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Abstract
Healthcare recommender systems emerged to help patients make better decisions for their
health, leveraging the vast amount of data and patient experience. One type of this system
focuses on recommending the most appropriate physician based on previous patient feedback
in the form of ratings. Such advice can be challenging to generate for new patients as their in-
teraction with the new environment is too limited to inform meaningful recommendations. Their
preferences from the previous system can be transferred to the new system to help generate
recommendations in a cross-domain approach.

Cross-domain recommender systems aim to bridge the gap between domains where such
interactions are plentiful and domains with relatively little interactions for the new users, using
transfer learning techniques. However, while privacy concerns in single-domain recommender
systems have been studied extensively, the same does not apply to cross-domain systems
where multiple domains collaborate. Privacy is essential in settings such as healthcare, where
rating information is sensitive and prone to leaking patient medical history to third parties. Exist-
ing works lack an efficient design that provides sufficient privacy while generating recommenda-
tions.

This thesis presents a privacy-preserving cross-domain recommender system with partial
user overlap. We first propose a privacy-preserving matrix factorization approach with differen-
tial privacy and multiparty setting to serve as the base of our cross-domain design. Our matrix
factorization design with privacy is easy to adopt by existing systems, incurring negligible over-
head, and requires no modification to existing factorization implementations. Next, we show the
privacy-accuracy trade-off in our base method with experiments over the MovieLens dataset.
Finally, in the cross-domain setup, we demonstrate that adding privacy to the proposed scheme
has a minimal predictive performance loss, essentially providing privacy for free.
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1
Introduction

More people move around the globe for work and study opportunities, family, and other reasons.
Moving to a new location can be challenging in terms of settling down and finding a routine. It is
ever more challenging to find the most appropriate healthcare professional for a patient profile
in a brand new city, especially in the case of specific health conditions. While the patients can
move around freely, their previous healthcare experiences, unfortunately, stay behind. People
might ask around or use their social network to find physician advice. However, finding others
with similar health experiences can be challenging while keeping a sense of privacy. It might also
be unavailable in certain situations where patients’ experiences and requirements are unique in
their social environment, or they might find themselves in a new setting where such advice is
unavailable [15].

Patient-centered decision-making processes correlate with improved health consequences
[34]. This correlation can be due to the time, effort, and money spent searching for the most
suitable physician and how the process affects the patient. The resources and especially time a
patient spends searching for the best care can be spared by providing suitable recommendations.
However, designing a system to generate appropriate recommendations is not trivial.

Leveraging the sizeable amount of health data outputted by many e-health applications,
healthcare recommender systems (HRS) are developed to give relevant suggestions to patients
[31]. The recommender systems can use patient ratings and reviews, along with the health
and demographic profiles, to make recommendations. These systems differ in their approach
to generating recommendations: from representing patients as nodes on a graph of their social
interactions [38] to using distributed solutions such as blockchain to maintain groups of users
[5]. Most solutions aim to find similar users or group them based on their similarities to gener-
ate meaningful recommendations. This approach is known as collaborative filtering. It has the
underlying assumption that users with similar behaviors and ratings in the past will have similar
tastes in future items.

Unfortunately, transferring the patient experience between different locations or domains is
still not a common practice. For example, a patient might have plenty of experiences and data
related to them in one location, as well as patient communities and similar profiles. However,
that information does not transfer once the patient is in a different domain. In this thesis, we aim
to address the knowledge transfer problem with a collaborative filtering approach emphasizing
patient privacy. As it is crucial to improve the patient experience across domains, we believe the
privacy of such a system should not be an afterthought.

1
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1.1. Physician Ratings
For the physician recommender systems, ratings and general user feedback are essential to
guide patients in searching for a healthcare provider. Online appointment platforms and web
applications also have emerged to aid patients in their important healthcare decision, such as
the DocPlanner Group. They are operational in 13 countries with different localized brand names.
They serve over 80,000,000 patients looking for a physician each month as their self-reported
statistics[8] reflect. With all of the information they collect, like personalized reviews, ratings, and
rankings of physicians, it is important to show how in-demand physician recommenders are.

Another such example is WeDoctor, operating in China as an online appointment service
provider [13]. They allow patients to search for doctors based on illness, category, proximity,
and scores given by previous patients. They also host a rating and review system to help inform
prospective patients of the previous experiences of others. Other services do not offer options
to make an appointment but only host ratings and reviews on their platform, such as RateMDs.
RateMDs is a platform operating under VerticalScope Inc. out of Toronto. They reportedly host
2 million doctor reviews and ratings that accumulated since 2004 [30].

With all information available online for patients to look for the best option for their health,
there is also the problem of different regions and hospitals. Patients can see the ratings of
doctors all over the world, but it does not necessarily translate into a localized and personalized
recommendation. These services leave the decision-making to patients while only informing
of subjective experiences of their users. When incorporated into a personalized recommender
system for the users, the available ratings have several issues that need extensive consideration.

1.2. Cross Domain Recommendations
From a technical perspective, the online ratings services host ratings from different system do-
mains as defined by [4]. This domain division is also present in the systems categorizing the
physicians by the employed hospitals. From a recommender system perspective, combining
all the ratings into one big rating matrix and generating recommendations is not practical. Due
to different geographical boundaries and hospital locations, there would be big areas of non-
existing ratings for each patient-physician pairing. Patients can not interact with physicians from
many other cities or countries in a given location. The resulting rating matrix will be too sparse
to generate accurate recommendations if the system domains are not separated.

Cross-domain recommender systems aim to overcome data sparsity and cold start problems,
especially in collaborative filtering-based approaches. Collaborative filtering requires identifying
similarly behaving users to generate recommendations. Data sparsity in CF settings results in
overfitting and low accuracy [41]. Cross-domain approaches differ based on the assumptions
of the domain compositions: item-user overlap scenarios, the direction of recommendation task,
type of available domain data, and the number of domains [19]. Transfer learning techniques
are developed depending on the scenario for which the recommendation task is to be improved.

Separating the physician ratings on a system level necessitates a cross-domain approach
to making recommendations to avoid losing auxiliary information. Designing a cross-domain
system in this setting also solves the new user problem in cases where the cold start user is
already active in other domains. The cross-domain approach also addresses the issue of a
patient moving to a new location and finding a physician that will be most relevant in the context
of their previous experience. Transferring a patient’s preferences to a different hospital can
benefit their health condition as less time and resources would be spent by the patient until they
can find the most appropriate physician.
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1.3. Privacy Considerations
While providing meaningful recommendations that aid people in their health decisions is essen-
tial, the privacy aspect of recommendation generation must be considered. Physician recom-
mender systems have stricter privacy requirements compared to other privacy-preserving rec-
ommenders. Even the information of a rating existing between a physician-patient pair is leaking
personal information [15]. The existence of a rating, combined with publicly available informa-
tion on the specialization of the physicians, can be combined to deduce the general ailment of
a given patient. This information is highly personal, as it might also lead to discrimination of the
individual based on a specific health condition, such as mental illness or pregnancy. An exten-
sive health profile can be constructed for a patient given their ratings, which can be used for
discriminatory purposes. This information used to generate recommendations can be exploited
further to harm the patient by adjusting the insurance tariffs unfairly [32].

Not only the existence of ratings but also the rating values must be kept confidential. Keeping
the ratings open to all public creates legal issues such as libel cases, intimidation, and reliability.
RateMDs website has an entire section of legal and privacy-related questions, as lawsuits and
problems are prevalent in their open system. In addition, rating healthcare experience openly
might cause intimidation for patients. Patients might be reluctant to rate their experience due to
worries about retaliation or losing the quality of the help they receive.

As shown by [32], patients are more open to sharing health data in scientific settings com-
pared to commercial settings. They also discovered that patients are reluctant to share mental
health-related data compared to other types of health data in healthcare recommender system
settings. This perception of privacy and its utility is a trade-off in healthcare recommender sys-
tems and informs how to construct a better physician rating scheme. Patients would be more
reluctant to share their ratings in a commercial open system that does not offer privacy features
than one that offers proper protection against misuse.

Another problem with the open rating system is that the ratings are not open to users in a
contextual setting. Therefore, when users see a review, they do not know how they are similar
or dissimilar to the rater. This situation might result in overbooking more popular physicians who
are not necessarily the best fit for a given patient.

Moreover, the collaboration aspect of a cross-domain setting also raises privacy issues. In-
stitutions are often unable or reluctant to share private data due to regulations. Users might be
reluctant to share their data with third parties for recommendations generated for other users.
Without the ratings transferring among domains, the overlapping and non-overlapping user iden-
tifiers might be shared to establish a model. In addition, the domains might want to keep certain
physicians’ performance indicators private for competitive reasons.

Anonymization does not address the issues mentioned above. In our literature review phase,
we have not come across any work on developing a privacy-preserving cross-domain recom-
mender system with partial user overlap. The privacy-preserving recommender systems do not
consider the cross-domain or new user scenarios. State-of-the-art cross-domain recommender
systems do not address privacy issues. Surveys have noted this gap in research. In [41], devel-
oping privacy-enhancing solutions in cross-domain recommendation systems is the third most
pressing issue, and [19] denoted privacy as an open research area.

1.4. Research Question
Based on the research gap in this field, we have developed the following research question:

How can we design an efficient privacy-preserving cross-domain recommender
system with partially overlapping users?
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This thesis aims to design a privacy-preserving cross-domain recommender system for new
users and determine the proposed design’s privacy accuracy and performance trade-offs. We
use a publicly available rating dataset to evaluate our system and compare it with baseline imple-
mentations. We determine the cost of adding privacy to such systems in predictive performance
and runtime.

1.5. Our Contribution
We present a novel design to perform privacy-preserving matrix factorization based on differen-
tial privacy and multi-party computation. Our design has two approaches to increase predictive
performance while giving formal privacy guarantees. We also present a proof of concept im-
plementation on the MovieLens 100k dataset for our design to demonstrate the accuracy and
privacy trade-off of our privacy-preserving matrix factorization scheme.

We design a privacy-preserving cross-domain recommendation scheme using the best-performing
privacy-preservingmatrix factorizationmethod. Our cross-domain recommendation task is specif-
ically for the new, cold-start users with no available ratings in the target domain. We design the
underlying cross-domain recommender using inter-domain similarities and intra-domain similari-
ties. Finally, we implement a proof of concept to demonstrate the performance of the underlying
recommender system and the effect of adding privacy.

We contribute an easy-to-adopt design where current recommender systems can be con-
verted accordingly without high runtime costs or accuracy loss. Our privacy-preserving cross-
domain recommender system work is the first in the field that provides rating privacy against the
recommendation system servers and new user recommendations with accuracy evaluation.

1.6. Overview
Chapter 2 gives an overview of the techniques used in the design we present. Chapter 3 dis-
cusses the related literature and the current state of the art. Chapter 4 discuss the design, imple-
mentation, and evaluation of the privacy-preserving matrix factorization methods. We present
our privacy-preserving cross-domain system’s design, implementation, and evaluation details in
5. Finally, in Chapter 6 we conclude our thesis and discuss future work.



2
Preliminaries

This chapter discusses the preliminaries required to understand the rest of this thesis. We
overview techniques and subjects such as matrix factorization, differential privacy, keyed hash
functions, secure dot product, and error metrics.

