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Abstract
We present a range-based solution for indoor relative localization by micro air vehicles (MAVs), achieving sufficient accuracy
for leader–follower flight. Moving forward from previous work, we removed the dependency on a common heading mea-
surement by the MAVs, making the relative localization accuracy independent of magnetometer readings. We found that this
restricts the relative maneuvers that guarantee observability, and also that higher accuracy range measurements are required
to rectify the missing heading information, yet both disadvantages can be tackled. Our implementation uses ultra wideband,
for both range measurements between MAVs and sharing their velocities, accelerations, yaw rates, and height with each
other. We showcased our implementation on a total of three Parrot Bebop 2.0 MAVs and performed leader–follower flight in
a real-world indoor environment. The follower MAVs were autonomous and used only on-board sensors to track the same
trajectory as the leader. They could follow the leader MAV in close proximity for the entire durations of the flights.

Keywords Relative localization · Leader–follower · Micro air vehicles · Autonomous flight · Indoor

1 Introduction

Swarm robotics offers to make micro air vehicle (MAV)
applications more robust, flexible, and scalable (Şahin 2005;
Brambilla et al. 2013). These properties pertain to a group’s
ability to remain operable under loss of individual mem-
bers and to reconfigure for different missions. Furthermore, a

This is one of the several papers published in Autonomous Robots
comprising the Special Issue on Multi-Robot and Multi-Agent
Systems.

B Mario Coppola
m.coppola@tudelft.nl

Steven van der Helm
stevenhelm@live.nl

Kimberly N. McGuire
k.n.mcguire@tudelft.nl

Guido C. H. E. de Croon
g.c.h.e.decroon@tudelft.nl

1 Department of Control and Simulation (Micro Air Vehicle
Laboratory), Faculty of Aerospace Engineering, Delft
University of Technology, Kluyverweg 1, 2629HS Delft, The
Netherlands

2 Department of Space Systems Engineering, Faculty of
Aerospace Engineering, Delft University of Technology,
Kluyverweg 1, 2629HS Delft, The Netherlands

cooperating swarm of MAVs could execute tasks faster than
any single MAV. The envisioned applications of such multi-
agent robotic systems are plentiful. Examples of interest are:
cooperative surveillance and/or mapping (Saska et al. 2016;
Schwager et al. 2009a; Achtelik et al. 2012), localization of
areas of sensory interest (e.g. chemical plumes) (Hayes et al.
2003; Schwager et al. 2009b), the detection of forest fires
(Merino et al. 2006), or search missions in hazardous envi-
ronments (Beard and McLain 2003). In order to deploy a
team of MAVs for such applications, there are certain behav-
iors that the MAVs should be capable of, such as collision
avoidance (Coppola et al. 2018; Roelofsen et al. 2015) or
leader–follower/formation flight (Vásárhelyi et al. 2014; Hui
et al. 2014; Gu et al. 2006). These tasks are accomplished by
the MAVs through knowledge of the relative location of (at
least) the neighboring MAVs in the group, for which several
solutions can be found in literature.

Often used are external systems that provide a global
reference frame within which agents can extract both their
own and the other MAVs’ position. One example is (MCSs)
(Schwager et al. 2009b; Mulgaonkar et al. 2015; Kushleyev
et al. 2013; Michael et al. 2010; Turpin et al. 2012; Chiew
et al. 2015; Hayes and Dormiani-Tabatabaei 2002). MCSs
provide highly accurate location data, but onlywithin the lim-
ited coverage provided by the system. Alternatively, (GNSS)
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can be used to provide similar location data (Gu et al. 2006;
Saska et al. 2016; Vásárhelyi et al. 2014; Quintero et al. 2013;
Hauert et al. 2011). Although GNSS is widely available, it
has relatively low accuracy if compared to MCS and there-
fore large inter-MAV separation is required to guarantee safe
flight (Nägeli et al. 2014). Furthermore, GNSS cannot reli-
ably be used indoors due to signal attenuation (Liu et al.
2007) and can also be subject to multi-path issues in some
urban environments or forests (Nguyen et al. 2016).

To increase the versatility of the solution, MAVs should
thus use on-board sensors to determine the locations of neigh-
boring MAVs. Often, vision based methods are employed,
such as: onboard camera based systems (Nägeli et al. 2014;
Iyer et al. 2013; Conroy et al. 2014; Roelofsen et al. 2015),
or infrared sensor systems (Kriegleder et al. 2015; Stirling
et al. 2012; Roberts et al. 2012). A drawback of these sys-
tems is that they have a limited field of view. This issue can
be tackled by creating constructs with an array of sensors
(Roberts et al. 2012) or by actively tracking neighboring
agents (Nägeli et al. 2014) to keep them in the field of
view. The first solution introduces a weight penalty, while
the second solution severely limits freedom of motion and
scalability as a consequence of the need for active tracking
of neighbors. Therefore, neither solution is ideal for MAVs.
A natively omni-directional sensor would be more advanta-
geous; one such sensor is a wireless radio transceiver.

Guo et al. (2017) recently implemented an ultra wideband
(UWB) radio-based system for this. Range measurements
are fused with displacement information from each MAV to
estimate the relative location betweenMAVs. However, their
method suggests that eachMAVmust keep track of their own
displacement with respect to an initial launching point. If
this measurement is obtained through on-board sensors (for
example, by integrating velocities) then this measurement
can be subject to drift over time.

Alternatively, Coppola et al. (2018) demonstrated a Blue-
tooth based relative localization method. Rather than using
displacement information, the velocities of the MAVs, the
orientation, and the height were communicated between each
other, and the signal strength was used as a range measure-
ment.

Despite the promising results of range-based solutions,
a drawback of the solutions by Coppola et al. (2018) and
by Guo et al. (2017) is that the MAVs need knowledge of
a common frame orientation. This is established by hav-
ing each MAV measure their heading with respect to North,
which would be typically done with magnetometers. Magne-
tometers are notoriously susceptible to the local disturbances
in the magnetic field. In indoor environments, disturbances
upwards of 80◦ can occur (Afzal et al. 2010). The difficulty
of establishing a reliable direction towardsNorth in an indoor
environment is a well known problem. Solutions are found
in the form of complementary filters (Roetenberg et al. 2005,

Fig. 1 Leader–follower flight with 3 Parrot Bebops, equipped with
UWB modules. By estimating and communicating their relative range
(R) and ego-motion (v), follower 1 ( f1) and follower 2 ( f2) are able to
localize the leader and able to follow its trajectory with a certain time
delay

2007; Afzal et al. 2011; Yuan et al. 2015), or the use of redun-
dant magnetic sensors to compensate the local disturbances
(Afzal et al. 2010; Li et al. 2006). However, a shared ref-
erence frame is not theoretically necessary for the purposes
of range-based relative localization (Zhou and Roumeliotis
2008; Martinelli and Siegwart 2005).

The main contribution of this paper is an analysis of the
consequences of removing the heading dependency in range
based relative localization, leading to the development and
implementation of a heading-independent relative localiza-
tion and tracking method that is accurate enough for full
on-board indoor leader–follower flight, as shown in Fig. 1.
The analysis is provided by a formal observability analysis
and by performing limit-case simulations. Differently from
the work of Zhou and Roumeliotis (2008) andMartinelli and
Siegwart (2005), the analysis also considers the inclusion of
acceleration information, since this is commonly known by
MAVs from their Inertial Measurement Unit (IMU). Further-
more, our analysis specifically focuses on the implications
of removing a heading dependency on the performance of
the relative localization filters and on the relative maneuvers
that the agents can perform in order to guarantee that the filter
remains observable. The observability analysiswill show that
the task of leader–follower flight is especially difficult with
range-based relative localization methods, because it does
not allow for the MAVs to fly parallel trajectories. We then
use the insights gathered for the development and implemen-
tation of a heading-independent leader–follower system that
we are able to use on-board of autonomous MAVs operat-
ing indoors. The MAVs rely only on on-board sensors, using
UWB for both communication and relative ranging.

The structure of the paper is as follows. First, in Sect. 2,
we compare the theoretical observability of range based rel-
ative localization systems both with and without a reliance
on a common heading. The findings from Sect. 2 are verified
through simulation in Sect. 3, where we also evaluate the dif-
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ference in performance that can be expected. We carry this
information forward in Sect. 4, where a heading-independent
system is implemented on real MAVs, and where we show
the results of our leader–follower experiments. The results
are further discussed in Sect. 5. Finally, the overall conclu-
sions are drawn in Sect. 6. Futurework is discussed in Sect. 7.

2 Observability of the relative localization
filter

In this section, an observability analysis is performed that
specifically focuses on the practical implications of perform-
ing range based relative localization both with and without
reliance on a common heading reference. Specifically, we
will study the case where one MAV (denoted MAV 1) tracks
another MAV (denotedMAV 2). Despite our focus onMAVs
in particular, the conclusions that follow hold for any general
system that can provide the same sensory information. Fur-
thermore, the results can be extrapolated to more than two
MAVs, as will be demonstrated in Sect. 4.

2.1 Preliminaries

We will conduct the analysis by studying the local weak
observability of the systems (Hermann and Krener 1977).
With an analytical test, briefly introduced in the following,
local weak observability can be used to extract whether a
specific state can be distinguished from other states in its
neighborhood.

Consider a generic non-linear state-space system
∑

:

ẋ = f(x,u) (1)

y = h(x) (2)

The system
∑

has state vector x = [x1, x2, . . . xn]ᵀ ∈ R
n ,

an input vector u ∈ R
l , and an output vector y ∈ R

m . The
vector function f(x,u) contains the definitions for the time
derivatives of all the states in x and the vector function h(x)
contains the observation equations for the system. The Lie
derivatives of this system are:

L0
f h = h (3)

L1
f h = ∇ ⊗ L0

f h · f (4)

...

Li
fh = ∇ ⊗ Li−1

f h · f (5)

where ⊗ is the Kronecker product and ∇ is the differen-
tial operator, defined as ∇ = [ ∂

∂x1
, ∂

∂x2
, . . . , ∂

∂xn
]. Note that,

accordingly, ∇ ⊗ h is equivalent to the Jacobian matrix of

h. Using these definitions, an observability matrix O can be
constructed, as in Eq. 6.

O =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∇ ⊗ L0
f h

∇ ⊗ L1
f h

...

∇ ⊗ Li
fh

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, i ∈ N (6)

A system is locally weakly observable if the observability
matrix is full rank.

2.2 Reference frames

For the analyses that follow, consider the reference frames
schematically depicted in Fig. 2. Denoted by I is the Earth-
fixed North-East-Down (NED) reference frame, which is
assumed to be an inertial frame of reference. Denoted by
Hi (i = 1, 2) is a body-fixed reference frame belonging to
MAV i . Its origin is coincident with MAV i’s centre of grav-
ity, and its location with respect to the I frame is represented
by the vector pi. Hi is a horizontal frame of reference, such
that the z-axis of the Hi frame always remains parallel to
that of the I frame. The Hi frame is rotated with respect to
the I frame only about the positive z-axis by an angle ψi ,
whereψi is the heading thatMAV i haswith respect toNorth,
also referred to as its yaw angle. The rate of change of ψi is
represented by ri .

Note that the Hi frame is different from a typical body-
fixed frame Bi , which uses the three Euler angles for roll,
pitch, and yaw to represent the MAVs physical orientation
with respect to theI frame.UsingHi rather thanBi simplifies
the kinematic relations without having to impose assump-
tions on theMAVsflight condition (e.g., being in a near-hover
state with small roll and pitch angles).

