case are
shown. The resulting foam front is very stable, but exhibits fingering behind the front.
The results are similar to test case 2, but show less fingering behind the front, due to a
longer transition width.

5.8.3. TEST CASE 8 AND 9
Test case 8 and 9 are extensions of test case 1 and 2 respectively, but with a higher limiting
water saturation. Because of the high value of S∗

w a foam is not formed, but the effect is
still there because of the model definition. This can be deduced by the fact that the
analytical solution contains a shock, such that the low mobilities that are induced by
the foam are bypassed. As shown in Fig. 5.5a, the shock saturation of the water phase is
always below the limiting water saturation, meaning that in the 1D analytical problem
there is no foam present at the shock and behind the shock, since there is not enough
water present. In front of the shock there is no gas to form a foam, which means that a
foam does not exist. The limiting water saturations are chosen such that the test cases
are located in the most unstable region of Figs. 5.9a and 5.9b respectively. The simulation
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(a) (b)

Figure 5.17: (a) Saturation profile and (b) total viscosity, for simulation case 2 without foam after 0.06 PV of
injected gas.
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Figure 5.18: Numerical approximation of the interfacial length, growth rate and vorticity norm for test case 1
of Farajzadeh et al. [3].

results are indeed both highly unstable as shown in Fig. 5.25. To investigate the influence
of foam on these simulation results, we compare to the reference cases without foam,
which are depicted in Figs. 5.16 and 5.17. Obviously, the results are completely different.
The front is much steeper for test cases 8 and 9 compared to the two reference cases.

5.8.4. TEST CASE 10
Finally we study a test case where the mobility reduction factor of test case 2 is increased
(i.e. a stronger foam). According to our analysis in Section 5.3, a higher mobility reduc-
tion implies are more stable front, which can be seen in Fig. 5.26a. However, the main
gain in stability is obtained behind the front, which shows less fingering, as visible in the
total viscosity plot in Fig. 5.26b. If we compare this result with Fig. 5.13b of test case 2,
we see that the fingering behind the front is still present for test case 10, but much less
pronounced than for test case 2. An increased mobility reduction factor also has a stabi-
lizing effect on these instabilities, and not just at the front. An increased foam strength is
hence subduing the very fast waves of the gas phase, that are moving into the foam front.
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Figure 5.19: Numerical approximation of the interfacial length, growth rate and vorticity norm for test case 2
of Farajzadeh et al. [3].

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0  500  1000  1500  2000  2500  3000  3500  4000

Γ

t

foam

no foam

(a) interfacial length

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0  500  1000  1500  2000  2500  3000  3500  4000

σ

t

foam

no foam

(b) growth rate

0.00000001

0.00000010

0.00000100

0.00001000

0.00010000

0.00100000

0.01000000

0.10000000

 0  500  1000  1500  2000  2500  3000  3500  4000

n
o

rm
(ω

)

t

foam

no foam

(c) vorticity norm

Figure 5.20: Numerical approximation of the interfacial length, growth rate and vorticity norm for test case 3
of Farajzadeh et al. [3].

Hence we can assume that the main trigger for these instabilities is the transition width
of the gas-foam interface. Moreover, the front of test case 10 is a little bit ahead of the
front of test case 2, for the same time instance. The increased stability behind the front
is thus also favorable for the sweep-efficiency of the foam.

5.8.5. NUMERICAL STABILITY ANALYSIS

For the extended test cases we performed a numerical stability analysis, which shows
once more that increasing the limiting water saturation (case 8 and 9) leads to a large in-
crease in the interfacial length, even though foam is not present in theory (see Fig. 5.27a).
It also shows that the cases with a smaller transition width (case 7, 8, 9 and 10) have a rel-
atively high growth rate and viscosity norm (see Fig. 5.27b), due to fingering behind the
front. The cases with a broader transition width between gas and foam, do not exhibit
this fingering behavior and show a much lower growth rate and vorticity norm. Case 5
resembles case 1 except for a lower κ, and has a very unstable front like test case 1, but is
more stable behind the front, due to a wider transition zone.

5.9. CONCLUSIONS
The physical instabilities that were observed behind the front in Farajzadeh et al. [3]
seem to be inherent to the non-linearity in the mobility of foam. The linear stability
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Figure 5.21: Numerical approximation of the interfacial length, growth rate and vorticity norm for test case 4
of Farajzadeh et al. [3].
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Figure 5.22: Numerical approximation of the interfacial length and vorticity norm for the first four test cases of
Farajzadeh et al. [3].

analysis made it clear that the foam parameters κ, R and S∗
w had a significant influence

on the physical stability of the results. We could identify stability regions based on the
dimensionless disturbance number, which show for which parameter sets the solutions
are potentially stable or unstable. The first four test cases studied in Section 5.4, and the
six additional test cases in Section 5.8, confirmed these results numerically.

We found that a strong foam with a narrow transition width between gas and foam
(test case 2) shows the highest growth rate of all test cases, although the front is most
stable. We investigated the influence of the parameters that determine foam strength,
transition width and critical water saturation on the stability characteristics of the so-
lutions. It shows that a high mobility reduction factor (foam strength) has a stabilizing
effect on the solutions, while a higher non-linearity of the gas-foam transition (shorter
transition width) has a destabilizing effect. It turns out that the growth rate of instabili-
ties is linearly dependent on both the inverse foam strength and transition width control
parameters (1/R and κ). There is also a strong effect of the critical water saturation on
the stability characteristics.