2.1. Matrix Factorization
Collaborative filtering is a recommender system technique where recommendations are gener-
ated for a given user based on other users that are similar or dissimilar. The main idea behind
this approach is the assumption that similarly behaving users in a system will continue to behave
similarly in future interactions. However, as the rating matrices are generally highly sparse, with
many item-user pairs missing a rating, it is challenging to implement a collaborative filtering
approach. Therefore, techniques such as matrix factorization map the interaction space into a
denser dimension to make collaborative decisions. The technique is most know from Simon
Funk’s blog post[12] where he details the technique that won him third place in Netflix Prize.

As an umbrella term, the matrix factorization problem in recommender systems refers to
the decomposition of a rating matrix into two lower rank matrices, the multiplication of which
results in the original rating matrix. Figure 2.1 gives an example representation of a factorization.
This decomposition aims to discover underlying ”latent” factors of users and items to generate
recommendations[21]. The inner product of a user’s latent factor and the item’s latent factor
results in the approximation of the submitted rating or the prediction in the case of a missing
rating.

Factorizing a given matrix is an optimization problem in which we approximate the two la-
tent factor matrices. The error between the known rating values and the predicted values is
minimized. In equation form, we can see it as:

min
∑
,∈R

�
r − UT

 ·V

�2
, (2.1)

where U and V are the user and item latent factors respectively. However, the optimization
problem in this form is prone to overfitting. Therefore we include regularization terms as follows:

min
∑
,∈R

�
r − UT

 ·V

�2
+ λ
�||U||2 + ||V||2� . (2.2)

5
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Figure 2.1: Visualising Matrix Factorization

The λ parameter determines the degree of regularization.
The assumption that we can capture all of the effects that lead to a rating through two vectors

is strong. Other factors might lead to a user u giving an item i a particular rating. For example,
some users might be more generous with their ratings, or some items might receive high ratings
frommany users. These signals are available in a rating matrix, as the recommender system can
distinguish users with high and low average ratings as well as high and low rated items. Using
the factorization to generate two matrices that explain all the variations in ratings is unrealistic
because it distills the recommendation problem into modeling pairwise interactions only and
disregarding available signals. Instead, recommender systems have evolved to include user-
specific and item-specific biases contributing to a rating. In this notation, the rating of a user u
regarding an item i is as follows:

r = μ + b + b + (U)T ·V , (2.3)

where μ represents the global average, b and b are the user and item biases, and (U)T·V
explains the interaction. Including the biases, the optimization problem transforms into

min
∑
,∈R
�
r − μ − b − b − (U)T ·V

�2
+ λ
�||U||2 + ||V||2 + b2 + b2

�
. (2.4)

In our proof-of-concept, we use a library that implements the solution to this optimization
problem with stochastic gradient descent(SGD). SGD works through iterations that modify the
model values of U, V, b and b with a given step size and error value in each iteration.

2.2. Differential Privacy
Differential privacy is a privacy technique that allows databases to maintain functional statistical
structure while preserving individuals’ privacy. First formalized by Dwork et al. [10], it is a formal
model of maintaining individual record privacy in a given dataset. The central intuition in our
differential private recommender system setting is that two rating matrices that differ only by one
rating should not reveal information about the differing entry based on computations they carry
out in recommendation generation or the output they present to end-users.

We can construct a more straightforward example in a recommender system setting: our
primary user requests a prediction on a given item. After observing another user participating in
the recommendation scheme and submitting a rating, our primary user requests the prediction
on the particular item again. The result will be different due to the new user contributing. Our
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primary user might differentiate the newly participating user based on the output change, the
rating prediction. For example, suppose the predicted rating is lower than before. In that case,
our primary user can deduce that the new user submitted a low rating on that item, hurting the
new user’s privacy in return.

In formal notation, we consider two datasets as D and D′ from the set of all possible input
spaces that are identical except for one element. We define A as a randomized algorithm and S
as the possible output space of A. We say A is ε-differentially private if the following inequality
holds:

Pr[A(D) ∈ S] ≤ ep(ε) · Pr[A(D′) ∈ S] . (2.5)

The output distribution of the algorithm A should not change more than a factor of ε, as given
in the inequality. As the ε increases, we can see that the output distribution changes more with
respect to the differing element, which allows us to differentiate between the input dataset, thus
providing less privacy but preserving more utility. Smaller ε means the output distribution is
harder to distinguish as they differ by a factor of ε, thus higher privacy for the input sets.

We achieve this property by adding controlled noise to the data to simulate the effect of
removing an element. In other words, the noise compensates for the ”differing” element, so the
output of the algorithm A does not leak information that would allow us to differentiate between
D and D′. The noise is calibrated with respect to the sensitivity of the function Δƒ , the maximum
amount an element can affect the distribution. In our recommender system setting, the ratings
are in a given range. Hence the sensitivity is selected as the absolute difference between the
maximum and the minimum possible rating value.

Dwork et al. [10] propose sampling noise from the Laplace distribution to achieve this prop-
erty. The ε and the sensitivity variables are incorporated as follows:

Lp
�
men = 0, sce =

Δƒ

ε

�
. (2.6)

2.3. Keyed Hash Function
A hash function is a function that can map an arbitrary input space to a fixed-length output space.
Hash functions are one-way because of the size difference between the input and output spaces.
A keyed hash function, more commonly known as hash message authentication code(HMAC),
is a construction that involves a cryptographic hash function and a key. Cryptographic hash func-
tions have properties that allow them to be functional for security purposes: preimage resistance,
second preimage resistance, and collision resistance[29]. The first property addresses the one-
wayness of the function as it should be infeasible to revert the hash operation and recover a
meaningful message from the hash. The second preimage resistance property ensures that
given a message, it should be infeasible to find another message that results in the same hash.
Finally, the last property states that it should be infeasible to generate two different messages
that result in the same hash output.

Cryptographic hash functions can be keyed by applying the secret key on the input of the
hash function. To meet the three properties above, hash functions are designed such that chang-
ing the input changes the hash function’s output significantly, also referred to as the ”avalanche
effect”. Therefore, different keys on the same messages result in entirely different hash outputs.
In addition, preimage resistance prevents the underlying message or the secret key from being
leaked to an observer of the hash digest. Finally, keyed hash functions are also determinis-
tic. Considering these properties, we use keyed hash functions to maintain item privacy in our
design.
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2.4. Secure Dot Product
We have two parties, Alice and Bob, each holding a vector of size n, A, and B. Using secure
dot product operations, the parties aim to jointly calculate the dot product of the vectors without
revealing the vectors to each other. In the protocol by Du and Zhan [9], Alice and Bob each end
up with a share V of the resulting dot product as VA+ VB = A ·B. For our construction, we want
one of the parties to have the full dot product resulting from the computation. Therefore, we will
be modifying the protocol. We assume an honest-but-curious model where the parties follow
the protocol honestly, with correct inputs but try to learn from the information they can honestly
gather.

For this construction, we also include a trusted third party to generate ”commodities” to Al-
ice and Bob, an approach proposed by Beaver[2]. The commodity server provides security
resources, in our case, a set of random vectors for Alice and Bob to conduct operations. The
protocol is as follows:

1. The commodity server generates two random vectors of size n as R, Rb, and a random
number as r.

2. The commodity server calculates rb as R · Rb − r.
3. The commodity server sends Alice and Bob commodities as: (R, r), (Rb, rb).
4. Alice and Bob masks their vectors using their respective commodity vector and send each

other the result. Bob receives (Â = A + R) and Alice receives (B̂ = B + Rb).
5. Upon receiving Â, Bob calculates (Â · B + rb) and sends it to Alice.
6. Alice computes (Â ·B+ rb)− (R · B̂) + r. We see that this calculation simplifies to A ·B.

Substituting Â and B̂ results with

= ((A + R) · B + rb) − (R · (B + Rb)) + r ,
= A · B + R · B + rb − R · B − R · Rb + r .

(2.7)

Simplifying R · B terms results with

= A · B + rb − R · Rb + r . (2.8)

Using the equality R · Rb = r + rb, as set up by the commodity server, we obtain

A · B + rb − (r + rb) + r = A · B . (2.9)

The communication complexity is three times that of the regular dot product operation, excluding
the overhead of the setup phase associated with the commodity server. Furthermore, due to the
randomness of R, Rb and r, Alice and Bob are unable to learn about the private vector of the
other from the information they receive throughout the protocol.

2.5. Error Metrics
Two primary metrics in evaluating recommender system performance are Root Mean Squared
Error(RMSE) and Mean Absolute Error(MAE). These metrics aim to measure the predictive per-
formance of recommender systems with rating prediction in the literature. In addition, their use
allows for an interpretable performance discussion, as they both are in the rating range.
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Mean Absolute Error is the average absolute error on all of the predictions. The formula is
as follows:

MAE =
1

|R|
∑
,∈R
|r − r̂| . (2.10)

MAE gives equal weight to all errors, so the outliers and large errors will be weighted equally
to other errors. Therefore, it gives a holistic interpretation of the recommender system’s predic-
tive performance and is widely common.

Root Mean Squared Error is the square root of the mean of squared error instances. The
formula is as follows:

RMSE =

√√√√ 1|R| ∑,∈R (r − r̂)2 . (2.11)

As we take the square of the errors before averaging, the larger errors make the result bigger.
So the larger error values affect the metric more than the smaller errors. In other words, RMSE
penalizes large errors more severely compared to MAE.



3
Related Works

Recommender systems have been studied extensively over the last years to increase predictive
performance, address different recommendation problems and add privacy components. This
chapter discusses previous works that have laid the foundation for our work.

We group the literature into several sections demonstrating our work’s components: In Sec-
tion 3.1, we discuss the privacy-preserving medical recommendation systems. These works
establish the privacy requirements of the physician recommendation systems and offer solu-
tions in a single domain setting. Section 3.2 discusses privacy-preserving matrix factorization
approaches as an essential part of our cross-domain construction. We present a summary of
the papers from the first two sections in Table 3.1.

Following this, we discuss some papers from the cross-domain recommender systems with-
out privacy in Section 3.3, mainly focusing on the ones with partial user overlap and solving
the new user problem. The area of cross-domain recommender systems is vast; hence in this
section, we only discuss the works most applicable to our physician rating system across differ-
ent domains. Finally, we discuss the cross-domain recommender system constructions that are
privacy-preserving in Section 3.4.

3.1. Privacy-preserving Physician Recommendation Systems
This section introduces previous work that designed privacy-preserving healthcare recommender
systems. While it is a broad area of research, this section focuses on works that are the most
similar to our problem and approach.

Katzenbeisser andPetkovic [17] is one of the earliest works in developing privacy-enhancing
recommendations specific to the healthcare setting. They apply private profile matching tech-
niques to tackle three problems in the healthcare setting: sharing the patient’s health profile,
physician-patient matching, and patient community creation. They use homomorphic public-
key encryption schemes to allow vector operations by calculating the inner product, Euclidean
distance, or subset matching over binary vectors. Finally, to vectorize the preferences or the
patients’ medical information, they propose a mapping phase where information is encoded and
encrypted to be processed by a central server.