Fig. 2 Reference frames used in this paper. Frame I in purple is the
earth-fixed North East Down frame (assumed to be inertial). FramesH1
(blue) andH2 (red) are body fixed reference frames for MAVs 1 and 2,
respectively (Color figure online)
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2.3 Nonlinear system description

Weshall study the casewhereMAV1attempts to estimate the
relative position of MAV 2. We use p to denote this relative
position, such that p = p2 −p1 (see Fig. 2). Furthermore, let
vi and ai be the linear velocities and accelerations of frameHi

with respect to frame I expressed in frameHi , respectively.
Finally, let Δψ represent the difference in heading between
MAVs 1 and 2, such that Δψ = ψ2 − ψ1.

Since the horizontal plane of Hi matches the horizontal
plane ofI, height of theMAVs from the ground can be treated
as adecoupleddimension.This does not affect the observabil-
ity result as long as the MAVs are both capable of measuring
and comparing their own height, which is the case. There-
fore, for brevity, height will not be included in the following
analysis. The vectors for the relative position p, the velocity
vi, and the acceleration ai can thus be expanded as 2D vec-
tors: pᵀ = [px , py]ᵀ, vi = [vx,i , vy,i ]ᵀ, ai = [ax,i , ay,i ]ᵀ,
i = 1, 2.

The rate of change of Δψ is Δψ̇ = r2 − r1. Note that the
value for ri is not equal to the yaw rate as would commonly
bemeasured by an on-board rate gyroscope in the body frame
Bi . Instead, ri is expressed as:

ri = sin(φi )

cos(θi )
q̃i + cos(φi )

cos(θi )
r̃i (7)

where q̃i and r̃i represent the true pitch and yaw rate as would
bemeasured by a rate gyroscope, andφi and θi are the roll and
pitch angles of the MAV. However, for the sake of simplicity,
ri will be referred to as the MAV’s yaw rate.

Similarly, ai, which is the value for the linear acceleration
of theHi frame expressed in coordinates of theHi frame, is
not equal to what is measured by the on-board accelerometer.
Instead, it is equal to:

ai =
[
c(θi ) s(φi )s(θi ) c(φi )s(θi ))
0 c(φi ) −s(φi )

]

si (8)

where si is the specific force measured in the body frame
Bi by the accelerometer of MAV i . Furthermore, c(α) and
s(α) represent short hand notation for cos(α) and sin(α),
respectively. The matrix in this equation consists of the first
two rows of the rotation matrix from the Bi frame to the Hi

frame.
Following the above, the complete state vector of the sys-

tem is given by x = [pᵀ,Δψ, v1ᵀ, v2ᵀ]ᵀ, and the input
vector is uᵀ = [a1ᵀ, a2ᵀ, r1, r2]ᵀ. The continuous time state
differential equations can be written as:

ẋ = f(x,u) =

⎡

⎢
⎢
⎣

−v1 + Rv2 − S1p
r2 − r1

a1 − S1v1
a2 − S2v2

⎤

⎥
⎥
⎦ (9)

where R is the 2D rotation matrix from frame H2 toH1:

R = R(Δψ) =
[
cos(Δψ) −sin(Δψ)

sin(Δψ) cos(Δψ)

]

(10)

The matrices S1 and S2 are the skew-symmetric matrix
equivalent of the cross product, adapted to the 2D case. The
matrix Si is equal to:

Si = Si(ri ) =
[
0 −ri
ri 0

]

, i = 1, 2 (11)

The variables ai and ri are inputs into the system and
MAV 1 must thus have knowledge of these values. How-
ever, these are typically available from accelerometer and
gyroscope data in combination with the appropriate relations
given in Eqs. 7 and 8.

Finally, Eq. 9 needs to be complemented with an obser-
vation model. The MAVs should be able to measure the
relative range between each other, along with their own and
the other’s velocities. Then, the analysis that follows aims to
study the difference between the following two scenarios: a
scenario where the above measurements are the only mea-
surements and a scenario where the MAVs are additionally
capable of observing each other’s headings. The situation
where the MAVs can observe a heading is referred to as

∑
A

and the situation where a heading is not observed is referred
to as

∑
B .

∑
A: The scenariowhereψ1 andψ2 are observed is equiv-

alent to Δψ (the difference in headings) being observed.
Therefore, for

∑
A, the observation model is:

yA = hA(x) =

⎡

⎢
⎢
⎣

hA1(x)
hA2(x)
hA3(x)
hA4(x)

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1
2p

ᵀp
Δψ

v1
v2

⎤

⎥
⎥
⎦ (12)

Note that the observation equation hA1(x) is slightly
modified with regards to the previously mentioned mea-
surements. Rather than observing the range between the
twoMAVs (i.e. ||p||2), half the squared range is observed
(i.e. 12p

ᵀp). This changemakes the observability analysis
more convenient without affecting its result. Both ||p||2
and 1

2p
ᵀp contain the same information as far as observ-

ability of the system is concerned (Zhou and Roumeliotis
2008).
∑

B : In this case, the headings of the MAVs are not mea-
sured, and it is thus not possible to observe the difference
in heading Δψ directly. For

∑
B , the observation model

is:
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yB = hB(x) =
⎡

⎣
hB1(x)
hB2(x)
hB3(x)

⎤

⎦ =
⎡

⎣

1
2p

ᵀp
v1
v2

⎤

⎦ (13)

The effect of the difference in the observation equations
is studied in the following sections.

2.4 Observability analysis with a common heading
reference

For system
∑

A, which uses the observation model from
Eq. 12, the first entry in the observability matrix is equal
to:

∇ ⊗ L0
f hA = ∇ ⊗ hA =

⎡

⎢
⎢
⎣

pᵀ 0 01×2 01×2

01×2 1 01×2 01×2

02×2 02×1 I2×2 02×2

02×2 02×1 02×2 I2×2

⎤

⎥
⎥
⎦

=
[

pᵀ 01×5

05×2 I5×5

]

(14)

where In × n represents an identity matrix of size n × n
and 0m × n represents a null matrix of size m × n. We can
already deduce simplifying information fromEq. 14 that will
aid the subsequent analysis. First, note that, for the higher
order terms in the observability matrix, the last 5 columns do
not contribute to increasing its rank, because these columns
are populated with an identity matrix. Furthermore, these
higher order terms in the observation matrix (corresponding
to the observations of Δψ , v1, and v2) only have terms in
those last 5 columns because none of the higher order Lie
derivatives corresponding to those observations depend on
the state p. For this reason, these need not be computed and
we can thus omit them for brevity. The remainder of this anal-
ysis considers only the terms corresponding to observation
hA1(x) = 1

2p
ᵀp.

The first order Lie derivative corresponding to the obser-
vation hA1(x) = 1

2p
ᵀp is equal to:

L1
f hA1 = pᵀ(−v1 + Rv2 − S1p) (15)

Next, remembering that S1 is a skew symmetric matrix, such
that S1 + S1ᵀ = 02×2, the following identity is obtained:

∂pᵀSip
∂p

= pᵀ(Si + Siᵀ) = pᵀ(02×2) = 01×2 (16)

Using this identity, it can be verified that the second term in
the observation matrix corresponding to hA1(x) is:

∇ ⊗ L1
f hA1 =

⎡

⎢
⎢
⎢
⎢
⎣

−v1 + Rv2

pᵀ ∂R
∂Δψ

v2

−p

Rᵀp

⎤

⎥
⎥
⎥
⎥
⎦

ᵀ

(17)

At this point, it would be possible to continue calculat-
ing higher order terms for the observability matrix, but in
practice this is not necessary. The first term of the observ-
ability matrix as shown in Eq. 14 already presents a matrix
of rank 6. Since the state is of size 7, this means that only
1 more linearly independent row needs to be added to the
observability matrix to provide local weak observability of
the system. Furthermore, it is of practical interest to study the
scenarios in which the system is locally weakly observable
with a minimum amount of Lie derivatives involved in the
analysis. This is due to the fact that in practice all signals
are noisy, and the derivative of a noisy signal will be even
noisier. It will be demonstrated that the terms presented in
Eq. 17 are sufficient, under certain conditions, to make the
observability matrix full rank.

As mentioned, Eq. 14 already shows that the last five
columns of the observability matrix are no longer of inter-
est to increase its rank. Furthermore, only the observation
of hA1(x) = 1

2p
ᵀp provides non-zero terms in the first two

columns of the observabilitymatrix. Therefore, the following
matrix can be constructed by collecting the terms of the first
two columns in the observation matrix belonging to obser-
vation hA1(x):

MA =
[

pᵀ

−v1ᵀ + v2ᵀRᵀ

]

(18)

where the first term is from the zeroth order Lie derivative
(see Eq. 14) and the second term from the first order Lie
derivative (see Eq. 17). The system is thus observable with
a minimum amount of Lie derivatives if the matrix given by
Eq. 18 has two linearly independent rows. By the definition
of linear independence, this means that the following condi-
tion must hold to guarantee local weak observability of the
system:

− v1 + Rv2 �= cp (19)

where c is an arbitrary constant.
The condition in Eq. 19 essentially tells us that the relative

velocity of the two MAVs should not be a multiple of the
relative position vector between the two. For more practical
insight, we can extract more intuitive conditions that must
also be met for Eq. 19 to hold. These conditions are:
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I. p �= 02×1 (20)

II. v1 �= 02×1 or v2 �= 02×1 (21)

III. v1 �= Rv2 (22)

The first condition tells us that the x and y coordinates of the
relative position of MAV 2with respect to MAV 1 should not
be equal to 0. In practice, this would only be possible if the
MAVs were separated by height, for otherwise their physical
dimension would prevent this condition from occurring. The
second condition tells us that one of the two MAVs needs
to be moving to render the filter observable, and that the
observability is indifferent to which of the MAVs is moving
(hence the or operator). The third condition tells us that the
MAVs should not be moving in parallel at the same speed,
where the rotation matrix R transforms v2 to theH1 frame.

Whilst these three conditions are easier to consider, it
should be noted that they form only a subset of the con-
ditions imposed by Eq. 19. For example, the scenario where
MAV 2 is stationary, and MAV 1 flies straight towards MAV
2, does not violate any of these three conditions. It does, how-
ever, violate Eq. 19. Therefore, the observability of a state
and input combination should be checked against the full
condition in Eq. 19.

2.5 Observability analysis without a common
heading reference

After determining the conditions under which system
∑

A is
locallyweakly observable,we compare it to the systemwhere
the heading measurements are no longer present. We now
consider system

∑
B , whose observation equation (Eq. 13)

does not include the state Δψ . For this system, the first term
in the observability matrix is:

∇ ⊗ L0
f hB = ∇ ⊗ hB =

⎡

⎢
⎣

pᵀ 0 01×2 01×2

02×2 02×1 I2×2 02×2

02×2 02×1 02×2 I2×2

⎤

⎥
⎦ (23)

Equation 23 is very similar to Eq. 14, but with the impor-
tant difference that the row corresponding to the observation
of Δψ is null. Consequently, the matrix is only of rank 5,
rather than rank 6. Since the state size is still 7, a minimum
of two more independent rows must be added to the observ-
ability matrix to make the system locally weakly observable.
Once again only the terms corresponding to the observation
hB1(x) = 1

2p
ᵀphave terms that could increase the rank of the

observability matrix. This means that this time a minimum
of two more Lie derivatives must be calculated.

It can be verified that the first derivative L1
f hB1, and thus

its state-derivative ∇L1
f hB1, are exactly the same as for

∑
A.

