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Abstract

Stochastic electrochemical measurement has come of age as a
powerful analytical tool in corrosion science, electrophysiology,
and single-entity electrochemistry. It relies on the fundamental
trait that most electrochemical processes are stochastic and
discrete in nature. Stochastic measurement of a single entity
probes the charge transfer from a few or even one electroactive
species. In corrosion, the stochastic measurements capture
either the average amplitude/frequency of many events taking
place spontaneously or probe discrete transients, signifying
localized dissolution. The measurement principles vary in
corrosion, single-entity, and electrophysiology, yet the main
quantifiable values are commonly the frequency and amplitude
of events. This perspective delves into the methodologies for the
analysis and deconvolution of stochastic signals in electro-
chemistry. Ranging from visual assessment of transients to
time/frequency analyses of the data and state-of-the-art ma-
chine learning, these methodologies mainly aim at identifying
patterns, singular events, and rates of electrochemical pro-
cesses from stochastic signals.
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Introduction

The umbrella term ‘stochastic’ can take on different
meanings depending on context. Physical systems can
exhibit randomness due to the inherent graininess of
matter. When a stream of particles impinges upon a
detector, the exact instant at which each detection
event occurs is usually random, even if the average rate
of events is perfectly well defined. This is the origin of
electrical shot noise, for example. Another form of
stochasticity arises from heterogeneities in a population
being probed or can result from physically unavoidable
intrinsic thermal and quantum fluctuations [1]. In this
case, measurements of individual members of the pop-
ulation can vyield different results, even though the
statistical distribution of the population is well defined.
This form of disorder is particularly relevant to studies
of, e.g. ensembles of catalytic nanoparticles. Finally,
many nanoscale systems exhibit thermally driven fluc-
tuations in time between different internal states that
are largely averaged out in macroscopic measurements.
The time evolution of the signal then depends on the
possible states of the system and the dynamics of the
transitions between them. In each case, the observed
stochasticity, or ‘noise’ encodes information about a
fundamental physical property.

The stochasticity discussed herein is distinct from
interference, which is caused by external sources, e.g.
power lines or vibrations, and can, in principle, be
eliminated from an experiment. However, in practice, a
“clean” signal acquisition can become challenging as the
data is amalgamated with the instrumental and envi-
ronmental noise that is generated by the data acquisi-
tion instrument, circuitry, interfaces, and electrical and
electromagnetic sources of noise. Confusingly, the term
‘noise’ is also often employed to describe both inter-
ference and stochastic electrochemical signals. The ac-
curacy of stochastic measurements, particularly in the
single-entity domain, relies on proper isolation (e.g.
Faraday cages, shielded and triaxial cables, etc.) as well
as advanced instrumentation to achieve the ampero-
metric resolution at the sub-picoampere level and the
temporal resolution at the sub-microsecond level [2].
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Corrosion assessment

The interpretation of stochastic electrochemical signals
in corrosion research often serves either as a tool for the
assessment of protective coatings, with a range of sensor
architectures [3,4], or identifying corrosion patterns.
Herein, the stochastic signals are spontaneous potential
and current fluctuations generated by the anodic disso-
lution of metal and the balancing reduction reactions [5].
A unique advantage of the technique is its ability to
directly capture the time-varying kinetics of physico-
chemical processes without perturbation of the system.
This is particularly valuable when studying localized
corrosion, corrosion inhibition, or re-activation [6,7].
Localized charge-transfer events that are characteristic of
localized corrosion are manifested as transient features in
the stochastic signal. These transients contain informa-
tion relevant to the kinetics of corrosion, for example, in
the current signals and the thermodynamics via the po-
tential [8]. The accurate extraction of this information is
a critical step in the application of stochastic electro-
chemistry for corrosion assessment [9].

The least stringent data analysis methodology would be
to use statistical parameters in the time domain, such as
the standard deviation [9]. Parameters in the time
domain are relatively straightforward to calculate and can
be used for corrosion classification [10] or as inputs for a
feature vector in a machine learning algorithm [11]. The
charge amplitude and frequency of corrosion events may
be connected with the underlying physico-chemical
process [9]. Often, however, this is not the case, which
limits their applicability to finding correlations between
data features and corrosion characteristics [9]. Calcula-
tions in the time domain require the prior removal of the
direct current (DC) component from the signal, repre-
senting either electrode asymmetry or potential shift
[12]. This DC drift is often overlooked and, when not
removed properly, can result in false frequency compo-
nents in the remaining data or, otherwise, the removal of
data that was representative of the process under inves-
tigation [12].