Their solution is a neighborhood-based approach based on the encoding of the medical data.
Their proposed system takes auxiliary patient information and not submitted ratings to calculate
similarities. In this sense, it is different from our work’s rating-based problem. However, it is an
important paper that sets the precedent of patients having control over their data and performing

10



3.2. Privacy-preserving Matrix Factorization 11

cryptographic operations locally.
Hoens et al. [15] propose two different designs for a physician recommendation system.

Their Secure Processing Architecture design consists of patients submitting encrypted ratings
related to a specific physician and the condition to one or multiple servers. The recommendation
is generated based on the aggregation of the scores, and the highest-rated physician is recom-
mended. They also address the possible reliability issues, such as submitting a rating outside of
the available range by introducing Zero-Knowledge Proofs to prove the validity of the rating. In
addition, their scheme considers professional experience. They add a variable value to the av-
erage rating of the physicians that have worked with more patients. While their design consists
of several computational servers, recommendation generation is central. In addition, the recom-
mendations are not personalized per user but only consider high average scores. Similar to the
[17] work, they use an additively homomorphic encryption scheme to aggregate the submitted
ratings.

Their second design is called Anonymous Contributions Architecture where the same rating
aggregation approach is implemented without encrypted ratings but with anonymous users. In
this design, reliability is not an issue of ratings being in an unauthorized range as the receiving
server can easily discard it. However, they have tackled the issue with repeated submissions in
an anonymous setting. While aggregating is straightforward as the ratings are in plaintext, they
propose using anonymous credentials or e-cash based scheme to resolve the reliability issue.

As for their system’s recommendation performance, they refrain from implementing predictive
performance over a dataset. Instead, the authors mainly develop a secure rating aggregator with
privacy and reliability per their focus.

Kaur et al. [18] is another paper in healthcare recommender systems that take a more cur-
rent recommender system as the basis for their design and improve on it by adding privacy and
a distributed environment. Their system is a single domain recommender system that assumes
the rating data is arbitrarily distributed among several parties. They also base their design on an
item-based collaborative filtering approach where they consider similarities between the items’
ratings. They keep similarity calculation as an offline phase and only rating prediction as an
online component to have an efficient design. For the similarity calculation, they use random
masking for the dot product operation and additively homomorphic encryption for the magnitude
calculation. One of their strongest assumptions is that the indexes of the items and users held
by the parties are known. They test their design on a simulated dataset of physician ratings and
the MovieLens dataset with a 70-30 train-test split and demonstrate no accuracy loss in their
privacy-preserving scheme.

3.2. Privacy-preserving Matrix Factorization
This section presents research focusing on adding privacy components to matrix factorization
processes for recommender system privacy and designing privacy-preserving single domain
recommenders.

Nikolaenko et al. [24] is the first work in this field to allow for matrix factorization over the
rating matrix to be carried out in an encrypted setting. They propose a parallelizable design
using homomorphic encryption and Yao’s garbled circuits. They do not specify any specific use-
case for their system but perform experiments over MovieLens data and a synthetic dataset.
They improve their implementation efficiency by parallelizing the sorting network and using a
multi-threaded library. Despite their efforts, the execution time is high due to communication
and computational costs. They report taking 2.9 hours for a rating set of 14.7k ratings on
a machine with 16 cores. Although they argue their process can be made faster by running
on more powerful hardware, their solution is impractical to be used in real-life systems due to
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performance issues.
Nayak et al. [23] further improved on the parallelism proposed on [24]. Their work introduces

the GraphSC framework, where they provide a way for graph-based algorithms to be parallelized
with a privacy-preserving data oblivious approach. Their proposed method applies to many big
data tasks, including matrix factorization. They report being able to factorize the MovieLens
dataset of 1 million ratings in 13 hours, which is way faster than the [24] attempt. While their
method offers significant performance improvement in speed, the baseline of the current non-
privacy preserving matrix factorization runtime is a matter of seconds for 20M ratings1.

Kim et al. [20] has proposed an efficient design using fully homomorphic encryption and addi-
tively homomorphic encryption. They design a novel data structure that allows Single Instruction
Multiple Data (SIMD) operations over the latent factor matrices, allowing a drastic runtime per-
formance increase. They introduce a third party as Crypto Service Provider (CSP) in addition to
the Recommender System (RecSys). RecSys and CSP communicate per each iteration of the
stochastic gradient descent. Since the ratings and the latent factors are encrypted, they perform
fixed-point arithmetic over the data. As such, they also evaluate the error with the size of the
fractional part. To address the issue of hiding the existence of ratings, the information that a
certain user rated a certain item, they propose adding fake ratings and flagging them to exclude
in the factorization operations.

Despite having costly cryptographic primitives in their design, the runtime of their protocol
is a significant improvement over the previous works. To compare with state-of-the-art, they
perform matrix factorization over 14.7k ratings as [24] and report finishing in 1.5 minutes on a
6-core machine. Their runtime performance is 50 times better than the previous work while still
being very slow compared to non-privacy preserving solutions.

While previous approaches perform operations over encrypted data, they are too impractical
to adopt by the existing recommender systems due to high communication overhead and costly
cryptographic techniques. This performance issue has led to the development of differentially
private recommender systems. Various solutions propose adding differential privacy noise to
different stages of the matrix factorization process to achieve privacy. According to [3], DP
noise can be added to inputs (ratings), the gradients in the process of matrix factorization, and
the outputs (user and item profiles). For physician rating systems, input privacy is essential, as
demonstrated by the papers explained in Section 3.1. Therefore, this section also discusses
differential privacy solutions that offer input perturbation.

Berlioz et al. [3] investigates the three ways of adding differential privacy to the matrix fac-
torization operations and the performance implications of this perturbation. They also compare
neighborhood-based approaches with the matrix factorization under the noise-added data. They
conduct experiments over the three versions of theMovieLens dataset: 100k, 1M, and 10M varia-
tions. Their findings point to a privacy-accuracy trade-off; they report stronger privacy properties
when the added noise value increases, but the model’s predictive performance decreases. They
also conclude that the best performing option is to add the noise to the input rather than adding
it to gradients or the results as the noise accumulates when added in the learning process.

Zhaoyan et al. [16] explores the input perturbation approach further by designing a noise-
adding process. Their noise generation consists of multiple layers and works by combining
values from the uniform and Gaussian distributions. Their design ensures that the rating is still
in the desired range before the user sends it to the recommendation server. Furthermore, their
proposed layer system considers the maximum possible value the ratings can take. This design
choice is not unlike differential privacy, where the Laplacian noise is generated considering the
sensitivity.

1https://github.com/gbolmier/funk-svd

https://github.com/gbolmier/funk-svd
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In addition to proposing a novel random perturbation method, they also design a rating filling
system. In the proposed rating filling approach, the recommendation server splits the training
data and first trains on the subset of the training data. The recommendation server then predicts
unseen item-user pairs until the desired sparsity and then performs final training on the sparsity
reduced data. They test their approach on three datasets: MovieLens 100k, FilmTrust, and
MovieTweetings. With the variety of the datasets, they can argue robustness and test how the
perturbation method performs with different rating ranges. They report similar findings to [3], es-
pecially the argument that there is a privacy and accuracy trade-off in the privacy-preserving ma-
trix factorization methods. However, unlike other methods with differential privacy approaches,
they cannot give a formal privacy guarantee to their proposed solution.

Table 3.1: Summary of Privacy-Preserving Physician Recommender Systems and Matrix Factorization Methods

Design Privacy Guarantee Item Obfuscation Runtime Cost Predictive Performance Loss
Katzenbeisser and Petkovic[17] Homomorphic Encryption Yes High Not applicable
Hoens et al. [15] Homomorphic Encryption, ZKP, Anonymous Credentials, E-Cash Yes High Not applicable

Kaur et al. [18] Homomorphic Encryption, Random Masking No High No

Nikolaenko et al. [24] Yao’s Garbled Circuits, Homomorphic Encryption, Oblivious Sorting Yes Highest Low

Kim et al. [20] Homomorphic Encryption Yes High Low

Berlioz et al. [3] Differential Privacy No Low High

Zhaoyan et al. [16] No formal privacy definition No Low Low

3.3. Cross Domain Recommender Systems without Privacy
Designing cross-domain recommender systems is an active research area with different problem
definitions and solution directions in the general recommender system ecosystem [4]. However,
this section focuses only on the solely rating matrix factorization systems. Therefore, review-
based and tag-based cross-domain approaches are out of the scope of this thesis.

Man et al. [22] propose an embedding and mapping approach improve cross-domain recom-
mendation performance. Their design relies on learning the mapping between the latent factors
across the domains. They propose to learn two different types of mapping: finding a transfer
matrix to learn a linear mapping between the domains and a multi-layer perceptron for learn-
ing the non-linear mapping between the domains. They also include two different methods for
latent factor modeling: matrix factorization and Bayesian Personalized Ranking. The domain
mapping can be learned regarding the user or the item latent factors. Due to their datasets
having overlapping items and no overlapping users, they opt to learn item-based latent factor
mapping and generate recommendations accordingly. They experiment on different fractions of
overlap between the domains, ranging from 10% to 50%, and show that user overlap percent-
age correlates with better performance for cold-start users. They demonstrate that they improve
on the previous state-of-the-art [27, 1] predictive performance for both the linear and non-linear
mapping approaches. Following their results, this work constitutes a benchmark against which
predictive performance is measured against in the following works.

Wang et al. [33] propose a design specifically aimed at making predictions for the cold-
start users across different domains. Their definition of different domains entails differences
in item type, such as between movies, books, and electronic purchases. Similar to [22], they
propose to learn the mapping between the latent factors of the source and the target domain
and similarly propose a multi-layer perceptron for this task. However, they differ from previous
work as they propose using gradient boosting trees. Additionally, they propose a variation on the
matrix factorization process where they include user similarities from the target domain, resulting
in the factorization of the auxiliary domain to capture target behavior better. Additionally, they
adapt a neighborhood-based approach while considering the linked users across the domain to
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capture the most appropriate set of linked users to learn from while determining the mapping
function. Their runtime incurs an overhead of similarity calculation, removing users and items
associated with sparse ratings for better prediction generation. Overall, they demonstrate a
significant predictive performance increase over [22]. Wang et al. also confirm that increased
user overlap results in better predictions for cold-start users.

Sahu and Dwivedi [28] propose a different approach to the previous works. Previous works
focused on domain adaptation methods: designing a system with a mapping-based idea where
they solve the cross-domain problem through a mapping function or adaptation between the
domains. Instead, Sahu and Dwivedi propose a system where they modify the objective function
of the target domain with information from the source domain. The domain adaptation strategy
they propose is present from the beginning of the matrix factorization. Their system penalizes
the target domain factors as they differ from the source domain factors. The main idea behind
this approach is that overlapping users should be represented ideally by the same factors in
both domains as they belong to the same entity. Their approach is different from [27], as they
do not aim to find a common coordinate space where entities are jointly present but project
the target domain entities to their source domain representation as close as possible using a
cost system. They report an improved predictive performance over the baselines they chose,
but unfortunately, they do not compare with the state of the art [27, 1, 22]. They also do not
comment on the usability, as their design allows for only one-sided knowledge transfer and
requires repetition of the matrix factorization process each time a new transfer task is required.
Their system also requires complete user overlap between the domains.