Therefore, these need not be calculated anymore and are

given by Eqs. 15 and 17, respectively. The second order Lie
derivative is equal to:

L2
f hB1 = (−v1ᵀ + v2ᵀRᵀ)(−v1 + Rv2 − S1p)

+ pᵀ ∂R
∂Δψ

v2(r2 − r1) − pᵀ(a1 − S1v1)

+ pᵀRᵀ(a2 − S2v2) (24)

Some terms in Eq. 24 can be seen to drop out when the
equation is expanded. For example, the yaw rate of MAV 1
(r1) cancels out completely. Therefore, Eq. 24 reduces to:

L2
f hB1 = v1ᵀv1 + v2ᵀv2 − 2v1ᵀRv2 + pᵀ ∂R

∂Δψ
v2r2

− pᵀa1 + pᵀRa2 − pᵀRᵀS2v2 (25)

The state derivative of L2
f hB1 can then be shown to be

equal to Eq. 26. Once again, note that some terms drop out
(this step has been omitted for brevity).

∇L2
f hB1 =

⎡

⎢
⎢
⎢
⎢
⎣

a1 + Ra2

−2v1ᵀ ∂R
∂Δψ

v2 + pᵀ ∂R
∂Δψ

a2

2v1 − 2Rv2

−2Rᵀv1 + 2v2

⎤

⎥
⎥
⎥
⎥
⎦

ᵀ

(26)

Just as for
∑

A, a part of the observation matrix can be
extracted for analysis. This time, the first three columns in
the observation matrix (as opposed to two) are collected for
the observation hB1(x) = 1

2p
ᵀp. Also, this time the terms

up to and including the second order Lie derivative are min-
imally needed to obtain a full rank observability matrix. The
following matrix is obtained:

MB=

⎡

⎢
⎢
⎣

pᵀ 0

−v1ᵀ + v2ᵀRᵀ pᵀ ∂R
∂Δψ

v2

−a1ᵀ + a2ᵀRᵀ −2v1ᵀ ∂R
∂Δψ

v2 + pᵀ ∂R
∂Δψ

a2

⎤

⎥
⎥
⎦ (27)

In this case, obtaining the conditions for which this is a
full rank matrix is less obvious due to the plethora of terms.
Rather than directly demonstrating linear independence of
the three rows in Eq. 27, the determinant |MB| may be com-
puted and demonstrated to be non-zero. This is done as
follows. Recall that pᵀ = [px , py]. Furthermore, suppose
−v1ᵀ +v2ᵀRᵀ = [a, b] and −a1ᵀ +a2ᵀRᵀ = [c, d]. Then,
matrixMB can be written as:

MB =

⎡

⎢
⎢
⎣

px py 0

a b pᵀ ∂R
∂Δψ

v2

c d −2v1ᵀ ∂R
∂Δψ

v2 + pᵀ ∂R
∂Δψ

a2

⎤

⎥
⎥
⎦ (28)
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The determinant of MB can be computed using a cofactor
expansion along the last column of MB. This results in:

|MB| = −pᵀ ∂R
∂Δψ

v2(dpx − cpy)

+
(

−2v1ᵀ ∂R
∂Δψ

v2 + pᵀ ∂R
∂Δψ

a2

)

(bpx − apy)

(29)

Now, the following identity can be used:

bpx − apy = [
a b

]
[−py

px

]

= [
a b

]
A

[
px

py

]

, (30)

where A =
[
0 −1

1 0

]

.

Substituting back the original expressions for [a, b],
[c, d], and [px , py], the determinant of MB becomes:

|MB| = −pᵀ ∂R
∂Δψ

v2(−a1ᵀ + a2ᵀRᵀ)Ap

+
(

−2v1ᵀ ∂R
∂Δψ

v2 + pᵀ ∂R
∂Δψ

a2

)

× (−v1ᵀ + v2ᵀRᵀ)Ap (31)

This can be simplified and written as:

|MB| =
[

pᵀ ∂R
∂Δψ

(−a2v1ᵀ + v2a1ᵀ)

+ 2 v1ᵀ ∂R
∂Δψ

(
v2v1ᵀ − v2v2ᵀRᵀ)

]

Ap (32)

This system is thus locally weakly observable with a min-
imum amount of Lie derivatives if |MB| is non-zero. Due to
the specific properties of the A matrix in this determinant
(see Eq. 30), the following equation must hold to render the
determinant |MB| non-zero:

pᵀ ∂R
∂Δψ

(−a2v1ᵀ + v2a1ᵀ)

+ 2v1ᵀ ∂R
∂Δψ

(
v2v1ᵀ − v2v2ᵀRᵀ) �= kpᵀ (33)

where k is an arbitrary constant.
Just as for Eq. 19, we can extract a more intuitive subset

of conditions for Eq. 33 that also definitely must be met for
the system to be observable. These conditions are:

I. p �= 02×1 (34)

II. (v1 �= 02×1 or a1 �= 02×1) and

(v2 �= 02×1 or a2 �= 02×1) (35)

(a) Intuitive condition 2 (b) Intuitive condition 3

(c) Unintuitive case 1 (d) Unintuitive case 2

Fig. 3 Representations of four unobservable state and input combina-
tions. The relative position p, the velocities vi, and the accelerations ai
of MAVs 1 and 2 are depicted

III. v1 �= sRv2 or (a1 �= 02×1 or a2 �= 02×1) (36)

where s is an arbitrary constant.
The first condition tells us that the determinant |MB| is

zero if the x and y coordinates of the origins of frames H1

and H2 coincide. This is the same as for
∑

A. The second
condition tells us that both MAVs need to be moving. This
movement may be either through having a non-zero velocity,
or through having a non-zero acceleration (the violation of
which is shown in Fig. 3a). The third condition tells us that
the MAVs may not move in parallel, as in Fig. 3b, unless at
least one of the MAVs is also accelerating at the same time.
Note that this time the MAVs are not allowed to move in
parallel regardless of whether they are moving at the same
speed or not, hence the scalarmultiple s.1 By comparison, the
equivalent condition for

∑
A only specified that the MAVs

may not move in parallel at the same speed.
In order to study these intuitive conditions in further detail,

we evaluated how the observability of the system is affected
once the relative position p between the MAVs changes. By
varying the px and py values of the vector p around the
originally set values for p (as in Fig. 3), we analyzed the
observability of the system for different relative positions,
while keeping the velocities and accelerations constant. The
measure for observability was obtained by interpreting the

1 Please check Appendix A for the derivation of Eq. 36 from Eq. 32.
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(a) Intuitive condition 2
Fully unobservable

(b) Intuitive condition 2
Partially unobservable

(c) Intuitive condition 3
Fully unobservable

(d) Intuitive condition 3
Partially unobservable

(e)Unintuitive case 1 (f)Unintuitive case 2

Fig. 4 Color map of observability for different relative positions. The
velocities and accelerations of the MAVs are kept as depicted by Fig. 3
and the values for pᵀ = [px , py]ᵀ are varied over a 10 m range (Color
figure online)

meaning of Eq. 33. It essentially tells that the left hand side
of the equation should not be parallel to the relative position
vector p. Therefore, a practical measure of observability is
how far away the left hand side of Eq. 33 is from being par-
allel to p, which can be tested with the cross product. The
absolute value of the cross product is then used as a measure
of the observability of the system. This paper considers a
cross product less than a value of 1 to be unobservable. In
theory, only when the cross product is 0 does it actually rep-
resent an unobservable condition. However, such a threshold
facilitates visibility on the plots and provides insight on what
the near-unobservable conditions are and their proportion in
relation to the remaining conditions.

For the case of the second (Eq. (35), Fig. 4a) and the third
intuitive condition (Eq. (36), Fig. 4c) it can be seen that a
varyingp does not affect the unobservability in the colormap.
Once an acceleration vector is added to the state of MAV 1
in both cases, specifically a1 = [0.3 0.3]ᵀ, the color plots in
Fig. 4b, d show that for a set of relative positions, the system
does become observable again. However, the chances of the

MAVs ending up in an unobservable state are still significant
within an operating area of 100 m2.

The three intuitive conditions we extracted are only a sub-
set of all conditions imposed by Eq. 33. This means that
there exist state and input combinations that satisfy the three
intuitive conditions, but that do not satisfy Eq. 33. In order to
studywhat the implications of the full unobservability condi-
tion in Eq. 33 are, we used the Nelder–Mead simplex method
to find other points in the state and input space that violate
the full observability condition. Two examples are shown in
Fig. 3c, d. These scenarios do not violate any of the intuitive
conditions given by Eqs. 34–36. The relative position is non-
zero, both MAVs have non-zero velocities and accelerations,
and the velocity vectors are not parallel. Nevertheless, they
violate Eq. 33. Based on this, colormaps for the unobservable
conditions in Fig. 3c, d are given in Fig. 4e, f, respectively.

Both color maps of Fig. 4e, f clearly show a non-linear
relationship between the relative position vector p and the
observability of the system. Moreover, both maps show a
different non-linear relationship. Figure 4e shows more of
a hyperbolic relationship, whereas the unobservable region
in Fig. 4f looks more elliptical. It can be shown that dif-
ferent conditions show yet other relationships between the
observability of the system for different relative positions
p. Moreover, these relationships only show what happens in
two dimensions, which are for the two entries in the vector
p. In reality, the observability condition in Eq. 33 presents
an 11-dimensional problem. It is therefore still difficult to
deduce general rules from these results. What the latter two
color maps do have in common is that the unobservable rel-
ative positions are in all cases vastly outnumbered by the
observable relative positions. This is different than what was
observed for situations that would violate any of the more
intuitive conditions in Eqs. 35 and 36.

2.6 Comparison of the two systems

Finally, the results from the observability analysis of both
systemswill be compared. Thesewill showwhat the practical
implications are when switching from a system that relies on
a common heading reference to a system that does not.

A primary result of the analysis is that removing the rel-
ative heading measurement results in a system that requires
at least one extra Lie derivative in the range observation to
make the system locallyweakly observable. This is an impor-
tant result, because it tells us that the heading-independent
system

∑
B relies more heavily on the range equation than∑

A. Without a heading observation, the range measurement
serves to estimate a total of three states, as opposed to two
in

∑
A. Some of this information is contained in the second

derivative of the range observation, and it is awell known fact
that the derivative of a noisy signal will be even noisier. In
practice, this means that any system that wishes to perform
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range-based relative localization without a heading depen-
dency needs an accurate and low-noise range measurement.

Another important result is that the criteria posed for
∑

B
specify that both MAVs must be moving. Contrarily, the cri-
teria for

∑
A specify that only one of the MAVs must be

moving. Whilst this result might not be as relevant for MAV
teams, as the MAVs will typically be moving anyway, this
result can be important for other applications of range-based
relative localization. Think, for example, of the case where a
single static beacon is used to estimate the position of a fly-
ing MAV using only range sensing and communication. The
results of our analysis show that

∑
B is not observable in this

case, and thus a common heading reference must be known
for such a system to work or, alternatively, the MAV must
track the beacon and then communicate its estimate back to
the beacon. Note that, in the case where one of the partici-
pants is not moving, if we were to continue our analysis of∑

B to higher order Lie derivatives then it would still not be
possible to make the observability matrix full rank, so that
the condition holds generally.

A third difference is found in the condition for parallel
movement of the two MAVs.

∑
A requires that the MAVs

should not move in parallel at the same speed, meaning that
there should be a non-zero relative velocity between the two
MAVs. Instead,

∑
B requires that the MAVs should not be

moving in parallel regardless of speed. Therefore, even if
the second MAV were to be moving twice as fast as the first,
the filter would not be observable as long as the direction
of movement is the same. However,

∑
B can bypass this

condition in some cases if either of the MAVs is also simul-
taneously accelerating. Similarly, it can be shown that

∑
A

is able to bypass the parallel motion condition with accel-
eration, although a second order Lie derivative would be
necessary in that case.

3 Verification through Simulations

In this section, we further investigate the conclusions drawn
from the analytical observability analysis. At first, a kine-
matic, noise-free study is performed to verify and confirm
the differences in the observability conditions for

∑
A and

∑
B . Afterwards, the influence of noise and disturbances on

the filter are studied.