The preferred data analysis methodologies should allow
the experimentalist to focus on data transients and, thus,
directly on the kinetics of local processes. This is much
preferred over indirect statistical analysis methods. Such
functionality can be achieved by continuous wavelet- or
Hilbert—Huang spectra that show time-resolved fre-
quency information [13]. Figure 1 presents an example of
joint time-frequency analysis for a stochastic potential
signal. The time-frequency spectra allow a precise se-
lection (Figure 1(b)) of the frequency information within
any timeframe of interest [14]. Transient phenomena are
associated with local maxima in these time-frequency
spectra (Figure 1(c)) and can be located automatically
using pre-defined transient criteria [15]. This results in a
more objective study of the localized corrosion process;
transient criteria can be kept constant and only relevant

information is taken into account, whereas timeframes in
between transients can be neglected. Combining time-
frequency analysis of stochastic signals with scanning
electrochemical microscopy (SECM), or simultaneous,
situ optical measurements of the electrode surface, has
proven to be a powerful means to locate, classify, and
quantify corrosion processes [16,17]. The quantification
of the corrosion processes, i.e. the corrosion rate, is
possible by measuring the total charge that is associated
with the current signal fluctuation, signifying the total
anodic dissolution of the metal. The optical assessment
complements the electrochemical signals by visualizing
the surface changes associated with the transients [17].

In principle, similar data analysis can be applied to the
stochastic signal from battery testing and degradation.
The ion-electron transfer via the intercalation or dein-
tercalation processes that drives a typical Li-ion battery
is, in nature, analogous to the anodic dissolution and
cathodic reduction events in corrosion. Molecular dy-
namics has been utilized to model these discrete events
theoretically and correlate microscopic features with
capacitance and impedance [19,20], yet experimental
studies that use stochastic signal analysis for battery
research have yet to implement tools beyond rudimen-
tary frequency domain analysis [21,22]. While stochastic
electrochemistry in corrosion and degradation studies is
predominantly concerned with many averaged and/or
localized events, the single-entity electrochemistry fo-
cuses on the detection of electron transfer across a few
or even single electrochemical events. Yet, in both dis-
ciplines, the amplitude of the spikes and the frequency
of the events are the main quantities of interest.

Single-entity electrochemistry methods
Single-entity electrochemistry [23,24] concerns mea-
surements at the discrete level. lon channels and
nanopores represent the most studied of the stochastic
electrochemical systems. It is, however, prescient to
consider what information has been gleaned from sto-
chastic signal analysis of other single-entity electro-
chemistry systems.

(1) Impact electrochemistry methods can, in principle,
be employed to (1) infer the concentration of tar-
gets via the collision rate and (2) explore population
heterogeneities. However, because the former de-
pends on mass transport via diffusion, migration,
and convection, all of which are intertwined at the
nanoscale, this approach is difficult to apply quan-
titatively in an analytical setting [25]. Far more
interesting have been studies focusing on the
microscopic dynamics of individual detection
events in oxidative dissolution impact electro-
chemistry, in which it was revealed that ‘single
collision events’ can in fact involve complex hier-
archies of sub-events ruled by the statistical
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Figure 1
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Example of time-frequency transient analysis of corrosion potential signal from AISI 304 stainless steel immersed in 107 M HCI, using Hilbert—Huang
transform. The localized electrochemical process, i.e. the corrosion pit, is indicated by the white arrow in (a). The gray circle in (b) represents the ability to
precisely identify and select transients of interest associated with the localized event. This selection can be expanded and examined in more detail (c) or

form the basis for further assessment by machine learning [18].

properties of Brownian motion [26,27]. Deconvolv-
ing this interplay of mass transport and faradaic
processes at short time scales is critical to estab-
lishing the actual properties of nanoparticles via
these methods.