In this research we neglected the influence of capillarity in both the linear stability
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(a) (b)

(c) (d)

Figure 5.23: (a) Saturation profile and (b) logarithm of the apparent foam viscosity for the 5th and 6th test case,
after 0.35 of injected gas.

analysis and the simulations, because it has a damping effect on the instabilities at the
front. For a more realistic outcome, the effect of additional diffusion could be inves-
tigated. Furthermore we could extend this analysis to a quarter-five spot setup. This
would add an extra complexity to the model due to a spatially varying strain field that
affects the stability front, as was shown for a miscible flow case in Chen and Meiburg
[30].

Moreover, we recommend to extend the current local equilibrium foam models to
more complex models at the front, to gain more insight in the nature of instabilities that
occur behind the foam front and to investigate whether they are able to cause an un-
stable displacement. In this case models that take into account the gas-foam interface
might give an outcome.

In this thesis we did not compare our stability or numerical results with experimental
results, since those experiments do not exist for this particular study. Experiments that
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(a) (b)

Figure 5.24: (a) Saturation profile and (b) logarithm of the apparent foam viscosity for the 7th test case, after
0.42 PV of injected gas.

look at fingering phenomena of a highly mobile gas being injected in the low-mobile
foam would be very valuable to validate numerical simulations of foam enhanced oil
recovery processes. One way to do this would be to create a foam between two glass
plates with obstacles in between, to mimic the porous rock in two dimensions. After this
gas is injected through a hole in the middle of the plates, to study the fingering behavior
in a porous medium, in the presence of foam. These results can then be compared to
highly accurate simulations in two dimensions.

Finally the results from the stability analysis can be used to identify important scales
and wave lengths of the problem, which in turn can be adapted in building an efficient
numerical solver that is able to capture both the fast waves that occur due to the foam,
and the slow waves occurring in the rarefaction wave.
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Figure 5.25: (a) Saturation profile and (b) logarithm of the apparent foam viscosity for the 8th and 9th test case,
after 0.7 and 0.35 PV of injected gas respectively.
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Figure 5.26: (a) Saturation profile and (b) logarithm of the apparent foam viscosity for the 10th test case, after
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foam behavior in porous media: Traveling wave, Colloids and Surfaces A: Physico-
chemical and Engineering Aspects 377, 228 (2011).

[7] E. Ashoori, D. Marchesin, and W. R. Rossen, Stability Analysis of Uniform Equilib-
rium Foam States for EOR Processes, Transport in Porous Media 92, 573 (2012).

[8] M. N. Zanganeh, J. F. B. M. F. M. Kraaijevanger, H. W. Buurman, J. D. Jansen, W. R.
Rossen, M. Namdar Zanganeh, J. F. B. M. F. M. Kraaijevanger, H. W. Buurman, J. D.
Jansen, W. R. Rossen, and M. N. Zanganeh, Challenges in adjoint-based optimiza-
tion of a foam EOR process, Computational Geosciences 18, 563 (2014).

[9] C. S. Boeije and W. R. Rossen, Fitting Foam-Simulation-Model Parameters to Data:
II. Surfactant-Alternating-Gas Foam Applications, SPE Reservoir Evaluation & Engi-
neering 18, 273 (2015).

[10] Y. Yortsos and F. J. Hickernell, Linear Stability of Immiscible Displacement Processes
in Porous Media, SIAM J. Appl.\ Math. 49, 730 (1989).

[11] A. Riaz, M. Hesse, H. A. Tchelepi, and F. M. Orr, Onset of convection in a gravitation-
ally unstable diffusive boundary layer in porous media, Journal of Fluid Mechanics
548, 87 (2005).

[12] A. Riaz and H. A. Tchelepi, Linear stability analysis of immiscible two-phase flow in
porous media with capillary dispersion and density variation, Physics of Fluids 16,
4727 (2004).

[13] A. Riaz and H. A. Tchelepi, Stability of two-phase vertical flow in homogeneous
porous media, Physics of Fluids 19, 072103 (2007).

http://dx.doi.org/10.1007/s10596-014-9412-4
http://dx.doi.org/10.2118/165282-PA
http://dx.doi.org/10.2118/165282-PA
http://dx.doi.org/10.1017/S0022112005007494
http://dx.doi.org/10.1017/S0022112005007494
http://dx.doi.org/ 10.1063/1.1812511
http://dx.doi.org/ 10.1063/1.1812511
http://dx.doi.org/ 10.1063/1.2742975


5

112 REFERENCES

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

Γ

t

case 5

case 6

case 7

case 8

case 9

case 10

(a) interfacial length

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

n
o
rm

(ω
)

t

case 5

case 6

case 7

case 8

case 9

case 10

(b) vorticity norm

Figure 5.27: Numerical approximation of the interfacial length and vorticity norm for the last six test cases.

[14] B. Meulenbroek, R. Farajzadeh, and H. Bruining, The effect of interface movement
and viscosity variation on the stability of a diffusive interface between aqueous and
gaseous CO2, Physics of Fluids 25, 074103 (2013).

[15] D. Ambrosi and L. Quartapelle, A Taylor–Galerkin Method for Simulating Nonlinear
Dispersive Water Waves, Journal of Computational Physics 146, 546 (1998).