3.1 Filter design

The filter of choice, used throughout the rest of this paper, is
an Extended Kalman Filter (EKF), since this type of filter fits
intuitively with how the state-space system was described in
Sect. 2. The EKF also uses a state differential model and an
observation model. The state differential model can thus be
kept exactly as the one given earlier in Eq. 9. The obser-

vation models for
∑

A and
∑

B are also kept almost the
same as given in Eqs. 12 and 13, with the only adjustment
that now the full range ||p||2 is observed, rather than half
the squared range 1

2p
ᵀp. Additionally, in line with earlier

research on range-based relative localization on real robots
(Coppola et al. 2018), we decided to use an EKF on-board
of the real-world MAVs because of its low processing and
memory requirements.

An EKF has parameters that need to be tuned, namely:
the initial state, the system and measurement noise matri-
ces, and the initial state covariance matrix. The initial state
is an important setting that will be described where appro-
priate in the next sections. The matrices are always tuned to
correspond to the actual expected values. The measurement
noise matrix is tuned based on the expected quality of the
measurement variables, and similarly for the system noise
matrix. However, since some of the simulations also make
use of perfect measurements and since a zero entry in the
measurement noise matrix is not possible, the correspond-
ing entries are then given a small value of 0.1 m. We use
0.1 m based on what is eventually used on the EKF on-board
of the real MAVs. By using UWB antennas for range mea-
surements, we can expect standard deviations of 0.1–0.3 m
around the true value. Our experimental set-up is described
in Sect. 4.3.

3.2 Kinematic, noise-free study of unobservable
situations

In the first simulated study, the two MAVs that are studied
have kinematic trajectories that can be described analyti-
cally. The MAVs also have perfect noise-free knowledge of
the inputs and measurements. The kinematic and noise-free
situation is used to confirm conclusions drawn in the observ-
ability analysis performed in Sect. 2.

The two MAVs involved in the EKF are designated MAV
1 and MAV 2. MAV 1 shall be the host of the EKF and
shall attempt to track the relative position of MAV 2, a.k.a.
the tracked MAV. The latter does not contain an EKF. The
following three scenarios are studied:

1. MAV 1 (host) is moving and MAV 2 (tracked) is station-
ary.

2. MAV 1 (host) is stationary and MAV 2 (tracked) is mov-
ing.

3. MAV 1 (host) and MAV 2 (tracked) are both moving in
parallel to each other at different speeds.

These scenarios have been chosen because they match
the intuitive conditions where

∑
A is observable, but

∑
B

is not. These are limit cases and therefore provide valuable
verification of the analytically found differences between the
two systems.
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The simulations will show whether these different scenar-
ios have convergent EKFs or not. The focus of this analysis
is on the estimation of the relative position p and the rela-
tive heading Δψ . Since the velocities are observed directly,
these are observable regardless of the situation, and are thus
not shown.

The initial velocities of MAVs 1 and 2 are initialized to
their true value, since these are not the variables of interest
in this analysis. The initial position and relative heading are
initialized with an error, the specifics of which will be given
in the respective scenarios. The yaw rates and headings of
both MAVs are kept at 0 rad/s and 0 rad, respectively. The
EKF runs at a frequency of 50 Hz.

The errormeasure throughout this paper is theMeanAbso-
lute Error (MAE). The separate x and y errors in the relative
location estimate p are combined according to the norm
||p||2. This choice was made because the separate errors in x
and y directions offer little additional insight and are usually
identical.

3.2.1 MAV 1 (host) moving, MAV 2 (tracked) stationary

Previous analytical analysis has shown that
∑

A is locally
weakly observable, while

∑
B is not observable. This result

is therefore expected to be reflected in the simulation as well.
In the simulation,MAV1 (the host) is positioned at pᵀ

1,0 =
[0, 0]ᵀ and has a constant velocity v1ᵀ = [1, 0]ᵀ. MAV 2
(the tracked MAV) is positioned at pᵀ

2,0 = [1, 1]ᵀ with no
velocity or acceleration. The initial guess of MAV 1 for the
relative position and heading of MAV 2 is [p̂ᵀ

0 , Δ̂ψ0]ᵀ =
[0.1, 0.1, 1]ᵀ. This means that the initial estimation error in
px , py , and Δψ is thus equal to 0.9, 0.9, and 1, respectively.

As can be seen in Fig. 5, both the relative position p error
and the relative heading Δψ error quickly converge to 0.
Contrarily, the observability analysis of

∑
B has shown that

this scenario is not locally weakly observable, because the
second condition is violated, i.e., one of the MAVs is not
moving. However, Fig. 6 shows that the ||p||2 error converges
to 0 just as rapidly as for

∑
A. A more thorough inspection

shows that the unobservable state of the system is in factΔψ ,
which is the one that does not converge. This is a favorable
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Fig. 5
∑

A EKF convergence for case 1: MAV 1 (host) moving, MAV
2 (tracked) stationary

0 0.5 1 1.5 2
0

0.5

1

1.5

0 0.5 1 1.5 2
0

0.5

1

1.5

Fig. 6
∑

B EKF convergence for case 1: MAV 1 (host) moving, MAV
2 (tracked) stationary

result, since the relative position is typically the variable of
interest, rather than the difference in heading.

The reason that this occurs lies in the information pro-
vided by the first state differential equation. This equation
tells us that ṗ = −v1 + Rv2 − S1p. The only dependency
that this equation has on the relative heading Δψ is in the
rotation matrix R. Therefore, as long as v2 is equal to 0, the
differential equation for ṗ has no dependency on the rela-
tive heading between the two MAVs. The convergence of p
therefore remains unaffected. The situation changes when it
is v2 that is non-zero and v1 that is zero. This case will be
studied next.

3.2.2 MAV 1 (host) stationary, MAV 2 (tracked) moving

For this case, all of the parameters are the same as for case
1, with the only difference being that now v1 = 0 and
v2ᵀ = [1, 0]ᵀ. The analytical observability analysis has
shown that this scenario is locallyweakly observable for

∑
A.

As expected, it can be seen in Fig. 7 that both the errors for
p and Δψ converge rapidly to 0. The observability analysis
has then shown that

∑
B is not locally weakly observable in

this scenario. Indeed, Fig. 8 shows that both ||p||2 and Δψ

do not converge and that ||p||2 diverges.
This time, because v2 is not equal to 0, the state differential

equation for the relative position of MAV 2 has a depen-
dency on the relative heading state Δψ . Since Δψ does not
converge to its true value, and eventually settles at an error
of approximately 1.5 rad, there is a large inaccuracy in the
state differential equation for ṗ. This consequently results
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Fig. 7
∑

A EKF convergence for case 2:MAV1 (host) stationary,MAV
2 (tracked) moving
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Fig. 8
∑

B EKF convergence for case 2:MAV1 (host) stationary,MAV
2 (tracked) moving

in an ever increasing error in p, because MAV 1 essentially
‘thinks’ that MAV 2 is flying in a different direction than it
really is.

This shows the reason as towhy it is generally not possible
for a stationary vehicle (or beacon) to be tracking a moving
vehicle using range-only measurements and velocity infor-
mation without a common heading reference. Contrarily, it is
possible for amoving vehicle to be tracking a stationary vehi-
cle or beacon’s position. This is entirely caused by the fact
that a vehicle will always be ‘aware’, in its own body frame,
of the direction it is moving in and hence does not need a
convergent estimate of the relative heading with respect to
the vehicle it is tracking. However, when the vehicle it is
tracking does move, it needs this convergent estimate of the
relative heading to know which direction the other is moving
in.

3.2.3 MAV 1 (host) and MAV 2 (tracked) moving in parallel
at different speeds

Finally, the case where both MAVs are moving in parallel,
but at different speeds, is studied. Once more, most of the
parameters are kept the same as those presented under case
1. This time, the velocity of MAV 2 is set to v2ᵀ = [1, 0]ᵀ
and the velocity of MAV 1 is set in a parallel direction, but
with twice the magnitude (v1ᵀ = 2v2ᵀ = [2, 0]ᵀ).

According to the observability analysis, this is one of the
limit cases where

∑
A is still just observable, but

∑
B is not.

Indeed, Fig. 9 shows convergent behavior for
∑

A, whereas
Fig. 10 shows divergence for

∑
B . Note that the filter for

∑
B
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Fig. 9
∑

A EKF convergence for case 3: MAV 1 (host) and MAV 2
(tracked) moving in parallel
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Fig. 10
∑

B EKF convergence for case 3: MAV 1 (host) and MAV 2
(tracked) moving in parallel

has a decreasing error in Δψ . However, the convergence of
Δψ is very slow. Furthermore, the error for p continues to
rise indefinitely.

This result concludes the noise-free simulations that com-
pare the performance of the filters for

∑
A and

∑
B . These

simulations verify that the differences between the intuitive
unobservable conditions that we derived for the two filters in
Sect. 2 also hold true when translated to a simulation envi-
ronment.

3.3 Kinematic noisy rangemeasurements study of
observable situation

Whilst a noise-free study demonstrates the feasibility of the
proposed filter and can verify the differences between

∑
A

and
∑

B , it is also important to study the filter’s performance
when presented with noisy data. Not only is this more repre-
sentative of the filter’s performance in practice, but it also can
be used to verify one of themain conclusions that were drawn
in the observability study, namely that

∑
B needs informa-

tion present in the second derivative of the range data to be
observable, compared to only a first derivative for

∑
A. It is

consequently expected that, with all other parameters fixed,
∑

B will perform increasingly worse as the range measure-
ment noise increases.

In this study, we steer away from unobservable scenarios.
The intent now is to study both filter’s performances for the
case where the filters are known to be observable, in order to
compare their performance. For this reason, the trajectories
of MAV 1 (host) and MAV 2 (tracked) are designed so as to
stay clear of the unobservable situations and to excite thefilter
properly through relative motion. The trajectories that we
devised for this study are perfectly circular, and we assume
that the MAVs fly at the same height.

The trajectories, depicted in Fig. 11, can be described in
polar coordinates [ρ, θ ]. MAV 1 flies a circular motion at
an angular velocity θ̇1 = ω1 with radius ρ1, and MAV 2
flies at angular velocity θ̇2 = ω2 with radius ρ2. To ensure
that both MAVs have sufficient relative motion, one MAV
flies clockwise and the other counter clockwise, such that
ω1 = −ω2. Moreover, the radius of MAV 2’s trajectory is
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MAV 2

MAV 1

Fig. 11 Two circular trajectories for MAV 1 and MAV 2

1 m larger than MAV 1’s trajectory, and is offset by 90◦ in
angle, such that ρ1 = ρ2 − 1 and θ1 = θ2 + π

2 .
The radius difference in the trajectories ensures that the

situation p = 0 is avoided, and the angle offset ensures
that the relative velocities are distributed more or less
equally in x and y directions. In these simulations, for
simplicity, both MAVs keep a steady heading such that
ψ1 = ψ2 and r1 = r2 = 0.2 Switching back to Carte-
sian coordinates, the trajectories can thus be analytically
described as follows.MAV2’s position vector in time is given
by:

p2(t) =
[

ρ2cos(ω2t)

ρ2sin(ω2t)

]

(37)

MAV 1’s position vector in time can be described by:

p1(t) =
[

(ρ2 − 1)cos(−ω2t + π
2 )

(ρ2 − 1)sin(−ω2t + π
2 )

]

=
[−(ρ2 − 1)sin(−ω2t)

(ρ2 − 1)cos(−ω2t)

]

(38)

The equations for vi(t) and ai(t) can be obtained by taking
the time derivatives with respect to pi(t), i = 1, 2. Note that
this is not true for the general case, since Hi is a rotating
frame of reference, but in this case it is possible because the
MAVs keep a constant heading equal to 0 rad.