(2) Redox cycling, in which an electrochemically active
species is repeatedly reduced and oxidized, has
allowed measurements down to the few-molecule
level and even the inference of the current from
single molecules [28]. Interestingly, this suggests
that reversible adsorption plays a significant role at
the nanoscale even for redox cycling by well-
behaved, reversible outer-sphere species [29,30].
In addition, dwell-time analysis in nanocavities
suggests long-lived adsorption sites not accounted
for by purely diffusive dynamics [31]. Finally, it has
been predicted from random walk simulations that
redox cycling leads to a suppression of shot noise
below the classical limit [32]. An experimental
verification would be extremely interesting, but this
poses a significant challenge due to the low signal
levels and dominance of molecule-number fluctua-
tions at low frequencies.

Electrochemical sensing via nanopore architecture is
another successful example of single-entity electro-
chemistry for bioanalytical sensing and sequencing
[33,34]. The principle of nanopore sensing is the
detection of changes in the ionic current as analyte
molecules translocate through the nanopore. Figure 2
illustrates the features of time- and frequency-
resolved signatures in the ionic current trace, such as
pulse amplitude, width (duration), frequency, and
waveform, that reflect abundant information about the
translocating analytes, including size, charge, and con-
centration. Short translocation events are of particular
interest as a tool to study small molecules that pass
through the pore rapidly. However, it is difficult to
detect short pulses, as current noise (i.e. interference)
increases with measurement bandwidth. The analyte-
induced events are characterized by current fluctua-
tions that can reach single or multiple levels. Various
data analysis software, such as Open Nanopore and
Transalyzer, has been developed for event identification
and feature extraction. The hidden Markov model has
been used for characterizing complex signals such as
multiconductance levels and detecting events obscured
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Figure 2
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Schematic representation of electrochemical nanopore sensing and data analysis involving the interpretation of ionic current signals in either the time

domain or frequency domain.

by noise interference. Other methods for detecting
multilevel events include threshold-based detection
and the cumulative sums (CUSUM) algorithm [35],
which characterize the local structures of events by
computing their current amplitudes and durations. To
facilitate rapid analysis of nanopore data with signifi-
cantly reduced labeling costs, an active learning method
has been introduced to reduce labor costs by selecting
the samples that need labeled [36].

A single-entity signal often contains frequency infor-
mation related to dynamic movements and electro-
chemical processes. For example, in nanopore
experiments, the transport of molecules and ions
through biological nanopores is governed by interaction
networks among restricted ions, transported molecules,
and residue moieties at the pore inner walls [37].
Therefore, in single-entity electrochemistry, the signals
often exhibit nonlinear and nonstationary characteris-
tics. These dynamic features of single entities are
commonly obscured by noise due to insufficient signal-
to-noise ratio (SNR) [38]. One possible approach to
extracting multiple features is to utilize time-varying
signal processing methods, including the Fourier trans-
form, wavelet transform [39], variational mode decom-
position [40], and Hilbert—Huang transform [37].
Analyzing low-frequency noise, particularly 1/f noise,
contributes to understanding noise sources, better en-
gineering experimental settings for ionic current re-
cordings and signal interpretation, and unraveling subtle
changes embedded in the ionic current traces. For
example, a biological nanopore fused with protein re-
ceptors as the sensing element exhibited high-
amplitude 1/f current noise in the low-frequency
domain when reversible captures of a high-affinity pro-
tein ligand occurred at the tip of the nanopore.
Reversible switches between the ligand-captured and
ligand-released substates produce a significant

amplification in the low-frequency 1/f current noise,
signifying a long-lived binding event. In contrast, low-
affinity protein ligands were not sufficient to induce
this noise signature, unable to elevate the amplitude of
current noise beyond what one would expect for white
current noise in the low-frequency domain [41]. Others
have investigated how the ionic current noise through
solid-state nanopores reflects the adsorption of short,
neutral polymers onto the nanopore surface. The power
spectral density (PSD) noise exhibited a characteristic
change upon polymer adsorption, with the magnitude
strongly dependent on both polymer length and salt
concentration. For short polymers at low salt concen-
trations, no change was observed [42].