[16] L. Cheng, A. B. Reme, D. Shan, D. A. Coombe, and W. R. Rossen, Simulating Foam
Processes at High and Low Foam Qualities, in SPE (Tulsa, Oklahoma, 2000) pp. 1–15.

[17] D. Shan and W. R. Rossen, Optimal Injection Strategies for Foam IOR, SPE 6, 131
(2004).

[18] R. J. LeVeque, Numerical Methods for Conservation Laws, 2nd ed. (Birkhauser Ver-
lag, 1992) p. 214.

[19] J. M. Van der Meer, D. E. A. Van Odyck, P. Wirnsberger, and J. D. Jansen, High-order
Simulation of Foam Enhanced Oil Recovery, in Proc. 14th European Conference on
Mathematics in Oil Recovery (ECMOR XIV) (Catania, 2014) pp. 8–11.

[20] C. S. Boeije and W. R. Rossen, Fitting Foam Simulation Model Parameters for SAG
Foam Applications, in SPE Enhanced Oil Recovery Conference (Society of Petroleum
Engineers, 2013).

[21] J. M. Van der Meer, J. B. F. M. Kraaijevanger, M. Möller, and J. D. Jansen, Temporal
oscillations in the simulation of foam enhanced oil recovery, in Proc. 15th European
Conference on Mathematics in Oil Recovery (ECMOR XIV) (Amsterdam, 2016).

[22] K. Hvistendahl Karlsen, K. A. Lie, J. Natvig, H. Nordhaug, and H. Dahle, Operator
Splitting Methods for Systems of Convection-Diffusion Equations: Nonlinear Error
Mechanisms and Correction Strategies, Journal of Computational Physics 173, 636
(2001).

http://dx.doi.org/ 10.1063/1.4813072
http://dx.doi.org/10.1006/jcph.1998.6027
uuid:1a99842e-7654-476d-b5dc-58ea0883d307
uuid:1a99842e-7654-476d-b5dc-58ea0883d307
http://dx.doi.org/10.3997/2214-4609.201601850
http://dx.doi.org/10.3997/2214-4609.201601850
http://dx.doi.org/10.1006/jcph.2001.6901
http://dx.doi.org/10.1006/jcph.2001.6901


REFERENCES

5

113

[23] E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd ed.
(Springer Berlin / Heidelberg, 2009) Chap. 0, p. 540.

[24] G. G. Dahlquist, A special stability problem for linear multistep methods, BIT Nu-
merical Mathematics 3 (1), 27 (1963).

[25] P. Wirnsberger, The grid orientation effect in miscible displacement, Mphil disserta-
tion, University of Cambridge (2012).

[26] R. D. Falgout and U. Meier Yang, Hypre: a Library of High Performance Precondition-
ers, in Preconditioners, Lecture Notes in Computer Science (ICCS, 2002) pp. 632–641.

[27] I. Yahya Afiff, Reservoir simulation of foam flow using Kepler GPU, Msc. thesis, Delft
University of Technology (2014).

[28] W. R. Rossen, Numerical Challenges in Foam Simulation : A Review, in SPE Annual
Technical Conference and Exhibition held in New Orleans, October (SPE Interna-
tional, New Orleans, 2013).

[29] A. Riaz and H. A. Tchelepi, Numerical simulation of immiscible two-phase flow in
porous media, Physics of Fluids 18, 014104 (2006).

[30] C.-Y. Y. Chen and E. E. Meiburg, Miscible porous media displacements in the quarter
five-spot configuration. Part 2. Effect of heterogeneities, Journal of Fluid Mechanics
371, 269 (1998).

http://dx.doi.org/ 10.1007/3-540-47789-6_66
http://dx.doi.org/ 10.2118/166232-MS
http://dx.doi.org/ 10.2118/166232-MS
http://dx.doi.org/ 10.1063/1.2166388
http://dx.doi.org/10.1017/S0022112098002201
http://dx.doi.org/10.1017/S0022112098002201




6
CONCLUSIONS AND DISCUSSION

6.1. CONCLUSIONS
In the introduction (Chapter 1), a number of questions were raised. The main question
was:

How to improve the accuracy and stability of the numerical solutions of the local-
equilibrium foam model?

We will try to answer this question in the following sections, by addressing the sub-
questions that were asked in the introduction. The sub-questions were separated in two
categories, for each model studied.

6.1.1. NON-LINEAR HEAT EQUATION WITH A DISCONTINUOUS COEFFICIENT

1. IS THE EQUATION WELL-POSED?
To answer this question, we need to go back to some of the basic mathematical concepts
in the field of partial differential equations. For a problem to be well-posed it needs to
have:

• An unique solution,

• a solution that depends continuously on the initial condition.

The non-linear heat equation with a continuous coefficient, two boundary conditions
and an initial condition, is well-posed. However, if a discontinuity is occurring in the
coefficients or initial conditions this is not necessarily true. In fact, for such a prob-
lem, additional (boundary) conditions are required at the discontinuous phase interface
Therefore, the solution is split in a left and a right solution that are connected through
the moving phase interface (Chapter 3). In case of a highly non-linear coefficient this
is not necessary, and hence we can derive an unique analytic solution for these kind of
problems.
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2. HOW DOES A PIECEWISE CONTINUOUS DIFFUSIVITY COEFFICIENT AFFECT THE NUMERI-
CAL SOLUTIONS OF THE EQUATION?
If the equation is solved with a standard finite volume method that does not take into
account the discontinuity in its coefficient, this will lead to temporal oscillations in the
solutions that were observed in Chapter 2 and 3. The oscillations worsen, when the num-
ber of discontinuities increases.