By setting ρ2 = 4 m and ω2 = 2π
20 rad, the trajectory of

MAV 2 becomes a circle with a radius of 4 m that is traversed
in 20 s. To complywith the previously defined constraints, ρ1
andω1 are 3m and− 2π

20 rad/s, respectively. These values are
representative of what a real MAV should easily be capable
of and result in relative velocities of about 1 m/s in x and y
directions between the two MAVs.

The study will test the performance of the relative local-
ization filter as seen from the perspective of MAV 1, which

2 Note that the approach is also valid when the headings change, this
simplification was only done to simplify the trajectory design used in
the simulations.

is tracking MAV 2. The filter is fed perfect information on
all state and input values, except for the measurement of
the range ||p||2 between the two MAVs. The range mea-
surement are artificially distorted with increasingly heavy
Gaussian white noise. The measured range fed to the fil-
ter is thus ||p||2,m = ||p||2 + n(σR), where n(σR) is a
Gaussian white noise signal with zero mean and standard
deviation σR . The standard deviations that are tested are
0 m (noise free), 0.1 m, 0.25 m, 0.5 m, 1 m, 2 m, 4 m,
and 8 m. In practice, a standard deviation of 8 m could be
considered quite high, but this is intentionally chosen with
the intent to observe a significant difference in the error.
Since this study keeps all the other measurements and inputs
noise free, the noise on the range measurement needs to
be higher to get a significant increase in the localization
error.

This time the EKF runs at 20 Hz, which is more repre-
sentative of our real-world set-up, discussed later in Sect. 4.
The described flight trajectory is simulated for 20 s each run,
which is thus one complete revolution of the circular trajec-
tory. The EKF is initialized to the true state to exclude the
effects of initialization.

For each particular noise standard deviation, both the filter
for

∑
A and for

∑
B are simulated with 1000 different noise

realizations. For each realization the MAE of the estimated
p with respect to its true value is computed, again by con-
sidering the combined error in the estimate of ||p||2. After
1000 realizations, the Average MAE (AMAE) is computed
to extract the average performance for all noise realiza-
tions.

The resulting AMAE values for systems
∑

A and
∑

B are
given in Table 1 and are plotted in Fig. 12. As expected, at
very low noise values on the range measurement, both the
filters for

∑
A and

∑
B have very similar error performance.

With no noise on the range measurements, the difference
between the two filters is only 4mm.However, since the filter
for

∑
B ismore sensitive to noise on the rangemeasurements,

it quickly starts to perform worse than
∑

A as the noise on
the range measurement is increased.

This result is in line with the analytical results presented
in Sect. 2. However, it also raises the question of whether
removing the dependency on a common heading reference
poses any advantage, since

∑
A performs consistently bet-

ter than
∑

B . The reason for this result lies in the fact
that the studied scenario uses perfect measurements for all
the sensors except for the measured range. As mentioned
in the introduction, the heading observation is notoriously
troublesome and unreliable, especially in an indoor environ-
ment (Afzal et al. 2010). Therefore, it would be valuable
to study what would happen to this analysis in the case
where the heading estimate is not perfect. This is presented
next.
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Table 1 Average Mean Absolute Error for
∑

A and
∑

B over 1000 runs with different noise standard deviation on the range measurement

Range noise σR (m)

0 0.1 0.25 0.5 1 2 4 8

∑
A AMAE (cm) 2.3 3.4 6.2 10.8 19.3 37.7 72.9 118.2

∑
B AMAE (cm) 2.7 4.5 8.5 15.1 27.1 52.5 101.8 172.8
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Fig. 12 AMAE in estimate of ||p||2 for
∑

B and
∑

A, the error bars
indicate the standard deviation

3.4 Kinematic noisy rangemeasurements and
heading disturbance study for observable
situation

In order to compare the results obtained with an imperfect
heading measurement to those obtained in the previous sec-
tion, the same trajectories are simulated (as in Eqs. 38 and
37 for MAVs 1 and 2, respectively). All the other simulation
parameters are also kept the same, with one exception. This
time, a disturbance is introduced on the heading measure-
ment. The simulated disturbance is modeled to look similar
to how a real local perturbation in the magnetic field would
perturb a heading estimate. The actual magnetic perturbation
and the corresponding heading error are taken from the work
of Afzal et al. (2010), where indoor magnetic perturbations
are studied. It was found that the obtained disturbance on the
heading estimate looks similar to a Gaussian curve, and in
this analysis it is thus modeled as such.

The disturbance on the heading estimate in time d(t) is
modeled as:

d(t) = Ad · e−(ε(t−t0))2 (39)

Here, the amplitude of the disturbance (in radians) is given
by Ad , the parameter ε controls the width of the Gaussian
curve, and t0 controls the location of the curve in time. For this

2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Fig. 13 Disturbance on the relative heading measurement in time, for
an amplitude Ad of 1 rad

study, ε = 1, resulting in a disturbance lasting approximately
4 s, and t0 = 5 s, such that the disturbance peaks at 5 s into the
flight. How such a disturbance looks is presented in Fig. 13
for an amplitude Ad of 1 rad.

Several amplitudes of the disturbance are tested, namely
0 rad, 0.25 rad, 0.5 rad, 1 rad, and 1.5 rad. The final amplitude
of 1.5 rad results in a maximum heading estimate error of
almost 85◦, which is approximately equal to the amplitude
of the disturbance shown by Afzal et al. (2010). Note that
the disturbance is introduced directly on the measurement of
Δψ (the difference in headings between two MAVs). This is
the situation that would occur if one of the two MAVs would
fly in a locally perturbed area.

Since the parameter of interest is how the filter for
∑

B
compares to the filter for

∑
A, the results are represented as

a percentage comparison of the relative localization errors
between the two filters. This is visually presented in Fig. 14.
In the figure, a positive % means that the filter for

∑
B per-

forms worse than the filter for
∑

A. At 0%, marked by a
dotted line, both filters perform equally well.

The comparison shows that as the applied disturbance
amplitude on the heading measurement provided to system
∑

A is increased, the region for which
∑

B performs better
than

∑
A expands. In the case of the largest disturbance, with

Ad equal to 1.5 rad, filter
∑

B even performs better at a range
noise σR equal to 8 m.

This result reinforces the presumption that it is not always
better to include a headingmeasurement in thefilter, provided
that the range measurement is of a high enough accuracy.
We will use this insight for the real-world implementation.
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Fig. 14 Percentage error comparison between
∑

B and
∑

A for dif-
ferent disturbance amplitudes Ad . Positive percentage means

∑
B

performs worse than
∑

A

In the experimental set-up in Sect. 4, we will use Ultra Wide
Band (UWB) radio modules to obtain range measurements
between MAVs. To give an idea of what type of range noise
standard deviations can actually be achieved in practice, in
the executed experimentswith realMAVs, theUWBmodules
resulted in ranging errors with standard deviations between
0.1 and 0.3 m. If we assume a normally distributed ranging
error, based on the results shown in Fig. 14, it is then clear
that the heading-independent system

∑
B would be the pre-

ferred choice for all heading disturbance amplitudes (except,
trivially, for the situation where there is little to no heading
disturbance at all).

4 Leader–follower flight experiment

In this section we demonstrate the heading-independent filter
in practice, which is used for leader–follower flight in an
indoor scenario.

4.1 Leader–follower flight considerations

Before designing an actual control method to accomplish
leader–follower flight, let’s first reflect on the previous
observability analysis results from Sect. 2 and their impli-
cations with respect to leader–follower flight. We know that
in order to have an observable, heading-independent, system,
the combined motion of the leader and follower has to meet
the observability condition presented in Eq. 33. We further
know that in order to to meet this condition, the three intu-
itive conditions presented by Eqs. 34 to 36 certainly have to
be met. Let’s first consider these conditions:

1. Thefirst condition (Eq. 34) specifies that the relative posi-
tion between leader and follower must be non-zero. This
condition has little implication to leader–follower flight,

other than the fact that the followermust follow the leader
at a non-zero horizontal distance, which typically is the
objective.

2. The second conditions (Eq. 35) tells us that both MAVs
must be moving. As far as leader–follower flight is con-
cerned, this is automatically accomplished as long as the
leader is not stationary.

3. The third condition (Eq. 36) is especially impactful for
leader–follower flight. It specifies that the MAVs should
not be moving in parallel (regardless of speed), unless
they are also accelerating. A lot of research on leader–
follower flight aims to design control laws that would
result in fixed geometrical formations between differ-
ent agents in the formation. This is typically achieved
by specifying desired formation shapes, or desired inter-
agent distances for members in the swarm (Turpin et al.
2012;Gu et al. 2006;Chiewet al. 2015; Saska et al. 2014).
By the very nature of fixed geometries, that would result
in parallel velocity vectors.

The third condition requires a different approach to leader–
follower flight. Rather than flying in a fixed formation, it is
also possible for the follower to fly a delayed version of the
leader’s trajectory. As long as the leader’s trajectory is not a
pure straight line for long periods of time, this will result in
relative motion between the leader and follower. This is the
approach taken in this paper.3

This solution should also help to prevent the MAVs from
getting stuck in an unobservable situation that is not covered
by Eqs. 34 to 36, but that is covered by the full observabil-
ity condition in Eq. 33. We concluded that for the scenarios
that are numerically found to be unobservable according to
Eq. 33, changing the relative position p only slightly can
already result in an observable situation. In the proposed
method of having the follower fly a time-delayed version
of the leader’s trajectory, the relative position vector p will
naturally change if the leader’s trajectory is not a straight
line.

4.2 Leader–follower formation control design

We want to construct a leader–follower control method that
results in the follower flying a delayed version of the leader’s
trajectory. As it turns out, this type of control can be directly
accomplished with the information provided by the relative
localization filter.

Consider the schematic in Fig. 15. It shows two arbitrary
trajectories in dotted lines. Just as for the previous section,

3 Interestingly, such oscillatory behaviors are also found in the insect
world, be it for finding the gradient of pheromone trails (Couzin and
Franks 2003), recognizing landmarks (Degen et al. 2016), or estimating
depth of 3D structure (Werner et al. 2016).
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Fig. 15 Control problem for leader–follower flight. In blue is MAV 1’s
trajectory in time p1(t). In red is MAV 2’s trajectory in time p2(t). The
desire is for MAV 1 to drive e(t) to 0 for t → ∞ (Color figure online)

MAV 1 tracks and follows MAV 2. At the top, in blue, is the
trajectory for MAV 1, which is represented by its position
vector in timep1(t). On the bottom, in red, is the trajectory for
MAV 2, p2(t). Suppose the desire is for the follower (MAV
1) to follow the leader’s trajectory (MAV 2) with a time delay
τ . The control problem for MAV 1 can be expressed as the
desire to accomplish p1(t) = p2(t − τ).

Let tn indicate the current time at which a control input
must be calculated. At the current time, MAV 1 has a body
fixed reference frameH1(tn), whose origin is p1(tn). At time
tn − τ , MAV 1 knows the relative position of the leader in its
own body fixed frame H1(tn − τ), since this information is
provided by the relative localization filter. However, for this
control method to work, MAV 1 must have knowledge of
where the leader’s old position is at the current time tn . This
value of interest is depicted by the vector e(tn) in Fig. 15; it
is the positional error with respect to the desired follower’s
position at time tn .