Stochasticity of bioelectrical data

Stochasticity in biological systems is an inherent char-
acteristic that gives rise to genotypic and phenotypic
variations down to the subcellular level. Bioelectrical
stochasticity has begun to be appreciated for its
essential role in key cellular activities [43]. At the
single-cell level, signals can arise from multiple sources,
including heterogeneous ion and electron transfers,
that generate a stochastic fluctuation of voltage and
current. Analysis of bioelectrical signals via PSD func-
tions has been shown to indicate the reversible
blockage of voltage gated K™ and Na™ channels in an
ensemble of glioma cells [44]. Figure 3 shows the data
acquisition architecture and data in both time and PSD
formats. The blockage of ion channels due to exposure
to channel blockers was manifested as a drop in the
amplitude of the low-frequency component of the
current signal. Another study, similar in nature, exam-
ined the bioelectrical signal from voltage-gated sodium
channels in an ensemble of human breast cancer cells
using histogram and frequency domain analysis [45].
These studies showcase the usefulness of frequency
domain and histogram analysis in correlation between

Current Opinion in Electrochemistry 2024, 46:101505
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(a) Data acquisition set-up with adherent cells shown as red circles. The current signal is generated by fresh C6 glioma cells (black trace), the C6 glioma
cells after exposure to tetrodotoxin (TTX), a potent blocker of voltage-gated Na* channels (red trace), and after the TTX washout. The current signal is
presented in (b) time domain and (c) frequency domain formats [44]. (Data reproduced with permission from the Royal Society of Chemistry).

one statistical variable to one biochemical trigger.
However, biological systems comprise multiple sources
of signal, and a multifactorial analysis requires a more
sophisticated data analysis methodology for the
deconvolution of data.

Al aided data analysis

Machine learning (ML) has revolutionized the signal
processing landscape. The ML algorithms for nanopore
data analysis have seen rapid advancements in interfer-
ence mitigation, spike recognition, feature extraction,
and analyte classification [46,47]. The algorithm, once
trained with sufficient well-labeled datasets, exceeds
the performance of statistical methodology in extracting
information from stochastic signals. An example is the
implementation of a deep learning methodology based
on a bi-path network (B-Net) to acquire prototypical
pulses and perform feature extraction without apriori
assigned parameters. The B-Net was able to process
data with a SNR equal to 1, an almost impossible task for
threshold-based algorithms [48]. While training the al-
gorithm with raw stochastic data typically requires a
large number of data sets, recent work in the field of
corrosion has used a two-step strategy to significantly
reduce the number of datasets required for training
while achieving a 97% accuracy of corrosion classification
[18]. Here, the continuous wavelet transform (CWT)
spectra and modulus maxima (MM) were first used to
generate time-frequency spectral transients, which were
then used as input to train a convolutional neural
network (CNN) architecture.

Deep learning has also been utilized for analyzing ion
channels from patch clamp data, with applications in
predicting ion channel functionality and topology, as
well as quantifying structure-activity relationships
[49,50]. A critical first step in understanding
recorded current and voltage traces is event detection,

which involves the removal of background noise,
reconstruction of underlying signals, and statistical
quantification of discrete events. This process, known as
“idealization,” is particularly challenging for complex
biological data containing multiple distinct channels and
simultaneous gating events [51]. Therefore, achieving
high-quality idealization is often laborious and, in some
cases, even infeasible due to subjectivity and the
complexity of the biological data. Unsupervised classi-
fication of ion and electron transfer events has been
successfully performed via the CNN model, a deep
learning model with the ability to extract hidden pattern
information from the dataset without prior knowledge
[52]. With no parameters to set, such as baseline,
channel amplitude, or number of channels, the CNN
model facilitates unsupervised automatic detection of
single charge transition events. Additionally, the CNN
model allows for the integration of all prediction tasks
into one model, enabling multitask and multitarget
predictions with improved classification accuracy.
Beyond mere sensing and classification, machine
learning architectures have now been successfully
tested in closed-loop and feedback-controlled systems
to sense the bioelectrical state of the cells and then
modulate the bioelectricity via tools such as electro-
phoretic ion pumps [53—55].

Conclusion

Data acquisition architectures and instrumentations
continue to advance and enable stochastic electrochem-
istry to become a powerful electroanalytical tool. The
software of this tool, being the data analysis techniques,
needs to catch up with the hardware advancements to
allow the technique to reach its full potential. Statistical
data analysis techniques are useful for examining smaller
datasets with well-defined variables, but more sophisti-
cated methodologies, empowered by artificial intelli-
gence, are required to handle large datasets with multiple
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variables. The stochastic current and potential signal,
whether originated by single-entity detection, corrosion,
or biology, share the same nature, where amplitude,
pulse, transient duration, and frequency of events are the
main analytical values of interest. And therefore, there is
much value in interdisciplinary approaches and to learn
from advances in data analysis in other branches of sto-
chastic electrochemistry.
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