3. HOW CAN WE IMPROVE THE FINITE VOLUME METHOD TO HANDLE DISCONTINUOUS CO-
EFFICIENTS IN THE EQUATION?
Improved averaging schemes and adapted discretization methods can be used to smoothen
the solutions (Chapter 2, 3). For the adapted grid methods it is important to enforce the
necessary interface conditions at the discontinuous interface. Moreover, if an enthalpy
formulation is available, for example in the case of phase change problems, one can use
an enthalpy formulation and solve this instead, to improve the solutions. This will still
contain some temporal oscillations, and therefore the improved averaging scheme in
Chapter 2 is the easiest and most efficient solution.

6.1.2. LOCAL-EQUILIBRIUM FOAM MODEL

4. HOW DOES A HIGHLY NON-LINEAR DIFFUSION COEFFICIENT AFFECT THE NUMERICAL

SOLUTIONS OF THE MODEL?
The numerical solution of the model suffers from temporal oscillations in the pressure
solution, due to the highly non-linear diffusion coefficient in the pressure equation. The
solution of the saturation equation is not affected when the time step is small enough.
The temporal oscillations become more pronounced as the transition zone between gas
and foam becomes shorter (i.e. the mobility function is steeper) and when the difference
between the gas and foam mobility is larger. Moreover, due to the non-linearity, the
model is very sensitive to small changes in the parameters, and hence the accuracy of
the solutions and the convergence rate of the numerical solver is an issue.

5. WHAT IS THE CAUSE OF THE TEMPORAL OSCILLATIONS OBSERVED IN THE NUMERICAL

SOLUTIONS OF THE MODEL?
The highly non-linear mobility function or diffusion coefficient of the model causes the
temporal oscillations in the pressure solution. The non-linearity in the mobility func-
tion happens around the critical saturation, where the gas-foam front is located. The
gas-foam front is in general just behind the foam-water front, and moves through the
grid, when gas is injected on one side of the water-filled porous medium. Each time the
gas-foam interface passes a grid block, the mobility in this grid block drops over several
orders of magnitude, causing the pressure value in this grid block to shoot up. When the
phase-interface passes through the next grid block the same happens here, and the pres-
sure in the previous grid block drops again as the front proceeds. Hence, we will observe
an oscillatory pressure pattern in time in each grid block, that damps out when the front
moves further away from that grid block.

6. WHAT IS THE CONNECTION BETWEEN THE TWO MODELS STUDIED?
Both the non-linear heat equation with a piecewise discontinuous coefficient and the
local-equilibrium foam model exhibit temporal oscillations, due to the (almost) discon-
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tinuous diffusion coefficient in the diffusion equation. In the heat equation the equation
is parabolic. In the incompressible local-equilibrium foam model the pressure equation
containing the diffusion term is elliptic, but it becomes parabolic if a slight compress-
ibility is added to the equation. Hence, we could say that the non-linear heat equa-
tion is a simplified version of the pressure equation in the slightly compressible local-
equilibrium foam model. The main difference is that the diffusion term in the parabolic
pressure equation, does not depend directly on the pressure, but on the phase satura-
tions. Therefore the origin of the temporal oscillations of the foam model are difficult to
resolve, while this is much easier for the non-linear heat equation (Chapter 2).

7. HOW CAN WE IMPROVE THE NUMERICAL SOLUTIONS OF THE MODEL?
Throughout this thesis it became clear that the local equilibrium foam model used, is
extremely sensitive to small changes in the parameters, due to the gas-foam interface,
which is highly unstable. Therefore, it is essential for convergence to use improved
averaging schemes (Chapter 2) in combination with an adaptive grid method, like a
front-tracking scheme, level-set method, or the hybrid methods that we proposed in
Chapter 3. Moreover, to obtain an accurate solution, it is recommended to use a high-
resolution grid or high-order solver both in space and time, as shown in Chapter 4. These
numerical measures are still not able to completely avoid non-physical oscillatory be-
havior, which is especially a problem for models with a narrow transition zone between
gas and foam. Besides that, applying adaptive grid methods and a high resolution in
time and space, leads to complex numerics and a high computational effort.

8. WHAT IS THE EFFECT OF FOAM ON THE TWO-DIMENSIONAL SOLUTIONS OF THE MODEL?
It turns out that foam has a significant effect on the behavior of the gas front. As expected
the simulations with foam suffer less from gravity override and viscous fingering than
the simulations without foam. This leads to a better sweep of the reservoir and a much
lower breakthrough time (Chapter 4). The numerical solutions in two dimensions, suffer
from instabilities behind the foam-water front, due to the gas-foam front, which is highly
unstable (Chapter 5). Also, we observed a severe grid-orientation effect in simulations
that use a quarter five-point stencil, due to the high sensitivity of the model to the grid
and model parameters (Chapter 4).