Let RHi (t1)Hi (t2) be the rotation matrix from frame Hi at
time t2, to frameHi at time t1, defined as:

RHi (t1)Hi (t2) =
[
cos(Δψi |t2t1) −sin(Δψi |t2t1)
sin(Δψi |t2t1) cos(Δψi |t2t1)

]

, (40)

Δψi |t2t1 is the change in heading angle for MAV i from
time t1 to time t2, which can be calculated as:

Δψi |t2t1 =
t2∫

t1

ri (t)dt (41)

The current positional error for the follower MAV 1,
depicted in Fig. 15, can be defined as:

e(tn) = RH1(tn)H1(tn−τ)

(
p(tn − τ) − Δptntn−τ

)
(42)

The vector Δptntn−τ represents how much the follower has
moved from time tn−τ until tn as defined in frameH1(tn−τ).
This vector can be calculated using information available to
the follower:

Δptntn−τ =
tn∫

tn−τ

RH1(tn−τ)H1(t)v1(t)dt (43)

Finally, onemorepiece of information is needed in order to
be able to design a control law for the followerMAV,which is
themodel of the followerMAVand how it responds to control
inputs. In this paper, it is assumed that the MAV already
has stable inner loop control running on board, such that it
directly can take velocity commands. It is further assumed
that with the inner loops in place, the MAV responds like
a very simple first order delay filter to velocity commands,
such that the differential equation for the velocity becomes:

v̇1 = τ−1(v1c − v1) (44)

where τ−1 is a diagonalmatrix. Thevalues along the diagonal
of τ−1 are the inverse of the time constants that character-
ize the delay of the system with respect to a control input
v1c. This is only an approximation of how the actual MAV
behaves, but it will be shown to be sufficient to accomplish
the desired behavior.

With all this information in place, a control law can
be designed. The control law is designed using Nonlinear
Dynamic Inversion (NDI) principles. In order to use NDI,
a state space model is required for the situation at hand. A
very similar state space model to the one used for the relative
localization filter can be used. Define the state vector as:

x̄ = [
eᵀ,Δψ̄, v1ᵀ, v̄2ᵀ]ᵀ

(45)

The state vector is similar to the one defined before for
the relative localization filter, with a few small changes. First
of all, e = e(t) represents the current positional error for the
followerMAV1with respect to the leader’s old position. Sec-
ondly, Δψ̄ and v̄2ᵀ represent again the difference in heading
between two MAVs and the velocity of MAV 2, except now
Δψ̄ is the difference in heading between frame H1(t) and
H2(t − τ), and v̄2ᵀ is the delayed leader’s velocity at time
t − τ , such that v̄2ᵀ = v2(t − τ).

Similarly, define a new input vector as:

ū = [
v1cᵀ, ā2ᵀ, r1, r̄2

]ᵀ (46)

where v1c is the actual control input fed to MAV 1, and ā2
and r̄2 represent the same values as a2 and r2, except that
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they are delayed versions. Therefore ā2 = a2(t − τ) and
r̄2 = r2(t − τ).

Finally, a new set of state differential equations can be
defined as:

˙̄x = f̄(x̄, ū) =

⎡

⎢
⎢
⎢
⎢
⎣

−v1 + R̄v̄2 − S1e

r̄2 − r1

τ−1(v1c − v1)

ā2 − S̄2v̄2

⎤

⎥
⎥
⎥
⎥
⎦

(47)

where R̄ = R(Δψ̄) and S̄2 = S2(r̄2).
The state that we wish to control is the current positional

error that MAV 1 has with respect to the delayed leader’s
position, so the state e. This state can be represented as:

e = Hx̄ (48)

With H given by:

H = [
I2×2 02×5

]
(49)

The derivative of the control variable with respect to time
is equal to:

ė = L1
f̄
e = Hf̄ = −v1 + R̄v̄2 − S1e (50)

The second derivative of the control variable:

ë = L2
f̄
e = (∇ ⊗ ė) · f̄

=
[
−S1 ∂R̄

∂Δψ̄
v̄2 −I2×2 R̄

]
· f̄

= −S1
(−v1 + R̄v̄2 − S1e

) + ∂R̄

∂Δψ̄
v̄2 (r̄2 − r1)

− I2×2

(
τ−1(v1c − v1)

)
+ R̄

(
ā2 − S̄2v̄2

)

= Dv1c + b(x,u) (51)

With D equal to:

D = −I2×2τ
−1 (52)

and b(x,u) equal to:

b(x,u) = −S1
(−v1 + R̄v̄2 − S1p

) + ∂R̄
∂Δψ

v̄2 (r̄2 − r1)

+ I2×2τ
−1v1 + R̄

( ¯a2 − S2v2
)

(53)

This can further be reduced to:

b(x,u) = −S1
(−v1 + R̄v̄2 − S1p

)

− ∂R̄
∂Δψ

v̄2r1 + I2×2τ
−1v1 + R̄ā2 (54)

At this point the following control law can be chosen:

v1c = D−1(i − b(x,u)) (55)

with i now a virtual control input.
This control law results in a fully linearized differential

equation for the positional error of the follower, since sub-
stitution of the control law from Eq. 55 in Eq. 51 results in
the following differential equation:

ë = i (56)

Which can be shown to be exponentially stable if the fol-
lowing virtual control is implemented:

i = −Kpe − Kd ė (57)

Kp, Kd > 0 (58)

4.3 Experimental set-up

One of the main findings in the observability study and the
simulation results is that the localization error scales more
steeply with range noise for system

∑
B than for

∑
A. It is

therefore important to use sensors that can provide accurate
relative ranging measurements.

In this work, we chose to use Ultra Wide Band (UWB)
based radio transceivers. UWB has recently gained attention
within the domain of ranging. UWB signals are character-
ized by their fine temporal and spatial resolution (Correal
et al. 2003), which leads UWB based systems to be able to,
for example, resolve multipath effects more easily (Win and
Scholtz 1998). Ultimately, this leads to an accurate rang-
ing performance, which is important if using the heading
independent filter. Another advantage of UWB is its relative
robustness to interference from other radio technologies due
to the fact that it operates on an (ultra) wide range of fre-
quencies (Liu et al. 2007; Foerster et al. 2001; Molisch et al.
2006).

TheUWB ranging hardware used in the experiments is the
ScenSor DWM1000 module sold by Decawave.4 The rang-
ing algorithm that is employed is a particular implementation
of the Two-Way Ranging (TWR) method (Neirynck et al.
2016). In order to fuse ranging data with velocity, accelera-
tion, height, and yaw rate data in the localization filter, these
variables are also communicated betweenMAVs by using the
UWB devices. The same UWB messages used in the TWR
protocol are also used to communicate these variables.

The UWB module transceiver has been installed on the
Parrot Bebop 2 platform.5 TheBebop 2 runs customautopilot

4 https://www.decawave.com/products/dwm1000-module.
5 https://www.parrot.com/us/drones/parrot-bebop-2.
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software designed using the open-source autopilot frame-
work Paparazzi UAV.6 Paparazzi UAV provides the stable
inner loop control loops for the Bebop 2 using Incremental
NDI (INDI, Smeur et al. (2015)). This allows us to control
the outer loop by giving the computed velocity commands to
the INDI inner loops.

Velocity and height measurements are also necessary for
the relative localization filter. In the initial experiments, they
are provided by an overhead motion capture system (MCS)
by OptiTrack.7 In a second iteration of the experiment,
they are fully provided by on-board sensors. The velocity
data is obtained from the MAVs’ on-board bottom-facing
camera using Lucas–Kanade optical flow. Height is mea-
sured using an on-board ultrasonic sensor that the Bebop 2
is equipped with by default. At all times, the acceleration
and yaw rate measurements are obtained from the MAVs’
on-board accelerometers and gyroscope, respectively. The
experiments are first conducted with two MAVs (one leader
and one follower), detailed in Sect. 4.4, and then performed
again with three MAVs (one leader and two followers),
detailed in Sect. 4.5.

4.4 Leader–follower flight with one follower

The experiment with one follower MAV consists of one
Bebop 2 following another Bebop 2 using the control law
presented in Sect. 4.2. At first, right after take off, the MAVs
fly concentric circles just like the ones shown in Fig. 11.
This procedure is there to make sure that the EKF running
on-board theMAVs has time to converge to the correct result,
such that by the time the follower MAV is instructed to start
following the leader, the follower has a correct estimate of
the relative location of the leader.

When leader–follower flight is engaged, the trajectory of
the leader has been designed to sufficiently excite the the rela-
tive localization filter during the leader–follower flight and to
decrease the likelihood of being stuck in unobservable states.
This has beendone by introducing frequent turns in the trajec-
tory to have changing relative velocities and accelerations.
The follower is instructed to follow the leader’s trajectory
with a time delay of τ = 5 s.

It is important to note that, for safety reasons, the norm
of the follower’s commanded velocity ||v1c||2 during both
experiments is saturated at 1.5 m/s. The measure is taken
because the MAVs were flying in a relatively small confined
area (10 m by 10 m). This change does however have conse-
quences for the performance of the follower’s tracking,which
is discussed further in the next sections.

6 http://wiki.paparazziuav.org/wiki/Main_Page.
7 http://optitrack.com/.

4.4.1 Leader–follower flight with velocity and height
information from aMCS

First, the case where velocity and height information is pro-
vided by the MCS is studied. In Fig. 16, the trajectory flown
by the follower is compared to the trajectory of the leader.
The x and y coordinates are compared separately for part
of the flight in Fig. 17a, b. In Fig. 18, a time composition
of overhead camera images is given for 5 s of flight as an
illustration. The follower’s position is shown at seven time
instances during these 5 s, and is compared to the leader’s
trajectory.

A total of 200 s of leader–follower flight were logged
and will be analyzed here. During this time, several laps of
the designed trajectory were executed. The trajectories in
Figs. 16, 17 and 18 indeed show that the follower is success-
fully tracking a delayed version of the leader’s trajectory. The
actual error distribution for the norm of the relative location
estimate ||p||2 is shown in Fig. 19. The errors have a mean
value of 18.4 cm and a maximum value of 77.5 cm, at max-
imum inter-MAV distances up to 5 m.

Since, in this experiment, the velocity and height mea-
surements were provided with high accuracy by the MCS,
one would expect the primary source for the localization
error to be the ranging error from the UWB modules. How-
ever, inspection of the ranging error actually shows a pretty
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Fig. 16 The trajectories of leader and follower during experiment with
MCS height and velocity
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Fig. 17 The trajectory of the follower in the a x- and b y-coordinate,
compared to the delayed trajectory of the leader for the experiment with
MCS height and velocity
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Fig. 18 Time composition of overhead camera images of leader and
followerMAV in time, for the experimentwithMCSheight and velocity.
Indicated in red and marked by p2(t), is part of the leader’s trajectory.
The leader’s final position is indicated by p2(t = 0). Seven points in
time of the follower’s trajectory are indicated in the image. According
to the control objective, p1(t = 5) should equal p2(t = 0) (Color figure
online)

Fig. 19 Histogram of the localization error for the follower during
experiment with MCS height and velocity

favorable error distribution. A histogram of the ranging error
throughout the flight is given in Fig. 20. The mean of the
ranging error is close to zero (about − 6.4 cm) and the errors
are well distributed around this mean. This is therefore not
themain cause of the occasionally higher relative localization
errors.

The most clearly identifiable cause for the relative local-
ization error is the occasional droppingof framesby theUWB
modules. The update rate of the relative localization filter
is equivalent to the UWB messaging rate, because the fil-
ter is updated every time that the UWB modules produce
a new ranging result (using a callback function). For two
UWB modules, this corresponds to an update rate of about
25 Hz, corresponding to a time step of approximately 40 ms.
However, the modules occasionally drop frames, causing the
time step to spike up.Over the flight, 2%of allmessageswere
received following an interval of more than 40 ms, and 1% of

Fig. 20 Histogram of the ranging error during experiment with MCS
height and velocity

Fig. 21 Histogram of the tracking error ||e||2 for the follower during
experiment with MCS height and velocity

all messages were received following an interval of 200 ms.
In one instance, the interval reached 470 ms, an order of
magnitude larger than the average. It is not hard to imag-
ine the unfavorable effect that such events can have for the
relative localization estimate. It is therefore not coincidental
that the largest localization error recorded during the flight
also corresponds to one of those times where the UWBmod-
ules dropped frames, causing the update rate of the relative
localization filter to also drop.