Some approaches also represent the domains as two separate, fully connected graphs and
the overlapping users as bridges. The vertices represent the similarity between the users for
the recommendation tasks for the non-overlapping entities. The similarities between not directly
connected users are discovered and later incorporated into recommendation generation.

One such approach is proposed by Xu et al. [36]. Their design enhances an existing friend
network using the similarity values calculated between the users. They achieve this enhanced
transfer matrix by random walks over the transfer matrix. The similarity between the users is the
cosine similarity over the submitted ratings. They base their cross-domain recommendations
on a connected friend network of similar tastes. The similarities between the closest friends are
normalized to add up to 1, and a weighted average of close friends is calculated with the nor-
malized similarity values. Overall, they report an improvement over the error metrics compared
to other neighborhood-based methods, but no comparison is present to previous cold-start user
recommendation research.

Zhang et al. [39] also uses a similarity matrix between the users in the source and target
domains. Their main problem is focused on cold-start users and on mutually improving the
recommendations for overlapping and non-overlapping users. Due to this problem shift, they
report better error values than other works focusing on cold-start issues, as they incorporate
more information on the overlapping users. They calculate the similarities between users’ latent
factors after projecting onto a shared space. With this approach, they are now the current state
of the art for cross-domain recommenders that aim to predict ratings without auxiliary information
such as tags or reviews. Their work incorporates many of the approaches we discuss here, such
as projecting on a common coordinate space[27], random walk over similarities[36]. Additionally,
their approach is in line with other works that argue that calculating similarity over the latent
factors results in a better understanding of the underlying similarity relation compared to the
rating-based similarity methods[14]. Finally, they demonstrate that combining the latent factor
approach with user similarity calculation improves cross-domain recommendation performance
for partially overlapping users.
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3.4. Privacy-preservingCross-DomainRecommender Systems
As noted by multiple surveys on cross-domain recommendation systems [4, 41, 19], the privacy
aspect of the cross-domain recommender systems is an issue that requires attention. They
agree that the goal of transferring knowledge between domains might be a problem due to reg-
ulations around user privacy. Despite being an up-and-coming field, privacy-preserving cross-
domain recommenders have little research to be discussed. This section discusses those which
are rating matrix-based as it is the most relevant to our problem definition.

To the best of our knowledge, the first effort in designing a privacy-preserving cross-domain
rating-based recommender system is by Ogunseyi et al. The authors made two publications
on their design: [26] being a general framework of their approach and design specifics, [25]
implementing their approach and giving a performance evaluation. The proposed design uses
homomorphic encryption on user ratings to preserve user privacy. Due to homomorphic proper-
ties, the recommender system server can perform a stochastic gradient descent algorithm over
the rating matrix. They introduce a privacy server to their construction that generates the key
pair and distributes the public key to the end-users. The cross-domain aspect of their design is
the concatenation of the latent factors of the source and the target domains to enrich the target
domain model.

As they describe it, the authors’ approach is problematic since the result of the concatenation
operation is not usable later in the dot product with the item latent factors due to dimension
mismatch. They do not address this issue in their design at [26] as they aim to give a framework
for future privacy-preserving cross-domain recommender system research. Their construction
protects the rating values, but the recommender systems know the information that a user rated
a specific item. Another issue with their design stems from the generation of the encryption
key pair. Matrix factorization operations are through homomorphic operations, and the output
is the encrypted latent vectors. Therefore the dot product that the users receive as the rating
prediction is encrypted. In order to understand the generated rating, the users request the private
key per recommendation. A user holding the secret key can collect information over the network
to see the ratings generated for other users, which is still an issue in the semi-honest setting.
Additionally, the authors do not consider the overhead of refreshing the keys in use or the other
issues with sharing the private key with end-users.

In the implementation paper [25], they compare their method in terms of runtime and com-
munication overhead with [24] and [20]. They test their design on several synthetic and real
datasets. However, due to the incompleteness of the underlying cross-domain recommender
model, they cannot provide any predictive performance metrics. In terms of communication and
runtime performance, they are worse than [20] but better than [24].

Chen et al. [6] propose a differentially private rating sharing system between the two do-
mains to achieve a cross-domain task. They propose publishing the source domain rating ma-
trix using differential privacy on the rating values. They employ an auto-encoder to learn the
user embeddings, from which they reconstruct the source domain rating matrix and measure
the loss. For the cross-domain recommendation task, they use the user embeddings learned
from the perturbed source domain to discover the user latent factors in the target domain. Their
construction aims at preserving the source domain privacy from the target domain, but the rec-
ommender system knows the target domain ratings. Similarly, the source domain possesses
the original rating matrix and performs perturbation according to the rating values. Overall, in
their proposed system, users’ rating privacy is not preserved against the recommender systems
they belong to, as their privacy requirements differ from ours.

The design proposed by Yu et al. [37] is the latest work in privacy-preserving cross-domain
recommenders currently, to the best of our knowledge. Their use case transfers information from
the more general e-commerce domain to the recommendation of healthcare wearables such as
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smartwatches. Similar to [6], they assume the domains have access to submitted plaintext rat-
ing information. They propose sharing the user latent factors between the domains and keeping
item latent factors hidden; therefore, the target domain cannot discover the submitted ratings
by the source domain users. Differently than [6], this scheme of sharing the latent factors pre-
serves the information that a given user rated an item. However, their privacy requirements are
defined differently from our research problem, as the ratings are public against the recommender
systems.

Designing a cross-domain recommender system with rating privacy remains an open re-
search field. Table 3.2 summarizes the privacy-preserving cross-domain recommender system
designs.

Table 3.2: Summary of Privacy-Preserving Cross-Domain Recommender Systems

Design Rating Privacy Interdomain Privacy Overlap Predictive Performance Loss Runtime Cost
Ogunseyi et al.[26, 25] Yes Yes Full Not given High
Chen et al. [6] No Yes Full Low Low
Yu et al.[37] No No Full Low Low



4
Privacy Preserving Matrix

Factorization
Matrix factorization remains a ubiquitous technique in recommender systems, functioning as
the cornerstone of single-domain and cross-domain recommendation schemes. As we discuss
in Section 3.2, designing a matrix factorization scheme that is privacy-preserving is an active
research topic. This chapter presents two approaches for designing a privacy-preserving matrix
factorization scheme. We aim to provide a design with formal privacy guarantees that existing
recommender systems can adopt without incurring major runtime and communication costs or
significant predictive performance loss.

We consider a setting with users and the recommender system. In our setting, the recom-
mender system refers to two non-colluding parties carrying out independent computations over
the rating information they receive from the users. Multiple parties in a semi-honest setting in-
crease themodel’s accuracy compared to single-party privacy-preserving approaches with noise
addition. These two parties can be two computational servers hosted by two independent cloud
service providers to prevent colluding in the real-world implementation. Spreading the compu-
tation over noise-added data to multiple servers allows us to reduce performance loss while
maintaining privacy.

The privacy requirements for our system are as follows:

• The item associated with a submitted rating is private. However, the fact that a user rated
a particular item leaks information on the user as shown in [35]. Therefore, the rated items
should not be distinguishable by the recommender system.

• The values of ratings are private information. The recommender system components
should not be able to differentiate between users based on the submitted rating.

We discuss the protocol design details in Section 4.1. Section 4.2 discusses the implemen-
tation details. We present results, complexity and performance analysis in Section 4.3.

Symbol Definition

U The user set
V The item set

17
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Symbol Definition

 User id
 Item id
R
�
R1, R2
�

Rating matrix (Received by Party 1 and Party 2 )
r, Submitted rating of user u on item ibr, Predicted rating of user u on item i
r̄ Average rating of user u
U
�
U1,U2
�

The user latent factor matrix (Computed by Party 1 and Party 2 )
V
�
V1,V2
�

The item latent factor matrix (Computed by Party 1 and Party 2 )
b1, b

2
 User biases calculated by Party 1 and Party 2

b1 , b
2
 Item biases calculated by Party 1 and Party 2

μ1, μ2 Global mean calculated by Party 1 and Party 2
sk Hash key held by users
HMAC (sk, ) Keyed hash of item i

4.1. Design
There is a one-time initialization phase before the users can send their ratings to the recom-
mender system. We employ a trusted third party to generate a secret key for the keyed hash
function. This secret key is distributed to the patients who want to submit ratings for their physi-
cians. The secret key allows the patients to generate the same hash for a given physician using
a keyed hash function as HMAC (sk, ). Instead of submitting ratings with item identifiers, the
users submit ratings with the hash of the identifiers. The key-generating trusted third party and
the users do not collude with the recommender system servers (Party 1 and Party 2). This con-
struction allows us to address the first privacy concern, as the parties cannot link the generated
hashes with the publicly available physician identifiers. However, the users can regenerate the
hashes of the physician identifiers upon receiving the predicted ratings using the secret key they
have, and they can identify the recommendation per physician.

We present two privacy-preserving matrix factorization schemes addressing the second pri-
vacy concern. In our schemes, the parties perform Singular Value Decomposition operations
over the plaintext rating data to preserve runtime performance while gaining on the privacy as-
pect. For this purpose, we use differential privacy and multi-party computation. We have two
main approaches to maintaining predictive performance: increasing the redundancy of the op-
erations over noise masked data and splitting the noisy data into additive shares.

4.1.1. Increasing the Redundancy
The main idea behind this construction is to alleviate the negative effects of the differential pri-
vacy noise by introducing a multi-party setting and increasing the redundancy of the matrix fac-
torization operations. The introduced parties are assumed to be honest but curious and do not
collaborate. We select the number of non-colluding parties executing recommendations as two
for simplicity in the experiments and the design. However, the number of parties can be greater
to increase accuracy without loss of generality.

After deciding on the rating and the associated physician, the user samples two fresh noise
instances from Laplacian distribution Lp

�
Δƒ
ε

�
where the sensitivity value Δƒ is the difference
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between the maximum and the minimum rating as:

nose1 ∼ Lp
�
Δƒ

ε

�
,

nose2 ∼ Lp
�
Δƒ

ε

�
.

(4.1)

The user masks the rating as:
r1, = r, + nose1 ,

r2, = r, + nose2 .
(4.2)

The user also generates the hash of the physician id using the key and sends it to the two parties
as:

Prty1 : (, r1,, HMAC (sk, )) ,

Prty2 : (, r2,, HMAC (sk, )) .
(4.3)

It is important to note that a fresh noise is created per party receiving the rating. Upon
receiving the masked rating values, the parties perform SVD [21] algorithm over the values until
the model converges.

Upon receiving a request the request for a recommendation from user u, the parties sepa-
rately generate the recommendation for all  ∈ V as:

r̂1 = b1 + b1 + μ1 + (U1
)

T ·V1
 ,

r̂2 = b2 + b2 + μ2 + (U2
)

T ·V2
 .

(4.4)

Recall from Chapter 2.1; we use the model outputs, user biases, item biases, global mean, and
item and user latent factors of the SVD algorithm to generate the prediction.