9. HOW STABLE AND ACCURATE ARE THE SOLUTIONS OF THE MODEL IN TWO DIMENSIONS?
The physical instabilities that were observed behind the front in Farajzadeh et al. [1]
seem to be inherent to the non-linearity in the mobility of foam. We found that a strong
foam with a narrow transition width between gas and foam (test case 2) shows the high-
est growth rate of all test cases, although the front is most stable. We investigated the
influence of the parameters that determine foam strength, transition width and critical
water saturation on the stability characteristics of the solutions. It shows that a high mo-
bility reduction factor (foam strength) has a stabilizing effect on the solutions, while a
higher non-linearity of the gas-foam transition (shorter transition width) has a destabi-
lizing effect. It turns out that the growth rate of instabilities is linearly dependent on both
the inverse foam strength and transition width control parameters (1/R and κ). There
is also a strong effect of the critical water saturation on the stability characteristics. In
Chapter 5 we approximate the stability of the foam solutions ’a priori’, which makes it
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possible to adjust the choice of grid and the grid resolution, based on this. This will lead
to a better accuracy of the solutions.

10. HOW SUITABLE IS THE MODEL? ARE THERE ANY SUITABLE ALTERNATIVES?
The severe challenges on the numerical solver and grid, described in the previous sub-
questions, are not in balance with the gain we observe in the accurateness and conver-
gence of the solutions. In other words we are jumping "out of the frying pan, into the
fire". Therefore, we propose to use a more robust model to describe foam, for example
by taking into account bubble density of the foam as in Chen et al. [2]. This will add an
additional diffusion term to the model. Hence the model does no longer give a shock
solution, leading to a more robust model, for which there is no need to make corrections
in order to avoid non-physical oscillations.

Another problem of the foam model studied, is that the physics of the model are not
coherent with the numerics. This can be deduced by the fact that the analytical solution
contains a shock, such that the low mobilities that are induced by the foam are bypassed.
This was explained further in Chapter 5, where it is shown in Fig. 5.5a that the shock
saturation of the water phase is always below the critical water saturation. This implies
that in the one-dimensional analytical problem there is no foam present at the shock and
behind the shock, since there is not enough water present. In front of the shock there is
no gas to form a foam, which means that a foam does not exist. However, the foam still
has an effect on the analytical solution through the shock-speed, which is significantly
lower when the critical water saturation is reduced. This is not in agreement with the
physics of the foam process, since the model without foam should represent a normal
gas-flooding process. When numerical or physical diffusion is present in the numerical
solutions of the model respectively, the shock is diffused and therefore foam does exist
and the low-mobility values are no longer bypassed. In some literature, among others
[1] and [3], these values are called non-physical and ought to be avoided. This claim is
not true because the model is not representing the actual physics. Therefore instead of
adapting the numerical method in order to avoid these low mobility values, the model
needs to be revised in order to describe the foam process at the front more accurately.

6.1.3. SUMMARY

In summary, we can conclude that highly non-linear parameters in the diffusion equa-
tion cause temporal instabilities that are non-physical, which can be mollified by im-
proving the discretization of the scheme. Physical instabilities behind the front are in-
herent to the non-linearity in the mobility of foam. A numerical scheme that resolves
both the gas-foam interface and the foam-water interface accurately, is recommended.

6.2. SUGGESTIONS FOR FUTURE RESEARCH

6.2.1. IMPROVED MODEL FOR GAS-FOAM FRONT

A next step forward could be to use a more complex model, describing the gas-foam front
directly instead of indirectly as for the current local-equilibrium model studied in this
thesis. The population balance model contains an extra equation for the bubble density,
which means that we have an additional degree of freedom per grid block. However, the
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gain in stability is making up for this deficiency, because a lower resolution grid can be
applied.

6.2.2. ADAPTIVE GRID METHODS

Also, adaptive grid methods, that have a higher resolution around the gas-foam inter-
face, the foam-water interface and the injection well, are recommended in order to in-
crease the accuracy of the outcome and reduce the overall computational costs by allow-
ing a low resolution in the rest of the reservoir. However, one needs to take into account
that the gas-foam transition is taking place on a scale that is several orders in magni-
tude smaller than the reservoir scale, and hence the refinement of the grid might not
be enough to solve all stability issues arising from the drop in mobility at the gas-foam
interface.

6.2.3. BUBBLE-FLOW MODELS FOR POROUS MEDIA

From a scientific point of view it would be interesting to study the inflow of gas in a foam
filled porous medium, where one includes the effects of gas trapping, foam breakage
and coalescence on pore-scale. Bubbly flow has been studied extensively in other ar-
eas, but in porous media flow the main efforts have been made in experimental work
(Among many others [4–9]). For simulators there lie a lot of opportunities for modeling
foam in porous media on the pore-scale. For example, one could apply the volume-of-
fluid method [10] or use the Lattice-Boltzmann equations to model bubbles in a porous
medium (See for example for the modeling of bubbly flow [11–13]). This could lead to
new insights that can be utilized when improving the models for foam in porous media
on a larger scale.