We now turn our attention to the tracking error of the fol-
lower MAV. The tracking error distribution ||e||2 is given in
Fig. 21. The mean of the distribution is equal to 46.1 cm
and the maximum error is 1.32 m. Of course, part of this
error is caused by a relative localization error from the fol-
lower’s perspective, which will inevitably affect the tracking
performance. However, since the relative localization error
is considerably lower than the tracking error, there must be
more sources to the error.

One source of error is the fact that the follower’s response
to a velocity command v1c is modeled as a first order delay.
In reality, the MAV has some overshoot with respect to com-
mands, which is not modeled by this first order delay. This
model mismatch by itself might not be that harmful to the
performance, since the control law would respond with more
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aggressive velocity commands as a reaction to the MAV not
behaving as modeled. However, the control law’s freedom
is severely restricted by the command saturation at 1.5 m/s,
which means that the follower cannot move as fast as the
command law demands. This argument is further supported
by a qualitative analysis of the follower’s trajectory with
respect to the leader’s trajectory in Fig. 16. The trajectory
of the follower often seems to take ‘shortcuts’ with respect
to the leader’s trajectory. This falls in line with the expected
behavior due to the command saturation. The control law
is designed not only to track the trajectory of the leader in
space, but also in time. As the follower starts lagging behind
the leader more than the desired τ = 5 s, the follower starts
to take shortcuts in the trajectory to catch up with the leader.
This error would be less prevalent if the command saturation
were increased.

4.4.2 Leader–follower flight with only on-board
measurements

We now demonstrate the workings of the proposed methods
in this paper when only on-board sensing is used. In this set-
up, the follower MAV does not use any MCS information.
Instead, the velocity information comes from Lucas–Kanade
optical flow measurements while the height is derived from
the on-board ultrasonic sensor. Similarly, the leader MAV
directly communicates optical flow velocities and ultrasonic
height measurements (along with accelerations and yaw rate
from the IMU) to the follower MAV for use in the relative
localization filter. The MCS is only used to log ground truth
data and for the leader to safely fly its trajectory.NoMCSdata
is used by the follower at all. Again, 200 s of leader–follower
flight with full on-board sensing took place successfully and
will be analyzed here.

The trajectory of the follower with respect to the delayed
leader’s trajectory is compared in Figs. 22 and 23. Further-
more, another time composition for 5 s of flight where the
follower is tracking the leader is given in Fig. 24.

The main qualitative difference with respect to the situ-
ation where the MCS was still used for velocity and height
information is the fact that the follower’s trajectory appears
less smooth. Otherwise, the performance seems qualitatively
similar. The follower still appears to take ‘shortcuts’ with
respect to the leader’s trajectory, although the increased dis-
order in the follower’s trajectory makes this less apparent.

The tracking error distribution for the on-board sensing
case is given in Fig. 25. The mean tracking error is 50.8 cm
and the maximum error is 1.47 m. The relative localization
error is given in Fig. 26. Here, the mean error is 22.6 cm and
the maximum error is 75.8 cm, at maximum MAV distances
up to 5.2 m.

The performance when using only on-board sensing is
very similar to when using the MCS for height and velocity
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Fig. 22 Trajectory of leader and follower during experiment with only
on-board sensing and processing
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Fig. 23 The trajectory of the follower in the a x- and b y-coordinate,
compared to the delayed trajectory of the leader for the experiment with
only on-board sensing

Fig. 24 Time composition of overhead camera images of leader and
follower MAV in time, for the experiment with only on-board sensing.
Indicated in orange andmarkedbyp2(t), is part of the leader’s trajectory.
The leader’s final position is indicated by p2(t = 0). Six points in time
of the follower’s trajectory are indicated in the image. According to
the control objective, p1(t = 5) should equal p2(t = 0) (Color figure
online)

data. This can be mainly attributed to the fact that the mea-
surements that have been replaced (the height and velocity of
both MAVs) are actually also accurately measured on-board.

The primary reason as towhy the trajectory of the follower
with on-board sensors still seems slightly more disordered is
the fact that the follower has difficulty to accurately control
its altitude when using only on-board sensing. The follower
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Fig. 25 Histogram of the tracking error ||e||2 for the follower during
experiment with only on-board sensing and processing

Fig. 26 Histogram of the localization error for the follower during
experiment with only on-board sensing and processing

now purely relies on height measurements from its ultrasonic
sensor. The update rate of this sensor is low, and in between
measurements the follower uses (noisy) accelerometer data
to update its height. This sometimes causes the follower to
believe its altitude is different than it really is, causing it to
rapidly ascend or descend. This takes up thrust, restricting the
follower’s ability to maneuverer accurately in the horizontal
plane due to thrust saturation.

4.5 Leader–follower flight with two followers

To demonstrate that the methods in this paper can also scale
to more than one follower, the leader–follower flight is also
performed with two follower MAVs instead of one. This is
done both with MCS height and velocity data and with only
on-board sensing.

For this purpose, TheUWBmessaging protocol is adapted
to allow every MAV to perform ranging with every other
MAV. The MAVs also communicate a unique (pre-assigned)
identification number within the UWB messages. The fol-
lowers can use this identification number to determine which
messages originate from the leader so that they individually
keep track of the leader as before. In the implemented com-
munication protocol, the UWB modules on the MAVs take

(a)Message intervals (b)Distribution

Fig. 27 Messaging rate over flights with 2 and 3 MAVs

turns to message their data to the others. This causes a drop
in communication rate every time that a new UWB mod-
ule is introduced. For this reason, the UWB range update
rate reduced from about 25 Hz with 2 MAVs, to about 16 Hz
with 3MAVs (i.e., with an interval of 62.5ms). Additionally,
the introduction of the additional module was accompanied
with an increase in the communication outages. 5.8% of all
messages recorded during our flight were received with an
interval longer than the nominal one of 62.5 ms. 2.9% of all
messages were received with an interval of 100 ms or more.
The messaging intervals for the flight with two MAVs and
three MAVs are compared in Fig. 27.

This time, due to the lack of space available, there is no
initialization flight procedure to give the EKFs of the fol-
lowers time to converge. Instead, the MAVs are placed in
starting positions and orientations that roughly match with
what EKFs on-board the MAVs are initialized to. Although
this placement is done purely by eye, it is proven to be suffi-
cient to safely start the leader–follower flight.

The leader flies the same trajectory as before. The first
follower follows this trajectory with a τ = 4 s delay, and the
second follower follows it with an τ = 8 s delay. Once again,
200 s of successful flight data is logged and analyzed.

An overhead camera image for the flight withMCS height
and velocity data is presented in Fig. 28, giving an idea of how
the experiment looked like.8 The trajectories for this flight
are displayed in Fig. 29 for the leader and two followers. For
the flights with only on-board information, the trajectories
are shown in Fig. 30.

As for the case with just one follower, we see that the
followers tend to take shortcuts with respect to the leader’s
trajectory. Furthermore, the flights using only on-board infor-
mation are less smooth than those with MCS height and
velocity information. For the flightwithMCSdata, follower 1
has aMAE for the relative localization error of only 15.8 cm.
By comparison, follower 2 has a MAE of 43.9 cm. Further-

8 Furthermore, videos of our experiments are available
at https://www.youtube.com/playlist?list=PL_KSX9GOn2P--
aEr4JtFl7SV3LO5QZY4q.
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Fig. 28 Overhead camera image of leader and two followers using
MCS height and velocity. In orange is the leader’s trajectory marked at
0.5 s intervals (Color figure online)
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Fig. 29 Trajectory of leader and two followers using MCS height and
velocity
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Fig. 30 Trajectory of leader and two followers using only on-board
information

more, followers 1 and 2 haveMAE for the tracking of 42.9 cm
and 70.3 cm, respectively. The flight with only on-board
sensing resulted in a relative localization MAE of 51.8 cm
and 53.6 cm. The tracking MAE this time was 58.6 cm and
98.4 cm.

4.6 Comparison of flights

In this section we present the relative localization and track-
ing MAE of the various flights that were executed. We
also discuss in more detail the most noteworthy differences
between experiments.

All the errors are presented in Table 2. The first note-
worthy observation is the fact that, for the experiment with
two followers, the tracking performance of the second fol-
lower is worse than for the first follower in both theMCS and
fully on-board case. This is a byproduct of the fact that the
proposed leader–follower control method inherently relies
on integration of velocity information in time. As the delay
with which the follower must follow the leader increases, so
does the period of time over which the follower must inte-
grate its velocity. This is subject to drift, which shows in the
tracking performance. This effect is more noticeable in the
fully on-board case, since the velocity estimates from optical
flowmethods are less accurate than the ones computed by the
MCS.

Another result is that the localization error for follower 2
in the MCS case is higher than for the first follower. This can
be explained, in part, by the fact that follower 2 has a larger
mean range with respect to the leader than follower 1 does
(4.2m compared to 2.9m). To inspect this deeper, we looked
at the logged range between theMAVs. It was found that fol-
lower 2 had substantially larger ranging errors with the leader
than follower 1. This can be appreciated in Fig. 31, where
the ranging error distributions are compared. In both cases,
the mean is close to zero, yet the distribution for follower
2 is significantly wider. An investigation of the flight logs
revealed that this is most likely associated with a combina-
tion of antenna orientation and relative flight trajectory. If the
error is analyzed, it can be seen that it is subject to periodic
peaks whichmatch the period of the relative bearing between
the drones. This can be seen in Fig. 32. However, this effect
does not appear to be purely caused by relative bearing, but
rather a combination of relative bearing and relative location
of the drones, relating to how the antennas were mounted on
the drones, whereby the presence of the drone itself likely
compromised the signal. This also explains why the correla-
tion is most clear during the first 100 s of flight and the last
50 s, but it is less clear between 90 and 150 s of the log. If
the trajectory is analyzed, between 100 and 150 s is when
the follower 2 trajectory started varying slightly (follower
2 began to take ‘shortcuts’) bringing the drones at different
relative locations to eachother. Such correlations should be
investigated further in future work over a variety of flights
with different platforms and scenarios.

A final result that stands out is that both followers 1 and 2
have substantially higher localization errors in the on-board
case than was found for the on-board experiment with a
single follower. This result appears to be due to a combina-
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Table 2 Comparison of mean localization (loc.) errors and mean tracking (track.) errors for all performed experimental flights, both for MCS and
fully on-board (on-b.) flights

1 follower 2 followers

MCS on-b. MCS 1 MCS 2 on-b. 1 on-b. 2

Loc. error (cm) 18.4 22.6 15.8 43.9 51.8 53.6

Track. error (cm) 46.1 50.8 42.9 70.3 58.6 98.4

(a) Follower 1 (b) Follower 2

Fig. 31 Comparison between ranging error distributions for follower 1
and 2 for the flight with MCS height and velocity data

Fig. 32 Range error and relative bearing between leader and follower
2 during flight

tion of factors. The increased communication traffic caused
a decrease in the filter update rate and also resulted in an
increase in ranging frames dropped. Follower 2, asmentioned
above, showed a worse ranging performance than follower
1. Follower 1, in turn, had slightly less accurate optical flow
velocity estimates than were obtained with the single fol-
lower flight (21 cm/sMAE compared to 15 cm/s before) and
also slightly higher ranging errors than for the single follower
flight (15 cm MAE compared to 8 cm before). All factors
combined, both followers suffered a comparable degradation
in localization performance.