The user receives the predicted ratings from the two parties and takes the element-wise
average of the predicted values to get r̂ for all  ∈ V as:

r̂ =

�
r̂1 + r̂2
�

2
. (4.5)

To check which item the predicted rating belongs to, the user takes the hash of the items
they are interested in and matches the received ratings.

Furthermore, we present another way of noise addition for a higher predictive performance
where the two freshly created noise values are of opposite signs. One party gets the masked
rating matrix using only positive noise, while the other gets the matrix masked with negative
noise. This can be noted as:

nose1 ∼ Lp
�
Δƒ

ε

�
,

nose2 ∼ Lp
�
Δƒ

ε

�
,

(4.6)

r1, = r, + |nose1| ,
r2, = r, − |nose2| . (4.7)

Through experiments, we discuss the effect of using noise with opposite signs in the evaluation
section.
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4.1.2. Additive Separation
The main idea behind this construction is to achieve a lower sensitivity value to the differential
privacy noise added to the ratings. This idea is achieved by dividing the rating by two and using
the generated noise over the two additive shares so that their addition results in the initial rat-
ing. The sensitivity value Δƒ for the added noise is half the possible range of the data received
by the parties. The additive nature of dot product operation allows for factorization over addi-
tive shares. As per the redundancy approach, we select the number of non-colluding parties
executing recommendations as two for simplicity, but it can also be greater.

In this construction, the user divides their rating by two and generates one instance of noise
using Laplacian distribution. Then, they add the generated noise to one of the shares, subtract
the same noise value from the other share, and then send the shares to the parties as:

nose ∼ Lp
�
Δƒ

ε

�
, (4.8)

r1, =
r,

2
+ nose ,

r2, =
r,

2
− nose .

(4.9)

Received vales are
Prty1 : (, r1,, HMAC (sk, )) ,

Prty2 : (, r2,, HMAC (sk, )) .
(4.10)

It is important to note that the noise is generated once unlike the previous approach and
r1, + r2, = r,. Upon receiving the masked rating values, the parties perform the Funk SVD
algorithm over the values until the model converges. The existing recommender systems that
perform the SVD algorithm require no modification with our scheme. The matrix factorization
operations are identical to the non-privacy preserving implementations.

Upon receiving a request for a recommendation from user u, the parties separately generate
the recommendation for all  ∈ V with:

r̂1 = b1 + b1 + μ1 + (U1
)

T ·V1
 ,

r̂2 = b2 + b2 + μ2 + (U2
)

T ·V2
 .

(4.11)

Recall from Chapter 2.1; we use the model outputs, user biases, item biases, global mean, and
item and user latent factors of the SVD algorithm to generate the prediction.

The user receives the predicted ratings from the two parties and takes the element-wise
summation of the predicted values to get r̂ for all  ∈ V as:

r̂ =
�
r̂1 + r̂2
�
. (4.12)

To check which item the predicted rating belongs to, the user takes the hash of the items
they are interested in and matches the received ratings.

4.2. Implementation
In order to test the performance of the privacy-preserving matrix factorization compared to ex-
isting solutions, we provide a proof-of-concept implementation of our design. In addition to our
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designs with multiple parties performing operations, we implement an experiment with one fac-
torization operation over noise added rating matrix as the naive way of applying differential pri-
vacy in a single-party setting. This additional experiment tests whether increasing operations’
redundancy improves predictive performance.

We use an existing Funk SVD library implemented in Python for the experiments, which is
an optimized version of the Funk SVD algorithm1, implemented using Numba. The learning
rate is 0.001, and the regularization parameter is 0.01. Through trial and error, we choose
these parameters to allow the noise-added models to converge in a given iteration constraint.
In addition, we use varying factors during the experiments for a more in-depth analysis of the
effect of the number of factors on predictive performance.

As the dataset, we use MovieLens 100k, a dataset by the Grouplens Research Project at the
University of Minnesota. It consists of 100,000 ratings from 943 users and 1682 items 2. We
use this dataset to compare other state-of-the-art privacy-preserving matrix factorization and
non-privacy preserving solutions. As with previous works, we employ a train-test split of 80/20
and do not fix the split across experiments. The ratings are from 1 to 5, which sets the sensitivity
of the Laplacian noise to be 4 in 4.1.1 and 2 in 4.1.2 as the halved ratings are from 0.5 to 2.5.
We used different epsilon values (0.1, 0.3, 0.5, 0.7, 1, 1.5, 2, 3) during the experiments to better
understand the effect of privacy on predictive performance.

In order to simulate the Increased Redundancy approach, we duplicate the training matrix
and generate noise using the Laplacian distribution.

We mask the duplicated rating matrices additively using

[nose1] ∼ Lp
�
4

ε

�
,

[nose2] ∼ Lp
�
4

ε

�
,

(4.13)

and finally as:
R1 = R + [nose1] ,

R2 = R + [nose2] .
(4.14)

When the two models converge, we element-wise average the biases, the latent factors, and
global means. Finally, we generate the predictions using the combined outputs over the test set.

Additive separation has a similar approach in implementation. For this, we also duplicate the
training matrix and generate training data for the parties as:

[nose] ∼ Lp
�
2

ε

�
, (4.15)

R1 =
R

2
+ [nose] ,

R2 =
R

2
− [nose] .

(4.16)

Although to simulate the addition operation on the user side, we sum the biases and the
global means. Then, we concatenate the latent factors for corresponding items and users. Due
to the dot product operation in the prediction stage, this concatenation operation has the effect

1https://github.com/gbolmier/funk-svd
2https://grouplens.org/datasets/movielens/100k/

https://github.com/gbolmier/funk-svd
https://grouplens.org/datasets/movielens/100k/
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of addition. Finally, similar to the previous experiments, we combine the outputs of the parties
to generate the predictions faster for experiments.

We track metrics such as mean absolute error(MAE) and root mean square error(RMSE)
across different epsilon values and dimensions of latent factors. We also note the time spent
for the models to converge and for the prediction generation to better understand the usability
of the privacy-preserving solutions.

We run the experiments on a PC with an Intel(R) Core i5-8250U Windows 10, at 1.60GHz
CPU with 8GB RAM, and use Python 3.7 as the programming language. In both experiments,
the models of Party 1 and Party 2 converge independently, simulating the non-collaborating
parties of the design. Our proof of concept implementation and the adversary simulation are
available on https://github.com/aslikarahan/CDRS-with-privacy.

4.3. Evaluation
4.3.1. Predictive Performance
In this section, we present the results of our experiments.

Our first point of comparison is in Figure 4.1, showing the mean absolute error values for
four epsilon values and different schemes. The single-party construction refers to the naive
way of adding differential privacy noise to the rating matrix and performing matrix factorization.
The two-party construction is the approach from Section 4.1.1 where two parties perform matrix
factorization of the two noisy rating matrices they received. ”Without noise” is the single party
setting without privacy, constituting a baseline performance.

First, the relationship between the latent factor dimension and error is different between
privacy-preserving schemes and the baseline without noise. We see a gradual increase in error
until the dimension of 50, and then the model accuracy stabilizes. This phenomenon is because
the rating matrix is sparse and the lower dimension for latent factors captures the variability bet-
ter. The higher number of latent factors results in overfitting on noisy data, which explains the
gradual increase in error in privacy-preserving schemes. The baseline also shows a minimal
increase due to overfitting, but the increase is minor since overfitting happens on the actual data
and not noisy data.

The second observation is a clear trade-off between privacy and accuracy. Smaller epsilon
values provide higher levels of privacy, the added noise is greater, and themodel performs worse.
Smaller epsilon values are not feasible in this scheme, as an average error of 2 is unacceptable
in a rating range of 5. However, the recommender systems can decide this trade-off concerning
their requirements on accuracy and privacy.

The third observation is that increasing the redundancy of operations over differentially pri-
vate rating matrices allows the recommender systems to reduce the effects of noise addition.
The two-party setting outperforms the single-party setting over noise-added data in every ep-
silon value. Increasing the operations over noisy data does not result in noise accumulation but
rather an increase in predictive performance with noise counterbalancing. We see the same
trends with the RMSE metric in Figure 4.2.

https://github.com/aslikarahan/CDRS-with-privacy
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Figure 4.1: Mean Average Error with respect to latent factor dimension

Figure 4.2: Root Mean Squared Error with respect to latent factor dimension

Furthermore, we propose a particular way of adding noise where one server gets the positive
signed noise, and the other gets the negative signed noise, as given in 4.1.1. We see a better
predictive performance if the added noise is of opposite signs for the two parties. The average
of the rating predictions learned through opposite signed noisy ratings approximates the original
prediction better. Furthermore, adding noise of the opposite signs outperforms the naive way
of increasing the redundancy in both metrics, as seen in Figure 4.3 and 4.4, while ensuring the
same formal privacy guarantee.
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Figure 4.3: Mean Average Error with respect to latent factor dimension, noise with opposite sign

Figure 4.4: Root Mean Squared Error with respect to latent factor dimension, noise with opposite sign

Finally, we evaluate the effectiveness of our second approach of additive separation in Sec-
tion 4.1.2. Recall that additive separation refers to splitting the rating matrix into two parts with
differential privacy noise that adds to the original matrix. We see a drastic improvement over
the single-party privacy-preserving setting of naive noise addition. This improvement is because
the sensitivity value is half as the ratings are half, which allows us to achieve the same privacy
guarantee with smaller noise. We see this significant performance improvement in both MAE
and RMSE, in Figures 4.5 and 4.6.
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Figure 4.5: Mean Average Error with respect to latent factor dimension, additive separation

Figure 4.6: Root Mean Squared Error with respect to latent factor dimension, additive separation

Finally, we compare both approaches of privacy-preserving matrix factorization in Figure 4.7
and 4.8 with the baseline. Again, we see the privacy and accuracy trade-off, as the higher epsilon
values result in lower errors. The additive separation approach performs best, resulting in the
same predictive performance at ε = 1.5. Overall, the additive separation design outperforms
all other privacy-preserving factorization methods we propose in this work.
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Figure 4.7: Mean Average Error Comparison of all PPMF designs

Figure 4.8: Root Mean Squared Error Comparison of all PPMF designs

In order to give a better insight into the predictions generated by the privacy-preserving matrix
factorization methods, we present histograms of the ratings in Figure 4.9. In the histograms, we
show the predictions of the best-performing privacy-preserving methods. We see how the added
noise affects the distribution of the predictions; the SVD algorithm generates almost uniform
predictions in the given rating space when the added noise is too high. When the added noise is
bigger, the predictions are spread out. The algorithm clips the predicted ratings to be between
1 and 5; therefore, we see an uneven number of predictions of 1 and 5. The privacy-preserving
methods output a similar rating distribution as the noise gets smaller.
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(a) 1a (b) 1b

(c) 1b (d) 1b

Figure 4.9: Rating Prediction Histograms

4.3.2. Runtime
In this section, we discuss the runtime implications of our design. We measure the total elapsed
time running an experiment. More specifically, we measure the time it takes to generate pre-
dictions for all latent factor dimensions (3, 5, 10, 15, 30, 50, 100) per epsilon value. The Funk
SVD implementation is an optimized library that generates the recommendations in seconds (42
seconds for 20 million ratings). Since we use the 100k dataset, the differences in runtime get
smaller. Therefore, we measure the time to run experiments over all the latent factor dimensions
to observe differences better.