6.2.4. INFLUENCE OF OIL ON THE STABILITY OF FOAM EOR
Finally, the influence of oil on foam flow in porous media is not treated in this thesis, but
is still largely unknown. There are some experimental and modeling studies about this
topic [14–18], but good simulations that support the results from these studies are not
available. Rather, they suffer from hysteresis effects and instabilities, especially when
a local-equilibrium model is used. Because the oil relative permeability adds another
highly non-linear effect to the model, this poses an additional challenge on numerical
solvers. Apart from this, there is mixing of phases, which makes local-equilibrium mod-
els a poor choice for these kind of physics. We recommend to extend the phase-change
techniques that were studied in Chapter 3 to foam models that include oil. In that case
more phase interfaces have to be tracked and solved for. Insights from experimental
studies could help to provide appropriate interface conditions to avoid numerical insta-
bilities. Moreover, the linear stability analysis of Chapter 5 can be extended to models
that include oil.
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A
APPENDIX A: DERIVATION

TWO-PHASE FLOW EQUATIONS

In the following sections we give a derivation of the non-dimensional incompressible,
immiscible two-phase flow equations for gas, foam and water in a porous medium.

A.1. CONSERVATION LAWS
Mass conservation of each phase, is described by a mass-balance equation for the phase
saturation Sα ∈ [0,1], given by

φ∂t Sα =−∇·uα, (A.1)

where the subscript α ∈ {w, g , f } denotes the phase (water, gas or foam in this case), φ
denotes the reservoir porosity, and uα the phase velocity that is given by

uα =−λα
(∇Pα+ραg

)
. (A.2)

Here Pα is the phase pressure, ρα is the phase density, g is the gravitational force, and λα
is the phase mobility

λα = k
krα(Sα)

µα
, (A.3)

where k is the absolute permeability, µα the phase viscosity and krα the phase relative
permeability, which is defined in the main part of this article.

A.2. TWO-PHASE FLOW
In case of two fluids, the difference between the phase pressures is described by the cap-
illary pressure, defined as

Pc ≡ Pw −Pg , (A.4)

such that

uw = −λw
(∇Pc +∇Pg +ρw g

)
, (A.5)

ug = −λg
(∇Pg +ρg g

)
. (A.6)
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The total velocity, which is the sum of the phase velocities, is thus equal to

u =−[
λT ∇Pg +λw∇Pc + (λwρw +λgρg )g

]
, (A.7)

where λT is the total mobility (sum of mobilities). Hence, we can express the phase
velocity of water in terms of the total velocity as follows

uw =−λw∇Pc + λw

λT
(u+λw∇Pc +λg (ρg −ρw )g)

= λw

λT
u− λwλg

λT
(∇Pc +∆ρg)

= fw u−λw fg (∇Pc +∆ρg),

(A.8)

where fα =λα/λT is the phase fractional flow function and ∆ρ = ρw −ρg . Hence we can
express Eq. A.1 as

φ∂t Sw =−∇· ( fw
(
u−λg (P ′

c∇Sw +∆ρg)
)

, (A.9)

where P ′
c is the derivative of the capillary pressure with respect to the phase saturation

[1], that is approximated by

P ′
c =

√
φ

k
γg w sin(θ). (A.10)

where γg w is the interfacial tension between gas and water and θ the tilting angle of
the rectangular domain with respect to the gravitational force. From the definition of
saturation it follows that the sum of the phase saturations is one everywhere, i.e.

∑
α

Sα = 1, with α ∈ {w, g }, (A.11)

so that we only have to solve for one phase. Hence, Eq. A.8, A.9 and A.11 imply that

∇·u = 0. (A.12)

which describes the pressure decay in the porous medium.

A.3. NON-DIMENSIONAL FORMULATION

To reduce the number of parameters we scale the model given by Eq. A.1, A.2 and A.12,
in a similar way as done by Riaz and Tchelepi [1]. If we let U be a characteristic velocity
scale, L a characteristic length scale of the model, and W a characteristic width scale,
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such that A = L/W is the aspect ratio, we can scale the other variables as follows

x = Lx̃, (A.13)

y = W ỹ , (A.14)

∇ = ∇̃
L

, (A.15)

u = U ũ, (A.16)

t = φL(1−Swc −Sg r )

U
t̃ , (A.17)

P = µU L

k
P̃ , (A.18)

P ′
c = γg w

√
φ

k
P̃ ′

c , (A.19)

where the tilde denotes a non-dimensional variable. The relative permeability functions
are scaled by their endpoint relative permeabilities, i.e. the relative permeability of the
residual water and gas saturation, kr we = kr w (Sg r ) and kr g e = kr g (1−Swc ), respectively.

The gas saturation is normalized by S̃g = (Sg −Sg r )
(1−Swc−Sg r ) . Substituting these variables into

the two-dimensional model leads to a non-dimensional system of the form

∂t̃ S̃g = −∇̃ ·
[

M
k̃r g

λ̃

(
ũ− k̃r w

Nca
P̃ ′

c ∇̃S̃g − k̃r w
G

M
∇̃z

)]
, (A.20)

ũ = −λ̃w ∇̃P̃c − λ̃∇̃P̃g −λwG∇z, (A.21)

∇̃ũ = 0, (A.22)

where λ̃ = Mk̃r g + k̃r w is the dimensionless mobility function. Here, the variables M ,
G and Nc denote the end-point mobility ratio, gravity number and capillary number
respectively, which are given by

M = µw

µg

kr g e

kr we
, (A.23)

G = k∆ρg

µgU
, (A.24)

Nca = Uµw

γg w sin(θ)
, (A.25)

where g is the magnitude of the gravitational force. The mobility ratio together with the
dimensionless foam parameters R, κ and S∗

w , the dimensionless injection rate Ĩ and the
porosityφ, determine the entire behavior of the fluids for a certain initial boundary value
problem. In the rest of the article we will drop the tilde for readability and define S ≡ Sg

and f ≡ kr g M
λ .
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APPENDIX B: DERIVATION