5 Discussion

In this section we revisit the observability analysis from
Sect. 2 with the obtained experimental data. We also present
some remarks on the scalability of this methodology to larger
groups of MAVs.

5.1 Remarks on observability

Section 2.5 showed that for a specific set of velocities, accel-
erations and relative positions for bothMAVs, the systemwill
become unobservable. To directly integrate the full observ-
ability condition in the design of a leader–follower system is
difficult due to its high dimensionality. By having followers
fly a delayed version of the leader’s trajectory, it is possible to
naturally vary the relative positions between leader and fol-
lower, as long as the leader’s velocity changes in time. Given
the sparsity of unobservable relative positions, we therefore
postulated that this control behavior would be sufficient to
limit unobservable situations. Furthermore, even if an unob-
servable situation were to occur, this would only be for a
short period of time, as the relative position continuously
changes and the system automatically transitions back to
being observable.

Having performed the experiments and collected all the
ground truth data, it is now possible to test whether this
assumption is valid. All the parameters needed to evaluate
Eq. 33 have been logged during the experiments and can be
inserted into Eq. 33 to check the observability of the relative
localization filter in time. In line with our previous analy-
sis, the measure of observability of the system is represented
by the cross product between the left hand side of Eq. 33
and the relative position vector p. Once more, we shall take
a threshold of 1. Although theoretically only a value of 0
would indicate an unobservable system, the higher threshold
is chosen to account for noise in the data.

With the chosen threshold, the unobservable data points
for the MCS and the on-board flight are 4.76% and 4.75%
of all the data points, respectively. The unobservable points
are spread in time, thus giving the system ample observable
data in between to recover from the short periods of unob-
servability. Furthermore, isolated events of unobservability
are not expected to cause issues. Instead, they can gradually
cause an increase in the localization error in time. This has
also been confirmed by the simulations in Sect. 3.

Further qualitative inspection of the data does not show
a correlation between the unobservable regions of the flight
and the relative localization error. To demonstrate this, the
localization error is compared to the observability of the filter
in Fig. 33 for a small segment of the flight with MCS infor-
mation. For easier comparison, the observability has been
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Fig. 33 Comparison between localization error and the observability of
the filter. An unobservable value of ’1’ means the observability measure
is within the threshold of unobservability

reduced to a binary value, where a value of ‘1’ indicates
that the system is within the threshold of unobservability at
that time. It can be seen that there is no apparent correlation
between the two parameters.

The relative localization insights in this paper have been
aimed at leader–follower flight, yet they extend to other appli-
cations of MAVs in the real world. For different scenarios
such as area coverage, where the relative motion between
MAVs may be more (seemingly) random, it is expected that
unobservable conditions would be more rare (Cornejo and
Nagpal 2015). Therefore, based on our results, we expect
that the relative localization performance would also not suf-
fer from unoboservable conditions even in other tasks.

5.2 Remarks on scalability

The experimental results in Sect. 4 show that the methods in
this paper can successfully scale to two followers that follow
a leader in a confined area.Evenwhen full on-board sensing is
used by the followers, more than three minutes of successful
autonomous flight were demonstrated, with no pilot input.

Despite the successful results, analysis of the data does
show a substantial rise in localization and tracking errors
when scaling up to two MAVs. This raises the question of
what would happen if even more MAVs are added to the
experiment; would this be viable?

One of the results we found is that there is a correlation
between the tracking performance of the follower and the
time delay with which it follows the leader’s trajectory. The
follower that tracked with a time-delay of 8 s showed consis-
tently larger tracking errors than the followerswith 4 s and 5 s
delays. An alternative solution to the two follower problem is
having one follower follow the leader and the other following
the first follower. With such an arrangement, both followers
could follow another MAV with the same time delay. This
setup has not yet been studied in this work, but could prove
to be a better alternative to explore in future research.

In our experiments, the update rate reduced when flying
with two followers instead of one. It is to be expected that
adding moreMAVs requires additional data communication,
yet a drop from 25 to 16 Hz is quite significant for adding
just one more MAV. In this case, the reduction was due to
the communication protocol used during the experiments. In
futurework there should be efforts to determine how to tackle
this, which is a necessary step in order to solve scalability
issues that will otherwise arise when introducing even more
UWB modules.

As an example, it should be possible to significantly
increase the messaging rate to allow for more drones. In
these experimentswe operated theUWBmodules on the low-
est data rate settings (110 kbps). Furthermore, everymessage
contains a lengthypreamble of 2048bits, resulting in substan-
tial protocol overhead for every transmitted message which
may not be necessary (the actual payload of the UWB mes-
sages is less than 200 bits). The maximum data rate that the
UWB modules support is actually 6.8 Mbps and the pream-
ble can be as short as 64 bits. These would allow for much
higher update rates, even with three or more MAVs. One
would, however, need to examine what such a change would
have on ranging accuracy and stability.

6 Conclusion

The work in this paper has shown the feasibility of heading-
independent range-based relative localization on MAVs. We
now know that removing the dependency on a common head-
ing between MAVs has two main disadvantages: the motion
of agents must meet more stringent conditions to be observ-
able and the relative localization becomes more susceptible
to noise on the range measurements. The clear advantage,
on the other hand, is that the filter is no longer affected by
local disturbances in Earth’s magnetic field. As shown by
our simulations, small magnetic perturbations can already
lead to a large negative impact, showing how a heading-
independent method can actually perform better than the
heading-dependent method.

The results of our observability analysis have shown that
leader–follower flight is a difficult task when using the pro-
posed relative localization method, where a simple fixed
geometry formation flight is not possible. Instead, we needed
to develop a method that allows one MAV to follow another
MAV’s trajectory with a certain time delay while the leader
flies in a curved trajectory. This approach has been shown to
stay sufficiently clear from unobservable conditions, which
has allowed us to successfully demonstrate leader–follower
flight in practice.

Using only on-board sensory information, one MAV can
localize another MAVwith a mean error of just 22.6 cm over
200 s of leader–follower flight. This consequently allows the
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MAV to track another MAV’s trajectory with a mean error
of 50.8 cm. The method has been demonstrated to work also
with two followers tracking the same leader.

In a wider context, this work showcases a fundamental
connection between relative localization and behavior for
teams (or swarms) of robots. We have shown that the con-
straints included in the observability analysis have to be taken
into account when designing the behavior of the robots.
This enables the robots to make a better use of their sen-
sors, which in turn provides for a better final performance.
For example, in our case, the intuitive conditions extracted
from the observability analysis informed us that the leader–
follower behavior should not be such that the MAVs fly in
a fixed geometry. In general, extracting such intuitive condi-
tions can help swarm designers understand, at a higher level,
how the behavior of the individual robots should be designed
in order to be in harmony with their relative localization
sensors.

7 Future work

There are plenty of opportunities to research within the
domain of range based relative localization. Certainly, one
such opportunity is the initial convergence behavior of the
filter. The initial estimate of the EKF is important to quickly
converge to a correct estimate of the relative location of
another MAV. If the initial condition is too different from
the real situation, the filter has difficulties to converge. One
primary problem is that there exist spurious states where the
EKF can inititially erraneously converge to. In the future, it
would thus be interesting to research methods to address this
problem. Some possible solutions could be to use of more
thorough estimation filters (e.g., particle filters), or to run
multiple filters leading to multiple ambiguous states, which
would then help to identify the correct estimate more eas-
ily. Furthermore, with an eye on scalability to larger swarms,
it would be valuable to explore more thoroughly whether
the less intuitive unobservable conditions are, as indicated
by our analysis, indeed significantly more unlikely than the
observable ones.

It would also be valuable to research alternative control
algorithms to enable the leader–follower flight. A weakness
of the current controller is that it stores and uses the entire
most recent portion of the leader’s trajectory in order to repli-
cate it with a certain delay, which is not memory efficient.
An alternative solution might be to perform real time poly-
nomial data fitting on the relative positions of the leader.
The resulting polynomial trajectories could be used to obtain
the velocities and accelerations through analytical deriva-
tions of the polynomials. This might result in less data that
needs to be stored on-board of the MAVs and also might
lead to smoother trajectories. Moreover, currently we require

the leader to fly in an oscillatory trajectory in order to help
the followers avoid unobservable states. However, the con-
troller on-board of the followers could also be such that their
trajectory is automatically adapted in order to preemptively
avoid unobservable conditions. This would put less require-
ments on the leader, which would then be free to fly any type
of trajectory, and would also be a more general and robust
solution. To this end, the leader could also communicate addi-
tional information such as its planned trajectory over a time
horizon.

Finally, considering the hardware used in the experiments,
the importance of consistent, high frequency communication
and ranging has become apparent. It would be valuable to
further optimize the frequency and consistency with which
ranging messages are exchanged.

Videos

Videos of the experiments can be found at: https://www.
youtube.com/playlist?list=PL_KSX9GOn2P--aEr4JtFl7SV
3LO5QZY4q

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

ADerivation of intuitive condition 3 for
∑

B

Condition Eq. 36 is expressed as:

v1 �= sRv2 or (a1 �= 02×1 or a2 �= 02×1)

If a1 = a2 = 02×1 then the general condition (Eq. 32)
reduces to:

|MB| =
[

2 v1ᵀ ∂R
∂Δψ

(
v2v1ᵀ − v2v2ᵀRᵀ)

]

Ap �= 0

Therefore:

2 v1ᵀ ∂R
∂Δψ

(
v2v1ᵀ − v2v2ᵀRᵀ) �= 0

where R is as in Eq. 10. If this is expanded, we arrive at the
following:
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0 �=

⎡

⎢
⎢
⎢
⎣

−2
[
v1x − v2x cos(Δψ) + v2y sin(Δψ)

] [v1x v2y cos(Δψ) − v2x v1y cos(Δψ)

+ v1x v2x sin(Δψ) + v1y v2y sin(Δψ)]
2

[
v2y cos(Δψ) − v1y + v2x sin(Δψ)

] [v1x v2y cos(Δψ) − v2x v1y cos(Δψ)

+ v1x v2x sin(Δψ) + v1y v2y sin(Δψ)]

⎤

⎥
⎥
⎥
⎦

ᵀ

For both elements in the vector above, we can see that the
following condition must also be respected, from which we
can derive a condition for the ratio between the velocities.

0 �= v1x v2y cos(Δψ) − v2x v1y cos(Δψ)

+ v1x v2x sin(Δψ) + v1yv2y sin(Δψ)

0 �= v1x

v1y
v2y cos(Δψ) − v2x cos(Δψ)

+ v1x

v1y
v2x sin(Δψ) + v2y sin(Δψ)

v1x

v1y

[
v2x sin(Δψ) + v2y cos(Δψ)

] �= v2x cos(Δψ)

− v2y sin(Δψ)

v1x

v1y
�= s

s

v2x cos(Δψ) − v2y sin(Δψ)

v2x sin(Δψ) + v2y cos(Δψ)

Therefore, the following two conditions must hold together:

v1x �= s
[
v2x cos(Δψ) − v2y sin(Δψ)

]

v1y �= s
[
v2x sin(Δψ) + v2y cos(Δψ)

]

This brings us to the final condition:

[
v1x
v1y

]

�= s

[
v2x cos(Δψ) − v2y sin(Δψ)

v2x sin(Δψ) + v2y cos(Δψ)

]

[
v1x
v1y

]

�= s

[
cos(Δψ) −sin(Δψ)

sin(Δψ) cos(Δψ)

] [
v2x
v2y

]

v1 �= sRv2
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