Table 4.2: Runtime in seconds per Epsilon

0.1 0.3 0.5 0.7 1 1.5 2 3
Without noise 30.5
Single party with noise 19.4 32.2 36.1 31.2 30.5 30.8 40.2 34.6
Increasing the redundancy 29.9 62.1 60.9 60.3 61.4 58.2 59.1 59.2
Increasing the redundancy, opposite signs 50.4 62.2 58.7 57.8 57.3 57.9 58.8 57.4
Additive Separation 60.8 59.7 58.7 58.4 59.1 54.3 51.0 36.3
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In Table 4.2, we see that the added noise does not hurt the runtime performance significantly
compared to the non-privacy preserving version. We also see the total time doubles in the multi-
party setting, but this does not reflect the real-world performance. As the recommender system
parties are independent, they can run the matrix factorization simultaneously. The outliers in
the runtime are due to the early stopping feature of the implementation. When the model is not
improving significantly, the gradient descent process concludes before reaching the maximum
iteration. Among the privacy-preserving schemes, we see that the best performers, oppositely
signed noise and additive separation, converge slightly faster than the single party with noise
and the naive way of increasing redundancy. This is likely because those schemes preserve the
rating structure more than the others, allowing the models to converge faster.

Overall, the noise addition does not hurt the runtime significantly from the recommender
system point of view. The hashes they receive as item identifiers do not affect the matrix fac-
torization operation. Thus, our scheme does not incur an additional runtime cost compared to
non-privacy preserving single-domain recommender systems. From the user’s point of view, the
physician identifier hash generation is an offline phase, not affecting the runtime. Additionally,
combining the prediction on the user side is O(n), linear with the number of items.

4.3.3. Communication Overhead
Compared to the non-privacy preserving single-domain recommender systems, our design has
a higher communication overhead for both approaches. The first communication overhead is
the hash key distribution and user registration, as we have a communication step between the
user and the trusted key-generating third party for every user joining the system. The commu-
nication is doubled in the rating submission stage, as the user sends their rating to two entities
instead of one. The most significant difference in communication overhead is the ability of the
recommender system to provide a single item prediction. In non-privacy preserving versions,
the user can ask for a prediction on a specific item, as the items associated with the ratings
are known. In our design, the user receives predictions of all items at once. However, the user
can also request all predictions in non-privacy settings, making this difference in communication
overhead unrelated to the privacy addition.

4.3.4. Privacy Analysis
For the first privacy requirement of our system, we aim to hide the associated item information
of a rating submission. As we stated at the beginning of this chapter, the information that a
person rated an item can identify the person or at least learn information about them. In the
healthcare setting, this risk is more significant as physicians have defined specialties that are
public information. Therefore, a rating associated with a specific physician narrows down a
patient’s possible ailments, hurting their privacy.

We employ a keyed hash function to hide item information in our design. Cryptographic hash
functions are one-way functions; as such, the parties receiving the hash of the item identifier
cannot revert the function to obtain the item identifier. Additionally, cryptographic hash functions
are preimage resistant. Therefore, finding a message that results in the same hash is infeasible
in a given time and computational power. In our use case, the message space is restricted to
physician identifiers. This means low entropy; it allows the parties to brute force in a restricted
message input space. However, our keyed hash function’s key component adds randomness to
the input space, rendering it infeasible for anyone without the correct key to brute force identifiers.
As long as the key holders and the key generating external party do not share their hash key
with the recommender system parties, our design achieves item privacy.

For the second requirement, colloquially ”rating privacy”, we present how different epsilons
provide different privacy levels. In order to assess the effect of the noise magnitude on the rating
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privacy, we implement a rudimentary adversary that attempts to guess the ratings of individuals
based on the noisy rating it receives.

It is public information that the actual rating values are between 1 and 5. However, with the
added Laplace noise, the noisy ratings fall outside the 1-5 range. The adversarial guessing is
as follows: the recommender system clips the noisy ratings into the 1-5 range and assumes
the ratings are what it receives. The parties receive half of the rating plus or minus Laplacian
noise for the additive separation approach. Therefore, to guess the actual ratings, the adversary
multiplies the noisy rating they receive and clips the result into the 1-5 range. Finally, we average
the reconstruction error to give a complete overview of the system for the additive separation
and increased redundancy approaches in two-party settings.

With this adversary implementation, we provide insight into how the epsilon value correlates
to the privacy of the ratings against the recommendation server. The error in guessing the rating
corresponds to the privacy level achieved by design. For this assessment, we use MAE as
before as it provides interpretable numeric values in the rating range. Higher guessing error for
the parties suggests higher user privacy, as the parties cannot recover the ratings successfully
from the noisy inputs. The errors are in Figure 4.10. We observe that the parties can guess the
user ratings better as the ε value gets bigger and the added noise gets smaller.

Figure 4.10: Adversary Errors in Predicting Actual Ratings

It is important to note that in the additive separation scheme we present, parties must be non-
collaborating. When parties collaborate, they can reveal the exact rating by adding the shares
they hold. In the increased redundancy approach, however, the case is different. The parties
collaborating will not result in the exact rating. To uncover the private ratings, they can average
their noisy ratings to approximate the actual rating, but it will not be exact. In the increased
redundancy approach with the oppositely signed noise, the ratings’ average better approximates
the rating.

To empirically confirm this intuition, we implement a proof of concept and plot the errors in
guessing where the parties collaborate. The results are in Figure 4.11. As expected, in the
additive separation approach, user privacy is not preserved when the parties collaborate. The
opposite sign approach is more vulnerable to privacy loss when parties collaborate than the
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regular increased redundancy approach and the case with a single party.

Figure 4.11: Adversary Errors in Predicting Actual Ratings When Parties Collaborate

Overall, we see that privacy and accuracy constitute a trade-off in our Privacy-Preserving
Matrix Factorization design with ε values that we test on providing a confusion between (1.9, 0.9)
in a range of 5. Finally, the best predictive performers, increased redundancy with opposite signs
and additive separation, are more vulnerable to privacy loss in cases of collusion, presenting
another aspect of accuracy and privacy trade-off.



5
Privacy Preserving Cross Domain

Recommendation System
Building on our privacy-preservingmatrix factorization scheme in the previous chapter, we present
our privacy-preserving cross-domain recommender system. As we discuss in Section 3.4, a re-
search gap exists in designing a cross-domain recommender with rating privacy. In this chapter,
we first present our recommender system design without privacy. Then we discuss how to intro-
duce privacy to our design.

The cross-domain recommendation problem we focus on is to generate rating predictions for
a new user using the ratings overlapping users between the domains. As per the recommender
system terminology, we denote the domain where auxiliary information is transferred from as
source domain. The target domain is where the recommendation task for the new user is carried
out. Therefore we consider a setting with two domains, a varying number of overlapping users
with interactions in both domains, and a cold start user with no interactions in the target domain.
In the privacy-preserving version of our scheme, we also use a trusted third party to generate
hash keys and a trusted third party to aid in secure dot product operations. Additionally, we
use the matrix factorization method of additive separation discussed in the previous chapter.
Therefore, each domain consists of two non-colluding parties: Sorce1, Sorce2, Trget1
and Trget2.The privacy requirements for our system are as follows:

• The item associated with a submitted rating is private. Therefore, the rated items should
not be distinguishable by the recommender system.

• The values of ratings are private information. The recommender system components
should not be able to differentiate between users based on the submitted rating.

• Identifiers of non-overlapping users between the domains should be kept private.
• The domain-specific ratings, as well as latent factor vectors of users, items, and other
model outputs, are private, as domains can use them to recover the ratings

We present the design of the protocol without privacy in Section 5.1. Section 5.2 presents
the privacy preserving version of our system. We discuss the implementation details in Section
5.3. We present results, complexity and performance analysis in Section 5.4.

31
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5.1. Design without privacy

Symbol Definition

Us, Ut The user set of the source or of the target domain
Us,o, Ut,o The overlapping user set at the source or target domain
U
�
Us,Ut
�

The user latent factor matrix of the source or target domain
Uo
�
Uo

s,Uo
t� The overlapping user latent factors of the source or target domain

V
�
Vs,Vt
�

The item latent factor matrix of the source or target domain
bs, b

t
 User biases of the source or the target domain

bs , b
t
 Item biases of the source or the target domain

μs, μt Global mean of the source or the target domain
r, Submitted rating of user u on item ibr, Predicted rating of user u on item i
r̄ Average rating of user u

Upon a recommendation request of a cold start user, the target domain initiates contact with the
source domain to start the cross-domain recommendation procedure.

In this communication, the target domain shares the identifier of the new user Une and
the existing users Ut with the source domain. After receiving the identifiers, the source domain
identifies the user overlap between the two domains. Then, the source domain performs the
Funk SVD algorithm over the source rating matrix. Afterward, the source domain sends the user
latent factors of the overlapping users Us

o and the new user Us
neto the target domain, along

with the mean rating of the new user r̄ne.
The target domain performs the Funk SVD algorithm independently of the source domain

over the target rating matrix. Upon receiving the user latent factors from the source domain,
the target domain calculates two different kinds of similarity values over latent factors: inter-
domain and intra-domain similarities. The design choice to calculate user similarity over latent
factors instead of rating values is in the framework [14] developed by He et al., demonstrating
that using latent factors results in better accuracy due to the sparsity reduction. Intra-domain
similarity refers to the Cosine similarity of the new user to the overlapping users in the source
domain, as:

sm (Une, Us,o) = cos
�
Us
ne,U

s
o

�
. (5.1)

This is where the previous source domain experience of the new user is considered. Inter-
domain similarity is calculated over the overlapping users’ latent factors from the source domain
and the target domain using Cosine similarity as:

sm (Us,o, Ut,o) = cos
�
Us
o,U

t
o

�
. (5.2)

The new user has no interactions in the target domain yet, so this calculation does not include
the new user. Calculating the inter-domain similarity is a domain adaptation strategy that aims
to adjust for the overlapping users whose behavior may vary across different domains.

The similarities of the new users with the overlapping users in the target domain are calcu-
lated by multiplying the corresponding inter-domain and intra-domain similarities as:

sm (Une, Ut,o) = sm (Une, Us,o) · sm (Us,o, Ut,o) . (5.3)
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The target domain uses the following equation to generate the predictions for the new user
for a given item j:

brne,j = r̄ne +

∑
t,o∈Ut,o

�
sm (Une, t,o) · �rt,o,j − r̄t,o��∑
t,o∈Ut,o

|sm(Une, t,o)| . (5.4)

It is important to note that in the cases where rt,o,j does not exist, the target domain predicts
the rating and uses the predicted brt,o,j instead. The target domain uses the output of the Funk
SVD algorithm to generate predictions.

Since this design has no privacy considerations, we can not meet any of the privacy require-
ments. Instead, the domains collaborate by sending information openly, giving each other full
access to ratings, user, and item information.

5.2. Design with privacy
Following the cross-domain recommendation design for the new users in the previous section,
we show how to make it privacy-preserving.