PERTURBATION EQUATIONS

Here we derive the equations used for the stability analysis, that is described in Riaz and
Tchelepi [1]. For this we rewrite Eq. 5.1 and 5.2 in terms of the transformed variable
ξ= x − vs t , y and t , so that

∂t S − vs∂ξS +∇· (kr w∇P̄
) = 0, (B.1)

∇·
(
λ∇P̄ −Gkr g∇z − kr g

Ca
P ′

c∇S

)
= 0 (B.2)

Substitute (S,P )(ξ, y, t ) = (S0,P0)(ξ)+ (ŝ, p̂)(ξ)ei ny+σt in Eq. B.1 gives

∂t S − vs∂ξS +∂xi (kr w∂xi P̄ )+∂y (kr w∂y P̄ ) = 0, (B.3)

and hence,
∂t S +∂ξ

(
kr w∂ξP̄ − vs S

)+kr w∂y y P̄ +k ′
r w∂y S∂y P̄ = 0. (B.4)

Evaluating all derivatives to y and t leads to

σŝe i ny+σt +∂ξ
(
kr w

(
P ′

0 + p̂ ′e i ny+σt
)
− vs

(
S0 + ŝe i ny+σt

))
= n2kr w p̂e i ny+σt +n2k ′

r w ŝ p̂(e i ny+σt )2.
(B.5)

Multiplying the equation with e−(i ny+σt ) gives

σŝ +∂ξ
(
kr w P ′

0e−(i ny+σt ) +kr w p̂ ′− vs S0e−(i ny+σt ) − vs ŝ
)

= n2kr w p̂ +n2k ′
r w ŝ p̂e i ny+σt .

(B.6)

Now, we express kr w (S) in terms of S0 by using a Taylor expansion, such that

kr w (S) = kr w (S0)+k ′
r w (S0)(S −S0)+O ((∆S)2)

= kr w (S0)+k ′
r w (S0)ŝe i ny+σt ) +O ((ŝ)2.

(B.7)
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Substituting this in the above equation we obtain

σŝ +∂ξ(kr w (S0)P ′
0e−(i ny+σt ) +k ′

r w (S0)P ′
0 ŝ +kr w (S0)p̂ ′

+k ′
r w (S0)p̂ ŝ′e i ny+σt − vs S0e−(i ny+σt ) − vs ŝ)

= n2kr w (S0)p̂ +n2k ′
r w (S0)ŝ p̂e i ny+σt +n2k ′′

r w (S0)ŝ2p̂e2·(i nx+σt ) +O ((ŝ)2)).

(B.8)

Neglecting all the higher order terms that include ŝ p̂, ŝ2 and ŝ p̂ ′, and assuming that
e−(i ny+σt ) → 0 if σ> 0 and t > 0, we find that

σŝ +∂ξ
(
kr w (S0)p̂ ′+ (

k ′
r w (S0)P ′

0 − vs
)

ŝ
)= n2kr w (S0)p̂. (B.9)

We apply the same technique to Eq. B.2, such that

∂ξ

(
λ∂ξP̄ −Gkr g −

kr g

Ca
P ′

c∂ξS

)
=−∂y

(
λ∂y P̄ − kr g

Ca
P ′

c∂y S

)
, (B.10)

so that

∂ξ

(
λ(P ′

0 + p̂ ′e i ny+σt )−Gkr g −
kr g

Ca
P ′

c (S′
0 + ŝ′e i ny+σt )

)
= n2λp̂e i ny+σt −n2 kr g

Ca
P ′

c ŝe i ny+σt ,

(B.11)

and hence

∂ξ

(
λ(P ′

0e−(i ny+σt ) + p̂ ′)−Gkr g e−(i ny+σt ) − kr g

Ca
P ′

c (S′
0e−(i ny+σt ) + ŝ′)

)
= n2λp̂ −n2 kr g

Ca
P ′

c ŝ.

(B.12)

We can express λ(S), kr g (S) and P ′
c (S) in terms of S0 with a second order accurate Taylor

expansion. Neglecting higher order terms, that contain multiples of ŝ and p̂ or p̂ ′, and
letting e−(i ny+σt ) → 0 leads to

∂ξ

(
λp̂ ′+

(
λ′P ′

0 −Gk ′
r g −

1

Ca
(kr g P ′

c )′S′
0

)
ŝ − kr g

Ca
P ′

c ŝ′
)
= n2λp̂ −n2 kr g

Ca
P ′

c ŝ. (B.13)

Eq. B.9 and B.13 described an eigenvalue problem with eigenvalue σ, in terms of the
eigenfunctions ŝ and p̂:

σŝ +∂ξ
(
kr w p̂ ′+ (

k ′
r w P ′

0 − vs
)

ŝ
)= n2kr w p̂, (B.14)