We employ the privacy preserving matrix factorization with the additive separation approach
as detailed in 4.1.2. As there are two parties per domain performing the matrix factorization, the
notation will be as follows:

Symbol Definition

U
�
Us1,Us2
�

The user latent factor matrix of the source domain held by Party
1 and Party 2

U
�
Ut1,Ut2
�

The user latent factor matrix of the target domain held by Party 1
and Party 2

bs1 , bs2 User biases of the source domain held by Party 1 and Party 2
bt1 , bt2 User biases of the target domain held by Party 1 and Party 2
bs1 , bs2 Item biases of the source domain held by Party 1 and Party 2
bt1 , bt2 Item biases of the target domain held by Party 1 and Party 2
μs1, μs2, μt1, μt2 Global mean of the source or the target domain

We meet the first two privacy requirements using the previously detailed privacy-preserving
matrix factorization method.

5.2.1. User overlap
In the non-privacy preserving version of the construction, the user overlap determination leaks
the entire user identifier of the target domain to the source domain. In a privacy-preserving
setting, source and target domains conduct a two-party private set intersection protocol to deter-
mine the overlapping and new users. In this protocol, the parties each have a set of identifiers,
some overlapping, that they want to compute the intersection. The privacy aspect is that non-
intersecting items of both parties are not revealed. They achieve this property by using the
multiplication of identifier hashes together with encryption, and secure multiplication operations,
as demonstrated by [7].
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5.2.2. Similarity calculation
Contrary to the regular scheme, the domains do not hold entire latent vectors. Party 1 holds
the first half of a given user latent factor vector without loss of generality, and Party 2 holds the
second half. Similarities are demonstrated in Figure 5.1.

Source Domain Target Domain

Intra-domain similarities, calculated by 

the dot product matrix from source domains

Inter-domain similarities, calculated jointly by 

source and target domains using secure dot product 

Figure 5.1: Similarities in privacy preserving setting

Therefore, during the similarity calculation, Trget1 communicates with Sorce1 to calcu-
late inter-domain similarities as Trget2 communicates with Sorce2. In order to calculate
the cosine similarity between the overlapping users of the source and the target domains, we
carry out the secure dot product protocol explained in Chapter 2.4. In the end, the parties do
not end with shares of the secure dot product result. Instead, the target ends up with the dot
products between overlapping users. Secure dot product protocol prevents latent factors from
being leaked between the domains, addressing the privacy requirements.

For intra-domain similarity, source domains calculate the dot product between the new user
and the overlapping users using the half of the latent vector they hold and send it over to the
respective target domain parties. For the cosine calculation, the source domains also send the
overlapping user vectors’ dot products with themselves as the square of the magnitude of the
latent factors. Below is the summary of the information held by the target domains by the end
of this exchange:
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Trget1 :
�
Us1
o ·Ut1

o

�
,
�
Us1
o ·Us1

o

�
,
�
Us1
ne ·Us1

ne

�
,

Trget2 :
�
Us2
o ·Ut2

o

�
,
�
Us2
o ·Us2

o

�
,
�
Us2
ne ·Us2

ne

�
.

(5.5)

It is important to note that parties cannot deduce the latent factors from the above dot products
as long as the dimension of the latent factors is greater than 2.

Trget1 and Trget2 exchange the dot products they have in addition to the
�
Ut1
o ·Ut1

o

�
and
�
Ut2
o ·Ut2

o

�
. Trget1 and Trget2 perform summation over the dot products they receive

from each other and use the dot products to calculate inter-domain and intra-domain similarities.

5.2.3. Prediction generation
After calculating the inter-domain and intra-domain similarities, both target domains calculate the
overall similarity between the new user and the overlapping users in the target with multiplication
as:

sm (Une, Ut,o) = sm (Une, Us,o) · sm (Us,o, Ut,o) . (5.6)

We recall the rating prediction formula as:

brne,j = r̄ne +

∑
t,o∈Ut,o

�
sm (Une, t,o) · �rt,o,j − r̄t,o��∑
t,o∈Ut,o

|sm(Une, t,o)| . (5.7)

The rating average of the new user r̄ne is present on the new user side as users keeping
track of their average rating is a small overhead. Similarities are know by Trget1 and Trget2.
The only missing values to generate the recommendations are the individual ratings (given or
predicted) of the overlapping users rt,o,j or brt,o,j and the average ratings of the overlapping
users r̄t,o . As we divide the ratings between Trget1 and Trget2, each has access to
an additive share of these missing components. The denominator of the prediction formula is
the same for both parties. The numerator has a summation operation that allows both parties to
calculate it separately with the additive shares they possess and send the result to the requesting
user to sum.

What is sent by the parties is as follows:

Trget1 −→
∑

t,o∈Ut,o

�
sm (Une, t,o) ·

�
r1t,o,j − r̄1t,o
��

∑
t,o∈Ut,o

|sm(Une, t,o)| ,

Trget2 −→
∑

t,o∈Ut,o

�
sm (Une, t,o) ·

�
r2t,o,j − r̄2t,o
��

∑
t,o∈Ut,o

|sm(Une, t,o)| .

(5.8)

Combination on the user side is

brne,j = r̄ne +

∑
t,o∈Ut,o

�
sm (Une, t,o) ·

�
r1t,o,j − r̄1t,o
��

∑
t,o∈Ut,o

|sm(Une, t,o)| +

∑
t,o∈Ut,o

�
sm (Une, t,o) ·

�
r2t,o,j − r̄2t,o
��

∑
t,o∈Ut,o

|sm(Une, t,o)|

(5.9)
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5.3. Implementation
In order to test the baseline performance of our design and the cost of adding privacy, we im-
plemented a proof-of-concept experiment setup. Unlike our previous matrix factorization imple-
mentation, we include a preprocessing step to simulate a source and target domain split. In the
preprocessing step, we remove all items that received less than ten ratings and all users that
contributed less than 20. This step makes our results comparable to other works with the exact
preprocessing step.

To simulate the source and domain split, we take the steps given in [39] except for adjusting
the sparsity between the domains. In their problem definition, source and target domains have
low and high sparsity, respectively. However, our setting does not dictate such a difference
in sparsity between the domains. Moreover, arguing for a difference between the domains for
the hospital rating systems would have been incorrect. Therefore, we split the dataset into two
domains with similar sparsity values in our implementation.

We first sample a number of users to be in the source domain. We select this number as 450,
around half the total number of users in the MovieLens dataset (943 users). Next, we sample
a number of users from the source domain to be the overlapping users between the domains.
We denote the user overlap as percentages and explore 5%, 10%, 20%, and 30%. Although
the authors explore higher percentages of overlap in the previous works, such as 50% and 70%,
we assume the overlap percentage is lower in a hospital-patient setting. After denoting a set of
users as overlapping users, we sample an additional number of users for the target domain. In
the end, the target domain also has 450 users, including the overlap.

After splitting the source and target domain users, we split the items into two sets with no
overlap. This situation aligns with our use case of physician ratings and hospitals being the
domains, assuming that one physician can not work at multiple hospitals simultaneously. Our
test set is the overlapping users’ ratings in the target domain for the privacy-preserving and the
regular scheme.

After splitting the dataset into source and target domains with partial user overlap and no
item overlap, we first run the non-privacy version of our cross-domain construction. We run
the FunkSVD algorithm over the source and target ratings with model parameters such as the
learning rate of 0.001 and the regularization parameter of 0.01. we select each user in the set of
overlapping users as the cold start user one by one, with the remaining overlapping users used
for the prediction generation. We compare the predicted ratings of the overlapping users in the
target domain and the actual ratings using mean absolute error(MAE) and root mean square
error(RMSE) metrics. We find the number of factors that optimize the non-privacy preserving
cross-domain predictions and use that dimension value in the privacy-preserving version.

In our proof of concept implementation, we selectively implement the sections of our design
that affect the predictive performance of the system. As such, we exclude secure dot product
operation and the item hashing process since they do not affect the prediction outcome of the
design.

For the privacy-preserving version, we implement the two parties in source and target do-
mains as Sorce1, Sorce2, Trget1 and Trget2. We carry out the privacy-preserving
matrix factorization of Section 4.1.2 by dividing the ratings by two and sending the halved ratings
masked with Laplacian noise to the respective parties of both domains. We run the FunkSVD
algorithm with the parameters of the non-privacy preserving version and the optimized latent
factor dimension. We then calculate the user similarities over the resulting latent factors and
use the similarities to generate predictions as described in the previous section. Like the regular
version, we compare the predicted ratings of the overlapping users in the target domain and the
actual ratings using mean absolute error(MAE) and root mean square error(RMSE) metrics.

In our experiments, Sorce1, Sorce2, Trget1 and Trget2 converge independently,
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simulating the non-collaborating parties of the design. We run the experiments on a PC with
an Intel(R) Core i5-8250U Windows 10, at 1.60GHz CPU with 8GB RAM, and use Python 3.7
as the programming language. Our cross-domain recommender implementation is available on
https://github.com/aslikarahan/CDRS-with-privacy.

5.4. Evaluation
5.4.1. Predictive Performance
In this section, we present the results of our experiments.

Figures 5.2 and 5.3 show how different dimensions of latent factors affect the predictive
performance in the cross-domain new user setting. We plot the MAE and RMSE of different
latent factor dimensions. We see that the dimension of the latent factor does not significantly
affect the recommendation performance, in line with the findings in [14]. Confirming the author’s
findings in the latent factor-based similarity model paper, we conclude that increasing the latent
factor dimension after a certain threshold does not increase the predictive performance. Unlike
our results in the matrix factorization section, we do not observe overfitting in this scheme.

Additionally, we see that 5% user overlap is not consistent in the predictive accuracy as the
other overlap percentages. This inconsistency is most probably due to the size of our dataset, as
the 5% user overlap corresponds to a test set of size 1393 in our experimental setup, and hence
it is not generalizable. Aside from the 5% overlap case, increasing the user overlap results in a
slightly lower error value.

We set the dimension as six during our comparison with the privacy-preserving version of the
protocol. Following the visual inspection of the plots, we conclude that dimension 6 is where the
predictive performance stops improving and is also the latent factor dimension corresponding to
the elbow point in [14].

Figure 5.2: Mean Average Error with respect to latent factor dimension for different overlap values

Similar to our results in Section 4.3, we observe a trade-off between accuracy and privacy.
However, the magnitude of the added noise has a lesser effect on the accuracy loss. This dif-
ference is because the construction relies on existing user ratings and similarity values. We can

https://github.com/aslikarahan/CDRS-with-privacy
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Figure 5.3: Root Mean Squared Error with respect to latent factor dimension for different overlap values

infer that the calculated similarities used in the prediction stage are small in magnitude, thus sim-
ilar to a basic recommender system of user average. However, as we see the recommendation
performance increasing with the increased user overlap percentage, it is not feasible to discard
the similarity measure entirely.

We see that with the increasing user overlap, the predictive performance is increasing. Over-
all, we conclude that learning user similarities over a differentially private rating matrix with
a two-party setting and the additive separation approach detailed in Section 4.1.2 is a viable
privacy-preserving cross-domain recommender design.
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(a) MAE with User Overlap 5% (b) MAE with User Overlap 10%

(c) MAE with User Overlap 20% (d) MAE with User Overlap 30%

Figure 5.4: Mean Average Error comparison between non-privacy preserving and privacy preserving CDRS
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(a) RMSE with User Overlap 5% (b) RMSE with User Overlap 10%

(c) RMSE with User Overlap 20% (d) RMSE with User Overlap 30%

Figure 5.5: Root Mean Squared Error comparison between non-privacy preserving and privacy preserving CDRS

5.4.2. Runtime
As our proof of concept focused mainly on the effect of privacy on predictive performance, our
experiments can not reflect the actual runtime performance. Another point is that we calculate
the similarity between the new user and the remaining overlapping users in a new user setting.
This calculation results in the runtime complexity of O(n) linear with the number of overlapping
users. However, as a predictive performance-focused implementation, we rotate every user
in the overlapping users set as the new user while generating test set predictions. Hence, the
runtime complexity of our experimental setup isO(n2) with respect to the number of overlapping
users.

We can not provide elapsed time measurements as the size of the user overlap affects the
test set size. However, in the real-life setting, the test set consists of all of the items in the target
domain. Thus, the time complexity of a prediction generation isO(n∗m) where n is the number
of overlapping users, and m is the number of target items.

As demonstrated in the previous chapter, there is no significant difference between the run-
time performance of non-privacy preserving and privacy-preservingmatrix factorization schemes.
Furthermore, as the two-party setting in source and target domains can be parallel, the matrix
factorization phase does not incur additional runtime costs with the added privacy.

The effect of other aspects of our design, such as secure dot product and private set inter-
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section on the runtime, can not be compared through our experimental setting.

5.4.3. Communication Overhead
In our design, the secure dot product and the similarity calculation generate extra communication
overhead, unlike the non-privacy preserving version. The secure dot product operation has
three times the communication cost of a regular two-party dot operation. It is also of O(n) linear
complexity with the number of overlapping users. As the parties each hold half of the user latent
factors, they must interact to complete the dot product operation. This communication is also of
size O(n) with the number of overlapping users. Additionally, the communication can be made
linear for discovering the user overlap, as exemplified by [11].

Finally, the underlying privacy-preserving matrix factorization approach also incurs commu-
nication costs, as discussed in Chapter 4.3.3.

5.4.4. Privacy Analysis
For the privacy requirements, we address the item and rating privacy by using the additive sep-
aration approach for privacy-preserving matrix factorization. We present the privacy analysis of
this approach in Chapter 4.3.4. Briefly, the additive separation approach provides item privacy
due to the pre-image resistance property of the keyed hash function. On the other hand, the rat-
ing privacy is related to the ε parameter, with the increased noise level corresponding to higher
errors for adversarial parties trying to obtain the ratings in non-colluding settings. We also note
that the rating privacy is lost when parties collude.

We address the third requirement through the private set intersection protocols that ensure
the identifiers of non-overlapping elements of the sets are not revealed to either of the parties.

Our design meets the fourth requirement: using only the user latent factors and keeping the
other model outputs private within the domains for the similarity calculation. However, leaking
the user latent factors still poses a privacy threat as paired with the rating distribution or range
information, the other model outputs can be brute-forced. Our design incorporates secure dot
product operations to calculate the inter-domain and intra-domain similarities to prevent user
latent factor sharing. The secure dot product operations reveal the dot product of the vectors and
not the vectors themselves to the involved parties. Therefore, the vectors can not be recovered
from the dot products, as the number of known equations is two: the dot product of two vectors,
one known to the target domain and the self-product of the unknown vector from the source
domain. When the dimension of the vector is greater than two, the number of unknowns will
be greater than the number of equations, thus rendering it impossible for the target domain to
reveal the exact vectors of the source domain after the similarity calculation.



6
Conclusion

Recommender systems are ubiquitous in our lives, especially with the recent increase in in-
teraction and feedback mechanisms. In the healthcare setting, patients rate their physicians
and leave reviews as a way to express their personal experiences. Online physician ratings are
common practice, unfortunately, with little to no consideration for patient privacy. Moreover, new
patients require transferring information between domains to receive meaningful recommenda-
tions based on their prior experience. This cross-domain task brings forth more unaddressed
privacy considerations.

Designing cross-domain recommendation systems is a research area with many publications,
none of which explore privacy with efficiency. Through this thesis, we hoped to address this
research gap and propose a solution that offers cross-domain functionalities for the new user
problem with privacy properties and little to no performance loss. Furthermore, we prioritized
designing a solution that can instantly replace existing recommender systems, not compromising
runtime or accuracy. In this chapter, we first discuss our results, outline the limitations of our
design and propose directions for future research.

6.1. Discussion
To restate our research question:

How can we design an efficient privacy-preserving cross-domain recommender
system with partially overlapping users?

In order to answer this question, we start by designing a privacy-preserving matrix factor-
ization scheme, on which we design our cross-domain solution and provide proof-of-concept
implementations.

Efficient in terms of runtime performance: We use differential privacy to add a formal def-
inition of privacy while maintaining the regular factorization processes, as the noise added data
could be processed the same as the non-privacy settings. Noise addition allowed us to address
our research question’s ”efficient” requirement, and we demonstrated that the runtime is not sig-
nificantly affected by the introduced privacy measures. We also performed a communication
overhead analysis and proposed some optimizations to reduce further the overhead that stems
from adding privacy. Overall, our scheme is efficient in terms of runtime performance compared
to other privacy-preserving matrix factorization designs in the literature.

Efficient in terms of predictive performance: To prevent the accuracy loss introduced by
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the differential privacy noise, we proposed constructing a two-party setting. Our two approaches
are: increasing the redundancy of data and the operations or separating the rating into two
additive parts masked with noise. We found that the additive separation approach performs
best in countering predictive performance loss, followed by the increased redundancy approach
with oppositely signed noise through experiments. We demonstrated a clear trade-off between
rating privacy and the recommender system’s predictive performance in our proposed methods.

Privacy-preserving: Our design allows recommender systems to determine the level of
privacy they require with respect to the level of predictive performance loss they can tolerate.
We demonstrate the level of rating privacy through the experiments of adversaries guessing the
ratings and measuring the error. For item privacy, we use a keyed hash function over the physi-
cian identifiers, hiding the physician information associated with the rating against recommender
systems and potential eavesdroppers.

Cross-domain recommender system with partially overlapping users: For this function-
ality, we first design a basis cross-domain recommender system for the new user case. Then we
add privacy elements using the privacy-preserving matrix factorization, private set intersection
for discovering the user overlap, and secure dot product operations for user similarity calculation.
Based on our proof of concept implementation, we conclude that with over 10% user overlap, the
predictive performance increases with increased user overlap. We also demonstrate a similar
privacy and accuracy trade-off and that predictive performance loss is minor in this construction
with respect to the added privacy noise. Finally, we show that the cost of adding privacy to our
cross-domain recommender system is negligible regarding predictive performance loss, runtime
cost, and communication overhead.

6.2. Limitations
We employ some assumptions and simplifications in our design to present a solution. In this
section, we will discuss the limitations that stem from our assumptions.

First and foremost, our central assumption is the users’ reliability in the rating scheme. We
assumed users’ ratings are in a predetermined range according to the application domain require-
ments. In online physician rating systems, generally, this range is set by the domain provider.
As the users submit their rating openly through the websites such as [13, 30, 8], it is trivial to val-
idate that the rating is in a given range. However, in our system, the recommendation providers
receive noisy ratings. The added noise causes the submitted rating to be far beyond the given
range, and the recommender system cannot verify that the exact rating masked by the noise is
of an acceptable range. However, our design allows for discerning repeat rating submissions
from one user profile. The healthcare domain prevents users from registering multiple times,
thus preventing shilling attacks [40]. Overall, our design is not suitable for cases of unreliable
users who submit invalid ratings.

Additionally, we safeguard item privacy using a keyed hash function. The key is shared
among all system users while being secret to the recommender systems. This assumption, in
reality, is difficult to keep, as it means even one user collaborating with the recommender system
can reveal all of the associated items. In case of a leak, refreshing the key requires updating
all item mappings. We do not outline a formal mechanism for possible key refreshment and
assume no patient leaks the key. Similar assumptions of non-collaboration are present in our
work, such as between the domains, which is acceptable for our semi-honest setting but would
not hold for adversarial situations.

Finally, we make a simplification while evaluating the adversary who is trying to guess the
exact ratings. In reality, the parties aware that the masked ratings they receive are masked
with only positive or negative noise values might behave differently than what we propose. For
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example, they can generate oppositely signed noise to discern the underlying rating better or
project the ratings to the normal range with methods other than clipping.Therefore, our adver-
sarial implementation in this work should be reviewed with a grain of salt.

6.3. Future Work
Following our contributions to the design of a privacy-preserving cross-domain recommender
system, we note that there are still open areas for further research:

Adding privacy to user similarities The privacy requirements for our system allow for user
similarities to be public information as neither the source nor the target domain possesses rating
information. Therefore similarities between the users can not be used to deduce rating patterns
of individual users. However, real-life scenarios might allow domains to possess extra auxiliary
information, and the user similarities can be leveraged to hurt user privacy. Therefore, a direction
for future work is focusing on protecting the user similarities with differential privacy or secret
sharing schemes.

Improving recommendations on existing overlapping usersOur system focuses on gen-
erating recommendations for the cold start users without interaction in the target domain. How-
ever, existing recommender system research focuses on also improving recommendation per-
formance on existing users with some interaction. In addition, domain adaptation strategies
leverage target domain ratings to generate recommendations for overlapping but non-cold start
users, such as using a change-of-basis method over latent factors or finding transformation ma-
trix [22]. Future work can extend our design also to support existing users.

Extending the scheme to be dual-target Dual-target cross-domain recommendations are
defined as systems where not only the target domain but the source domain recommendations
are enhanced[41]. Our system is single-target, with only the target domain recommendations
generated. However, we already calculate the inter-domain similarities in our scheme, which
can be extended to the source domain for dual-target purposes.

Testing on a variety of datasets We present accuracy and privacy trade-off in our system
and suggest that service providers determine their preferred level of privacy with respect to
the predictive performance loss. Future work can include other datasets such as MovieLens
25M, Amazon Review dataset, and a synthetic dataset, which would inform recommendation
providers better. Furthermore, public websites can be scraped to generate a robust physician
rating dataset to reflect the physician rating behavior fully.

Testing the accuracy and privacy trade-off for a greater number of parties In our work,
we present the design with a two-party setting and analyze the trade-off. As we hypothesize,
the two-party setting allows for the sensitivity to be halved and the same level of privacy to
be achieved while maintaining accuracy. Further research can determine how the increased
number of parties affects our proposed trade-off.

6.4. Closing Remarks
Physician recommender systems will only be more critical as patients interact with healthcare
systems and require more assistance with finding the most appropriate provider. In this work,
we demonstrated that this pursuit need not come with the cost of patient privacy. Instead, we
provide an efficient design that selects the desired privacy level, is easily adoptable by existing
systems and can generate meaningful recommendations for patients without interactions in a
new setting, based on their previous experience with physicians. While more work is still on the
horizon for privacy-preserving cross-domain recommendation systems, we believe our design,
implementation, and evaluation are a step in the right direction, providing provable privacy for
patients requiring guidance.
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