∂ξ

(
λp̂ ′+

(
λ′P ′

0 −Gk ′
r g −

1

Ca
(kr g P ′

c )′S′
0

)
ŝ − kr g

Ca
P ′

c ŝ′
)
= n2λp̂ −n2 kr g

Ca
P ′

c ŝ, (B.15)

where the functions kr w ,kr g and Pc are functions of S0, and the apostrophe denotes
the derivative with respect to S0 or ξ respectively. The base state functions S0 and P0

obey the boundary values of the Buckley-Leverett problem and obtain their maximum
gradient at ξ= 0, and the eigenfunctions (ŝ, p̂) = 0 and (ŝ′, p̂ ′) = 0 at ξ=±∞. This system
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can be solved numerically [2], or by matched asymptotic expansions [1].
In the absence of capillarity (Ca →∞) the base state satisfies

S0

dξ
= δ(ξ), (B.16)

dP0

dξ
= Gkr g −1

λ
, (B.17)

so that it follows from the interface and boundary conditions, that ŝ = c1δ(ξ), ∀ξ ∈ (−∞,∞)
and c1 ∈R [1]. Away from the discontinuity at ξ= 0, Eq. B.14 implies that

∂ξ
(
kr w p̂ ′)= n2kr w p̂ ⇒ p̂ ′′ = n2p̂ ⇒ p̂ = ce±nξ. (B.18)

Since p̂ = p̂ ′ = 0 at ξ=±∞ it follows that

p̂+0 = c2e−nξ, ∀ξ> 0,c2 ∈R, (B.19)

p̂−0 = c3e+nξ, ∀ξ< 0,c2 ∈R. (B.20)

Integrating the full system with capillarity given by Eq. B.14 and B.15 over the disconti-
nuity (from 0−0 to 0+0), gives us two equations in terms of p+0, p−0 and σ:

kr w (S0(0+0))p̂ ′+0 −kr w (S0(0−0))p̂ ′−0 = −c1σ, (B.21)

λ(S0(0+0))p̂ ′+0 −λ(S0(0−0))p̂ ′−0 = 0. (B.22)

Evaluating the indefinite integral of Eq. B.14 over ξ leads to

p̂ ′+ c1(λ′P0 −Gkr g )δ(ξ) = c4/λ+n2
∫

p̂dξ. (B.23)

Rewriting the the terms between brackets as −P ′′
0 /δ(ξ) by differentiating Eq. B.17 with

respect to ξ, gives

p̂ ′− c1P ′′
0 = c4/λ+n2

∫
p̂dξ. (B.24)

Integrating this expression over the discontinuity gives a third equation in terms of p̂+0

and p̂−0:
p̂+0 − p̂−0 = c1(P ′+0

0 −P ′−0
0 ). (B.25)

Eq. B.21, B.22 and B.25 then lead to an expression for the disturbance velocity:

σ

n
= fg1 − fg0

S1 −S0

λ1(1−Gkr g0 )−λ0(1−Gkr g1 )

λ1 −λ0
, (B.26)

where the subscripts 0 and 1 denote the front and back edge of the shock respectively.
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APPENDIX C: MODEL PARAMETERS

In Table C.1 and Table C.2 the model parameters used in Chapter 5 are listed.

Parameter [unit] Case 1 Case 2 Case 3 Case 4
foam strength R [·] 1.8 ·104 2.5 ·104 2.5 ·104 2.5 ·104

critical saturation S∗
w [·] 0.268 0.29 0.29 0.29

foam transition width κ [·] 105 105 104 102

end point gas permeability kr g e [·] 0.94 0.94 0.94 0.94
end point water permeability kr we [·] 0.2 0.2 0.2 0.2
gas viscosity µg [Pa s] 5 ·10−5 2 ·10−5 2 ·10−5 2 ·10−5

water viscosity µw [Pa s] 0.65 ·10−3 10−3 10−3 10−3

power coefficient gas ng [·] 1.8 1.3 1.3 1.3
power coefficient water nw [·] 2 4.2 4.2 4.2
gas density ρg [kg m−3] 10−5 10−5 10−5 10−5

water density ρw [kg m−3] 10−5 10−5 10−5 10−5

residual gas saturation Sg ,r [·] 0.0 0.0 0.0 0.0
residual water saturation Sw,c [·] 0.0 0.0 0.0 0.0
injected gas saturation Sg ,i n j [·] 1.0 1.0 1.0 1.0
injection rate gas I [m3 s−1] 3.5 ·10−5 3.5 ·10−5 3.5 ·10−5 3.5 ·10−5

absolute permeability K [m2] 5 ·10−10 5 ·10−10 5 ·10−10 5 ·10−10

porosity φ [·] 0.2 0.2 0.2 0.2

Table C.1: Simulation parameters for the four test cases of Farajzadeh et al. [1].
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Parameter [unit] Case 5 Case 6 Case 7 Case 8 case 9 case10
R [·] 1.8 ·104 1.8 ·104 2.5 ·104 2.5 ·104 1.8 ·104 5 ·104

S∗
w [·] 0.268 0.268 0.29 0.9 0.5 0.29
κ [·] 104 102 6 ·104 105 105 105

µg [Pa s] 5 ·10−5 5 ·10−5 2 ·10−5 2 ·10−5 5 ·10−5 2 ·10−5

µw [Pa s] 0.65 ·10−3 0.65 ·10−3 10−3 10−3 0.65 ·10−3 10−3

ng [·] 1.8 1.8 1.3 1.3 1.8 1.3
nw [·] 2 2 4.2 4.2 2 4.2

Table C.2: Simulation parameters for the additional test cases in Section 5.8 that support the linear stability
results of Section 5.3
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